WO2008065706A1 - Buffer of elevator - Google Patents

Buffer of elevator Download PDF

Info

Publication number
WO2008065706A1
WO2008065706A1 PCT/JP2006/323644 JP2006323644W WO2008065706A1 WO 2008065706 A1 WO2008065706 A1 WO 2008065706A1 JP 2006323644 W JP2006323644 W JP 2006323644W WO 2008065706 A1 WO2008065706 A1 WO 2008065706A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
coil spring
shock absorber
base cylinder
return coil
Prior art date
Application number
PCT/JP2006/323644
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuyoshi Imura
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to EP06833448.1A priority Critical patent/EP2088111A4/en
Priority to PCT/JP2006/323644 priority patent/WO2008065706A1/en
Priority to CN2006800564258A priority patent/CN101541659B/en
Priority to KR1020097008035A priority patent/KR100975189B1/en
Priority to JP2008546847A priority patent/JPWO2008065706A1/en
Publication of WO2008065706A1 publication Critical patent/WO2008065706A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/28Buffer-stops for cars, cages, or skips

Definitions

  • This invention is arranged at the bottom of the hoistway pit, and when an elevator force or counterweight goes down the lowermost floor due to some abnormal cause and descends to the hoistway pit, the impact is reduced and the safety is ensured.
  • the present invention relates to an elevator shock absorber to be stopped.
  • An elevator shock absorber is a safety device that reduces the impact and stops safely when the elevator car or counterweight goes down the lower floor for some reason and descends to the hoistway pit. It is.
  • a multi-stage hydraulic shock absorber is composed of a base cylinder filled with hydraulic oil and a multi-stage plunger that enters the base cylinder and is sequentially formed in a small diameter and configured to expand and contract in the axial direction.
  • a hydraulic shock absorber configured to generate a buffer function due to a pressure difference caused by the movement of hydraulic oil causes at least two or more stages of the plunger to move to the base cylinder or In addition to entering the lower plungers simultaneously, the fluid resistance changes with the penetration depth for each of the at least two or more plungers.
  • a return coil spring is arranged in each stage (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-324879
  • the plunger and the stroke of each stage are as large as several meters even though the plunger is configured in multiple stages.
  • the contact height of the spring increases.
  • the height of the return coil spring after the shock absorber operation (after compression) must naturally be equal to or greater than the contact height, and the length of the plunger has increased accordingly.
  • the overall height of the shock absorber is increased, and the merit of using a multi-stage system can be maximized.
  • the present invention has been made to solve the above-described problems, and it is possible to reduce the overall height of the shock absorber while ensuring an equivalent stroke, thereby reducing the total height of the shock absorber. It is possible to provide an elevator shock absorber that can reduce assembly and improve assembly and installation.
  • a base cylinder filled with hydraulic oil and a plurality of stages that enter the base cylinder and are sequentially formed in a small diameter and extendable in the axial direction.
  • the plunger of each stage enters the base cylinder or the plunger of the lower stage, it is configured to generate a buffer function due to the pressure difference accompanying the movement of the hydraulic oil, and is arranged at the bottom of the hoistway pit.
  • At least two or more stages of plungers enter the base cylinder or lower plunger at the same time, and at least two or more stages of plungers are configured to change the! / ⁇ fluid resistance with the depth of entry.
  • each plunger is provided with a return coil spring that returns each compressed plunger to an expanded state before compression.
  • the return coil spring that returns the plunger that enters the base cylinder has a large diameter and is disposed outside the plunger and between the upper part of the plunger and the upper part of the base cylinder.
  • the return coil spring that returns the penetrating upper plunger has a small diameter and the lower bra Inside the plunger and between the lower part of the upper plunger and the bottom part of the lower plunger. When each plunger is extended, the smaller return coil spring is located inside the larger return coil spring. Are arranged.
  • the present invention it is possible to obtain a multistage hydraulic shock absorber capable of shortening the height of the entire shock absorber while ensuring an equivalent stroke.
  • shortening the overall height of the shock absorber can reduce costs and improve assembly and installation.
  • the floor of the hoistway can be made shallower than the conventional one, the construction cost of the hoistway can be reduced.
  • FIG. 1 is a cross-sectional configuration diagram showing a state when an elevator shock absorber according to Embodiment 1 of the present invention is extended.
  • Fig. 2 is a cross-sectional configuration diagram showing a state during compression of the elevator shock absorber in Embodiment 1 of the present invention.
  • Fig. 3 is a comparative view showing the dimensional relationship between the extension and compression of the elevator shock absorber in Embodiment 1 of the present invention.
  • FIG. 1 is a cross-sectional configuration diagram showing a state when the elevator shock absorber according to the first embodiment of the present invention is extended, and FIG. 2 shows a state when the elevator shock absorber according to the first embodiment of the present invention is compressed.
  • FIG. 1 is a cross-sectional configuration diagram showing a state when the elevator shock absorber according to the first embodiment of the present invention is extended, and FIG. 2 shows a state when the elevator shock absorber according to the first embodiment of the present invention is compressed.
  • the shock absorber is fitted into a base cylinder 1 filled with hydraulic oil and a first control cylinder 11 provided inside the base cylinder 1, and slides into the first cylinder.
  • the plunger 2 and the second plunger 3 are fitted into a second control cylinder 21 provided inside the first plunger 2 and are slid to enter.
  • the first control cylinder 11 is provided with a plurality of first orifice groups 12 as appropriate in the cylinder axial direction.
  • the second control cylinder 21 is provided with a plurality of second orifice groups 22 as appropriate in the cylinder axial direction.
  • a cushion member 4 is provided on the top of the second plunger 3 in order to prevent the metal from contacting each other between the elevator and the lifting body such as a counterweight and the plunger.
  • An oil chamber 24 is formed between the second control cylinder 21 and the outer peripheral wall 23 of the first plunger 2.
  • An oil passage 25 is provided at the bottom of the first plunger 2 to allow the oil chamber 24 and the base cylinder 1 to communicate with each other.
  • a second sliding member 30 is provided at the lower part of the outer peripheral portion of the second plunger 3, and the second plunger 3 The inner wall of the second control cylinder 21 slides while maintaining oil tightness and enters the first plunger 2.
  • the hydraulic oil in the first plunger 2 pressurized by the second plunger 3 is depressurized by passing through the second orifice group 22 and guided to the oil passage 25 via the oil chamber 24.
  • a first sliding member 20 is provided at the lower part of the outer periphery of the first plunger 2, and the first plunger 2 slides on the inner wall of the first control cylinder 11 while maintaining oil tightness in the base cylinder 1. enter in .
  • the hydraulic oil in the base cylinder 1 pressurized by the first plunger 2 is depressurized by passing through the first orifice group 12, and the first oil chamber 14a and the second oil chamber formed outside the first control cylinder 11 are used.
  • Guided to oil chamber 14b Guided to oil chamber 14b.
  • the first oil chamber 14a is provided on the outer periphery of the first control cylinder 11, and the second oil chamber 14b is provided outside the first oil chamber 14a.
  • a base cylinder wall 13 is provided between the first oil chamber 14a and the second oil chamber 14b, and the second oil chamber 14b provided in the outermost wall is an oil passage 15 provided in the lower portion of the base cylinder wall 13. Communicates with the first oil chamber 14a.
  • the height of the first oil chamber 14a and the second oil chamber 14b is configured to be lower than the height when the plungers 2 and 3 are fully compressed.
  • a piston 17 that slides along the inner wall is provided in the second oil chamber 14b, and the piston 17 seals the hydraulic oil in the second oil chamber 14b and serves as a hydraulic oil for the entire hydraulic shock absorber. It has a weight sufficient to apply a predetermined pressure and hold a predetermined oil level.
  • the second oil chamber 14b is the same height as the first oil chamber 14a, and is configured to be lower than the height when the plungers 2 and 3 are fully compressed.
  • a space 16 is formed.
  • the hydraulic oil guided from the first oil chamber 14a to the second oil chamber 14b via the oil passage 15 pushes up the piston 17 to the space 16 and is stored in the second oil chamber 14b.
  • An air hole 18 is formed at the top of the second oil chamber 14b so that the downward pressure applied to the piston does not fluctuate when the piston 17 is moved up and down.
  • the first plunger 2 and the second plunger 3 include a first return coil spring 5 and a second return coil spring for returning the compressed plungers 2 and 3 to the expanded state before compression. 6 are provided separately.
  • the weights of the structural members constituting the plungers 2 and 3 are supported by the first return coil spring 5 and the second return coil spring 6.
  • the first return coil spring 5 for returning the first plunger 2 to the expanded state before compression has a large diameter, is outside the outer peripheral wall 23 of the first plunger 2, and is at the upper end of the first plunger 2. It is arranged between the flange and the upper surface of the upper end of the base cylinder 1. Also, the second plunger 3 The second return coil spring 6 for returning to the stretched state before compression has a smaller diameter than the first return coil spring 5 and is provided in the second control cylinder 21 provided inside the first plunger 2 and 2 Located between the lower surface of the bottom plate 8 of the plunger 3 and the upper surface of the bottom of the first plunger 2. In the extended state of the first plunger 2 and the second plunger 3, as shown in FIG. 1, the second return coil spring 6 having a small diameter is arranged inside the first return coil spring 5 having a large diameter. .
  • the hydraulic shock absorber when there is no load is the space below the second oil chamber 14b partitioned by the piston 17, the first oil chamber 14a, the first control cylinder 11, the oil chamber 24, and the second oil chamber 14b. 2
  • the inside of the control cylinder 2 1 is filled with hydraulic oil.
  • the second plunger 3 moves down in the second control cylinder 21 of the first plunger 2.
  • the hydraulic oil inside the second control cylinder 21 is pressurized, Support the second plunger 3 upward, and push the first plunger 2 downward while applying deceleration force to the elevator car.
  • the hydraulic oil is ejected from the opening of the second orifice group 22 into the oil chamber 24 by the volume of the second plunger 3 entering the second control cylinder 21, and the pressure is reduced by the fluid resistance.
  • the oil chamber 24 is connected to the space in the first control cylinder 11 through the oil passage 25.
  • the pressures in the oil chamber 24 and the first control cylinder 11 are substantially equal.
  • the first plunger 2 is pushed downward by the pressure inside the second control cylinder 21.
  • hydraulic oil also flows into the first control cylinder 11 from the oil passage 25, and the inside of the first control cylinder 11
  • the hydraulic oil is pressurized and generates a force in the direction of supporting the first plunger 2 upward.
  • the pressure inside the second control cylinder 21 is higher than the pressure inside the oil chamber 24 and the first control cylinder 11, so that the first plunger 2 that does not flow back to the inside of the second control cylinder 21 1
  • the first orifice group 12 From the opening of the first orifice group 12 to the first oil chamber 14a, only the volume of the fluid that has entered the control cylinder 11 and the volume of hydraulic fluid that has passed through the oil passage 25 and has flowed into the first control cylinder 11 are used.
  • the hydraulic oil that also spouts the opening force of the first orifice group 12 is depressurized by the fluid resistance, and is depressurized by the mass of the piston 17 to a pressure that is always applied to the hydraulic oil in the oil chamber 14a.
  • the total opening area of the first orifice group 12 provided in the first control cylinder 11 decreases as the first plunger 2 descends, and the fluid resistance increases.
  • the first oil chamber 14a is connected to the second oil chamber 14b through the oil passage 15, and since the first oil chamber 14a is already filled with the hydraulic oil, the ejected hydraulic oil is used as the piston 17 in the second oil chamber 14b. Push up. Since the opening area of the oil passage 15 is larger than the opening area of the first orifice group 12, the pressure of the hydraulic oil in the first oil chamber 14a and the second oil chamber 14b is substantially equal. This pressure is always kept at the same level as the sum of the pressure due to the piston load and the atmospheric pressure if the sliding resistance of the piston 17 is ignored.
  • This pressure level is lower than the pressure in the second control cylinder 21 and the first control cylinder 11 when a large load is applied to the hydraulic shock absorber as in the buffering operation.
  • the hydraulic oil in the chamber 14a and the second oil chamber 14b is no longer involved in the deceleration performance. Since the series of operations described above are changes accompanying pressure changes, they are actually realized at the same time.
  • the total height when extended (FIG. 3a) is 1000 Omm
  • the total height when compressed (FIG. 3b) is 4000 mm
  • the stroke from the extended state to the compressed state is 60 OOmm
  • the compression height of the first return coil spring 5 is 1000 mm
  • the compression height of the second return coil spring 6 is 1000 mm.
  • the total height when stretched (Fig. 4a) is 10 500mm
  • the total height when compressed (Fig. 4b) is 4500mm
  • the stroke from stretched to compressed is 6000mm Therefore, the compression height of the first return coil spring is 1000 mm
  • the compression height of the second return coil spring is 1000 mm.
  • the first return coil spring 5 for returning the first plunger 2 to the extended state before compression is provided outside the outer peripheral wall 23 of the first plunger 2 and the upper end flange of the first plunger 2 and the base.
  • a second return coil spring 6 is provided on the inner side of the first plunger 2 to be disposed between the upper surface of the upper end of the cylinder 1 and for returning the second plunger 3 to the expanded state before compression.
  • the total height of the shock absorber is the same as the first return coil spring 5 and the second return coil spring 5 Coil spring 6 compression height (1000mm) 1Z2 500mm small short It can be seen that is. That is, according to the present invention, although the lengths of the base cylinder 1, the first plunger 2, and the second plunger 3 are different, the total height of the shock absorber is set to the first return coil spring while ensuring the same stroke as the conventional one. 5 and the compression height of the second return coil spring 6 can be shortened by about 1Z2.
  • the cost of the shock absorber can be reduced by shortening the total height of the shock absorber, and the assembling property and the installation property are improved. Furthermore, since the floor of the hoistway can be made shallower than before, the construction cost of the hoistway can be reduced.
  • the elevator shock absorber according to the present invention is disposed at the bottom of the hoistway pit, and the elevator force or counterweight passes over the lowest floor due to some abnormal cause, and the hoistway pit part It can be applied to a multi-stage hydraulic shock absorber to reduce the shock and stop safely when descending.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Types And Forms Of Lifts (AREA)

Abstract

A buffer for an elevator in which the overall height dimension of the buffer can be reduced while the equivalent stroke is ensured, the cost can be reduced by reducing the overall height of the buffer, and assembling performance and installation performance can be enhanced. In the buffer for an elevator comprising a base cylinder and a plurality of stages of plunger where each plunger is provided with a coil spring for resetting each compressed plunger to an elongated state before compression, the coil spring for resetting the plunger entering the base cylinder has a large diameter, and it is arranged between the upper portion of the plunger and the upper portion of the base cylinder on the outside of the plunger. Another coil spring for resetting the plunger on the upper stage entering the plunger on the lower stage has a small diameter, and it is arranged between the lower portion of the plunger on the upper stage and the bottom portion of the plunger on the lower stage on the inside thereof. In an elongated state of each plunger, the other small diameter coil spring for resetting is arranged on the inside of the large diameter coil spring for resetting.

Description

明 細 書  Specification
エレベータの緩衝器 技術分野  Elevator shock absorber Technical Field
[0001] この発明は、昇降路ピット底部に配置され、何らかの異常原因によりエレベータの 力ご又は釣合いおもりが最下階を行き過ぎて、昇降路ピット部へ下降した時、衝撃を 少なくし、安全に停止させるエレベータの緩衝器に関するものである。  [0001] This invention is arranged at the bottom of the hoistway pit, and when an elevator force or counterweight goes down the lowermost floor due to some abnormal cause and descends to the hoistway pit, the impact is reduced and the safety is ensured. The present invention relates to an elevator shock absorber to be stopped.
背景技術  Background art
[0002] エレベータの緩衝器は、何らかの異常原因によりエレベータのかご又は釣合いおも りが最下階を行き過ぎて、昇降路ピット部へ下降した時、衝撃を少なくし、安全に停 止させる安全装置である。  [0002] An elevator shock absorber is a safety device that reduces the impact and stops safely when the elevator car or counterweight goes down the lower floor for some reason and descends to the hoistway pit. It is.
従来、この種の緩衝器として、オリフィス—制御棒方式の油圧緩衝器がある。この油 圧緩衝器のストロークは、エレベータの定格速度により規定されており(ストローク = ( 定格速度 X I . 15)2Z2Z9.80665)、プランジャの軸方向長さはそのストローク以上 の長さが必要であり、また、シリンダもそのプランジャの進入を受け入れる必要がある ため、プランジャの長さにほぼ相応する軸方向長さが必要であり、軸方向に長い構成 となっていた。このように、装置の全長が長くなると、その分、昇降路の床部を深くしな ければならず、昇降路の構築コストが嵩むという問題があった。また、装置の全高が 長いため、組立てや現場への搬入性が悪かった。 Conventionally, as this kind of shock absorber, there is an orifice-control rod type hydraulic shock absorber. The stroke of this hydraulic shock absorber is defined by the rated speed of the elevator (stroke = (rated speed XI. 15) 2 Z2Z9.80665), and the plunger axial length must be longer than that stroke. In addition, since the cylinder is also required to accept the ingress of the plunger, the axial length almost corresponding to the length of the plunger is required, and the configuration is long in the axial direction. Thus, when the overall length of the device becomes longer, the floor of the hoistway has to be deepened accordingly, and there is a problem that the construction cost of the hoistway increases. Also, the overall height of the equipment was long, making it difficult to assemble and transport to the site.
[0003] そこで、超高速のエレベータの油圧緩衝器には、図 4に示すようなプランジャを多 段に構成することにより、ストロークを確保しつつ全高を低くできる多段の油圧緩衝器 の適用が有効である。多段油圧緩衝器は、作動油が充填されたベースシリンダと、こ のベースシリンダに進入し、順次小径に形成されて軸方向に伸縮可能に構成された 複数段のプランジャとからなり、各段のプランジャがベースシリンダまたは下段のブラ ンジャに進入する際、作動油の移動に伴う圧力差により緩衝機能を生じるように構成 された油圧緩衝器にぉ 、て、少なくとも 2段以上のプランジャがベースシリンダまたは 下段のプランジャに同時に進入すると共に、少なくとも 2段以上のプランジャの進入に 対して、それぞれ、進入深さに伴ない流体抵抗が変化するように構成されており、多 段緩衝器の圧縮後のプランジャの復帰方式として、各段にそれぞれ復帰用コイルば ねを配置している(例えば、特許文献 1参照)。 [0003] Therefore, it is effective to apply a multi-stage hydraulic shock absorber that can reduce the overall height while securing the stroke by configuring the plunger as shown in Fig. 4 in multiple stages for the hydraulic shock absorber of the ultra-high speed elevator. It is. A multi-stage hydraulic shock absorber is composed of a base cylinder filled with hydraulic oil and a multi-stage plunger that enters the base cylinder and is sequentially formed in a small diameter and configured to expand and contract in the axial direction. When the plunger enters the base cylinder or the lower-stage plunger, a hydraulic shock absorber configured to generate a buffer function due to a pressure difference caused by the movement of hydraulic oil causes at least two or more stages of the plunger to move to the base cylinder or In addition to entering the lower plungers simultaneously, the fluid resistance changes with the penetration depth for each of the at least two or more plungers. As a method for returning the plunger after compression of the stage shock absorber, a return coil spring is arranged in each stage (see, for example, Patent Document 1).
[0004] 特許文献 1 :日本特開 2004— 324879号公報 [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2004-324879
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、多段油圧緩衝器が適用される超高速領域では、プランジャを多段に構成し たとはいえ、各段のプランジャの長さ及びストロークが数メートルと大きいため、プラン ジャの復帰用コイルばねの密着高さは大きくなる。また、緩衝器動作後 (圧縮後)の 復帰用コイルばねの高さは、当然密着高さ以上にする必要があり、その分、プランジ ャの長さも大きくなつていた。これにより、緩衝器全体の高さ寸法が大きくなつてしまい 、多段式にするメリットが最大限に生力せて 、な ヽと 、うのが現状であった。  [0005] However, in the ultra-high speed region where multi-stage hydraulic shock absorbers are applied, the plunger and the stroke of each stage are as large as several meters even though the plunger is configured in multiple stages. The contact height of the spring increases. In addition, the height of the return coil spring after the shock absorber operation (after compression) must naturally be equal to or greater than the contact height, and the length of the plunger has increased accordingly. As a result, the overall height of the shock absorber is increased, and the merit of using a multi-stage system can be maximized.
[0006] この発明は上記のような課題を解決するためになされたもので、同等のストロークを 確保しつつ、緩衝器全体の高さ寸法を短縮することができ、緩衝器全高の短縮により コストが低減でき、組立性や据付性を向上できるエレベータの緩衝器を提供するもの である。  [0006] The present invention has been made to solve the above-described problems, and it is possible to reduce the overall height of the shock absorber while ensuring an equivalent stroke, thereby reducing the total height of the shock absorber. It is possible to provide an elevator shock absorber that can reduce assembly and improve assembly and installation.
課題を解決するための手段  Means for solving the problem
[0007] この発明に係るエレベータの緩衝器においては、作動油が充填されたベースシリン ダと、このベースシリンダに進入し、順次小径に形成されて軸方向に伸縮可能に構成 された複数段のプランジャとからなり、各段のプランジャがベースシリンダ又は下段の プランジャに進入する際、作動油の移動に伴う圧力差により緩衝機能を生じるように 構成されて昇降路ピット底部に配置され、圧縮動作時に少なくとも 2段以上のプラン ジャがベースシリンダ又は下段のプランジャに同時に進入すると共に、少なくとも 2段 以上のプランジャの進入に対して、それぞれ進入深さに伴な!/ヽ流体抵抗が変化する ように構成され、かつ各プランジャには、圧縮された各プランジャを圧縮前の伸長状 態に復帰させる復帰用コイルばねを設けたものにおいて、ベースシリンダに進入する プランジャを復帰させる復帰用コイルばねは大径で、そのプランジャの外側でかつ当 該プランジャの上部とベースシリンダの上部との間に配設されており、下段のプランジ ャに侵入する上段のプランジャを復帰させる復帰用コイルばねは小径で、下段のブラ ンジャの内側でかつ上段のプランジャの下部と下段のプランジャの底部との間に配 設されており、各プランジャの伸長状態では、大径の復帰用コイルばねの内側に小 径の復帰用コイルばねが配置されているものである。 [0007] In the elevator shock absorber according to the present invention, a base cylinder filled with hydraulic oil, and a plurality of stages that enter the base cylinder and are sequentially formed in a small diameter and extendable in the axial direction. When the plunger of each stage enters the base cylinder or the plunger of the lower stage, it is configured to generate a buffer function due to the pressure difference accompanying the movement of the hydraulic oil, and is arranged at the bottom of the hoistway pit. At least two or more stages of plungers enter the base cylinder or lower plunger at the same time, and at least two or more stages of plungers are configured to change the! / ヽ fluid resistance with the depth of entry. In addition, each plunger is provided with a return coil spring that returns each compressed plunger to an expanded state before compression. The return coil spring that returns the plunger that enters the base cylinder has a large diameter and is disposed outside the plunger and between the upper part of the plunger and the upper part of the base cylinder. The return coil spring that returns the penetrating upper plunger has a small diameter and the lower bra Inside the plunger and between the lower part of the upper plunger and the bottom part of the lower plunger. When each plunger is extended, the smaller return coil spring is located inside the larger return coil spring. Are arranged.
発明の効果  The invention's effect
[0008] この発明によれば、同等のストロークを確保しつつ、緩衝器全体の高さ寸法を短縮 できる多段油圧緩衝器が得られる。また、緩衝器全高の短縮によりコストが低減でき、 組立性や据付性を向上することができる。更に、従来のものに比べて昇降路の床部 を浅くすることができるので、昇降路の構築コストを低減することができる。  [0008] According to the present invention, it is possible to obtain a multistage hydraulic shock absorber capable of shortening the height of the entire shock absorber while ensuring an equivalent stroke. In addition, shortening the overall height of the shock absorber can reduce costs and improve assembly and installation. Further, since the floor of the hoistway can be made shallower than the conventional one, the construction cost of the hoistway can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1はこの発明の実施例 1におけるエレベータの緩衝器の伸長時の状態を示す 断面構成図である。  FIG. 1 is a cross-sectional configuration diagram showing a state when an elevator shock absorber according to Embodiment 1 of the present invention is extended.
[図 2]図 2はこの発明の実施例 1におけるエレベータの緩衝器の圧縮時の状態を示す 断面構成図である。  [Fig. 2] Fig. 2 is a cross-sectional configuration diagram showing a state during compression of the elevator shock absorber in Embodiment 1 of the present invention.
[図 3]図 3はこの発明の実施例 1におけるエレベータの緩衝器の伸長時と圧縮時の寸 法関係を示す比較図である。  [Fig. 3] Fig. 3 is a comparative view showing the dimensional relationship between the extension and compression of the elevator shock absorber in Embodiment 1 of the present invention.
符号の説明  Explanation of symbols
[0010] 1 ベースシリンダ [0010] 1 Base cylinder
2 第 1プランジャ  2 First plunger
3 第 2プランジャ  3 Second plunger
4 クッション材  4 Cushion material
5 第 1復帰用コイルばね  5 First return coil spring
6 第 2復帰用コイルばね  6 Second return coil spring
8 底板  8 Bottom plate
11 第 1制御シリンダ  11 First control cylinder
12 第 1オリフィス群  12 First orifice group
13 ベースシリンダ壁  13 Base cylinder wall
14a 第 1油室  14a 1st oil chamber
14b 第 2油室 16 空間部 14b Second oil chamber 16 Space
17 ピストン  17 Piston
18 空気孔  18 Air holes
20 第 1摺動部材  20 First sliding member
21 第 2制御シリンダ  21 Second control cylinder
22 第 2オリフィス群  22 Second orifice group
23 第 1プランジャの外周壁  23 Outer wall of first plunger
24 油室  24 Oil chamber
25 油通路  25 Oil passage
30 第 2摺動部材  30 Second sliding member
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] この発明をより詳細に説明するために、添付の図面に従ってこれを説明する。  [0011] In order to describe the present invention in more detail, it will be described with reference to the accompanying drawings.
実施例 1  Example 1
[0012] 図 1はこの発明の実施例 1におけるエレベータの緩衝器の伸長時の状態を示す断 面構成図、図 2はこの発明の実施例 1におけるエレベータの緩衝器の圧縮時の状態 を示す断面構成図である。  FIG. 1 is a cross-sectional configuration diagram showing a state when the elevator shock absorber according to the first embodiment of the present invention is extended, and FIG. 2 shows a state when the elevator shock absorber according to the first embodiment of the present invention is compressed. FIG.
[0013] 図において、緩衝器は、作動油が充填されたベースシリンダ 1と、このベースシリン ダ 1の内部に設けられた第 1制御シリンダ 11に嵌合され、摺動して進入する第 1ブラ ンジャ 2と、第 1プランジャ 2の内部に設けられた第 2制御シリンダ 21に嵌合され、摺 動してに進入する第 2プランジャ 3とで構成されている。第 1制御シリンダ 11には複数 の第 1オリフィス群 12がシリンダ軸方向に適宜設けられている。第 2制御シリンダ 21に は複数の第 2オリフィス群 22がシリンダ軸方向に適宜設けられて 、る。第 2プランジャ 3の頂部には、エレベータかご又は釣合いおもりなどの昇降体とプランジャとの、金属 同士の接触を防ぐためにクッション材 4が設けられて 、る。第 2制御シリンダ 21と第 1 プランジャ 2の外周壁 23との間には油室 24が形成される。また、第 1プランジャ 2の底 部には油室 24とベースシリンダ 1とを連通させる油通路 25が設けられている。また、 第 2プランジャ 3の外周部下部には第 2摺動部材 30が設けられ、第 2プランジャ 3は 第 2制御シリンダ 21の内壁を油密を保持しながら摺動して第 1プランジャ 2内に進入 する。第 2プランジャ 3により加圧された第 1プランジャ 2内の作動油は第 2オリフィス群 22を通過することで減圧され、油室 24を経由して、油通路 25へ導かれる。また、第 1 プランジャ 2の外周部下部には第 1摺動部材 20が設けられ、第 1プランジャ 2は第 1 制御シリンダ 11の内壁を油密を保持しながら摺動してベースシリンダ 1内に進入する 。第 1プランジャ 2により加圧されたベースシリンダ 1内の作動油は第 1オリフィス群 12 を通過することで減圧され、第 1制御シリンダ 11の外側に形成された第 1油室 14a及 び第 2油室 14bへ導かれる。第 1油室 14aは第 1制御シリンダ 11の外周部に設けられ 、第 2油室 14bは第 1油室 14aの外側に設けられている。第 1油室 14aと第 2油室 14b との間にはベースシリンダ壁 13が設けられ、最外郭に設けられた第 2油室 14bは、ベ ースシリンダ壁 13の下部に設けられた油通路 15により第 1油室 14aと連通している。 第 1油室 14a及び第 2油室 14bの高さは、各プランジャ 2、 3を全圧縮した時の高さよ りも低く構成されている。第 2油室 14b内には内壁に沿って摺動するピストン 17が設 けられており、ピストン 17は第 2油室 14b内の作動油を密閉すると共に、油圧緩衝器 内全体の作動油に所定の圧力を付与し、所定の油面を保持するのに十分な重量を 有する。これにより第 2油室 14bは第 1油室 14aと同じ高さであり、各プランジャ 2、 3を 全圧縮した時の高さよりも低く構成されているが、第 2油室 14bの内部には空間部 16 が形成される。第 1油室 14aから油通路 15を経由して第 2油室 14bへ導かれた作動 油はピストン 17を空間部 16へと押し上げ、第 2油室 14b内に貯蔵される。第 2油室 1 4bの頂部にはピストン 17の上下によってピストンに力かる下向きの圧力が変動しない ように空気孔 18が開けてある。 [0013] In the figure, the shock absorber is fitted into a base cylinder 1 filled with hydraulic oil and a first control cylinder 11 provided inside the base cylinder 1, and slides into the first cylinder. The plunger 2 and the second plunger 3 are fitted into a second control cylinder 21 provided inside the first plunger 2 and are slid to enter. The first control cylinder 11 is provided with a plurality of first orifice groups 12 as appropriate in the cylinder axial direction. The second control cylinder 21 is provided with a plurality of second orifice groups 22 as appropriate in the cylinder axial direction. A cushion member 4 is provided on the top of the second plunger 3 in order to prevent the metal from contacting each other between the elevator and the lifting body such as a counterweight and the plunger. An oil chamber 24 is formed between the second control cylinder 21 and the outer peripheral wall 23 of the first plunger 2. An oil passage 25 is provided at the bottom of the first plunger 2 to allow the oil chamber 24 and the base cylinder 1 to communicate with each other. Further, a second sliding member 30 is provided at the lower part of the outer peripheral portion of the second plunger 3, and the second plunger 3 The inner wall of the second control cylinder 21 slides while maintaining oil tightness and enters the first plunger 2. The hydraulic oil in the first plunger 2 pressurized by the second plunger 3 is depressurized by passing through the second orifice group 22 and guided to the oil passage 25 via the oil chamber 24. A first sliding member 20 is provided at the lower part of the outer periphery of the first plunger 2, and the first plunger 2 slides on the inner wall of the first control cylinder 11 while maintaining oil tightness in the base cylinder 1. enter in . The hydraulic oil in the base cylinder 1 pressurized by the first plunger 2 is depressurized by passing through the first orifice group 12, and the first oil chamber 14a and the second oil chamber formed outside the first control cylinder 11 are used. Guided to oil chamber 14b. The first oil chamber 14a is provided on the outer periphery of the first control cylinder 11, and the second oil chamber 14b is provided outside the first oil chamber 14a. A base cylinder wall 13 is provided between the first oil chamber 14a and the second oil chamber 14b, and the second oil chamber 14b provided in the outermost wall is an oil passage 15 provided in the lower portion of the base cylinder wall 13. Communicates with the first oil chamber 14a. The height of the first oil chamber 14a and the second oil chamber 14b is configured to be lower than the height when the plungers 2 and 3 are fully compressed. A piston 17 that slides along the inner wall is provided in the second oil chamber 14b, and the piston 17 seals the hydraulic oil in the second oil chamber 14b and serves as a hydraulic oil for the entire hydraulic shock absorber. It has a weight sufficient to apply a predetermined pressure and hold a predetermined oil level. As a result, the second oil chamber 14b is the same height as the first oil chamber 14a, and is configured to be lower than the height when the plungers 2 and 3 are fully compressed. A space 16 is formed. The hydraulic oil guided from the first oil chamber 14a to the second oil chamber 14b via the oil passage 15 pushes up the piston 17 to the space 16 and is stored in the second oil chamber 14b. An air hole 18 is formed at the top of the second oil chamber 14b so that the downward pressure applied to the piston does not fluctuate when the piston 17 is moved up and down.
[0014] また、第 1プランジャ 2、第 2プランジャ 3には、圧縮された各プランジャ 2、 3を圧縮 前の伸長状態に復帰させるための第 1復帰用コイルばね 5、第 2復帰用コイルばね 6 が別々に設けられている。また、各プランジャ 2、 3を構成する構造部材の重量は、上 記第 1復帰用コイルばね 5、第 2復帰用コイルばね 6により支持される。  [0014] The first plunger 2 and the second plunger 3 include a first return coil spring 5 and a second return coil spring for returning the compressed plungers 2 and 3 to the expanded state before compression. 6 are provided separately. The weights of the structural members constituting the plungers 2 and 3 are supported by the first return coil spring 5 and the second return coil spring 6.
[0015] 第 1プランジャ 2を圧縮前の伸長状態に復帰させるための第 1復帰用コイルばね 5 は、大径であり、第 1プランジャ 2の外周壁 23の外側でかつ第 1プランジャ 2の上端鍔 部とベースシリンダ 1の上端部上面との間に配設されている。また、第 2プランジャ 3を 圧縮前の伸長状態に復帰させるための第 2復帰用コイルばね 6は、第 1復帰用コイル ばね 5より小径であり、第 1プランジャ 2の内側に設けられた第 2制御シリンダ 21内で かつ第 2プランジャ 3の底板 8の下面と第 1プランジャ 2の底部上面との間に配設され ている。そして、第 1プランジャ 2、第 2プランジャ 3の伸長状態では、図 1に示すように 、大径の第 1復帰用コイルばね 5の内側に小径の第 2復帰用コイルばね 6が配置され ている。 [0015] The first return coil spring 5 for returning the first plunger 2 to the expanded state before compression has a large diameter, is outside the outer peripheral wall 23 of the first plunger 2, and is at the upper end of the first plunger 2. It is arranged between the flange and the upper surface of the upper end of the base cylinder 1. Also, the second plunger 3 The second return coil spring 6 for returning to the stretched state before compression has a smaller diameter than the first return coil spring 5 and is provided in the second control cylinder 21 provided inside the first plunger 2 and 2 Located between the lower surface of the bottom plate 8 of the plunger 3 and the upper surface of the bottom of the first plunger 2. In the extended state of the first plunger 2 and the second plunger 3, as shown in FIG. 1, the second return coil spring 6 having a small diameter is arranged inside the first return coil spring 5 having a large diameter. .
次に緩衝動作について説明する。  Next, the buffering operation will be described.
無負荷時の油圧緩衝器は図 1に示すように、ピストン 17で仕切られた第 2油室 14b の下側の空間、第 1油室 14a、第 1制御シリンダ 11、油室 24、及び第 2制御シリンダ 2 1内が作動油で満たされて 、る。何らかの異常によりエレベータかご (あるいは釣合 ヽ おもり)が油圧緩衝器に衝突すると、第 2プランジャ 3が第 1プランジャ 2の第 2制御シ リンダ 21内を降下する。この時、第 1制御シリンダ 21と第 2プランジャ 3とに囲まれた 空間は第 2オリフィス群 22を除 ヽて密閉されて 、るため、第 2制御シリンダ 21内部の 作動油は加圧され、第 2プランジャ 3を上方に支え、減速力をエレベータかごに与え ながら第 1プランジャ 2を下方へ押し下げる。第 2プランジャ 3が第 2制御シリンダ 21に 進入した体積分だけ、作動油は第 2オリフィス群 22の開口部から油室 24内に噴出し 、流体抵抗により減圧される。なお、第 2プランジャ 3の下降に従って第 2制御シリンダ 21に設けた第 2オリフィス群 22の総開口面積は減少し、流体抵抗は徐々に大きくな る。油室 24は油通路 25を通して第 1制御シリンダ 11内の空間とつながつている。油 通路 25の開口面積は第 2オリフィス群 22の開口面積と比較して大きくとってあるので 、油室 24と第 1制御シリンダ 11内の圧力はほぼ等しくなる。第 2制御シリンダ 21内部 の圧力により第 1プランジャ 2は下方に押し下げられるが、このとき第 1制御シリンダ 1 1内部には油通路 25からも作動油が流入しており、第 1制御シリンダ 11内部の作動 油は加圧され、第 1プランジャ 2を上方に支える方向に力を発生する。この状態で第 2 制御シリンダ 21内部の圧力は、油室 24、第 1制御シリンダ 11内部の圧力よりも高い ので、第 2制御シリンダ 21内部への作動油の逆流はなぐ第 1プランジャ 2が第 1制御 シリンダ 11内に進入した体積分と、油通路 25を通過し第 1制御シリンダ 11内に流入 した作動油の体積分とだけ、第 1オリフィス群 12の開口部から第 1油室 14aへ作動油 が噴出する。第 1オリフィス群 12の開口部力も噴出する作動油は流体抵抗により減圧 され、ピストン 17の質量により油室 14aの作動油に常時与えられている圧力まで減圧 される。この場合も同様に、第 1プランジャ 2の下降に従って第 1制御シリンダ 11に設 けた第 1オリフィス群 12の総開口面積が減少し、流体抵抗が大きくなる。第 1油室 14 aは油通路 15を通して第 2油室 14bとつながっており、第 1油室 14aは既に作動油で 満たされているので、噴出した作動油は第 2油室 14bのピストン 17を押し上げる。油 通路 15の開口面積は第 1オリフィス群 12の開口面積と比較して大きくとってあるので 、第 1油室 14aと第 2油室 14b内の作動油の圧力はほぼ等しくなる。この圧力は、ビス トン 17の摺動抵抗を無視すれば、ピストンの荷重による圧力と大気圧との和と同じレ ベルに常に保たれる。この圧力レベルは、緩衝動作時のように油圧緩衝器に大きな 荷重がかかった状態では、第 2制御シリンダ 21内や第 1制御シリンダ 11内などの圧 力と比較して小さいため、第 1油室 14a、第 2油室 14b内の作動油はもはや減速性能 に関与しない。以上の一連の動作は圧力変化に伴う変化であるので、実際には同時 に成立する。 As shown in Fig. 1, the hydraulic shock absorber when there is no load is the space below the second oil chamber 14b partitioned by the piston 17, the first oil chamber 14a, the first control cylinder 11, the oil chamber 24, and the second oil chamber 14b. 2 The inside of the control cylinder 2 1 is filled with hydraulic oil. When the elevator car (or counterbalance weight) collides with the hydraulic shock absorber due to some abnormality, the second plunger 3 moves down in the second control cylinder 21 of the first plunger 2. At this time, since the space surrounded by the first control cylinder 21 and the second plunger 3 is sealed except for the second orifice group 22, the hydraulic oil inside the second control cylinder 21 is pressurized, Support the second plunger 3 upward, and push the first plunger 2 downward while applying deceleration force to the elevator car. The hydraulic oil is ejected from the opening of the second orifice group 22 into the oil chamber 24 by the volume of the second plunger 3 entering the second control cylinder 21, and the pressure is reduced by the fluid resistance. As the second plunger 3 descends, the total opening area of the second orifice group 22 provided in the second control cylinder 21 decreases, and the fluid resistance gradually increases. The oil chamber 24 is connected to the space in the first control cylinder 11 through the oil passage 25. Since the opening area of the oil passage 25 is larger than the opening area of the second orifice group 22, the pressures in the oil chamber 24 and the first control cylinder 11 are substantially equal. The first plunger 2 is pushed downward by the pressure inside the second control cylinder 21. At this time, hydraulic oil also flows into the first control cylinder 11 from the oil passage 25, and the inside of the first control cylinder 11 The hydraulic oil is pressurized and generates a force in the direction of supporting the first plunger 2 upward. In this state, the pressure inside the second control cylinder 21 is higher than the pressure inside the oil chamber 24 and the first control cylinder 11, so that the first plunger 2 that does not flow back to the inside of the second control cylinder 21 1 From the opening of the first orifice group 12 to the first oil chamber 14a, only the volume of the fluid that has entered the control cylinder 11 and the volume of hydraulic fluid that has passed through the oil passage 25 and has flowed into the first control cylinder 11 are used. hydraulic oil Erupts. The hydraulic oil that also spouts the opening force of the first orifice group 12 is depressurized by the fluid resistance, and is depressurized by the mass of the piston 17 to a pressure that is always applied to the hydraulic oil in the oil chamber 14a. In this case as well, the total opening area of the first orifice group 12 provided in the first control cylinder 11 decreases as the first plunger 2 descends, and the fluid resistance increases. The first oil chamber 14a is connected to the second oil chamber 14b through the oil passage 15, and since the first oil chamber 14a is already filled with the hydraulic oil, the ejected hydraulic oil is used as the piston 17 in the second oil chamber 14b. Push up. Since the opening area of the oil passage 15 is larger than the opening area of the first orifice group 12, the pressure of the hydraulic oil in the first oil chamber 14a and the second oil chamber 14b is substantially equal. This pressure is always kept at the same level as the sum of the pressure due to the piston load and the atmospheric pressure if the sliding resistance of the piston 17 is ignored. This pressure level is lower than the pressure in the second control cylinder 21 and the first control cylinder 11 when a large load is applied to the hydraulic shock absorber as in the buffering operation. The hydraulic oil in the chamber 14a and the second oil chamber 14b is no longer involved in the deceleration performance. Since the series of operations described above are changes accompanying pressure changes, they are actually realized at the same time.
[0017] 次に復帰動作について説明する。  Next, the return operation will be described.
油圧緩衝器が全圧縮された状態(図 2)から、第 2プランジャ 3に載っている荷重を 除去すると、第 1プランジャ 2、第 2プランジャ 3などの可動部分は復帰用コイルばね 5 、 6の働きと、以下に述べる作動油の流れとにより徐々に伸長し、やがて元の状態に 戻る。このとき、第 2油室 14bに貯蔵されていた作動油は、ピストン 17の質量により押 し込まれ、緩衝動作時とは逆の流れにより、油通路 15から第 1油室 14a、第 1制御シ リンダ 11の第 1オリフィス群 12、油通路 25、油室 24、第 2制御シリンダ 21の第 2オリフ イス群 22を経由し、各空間を徐々に満たしてゆく。  When the load placed on the second plunger 3 is removed from the state where the hydraulic shock absorber is fully compressed (Fig. 2), the movable parts such as the first plunger 2 and the second plunger 3 are moved to the return coil springs 5 and 6. It gradually expands due to the function and the flow of hydraulic oil described below, and eventually returns to its original state. At this time, the hydraulic oil stored in the second oil chamber 14b is pushed in by the mass of the piston 17, and flows in the opposite direction to that during the buffering operation, so that the first oil chamber 14a and the first control are supplied from the oil passage 15. Each space is gradually filled through the first orifice group 12 of the cylinder 11, the oil passage 25, the oil chamber 24, and the second orifice group 22 of the second control cylinder 21.
[0018] 次に、図 3及び図 4によりこの発明の油圧緩衝器と従来の油圧緩衝器の寸法関係 を比較して説明する。  Next, the dimensional relationship between the hydraulic shock absorber according to the present invention and the conventional hydraulic shock absorber will be described with reference to FIGS. 3 and 4.
図 3に示すこの発明の油圧緩衝器の構造によれば、伸長時(図 3a)の全高は 1000 Omm、圧縮時(図 3b)の全高は 4000mm、伸長時から圧縮時までのストロークは 60 OOmm,第 1復帰用コイルばね 5の圧縮高さは 1000mm、第 2復帰用のコイルばね 6 の圧縮高さは 1000mmである。 一方、図 4に示す従来の油圧緩衝器の構造によれば、伸長時(図 4a)の全高は 10 500mm,圧縮時(図 4b)の全高は 4500mm、伸長時から圧縮時までのストロークは 6000mm,第 1復帰用コイルばねの圧縮高さは 1000mm、第 2復帰用のコイルばね の圧縮高さは 1000mmである。 According to the structure of the hydraulic shock absorber of the present invention shown in FIG. 3, the total height when extended (FIG. 3a) is 1000 Omm, the total height when compressed (FIG. 3b) is 4000 mm, and the stroke from the extended state to the compressed state is 60 OOmm. The compression height of the first return coil spring 5 is 1000 mm, and the compression height of the second return coil spring 6 is 1000 mm. On the other hand, according to the structure of the conventional hydraulic shock absorber shown in Fig. 4, the total height when stretched (Fig. 4a) is 10 500mm, the total height when compressed (Fig. 4b) is 4500mm, and the stroke from stretched to compressed is 6000mm Therefore, the compression height of the first return coil spring is 1000 mm, and the compression height of the second return coil spring is 1000 mm.
したがって、第 1プランジャ 2を圧縮前の伸長状態に復帰させるための第 1復帰用コ ィルばね 5を、第 1プランジャ 2の外周壁 23の外側でかつ第 1プランジャ 2の上端鍔部 とベースシリンダ 1の上端部上面との間に配設し、また、第 2プランジャ 3を圧縮前の 伸長状態に復帰させるための第 2復帰用コイルばね 6を、第 1プランジャ 2の内側に 設けられた第 2制御シリンダ 21内でかつ第 2プランジャ 3の底板 8の下面と第 1プラン ジャ 2の底部上面との間に配設することにより、伸長時力 圧縮時までのストロークは 6000mmで同等であり、かつ第 1復帰用コイルばね 5及び第 2復帰用コイルばね 6の 圧縮長も 1000mmで同等であるのもかかわらず、緩衝器の全高は、第 1復帰用コィ ルばね 5及び第 2復帰用コイルばね 6の圧縮高さ(1000mm)の 1Z2である 500mm 小さく短縮されていることが判る。すなわち、この発明によれば、ベースシリンダ 1、第 1プランジャ 2、第 2プランジャ 3の長さは異なるが、従来と同等のストロークを確保しつ つ、緩衝器の全高を第 1復帰用コイルばね 5及び第 2復帰用コイルばね 6の圧縮高さ の 1Z2程度短くすることができる。  Accordingly, the first return coil spring 5 for returning the first plunger 2 to the extended state before compression is provided outside the outer peripheral wall 23 of the first plunger 2 and the upper end flange of the first plunger 2 and the base. A second return coil spring 6 is provided on the inner side of the first plunger 2 to be disposed between the upper surface of the upper end of the cylinder 1 and for returning the second plunger 3 to the expanded state before compression. By placing it in the 2nd control cylinder 21 and between the bottom surface of the bottom plate 8 of the 2nd plunger 3 and the bottom surface of the 1st plunger 2, the stroke until compression is equal to 6000mm. Although the compression lengths of the first return coil spring 5 and the second return coil spring 6 are equal to 1000 mm, the total height of the shock absorber is the same as the first return coil spring 5 and the second return coil spring 5 Coil spring 6 compression height (1000mm) 1Z2 500mm small short It can be seen that is. That is, according to the present invention, although the lengths of the base cylinder 1, the first plunger 2, and the second plunger 3 are different, the total height of the shock absorber is set to the first return coil spring while ensuring the same stroke as the conventional one. 5 and the compression height of the second return coil spring 6 can be shortened by about 1Z2.
[0019] これにより、緩衝器全高の短縮によって、緩衝器のコストが削減でき、組立性ゃ据 付性も向上する。更に、従来に比べて昇降路の床部を浅くすることができるので、昇 降路の構築コストを低減することができる。 産業上の利用可能性 [0019] Thereby, the cost of the shock absorber can be reduced by shortening the total height of the shock absorber, and the assembling property and the installation property are improved. Furthermore, since the floor of the hoistway can be made shallower than before, the construction cost of the hoistway can be reduced. Industrial applicability
[0020] 以上のように、この発明に係るエレベータの緩衝器は、昇降路ピット底部に配置さ れ、何らかの異常原因によりエレベータの力ご又は釣合いおもりが最下階を行き過ぎ て、昇降路ピット部へ下降した時、衝撃を少なくし、安全に停止させるための多段油 圧緩衝器に適用することができる。 [0020] As described above, the elevator shock absorber according to the present invention is disposed at the bottom of the hoistway pit, and the elevator force or counterweight passes over the lowest floor due to some abnormal cause, and the hoistway pit part It can be applied to a multi-stage hydraulic shock absorber to reduce the shock and stop safely when descending.

Claims

請求の範囲 The scope of the claims
[1] 作動油が充填されたベースシリンダと、このベースシリンダに進入し、順次小径に形 成されて軸方向に伸縮可能に構成された複数段のプランジャとからなり、各段のブラ ンジャが上記ベースシリンダ又は下段のプランジャに進入する際、作動油の移動に 伴う圧力差により緩衝機能を生じるように構成されて昇降路ピット底部に配置され、圧 縮動作時に少なくとも 2段以上のプランジャが上記ベースシリンダ又は下段のプラン ジャに進入すると共に、上記少なくとも 2段以上のプランジャの進入に対して、それぞ れ進入深さに伴ない流体抵抗が変化するように構成され、かつ上記各プランジャに は、圧縮された各プランジャを圧縮前の伸長状態に復帰させる復帰用コイルばねを 設けたエレベータの緩衝器にぉ 、て、  [1] It consists of a base cylinder filled with hydraulic oil, and a multi-stage plunger that enters the base cylinder and is formed into small diameters and expands and contracts in the axial direction. When entering the base cylinder or the lower plunger, it is configured to generate a buffering function due to the pressure difference accompanying the movement of hydraulic oil, and is arranged at the bottom of the hoistway pit. While entering the base cylinder or the lower stage plunger, each of the plungers is configured such that the fluid resistance changes with the depth of entry for the entry of the at least two or more stages of plungers. And an elevator shock absorber provided with a return coil spring for returning each compressed plunger to the extended state before compression, and
上記ベースシリンダに進入するプランジャを復帰させる復帰用コイルばねは大径で 、そのプランジャの外側でかつ当該プランジャの上部と上記ベースシリンダの上部と の間に配設されており、  The return coil spring for returning the plunger entering the base cylinder has a large diameter, and is disposed outside the plunger and between the upper portion of the plunger and the upper portion of the base cylinder.
上記下段のプランジャに侵入する上段のプランジャを復帰させる復帰用コイルばね は小径で、下段のプランジャの内側でかつ上段のプランジャの下部と下段のプランジ ャの底部との間に配設されており、  The return coil spring for returning the upper plunger that enters the lower plunger has a small diameter and is disposed inside the lower plunger and between the lower portion of the upper plunger and the bottom portion of the lower plunger.
各プランジャの伸長状態では、上記大径の復帰用コイルばねの内側に上記小径の 復帰用コイルばねが配置されていることを特徴とするエレベータの緩衝器。  The elevator shock absorber, wherein the small-diameter return coil spring is disposed inside the large-diameter return coil spring in an extended state of each plunger.
[2] ベースシリンダは、複数のオリフィスを有し、上段のプランジャと嵌合する制御シリン ダ、及び上記制御シリンダの外側に設けられ、高さが各段のプランジャを全圧縮した 高さよりも低く構成された油室を備えたことを特徴とする請求項 1記載のエレベータの 緩衝器。 [2] The base cylinder has a plurality of orifices and is provided on the outside of the control cylinder to be fitted with the upper plunger, and the height is lower than the full compression of each plunger. The elevator shock absorber according to claim 1, further comprising a configured oil chamber.
[3] 最上段を除く各段のプランジャのうち、少なくとも 1つのプランジャは、複数のオリフ イスを有し、上段のプランジャと嵌合する制御シリンダ、上記制御シリンダの外側に設 けられた油室、および上記油室とベースシリンダ又は下段のプランジャとを連通させ る油通路を備えたことを特徴とする請求項 2記載のエレベータの緩衝器。  [3] Of the plungers of each stage except the uppermost stage, at least one plunger has a plurality of orifices and is fitted with the upper plunger, and an oil chamber provided outside the control cylinder. 3. An elevator shock absorber according to claim 2, further comprising an oil passage for communicating the oil chamber with a base cylinder or a lower plunger.
[4] 下段のプランジャに侵入する上段のプランジャを復帰させる復帰用コイルばねを、 下段のプランジャの内側に設けられた上段のプランジャと嵌合する制御シリンダ内に 配設したことを特徴とする請求項 3記載のエレベータの緩衝器。 [4] A return coil spring for returning the upper plunger that enters the lower plunger is placed in the control cylinder that fits with the upper plunger provided inside the lower plunger. 4. The elevator shock absorber according to claim 3, wherein the elevator shock absorber is disposed.
PCT/JP2006/323644 2006-11-28 2006-11-28 Buffer of elevator WO2008065706A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06833448.1A EP2088111A4 (en) 2006-11-28 2006-11-28 Buffer of elevator
PCT/JP2006/323644 WO2008065706A1 (en) 2006-11-28 2006-11-28 Buffer of elevator
CN2006800564258A CN101541659B (en) 2006-11-28 2006-11-28 Buffer of elevator
KR1020097008035A KR100975189B1 (en) 2006-11-28 2006-11-28 Buffer of elevator
JP2008546847A JPWO2008065706A1 (en) 2006-11-28 2006-11-28 Elevator buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/323644 WO2008065706A1 (en) 2006-11-28 2006-11-28 Buffer of elevator

Publications (1)

Publication Number Publication Date
WO2008065706A1 true WO2008065706A1 (en) 2008-06-05

Family

ID=39467510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323644 WO2008065706A1 (en) 2006-11-28 2006-11-28 Buffer of elevator

Country Status (5)

Country Link
EP (1) EP2088111A4 (en)
JP (1) JPWO2008065706A1 (en)
KR (1) KR100975189B1 (en)
CN (1) CN101541659B (en)
WO (1) WO2008065706A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107165975A (en) * 2017-07-12 2017-09-15 广东皇冠电梯有限公司 A kind of antifreeze buffer of elevator of waterproof
CN109987475A (en) * 2019-04-29 2019-07-09 福州快科电梯工业有限公司 Embedded multistage buffer of elevator and its working method
CN111559685A (en) * 2020-05-21 2020-08-21 中元建设集团股份有限公司 Top falling prevention device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283897B1 (en) * 2012-02-14 2013-07-16 현대엘리베이터주식회사 Multistage hydraulic shock absorber for elevator
EP2733106B1 (en) * 2012-11-20 2016-02-24 Kone Corporation Elevator with a buffer with adjustable length.
CN103183272B (en) * 2013-03-18 2015-07-22 苏州富士电梯有限公司 Steel wire rope extension regulating device for elevator
CN105156565A (en) * 2013-07-29 2015-12-16 蒋红娟 Hydraulic forming brick making machine controlled by processor module
CN104154157B (en) * 2014-08-15 2016-09-07 湖北民族学院 A kind of Multi-stage shock absorber
CN104477728A (en) * 2014-11-30 2015-04-01 重庆和航科技股份有限公司 Elevator system capable of progressively buffering damping force
CN104495564B (en) * 2014-11-30 2017-05-24 重庆和航科技股份有限公司 Reduction damping device for elevator
CN105084152B (en) * 2015-07-28 2017-10-03 嘉兴川页奇精密自动化机电有限公司 Elevator lifesaving safety board
CN106395549A (en) * 2016-10-28 2017-02-15 成都聚智工业设计有限公司 Elevator buffer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043177A (en) * 2002-05-21 2004-02-12 Mitsubishi Electric Corp Shock absorber of elevator
JP2004324879A (en) 2003-04-10 2004-11-18 Mitsubishi Electric Corp Hydraulic damper

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175832U (en) * 1981-04-30 1982-11-06
JPS5997335A (en) * 1982-11-22 1984-06-05 Teruichi Iimoto Buffer
JP3795792B2 (en) * 2001-11-05 2006-07-12 三菱電機株式会社 Multistage hydraulic shock absorber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043177A (en) * 2002-05-21 2004-02-12 Mitsubishi Electric Corp Shock absorber of elevator
JP2004324879A (en) 2003-04-10 2004-11-18 Mitsubishi Electric Corp Hydraulic damper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2088111A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107165975A (en) * 2017-07-12 2017-09-15 广东皇冠电梯有限公司 A kind of antifreeze buffer of elevator of waterproof
CN109987475A (en) * 2019-04-29 2019-07-09 福州快科电梯工业有限公司 Embedded multistage buffer of elevator and its working method
CN111559685A (en) * 2020-05-21 2020-08-21 中元建设集团股份有限公司 Top falling prevention device
CN111559685B (en) * 2020-05-21 2021-06-11 中元建设集团股份有限公司 Top falling prevention device

Also Published As

Publication number Publication date
CN101541659B (en) 2011-05-04
KR100975189B1 (en) 2010-08-10
EP2088111A4 (en) 2013-08-21
EP2088111A1 (en) 2009-08-12
KR20090060349A (en) 2009-06-11
JPWO2008065706A1 (en) 2010-03-04
CN101541659A (en) 2009-09-23

Similar Documents

Publication Publication Date Title
WO2008065706A1 (en) Buffer of elevator
JP4325417B2 (en) Hydraulic shock absorber
JP5197609B2 (en) Elevator hydraulic shock absorber
KR100532270B1 (en) Buffer device for elevator
JP5081066B2 (en) Hydraulic shock absorber for elevator
KR101257553B1 (en) Shock absorber for elevator
JP5411178B2 (en) Hydraulic shock absorber for elevator
JP2004324879A5 (en)
JP2008170313A (en) Falling weight impact tester
CN101776104A (en) Single-acting plunger type buffering hydraulic oil cylinder
US20110127115A1 (en) drive systems
JP2003146554A (en) Multi-stage hydraulic shock absorber
JP6153130B2 (en) Elevator shock absorber and control method thereof
JP2005098424A (en) Oil-filled type damping device
KR101721792B1 (en) Fluid pressure cylinder
KR20170020031A (en) Double acting piston cylinder having improved cushion structure
JP2007010160A (en) Hydraulic damper
JPWO2006033135A1 (en) Elevator shock absorber
JP3960507B2 (en) Shock absorber
KR100904530B1 (en) An impact absoption apparatus applying multi reduction oil cylinder form and elevator having this
JPH04217577A (en) Oil-immersed buffer for elevator
US20070256898A1 (en) Drive Systems
KR101283897B1 (en) Multistage hydraulic shock absorber for elevator
JP2001241506A (en) Buffer
JP5953224B2 (en) Fluid pressure cylinder

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680056425.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06833448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008546847

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006833448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097008035

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE