WO2008065223A1 - Método de fabricación de una estructura de nanohilos - Google Patents

Método de fabricación de una estructura de nanohilos Download PDF

Info

Publication number
WO2008065223A1
WO2008065223A1 PCT/ES2007/000686 ES2007000686W WO2008065223A1 WO 2008065223 A1 WO2008065223 A1 WO 2008065223A1 ES 2007000686 W ES2007000686 W ES 2007000686W WO 2008065223 A1 WO2008065223 A1 WO 2008065223A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
holes
nanowires
hole
degree
Prior art date
Application number
PCT/ES2007/000686
Other languages
English (en)
French (fr)
Inventor
Xavier CARTOIXÁ SOLER
Jorge Francisco SUÑÉ TARRUELLA
Riccardo Rurali
Original Assignee
Universitat Autonoma De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Autonoma De Barcelona filed Critical Universitat Autonoma De Barcelona
Publication of WO2008065223A1 publication Critical patent/WO2008065223A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00087Holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0353Holes

Definitions

  • the present invention concerns in general a method of manufacturing a nanowire structure, and in particular a method of obtaining nanowires defined by the remaining interstitial material between a series of holes made transversely in the surface of a substrate selectively and controlled, to control the degree of coupling, material and / or electronic, between nanowires.
  • nanowires are among the most exciting and promising manufacturing blocks for future applications in the field of nanotechnology, such as nanoelectronics in the case of semiconductor nanowires.
  • PCT patent document WO03 / 046265 details a procedure for obtaining porous anodic alumina films, on various substrates (Silicon), which are used as a mask for the manufacture of nanostructures such as quantum wire systems that are formed by filling their pores using techniques such as: electrochemical deposition, chemical vapor deposition, pressure injection of a liquid or impregnation.
  • PCT patent document WO2006 / 017220 introduces a method for manufacturing a quantum dot system by forming a matrix of holes in the surface of a substrate (through a porous alumina mask), epitaxially depositing a semiconductor material in each one of the holes to create the nanopoints and finally eliminating the mask.
  • Other similar proposals are found in patent documents US6579463 (using as a mask a porous crystalline protein), US2005 / 0062033 and PCT WO98 / 48456.
  • Canham's proposal is intended to explain his photoluminescence observations in porous silicon. To do this, he proposes to chemically attack the Silicon by widening the pores until a network of physically separated nanometric dimensions pillars is created which, due to confinement effects, are optically active.
  • the present invention concerns a method of manufacturing a nano-wire structure without the need to use a catalyst, and which is of the type that comprises making a series of holes directly transversely (perpendicularly or obliquely depending on the embodiment example ) to the surface of a substrate in order to obtain a series of pillars, or threads, of nanometric dimensions defined by the remaining interstitial material between said holes.
  • the method proposed by the invention is characterized in that it comprises, unlike Canham's proposal, carrying out said drilling in a selective and controlled manner according to a predetermined design, so much so that It refers to each hole as the orderly distribution of holes (and hence of nanowires) to be manufactured, using an engraving technique.
  • said engraving technique is a lithographic technique, such as that based on electromagnetic irradiation, in the bombardment of electron / ion beams, in lithographic techniques based on local probe microscopes and / or other techniques of motive transfer
  • said substrate is a monocrystalline volume semiconductor substrate, such as Silicon or Gallium Arsenide, or a multilayer substrate, such as a substrate of quantum well or one-dimensional superred substrate.
  • the aforementioned predetermined design to be followed to manufacture the nanowire structure comprises one or more of the following characteristics, or a combination thereof: size of each hole, geometric shape of each hole, distance between different holes, arrangement or distribution in plan of the structure of holes and, consequently, arrangement or distribution in plan of the structure of nanowires.
  • the method comprises assigning one or more of said characteristics an adjustable variable prior to said hole making. Said control at the time of making the holes according to the proposed method is carried out to obtain a degree of mechanical and / or electronic coupling between predetermined pillars, depending on the application, said degree of coupling also depending on the substrate used.
  • the method comprises making a structure with a degree of substantially zero electronic coupling to obtain a network of wires or quantum dots mechanically but not electronically coupled, which allows for uniformity and spatial positioning control requirements to be achieved, a from a substrate with crystalline orientation and doping profile with a degree of uniformity that satisfies these requirements, in a direction transverse to the axis of the holes.
  • the method comprises making a structure with an electronic coupling degree such as to obtain a supernet two-dimensional with preset electronic transport properties, within a range, such as those referred to energy gap and effective mass.
  • the method also comprises carrying out for an example of embodiment at least one subsequent stage of oxidation and / or passivation of at least part of the structure to reduce the coupling between Wire Instances, as well as, for an embodiment, carry carry out at least one subsequent stage of metallic interconnection of at least part of the wires, selectively and taking advantage of the previous deposition of a metallic layer.
  • the applications to be covered with the devices manufactured according to the method proposed by the invention are numerous, among which are, by way of example, the manufacture of the following devices, or a combination thereof: devices formed by material with negative differential resistance, light emitting devices, photodetectors and sensors based on the physical and / or chemical alteration of the hole walls.
  • the method comprises carrying out the creation of holes following natural planes of exfoliation of the substrate.
  • Fig. 1 schematically shows a structure with coupled quantum wires obtained according to the method of the present invention for an exemplary embodiment, where the circles of dashed lines are those referring to the preferred electronic location zone,
  • Fig. 2 is a representation of a structure at the limit of decoupled quantum wires, obtained according to the method of the present invention for another embodiment
  • Fig. 3 illustrates isosurfaces of positive (dark gray) and negative values
  • spheres or balls of two different sizes representing the balls of larger size, that is, those that form the bulk of the structure, silicon atoms, while the balls of smaller size, which are distributed along the contour that delimits the structure, represent atoms of hydrogen, used as a passivating element to facilitate the calculation,
  • Fig. 4 (a) is a schematic view of a nanowire structure obtained according to the proposed method
  • Figs. 4 (b) and 4 (c) are respectively two partial plan views of two nanowire structures, or channels, made on a Silicon substrate, grouped in a quadrangular (b) and hexagonal (c) manner, for two corresponding examples of realization
  • Fig. 5 illustrates positive surface (dark gray) and negative (medium gray) isosurfaces of wave functions representative of the states in the maximum of the valence band (TVB) and in the minimum of the conduction band ( BCB), for different configurations of the square network of holes, showing a column size of 2.3 nm, an interconnection length of approximately 2.2 nm and an interconnection thickness of approximately 5.5 A views (a ) and (b), and of approximately 11 A the views (c) and (d), showing the views a), b) and c) examples of uncoupled threads and the view d) a delocalized state in the vertical direction.
  • TVB maximum of the valence band
  • BCB conduction band
  • spheres or balls of two different sizes are shown, representing the balls of larger size, that is, those that form the thickness of the structure, silicon atoms, while the balls of smaller size, which are distributed along the contour that delimits the structure, represent hydrogen atoms, used as a passivating element in order to facilitate the calculation,
  • Fig. 6 shows diagrams of band structures for a Silicon substrate, corresponding to several valence and conduction bands, for the same structural parameters of Fig. 5, where there is a direct gap, and it can be seen in said diagrams how the states disperse as in an individual nanowire when the wave vector moves along k z (of ra I).
  • the symbols r, X, L and I denote special points (ie wave vectors with high symmetry) of the Brillouin area corresponding to the simple tetragonal primitive cell of the structures of Fig. 5.
  • the inner boxes show a magnification (a ) of the minimum of the conduction band and (b) of the maximum of the valence band.
  • Fig. 7 shows plan views, together with the load density corresponding to the state of the minimum of the conduction band, on the part of nano-wire structures obtained by applying the proposed method for an embodiment for which GaAs has been used as a substrate, showing Fig.
  • a network of holes is made in the substrate so that the new material remains, schematically, as indicated in Figs. 1 and 2, for two embodiments.
  • Both the size of the hole, as its geometric shape, as the distance between different holes and as the arrangement of the different holes in the plane are adjustable during the design stage, which allows to control the degree of coupling that exists between the unidimensional structures resulting in the interstitial spaces between the holes (dashed circles in Figs. 1 and 2).
  • the quantum wires, or nanowires, illustrated in Fig. 1 are mechanically and electronically coupled, so they can be used to form a supernet.
  • the quantum wires illustrated in Fig. 2 are only slightly materially coupled, so that said Fig. 2 is representative of the boundary case of a structure designed for the absence of electronic coupling, that is, the one discussed above, net of wires or quantum points that meet the requirements of uniformity and control of spatial positioning, because it starts from a substrate with crystalline orientation and doping profile in the direction perpendicular to the axis of the uniform holes.
  • the channels (nanowires) grouped according to a quadrangular network on a Silicon substrate have been considered, with a separation between neighboring channels of approximately 5.5 A.
  • the channels have been designed following the natural silicon exfoliation planes. .
  • the resulting nanowire structure also has a square grid symmetry, as illustrated in Fig. 4 (b).
  • This structure has been calculated with interconnections of an incremental thickness to verify its confinement properties.
  • the size of the pillars between channels is, on the other hand, maintained at 23.3 A, the order of the smallest nanowires achieved, the method being able to be applied to the manufacture of structures with holes of diameter from 6 nm to 64 nm.
  • Figs. 5 (a) and 5 (b) The wave functions of the states of the maximum of the valence band (TVB) and the minimum of the conduction band (BCB) are illustrated in Figs. 5 (a) and 5 (b), demonstrating the confinement properties of this architecture.
  • a more quantitative estimate is obtained by analyzing the band structure diagram [Fig. 6 (a)] where the typical band dispersion of a ⁇ 100> thread has been recovered, characterizing a direct band separation, where the wave vector moves along the axis of the thread (k z ), while the bands are devoid of dispersion when the displacement is along Zc x yk y , that is to say perpendicular to the axis of the pillar.
  • the elliptical character of the minimum conduction band contributes to the preferential relocation of electrons with respect to the holes.
  • the EBOM effective orbital link model has been used - a computationally lighter method (8 orbitals per Ga-As pair) based on the empirical method of tight-binding orbitals designed to adapt the experimental masses of the electrons and holes near the center of the Brillouin area while maintaining good overall behavior throughout the area - to study systems with a hexagonal distribution of channels in a GaAs substrate of larger characteristic sizes.
  • the load density associated to the BCB state is represented for a structure with a channel diameter and an interconnection thickness of 37.2 and 3.2 nm respectively.
  • the interstitial pillars still act with independent quantum wires, as expected of the superior confinement properties of the hexagonal network.
  • An appreciable coupling between the nanowires appears when it is a GaAs structure with 8.4 nm interconnections [see Fig. 7 (b)]. It has been verified that the insulation can be restored by increasing the channel diameter to approximately 64 nm. It is noted that these characteristic sizes are within the current manufacturing capabilities.
  • a network of channels in a properly designed semiconductor substrate can lead to an orderly distribution of nanowires if the diameter of the channels is sufficiently larger than the characteristic dimensions of the interstitial pillars remnants, or a two-dimensional supernet with adjustable properties when an electronic coupling is present between the nanowire instances.
  • the confinement properties of the structures depend on the distribution of channels and a subtle interaction between the thickness of the interconnections and the diameter of the pillar. It has been shown that a hexagonal distribution of channels causes a much more efficient confinement.
  • the electrons in the conduction band have an extended behavior, while the holes in the valence band are in individual confined states belonging to a single quantum wire.
  • the nanowires obtained should have uniform properties, concerning the diameter, length, crystalline orientation and doping concentration, and would be ideally suited for integration into nano-devices, while their interconnection through electrical contacts would be greatly facilitated by the deposition of an upper layer on the substrate before carrying out the design to be followed for the realization of the holes.
  • the method proposed by the invention can be applied to both quantum well substrates and superred substrates, such as GaP / InGaAs or GaAs / AIGaAs, resulting in regular distributions of quantum dots (stacked) with very varied potential applications, such as for The manufacture of optoelectronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

Comprende realizar una serie de agujeros en Ia superficie de un substrato, de manera transversal, con el fin de obtener una serie de pilares, o hilos, de dimensiones nanométricas definidos por el material intersticial remanente entre dichos agujeros. Dicha realización de agujeros se lleva a cabo de manera selectiva y controlada según un diseño predeterminado, tanto por Io que se refiere a cada agujero como a Ia distribución de agujeros a fabricar mediante una técnica de grabado, para controlar el grado de acoplo, material y/o electrónico, entre nanohilos, pudiéndose obtener así tanto una red de hilos cuánticos que satisfaga unos requerimientos de uniformidad y control del posicionamiento espacial con un grado de acoplo electrónico sustancialmente nulo, como una superred con unas propiedades de transporte electrónico prefijadas, obtenida al realizar una estructura con un grado de acoplo electrónico de magnitud adecuada.

Description

Método de fabricación de una estructura de nanohilos
Sector de la técnica
La presente invención concierne en general a un método de fabricación de una estructura de nanohilos, y en particular a un método de obtención de nanohilos definidos por el material intersticial remanente entre una serie de agujeros realizados transversalmente en Ia superficie de un substrato de manera selectiva y controlada, para controlar el grado de acoplo, material y/o electrónico, entre nanohilos.
Estado de Ia técnica anterior
Los nanohilos están entre los más excitantes y prometedores bloques de fabricación para futuras aplicaciones en el campo de Ia nanotecnología, tales como Ia nanoelectrónica en el caso de nanohilos semiconductores.
En los últimos años se han realizado avances significativos relativos a su fabricación, y hoy en día pueden conseguirse fácilmente, mediante crecimiento, nanohilos de diámetros inferiores a 100 nm.
Sin embargo Ia fabricación de estructuras ordenadas de nanohilos con Ia misma orientación cristalina y de tamaños homogéneos todavía es difícil de conseguir.
Éste es un problema crucial para Ia fabricación de matrices de sensores con características uniformes y para Ia realización de plantillas para circuitería electrónica basada en nanohilos.
Se conocen diferentes propuestas para Ia fabricación de estructuras de nanohilos.
El documento de patente PCT WO03/046265 detalla un procedimiento de obtención de películas de alúmina anódica porosa, sobre diversos substratos (Silicio), que son utilizadas como máscara para Ia fabricación de nanoestructuras tales como sistemas de hilos cuánticos que se forman rellenando sus poros utilizando técnicas tales como: deposición electroquímica, deposición química de vapor, inyección a presión de un líquido o impregnación. El documento de patente PCT WO2006/017220 introduce un método para fabricar un sistema de puntos cuánticos mediante Ia formación de una matriz de agujeros en Ia superficie de un substrato (a través de una máscara de alúmina porosa), depositando epitaxialmente un material semiconductor en cada uno de los agujeros para crear los nanopuntos y eliminando finalmente Ia máscara. Otras propuestas similares son halladas en los documentos de patente US6579463 (utilizando como máscara una proteína cristalina porosa), US2005/0062033 y PCT WO98/48456.
En todas las propuestas mencionadas se propone realizar una serie de agujeros en una máscara dispuesta sobre un substrato, y obtener los nanohilos mediante el relleno introducido en los agujeros, es decir en dichas propuestas primero se delimita el espacio donde crecerá cada hilo y después se procede a su crecimiento.
Otra propuesta que, al contrario que las citadas anteriormente, no se basa en utilizar una máscara ni en obtener los nanohilos mediante el material de relleno de unos agujeros, sino con el propio material intersticial remanente entre los agujeros realizados en el propio substrato, es Ia hecha por L. T. Canham en "Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers," Appl. Phys. Lett, 57, 1046 (1990).
La propuesta de Canham tiene como fin explicar sus observaciones de fotoluminiscencia en Silicio poroso. Para ello propone atacar químicamente el Silicio ensanchando los poros hasta que se cree una red de pilares de dimensiones nanométricas físicamente separados que, debido a efectos del confinamiento, son activos ópticamente.
Con posterioridad se demostró experimentalmente que en las estructuras que presentaban fotoluminiscencia Ia disposición de los nanohilos era amorfa (A.G. Cullis and LT. Canham, "Visible-Light Emission Due To Quantum Size Effects In Highly Porous Crystalline Silicon," Nature, 353, 335 (1990)).
Explicación de Ia invención Aparece necesario ofrecer una alternativa al estado de Ia técnica que supere las lagunas halladas en el mismo, en particular las halladas en Ia propuesta de Canham arriba citada, tal como Ia amorfidad arriba comentada.
Para ello Ia presente invención concierne a un método de fabricación de una estructura de nanohilos sin Ia necesidad de utilizar un catalizador, y que es del tipo que comprende realizar una serie de agujeros directamente de manera transversal (perpendicular u oblicuamente en función del ejemplo de realización) a Ia superficie de un substrato con el fin de obtener una serie de pilares, o hilos, de dimensiones nanométricas definidos por el material intersticial remanente entre dichos agujeros.
El método propuesto por la invención se caracteriza porque comprende, a diferencia de Ia propuesta de Canham, llevar a cabo dicha realización de agujeros de manera selectiva y controlada según un diseño predeterminado, tanto por Io que se refiere a cada agujero como a Ia distribución ordenada de agujeros (y por ende de nanohilos) a fabricar, utilizando una técnica de grabado.
Para un ejemplo de realización preferido dicha técnica de grabado es una técnica litográfica, tal como Ia basada en Ia irradiación electromagnética, en el bombardeo de haces de electrones/iones, en técnicas litográficas basadas en microscopías de sonda local y/o en otras técnicas de transferencia de motivos.
En función del ejemplo de realización y dependiendo de Ia aplicación que se Ie quiera dar a Ia estructura nanométrica a fabricar, dicho substrato es un substrato semiconductor volúmico monocristalino, tal como Silicio o Arseniuro de Galio, o un substrato multicapa, tal como un substrato de pozo cuántico o un substrato de superred unidimensional.
En cuanto al mencionado diseño predeterminado a seguir para fabricar Ia estructura de nanohilos, éste comprende una o más de las siguientes características, o una combinación de las mismas: tamaño de cada agujero, forma geométrica de cada agujero, distancia entre distintos agujeros, disposición o distribución en planta de Ia estructura de agujeros y, por consecuencia, disposición o distribución en planta de Ia estructura de nanohilos.
El método comprende asignar a una o más de de dichas características una variable ajustable de manera previa a dicha realización de agujeros. El mencionado control a Ia hora de realizar los agujeros según el método propuesto se lleva a cabo para obtener un grado de acoplo mecánico y/o electrónico entre pilares prefijado, en función de Ia aplicación, dependiendo dicho grado de acoplo también del substrato utilizado.
El acoplo mecánico entre pilares constituye una gran mejora respecto al estado actual de Ia técnica, ya que permite dotar al conjunto de una robustez mejorada respecto a vibraciones, que podrían afectar las propiedades electrónicas de nanohilos aislados o incluso causar su rotura.
Para un ejemplo de realización el método comprende realizar una estructura con un grado de acoplo electrónico sustancialmente nulo para obtener una red de hilos o puntos cuánticos acoplados mecánica pero no electrónicamente, que permita que se alcancen unos requerimientos de uniformidad y control del posicionamiento espacial, a partir de un substrato con orientación cristalina y perfil de dopaje con un grado de uniformidad que satisfaga dichos requerimientos, en una dirección transversal al eje de los agujeros. Para otro ejemplo de realización, en cambio, el método comprende realizar una estructura con un grado de acoplo electrónico tal como para obtener una superred bidimensional con unas propiedades de transporte electrónico prefijadas, dentro de un rango, tales como las referidas a gap energético y a masa efectiva.
El método también comprende llevar a cabo para un ejemplo de realización al menos una etapa posterior de oxidación y/o pasivación de al menos parte de Ia estructura para reducir el acoplo entre Instancias de hilos, así como, para un ejemplo de realización, llevar a cabo al menos una etapa posterior de interconexionado metálico de al menos parte de los hilos, de manera selectiva y aprovechando Ia deposición previa de una capa metálica.
La aplicaciones a cubrir con los dispositivos fabricados según el método propuesto por Ia invención son numerosas, entre las que se encuentran a título de ejemplo Ia fabricación de los siguientes dispositivos, o una combinación de los mismos: dispositivos formados por material con resistencia diferencial negativa, dispositivos emisores de luz, fotodetectores y sensores basados en Ia alteración física y/o química de las paredes de los agujeros. Para un ejemplo de realización preferido el método comprende llevar a cabo Ia realización de agujeros siguiendo unos planos naturales de exfoliación del substrato.
Breve descripción de los dibujos
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de Ia siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que:
Ia Fig. 1 muestra de manera esquemática una estructura con hilos cuánticos acoplados obtenida según el método de Ia presente invención para un ejemplo de realización, donde los círculos de líneas discontinuas son los referentes a Ia zona de localización electrónica preferente,
Ia Fig. 2 es una representación de una estructura en el límite de hilos cuánticos desacoplados, obtenida según el método de Ia presente invención para otro ejemplo de realización, Ia Fig. 3 ilustra unas isosuperficies de valores positivos (gris oscuro) y negativos
(gris medio) de las funciones de onda de los estados relevantes para Ia conducción de electrones (mínimo de Ia banda de conducción) para distintas configuraciones de Ia red de agujeros [manteniendo el tamaño de las columnas a 2,3 nm, Ia longitud de interconexión a 2,2 nm y estableciendo el grosor de interconexión en 5,5 A para los casos a) y c), y 11 A para el caso b)], mostrando hilos desacoplados [a) y c)] e hilos acoplados [b)J. En Ia estructura representada se muestran unas esferas o bolas de dos tamaños distintos, representando las bolas de tamaño mayor, es decir las que forman el grueso de Ia estructura, átomos de silicio, mientras que las bolas de tamaño menor, que se encuentran distribuidas a Io largo del contorno que delimita Ia estructura, representan átomos de hidrógeno, utilizados como elemento pasivador a fin de facilitar el cálculo,
Ia Fig. 4(a) es una vista esquemática de una estructura de nanohilos obtenida según el método propuesto, las Figs. 4(b) y 4(c) son respectivamente dos vistas parciales en planta de dos estructuras de nanohilos, o canales, realizadas sobre un substrato de Silicio, agrupados de manera cuadrangular (b) y hexagonal (c), para dos correspondientes ejemplos de realización,
Ia Fig. 5 ilustra unas isosuperficies de valores positivos (gris oscuro) y negativos (gris medio) de unas funciones de onda representativas de los estados en el máximo de Ia banda de valencia (TVB) y en el mínimo de Ia banda de conducción (BCB), para distintas configuraciones de Ia red cuadrada de agujeros, mostrando un tamaño de las columnas de 2,3 nm, una longitud de interconexión de aproximadamente 2,2 nm y un grosor de interconexión de aproximadamente 5,5 A las vistas (a) y (b), y de aproximadamente 11 A las vistas (c) y (d), mostrando las vistas a), b) y c) ejemplos de hilos desacoplados y Ia vista d) un estado deslocalizado en Ia dirección vertical. Igual que en Ia Fig. 3, en Ia estructura representada se muestran unas esferas o bolas de dos tamaños distintos, representando las bolas de tamaño mayor, es decir las que forman el grueso de Ia estructura, átomos de silicio, mientras que las bolas de tamaño menor, que se encuentran distribuidas a Io largo del contorno que delimita Ia estructura, representan átomos de hidrógeno, utilizados como elemento pasivador a fin de facilitar el cálculo,
Ia Fig. 6 muestra unos diagramas de estructuras de bandas para un substrato de Silicio, correspondientes a varias bandas de valencia y de conducción, para los mismos parámetros estructurales de Ia Fig. 5, donde se observa gap directo, pudiendo apreciarse en dichos diagramas cómo los estados dispersan como en un nanohilo individual cuando el vector de onda se desplaza a Io largo de kz (de r a I). Los símbolos r, X, L e I denotan puntos especiales (i.e. vectores de onda con alta simetría) de Ia zona de Brillouin correspondiente a Ia celda primitiva tetragonal simple de las estructuras de Ia Fig. 5. Los recuadros interiores muestran una magnificación (a) del mínimo de Ia banda de conducción y (b) del máximo de Ia banda de valencia. Cuando se desplazan en el plano kx-ky los estados en Ia banda de conducción de (b) muestran cierta dispersión, característico de comportamiento de nanohilos acoplados, mientras que los estados en el máximo de Ia banda de valencia son todavía más bien planos en ambos casos, de manera consistente con los diagramas de funciones de ondas ¡lustrados en las Figs. 5(a) y 5(c), y Ia Fig. 7 muestra unas vistas en planta, junto con Ia densidad de carga correspondiente al estado del mínimo de Ia banda de conducción, de parte de unas estructuras de nanohilos obtenidas mediante Ia aplicación del método propuesto para un ejemplo de realización para el cual se ha utilizado como substrato GaAs, mostrando Ia Fig. 7(a) un grosor de interconexión de ~ 3,2 nm y un diámetro de agujero de ~ 37,2 nm, caracterizando el comportamiento de un nanohilo independiente; y Ia Fig. 7(b) un grosor de interconexión de ~ 8,4 nm y un diámetro de agujero de ~ 32 nm, caracterizando el comportamiento de nanohilos acoplados.
Descripción detallada de unos ejemplos de realización Según el método propuesto por Ia invención y descrito en un apartado anterior, partiendo de un substrato semiconductor volúmico monocristalino, o de un substrato multicapa, se procede a realizar una red de agujeros en el substrato de forma que el nuevo material queda, esquemáticamente, como se indica en las Figs. 1 y 2, para dos ejemplos de realización. Tanto el tamaño del agujero, como su forma geométrica, como Ia distancia entre distintos agujeros y como Ia disposición de los distintos agujeros en el plano son ajustables durante Ia etapa de diseño, Io que permite controlar el grado de acoplo que existe entre las estructuras unidimensionales que resultan en los espacios intersticiales entre los agujeros (círculos discontinuos en las Figs. 1 y 2).
Los hilos cuánticos, o nanohilos, ilustrados en Ia Fig. 1 se encuentran acoplados mecánica y electrónicamente, por Io que pueden ser utilizados para conformar un superred.
En cambio los hilos cuánticos ilustrados en Ia Fig. 2 solamente se encuentran ligeramente acoplados materialmente, por Io que dicha Fig. 2 es representativa del caso límite de una estructura diseñada para Ia ausencia de acoplo electrónico, es decir Ia comentada arriba red de hilos o puntos cuánticos que satisfaga los requerimientos de uniformidad y control del posicionamiento espacial, debido a que se parte de un substrato con orientación cristalina y perfil de dopaje en Ia dirección perpendicular al eje de los agujeros uniformes.
Con el fin de demostrar Ia viabilidad del método propuesto se han realizado una serie de cálculos utilizando métodos computacionales, parte de los cuales se han llevado a cabo con el programa "Siesta" de simulación de materiales, basado en Ia Teoría del Funcional de Ia Densidad (DFT1 de sus siglas en inglés) en Ia Aproximación de Gradiente Generalizada (GGA). Para estructuras de mayor tamaño se ha usado un método empírico de cálculo de estructura electrónica, el Modelo de Orbitales de Enlace Efectivos (EBOM), basado en orbitales ligados (tight-binding), que extiende Ia validez de Ia Aproximación de Ia Masa Eficaz (EMA) a regímenes con confinamientos medianos. Para Ia consideración analítica de las estructuras con regiones más estrechas superiores a 6 nm hemos utilizado Ia EMA.
Los resultados obtenidos tras realizar dichos cálculos se ilustran en Ia Fig. 3 y se detallan a continuación. En el caso de utilizar Silicio como substrato, para agujeros en disposición cuadrada, tamaño de los intersticiales de 23,3 A, largo de Ia conexión de 22 A y ancho de Ia conexión de 5,5 A, observamos que los estados electrónicos permanecen localizados en los intersticiales [Error! No s'ha trobat l'origen de Ia referencia. (a)]. Por el contrario, si se amplía el ancho de Ia conexión hasta 11 A manteniendo el valor del resto parámetros, observamos que ya existen estados que se propagan por Ia estructura y cierto acoplamiento de los hilos cuánticos [Error! No s'ha trobat l'origen de Ia referencia. (b)]. Con los parámetros de Ia Error! No s'ha trobat l'origen de Ia referencia.. a), pero disponiendo los agujeros en una red hexagonal en vez de cuadrada [Error! No s'ha trobat l'origen de Ia referencia. (c)], se observa que no aparecen los estados deslocalizados del tipo mostrado en Ia Error! No s'ha trobat l'origen de Ia referéncia.(b). Cálculos de las mismas estructuras con Arseniuro de Galio (GaAs) muestran comportamientos similares, indicando que el efecto de control del acoplo también está presente en otros semiconductores de tipo zincblenda.
Las mayores estructuras en las que hemos verificado numéricamente Ia existencia del confinamiento son redes de agujeros circulares de 61 ,6 nm de diámetro en disposición hexagonal, con intersticios de 9,2 nm en su parte más angosta.
Cuando el tamaño de Ia zona más estrecha de Ia estructura estudiada es superior a unos 6 nm, se puede utilizar Ia Aproximación de Ia Masa Efectiva (Effective Mass Approximation - EMA) para hacer los cálculos u obtener consideraciones cualitativas. Para sistemas con masas efectivas esféricas, el problema se convierte en Ia resolución de Ia ecuación diferencial:
(1)
Figure imgf000009_0001
donde m* es Ia masa efectiva, ti es Ia constante de Planck dividida por 2π , F(r) es Ia función envolvente y E Ia energía y donde se aplican condiciones de contorno de Born- von Karman para Ia supercelda y anulación de F en zonas sin material.
De Ia ecuación precedente se deduce que, una vez hecho un cálculo para una estructura, los resultados para otras estructuras con dimensiones escaladas solidariamente o con materiales con distintos valores para Ia masa efectiva se podrán obtener trivialmente por un simple reescalado de los resultados iniciales.
Análisis similares para estructuras con topología cuadrada permiten obtener una condición que determine si el estado fundamental será del tipo localizado [Fig. 3(a)] o propagante [Error! No s'ha trobat l'origen de Ia referéncia.(b)]. La condición para que el estado fundamental esté localizado es
Figure imgf000010_0001
donde m*h es Ia más pesada y m* Ia más ligera de las masas efectivas en consideración (por ejemplo, las masas efectivas longitudinal y transversal en Ia banda de conducción del Silicio), y L| y L2 son las dimensiones típicas de Ia columna o pilar y de Ia interconexión, respectivamente [ver Fig. 4(b)).
Seguidamente se exponen otros cálculos realizados, algunos similares a los descritos, para otros ejemplos de realización, diferenciando los estados TVB y BCB [ver Fig. (5)]. Se han realizado en principio cálculos "ab initio" de estructura electrónica también con el programa "Siesta".
Para un ejemplo de realización se han considerado los canales (nanohilos) agrupados según una red cuadrangular en un substrato de Silicio, con una separación entre canales vecinos de aproximadamente 5,5 A. Los canales han sido diseñados siguiendo los planos naturales de exfoliación del Silicio. La estructura resultante de nanohilos tiene también una simetría de red cuadrada, como se ilustra en Ia Fig. 4(b).
Se ha calculado esta estructura con interconexiones de un grosor incremental para verificar sus propiedades de confinamiento. El tamaño de los pilares entre canales es, por otra parte, mantenido a 23,3 A, el orden de los nanohilos más pequeños conseguidos, pudiéndose aplicar el método a Ia fabricación de estructuras con agujeros de diámetro desde 6 nm hasta 64 nm.
Las funciones de onda de los estados del máximo de Ia banda de valencia (TVB) y del mínimo de Ia banda de conducción (BCB) se encuentran ilustrados en las Figs. 5(a) y 5(b), demostrando las propiedades de confinamiento de esta arquitectura. Una estimación más cuantitativa se obtiene mediante el análisis del diagrama de estructuras de bandas [Fig. 6(a)] donde se ha recuperado Ia dispersión de banda típica de un hilo <100>, caracterizando una separación de banda directa, donde el vector de Ia onda se desplaza a Io largo del eje del hilo (kz), mientras que las bandas son carentes de dispersión cuando el desplazamiento es a Io largo de Zcx y ky, es decir de manera perpendicular al eje del pilar.
Doblando el grosor de las interconexiones [Figs. 5(c) y 5(d)], un acoplamiento entre hilos vecinos comienza a aparecer. La situación puede variar, en función del tipo de portador considerado: los huecos en Ia banda de valencia todavía viajan en estados razonablemente confinados, mientras que los electrones en las bandas de conducción se desplazarían en estados extendidos. Una vez más esto es fácilmente comprensible a partir de Ia estructura de bandas de Ia Fig. 6(b), donde puede apreciarse que los estados más altos en Ia banda de valencia son todavía más bien planos, mientras que los primeros estados vacíos de las bandas de conducción ya comienzan a dispersar cuando se desplazan en el plano kx - ky.
Cálculos para interconexiones más gruesas manteniendo el tamaño del hilo constante indican que el confinamiento de huecos es más persistente que el efecto de confinamiento de electrones.
Todas estas estructuras han sido también calculadas con un substrato de GaAs para verificar Ia robustez y generalidad de Ia aproximación expuesta. No se han apreciado diferencias significativas desde un punto de vista referente a las propiedades de confinamiento, por Io que ambos materiales (Si y GaAs) son adecuados para Ia fabricación de estas estructuras según el método propuesto por Ia invención.
La predominancia de estados extendidos o localizados en los extremos de las bandas se entiende fácilmente en Ia topología cuadrada como una competición en Ia energía de confinamiento entre el gas de electrones/huecos bidimensional formado en las interconexiones [ver región 2 en Ia Fig. 4(b)] y las estructuras unidimensionales de interés [región 1 en Ia Fig. 4(b)].
Estos resultados están de acuerdo con el análisis basado en Ia aproximación de Ia masa efectiva qué se ha descrito anteriormente y que produce una condición para Ia existencia de estados de nanohilos en Ia topología cuadrada, según Ia ecuación (2).
De dicha ecuación (2) puede deducirse cómo, para materiales con masas efectivas esféricas, con estados de nanohilos en los extremos de Ia banda, Ia ecuación está basada solamente en consideraciones geométricas, y de este modo debería ser un efecto robusto con respecto a variaciones en el material. Asimismo un escalado por un factor global no debería afectar al orden relativo en Ia energía de los estados con carácter diferente.
Finalmente, en el caso del Silicio, el carácter elíptico de Ia banda de conducción mínima contribuye a Ia deslocalización preferencial de los electrones con respecto a los huecos.
A pesar de que Ia ecuación (2) es estrictamente válida para sistemas sin un fuerte confinamiento, ésta predice Ia deslocalización/localización del estado básico de los electrones/huecos en las estructuras de Silicio discutidas hasta aquí, como puede observase a partir de los cálculos "ab initio". En una segunda fase se han testeado las propiedades de confinamiento de una red hexagonal de canales.
Esta disposición es una solución prometedora desde el punto de vista de aplicaciones previstas, porque los resultados obtenidos dan a entender que con ella se consigue un confinamiento más eficiente, dadas las dificultades a Ia hora de formar estados bidimensionales completamente deslocalizados como los de Ia Fig. 5(d).
Debido a que el cálculo de una estructura como Ia de Ia Fig. 4(c) con un grosor de interconexión y un tamaño de hilo similares a los de las Figs. 5(c) y 5(d) queda fuera de las capacidades computacionales utilizadas debido al alto número de átomos requerido, se ha considerado una estructura equivalente a las de las Figs. 5(a) y 5(b) en términos de tamaño de interconexiones y de hilo. Se ha constatado que Ia formación de estados bidimensionales queda realmente frustrada para los primeros estados por encima del nivel básico de Ia banda de conducción.
Con el fin de comprobar si Ia red hexagonal es capaz de soportar una relación de tamaño de hilo respecto a tamaño de interconexión aún más favorable, y por Io tanto posiblemente haciendo que disminuyan las especificaciones requeridas para una realización experimental, el uso de métodos "ab initio" es prohibitivo, debido al número creciente de átomos necesarios para describir sistemas significativamente más grandes que los discutidos hasta ahora. Por tanto, se ha utilizado el modelo orbital de enlaces efectivo EBOM -un método computacionalmente más ligero (8 orbitales por par de Ga- As) basado en el método empírico de orbitales ligados (tight-binding) diseñado para adecuar las masas experimentales de los electrones y los huecos cerca del centro de Ia zona de Brillouin a Ia vez que se mantiene un buen comportamiento global en toda Ia zona- para estudiar sistemas con una distribución hexagonal de canales en un substrato de GaAs de tamaños característicos mayores. En Ia Fig. 7(a) se encuentra representada Ia densidad de carga asociada al estado BCB para una estructura con un diámetro de canal y un grosor de interconexión de 37,2 y 3,2 nm respectivamente. Los pilares intersticiales todavía actúan con hilos cuánticos independientes, tal y como se esperaba de las propiedades de confinamiento superiores de Ia red hexagonal. Un acoplamiento apreciable entre los nanohilos aparece cuando se trata de una estructura de GaAs con interconexiones de 8,4 nm [ver Fig. 7(b)]. Se ha verificado que el aislamiento puede ser restaurado incrementando el diámetro del canal hasta aproximadamente 64 nm. Se hace notar que estos tamaños característicos están dentro de las capacidades actuales de fabricación.
En resumen, se ha demostrado por medio de cálculos de estructuras electrónicas que una red de canales en un substrato semiconductor diseñada apropiadamente puede dar lugar a una distribución ordenada de nanohilos si el diámetro de los canales es suficientemente mayor que las dimensiones características de los pilares intersticiales remanentes, o a una superred bidimensional con propiedades ajustables cuando un acoplamiento electrónico está presente entre las instancias de nanohilos. Las propiedades de confinamiento de las estructuras dependen de Ia distribución de canales y de una sutil interacción entre el grosor de las interconexiones y el diámetro del pilar. Se ha demostrado que una distribución hexagonal de canales provoca un confinamiento mucho más eficiente.
En un régimen parcialmente acoplado presente en el Silicio, los electrones en Ia banda de conducción presentan un comportamiento extendido, mientras que los huecos en Ia banda de valencia están en estados confinados individuales pertenecientes a un único hilo cuántico.
Los nanohilos obtenidos deberían tener propiedades uniformes, concernientes al diámetro, Ia longitud, Ia orientación cristalina y Ia concentración de dopaje, y serían idealmente adecuados para su integración en nano-dispositivos, mientras que su interconexión mediante contactos eléctricos sería enormemente facilitada mediante Ia deposición de una capa superior sobre el substrato antes de Ia realización del diseño a seguir para Ia realización de los agujeros. El método propuesto por Ia invención puede ser aplicado tanto a substratos de pozo cuántico como a substratos de superred, tal como GaP/InGaAs o GaAs/AIGaAs, resultando en distribuciones regulares de puntos cuánticos (apilados) con aplicaciones potenciales muy variadas, tal como para Ia fabricación de dispositivos optoelectrónicos.
Por Io que se refiere a los métodos utilizados, se han usado unas funciones de base optimizadas de tipo simple-ζ polarizado para representar las funciones de onda de partícula simple y Ia Aproximación de Gradiente Generalizada para Ia energía de canje- correlación. Se han realizado cálculos con Si y con GaAs, diseñando redes de canales cuadradas o hexagonales perpendiculares a Ia superficie de exfoliación en las direcciones [100] y [111]. El uso de orientaciones cristalinas diferentes del substrato fue dictado por el requerimiento de conmensurabilidad de Ia simetría del diseño de los canales con Ia red cristalina. La zona de Brillouin fue muestreada con una rejilla de 1x1x6 puntos k de acuerdo con el algoritmo de Monkhorst y Pack. Se han empleado celdas de simulación con un número de átomos entre 359 y 952. Los enlaces sueltos de Ia superficie interna de los canales han sido pasivados.
Un experto en Ia materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de Ia invención según está definido en las reivindicaciones adjuntas.

Claims

Reivindicaciones
1.- Método de fabricación de una estructura de nanohilos, del tipo que comprende realizar una serie de agujeros en Ia superficie de un substrato, de manera transversal, con el fin de obtener una serie de pilares, o hilos, de dimensiones nanométricas definidos por al menos parte del material intersticial remanente entre dichos agujeros, caracterizado porque comprende llevar a cabo dicha realización de agujeros de manera selectiva y controlada según un diseño predeterminado, tanto por
Io que se refiere a cada agujero como a Ia distribución de agujeros a fabricar mediante una técnica de grabado.
2.- Método según Ia reivindicación 1 , caracterizado porque dicho substrato es un substrato semiconductor volúmico monocristalino.
3.- Método según Ia reivindicación 1 , caracterizado porque dicho substrato es un substrato multicapa.
4.- Método según Ia reivindicación 3, caracterizado porque dicho substrato multicapa es un substrato de pozo cuántico.
5.- Método según Ia reivindicación 3, caracterizado porque dicho substrato multicapa es un substrato de superred unidimensional.
6.- Método según Ia reivindicación 1 , caracterizado porque dicho diseño predeterminado comprende al menos una de las siguientes características, o una combinación de las mismas: tamaño de cada agujero, forma geométrica de cada agujero, distancia entre distintos agujeros, disposición o distribución en planta de Ia estructura de agujeros y, como consecuencia, disposición o distribución en planta de Ia estructura de nanohilos.
7.- Método según Ia reivindicación 6, caracterizado porque comprende asignar a al menos una de dichas características una variable ajustable de manera previa o posterior a dicha realización de agujeros.
8.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho diseño ha sido predeterminado y/o dicho substrato ha sido seleccionado para obtener un grado de acoplo mecánico y/o electrónico entre pilares prefijado.
9.- Método según Ia reivindicación 8, caracterizado porque comprende realizar una estructura de nanohilos a partir de Ia realización de dichos agujeros separados entre sí una distancia tal que los pilares o hilos definidos por material intersticial queden unidos entre sí por una porción de material intersticial suficientemente fina para obtener un grado de acoplo electrónico, entre pilares, sustancialmente nulo y según un sistema predeterminado que permita obtener una red de hilos o puntos cuánticos que satisfaga unos requerimientos de uniformidad y control del posicionamiento espacial, a partir de un substrato con orientación cristalina y perfil de dopaje con un grado de uniformidad que permita que se alcancen dichos requerimientos, en una dirección transversal al eje de los agujeros.
10.- Método según Ia reivindicación 8, caracterizado porque comprende realizar una estructura con un grado de acoplo electrónico de magnitud adecuada para obtener una superred con unas propiedades de transporte electrónico prefijadas.
11.- Método según Ia reivindicación 10, caracterizado porque dichas propiedades de transporte electrónico son al menos una del grupo formado por las siguientes propiedades, o una combinación de las mismas: gap energético y masa efectiva.
12.- Método según Ia reivindicación 8, caracterizado porque comprende llevar a cabo al menos una etapa posterior de oxidación y/o pasivación de al menos parte de Ia estructura para reducir el acoplo entre instancias de hilos.
13.- Método según una cualquiera de las reivindicaciones 8 ó 12, caracterizado porque comprende llevar a cabo al menos una etapa posterior de interconexionado metálico de al menos parte de los hilos, de manera selectiva habiendo depositado previamente una capa delgada de metal.
14.- Método según Ia reivindicación 1 , caracterizado porque está aplicado a Ia fabricación de al menos uno de los siguientes dispositivos, o una combinación de los
mismos: dispositivos formados por material con resistencia diferencial negativa, dispositivos emisores de luz, fotodetectores, transistores y sensores basados en Ia alteración física y/o química de las paredes de los agujeros.
15.- Método según Ia reivindicación 1 , caracterizado porque dicha técnica de grabado es una técnica litográfica.
16.- Método según Ia reivindicación 15, caracterizado porque dicha técnica litográfica es una técnica basada en Ia irradiación electromagnética, en el bombardeo de haces de electrones/iones, en técnicas litográficas basadas en microscopías de sonda local y/o en otras técnicas de transferencia de motivos.
17.- Método según Ia reivindicación 1 , caracterizado porque comprende llevar a cabo dicha realización de agujeros siguiendo unos planos naturales de exfoliación de dicho substrato.
18.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho substrato es Silicio u otro semiconductor o aleación de tipo IV.
19.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho substrato es Arseniuro de Galio u otro semiconductor o aleación de tipo Ml-V o M-Vl.
20.- Método según Ia reivindicación 6, caracterizado porque dicha distribución de nanohilos es hexagonal, definiendo seis nanohilos alrededor de cada agujero los seis respectivos vértices de un hexágono.
21.- Método según Ia reivindicación 6, caracterizado porque dicha distribución de nanohilos es cuadrangular, definiendo cuatro nanohilos alrededor de cada agujero los cuatro respectivos vértices de un cuadrado.
22.- Método según Ia reivindicación 1, 20 ó 21, caracterizado porque está aplicado a Ia fabricación de nanohilos separados entre sí por interconexiones de espesor desde 5,5 A hasta 8,4 nm.
23.- Método según Ia reivindicación 22 cuando depende de Ia 21 , caracterizado porque está aplicado a Ia fabricación de estructuras con agujeros de diámetro desde 6 nm hasta 64 nm.
24.- Método según Ia reivindicación 22 cuando depende de Ia 20, caracterizado porque está aplicado a Ia fabricación de estructuras con agujeros de diámetro desde 5,1 nm hasta 64 nm.
25.- Método según Ia reivindicación 1 ó 21 , caracterizado porque comprende, con el fin de realizar dicho diseño predeterminado para obtener una estructura con topología cuadrada, prever Ia localización/deslocalización del estado básico de los huecos/electrones de los nanohilos mediante Ia aplicación de Ia siguiente ecuación:
Figure imgf000017_0001
donde m*h es Ia más pesada y m* Ia más ligera de las masas efectivas en consideración, y L1 y L2 son las dimensiones típicas de Ia columna o pilar del nanohilo y de Ia interconexión, respectivamente.
26.- Estructura de nanohilos obtenida mediante Ia aplicación del método según una cualquiera de las reivindicaciones 1 a 25.
PCT/ES2007/000686 2006-11-27 2007-11-27 Método de fabricación de una estructura de nanohilos WO2008065223A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200603088 2006-11-27
ESP200603088 2006-11-27

Publications (1)

Publication Number Publication Date
WO2008065223A1 true WO2008065223A1 (es) 2008-06-05

Family

ID=39467473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000686 WO2008065223A1 (es) 2006-11-27 2007-11-27 Método de fabricación de una estructura de nanohilos

Country Status (1)

Country Link
WO (1) WO2008065223A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010971A1 (en) * 2001-06-25 2003-01-16 Zhibo Zhang Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates and devices formed thereby
CN1431679A (zh) * 2003-02-14 2003-07-23 中国科学院上海微系统与信息技术研究所 注氧隔离技术制备全介质隔离的硅量子线的方法
US20030179453A1 (en) * 2002-03-25 2003-09-25 Sanyo Electric Co., Ltd. Element having microstructure and manufacturing method thereof
WO2004079056A2 (en) * 2003-03-06 2004-09-16 C.R.F. Società Consortile Per Azioni Process to make nano-structurated components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010971A1 (en) * 2001-06-25 2003-01-16 Zhibo Zhang Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates and devices formed thereby
US20030179453A1 (en) * 2002-03-25 2003-09-25 Sanyo Electric Co., Ltd. Element having microstructure and manufacturing method thereof
CN1431679A (zh) * 2003-02-14 2003-07-23 中国科学院上海微系统与信息技术研究所 注氧隔离技术制备全介质隔离的硅量子线的方法
WO2004079056A2 (en) * 2003-03-06 2004-09-16 C.R.F. Società Consortile Per Azioni Process to make nano-structurated components

Similar Documents

Publication Publication Date Title
Saif Islam et al. A novel interconnection technique for manufacturing nanowire devices
Dasgupta et al. 25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications
Tsivion et al. Guided growth of horizontal ZnO nanowires with controlled orientations on flat and faceted sapphire surfaces
EP2347994A1 (en) Nanostructures formed of branched nanowhiskers and methods of producing the same
US20080105296A1 (en) Nanostructures and methods for manufacturing the same
Schroth et al. Impact of the shadowing effect on the crystal structure of patterned self-catalyzed GaAs nanowires
EP4000089A1 (en) Nanowire device
US8754320B2 (en) Composite materials with anisotropic electrical and thermal conductivities
Koivusalo et al. Deterministic switching of the growth direction of self-catalyzed GaAs nanowires
Zhang et al. Nanowires
Monaico et al. Porous semiconductor compounds with engineered morphology as a platform for various applications
WO2008065223A1 (es) Método de fabricación de una estructura de nanohilos
CN113169261A (zh) 热电转换元件和热电转换装置
US9957157B2 (en) Fabrication of self assembling nano-structures
Seidl et al. Postgrowth Shaping and Transport Anisotropy in Two-Dimensional InAs Nanofins
WO2008016376A2 (en) Deletable nanotube circuit
Placidi et al. Inas epitaxy on gaas (001): A model case of strain-driven self-assembling of quantum dots
Ghisalberti Focusing on the liquid role in the vapour liquid solid growth mechanism
Wang et al. Collector Droplet Behavior during Formation of Nanowire Junctions
Kelly Manufacturability and nanoelectronic performance
US20240191396A1 (en) Transferable Networks and Arrays of Nanostructures
Gubser Phonon detection by double quantum dots
Albani Modeling of 3D heteroepitaxial structures by continuum approaches
Islam et al. Nano-bridging: a massively parallel self-assembly technique for interconnecting nanowire sensors
Shen et al. Superhydrophobic Hierarchical Silicon Structures: Fabrication and Property Characterization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07858263

Country of ref document: EP

Kind code of ref document: A1