WO2008064938A1 - High-temperature fuel cell with ferritic component - Google Patents

High-temperature fuel cell with ferritic component Download PDF

Info

Publication number
WO2008064938A1
WO2008064938A1 PCT/EP2007/060020 EP2007060020W WO2008064938A1 WO 2008064938 A1 WO2008064938 A1 WO 2008064938A1 EP 2007060020 W EP2007060020 W EP 2007060020W WO 2008064938 A1 WO2008064938 A1 WO 2008064938A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature fuel
barrier layer
nickel
cell according
Prior art date
Application number
PCT/EP2007/060020
Other languages
German (de)
French (fr)
Inventor
Marco Brandner
Dr. Leszek Niewolak
Jan Froitzheim
Willem J. Quadakkers
Frank Tietz
Thomas Dr. HÖFLER
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2008064938A1 publication Critical patent/WO2008064938A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a Hochtemper ⁇ turbrennstoffzelle together with a method for operation.
  • a fuel cell is an electrochemical energy converter, consisting of anode, electrolyte and cathode, which can convert the chemical energy of a fuel without combustion process into electrical energy.
  • SOFC high temperature fuel cell
  • Electrolyte material a gas-tight oxygen ion conductor. A sufficient ionic conductivity is given depending on the material and the thickness of the electrolyte between 500 0 C and 1 000 0 C. According to the current state of the art, yttria-stabilized zirconia (YSZ) is mostly used.
  • YSZ yttria-stabilized zirconia
  • the cathode of a SOFC regularly consists of one
  • Ceramic with perovskite crystal structure For the anode usually a cermet (ceramic / metal composite material) of YSZ and nickel is used.
  • a planar design of the cells with a thin electrolyte layer of a few micrometers is advantageous in order to realize high power densities at the same time low operating temperature, preferably below 800 0 C.
  • the mechanical stability of such cells is ensured by a cermet anode substrate having a thickness of 0.3 to 2 mm.
  • fuel cells are electrically connected in series with the aid of so-called interconnectors, for example known from DE 10200501 4077A1 or DE 1020050051 1 6Al, and built up into stacks.
  • An operating temperature below 800 ° C allows the use of ferritic steels for components of the SOFC.
  • Interconnectors made of ferritic chromium steels have already been extensively studied and have proven to be suitable.
  • porous ferritic supporting structures instead of the established cermet anode substrates in order to ensure stability with respect to mechanical or thermal to improve induced voltages. As a rule, this support structure is used on the anode side.
  • the functional cell layers can be applied by thermal coating methods, physical coating methods or sintering technology.
  • ferritic steels When ferritic steels are used in SOFCs, they are in direct, cohesive contact with components containing nickel, according to current concepts. It is known to realize the electrical contact between ceramic cells and interconnectors via nickel networks. If porous, ferritic metal substrates are used on the anode side, these are usually in contact with a nickel-containing anode.
  • Adverse interdiffusion occurs at interfaces between steel and nickel, with the elements iron, chromium and nickel in particular being involved.
  • trace elements of the alloys used such as, for example, manganese in CroFer22APU (Thyssen Krupp VDM) or impurities in the reaction, may also be involved.
  • the interactions take place during both manufacturing processes and during operation.
  • the contact area between an interconnector and a nickel network is subject to current concepts a high-temperature cycle during the addition of a stack and the continuous load during operation.
  • For the contact area between a metallic substrate and an anode is still a temperature load in the context of cell production added. If the functional layers anode, electrolyte and cathode are applied by thermal spraying, this production step is of short duration at high temperature. If the functional layers are applied by physical coating methods or by sintering, the reactions take place over several hours.
  • the interdiffusion of the elements iron, chromium and nickel has negative consequences for the ferritic component (interconnector or metallic substrate) as well as for the nickel component (nickel mesh or nickel-containing anode).
  • the introduction of nickel into the ferritic steel can lead to an increase in the oxidation rate and thus to a shortening of the oxidation-related lifetime.
  • nickel content of about 1 0 wt.%
  • An austenitization of the steel is to be expected.
  • the associated increase in the coefficient of thermal expansion leads to a mismatch and tensions between the ceramic cell layers and the steel component. Loss of performance or complete cell failure due to cracking and consequent loss of electrical contact may result.
  • the interdiffusion is considered to be particularly critical.
  • the extent of the interactions is greater than in the contact area of a nickel mesh with the interconnector, because cell production already leads to a reaction.
  • the passivation of the nickel surface leads to a reduction of the catalytically active three-phase interface of an anode, which leads to high power losses during cell operation. It is an object of the invention to provide an efficient and long-term stable high-temperature fuel cell using ferritic steel.
  • a barrier layer is provided between the problematic components, for example between interconnector and nickel mesh or between metal substrate and anode.
  • a barrier layer according to the invention is present when a layer is present which reduces or eliminates the interdiffusion of critical elements, especially iron, chromium and nickel. So if there is no such layer, then there is an increased interdiffusion.
  • the barrier layer can be made of Ce 1 . x . y (Y, Ln) x (Ti, Nb) y O 2 , (Ca, Sr, Ba) i. 3x / 2 (Y, Ln) x TiO 3 , Cr 2 O 3 , (Cr, Mn) 3 O 4 , FeO, Fe 3 O 4 or Ln 1.
  • (Sr, Ca) x (Mg, Al, Cr) O 3 (where: Ln lanthanides) exist.
  • Typical ferritic components or steels are CroFer22APU (Thyssen Krupp VDM), IT-I 1 and IT-I 4 (Plansee) or ZMG232 (Hitachi Metals).
  • the barrier layer is chosen so that it makes only a small contribution to the electrical resistance of the cell.
  • the barrier layer thus consists of a material with high electronic conductivity.
  • the area-specific, electronic conductivity of the barrier layer is therefore preferably above 200 S / cm 2 .
  • the barrier layer is designed so that at least on one side, the surface of the metal substrate is protected by a thin ( ⁇ 1 0 microns), dense film, the pore network of the metal substrate is not closed.
  • the barrier layer covers the pores of the metal substrate when the B ⁇ rriere Anlagen itself is open-pore, so that the passage of gas to the anode is not hindered.
  • a thin coating of the particle surfaces is especially preferable in order to ensure a small contribution to the resistance of the cell.
  • CeO 2 has proven to be suitable as the material for the barrier layer, because it effectively prevents the interdiffusion of iron, chromium and nickel, and has a higher electronic conductivity than other materials tested. Furthermore, it is thermodynamically stable throughout the temperature and oxygen partial pressure range during production and operation of the SOFC.
  • the material of the barrier layer dopants to increase the electronic conductivity and / or adjustment of the thermal expansion coefficient of the steel component.
  • an increase in the electronic conductivity is achieved with a doping of CeO 2 with niobium, yttrium or samarium.
  • a doping of CeO 2 with gadolinium reduces the swelling behavior known under anode-side operating conditions of an SOFC, which could lead to stresses in the cell network.
  • Ce is 1 . x . y (Y, Ln) x (Ti, Nb) y O 2 with 0 ⁇ x ⁇ 0.5 0 0.2 ⁇ y ⁇ particularly well suited as a barrier layer material, since this material has a particularly good conductivity is achieved on a regular basis.
  • doping can be the increase electrical conductivity and thus provide a suitable material.
  • the barrier layer consists of Cr 2 O 3 and / or (Cr, Mn) 3 O 4 or of FeO and / or Fe 3 O 4 . If the barrier layer consists of Cr 2 O 3 and / or (Cr, Mn) 3 O 4 or of FeO and / or Fe 3 O 4 , the material costs are low. If very thin layers are provided, the material costs, however, play a subordinate role. In particular, more powerful materials such as CeO 2 (doped or undoped) are to be preferred.
  • a CeO 2 is Diffusionsba rriere between a ferritic metal substrate and a sintered Ni / YSZ anode prepared as follows.
  • Atmosphere 3. CeO 2 coating by means of PVD, magnetron sputtering (alternatively:
  • the result was a fuel cell with a 1 mm thick metal substrate 1 of ferritic Cr steel, a 5 micron thick CeO 2 - barrier layer 2, a 20 micron thick Ni / YSZ existing anode 3, a 60 micron thick, consisting of YSZ electrolyte. 4 and a 60 ⁇ m thick (LaSr) (CoFe) O 3 existing cathode 5.
  • the CeO 2 diffusion barrier layer between Met ⁇ llsubstr ⁇ t and Ni / YSZ anode SOFC ' s could be produced, which reached in the e zelzelltest power densities of 430 mW / cm 2 at 800 0 C and 0, 7 V.
  • Figure 2 shows the measured current, Sp ⁇ nnungskennlinien at the start and after 1 h 65 continuous operation at 800 0 C and a current density of 0, 3 A / cm 2.
  • An interdiffusion of the elements iron, chromium and nickel could not be determined in a follow-up examination by scanning electron microscopy (RE M) and X-ray microanalysis (EDX).
  • a waiver of the diffusion barrier layer resulted in the context of a comparative experiment with otherwise the same structure to a complete cell failure, as it came to the formation of cracks in the electrolyte by the volume increase during the formation of iron oxides and chromium oxides in the anode.
  • a CeO 2 diffusion barrier is formed between a ferritic metal substrate and a thermally sprayed Ni / YSZ anode as follows:
  • a CeO 2 diffusion barrier between a ferritic interconnector and a nickel contact element to the ceramic cell is produced as follows:
  • Magnetron sputtering (alternatively: CVD, SoIGeI, sintering, thermal spraying) 4.) Contact between the SOFC and the interconnector with a nickel contact element (mesh, fabric, knitted fabric, powder)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a high-temperature fuel cell in addition to a method for operation. The object of the invention is to provide a powerful high-temperature fuel cell with long-term stability using ferritic material. In order to minimize any interaction between ferritic components and nickel components of an SOFC, a barrier layer is provided between the problematic components, i.e. for example between the interconnector and the nickel net or between the metal substrate and the anode. A barrier layer in the sense of the invention is present if a layer is provided which reduces or suppresses the interdiffusion of critical elements, primarily iron, chromium and nickel. If there is no such layer, there is then increased interdiffusion.

Description

Hochtemperαturbrennstoffzelle mit ferritischer Komponente High temperature fuel cell with ferritic component
Die Erfindung betrifft eine Hochtemperαturbrennstoffzelle nebst einem Verfahren für den Betrieb.The invention relates to a Hochtemperαturbrennstoffzelle together with a method for operation.
Eine Brennstoffzelle ist ein elektrochemischer Energiewandler, bestehend aus Anode, Elektrolyt und Kathode, der die chemische Energie eines Brennstoffs ohne Verbrennungsprozess in elektrische Energie umsetzen kann . Im Fall der Hochtemperaturbrennstoffzelle (SOFC) ist dasA fuel cell is an electrochemical energy converter, consisting of anode, electrolyte and cathode, which can convert the chemical energy of a fuel without combustion process into electrical energy. In the case of the high temperature fuel cell (SOFC) that is
Elektrolytmaterial ein gasdichter Sauerstoffionenleiter. Eine ausreichende ionische Leitfähigkeit ist in Abhängigkeit des Materials und der Dicke des Elektrolyten zwischen 500 0C und 1 000 0C gegeben. Nach derzeitigem Stand der Technik wird meist Yttriumoxid stabilisiertes Zirkoniumdioxid (YSZ) eingesetzt. Die Kathode einer SOFC besteht regelmäßig aus einerElectrolyte material a gas-tight oxygen ion conductor. A sufficient ionic conductivity is given depending on the material and the thickness of the electrolyte between 500 0 C and 1 000 0 C. According to the current state of the art, yttria-stabilized zirconia (YSZ) is mostly used. The cathode of a SOFC regularly consists of one
Keramik mit perowskitischer Kristallstruktur. Für die Anode wird meist ein Cermet (Keramik/Metall Verbundwerkstoff) aus YSZ und Nickel verwendet.Ceramic with perovskite crystal structure. For the anode usually a cermet (ceramic / metal composite material) of YSZ and nickel is used.
Eine planare Ausführung der Zellen mit einer dünnen Elektrolytschicht von wenigen Mikrometern ist vorteilhaft, um hohe Leistungsdichten bei gleichzeitig niedriger Betriebstemperatur, vorzugsweise unter 800 0C, realisieren zu können . Meist wird die mechanische Stabilität solcher Zellen durch ein Cermet-Anodensubstrat mit einer Dicke von 0,3 bis 2 mm gewährleistet. Um die geforderte Gesamtleistung für ein System zu erreichen, werden Brennstoffzellen mit Hilfe so genannter Interkonnektoren, zum Beispiel bekannt aus DE l 0200501 4077A1 oder der DE l 020050051 1 6Al , elektrisch in Reihe geschaltet und zu Stapeln (engl . Stacks) aufgebaut.A planar design of the cells with a thin electrolyte layer of a few micrometers is advantageous in order to realize high power densities at the same time low operating temperature, preferably below 800 0 C. Mostly, the mechanical stability of such cells is ensured by a cermet anode substrate having a thickness of 0.3 to 2 mm. In order to achieve the required overall performance for a system, fuel cells are electrically connected in series with the aid of so-called interconnectors, for example known from DE 10200501 4077A1 or DE 1020050051 1 6Al, and built up into stacks.
Eine Betriebstemperatur unterhalb von 800 0C ermöglicht den Einsatz ferritischer Stähle für Komponenten der SOFC. Interkonnektoren aus ferritischen Chrom Stählen wurden bereits ausgiebig untersucht und haben sich als geeignet erwiesen . Weiterhin wird versucht, poröse ferritische Tragstrukturen anstelle der etablierten Cermet Anodensubstrate zu nutzen, um die Stabilität gegenüber mechanisch oder thermisch induzierten Spannungen zu verbessern . In der Regel wird diese Tragstruktur anodenseitig eingesetzt. Die funktionellen Zellschichten können über thermische Beschichtungsverfahren, physikalische Beschichtungsverfahren oder sintertechnisch appliziert werden .An operating temperature below 800 ° C allows the use of ferritic steels for components of the SOFC. Interconnectors made of ferritic chromium steels have already been extensively studied and have proven to be suitable. Furthermore, attempts are being made to use porous ferritic supporting structures instead of the established cermet anode substrates in order to ensure stability with respect to mechanical or thermal to improve induced voltages. As a rule, this support structure is used on the anode side. The functional cell layers can be applied by thermal coating methods, physical coating methods or sintering technology.
Wenn ferritische Stähle in einer SOFC eingesetzt werden, stehen sie nach aktuellen Konzepten in direktem, stoffschlüssigem Kontakt mit Komponenten, die Nickel enthalten . So ist bekannt, die elektrische Kontaktierung zwischen keramischen Zellen und Interkonnektoren über Nickel-Netze zu realisieren . Werden auf der Anodenseite poröse, ferritische Metallsubstrate eingesetzt, stehen diese in der Regel im Kontakt zu einer nickelhaltigen Anode.When ferritic steels are used in SOFCs, they are in direct, cohesive contact with components containing nickel, according to current concepts. It is known to realize the electrical contact between ceramic cells and interconnectors via nickel networks. If porous, ferritic metal substrates are used on the anode side, these are usually in contact with a nickel-containing anode.
An Grenzflächen zwischen Stahl und Nickel tritt nachteilhaft eine Interdiffusion auf, wobei vor allem die Elemente Eisen, Chrom und Nickel beteiligt sind . Jedoch können auch Spurenelemente der verwendeten Legierungen wie beispielsweise Mangan bei CroFer22APU (Thyssen Krupp VDM) oder Verunreinigungen an der Reaktion beteiligt sein.Adverse interdiffusion occurs at interfaces between steel and nickel, with the elements iron, chromium and nickel in particular being involved. However, trace elements of the alloys used, such as, for example, manganese in CroFer22APU (Thyssen Krupp VDM) or impurities in the reaction, may also be involved.
Die Wechselwirkungen laufen sowohl während der Fertigungsprozesse als auch während des Betriebs ab. Der Kontaktbereich zwischen einem Interkonnektor und einem Nickel-Netz unterliegt nach aktuellen Konzepten einem Hochtemperaturzyklus während der Fügung eines Stacks und der Dauerbelastung im Betrieb. Für den Kontaktbereich zwischen einem metallischen Substrat und einer Anode kommt noch eine Temperaturbelastung im Rahmen der Zellfertigung hinzu . Werden die funktionellen Schichten Anode, Elektrolyt und Kathode durch thermische Spritzverfahren aufgetragen, ist dieser Herstellungsschritt bei hoher Temperatur nur von kurzer Dauer. Werden die funktionellen Schichten durch physikalische Beschichtungsverfahren oder sintertechnisch aufgebracht, finden die Reaktionen über mehrere Stunden statt. Die Interdiffusion der Elemente Eisen, Chrom und Nickel hat sowohl für die ferritische Komponente (Interkonnektor oder metallisches Substrat) als auch für die Nickel Komponente (Nickel-Netz oder nickelhaltige Anode) negative Folgen .The interactions take place during both manufacturing processes and during operation. The contact area between an interconnector and a nickel network is subject to current concepts a high-temperature cycle during the addition of a stack and the continuous load during operation. For the contact area between a metallic substrate and an anode is still a temperature load in the context of cell production added. If the functional layers anode, electrolyte and cathode are applied by thermal spraying, this production step is of short duration at high temperature. If the functional layers are applied by physical coating methods or by sintering, the reactions take place over several hours. The interdiffusion of the elements iron, chromium and nickel has negative consequences for the ferritic component (interconnector or metallic substrate) as well as for the nickel component (nickel mesh or nickel-containing anode).
Der Eintrag von Nickel in den ferritischen Stahl kann zu einer Erhöhung der Oxidationsrate und damit zu einer Verkürzug der oxidationsbedingten Lebensdauer führen . Darüber hinaus ist ab einem Nickelanteil von etwa 1 0 Gew. % eine Austenitisierung des Stahls zu erwarten . Die damit verbundene Erhöhung des thermischen Ausdehnungskoeffizienten führt zu einer Fehlanpassung und Spannungen zwischen den keramischen Zellschichten und der Stahlkomponente. Leistungsverlust oder vollständiges Zellversagen durch Rissbildungen und demzufolge Verlust des elektrischen Kontakts können die Folge sein .The introduction of nickel into the ferritic steel can lead to an increase in the oxidation rate and thus to a shortening of the oxidation-related lifetime. In addition, from a nickel content of about 1 0 wt.% An austenitization of the steel is to be expected. The associated increase in the coefficient of thermal expansion leads to a mismatch and tensions between the ceramic cell layers and the steel component. Loss of performance or complete cell failure due to cracking and consequent loss of electrical contact may result.
Die Diffusion von Eisen und Chrom in Nickel führt während des Betriebs einer SOFC zur Bildung von Eisenoxiden und Chromoxiden auf freien Nickeloberflächen oder auch entlang von Korngrenzen. Da die Oxidation mit einer Volumenzunahme einhergeht, können erhebliche Spannungen in eine Struktur induziert werden, die zu einer Zerstörung der Integrität führen . Die Bildung von Oxiden, vor allem Chromoxid, auf der Nickeloberfläche führt außerdem zu einer Passivierung des katalytisch aktiven Materials.The diffusion of iron and chromium into nickel during the operation of an SOFC leads to the formation of iron oxides and chromium oxides on free nickel surfaces or along grain boundaries. Since the oxidation is accompanied by an increase in volume, significant stresses can be induced in a structure that leads to a destruction of integrity. The formation of oxides, especially chromium oxide, on the nickel surface also leads to a passivation of the catalytically active material.
Für einen Verbund aus einem porösen, ferritischen Substrat und einer nickelhaltigen Anode ist die Interdiffusion als besonders kritisch zu betrachten. Zum einen ist das Ausmaß der Wechselwirkungen größer als im Kontaktbereich eines Nickel-Netzes mit dem Interkonnektor, weil die Zellfertigung bereits zu einer Reaktion führt. Zum zweiten führt die Passivierung der Nickeloberfläche zu einer Verminderung der katalytisch aktiven Drei-Phasen-Grenzfläche einer Anode, was zu hohen Leistungseinbußen während des Zellbetriebs führt. Es ist Aufgabe der Erfindung, eine leistungsfähige und langzeitstabile Hochtemperaturbrennstoffzelle unter Verwendung von ferritischem Stahl zu schaffen .For a composite of a porous, ferritic substrate and a nickel-containing anode, the interdiffusion is considered to be particularly critical. On the one hand, the extent of the interactions is greater than in the contact area of a nickel mesh with the interconnector, because cell production already leads to a reaction. Second, the passivation of the nickel surface leads to a reduction of the catalytically active three-phase interface of an anode, which leads to high power losses during cell operation. It is an object of the invention to provide an efficient and long-term stable high-temperature fuel cell using ferritic steel.
Um eine Wechselwirkung zwischen ferritischen Komponenten und Nickelkomponenten einer SOFC zu minimieren, wird eine Barriereschicht zwischen den problematischen Komponenten vorgesehen, also zum Beispiel zwischen Interkonnektor und Nickel-Netz oder zwischen Metallsubstrat und Anode. Eine Barriereschicht im Sinne der Erfindung liegt vor, wenn eine Schicht vorhanden ist, die die Interdiffusion kritischer Elemente, vor allem Eisen, Chrom und Nickel, herabsetzt oder unterbindet. Fehlt es also an dieser Schicht, so liegt dann eine erhöhte Interdiffusion vor.In order to minimize interaction between ferritic components and nickel components of an SOFC, a barrier layer is provided between the problematic components, for example between interconnector and nickel mesh or between metal substrate and anode. A barrier layer according to the invention is present when a layer is present which reduces or eliminates the interdiffusion of critical elements, especially iron, chromium and nickel. So if there is no such layer, then there is an increased interdiffusion.
Die Barriereschicht kann aus Ce1. x.y (Y, Ln)x (Ti, Nb)yO2, (Ca, Sr, Ba) i.3x/2 (Y, Ln)x TiO3, Cr2O3, (Cr, Mn)3O4, FeO, Fe3O4 oder Ln1., (Sr, Ca)x (Mg, AI, Cr)O3 (wobei gilt: Ln = Lanthanide) bestehen . Typische ferritische Komponenten bzw. Stähle sind CroFer22APU (Thyssen Krupp VDM), IT- I 1 und IT- I 4 (Plansee) oder ZMG232 (Hitachi Metals) .The barrier layer can be made of Ce 1 . x . y (Y, Ln) x (Ti, Nb) y O 2 , (Ca, Sr, Ba) i. 3x / 2 (Y, Ln) x TiO 3 , Cr 2 O 3 , (Cr, Mn) 3 O 4 , FeO, Fe 3 O 4 or Ln 1. , (Sr, Ca) x (Mg, Al, Cr) O 3 (where: Ln = lanthanides) exist. Typical ferritic components or steels are CroFer22APU (Thyssen Krupp VDM), IT-I 1 and IT-I 4 (Plansee) or ZMG232 (Hitachi Metals).
In einer vorteilhaften Ausgestaltung ist die Barriereschicht so gewählt, dass diese nur einen geringen Beitrag zum elektrischen Widerstand der Zelle leistet. Die Barriereschicht besteht also aus einem Material mit hoher elektronischer Leitfähigkeit. Die flächenspezifische, elektronische Leitfähigkeit der Barriereschicht liegt daher vorzugsweise über 200 S/cm2.In an advantageous embodiment, the barrier layer is chosen so that it makes only a small contribution to the electrical resistance of the cell. The barrier layer thus consists of a material with high electronic conductivity. The area-specific, electronic conductivity of the barrier layer is therefore preferably above 200 S / cm 2 .
In einer vorteilhaften Ausgestaltung ist die Barriereschicht so ausgeführt, dass zumindest auf einer Seite die Oberfläche des Metallsubstrats durch einen dünnen ( < 1 0 μm), dichten Film geschützt ist, das Porennetzwerk des Metallsubstrats jedoch nicht verschlossen wird . Alternativ überdeckt die Barriereschicht die Poren des Metallsubstrats, wenn die Bαrriereschicht selbst offenporig ist, so dass der Gasdurchtritt zur Anode nicht behindert wird .In an advantageous embodiment, the barrier layer is designed so that at least on one side, the surface of the metal substrate is protected by a thin (<1 0 microns), dense film, the pore network of the metal substrate is not closed. Alternatively, the barrier layer covers the pores of the metal substrate when the Bαrriereschicht itself is open-pore, so that the passage of gas to the anode is not hindered.
Eine dünne Beschichtung der Partikeloberflächen ist besonders zu bevorzugen, um einen geringen Beitrag zum Widerstand der Zelle zu gewährleisten .A thin coating of the particle surfaces is especially preferable in order to ensure a small contribution to the resistance of the cell.
Als Material für die Barriereschicht hat sich insbesondere CeO2 als geeignet erwiesen, weil es die Interdiffusion von Eisen, Chrom und Nickel wirkungsvoll unterbindet und dabei eine höhere elektronische Leitfähigkeit besitzt als andere getestete Materialien . Weiterhin ist es im gesamten Temperatur und Sauerstoffpartialdruckbereich während der Herstellung und im Betrieb der SOFC thermodynamisch stabil .In particular, CeO 2 has proven to be suitable as the material for the barrier layer, because it effectively prevents the interdiffusion of iron, chromium and nickel, and has a higher electronic conductivity than other materials tested. Furthermore, it is thermodynamically stable throughout the temperature and oxygen partial pressure range during production and operation of the SOFC.
In einer Ausführungsform der Erfindung weist das Material der Barriereschicht Dotierungen zur Steigerung der elektronischen Leitfähigkeit und/ oder Anpassung des thermischen Ausdehnungskoeffizienten an die Stahlkomponente auf. So wird mit einer Dotierung von CeO2 mit Niob, Yttrium oder Samarium eine Steigerung der elektronischen Leitfähigkeit erreicht. Eine Dotierung von CeO2 mit Gadolinium verringert das unter anodenseitigen Betriebsbedingungen einer SOFC bekannte Quellverhalten, welches zu Spannungen im Zellverbund führen könnte.In one embodiment of the invention, the material of the barrier layer dopants to increase the electronic conductivity and / or adjustment of the thermal expansion coefficient of the steel component. Thus, an increase in the electronic conductivity is achieved with a doping of CeO 2 with niobium, yttrium or samarium. A doping of CeO 2 with gadolinium reduces the swelling behavior known under anode-side operating conditions of an SOFC, which could lead to stresses in the cell network.
Allgemein ist Ce1. x.y (Y, Ln)x (Ti, Nb)yO2 mit 0≤x≤ 0,5 und 0 ≤y≤ 0,2 als Barriereschichtmaterial besonders gut geeignet, da bei diesem Material regelmäßig eine besonders gute Leitfähigkeit erreicht wird .Generally, Ce is 1 . x . y (Y, Ln) x (Ti, Nb) y O 2 with 0≤x≤ 0.5 0 0.2 ≤y≤ particularly well suited as a barrier layer material, since this material has a particularly good conductivity is achieved on a regular basis.
Besteht die Barriereschicht aus Ln,.x (Sr, Ca)x (Mg, AI, Cr)O3 mit 0, 1 ≤x≤ 0,5 (wobei gilt: Ln = Lanthanide) oder aus (Ca, Sr, Ba) i.3x/2 (Y, Ln)x TiO3 mit 0 ≤xy≤ 0, l bzw. 0 ≤xLn≤ 0,67 (wobei gilt: Ln = Lanthanide), so wird eine besonders gute Barrierewirkung erzielt. Durch Dotierung lässt sich die elektrische Leitfähigkeit steigern und so ein geeignetes Material bereitstellen .If the barrier layer consists of Ln ,. x (Sr, Ca) x (Mg, Al, Cr) O 3 with 0, 1 ≤x≤0.5 (where: Ln = lanthanides) or from (Ca, Sr, Ba) i. 3x / 2 (Y, Ln) x TiO 3 with 0 ≤x y ≤ 0, l or 0 ≤x Ln ≤ 0.67 (where: Ln = lanthanides), a particularly good barrier effect is achieved. By doping can be the increase electrical conductivity and thus provide a suitable material.
Besteht die Barriereschicht aus Cr2O3 und / oder (Cr, Mn)3O4 oder aus FeO und / oder Fe3O4, so sind die Materia lkosten gering . Werden sehr dünne Schichten vorgesehen, so spielen die Materialkosten allerdings eine untergeordnete Rolle. Es sind insbesondere dann leistungsfähigere Materialen wie CeO2 (dotiert oder undotiert) zu bevorzugen .If the barrier layer consists of Cr 2 O 3 and / or (Cr, Mn) 3 O 4 or of FeO and / or Fe 3 O 4 , the material costs are low. If very thin layers are provided, the material costs, however, play a subordinate role. In particular, more powerful materials such as CeO 2 (doped or undoped) are to be preferred.
Ausführungsbeispieleembodiments
In einem ersten Beispiel wird eine CeO2 Diffusionsba rriere zwischen einem ferritischen Metallsubstrat und einer gesinterten Ni/YSZ Anode wie folgt hergestellt.In a first example, a CeO 2 is Diffusionsba rriere between a ferritic metal substrate and a sintered Ni / YSZ anode prepared as follows.
1 . ) Herstellung eines pulvermeta llurgischen, ferritischen Metallsubstrats 2. ) Vorsinterung des Metallsubstrats bei 1 000 0C, 3 h in Argon1 . ) Preparation of a pulvermeta llurgischen ferritic metal substrate 2) pre-sintering of the metal substrate at 1 000 0 C, 3 h in argon
Atmosphäre 3. ) CeO2 Beschichtung mittels PVD, Magnetronsputtern (alternativ:Atmosphere 3.) CeO 2 coating by means of PVD, magnetron sputtering (alternatively:
CVD, SoI Gel Spincoating oder I nfiltration, Sintern, thermischesCVD, SoI gel spincoating or infiltration, sintering, thermal
Spritzen)syringes)
4. ) Beschichtung mit einer NiO/YSZ oder Ni/YSZ Siebdruckschicht 5. ) Sintern des Verbundes bei 1 250 0C, 3 h in Argon Atmosphäre 6. ) Auftrag eines thermisch gespritzten Elektrolyten (alternativ: PVD, SoI4.) Coating with a NiO / YSZ or Ni / YSZ screen printing layer 5.) Sintering of the composite at 1 250 0 C, 3 h in argon atmosphere 6.) Application of a thermally sprayed electrolyte (alternatively: PVD, Sol
Gel, Sintern) 7. ) Auftrag einer siebgedruckten KathodeGel, sintering) 7.) Application of a screen-printed cathode
Es resultierte eine Brennstoffzelle mit einem 1 mm d icken Metallsubstrat 1 aus ferritischem Cr-Stahl, einer 5 μm dicken CeO2 - Barriereschicht 2, einer 20 μm dicken aus Ni/YSZ bestehenden Anode 3, einem 60 μm dicken, aus YSZ bestehenden Elektrolyten 4 und einer 60 μm dicken, aus (LaSr)(CoFe)O3 bestehenden Kathode 5. Durch die CeO2 Diffusionsbαrriereschicht zwischen Metαllsubstrαt und Ni/YSZ-Anode konnten SOFC ' s hergestellt werden, die im E inzelzelltest Leistungsdichten von 430 mW/cm2 bei 800 0C und 0, 7 V erreichten . Figur 2 zeigt die gemessenen Strom-, Spαnnungskennlinien zu Betriebsbeginn und nach 1 65 h Dauerbetrieb bei 800 0C und einer Stromdichte von 0, 3 A/cm2. Eine I nterdiffusion der Elemente Eisen, Chrom und Nickel konnte in einer Nachuntersuchung mittels Rasterelektronenmikroskopie (RE M) und Röntgenmikroanalyse (EDX) nicht festgestellt werden .The result was a fuel cell with a 1 mm thick metal substrate 1 of ferritic Cr steel, a 5 micron thick CeO 2 - barrier layer 2, a 20 micron thick Ni / YSZ existing anode 3, a 60 micron thick, consisting of YSZ electrolyte. 4 and a 60 μm thick (LaSr) (CoFe) O 3 existing cathode 5. The CeO 2 diffusion barrier layer between Metαllsubstrαt and Ni / YSZ anode SOFC ' s could be produced, which reached in the e zelzelltest power densities of 430 mW / cm 2 at 800 0 C and 0, 7 V. Figure 2 shows the measured current, Spαnnungskennlinien at the start and after 1 h 65 continuous operation at 800 0 C and a current density of 0, 3 A / cm 2. An interdiffusion of the elements iron, chromium and nickel could not be determined in a follow-up examination by scanning electron microscopy (RE M) and X-ray microanalysis (EDX).
Durch den Einsatz der CeO2 Diffusionsba rriereschicht war bei einerBy using the CeO 2 Diffusionsba rriereschicht was at a
Stromdichte von 0, 3 A/cm2 bei 800 0C ein Betrieb über 1 65 h möglich, ohne dass es zu einer signifikanten Verschlechterung der Zellleistung kam, wie die F igur 3 verdeutlicht.Current density of 0, 3 A / cm 2 at 800 0 C operation over 1 65 h possible without there was a significant deterioration in cell performance, as shown in Figure 3 illustrates.
Ein Verzicht auf die Diffusionsbarriereschicht führte im Rahmen eines Vergleichsversuchs bei ansonsten gleichem Aufbau zu einem vollständigen Zellversagen, da es durch die Volumenzunahme während der Bildung von Eisenoxiden und Chromoxiden in der Anode zu Rissbildungen im Elektrolyten kam .A waiver of the diffusion barrier layer resulted in the context of a comparative experiment with otherwise the same structure to a complete cell failure, as it came to the formation of cracks in the electrolyte by the volume increase during the formation of iron oxides and chromium oxides in the anode.
In einem anderen Ausführungsbeispiel wird eine CeO2 - Diffusionsbarriere zwischen einem ferritischen Metallsubstrat und einer thermisch gespritzten Ni/YSZ Anode wie folgt hergestellt:In another embodiment, a CeO 2 diffusion barrier is formed between a ferritic metal substrate and a thermally sprayed Ni / YSZ anode as follows:
1 . ) Herstellung eines pulvermeta llurgischen, ferritischen Metallsubstrats 2. ) Sinterung des metallischen Substrats bei zum Beispiel 1 250 0C 3. ) CeO2 Beschichtung mittels PVD, Magnetronsputtern (alternativ:1 . ) Preparation of a pulvermeta llurgischen ferritic metal substrate 2) sintering of the metallic substrate, for example, at 1250 0 C 3) CeO 2 coating using PVD, magnetron sputtering (alternatively:
CVD, SoI Gel, Sintern, thermisch Spritzen) 4. ) Thermisches Spritzen einer NiO/YSZ oder Ni/YSZ AnodeCVD, sol gel, sintering, thermal spraying) 4.) Thermal spraying of a NiO / YSZ or Ni / YSZ anode
5. ) Thermisches Spritzen eines Elektrolyten 6. ) Thermisches Spritzen einer Kathode In einem weiteren Ausführungsbeispiel wird eine CeO2 Diffusionsbαrriere zwischen einem ferritischen Interkonnektor und einem Nickel Kontαktelement zur keramischen Zelle wie folgt hergestellt:5.) Thermal spraying of an electrolyte 6.) Thermal spraying of a cathode In a further embodiment, a CeO 2 diffusion barrier between a ferritic interconnector and a nickel contact element to the ceramic cell is produced as follows:
1 .) Fertigung einer SOFC1.) Production of a SOFC
2.) Fertigung eines ferritischen Interkonnektors2.) Production of a ferritic interconnector
3.) CeO2 Beschichtung des Interkonnektors mittels PVD,3.) CeO 2 coating of the interconnector by means of PVD,
Magnetronsputtern (alternativ: CVD, SoIGeI, Sintern, thermisch Spritzen) 4.) Kontaktierung zwischen der SOFC und dem Interkonnektor mit einem Nickel Kontaktelement (Netz, Gewebe, Gestrick, Pulver)Magnetron sputtering (alternatively: CVD, SoIGeI, sintering, thermal spraying) 4.) Contact between the SOFC and the interconnector with a nickel contact element (mesh, fabric, knitted fabric, powder)
Die in der Beschreibungseinleitung genannten Merkmale einer Hochtemperaturbrennstoffzelle (SOFC) können grundsätzlich auch Merkmale der vorliegenden Erfindung sein . The features of a high-temperature fuel cell (SOFC) mentioned in the introduction to the description can in principle also be features of the present invention.

Claims

Ansprüche claims
1 . Hochtemperαturbrennstoffzelle mit einer ferritischen Komponente ( 1 ) und einer Nickelkomponente (3) und einer dazwischenliegenden Barriereschicht (2) .1 . High-temperature fuel cell with a ferritic component (1) and a nickel component (3) and an intermediate barrier layer (2).
2. Hochtemperaturbrennstoffzelle nach Anspruch 1 , wobei die Barriereschicht aus CeO2 besteht.2. High-temperature fuel cell according to claim 1, wherein the barrier layer consists of CeO 2 .
3. Hochtemperaturbrennstoffzelle nach Anspruch 1 oder 2, wobei die Barriereschicht mit Yttrium, Gadolinium Niob oder Samarium dotiert ist.3. High-temperature fuel cell according to claim 1 or 2, wherein the barrier layer is doped with yttrium, gadolinium niobium or samarium.
4. Hochtemperaturbrennstoffzelle nach Anspruch 1 , 2 oder 3, wobei die Barriereschicht als dünner, vorzugsweise dichter Film zumindest auf einer Seite die ferritische Komponente bedeckt.4. High-temperature fuel cell according to claim 1, 2 or 3, wherein the barrier layer as a thin, preferably dense film on at least one side covers the ferritic component.
5. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, wobei die Barriereschicht nicht dicker als 1 0 μm, vorzugsweise dünner als 2 μm ist.5. High-temperature fuel cell according to one of the preceding claims, wherein the barrier layer is not thicker than 1 0 microns, preferably thinner than 2 microns.
6. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, wobei die ferritische Komponente ein poröses metallisches Substrat ( 1 ) ist und die Nickelkomponente eine Anode (3) ist.6. High-temperature fuel cell according to one of the preceding claims, wherein the ferritic component is a porous metallic substrate (1) and the nickel component is an anode (3).
7. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, wobei die ferritische Komponente ein Interkonnektor ist und die Nickelkomponente ein Nickelnetz ist.7. High temperature fuel cell according to one of the preceding claims, wherein the ferritic component is an interconnector and the nickel component is a nickel network.
8. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, wobei die Barriereschicht aus (Ca, Sr, Ba) i .3x/2 (Y, Ln)x TiO3 mit 0 ≤ xy≤ 0, l bzw. 0 ≤xLn ≤ 0,67 (wobei gilt: Ln = Lanthanide) besteht. 8. High-temperature fuel cell according to one of the preceding claims, wherein the barrier layer of (Ca, Sr, Ba) i. 3x / 2 (Y, Ln) x TiO 3 with 0 ≤ x y ≤ 0, l or 0 ≤x Ln ≤ 0.67 (where: Ln = lanthanides).
9. Hochtemperαturbrennstoffzelle nach einem der vorhergehenden Ansprüche, wobei die Barriereschicht aus Cr2O3 und / oder (Cr, Mn)3O4 besteht.9. Hochtemperαturbrennstoffzelle according to any one of the preceding claims, wherein the barrier layer of Cr 2 O 3 and / or (Cr, Mn) 3 O 4 consists.
1 0. Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, wobei die Barriereschicht aus FeO und / oder Fe3O4 besteht.1 0. High-temperature fuel cell according to one of the preceding claims, wherein the barrier layer of FeO and / or Fe 3 O 4 consists.
1 1 . Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, wobei die Barriereschicht aus Ce1. x.y (Y, Ln)x (Ti, Nb)yO2 mit 0 ≤x ≤ 0,5 und 0 ≤y≤ 0, 2 (wobei gilt: Ln = Lantha nide) besteht.1 1. High temperature fuel cell according to any one of the preceding claims, wherein the barrier layer of Ce. 1 x . y (Y, Ln) x (Ti, Nb) y O 2 with 0 ≤ x ≤ 0.5 and 0 ≤y≤ 0, 2 (where Ln = Lantha nide).
1 2. Hochtemperaturbrennstoffzelle nach Anspruch 1 , wobei die Barriereschicht aus Ln I -x (Sr, Ca)x (Mg, AI, Cr)O3 mit 0, 1 ≤x≤ 0,51 2. The high-temperature fuel cell according to claim 1, wherein the barrier layer of Ln I -x (Sr, Ca) x (Mg, Al, Cr) O3 with 0, 1 ≤x≤ 0.5
(wobei gilt: Ln = Lanthanide) besteht.(where Ln = lanthanides).
1 3. Verfahren zum Betreiben einer Hochtemperaturbrennstoffzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hochtemperaturbrennstoffzelle während des Betriebes nicht auf Temperaturen von mehr als 800 0C a ufgeheizt wird . 1 3. A method for operating a high-temperature fuel cell according to any one of the preceding claims, characterized in that the high-temperature fuel cell is not heated during operation to temperatures of more than 800 0 C a.
PCT/EP2007/060020 2006-11-27 2007-09-21 High-temperature fuel cell with ferritic component WO2008064938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006056251.8 2006-11-27
DE102006056251A DE102006056251B4 (en) 2006-11-27 2006-11-27 High temperature fuel cell with ferritic component and method of operating the same

Publications (1)

Publication Number Publication Date
WO2008064938A1 true WO2008064938A1 (en) 2008-06-05

Family

ID=38806565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/060020 WO2008064938A1 (en) 2006-11-27 2007-09-21 High-temperature fuel cell with ferritic component

Country Status (2)

Country Link
DE (1) DE102006056251B4 (en)
WO (1) WO2008064938A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012062263A1 (en) * 2010-09-24 2012-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for producing solid oxide fuel cells having a cathode-electrolyte-anode unit borne by a metal substrate, and use of said solid oxide fuel cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036847A1 (en) * 2008-08-07 2010-02-11 Elringklinger Ag Fuel cell unit and method for making an electrically conductive connection between an electrode and a bipolar plate
DE102008049712A1 (en) 2008-09-30 2010-04-01 Siemens Aktiengesellschaft Planar high-temperature fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1453133A1 (en) * 2003-01-21 2004-09-01 Bayerische Motoren Werke Aktiengesellschaft Sealing structure for a fuel cell or an electrolyzer, process of manufacture, and fuel cell or electrolyzer containing said sealing structure
WO2005091408A1 (en) * 2004-03-20 2005-09-29 Forschungszentrum Jülich GmbH Electrically conductive steel-ceramic connection and method for the production thereof
DE102005005116A1 (en) * 2005-02-04 2006-08-10 Forschungszentrum Jülich GmbH Interconnector for high-temperature fuel cells
DE102005014077A1 (en) * 2005-03-23 2006-10-05 Forschungszentrum Jülich GmbH Interconnenctor for high-temperature fuel cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN876896A0 (en) * 1996-03-18 1996-04-18 Ceramic Fuel Cells Limited An electrical interconnect for a planar fuel cell
ES2292313B1 (en) * 2005-09-27 2009-02-16 Ikerlan, S. Coop. SOLID OXIDE FUEL CELL WITH FERRITIC SUPPORT.
DE102005058128A1 (en) * 2005-11-30 2007-06-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. High temperature fuel cell and method of making a high temperature fuel cell
DE102006001552B8 (en) * 2006-01-06 2008-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cathode-electrolyte-anode unit for solid oxide fuel cells and process for their preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1453133A1 (en) * 2003-01-21 2004-09-01 Bayerische Motoren Werke Aktiengesellschaft Sealing structure for a fuel cell or an electrolyzer, process of manufacture, and fuel cell or electrolyzer containing said sealing structure
WO2005091408A1 (en) * 2004-03-20 2005-09-29 Forschungszentrum Jülich GmbH Electrically conductive steel-ceramic connection and method for the production thereof
DE102005005116A1 (en) * 2005-02-04 2006-08-10 Forschungszentrum Jülich GmbH Interconnector for high-temperature fuel cells
DE102005014077A1 (en) * 2005-03-23 2006-10-05 Forschungszentrum Jülich GmbH Interconnenctor for high-temperature fuel cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHALIK M ET AL: "Effect of component thickness on lifetime and oxidation rate of chromia forming ferritic steels in low and high pO2 environments", MATERIALS AT HIGH TEMPERATURES, BUTTERWORTH HEINEMANN, GUILDFORD, GB, vol. 22, no. 3-4, 2005, pages 213 - 221, XP008083919, ISSN: 0960-3409 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012062263A1 (en) * 2010-09-24 2012-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for producing solid oxide fuel cells having a cathode-electrolyte-anode unit borne by a metal substrate, and use of said solid oxide fuel cells

Also Published As

Publication number Publication date
DE102006056251A1 (en) 2008-05-29
DE102006056251B4 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
KR102256568B1 (en) Metal supported solid oxide fuel cell
EP2036152B1 (en) Ceramic material combination for an anode of a high-temperature fuel cell
KR101006420B1 (en) Cell for solid oxide fuel cell and method for manufacturing same
KR20160048810A (en) Process for forming a metal supported solid oxide fuel cell
JP2016533017A5 (en)
KR20090023252A (en) Metal supported solid oxide fuel cell
DE112012001479T5 (en) fuel cell
EP2245692B1 (en) Electrolyte for cost-effective, electrolyte-supported high-temperature fuel cell having high performance and high mechanical strength
EP1915793B1 (en) Protection for anode-supported high-temperature fuel cells against reoxidation of the anode
EP1806805B1 (en) Cathode electrolyte anode unit for solid oxide fuel cells and method for their production
EP2619834B1 (en) Method for producing solid oxide fuel cells having a cathode-electrolyte-anode unit borne by a metal substrate, and use of said solid oxide fuel cells
JP5288686B2 (en) Conductive sintered body for fuel cell, fuel cell, fuel cell
DE102006056251B4 (en) High temperature fuel cell with ferritic component and method of operating the same
DE19836132B4 (en) High temperature solid electrolyte fuel cell (SOFC) for a wide operating temperature range
EP2156499B1 (en) Method for producing a gas-tight solid electrolyte layer and solid electrolyte layer
EP2669984B1 (en) Layered anode system for electrochemical applications and process of manufacturing the same
EP2335314B1 (en) Planar high-temperature fuel cell
WO2010037670A1 (en) Tubular high-temperature fuel cell, method for the manufacture thereof and fuel cell system comprising the same
WO2008119321A1 (en) Layer system for an electrolyte of a high-temperature fuel cell, and method for producing same
EP3697944B1 (en) Fuel gas electrode and method for producing a fuel gas electrode
DE10339613A1 (en) Solid oxide fuel cell and process for its preparation
DE102004050087B4 (en) SOFC fuel cell anode, process for its production and SOFC fuel cell
DE102012217309A1 (en) Laminate used for battery cell, has oxygen-ion conductive solid electrolyte layer, oxygen ion and electron conducting transfer layer having needle- or hill-like structure and storage electrode layer
Satardekar Materials Development for the Fabrication of Metal-Supported Solid Oxide Fuel Cells by Co-sintering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07820447

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07820447

Country of ref document: EP

Kind code of ref document: A1