WO2008062839A1 - Fluid machine - Google Patents

Fluid machine Download PDF

Info

Publication number
WO2008062839A1
WO2008062839A1 PCT/JP2007/072576 JP2007072576W WO2008062839A1 WO 2008062839 A1 WO2008062839 A1 WO 2008062839A1 JP 2007072576 W JP2007072576 W JP 2007072576W WO 2008062839 A1 WO2008062839 A1 WO 2008062839A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
fluid machine
expansion mechanism
refrigerant
side mounting
Prior art date
Application number
PCT/JP2007/072576
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Kumakura
Katsumi Sakitani
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to ES07832306.0T priority Critical patent/ES2536770T3/en
Priority to EP07832306.0A priority patent/EP2098730B1/en
Publication of WO2008062839A1 publication Critical patent/WO2008062839A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • F04C11/003Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/32Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members
    • F01C1/322Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F01C1/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods

Definitions

  • the present invention relates to a fluid machine housed in a casing having a compression mechanism and an expansion mechanism.
  • a fluid machine in which an expansion mechanism, an electric motor, and a compression mechanism are connected by a single rotating shaft is known.
  • power is generated in the expansion mechanism by expansion of the introduced fluid.
  • the power generated by the expansion mechanism is transmitted to the compression mechanism by the rotating shaft together with the power generated by the electric motor.
  • the compression mechanism is driven by the power transmitted from the expansion mechanism and the electric motor, and sucks and compresses the fluid.
  • the expansion mechanism is heated by the fluid discharged from the high-temperature compressor.
  • the temperature of discharged hot water decreases due to a decrease in discharge gas temperature.
  • the blowing temperature during heating decreases and the capacity decreases during cooling.
  • the power recovery effect is offset by internal heat loss.
  • Patent Document 1 discloses a technique of attaching a heat insulating material to the expansion mechanism side.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-106064
  • the present invention has been made in view of the force and the point, and the object of the present invention is compression.
  • the object of the present invention is compression.
  • heat exchange between the expansion mechanism or the compression mechanism and the casing can be prevented by devising the compression mechanism or the fixing structure of the expansion mechanism.
  • the compression mechanism (50) or the expansion mechanism (60) is fixed to the casing (31) via the mounting plate (101).
  • the first invention is directed to a fluid machine provided in a refrigerant circuit (20) that performs a refrigeration cycle by circulating refrigerant.
  • the fluid machine includes a casing (31), a compression mechanism (50) accommodated in the casing (31) and compresses the refrigerant, and an expander accommodated in the casing (31) and expands the refrigerant.
  • the refrigerant compressed by the compression mechanism (50) of the fluid machine (30) provided in the refrigerant circuit (20) is radiated by the heat exchanger for heat dissipation, and then the fluid machine (30 ) Into the expansion mechanism (60).
  • the high-pressure refrigerant that has flowed in expands.
  • the power recovered from the high-pressure refrigerant by the expansion mechanism (60) is transmitted to the compression mechanism (50) by the rotation shaft (40) and used to drive the compression mechanism (50).
  • the refrigerant expanded by the expansion mechanism (60) absorbs heat by the heat exchanger for heat absorption and then is sucked into the compression mechanism (50) of the fluid machine (30).
  • the compression mechanism (50) or the expansion mechanism (60) is firmly fixed to the casing (31), thereby preventing the casing (31) from bulging and the compression mechanism (50 ) Or excessive vibration of the expansion mechanism (60) is prevented.
  • the expansion mechanism (60) is kept at a low temperature and the compression mechanism (50) is kept at a high temperature, so that a temperature difference occurs between them.
  • the difference between the surface temperature of the compression mechanism (50) and the temperature of the casing (31) near this compression mechanism (50), the surface temperature of the expansion mechanism (60) and the temperature of this expansion mechanism (60) casing (31) The compression mechanism (50) or expansion mechanism (60) side with a large temperature difference is fixed to the casing (31) with the mounting plate (101).
  • the mounting plate (101) have a high thermal resistance, heat exchange between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is achieved. Decrease.
  • the casing (31) has a cylindrical container shape, the mounting plate (101) is formed in an annular shape, and the compressor on the inner peripheral side.
  • the part (105) protrudes radially outward, and a predetermined plate outer peripheral gap (108) is formed between the casing side mounting part (105) and the inner surface of the casing (31).
  • the part (104) and the casing side attachment part (105) are arranged shifted in the circumferential direction!
  • the joint (67) between the mounting plate (101) and the casing (31) is limited to the casing side mounting portion (105) by providing the plate outer peripheral gap (108).
  • the heat transfer area is smaller than when the casing (31) is joined all around.
  • the mechanism-side mounting portion (104) and the casing-side mounting portion (105) in the circumferential direction, the heat transfer path can be reduced compared to when both mounting portions are provided at the same position in the circumferential direction.
  • the refrigerant is directly introduced into the compressor mechanism (50) from the refrigerant circuit (20), and the refrigerant compressed by the compression mechanism (50) is compressed into the casing ( 31) It is configured to be discharged into the inner space (49) in the inner space (49) and to flow out of the casing (31) from the inner space (49), and the expansion mechanism (60) is interposed via the mounting plate (101). It is fixed to the casing (31).
  • the casing (31) is a so-called high-pressure dome type fluid machine in which high temperature and high pressure are maintained.
  • the low temperature expansion mechanism (60) which has a significant temperature difference from the atmosphere in the casing (31), is fixed to the casing (31) via the mounting plate (101), so that the mounting plate (101) The heat transfer reduction effect of the Heat input due to heat conduction from the sink (31) to the low temperature expansion mechanism (60) is reduced.
  • the refrigerant is directly introduced from the refrigerant circuit (20) into the compressor structure (50), and the compressed refrigerant is directly discharged out of the casing (31).
  • the compression mechanism (50) is fixed to the casing (31) via the mounting plate (101).
  • the casing (31) is a so-called low-pressure dome type fluid machine that is maintained at a low temperature and a low pressure.
  • the temperature difference with the atmosphere in the casing (31) is severe, and the high-temperature compression mechanism (50) is fixed to the low-temperature casing (31) via the mounting plate (101).
  • the heat transfer reduction effect of 101) reduces heat input due to heat conduction from the high-temperature compression mechanism (50) to the low-temperature casing (31).
  • the mechanism-side mounting portion (104) is provided with the expansion mechanism.
  • the surface temperature is higher than the periphery of (60)! /, And the portion is arranged to connect the portion having a lower surface temperature than the periphery of the casing (31) in the vicinity of the expansion mechanism (60)! / RU
  • the mechanism-side mounting portion (104) at one end of the heat transfer path in the mounting plate (101) has the surface temperature of the expansion mechanism (60) and the case near the expansion mechanism (60). Since it is arranged so that the difference between the surface temperature and the single singe (31) is small, the temperature difference between the mechanism side mounting part (104) and the casing side mounting part (105) is reduced, and Heat input from the casing (31) side to the low temperature expansion mechanism (60) side is reduced. For this reason, heat exchange by heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
  • a sixth invention is the third invention, wherein the casing-side mounting portion (105) has a surface temperature higher than that of the periphery of the expansion mechanism (60), the portion and the expansion mechanism (60 ) The surface temperature is lower than that of the vicinity of the casing (31) in the vicinity.
  • the casing side mounting portion (105) at one end of the heat transfer path in the mounting plate (101) has the surface temperature of the expansion mechanism (60) and the casing in the vicinity of the expansion mechanism (60). (31), the temperature difference between the mechanism side mounting part (104) and the casing side mounting part (105) is reduced, so that the difference between the surface temperature and the surface temperature is small. Low heat input from the (31) side to the low temperature expansion mechanism (60) side. Because of this, expansion Heat exchange due to heat conduction between the low-temperature refrigerant in the mechanism (60) and the high-temperature refrigerant in the compression mechanism (50) is reduced.
  • a seventh invention is the invention according to any one of the second to sixth inventions, wherein the mounting plate (101) is provided between the mechanism side mounting portion (104) and the casing side mounting portion (105).
  • the circumferential sectional area of the casing is smaller than the circumferential sectional area of the casing-side mounting portion (105).
  • the mounting plate (101) has a sheet metal structure.
  • the mounting plate (101) is a sheet metal structure formed of a thin plate, the heat transfer area of the heat transfer path is reduced, so that the compression mechanism (50) or the expansion mechanism (60) And heat exchange between the casing and the casing (31) is reduced. For this reason, heat exchange by heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
  • the mounting plate (101) includes a plurality of through holes (106, 107).
  • a tenth invention is the invention according to any one of the second to ninth inventions, provided in the internal space of the casing (31), and the casing in the compression mechanism (50) or the expansion mechanism (60).
  • a heat insulating material (90, 96) is provided which covers the entire exposed surface in the shing (31) and through which the rotating shaft (40) passes. [0030] According to the above configuration, since the heat insulating material (90, 96) covers the entire exposed surface in the casing (31) of the compression mechanism (50) or the expansion mechanism (60), the casing (31 ) And the heat exchange between the compression mechanism (50) or the expansion mechanism (60) covered with the heat insulating material (90, 96) is prevented.
  • the heat insulating material (90, 96) is a first heat insulating material in the axial direction of the rotating shaft (40) with the mounting plate (101) as a boundary. (90) and second insulation (96).
  • the compression mechanism (50) or the expansion mechanism (60) causes the heat insulation (90, 96) fixed to the casing (31) by the mounting plate (101) to be the first heat insulation.
  • the heat insulating material (90, 96) can be easily assembled.
  • the heat insulating material (90, 96) is also provided in the plate outer peripheral gap (108).
  • the mounting plate (101) is also covered with the heat insulating material (90, 96), heat exchange between the refrigerant and the mounting plate (101) is prevented. Heat exchange between the mechanism (50) or expansion mechanism (60) and the casing (31) is reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
  • any one of the second to twelfth forces described above, the mechanism side mounting portion (104) and the mechanism side of the compression mechanism (50) or the expansion mechanism (60) in one aspect At least one of the attachment part (104) and the joint part (67) to be joined is formed in a protruding shape in order to reduce the contact area.
  • the mounting plate (101) and the compression mechanism (50) or the expansion mechanism (60) are compared to the case where the mechanism-side mounting portion (104) and the joint portion (67) are joined over the entire surface. Since the heat transfer area of the heat transfer path between the compression mechanism (50) and the expansion mechanism (60) and the casing (31) is reduced. For this reason, heat exchange by heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
  • a heat insulating spacer (110) made of a heat insulating material is disposed between the attachment portion (104) and the joint portion (67) to be joined.
  • the mounting plate (101) is provided by disposing a small heat transfer coefficient and a heat insulating spacer (110) between the mechanism side mounting portion (104) and the joint portion (67). ) And the compression mechanism (50) or the expansion mechanism (60), the heat resistance between the compression mechanism (50) or the expansion mechanism (60) and the casing (31) is increased. Reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
  • the refrigerant circuit (20) performs a supercritical refrigeration cycle using carbon dioxide as a refrigerant.
  • carbon dioxide as a refrigerant circulates in the refrigerant circuit (20) to which the fluid machine (30) is connected.
  • the compression mechanism (50) of the fluid machine (30) compresses and discharges the sucked refrigerant to a level equal to or higher than the critical pressure.
  • the expansion mechanism (60) of the fluid machine (30) is expanded by introducing a high-pressure refrigerant equal to or higher than the critical pressure.
  • the force S can be used to prevent a decrease in capacity and power recovery effect.
  • the predetermined plate outer peripheral gap (108) is formed between the casing side mounting portion (105) protruding from the mounting plate (101) and the casing (31),
  • the joint area between the mounting plate (101) and the casing (31) is reduced to reduce the heat transfer area, and the mechanism side mounting part (104) of the annular mounting plate (101) and the casing side mounting part (105) is shifted in the circumferential direction to lengthen the heat transfer path.
  • the temperature difference from the atmosphere in the casing (31) is severe, and the low-temperature expansion mechanism (60) is interposed via the mounting plate (101).
  • the heat exchange by heat conduction between the hot casing (31) and the low temperature expansion mechanism (60) is reduced by fixing to the casing (31). Can be prevented.
  • the temperature difference from the atmosphere in the casing (31) is severe, and the high-temperature compression mechanism (50) is interposed via the mounting plate (101).
  • the heat exchange due to heat conduction between the low-temperature casing (31) and the high-temperature expansion mechanism (60) fixed to the low-temperature casing (31) is further reduced. A decrease in the effect can be prevented.
  • the mechanism-side mounting portion (104) is arranged so as to reduce the difference between the surface temperature of the expansion mechanism (60) and the surface temperature of the casing (31) in the vicinity thereof.
  • the power S can be used to prevent further decline in capacity and power recovery effect.
  • the casing side mounting portion (105) is arranged so as to reduce the difference between the surface temperature of the expansion mechanism (60) and the surface temperature of the casing (31) in the vicinity thereof. By reducing the heat input from the high temperature side to the low temperature side, it is possible to prevent further reduction in capacity and power recovery effect.
  • the heat transfer area of the heat transfer path is reduced by reducing the circumferential cross-sectional area of the mounting plate (101) to reduce the compression mechanism (50) or the expansion mechanism (60).
  • the heat transfer with the casing (31) it is possible to prevent further reduction in capacity and power recovery effect.
  • the mounting plate (101) is a sheet metal structure constituted by a thin plate, and the heat transfer area of the heat transfer path is reduced, so that the compression mechanism (50) or the expansion mechanism (60) is connected to the casing.
  • a plurality of through holes (106, 107) are provided in the mounting plate (101) to reduce the heat transfer area of the heat transfer path, and the compression mechanism (50) or the expansion mechanism ( By reducing the heat exchange between 60) and the casing (31), it is possible to prevent further reduction in capacity and power recovery effect.
  • the casing (31) Prevents heat exchange between the internal space of the compressor and the compression mechanism (50) or expansion mechanism (60) covered with heat insulation material (90, 96)! Can be prevented.
  • the heat insulating material (90, 96) is divided in the axial direction of the rotating shaft (40) with the mounting plate (101) as a boundary, so that the set of heat insulating materials (90, 96) is obtained. It is easy to attach, and the manufacturing cost can be reduced.
  • the plate outer circumferential gap (108) is also provided with the heat insulating material (90, 96) to prevent heat exchange with the refrigerant, and the compression mechanism (50) or the expansion mechanism ( By reducing the heat exchange between 60) and the casing (31), it is possible to prevent further reduction in capacity and power recovery effect.
  • At least one of the mechanism-side attachment portion (104) and the joint portion (67) of the compression mechanism (50) or the expansion mechanism (60) is projected to increase the contact area.
  • the heat insulating spacer made of a heat insulating material is provided between the mechanism side mounting portion (104) and the joint portion (67) of the compression mechanism (50) or the expansion mechanism (60).
  • (110) is arranged to increase the thermal resistance between the mounting plate (101) and the compression mechanism (50) or the expansion mechanism (60), so that the compression mechanism (50) or the expansion mechanism (60) and the casing (31 ), It is possible to prevent further reduction in capacity and power recovery effect.
  • FIG. 1 is a piping system diagram showing a configuration of a refrigerant circuit according to a first embodiment.
  • FIG. 2 is a longitudinal sectional view showing a schematic configuration of a compression / expansion unit according to Embodiment 1.
  • FIG. 3 is a longitudinal sectional view showing an expansion mechanism and a heat insulating material according to Embodiment 1.
  • 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of the V-V spring in FIG.
  • FIG. 6 is a cross-sectional view taken along line VI—VI in FIG.
  • FIG. 7] is an enlarged view showing the main part of the expansion mechanism of the first embodiment.
  • FIG. 8 A schematic cross-sectional view of the expansion mechanism showing the state of the expansion mechanism of Embodiment 1 for each rotation angle of the shaft of 90 °.
  • FIG. 4 is a diagram corresponding to FIG. 4 according to Modification 1 of Embodiment 1.
  • FIG. 10 is a cross-sectional view taken along the line XX of FIG.
  • FIG. 4 is a diagram corresponding to FIG. 4 according to Modification 2 of Embodiment 1.
  • FIG. 6 is a diagram corresponding to FIG. 6 according to Modification 3 of Embodiment 1.
  • This embodiment is a book An air conditioner including a compression / expansion unit that is a fluid machine according to the invention.
  • the air conditioner (10) of the present embodiment includes a refrigerant circuit (20).
  • the refrigerant circuit (20) includes a compression / expansion unit (30), an outdoor heat exchanger (23), an indoor heat exchanger (24), a first four-way selector valve (21), and a second A four-way selector valve (22) is connected.
  • the refrigerant circuit (20) is filled with carbon dioxide (CO 2) as a refrigerant.
  • the compression / expansion unit (30) includes a casing (31) formed in a vertically long cylindrical sealed container shape.
  • the casing (31) houses a compression mechanism (50), an expansion mechanism (60), and an electric motor (45).
  • the compression mechanism (50), the electric motor (45), and the expansion mechanism (60) are arranged in order from the bottom to the top. Details of the compression / expansion unit (30) will be described later.
  • the compression mechanism (50) has its discharge side (discharge pipe (37)) connected to the first port of the first four-way switching valve (21).
  • the suction side (suction pipe (36)) is connected to the fourth port of the first four-way selector valve (21).
  • the expansion mechanism (60) has its outflow side (outflow pipe (39)) connected to the first port of the second four-way switching valve (22) and its inflow side (inflow pipe (38)) connected to the second 4th switching valve (22). Each is connected to the fourth port of the path switching valve (22).
  • the outdoor heat exchanger (23) has one end connected to the second port of the second four-way switching valve (22) and the other end connected to the first four-way switching valve. Each is connected to the third port of (21).
  • the indoor heat exchanger (24) has one end connected to the second port of the first four-way selector valve (21) and the other end connected to the third port of the second four-way selector valve (22). It is connected.
  • the first four-way switching valve (21) and the second four-way switching valve (22) are connected to the first port and the second port, respectively, and the third port and the fourth port, respectively. Are connected to each other (shown by a solid line in FIG. 1), the first port is connected to the third port, and the second port is connected to the fourth port (shown by a broken line in FIG. 1). To the state shown in FIG. 1,
  • the compression / expansion unit (30) includes a casing (31) which is a vertically long and cylindrical sealed container. Inside this casing (31), from bottom to top In addition, a compression mechanism (50), an electric motor (45), and an expansion mechanism (60) are arranged. In addition, refrigeration oil, which is lubricating oil, is stored at the bottom of the casing (31). In other words, refrigeration oil is stored near the compression mechanism (50) inside the casing (31)!
  • the internal space of the casing (31) is partitioned vertically by a first heat insulating material (90), which will be described later, provided below the front head (61) of the expansion mechanism (60), and the upper space is the first space.
  • the space (48) and the lower space constitute the second space (49), respectively.
  • An expansion mechanism (60) is disposed in the first space (48), and a compression mechanism (50) and an electric motor (45) are disposed in the second space (49).
  • a discharge pipe (37) is attached to the casing (31).
  • the discharge pipe (37) is disposed between the electric motor (45) and the expansion mechanism (60), and communicates with the second space (49) in the casing (31). Further, the discharge pipe (37) is formed in a comparatively short straight tube and is installed in a substantially horizontal posture.
  • the electric motor (45) is arranged at the center of the casing (31) in the longitudinal direction.
  • the electric motor (45) includes a stator (46) and a rotor (47).
  • the stator (46) is fixed to the casing (31) by shrink fitting or the like.
  • the rotor (47) is disposed inside the stator (46).
  • the main shaft portion (44) of the rotating shaft (40) passes through the rotor (47) coaxially with the rotor (47).
  • the rotating shaft (40) constitutes a rotating shaft.
  • two lower eccentric portions (58, 59) are formed on the lower end side, and two large diameter eccentric portions (41, 42) are formed on the upper end side.
  • the rotating shaft (40) has a lower end portion formed with the lower eccentric portion (58, 59) at the compressor mechanism (50) and an upper end portion formed with the large diameter eccentric portion (41, 42) at the expansion mechanism ( 60) are engaged.
  • the two lower eccentric portions (58, 59) are formed to have a larger diameter than the main shaft portion (44), the lower one being the first lower eccentric portion (58) and the upper one being the first. 2 Configure the lower eccentric part (59). In the first lower eccentric portion (58) and the second lower eccentric portion (59), the eccentric directions of the main shaft portion (44) with respect to the axial center are reversed.
  • the two large-diameter eccentric parts (41, 42) are formed with a larger diameter than the main shaft part (44), and the lower one constitutes the first large-diameter eccentric part (41) and the upper one Constitutes the second large-diameter eccentric part (42)!
  • the first large-diameter eccentric part (41) and the second large-diameter eccentric part (42) are both eccentric in the same direction.
  • First 2 The outer diameter of the large-diameter eccentric part (42) is larger than the outer diameter of the first large-diameter eccentric part (41). Also, the amount of eccentricity of the main shaft portion (44) with respect to the shaft center is such that the second large diameter eccentric portion (42) is larger than the first large diameter eccentric portion (41)!
  • an oil supply passage is formed in the rotating shaft (40).
  • the oil supply passage extends along the rotating shaft (40), and its starting end opens at the lower end of the rotating shaft (40) and its terminal end opens above the rotating shaft (40).
  • Refrigerating machine oil is supplied to the compression mechanism (50) and the expansion mechanism (60) from this oil supply passage.
  • the refrigerating machine oil supplied to the expansion mechanism (60) is minimized, and the refrigerating machine oil lubricated with the expansion mechanism (60) does not flow out into the first space (48) but flows into the outflow pipe ( 39) Power is discharged.
  • the compression mechanism (50) constitutes a so-called oscillating piston type rotary compressor.
  • the compression mechanism (50) includes two cylinders (51, 52) and two pistons (57).
  • the rear head (55), the first cylinder (51), the intermediate plate (56), the second cylinder (52), the front head ( 54) are stacked.
  • One cylindrical piston (57) is disposed inside each of the first and second cylinders (51, 52). Although not shown, a flat blade is projected on the side surface of the piston (57), and this blade is supported by the cylinders (51, 52) via a swing bush.
  • the piston (57) in the first cylinder (51) engages with the first lower eccentric part (58) of the rotating shaft (40).
  • the piston (57) in the second cylinder (52) engages with the second lower eccentric portion (59) of the rotating shaft (40).
  • Each piston (57, 57) has its inner peripheral surface in sliding contact with the outer peripheral surface of the lower eccentric portion (58, 59), and its outer peripheral surface is in sliding contact with the inner peripheral surface of the cylinder (51, 52).
  • a compression chamber (53) is formed between the outer peripheral surface of the piston (57, 57) and the inner peripheral surface of the cylinder (51, 52).
  • One suction port (32) is formed in each of the first and second cylinders (51, 52). Each suction port (32) penetrates the cylinder (51, 52) in the radial direction, and the end thereof opens to the inner peripheral surface of the cylinder (51, 52). Each suction port (32) is extended outside the casing (31) by a suction pipe (36).
  • One discharge port is formed in each of the front head (54) and the rear head (55).
  • the discharge port of the front head (54) connects the compression chamber (53) in the second cylinder (52). Communicate with the second space (49).
  • the discharge port of the rear head (55) allows the compression chamber (53) in the first cylinder (51) to communicate with the second space (49).
  • Each discharge port is provided with a discharge valve serving as a reed valve at its end, and is opened and closed by this discharge valve. In FIG. 2, the discharge port and the discharge valve are not shown.
  • the gas refrigerant discharged from the compression mechanism (50) into the second space (49) is sent out from the compression / expansion unit (30) through the discharge pipe (37).
  • the expansion mechanism (60) is a so-called oscillating piston type rotary expander.
  • the expansion mechanism (60) is provided with two pairs of cylinders (71, 81) and pistons (75, 85) which are paired.
  • the expansion mechanism (60) includes a front head (61), an intermediate plate (63), and a rear head (62).
  • the front head (61), the first cylinder (71), the intermediate plate (63), the second cylinder (81), and the rear head (62) are stacked in this order from bottom to top. It is in the state that was done.
  • the first cylinder (71) has its lower end face closed by the front head (61) and its upper end face closed by the intermediate plate (63).
  • the second cylinder (81) has its lower end face closed by the intermediate plate (63) and its upper end face closed by the rear head (62).
  • the inner diameter of the second cylinder (81) is larger than the inner diameter of the first cylinder (71).
  • the expansion mechanism (60) is fixed to the inner surface of the casing (31) via the mounting plate (101).
  • the mounting plate (101) is made of a ring-shaped sheet metal structure, and is formed on the lower side of the entire circumference from the disk-shaped plate body (102) and the plate body (102). And a bent portion (103) bent approximately 90 degrees.
  • the mounting plate (101) has a mechanism side mounting portion (104) fixed to the expansion mechanism (60) on the inner peripheral side, and a casing side mounting portion (105) fixed to the casing (31) on the outer peripheral side.
  • the joint portion (67) to be joined to the mechanism-side mounting portion (104) in the front head (61) of the expansion mechanism (60) is provided to protrude outward from the outer periphery of the front head (61).
  • the joint portions (67) are formed at intervals of 120 ° equally in the circumferential direction at three locations.
  • a bolt fastening hole (68) is formed at the center of the joint (67). ing.
  • the periphery of the bolt fastening hole (68) is formed to protrude upward.
  • a bolt fastening hole (104a) is formed at the center of the mechanism side mounting portion (104).
  • the periphery of the bolt fastening hole (104a) is formed so as to protrude downward. This reduces the contact area between the mechanism side mounting portion (104) and the joint portion (67).
  • the casing side mounting portion (105) is formed so as to protrude radially outward from the outer periphery of the mounting plate (101). In the present embodiment, the three portions are equally spaced 120 ° apart in the circumferential direction.
  • the casing side mounting portion (105) is welded to the inner surface of the casing (31).
  • a predetermined plate outer peripheral gap (108) is formed between each casing side mounting portion (105) and the casing (31).
  • the mounting plate (101) includes a mechanism side mounting portion (104) and a casing side mounting portion.
  • the cross-sectional area in the circumferential direction with respect to (105) is smaller than the cross-sectional area in the circumferential direction of the casing side mounting portion (105).
  • the mounting plate (101) includes a plurality of through holes (106, 107) for reducing the cross-sectional area in the circumferential direction.
  • the mechanism side mounting portion (104) and the casing side mounting portion (105) are arranged so as to be shifted in the circumferential direction. That is, in the present embodiment, the casing side mounting portion (105) is disposed at the center position in the circumferential direction of the two mechanism side mounting portions (104).
  • the rotary shaft (40) passes through the stacked front head (61), first cylinder (71), intermediate plate (63), and second cylinder (81). A central hole penetrating the rear head (62) in the thickness direction is formed at the center of the rear head (62). The upper end of the rotating shaft (40) is inserted into the central hole of the rear head (62).
  • the rotary shaft (40) has its first large-diameter eccentric part (41) located in the first cylinder (71) and its second large-diameter eccentric part (42) in the second cylinder (81). positioned.
  • the first piston (75) is provided in the first cylinder (71), and the second piston (85) is provided in the second cylinder (81). ing.
  • the first and second pistons (75, 85) are both formed in an annular shape or a cylindrical shape.
  • the outer diameter of the first piston (75) and the outer diameter of the second piston (85) are equal to each other.
  • the inner diameter of the first piston (75) is approximately equal to the outer diameter of the first large-diameter eccentric part (41), and the inner diameter of the second piston (85) is approximately equal to the outer diameter of the second large-diameter eccentric part (42).
  • the first piston (75) has a first large diameter eccentric part (4 1)
  • the second large diameter eccentric part (42) penetrates the force S and the second piston (85).
  • the first piston (75) has an outer peripheral surface on the inner peripheral surface of the first cylinder (71), one end surface force S on the front head (61), and the other end surface on the intermediate plate (63). Each is in sliding contact.
  • a first expansion chamber (72) is formed in the first cylinder (71) between the inner peripheral surface thereof and the outer peripheral surface of the first piston (75).
  • the second piston (85) has an outer peripheral surface on the inner peripheral surface of the second cylinder (81), one end surface on the rear head (62), and the other end surface on the intermediate plate (63). It is in sliding contact.
  • a second expansion chamber (82) is formed in the second cylinder (81) between its inner peripheral surface and the outer peripheral surface of the second piston (85).
  • Each of the first and second pistons (75, 85) is integrally provided with one blade (76, 86).
  • the blades (76, 86) are formed in a plate shape extending in the radial direction of the piston (75, 85), and project outward from the outer peripheral surface of the piston (75, 85).
  • the blade (76) of 5) is inserted into the bush hole (78) of the first cylinder (71), and the blade (86) of the second piston (85) is inserted into the bush hole (88) of the second cylinder (81).
  • the bush holes (78, 88) of the cylinders (71, 81) penetrate the cylinders (71, 81) in the thickness direction, and open to the inner peripheral surface of the cylinders (71, 81).
  • These bush holes (78, 88) constitute through holes (10 6, 107).
  • Each cylinder (71, 81) is provided with a pair of force pairs of bushes (77, 87).
  • Each bush (77, 87) is a small piece formed such that the inner surface is a flat surface and the outer surface is a circular arc surface.
  • the pair of bushes (77, 87) are inserted into the bush holes (78, 88) and sandwich the blades (76, 86).
  • Each bush (77, 87) has its inner surface sliding with the blade (76, 86) and its outer surface with the cylinder (71, 81).
  • the blades (76, 86) integral with the piston (75, 85) are supported by the cylinders (71, 81) via the bushes (77, 87), and rotate with respect to the cylinders (71, 81). It is free to move forward and backward.
  • the first expansion chamber (72) in the first cylinder (71) has a first blade (7) integrated with the first piston (75).
  • the left side of the first blade (76) in FIGS. 7 and 8 is the first high pressure chamber (73) on the high pressure side, and the right side is the first low pressure chamber (74) on the low pressure side.
  • the second expansion chamber (82) in the second cylinder (81) is partitioned by a second blade (86) integral with the second piston (85). 7 and 8, the left side of the second blade (86) is the high pressure side second high pressure chamber (83), and the right side is the low pressure side second low pressure chamber (84).
  • the first cylinder (71) and the second cylinder (81) are arranged in a posture in which the positions of the bushes (77, 87) in the respective circumferential directions coincide.
  • the arrangement angle of the second cylinder (81) with respect to the first cylinder (71) is 0 °.
  • the first large-diameter eccentric part (41) and the second large-diameter eccentric part (42) are eccentric in the same direction with respect to the axis of the main shaft part (44). Therefore, at the same time as the first blade (76) is most retracted to the outside of the first cylinder (71), the second blade (86) is most retracted to the outside of the second cylinder (81). Become.
  • the first cylinder (71) has an inflow port (34).
  • the inflow port (34) opens at a position slightly on the left side of the bush (77) in FIGS. 7 and 8 on the inner peripheral surface of the first cylinder (71).
  • the inflow port (34) can communicate with the first high pressure chamber (73).
  • the second cylinder (81) is formed with an outflow port (35).
  • the outflow port (35) opens at a position slightly on the right side of the bush (87) in FIGS. 7 and 8 on the inner peripheral surface of the second cylinder (81).
  • Outflow port (35) can communicate with second low pressure chamber (84)
  • communication passages (93) and (64) are formed in the intermediate plate (63).
  • the communication passages (93) and (64) penetrate the intermediate plate (63) in the thickness direction.
  • one end of the communication passages (93) and (64) is opened at the right side of the first blade (76).
  • the other end of the communication passages (93) (64) is opened at the left side of the second blade (86).
  • the communication passages (93) (64) extend obliquely with respect to the thickness direction of the intermediate plate (63), and the first low pressure chamber (74) and the second high pressure chamber (83) And communicate with each other!
  • the first cylinder (71), the bush (77) provided there, the first piston (75), and the first The blade (76) constitutes the first rotary mechanism (70).
  • the second cylinder (81), the bush (87) provided there, the second piston (85), and the second blade (86) constitute the second rotary mechanism (80).
  • the inner space of the casing (31) covers the entire exposed surface in the casing (31) of the expansion mechanism (60), and the heat insulating material through which the rotating shaft (40) passes. (90, 96).
  • the heat insulating material (90, 96) is divided into the first heat insulating material (90) and the second heat insulating material (96) in the axial direction of the rotating shaft (40) with the mounting plate (101) as a boundary! .
  • the first heat insulating material (90) on the lower side extends from the periphery of the rotary shaft (40) to the inner peripheral surface of the casing (31) so as to contact the compression mechanism (50) side of the expansion mechanism (60). It is provided to cover up to.
  • the first space (48) on the low-temperature expansion mechanism (60) side where the temperature difference from the atmosphere in the casing (31) is significant, is changed from the second space (49) by the first heat insulating material (90). It is delimited.
  • the first heat insulating material (90) is a disk-shaped member having a central hole through which the rotation shaft (40) passes, and the front head ( It is provided so as to contact the lower surface of 61).
  • a minimum gap is formed between the outer peripheral surface of the rotating shaft (40) and the inner peripheral surface of the first heat insulating material (90) so as not to hinder the rotation of the rotating shaft (40).
  • the upper second heat insulating material (96) has a substantially cylindrical shape having a top plate, and is provided in the casing (31) on the side surface and the upper surface of the expansion mechanism (60). Covers the entire exposed surface. That is, the inflow pipe (38) and the outflow pipe (39) pass through the second heat insulating material (96). In addition, cover the outer periphery of the inflow pipe (38) and outflow pipe (39).
  • the heat insulating material (90, 96) is also provided in the plate outer peripheral gap (108) between the casing side mounting portion (105) and the casing (31). It has been. Specifically, the side surface of the mounting plate (101) is covered with a portion protruding from the lower surface of the second heat insulating material (96). Cover the side surface of the mounting plate (101) with the part protruding from the top surface of the first insulation (90).
  • first and second heat insulating materials are made of resin molded products! Specific materials may be special engineering plastics with high heat resistance (240-250 ° C). For example, PPS (polyphenylene sulfide), PEEK (polyetherketone), PI (polyamide) and the like.
  • air conditioner (10) The operation of the air conditioner (10) will be described.
  • air-conditioner (10) during cooling operation The operation during the heating operation will be described, followed by the operation of the expansion mechanism (60).
  • the first four-way switching valve (21) and the second four-way switching valve (22) are switched to the state shown by the broken line in FIG. In this state, when the motor (45) of the compression / expansion unit (30) is energized, the refrigerant circulates in the refrigerant circuit (20), and a vapor compression refrigeration cycle is performed.
  • the refrigerant compressed by the compression mechanism (50) is discharged from the compression / expansion unit (30) through the discharge pipe (37). In this state, the refrigerant pressure is higher than its critical pressure. This discharged refrigerant is sent to the outdoor heat exchanger (23) to radiate heat to the outdoor air.
  • the high-pressure refrigerant radiated by the outdoor heat exchanger (23) flows into the expansion mechanism (60) through the inflow pipe (38). In the expansion mechanism (60), the high-pressure refrigerant expands, and power is recovered from the high-pressure refrigerant.
  • the low-pressure refrigerant after expansion is sent to the indoor heat exchanger (24) through the outflow pipe (39).
  • the refrigerant that has flowed in absorbs heat from the room air and evaporates, thereby cooling the room air.
  • the low-pressure gas refrigerant discharged from the indoor heat exchanger (24) passes through the suction pipe (36) and is sucked into the compression mechanism (50) from the suction port (32).
  • the compression mechanism (50) compresses and discharges the sucked refrigerant.
  • the first four-way selector valve (21) and the second four-way selector valve (22) are switched to the state shown by the solid line in FIG. In this state, when the motor (45) of the compression / expansion unit (30) is energized, the refrigerant circulates in the refrigerant circuit (20), and a vapor compression refrigeration cycle is performed.
  • the refrigerant compressed by the compression mechanism (50) is discharged from the compression / expansion unit (30) through the discharge pipe (37). In this state, the refrigerant pressure is higher than its critical pressure.
  • This discharged refrigerant is sent to the indoor heat exchanger (24).
  • the indoor heat exchanger (24) the refrigerant flowing in dissipates heat to the room air, and the room air is heated.
  • the refrigerant that has dissipated heat in the indoor heat exchanger (24) flows into the expansion mechanism (60) through the inflow pipe (38). In the expansion mechanism (60), the high-pressure refrigerant expands and the high-pressure refrigerant power is recovered.
  • the expanded low-pressure refrigerant is sent to the outdoor heat exchanger (23) through the outflow pipe (39), absorbs heat from the outdoor air, and evaporates.
  • the low-pressure gas refrigerant discharged from the outdoor heat exchanger (23) is sucked into the compression mechanism (50) from the suction port (32) through the suction pipe (36).
  • the compression mechanism (50) compresses and discharges the sucked refrigerant.
  • the rotation shaft (40) When the rotation shaft (40) is slightly rotated from the state where the rotation angle is 0 °, the first low pressure chamber (74) and the second high pressure chamber (83) communicate with each other via the communication passages (93) and (64). The refrigerant begins to flow from the first low pressure chamber (74) to the second high pressure chamber (83). After that, as the rotation angle of the rotating shaft (40) gradually increases to 90 °, 180 °, 270 °, the volume of the first low pressure chamber (74) gradually decreases and the volume of the second high pressure chamber (83) decreases. The volume gradually increases, and as a result, the volume of the expansion chamber (66) gradually increases.
  • the second low pressure chamber (84) begins to communicate with the outflow port (35) when the rotation angle of the rotating shaft (40) is 0 °. That is, the refrigerant begins to flow from the second low pressure chamber (84) to the outflow port (35). After that, the rotation angle of the rotating shaft (40) gradually increased to 90 °, 180 °, 270 ° and until the rotation angle reached 360 °, the second low pressure chamber (84) The low-pressure refrigerant after expansion flows out.
  • the first heat insulating material (90) is attached from the lower side of the mounting plate (101), and the second heat insulating material (96) is attached from the upper side.
  • the heat insulating material (90, 96) is divided into the first heat insulating material (90) and the second heat insulating material (96), the heat insulating material (90, 96) can be easily assembled.
  • the internal space of the casing (31) has a first space (48) in which the expansion mechanism (60) is accommodated, and a second space (49) in which the compression mechanism (50) is accommodated.
  • the first space (48) has a low temperature and high density
  • the second space (49) has a high temperature and low density.
  • the inside of the casing (31) is a so-called high-pressure dome type fluid machine that is maintained at a high temperature and a high pressure.
  • the heat transfer path is greater than when both mounting portions are provided at the same position in the circumferential direction. Increase the length with a force S. For this reason, the thermal resistance increases, and heat exchange between the expansion mechanism (60) and the casing (31) is reduced.
  • the cross-sectional area in the circumferential direction between the mechanism side mounting portion (104) and the casing side mounting portion (105) is The heat transfer area of the heat transfer path of the mounting plate (101) is reduced by making it smaller than the cross-sectional area in the circumferential direction of the single-side mounting portion (105).
  • the mounting plate (101) has a sheet metal structure made of a thin plate, so that the heat transfer area of the heat transfer path is reduced. Further, by forming the through holes (106, 107) in the mounting plate (101), the heat transfer area of the heat transfer path is reduced.
  • the periphery of the bolt fastening hole (68) protrudes upward and is formed, and the periphery of the bolt fastening hole (104a) protrudes downward to form the mechanism side mounting part (104) and joint part.
  • the contact area with (67) is reduced. In this way, the heat transfer area of the heat transfer path between the mounting plate (101) and the expansion mechanism (60) is reduced, so heat exchange between the expansion mechanism (60) and the casing (31) is reduced. Is done.
  • Refrigerant convection is effective by dividing the first space (48) on the low-temperature expansion mechanism (60) side, which has a large temperature difference from the atmosphere in the casing (31), with the first heat insulating material (90). To be prevented.
  • the heat insulating material (90, 96) covers the entire exposed surface in the casing (31) of the expansion mechanism (60), it is covered with the internal space of the casing (31) and the heat insulating material (90, 96). Heat exchange with the broken expansion mechanism (60) is prevented. For this reason, heat exchange between the expansion mechanism (60) and the casing (31) is further reduced.
  • the mounting plate (101) is also covered with a heat insulating material (90, 96) to prevent heat exchange with the refrigerant, and between the expansion mechanism (60) and the casing (31). Heat exchange is reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
  • the low temperature expansion mechanism (60) having a large temperature difference from the atmosphere in the casing (31) is directly fixed to the casing (31). Only the mounting part (105) is fixed to the casing (31) via the mounting plate (101) welded to the casing (31), and the space between the high-temperature casing (31) and the low-temperature expansion mechanism (60) is fixed. By reducing heat exchange due to heat conduction, it is possible to prevent further decline in capacity and power recovery effect.
  • the mounting plate (101) is a sheet metal structure composed of a thin plate, a plurality of through holes (106, 107) are provided, or the mechanism side mounting portion (104) and the joint portion (67) are projected.
  • a heat insulating material (90, 96) is also provided in the plate outer peripheral gap (108) to prevent heat exchange with the refrigerant, and heat between the expansion mechanism (60) and the casing (31) is prevented. By reducing replacement, it is possible to prevent further reduction in capacity and power recovery effect.
  • the heat insulating material (90, 96) By dividing the heat insulating material (90, 96) in the axial direction of the rotating shaft (40) with the mounting plate (101) as a boundary, the heat insulating material (90, 96) can be easily assembled and the manufacturing cost can be reduced. Can be lowered.
  • the mechanism-side mounting portion (104) has a higher surface temperature than the periphery of the expansion mechanism (60) and the periphery of the casing (31) in the vicinity of the portion and the expansion mechanism (60). Alternatively, it may be arranged so as to connect with a portion having a lower surface temperature. Note that the through holes (106, 107) are omitted for simplification.
  • the surface temperature of the expansion mechanism (60) is generally distributed in the circumferential direction so as to decrease in order from A to F when viewed from the axial direction.
  • A is the suction temperature 30 ° C F is the discharge temperature 0 ° C.
  • the surface temperature of the casing (31) is distributed in the circumferential direction so as to decrease in order from A to F.
  • A is 90 ° C of the discharge temperature of the compression mechanism (50)
  • F is a low temperature (near 0 °) due to the discharge temperature of the expansion mechanism (60).
  • the casing side mounting portion (105) has a higher surface temperature than the surroundings of the expansion mechanism (60), and more than the surroundings of the casing (31) in the vicinity of the portion and the expansion mechanism (60). You may arrange
  • the casing-side mounting portion (105) should be provided avoiding the portion A having the highest surface temperature of the casing (31). ! / Since the temperature of the casing (31) is inevitably lowered between the inflow pipe (38) and the outflow pipe (39), it is preferable to provide the casing side mounting portion (105) at this position. With this configuration, the casing-side mounting portion (105) at one end of the heat transfer path in the mounting plate (101) is connected to the surface temperature of the expansion mechanism (60) and the casing ( 31), the heat input from the high temperature side to the low temperature side is reduced.
  • a heat insulating material is used between the mechanism side mounting portion (104) and the joint portion (67) joined to the mechanism side mounting portion (104) in the expansion mechanism (60).
  • a heat insulating spacer (110) may be arranged. The insulation spacer (110) is always installed near the expansion mechanism (60), which is kept at a relatively low temperature. High degree.
  • This configuration increases the thermal resistance between the mounting plate (101) and the expansion mechanism (60), so that heat exchange between the expansion mechanism (60) and the casing (31) can be achieved. Is reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced. Accordingly, it is possible to prevent a reduction in the capacity of the compression / expansion unit (30) and a reduction in the power recovery effect.
  • the present invention may be configured as follows with respect to the above embodiment.
  • the high-pressure dome type compression / expansion unit (30) is used.
  • the refrigerant circuit (20) force and the refrigerant are directly introduced into the compression mechanism (50), and the compressed refrigerant is directly discharged out of the casing (31).
  • the compression mechanism (50) is fixed to the casing (31) via a mounting plate (101) having a shape similar to that of the above embodiment and having a high thermal resistance.
  • the expansion mechanism (60) is constituted by a swinging piston type rotary expander.
  • the expansion mechanism (60) may be constituted by a rolling piston type rotary expander. Good.
  • the blades (76, 86) are formed separately from the pistons (75, 85) in each rotary mechanism (70, 80). The tip of the blade (76, 86) is pressed against the outer peripheral surface of the piston (75, 85), and moves forward and backward as the piston (75, 85) moves.
  • the compression mechanism (50) is a swinging piston type rotary compressor and the expansion mechanism (60) is a swinging piston type rotary expander. It may be a thing.
  • the thermal conductivity of the resin-based material composing the general heat insulating material (90, 96) is 0.3 w / m—k, whereas the thermal conductivity of the carbon dioxide refrigerant is in the space on the expansion mechanism (60) side.
  • the carbon dioxide refrigerant is one order lower than the resin material.
  • the heat transfer coefficient of the gas refrigerant is smaller than that of the heat insulating material (90, 96), the heat exchange is rather reduced.
  • the mechanism-side mounting portion (104) and the casing-side mounting portion (105) are provided at three locations at equal intervals in the circumferential direction, but two or four or more locations are provided. Also good. Even in this case, the mechanism-side mounting portion (104) and the casing-side mounting portion (105) are preferably arranged in a circumferential direction.
  • the first and second heat insulating materials (90, 96) are formed of high heat resistance! /, Special engineering plastic, but the temperature comparison as in the first embodiment.
  • the refrigerant temperature is 100 ° C or lower, so it may be formed of low heat resistance / general-purpose engineering plastic.
  • POM polyacetal
  • Epoxy and FRP may also be used, but FRP has the disadvantage that the thermal conductivity increases when carbon, glass fiber, or the like is contained.
  • the refrigerant is carbon dioxide, but R410A, R407C, or isobutane may be used.
  • the electric motor (4) is disposed above the compression mechanism (50) in the second space (49).
  • Placed force S may be placed under the compression mechanism (50)! /.
  • the present invention is useful for a fluid machine in which a compression mechanism and an expansion mechanism are housed in one casing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

A compression mechanism (50) for compressing a refrigerant, an expansion mechanism (60) for expanding the refrigerant, and a rotating shaft (40) for connecting the compression mechanism (50) and the expansion mechanism (60) are stored in a casing (31). The expansion mechanism (60) is fixed to the casing (31) by a mounting plate (101).

Description

明 細 書  Specification
流体機械  Fluid machinery
技術分野  Technical field
[0001] 本発明は、圧縮機構と膨張機構力 つのケーシング内に収納された流体機械に 関するものである。  [0001] The present invention relates to a fluid machine housed in a casing having a compression mechanism and an expansion mechanism.
背景技術  Background art
[0002] 従来より、膨張機構と電動機と圧縮機構とを 1本の回転軸で連結した流体機械が 知られている。この流体機械において、膨張機構では、導入された流体の膨張によ つて動力が発生する。膨張機構で発生した動力は、電動機で発生した動力と共に、 回転軸によって圧縮機構へ伝達される。そして、圧縮機構は、膨張機構及び電動機 力、ら伝達された動力によって駆動され、流体を吸入して圧縮するようになっている。  Conventionally, a fluid machine in which an expansion mechanism, an electric motor, and a compression mechanism are connected by a single rotating shaft is known. In this fluid machine, power is generated in the expansion mechanism by expansion of the introduced fluid. The power generated by the expansion mechanism is transmitted to the compression mechanism by the rotating shaft together with the power generated by the electric motor. The compression mechanism is driven by the power transmitted from the expansion mechanism and the electric motor, and sucks and compresses the fluid.
[0003] このような流体機械では、高温の圧縮機から吐出される流体によって膨張機構が 加熱される。これにより、給湯用途では、吐出ガス温度の低下により出湯温度の低下 を招く。また、空調用途では、暖房時の吹き出し温度が低下し、冷房時には能力が低 下する。膨張機構自体に関しては、内部熱損失により動力回収効果が相殺される。  In such a fluid machine, the expansion mechanism is heated by the fluid discharged from the high-temperature compressor. As a result, in hot water supply applications, the temperature of discharged hot water decreases due to a decrease in discharge gas temperature. In air-conditioning applications, the blowing temperature during heating decreases and the capacity decreases during cooling. As for the expansion mechanism itself, the power recovery effect is offset by internal heat loss.
[0004] そこで、このような能力低下や動力回収効果の低下という問題を防ぐために、例え ば、特許文献 1には、膨張機構側に断熱材を付設する技術が開示されている。 特許文献 1:特開 2005— 106064号公報  [0004] Therefore, in order to prevent such problems of reduced capacity and reduced power recovery effect, for example, Patent Document 1 discloses a technique of attaching a heat insulating material to the expansion mechanism side. Patent Document 1: Japanese Patent Laid-Open No. 2005-106064
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力、しながら、上記特許文献 1の断熱材だけでは、圧縮機構の発熱が伝達されて 高温となったケーシング側壁から、フロントヘッドを介して膨張機構に流入する固体 熱伝導による入熱を防ぐことはできない。すなわち、膨張機構、ケーシング及び両者 を固定する部材 (溶接部を含む)は、一般的に金属材料で構成されているので、熱 伝導率が高い。このため、膨張機構内部の低温冷媒と、圧縮機構内部の高温冷媒と 間で上記金属材料を介して熱伝導による熱交換が生じるという問題がある。  [0005] However, with only the heat insulating material of Patent Document 1 described above, the heat generated by the compression mechanism is transmitted and the heat is transmitted from the casing side wall, which is heated, through solid heat conduction that flows into the expansion mechanism via the front head. It cannot prevent heat. That is, since the expansion mechanism, the casing, and the members (including the welded portion) for fixing both are generally made of a metal material, the thermal conductivity is high. For this reason, there is a problem that heat exchange occurs between the low-temperature refrigerant inside the expansion mechanism and the high-temperature refrigerant inside the compression mechanism through the metal material.
[0006] 本発明は、力、かる点に鑑みてなされたものであり、その目的とするところは、圧縮 機構と膨張機構が 1つのケーシング内に収納された流体機械において、圧縮機構又 は膨張機構の固定構造に工夫を加えることにより、膨張機構又は圧縮機構とケーシ ングとの間の熱交換を防いで能力低下や動力回収効果の低下を防止することにある 課題を解決するための手段 [0006] The present invention has been made in view of the force and the point, and the object of the present invention is compression. In a fluid machine in which the mechanism and the expansion mechanism are housed in one casing, heat exchange between the expansion mechanism or the compression mechanism and the casing can be prevented by devising the compression mechanism or the fixing structure of the expansion mechanism. Means for solving the problems in preventing the decline in capacity and power recovery effect
[0007] 上記の目的を達成するために、この発明は、圧縮機構(50)又は膨張機構 (60)を マウンティングプレート(101)を介してケーシング (31)に固定した。  In order to achieve the above object, according to the present invention, the compression mechanism (50) or the expansion mechanism (60) is fixed to the casing (31) via the mounting plate (101).
[0008] 具体的には、第 1の発明は、冷媒を循環させて冷凍サイクルを行う冷媒回路(20) に設けられる流体機械を対象とする。  [0008] Specifically, the first invention is directed to a fluid machine provided in a refrigerant circuit (20) that performs a refrigeration cycle by circulating refrigerant.
[0009] 上記流体機械は、ケーシング(31)と、上記ケーシング(31)に収納されて冷媒を圧 縮する圧縮機構 (50)と、上記ケーシング (31)に収納されて冷媒を膨張させる膨張機 構 (60)と、上記ケーシング (31)に設けられて上記圧縮機構 (50)及び上記膨張機構 ( 60)を連結する回転軸(40)と、上記圧縮機構(50)又は膨張機構 (60)を上記ケーシ ング(31)に固定するためのマウンティングプレート(101)とを備えている。  [0009] The fluid machine includes a casing (31), a compression mechanism (50) accommodated in the casing (31) and compresses the refrigerant, and an expander accommodated in the casing (31) and expands the refrigerant. A structure (60), a rotary shaft (40) provided on the casing (31) and connecting the compression mechanism (50) and the expansion mechanism (60), and the compression mechanism (50) or the expansion mechanism (60) And a mounting plate (101) for fixing to the casing (31).
[0010] 上記の構成によると、冷媒回路(20)に設けた流体機械(30)の圧縮機構(50)で圧 縮された冷媒は、放熱用の熱交換器で放熱した後に流体機械 (30)の膨張機構 (60) へ流入する。膨張機構 (60)では、流入した高圧冷媒が膨張する。膨張機構 (60)で 高圧冷媒から回収された動力は、回転軸(40)によって圧縮機構(50)へ伝達され、圧 縮機構 (50)を駆動するために利用される。膨張機構 (60)で膨張した冷媒は、吸熱用 の熱交換器で吸熱した後に流体機械(30)の圧縮機構(50)へ吸入される。  [0010] According to the above configuration, the refrigerant compressed by the compression mechanism (50) of the fluid machine (30) provided in the refrigerant circuit (20) is radiated by the heat exchanger for heat dissipation, and then the fluid machine (30 ) Into the expansion mechanism (60). In the expansion mechanism (60), the high-pressure refrigerant that has flowed in expands. The power recovered from the high-pressure refrigerant by the expansion mechanism (60) is transmitted to the compression mechanism (50) by the rotation shaft (40) and used to drive the compression mechanism (50). The refrigerant expanded by the expansion mechanism (60) absorbs heat by the heat exchanger for heat absorption and then is sucked into the compression mechanism (50) of the fluid machine (30).
[0011] 上記マウンティングプレート(101)により、圧縮機構 (50)又は膨張機構 (60)が堅 固にケーシング (31)に固定されることにより、ケーシング (31)の膨らみ防止や、圧縮 機構 (50)又は膨張機構 (60)の過剰な振動が防止される。  [0011] By the mounting plate (101), the compression mechanism (50) or the expansion mechanism (60) is firmly fixed to the casing (31), thereby preventing the casing (31) from bulging and the compression mechanism (50 ) Or excessive vibration of the expansion mechanism (60) is prevented.
[0012] このとき、膨張機構 (60)は低温に保たれ、圧縮機構(50)は高温に保たれることに より、両者間に温度差が発生する。圧縮機構 (50)の表面温度とこの圧縮機構 (50)近 傍のケーシング (31)の温度との差と、膨張機構 (60)の表面温度とこの膨張機構 (60) ケーシング (31)の温度との差とを比較したときに、温度差が大きい圧縮機構(50)又 は膨張機構 (60)側をマウンティングプレート(101)でケーシング (31)に固定すること により、従来のようにケーシング (31)との温度差の大きい圧縮機構(50)又は膨張機 構 (60)とケーシング (31)とを直接固定することが防止される。このため、マウンティン グプレート(101)を熱抵抗の大きいものとすることにより、膨張機構 (60)内部の低温冷 媒と、圧縮機構 (50)内部の高温冷媒と間での熱伝導による熱交換が減少する。 [0012] At this time, the expansion mechanism (60) is kept at a low temperature and the compression mechanism (50) is kept at a high temperature, so that a temperature difference occurs between them. The difference between the surface temperature of the compression mechanism (50) and the temperature of the casing (31) near this compression mechanism (50), the surface temperature of the expansion mechanism (60) and the temperature of this expansion mechanism (60) casing (31) The compression mechanism (50) or expansion mechanism (60) side with a large temperature difference is fixed to the casing (31) with the mounting plate (101). Thus, it is possible to prevent the compression mechanism (50) or the expansion mechanism (60) and the casing (31) having a large temperature difference from the casing (31) from being fixed directly as in the prior art. For this reason, by making the mounting plate (101) have a high thermal resistance, heat exchange between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is achieved. Decrease.
[0013] 第 2の発明は、第 1の発明において、上記ケーシング (31)は、円筒容器形状を有 し、上記マウンティングプレート(101)は、円環状に形成され、内周側に上記圧縮機 構 (50)又は膨張機構 (60)を固定する機構側取付部(104)と、外周側に上記ケーシ ング(31)に固定されるケーシング側取付部(105)とを備え、上記ケーシング側取付部 (105)は半径方向外側へ突出し、各ケーシング側取付部(105)間には、上記ケーシ ング (31)内面との間に所定のプレート外周隙間(108)が形成され、上記機構側取付 部(104)とケーシング側取付部(105)とは、周方向にずらして配置されて!/、る。  [0013] In a second aspect based on the first aspect, the casing (31) has a cylindrical container shape, the mounting plate (101) is formed in an annular shape, and the compressor on the inner peripheral side. A mechanism side mounting portion (104) for fixing the structure (50) or the expansion mechanism (60), and a casing side mounting portion (105) fixed to the casing (31) on the outer peripheral side. The part (105) protrudes radially outward, and a predetermined plate outer peripheral gap (108) is formed between the casing side mounting part (105) and the inner surface of the casing (31). The part (104) and the casing side attachment part (105) are arranged shifted in the circumferential direction!
[0014] 上記の構成によると、プレート外周隙間(108)を設けたことにより、マウンティング プレート(101)とケーシング(31)との間の接合部(67)がケーシング側取付部(105)の みとなるので、全周でケーシング (31)と接合される場合に比べて伝熱面積が小さくな る。また、機構側取付部(104)とケーシング側取付部(105)とを、周方向にずらして配 置することで、両取付部を周方向の同じ位置に設ける場合に比べて伝熱経路を長く すること力 Sできる。このため、熱抵抗が大きくなり、圧縮機構(50)又は膨張機構 (60)と ケーシング(31)との間での熱交換が低減される。このため、膨張機構(60)内部の低 温冷媒と、圧縮機構 (50)内部の高温冷媒と間での熱伝導による熱交換が減少する。  [0014] According to the above configuration, the joint (67) between the mounting plate (101) and the casing (31) is limited to the casing side mounting portion (105) by providing the plate outer peripheral gap (108). As a result, the heat transfer area is smaller than when the casing (31) is joined all around. Also, by disposing the mechanism-side mounting portion (104) and the casing-side mounting portion (105) in the circumferential direction, the heat transfer path can be reduced compared to when both mounting portions are provided at the same position in the circumferential direction. The ability to lengthen S. For this reason, the thermal resistance is increased, and heat exchange between the compression mechanism (50) or the expansion mechanism (60) and the casing (31) is reduced. For this reason, heat exchange due to heat conduction between the low temperature refrigerant inside the expansion mechanism (60) and the high temperature refrigerant inside the compression mechanism (50) is reduced.
[0015] 第 3の発明は、第 2の発明において、上記冷媒回路 (20)から冷媒が直接圧縮機 構 (50)に導入され、該圧縮機構 (50)力 圧縮された冷媒が上記ケーシング (31)内 の内部空間(49)に吐出されて該内部空間(49)からケーシング(31)外へ流出するよ うに構成され、上記膨張機構 (60)は、上記マウンティングプレート(101)を介して上記 ケーシング(31)に固定されている。  [0015] In a third aspect based on the second aspect, the refrigerant is directly introduced into the compressor mechanism (50) from the refrigerant circuit (20), and the refrigerant compressed by the compression mechanism (50) is compressed into the casing ( 31) It is configured to be discharged into the inner space (49) in the inner space (49) and to flow out of the casing (31) from the inner space (49), and the expansion mechanism (60) is interposed via the mounting plate (101). It is fixed to the casing (31).
[0016] 上記の構成によると、ケーシング (31)内は高温高圧に保たれる、いわゆる高圧ド ーム型の流体機械となる。この場合、ケーシング (31)内の雰囲気との温度差の激し い、低温の膨張機構 (60)をマウンティングプレート(101)を介してケーシング (31)に 固定することで、マウンティングプレート(101)の熱伝達低減効果により、高温のケー シング (31)から低温の膨張機構 (60)への熱伝導による入熱が減少する。 [0016] According to the above configuration, the casing (31) is a so-called high-pressure dome type fluid machine in which high temperature and high pressure are maintained. In this case, the low temperature expansion mechanism (60), which has a significant temperature difference from the atmosphere in the casing (31), is fixed to the casing (31) via the mounting plate (101), so that the mounting plate (101) The heat transfer reduction effect of the Heat input due to heat conduction from the sink (31) to the low temperature expansion mechanism (60) is reduced.
[0017] 第 4の発明は、第 2の発明において、上記冷媒回路 (20)から冷媒が直接圧縮機 構(50)に導入され、圧縮された冷媒が直接ケーシング (31)外に吐出されるように構 成され、上記圧縮機構(50)は、上記マウンティングプレート(101)を介して上記ケー シング(31)に固定されている。  [0017] In a fourth aspect based on the second aspect, the refrigerant is directly introduced from the refrigerant circuit (20) into the compressor structure (50), and the compressed refrigerant is directly discharged out of the casing (31). The compression mechanism (50) is fixed to the casing (31) via the mounting plate (101).
[0018] 上記の構成によると、ケーシング (31)内は低温低圧に保たれる、いわゆる低圧ド ーム型の流体機械となる。この場合、ケーシング (31)内の雰囲気との温度差の激し い、高温の圧縮機構(50)をマウンティングプレート(101)を介して低温のケーシング( 31)に固定することで、マウンティングプレート(101)の熱伝達低減効果により、高温 の圧縮機構(50)から低温のケーシング (31)への熱伝導による入熱が減少する。  [0018] According to the above configuration, the casing (31) is a so-called low-pressure dome type fluid machine that is maintained at a low temperature and a low pressure. In this case, the temperature difference with the atmosphere in the casing (31) is severe, and the high-temperature compression mechanism (50) is fixed to the low-temperature casing (31) via the mounting plate (101). The heat transfer reduction effect of 101) reduces heat input due to heat conduction from the high-temperature compression mechanism (50) to the low-temperature casing (31).
[0019] 第 5の発明は、第 3の発明において、上記機構側取付部(104)は、上記膨張機構  [0019] In a fifth aspect based on the third aspect, the mechanism-side mounting portion (104) is provided with the expansion mechanism.
(60)の周囲よりも表面温度の高!/、部分と該膨張機構 (60)近傍の上記ケーシング (31 )の周囲よりも表面温度の低レ、部分とを結ぶように配置されて!/、る。  The surface temperature is higher than the periphery of (60)! /, And the portion is arranged to connect the portion having a lower surface temperature than the periphery of the casing (31) in the vicinity of the expansion mechanism (60)! / RU
[0020] 上記の構成によると、マウンティングプレート(101)における伝熱経路の一端にあ る機構側取付部(104)が膨張機構 (60)の表面温度と該膨張機構 (60)近傍の上記ケ 一シング (31)との表面温度との差が小さくなるように配置されているので、機構側取 付部(104)とケーシング側取付部(105)との間の温度差が小さくなり、高温のケーシ ング (31)側から低温の膨張機構 (60)側への入熱が低減する。このため、膨張機構( 60)内部の低温冷媒と、圧縮機構(50)内部の高温冷媒と間での熱伝導による熱交換 が減少する。  [0020] According to the above configuration, the mechanism-side mounting portion (104) at one end of the heat transfer path in the mounting plate (101) has the surface temperature of the expansion mechanism (60) and the case near the expansion mechanism (60). Since it is arranged so that the difference between the surface temperature and the single singe (31) is small, the temperature difference between the mechanism side mounting part (104) and the casing side mounting part (105) is reduced, and Heat input from the casing (31) side to the low temperature expansion mechanism (60) side is reduced. For this reason, heat exchange by heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
[0021] 第 6の発明は、第 3の発明において、上記ケーシング側取付部(105)は、上記膨 張機構 (60)の周囲よりも表面温度の高!/、部分と該膨張機構 (60)近傍の上記ケーシ ング(31)の周囲よりも表面温度の低レ、部分とを結ぶように配置されて!/、る。  [0021] A sixth invention is the third invention, wherein the casing-side mounting portion (105) has a surface temperature higher than that of the periphery of the expansion mechanism (60), the portion and the expansion mechanism (60 ) The surface temperature is lower than that of the vicinity of the casing (31) in the vicinity.
[0022] 上記の構成によると、マウンティングプレート(101)における伝熱経路の一端にあ るケーシング側取付部(105)が膨張機構 (60)の表面温度と該膨張機構 (60)近傍の 上記ケーシング (31)との表面温度との差が小さくなるように配置されているので、機 構側取付部(104)とケーシング側取付部(105)との間の温度差が小さくなり、高温の ケーシング (31)側から低温の膨張機構 (60)側への入熱が低減する。このため、膨張 機構 (60)内部の低温冷媒と、圧縮機構 (50)内部の高温冷媒と間での熱伝導による 熱交換が減少する。 [0022] According to the above configuration, the casing side mounting portion (105) at one end of the heat transfer path in the mounting plate (101) has the surface temperature of the expansion mechanism (60) and the casing in the vicinity of the expansion mechanism (60). (31), the temperature difference between the mechanism side mounting part (104) and the casing side mounting part (105) is reduced, so that the difference between the surface temperature and the surface temperature is small. Low heat input from the (31) side to the low temperature expansion mechanism (60) side. Because of this, expansion Heat exchange due to heat conduction between the low-temperature refrigerant in the mechanism (60) and the high-temperature refrigerant in the compression mechanism (50) is reduced.
[0023] 第 7の発明は、第 2乃至第 6のいずれか 1つの発明において、上記マウンティング プレート(101)は、上記機構側取付部(104)と上記ケーシング側取付部(105)との間 の周方向の断面積が、ケーシング側取付部(105)の周方向の断面積よりも小さくなつ ている。  [0023] A seventh invention is the invention according to any one of the second to sixth inventions, wherein the mounting plate (101) is provided between the mechanism side mounting portion (104) and the casing side mounting portion (105). The circumferential sectional area of the casing is smaller than the circumferential sectional area of the casing-side mounting portion (105).
[0024] 上記の構成によると、マウンティングプレート(101)の伝熱経路の伝熱面積が小さ くなるので、圧縮機構(50)又は膨張機構 (60)とケーシング (31)との間での熱交換が 低減される。このため、膨張機構 (60)内部の低温冷媒と、圧縮機構 (50)内部の高温 冷媒と間での熱伝導による熱交換が減少する。  [0024] According to the above configuration, since the heat transfer area of the heat transfer path of the mounting plate (101) is reduced, the heat between the compression mechanism (50) or the expansion mechanism (60) and the casing (31) is reduced. Exchange is reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
[0025] 第 8の発明は、第 2乃至第 7のいずれか 1つの発明において、上記マウンティング プレート(101)は、板金構造とする。  [0025] In an eighth invention according to any one of the second to seventh inventions, the mounting plate (101) has a sheet metal structure.
[0026] 上記の構成によると、マウンティングプレート(101)を薄板で構成される板金構造 とすることで、伝熱経路の伝熱面積が小さくなるので、圧縮機構(50)又は膨張機構( 60)とケーシング(31)との間での熱交換が低減される。このため、膨張機構(60)内部 の低温冷媒と、圧縮機構(50)内部の高温冷媒と間での熱伝導による熱交換が減少 する。  [0026] According to the above configuration, since the mounting plate (101) is a sheet metal structure formed of a thin plate, the heat transfer area of the heat transfer path is reduced, so that the compression mechanism (50) or the expansion mechanism (60) And heat exchange between the casing and the casing (31) is reduced. For this reason, heat exchange by heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
[0027] 第 9の発明は、第 2乃至第 8のいずれか 1つの発明において、上記マウンティング プレート(101)は、貫通孔(106, 107)を複数備えている。  [0027] In a ninth aspect based on any one of the second to eighth aspects, the mounting plate (101) includes a plurality of through holes (106, 107).
[0028] 上記の構成によると、マウンティングプレート(101)に貫通孔(106, 107)を形成す ることで、伝熱経路の伝熱面積が小さくなるので、圧縮機構(50)又は膨張機構 (60) とケーシング(31)との間での熱交換が低減される。このため、膨張機構(60)内部の 低温冷媒と、圧縮機構(50)内部の高温冷媒と間での熱伝導による熱交換が減少す  [0028] According to the above configuration, since the heat transfer area of the heat transfer path is reduced by forming the through holes (106, 107) in the mounting plate (101), the compression mechanism (50) or the expansion mechanism ( 60) and heat exchange between the casing (31) is reduced. For this reason, heat exchange by heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
[0029] 第 10の発明は、第 2乃至第 9のいずれか 1つの発明において、上記ケーシング(3 1)の内部空間に設けられ、上記圧縮機構 (50)又は膨張機構 (60)における上記ケー シング(31)内の露出面全体を覆い、上記回転軸(40)が貫通する断熱材(90, 96)を 備えている。 [0030] 上記の構成によると、断熱材 (90, 96)は、圧縮機構(50)又は膨張機構 (60)のケ 一シング(31)内の露出面全体を覆っているので、ケーシング(31)の内部空間と断熱 材 (90, 96)で覆われた圧縮機構 (50)又は膨張機構 (60)との間での熱交換が防止さ れる。このため、さらに圧縮機構(50)又は膨張機構 (60)とケーシング (31)との間での 熱交換が低減される。このため、膨張機構 (60)内部の低温冷媒と、圧縮機構 (50)内 部の高温冷媒と間での熱伝導による熱交換が減少する。 [0029] A tenth invention is the invention according to any one of the second to ninth inventions, provided in the internal space of the casing (31), and the casing in the compression mechanism (50) or the expansion mechanism (60). A heat insulating material (90, 96) is provided which covers the entire exposed surface in the shing (31) and through which the rotating shaft (40) passes. [0030] According to the above configuration, since the heat insulating material (90, 96) covers the entire exposed surface in the casing (31) of the compression mechanism (50) or the expansion mechanism (60), the casing (31 ) And the heat exchange between the compression mechanism (50) or the expansion mechanism (60) covered with the heat insulating material (90, 96) is prevented. For this reason, heat exchange between the compression mechanism (50) or the expansion mechanism (60) and the casing (31) is further reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant in the expansion mechanism (60) and the high-temperature refrigerant in the compression mechanism (50) is reduced.
[0031] 第 11の発明は、上記第 10の発明において、上記断熱材(90, 96)は、上記マウン ティングプレート(101)を境に上記回転軸(40)の軸方向に第 1断熱材 (90)と第 2断熱 材 (96)とに分割されている。  [0031] In an eleventh aspect based on the tenth aspect, the heat insulating material (90, 96) is a first heat insulating material in the axial direction of the rotating shaft (40) with the mounting plate (101) as a boundary. (90) and second insulation (96).
[0032] 上記の構成によると、圧縮機構(50)又は膨張機構 (60)は、マウンティングプレー ト(101)によってケーシング(31)に固定されている力 断熱材(90, 96)を第 1断熱材( 90)と第 2断熱材 (96)とに分割することで、断熱材 (90, 96)の組付が容易となる。  [0032] According to the above configuration, the compression mechanism (50) or the expansion mechanism (60) causes the heat insulation (90, 96) fixed to the casing (31) by the mounting plate (101) to be the first heat insulation. By dividing into the material (90) and the second heat insulating material (96), the heat insulating material (90, 96) can be easily assembled.
[0033] 第 12の発明は、上記第 10又は 11の発明において、上記プレート外周隙間(108) にも、上記断熱材 (90, 96)が設けられている。  [0033] In a twelfth invention according to the tenth or eleventh invention, the heat insulating material (90, 96) is also provided in the plate outer peripheral gap (108).
[0034] 上記の構成によると、マウンティングプレート(101)も断熱材 (90, 96)で覆うことに より、冷媒とマウンティングプレート(101)との間での熱交換が防止されるので、さらに 圧縮機構(50)又は膨張機構 (60)とケーシング (31)との間での熱交換が低減される。 このため、膨張機構 (60)内部の低温冷媒と、圧縮機構 (50)内部の高温冷媒と間で の熱伝導による熱交換が減少する。  [0034] According to the above configuration, since the mounting plate (101) is also covered with the heat insulating material (90, 96), heat exchange between the refrigerant and the mounting plate (101) is prevented. Heat exchange between the mechanism (50) or expansion mechanism (60) and the casing (31) is reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
[0035] 第 13の発明は、上記第 2乃至 12のいずれ力、 1つの発明において、上記機構側取 付部(104)と、上記圧縮機構 (50)又は膨張機構 (60)における該機構側取付部(104 )と接合される接合部 (67)との少なくとも一方は、接触面積を小さくするために突状に 形成されている。  [0035] In a thirteenth aspect of the present invention, any one of the second to twelfth forces described above, the mechanism side mounting portion (104) and the mechanism side of the compression mechanism (50) or the expansion mechanism (60) in one aspect At least one of the attachment part (104) and the joint part (67) to be joined is formed in a protruding shape in order to reduce the contact area.
[0036] 上記の構成によると、機構側取付部(104)と接合部(67)とを面全体で接合させる 場合に比べてマウンティングプレート(101)と圧縮機構 (50)又は膨張機構 (60)との間 の伝熱経路の伝熱面積が小さくなるので、圧縮機構(50)又は膨張機構 (60)とケーシ ング (31)との間での熱交換が低減される。このため、膨張機構 (60)内部の低温冷媒 と、圧縮機構(50)内部の高温冷媒と間での熱伝導による熱交換が減少する。 [0037] 第 14の発明は、上記第 2乃至 13のいずれ力、 1つの発明において、上記機構側取 付部(104)と、上記圧縮機構 (50)又は膨張機構 (60)における該機構側取付部(104 )と接合される接合部(67)との間には、断熱材料よりなる断熱スぺーサ(110)が配置 されている。 [0036] According to the above configuration, the mounting plate (101) and the compression mechanism (50) or the expansion mechanism (60) are compared to the case where the mechanism-side mounting portion (104) and the joint portion (67) are joined over the entire surface. Since the heat transfer area of the heat transfer path between the compression mechanism (50) and the expansion mechanism (60) and the casing (31) is reduced. For this reason, heat exchange by heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced. [0037] According to a fourteenth aspect of the present invention, in any one of the second to thirteenth aspects, in the first aspect, the mechanism side mounting portion (104) and the mechanism side of the compression mechanism (50) or the expansion mechanism (60). A heat insulating spacer (110) made of a heat insulating material is disposed between the attachment portion (104) and the joint portion (67) to be joined.
[0038] 上記の構成によると、機構側取付部(104)と接合部(67)との間に熱伝達係数の小 さレ、断熱スぺーサ(110)を配置することでマウンティングプレート(101)と圧縮機構(5 0)又は膨張機構 (60)との間の熱抵抗が大きくなるので、圧縮機構 (50)又は膨張機 構(60)とケーシング(31)との間での熱交換が低減される。このため、膨張機構(60) 内部の低温冷媒と、圧縮機構(50)内部の高温冷媒と間での熱伝導による熱交換が 減少する。  [0038] According to the above configuration, the mounting plate (101) is provided by disposing a small heat transfer coefficient and a heat insulating spacer (110) between the mechanism side mounting portion (104) and the joint portion (67). ) And the compression mechanism (50) or the expansion mechanism (60), the heat resistance between the compression mechanism (50) or the expansion mechanism (60) and the casing (31) is increased. Reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
[0039] 第 15の発明は、上記第 2乃至第 14のいずれ力、 1つの発明において、上記冷媒回 路(20)は、二酸化炭素を冷媒として超臨界冷凍サイクルを行うものとする。  [0039] According to a fifteenth aspect, in any one of the second to fourteenth aspects, in one aspect, the refrigerant circuit (20) performs a supercritical refrigeration cycle using carbon dioxide as a refrigerant.
[0040] 上記の構成によると、流体機械(30)が接続された冷媒回路(20)で冷媒としての 二酸化炭素が循環する。流体機械(30)の圧縮機構(50)は、吸入した冷媒をその臨 界圧力以上にまで圧縮して吐出する。一方、流体機械(30)の膨張機構 (60)へは、 臨界圧力以上の高圧冷媒が導入されて膨張する。  [0040] According to the above configuration, carbon dioxide as a refrigerant circulates in the refrigerant circuit (20) to which the fluid machine (30) is connected. The compression mechanism (50) of the fluid machine (30) compresses and discharges the sucked refrigerant to a level equal to or higher than the critical pressure. On the other hand, the expansion mechanism (60) of the fluid machine (30) is expanded by introducing a high-pressure refrigerant equal to or higher than the critical pressure.
発明の効果  The invention's effect
[0041] 以上説明したように、本発明によると、ケーシング (31)との温度差の大きい圧縮機 構 (50)又は膨張機構 (60)とケーシング (31)とを直接固定することなぐマウンティン グプレート(101)を介して固定して圧縮機構(50)又は膨張機構 (60)とケーシング (31 )との間の熱交換を減少させたことにより、圧縮機構(50)と膨張機構 (60)とが 1つのケ 一シング内に収納された流体機械において、能力低下や動力回収効果の低下を防 止すること力 Sでさる。  [0041] As described above, according to the present invention, the compressor plate (50) having a large temperature difference from the casing (31) or the expansion mechanism (60) and the mounting plate that does not directly fix the casing (31). (101) and the compression mechanism (50) or the expansion mechanism (60) and the expansion mechanism (60) are reduced by reducing the heat exchange between the compression mechanism (50) or the expansion mechanism (60) and the casing (31). However, in a fluid machine housed in a single casing, the force S can be used to prevent a decrease in capacity and power recovery effect.
[0042] 上記第 2の発明によると、マウンティングプレート(101)から突出させたケーシング 側取付部(105)間とケーシング (31)との間に所定のプレート外周隙間(108)を形成し て、マウンティングプレート(101)とケーシング (31)との間の接合面積を小さくして伝 熱面積を小さくすると共に、円環状のマウンティングプレート(101)の機構側取付部( 104)と、ケーシング側取付部(105)とを周方向にずらして配置して伝熱経路を長くし 、熱抵抗を大きくしたことにより、さらに能力低下や動力回収効果の低下を防止するこ と力 Sできる。 [0042] According to the second aspect of the present invention, the predetermined plate outer peripheral gap (108) is formed between the casing side mounting portion (105) protruding from the mounting plate (101) and the casing (31), The joint area between the mounting plate (101) and the casing (31) is reduced to reduce the heat transfer area, and the mechanism side mounting part (104) of the annular mounting plate (101) and the casing side mounting part (105) is shifted in the circumferential direction to lengthen the heat transfer path. By increasing the thermal resistance, it is possible to prevent further decline in capacity and power recovery effect.
[0043] 上記第 3の発明によると、高圧ドーム型の流体機械において、ケーシング (31)内 の雰囲気との温度差の激しレ、低温の膨張機構 (60)をマウンティングプレート(101)を 介してケーシング (31)に固定して高温のケーシング (31)と低温の膨張機構 (60)との 間での熱伝導による熱交換を減少させたことにより、さらに能力低下や動力回収効果 の低下を防止することができる。  [0043] According to the third invention, in the high-pressure dome type fluid machine, the temperature difference from the atmosphere in the casing (31) is severe, and the low-temperature expansion mechanism (60) is interposed via the mounting plate (101). The heat exchange by heat conduction between the hot casing (31) and the low temperature expansion mechanism (60) is reduced by fixing to the casing (31). Can be prevented.
[0044] 上記第 4の発明によると、低圧ドーム型の流体機械において、ケーシング (31)内 の雰囲気との温度差の激しレ、高温の圧縮機構(50)をマウンティングプレート(101)を 介して低温のケーシング (31)に固定して低温のケーシング(31)と高温の膨張機構 (6 0)との間での熱伝導による熱交換が減少させたことにより、さらに能力低下や動力回 収効果の低下を防止することができる。  [0044] According to the fourth aspect of the present invention, in the low-pressure dome type fluid machine, the temperature difference from the atmosphere in the casing (31) is severe, and the high-temperature compression mechanism (50) is interposed via the mounting plate (101). The heat exchange due to heat conduction between the low-temperature casing (31) and the high-temperature expansion mechanism (60) fixed to the low-temperature casing (31) is further reduced. A decrease in the effect can be prevented.
[0045] 上記第 5の発明によると、機構側取付部(104)を膨張機構 (60)の表面温度とその 近傍のケーシング (31)との表面温度との差を小さくするように配置して高温側から低 温側への入熱を低減させたことにより、さらに能力低下や動力回収効果の低下を防 止すること力 Sでさる。  [0045] According to the fifth invention, the mechanism-side mounting portion (104) is arranged so as to reduce the difference between the surface temperature of the expansion mechanism (60) and the surface temperature of the casing (31) in the vicinity thereof. By reducing the heat input from the high temperature side to the low temperature side, the power S can be used to prevent further decline in capacity and power recovery effect.
[0046] 上記第 6の発明によると、ケーシング側取付部(105)を膨張機構 (60)の表面温度 とその近傍のケーシング (31)との表面温度との差を小さくするように配置して、高温 側から低温側への入熱を低減させたことにより、さらに能力低下や動力回収効果の 低下を防止することができる。  [0046] According to the sixth aspect of the present invention, the casing side mounting portion (105) is arranged so as to reduce the difference between the surface temperature of the expansion mechanism (60) and the surface temperature of the casing (31) in the vicinity thereof. By reducing the heat input from the high temperature side to the low temperature side, it is possible to prevent further reduction in capacity and power recovery effect.
[0047] 上記第 7の発明によると、マウンティングプレート(101)における周方向の断面積 を小さくすることで伝熱経路の伝熱面積を小さくして圧縮機構 (50)又は膨張機構 (60 )とケーシング (31)との間での熱交換を低減させたことにより、さらに能力低下や動力 回収効果の低下を防止することができる。  [0047] According to the seventh invention, the heat transfer area of the heat transfer path is reduced by reducing the circumferential cross-sectional area of the mounting plate (101) to reduce the compression mechanism (50) or the expansion mechanism (60). By reducing the heat exchange with the casing (31), it is possible to prevent further reduction in capacity and power recovery effect.
[0048] 上記第 8の発明によると、マウンティングプレート(101)を薄板で構成される板金構 造として伝熱経路の伝熱面積が小さくし、圧縮機構 (50)又は膨張機構 (60)とケーシ ング (31)との間での熱交換を低減させたことにより、さらに能力低下や動力回収効果 の低下を防止することができる。 [0049] 上記第 9の発明によると、マウンティングプレート(101)に貫通孔(106, 107)を複 数設けて、伝熱経路の伝熱面積を小さくして圧縮機構 (50)又は膨張機構 (60)とケー シング (31)との間での熱交換を低減させたことにより、さらに能力低下や動力回収効 果の低下を防止することができる。 [0048] According to the eighth aspect of the invention, the mounting plate (101) is a sheet metal structure constituted by a thin plate, and the heat transfer area of the heat transfer path is reduced, so that the compression mechanism (50) or the expansion mechanism (60) is connected to the casing. By reducing the heat exchange with the ring (31), it is possible to prevent further reduction in capacity and power recovery effect. [0049] According to the ninth aspect of the present invention, a plurality of through holes (106, 107) are provided in the mounting plate (101) to reduce the heat transfer area of the heat transfer path, and the compression mechanism (50) or the expansion mechanism ( By reducing the heat exchange between 60) and the casing (31), it is possible to prevent further reduction in capacity and power recovery effect.
[0050] 上記第 10の発明によると、断熱材 (90, 96)で圧縮機構(50)又は膨張機構 (60)の ケーシング(31)内の露出面全体を覆ったことにより、ケーシング(31)の内部空間と断 熱材(90, 96)で覆われた圧縮機構(50)又は膨張機構(60)との間での熱交換を防!/、 で、能力低下や動力回収効果の低下を防止することができる。  [0050] According to the tenth aspect of the present invention, since the entire exposed surface in the casing (31) of the compression mechanism (50) or the expansion mechanism (60) is covered with the heat insulating material (90, 96), the casing (31) Prevents heat exchange between the internal space of the compressor and the compression mechanism (50) or expansion mechanism (60) covered with heat insulation material (90, 96)! Can be prevented.
[0051] 上記第 11の発明によると、断熱材(90, 96)をマウンティングプレート(101)を境に 回転軸(40)の軸方向に分割したことにより、断熱材 (90, 96)の組付が容易となり、製 造コストを低くすることができる。  [0051] According to the eleventh aspect of the present invention, the heat insulating material (90, 96) is divided in the axial direction of the rotating shaft (40) with the mounting plate (101) as a boundary, so that the set of heat insulating materials (90, 96) is obtained. It is easy to attach, and the manufacturing cost can be reduced.
[0052] 上記第 12の発明によると、プレート外周隙間(108)にも断熱材 (90, 96)を設けて 冷媒との間での熱交換を防止し、圧縮機構 (50)又は膨張機構 (60)とケーシング (31 )との間での熱交換を低減させたことにより、さらに能力低下や動力回収効果の低下 を防止すること力できる。  [0052] According to the twelfth aspect of the present invention, the plate outer circumferential gap (108) is also provided with the heat insulating material (90, 96) to prevent heat exchange with the refrigerant, and the compression mechanism (50) or the expansion mechanism ( By reducing the heat exchange between 60) and the casing (31), it is possible to prevent further reduction in capacity and power recovery effect.
[0053] 上記第 13の発明によると、機構側取付部(104)と圧縮機構 (50)又は膨張機構 (6 0)との接合部 (67)との少なくとも一方を突状にして接触面積を小さくし、圧縮機構 (5 0)又は膨張機構 (60)とケーシング (31)との間での熱交換を低減させたことにより、さ らに能力低下や動力回収効果の低下を防止することができる。  [0053] According to the thirteenth aspect of the invention, at least one of the mechanism-side attachment portion (104) and the joint portion (67) of the compression mechanism (50) or the expansion mechanism (60) is projected to increase the contact area. By reducing the size and reducing the heat exchange between the compression mechanism (50) or expansion mechanism (60) and the casing (31), it is possible to prevent further reduction in capacity and power recovery effect. it can.
[0054] 上記第 14の発明によると、機構側取付部(104)と、圧縮機構 (50)又は膨張機構( 60)との接合部(67)との間に断熱材料よりなる断熱スぺーサ(110)を配置してマウン ティングプレート(101)と圧縮機構 (50)又は膨張機構 (60)との間の熱抵抗を大きくし て圧縮機構(50)又は膨張機構 (60)とケーシング(31)との間での熱交換を低減させ たことにより、さらに能力低下や動力回収効果の低下を防止することができる。  [0054] According to the fourteenth aspect of the invention, the heat insulating spacer made of a heat insulating material is provided between the mechanism side mounting portion (104) and the joint portion (67) of the compression mechanism (50) or the expansion mechanism (60). (110) is arranged to increase the thermal resistance between the mounting plate (101) and the compression mechanism (50) or the expansion mechanism (60), so that the compression mechanism (50) or the expansion mechanism (60) and the casing (31 ), It is possible to prevent further reduction in capacity and power recovery effect.
図面の簡単な説明  Brief Description of Drawings
[0055] [図 1]実施形態 1の冷媒回路の構成を示す配管系統図である。  FIG. 1 is a piping system diagram showing a configuration of a refrigerant circuit according to a first embodiment.
[図 2]実施形態 1の圧縮 ·膨張ユニットの概略構成を示す縦断面図である。  FIG. 2 is a longitudinal sectional view showing a schematic configuration of a compression / expansion unit according to Embodiment 1.
[図 3]実施形態 1の膨張機構及び断熱材を示す縦断面図である。 [図 4]図 3の IV— IV線断面図である。 FIG. 3 is a longitudinal sectional view showing an expansion mechanism and a heat insulating material according to Embodiment 1. 4 is a cross-sectional view taken along the line IV-IV in FIG.
[図 5]図 4の V— V泉断面図である。 FIG. 5 is a cross-sectional view of the V-V spring in FIG.
[図 6]図 4の VI— VI線断面図である。 FIG. 6 is a cross-sectional view taken along line VI—VI in FIG.
園 7]実施形態 1の膨張機構の要部を示す要部拡大図である。 FIG. 7] is an enlarged view showing the main part of the expansion mechanism of the first embodiment.
園 8]実施形態 1の膨張機構の状態をシャフトの回転角 90° 毎に示した膨張機構の 概略の横断面図である。 FIG. 8] A schematic cross-sectional view of the expansion mechanism showing the state of the expansion mechanism of Embodiment 1 for each rotation angle of the shaft of 90 °.
園 9]実施形態 1の変形例 1にかかる図 4相当図である。 9] FIG. 4 is a diagram corresponding to FIG. 4 according to Modification 1 of Embodiment 1.
[図 10]図 3の X— X線断面図である。 FIG. 10 is a cross-sectional view taken along the line XX of FIG.
園 11]ケーシング内面の温度分布を示す斜視図である。 11] A perspective view showing the temperature distribution on the inner surface of the casing.
園 12]実施形態 1の変形例 2にかかる図 4相当図である。 12] FIG. 4 is a diagram corresponding to FIG. 4 according to Modification 2 of Embodiment 1.
園 13]実施形態 1の変形例 3にかかる図 6相当図である。 13] FIG. 6 is a diagram corresponding to FIG. 6 according to Modification 3 of Embodiment 1.
符号の説明 Explanation of symbols
20 冷媒回路  20 Refrigerant circuit
30 圧縮 ·膨張ユニット  30 Compression / Expansion unit
31 ケーシング  31 Casing
40 回転軸  40 axis of rotation
49 第 2空間(内部空間)  49 2nd space (internal space)
50 圧縮機構  50 Compression mechanism
60 膨張機構  60 Expansion mechanism
90 第 1断熱材  90 First insulation
96 第 2断熱材  96 Second insulation
101 マウンティングプレー  101 mounting play
104 機構側取付部  104 Mechanism side mounting
105 ケーシング側取付部  105 Casing side mounting
106, 107 貫通孔  106, 107 Through hole
108 プレート外周隙間  108 Plate outer peripheral clearance
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施形態を図面に基づいて詳細に説明する。本実施形態は、本 発明にかかる流体機械である圧縮 ·膨張ユニットを備えた空調機である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. This embodiment is a book An air conditioner including a compression / expansion unit that is a fluid machine according to the invention.
[0058] 〈空調機の全体構成〉 [0058] <Overall configuration of air conditioner>
図 1に示すように、本実施形態の空調機(10)は、冷媒回路(20)を備えている。こ の冷媒回路 (20)には、圧縮 ·膨張ユニット(30)と、室外熱交換器 (23)と、室内熱交換 器 (24)と、第 1四路切換弁(21)と、第 2四路切換弁(22)とが接続されている。また、こ の冷媒回路 (20)には、冷媒として二酸化炭素(CO )が充填されている。  As shown in FIG. 1, the air conditioner (10) of the present embodiment includes a refrigerant circuit (20). The refrigerant circuit (20) includes a compression / expansion unit (30), an outdoor heat exchanger (23), an indoor heat exchanger (24), a first four-way selector valve (21), and a second A four-way selector valve (22) is connected. The refrigerant circuit (20) is filled with carbon dioxide (CO 2) as a refrigerant.
2  2
[0059] 上記圧縮 ·膨張ユニット(30)は、縦長円筒形の密閉容器状に形成されたケーシン グ(31)を備えている。このケーシング (31)内には、圧縮機構(50)と、膨張機構 (60)と 、電動機 (45)とが収納されている。ケーシング (31)内では、圧縮機構(50)と電動機( 45)と膨張機構 (60)とが下から上に向かって順に配置されている。圧縮 ·膨張ユニット (30)の詳細については後述する。  [0059] The compression / expansion unit (30) includes a casing (31) formed in a vertically long cylindrical sealed container shape. The casing (31) houses a compression mechanism (50), an expansion mechanism (60), and an electric motor (45). In the casing (31), the compression mechanism (50), the electric motor (45), and the expansion mechanism (60) are arranged in order from the bottom to the top. Details of the compression / expansion unit (30) will be described later.
[0060] 上記冷媒回路 (20)にお!/、て、圧縮機構 (50)は、その吐出側(吐出管(37) )が第 1 四路切換弁(21)の第 1のポートに、その吸入側(吸入管(36) )が第 1四路切換弁(21 )の第 4のポートにそれぞれ接続されている。一方、膨張機構 (60)は、その流出側( 流出管(39) )が第 2四路切換弁(22)の第 1のポートに、その流入側(流入管(38) )が 第 2四路切換弁(22)の第 4のポートにそれぞれ接続されている。  [0060] In the refrigerant circuit (20), the compression mechanism (50) has its discharge side (discharge pipe (37)) connected to the first port of the first four-way switching valve (21). The suction side (suction pipe (36)) is connected to the fourth port of the first four-way selector valve (21). On the other hand, the expansion mechanism (60) has its outflow side (outflow pipe (39)) connected to the first port of the second four-way switching valve (22) and its inflow side (inflow pipe (38)) connected to the second 4th switching valve (22). Each is connected to the fourth port of the path switching valve (22).
[0061] また、上記冷媒回路 (20)において、室外熱交換器 (23)は、その一端が第 2四路 切換弁(22)の第 2のポートに、その他端が第 1四路切換弁(21)の第 3のポートにそ れぞれ接続されている。一方、室内熱交換器 (24)は、その一端が第 1四路切換弁(2 1)の第 2のポートに、その他端が第 2四路切換弁(22)の第 3のポートにそれぞれ接続 されている。  [0061] In the refrigerant circuit (20), the outdoor heat exchanger (23) has one end connected to the second port of the second four-way switching valve (22) and the other end connected to the first four-way switching valve. Each is connected to the third port of (21). On the other hand, the indoor heat exchanger (24) has one end connected to the second port of the first four-way selector valve (21) and the other end connected to the third port of the second four-way selector valve (22). It is connected.
[0062] 上記第 1四路切換弁(21)と第 2四路切換弁(22)は、それぞれ、第 1のポートと第 2 のポートとが連通し且つ第 3のポートと第 4のポートとが連通する状態(図 1に実線で 示す状態)と、第 1のポートと第 3のポートとが連通し且つ第 2のポートと第 4のポートと が連通する状態(図 1に破線で示す状態)とに切り換わるように構成されている。  [0062] The first four-way switching valve (21) and the second four-way switching valve (22) are connected to the first port and the second port, respectively, and the third port and the fourth port, respectively. Are connected to each other (shown by a solid line in FIG. 1), the first port is connected to the third port, and the second port is connected to the fourth port (shown by a broken line in FIG. 1). To the state shown in FIG.
[0063] 〈圧縮'膨張ユニットの構成〉  <Configuration of compression / expansion unit>
図 2に示すように、圧縮 ·膨張ユニット(30)は、縦長で円筒形の密閉容器であるケ 一シング(31)を備えている。このケーシング(31)の内部には、下から上に向かって順 に、圧縮機構 (50)と、電動機 (45)と、膨張機構 (60)とが配置されている。また、ケー シング (31)の底部には、潤滑油である冷凍機油が貯留されている。つまり、ケーシン グ(31)の内部では、圧縮機構(50)寄りに冷凍機油が貯留されて!/、る。 As shown in FIG. 2, the compression / expansion unit (30) includes a casing (31) which is a vertically long and cylindrical sealed container. Inside this casing (31), from bottom to top In addition, a compression mechanism (50), an electric motor (45), and an expansion mechanism (60) are arranged. In addition, refrigeration oil, which is lubricating oil, is stored at the bottom of the casing (31). In other words, refrigeration oil is stored near the compression mechanism (50) inside the casing (31)!
[0064] ケーシング(31)の内部空間は、膨張機構(60)のフロントヘッド(61)の下側に設け た後述する第 1断熱材 (90)によって上下に仕切られ、上側の空間が第 1空間(48)を 、下側の空間が第 2空間(49)をそれぞれ構成している。第 1空間(48)には膨張機構 (60)が配置され、第 2空間(49)には圧縮機構 (50)と電動機 (45)とが配置される。  [0064] The internal space of the casing (31) is partitioned vertically by a first heat insulating material (90), which will be described later, provided below the front head (61) of the expansion mechanism (60), and the upper space is the first space. The space (48) and the lower space constitute the second space (49), respectively. An expansion mechanism (60) is disposed in the first space (48), and a compression mechanism (50) and an electric motor (45) are disposed in the second space (49).
[0065] ケーシング(31)には、吐出管(37)が取り付けられている。この吐出管(37)は、電 動機 (45)と膨張機構 (60)の間に配置され、ケーシング (31)内の第 2空間(49)に連 通している。また、吐出管(37)は、比較的短い直管状に形成され、概ね水平姿勢で 設置されている。  [0065] A discharge pipe (37) is attached to the casing (31). The discharge pipe (37) is disposed between the electric motor (45) and the expansion mechanism (60), and communicates with the second space (49) in the casing (31). Further, the discharge pipe (37) is formed in a comparatively short straight tube and is installed in a substantially horizontal posture.
[0066] 電動機(45)は、ケーシング(31)の長手方向の中央部に配置されている。この電 動機(45)は、ステータ(46)とロータ(47)とにより構成されてレ、る。ステータ(46)は、焼 嵌め等によって上記ケーシング (31)に固定されている。ロータ(47)は、ステータ(46) の内側に配置されている。このロータ(47)には、該ロータ(47)と同軸に回転軸(40) の主軸部(44)が貫通して!/、る。  [0066] The electric motor (45) is arranged at the center of the casing (31) in the longitudinal direction. The electric motor (45) includes a stator (46) and a rotor (47). The stator (46) is fixed to the casing (31) by shrink fitting or the like. The rotor (47) is disposed inside the stator (46). The main shaft portion (44) of the rotating shaft (40) passes through the rotor (47) coaxially with the rotor (47).
[0067] 回転軸(40)は、回転軸を構成している。この回転軸(40)では、その下端側に 2つ の下側偏心部(58, 59)が形成され、その上端側に 2つの大径偏心部(41 , 42)が形 成されている。回転軸(40)は、下側偏心部(58, 59)の形成された下端部分が圧縮機 構 (50)に、大径偏心部 (41 , 42)の形成された上端部分が膨張機構 (60)にそれぞれ 係合している。  [0067] The rotating shaft (40) constitutes a rotating shaft. In the rotary shaft (40), two lower eccentric portions (58, 59) are formed on the lower end side, and two large diameter eccentric portions (41, 42) are formed on the upper end side. The rotating shaft (40) has a lower end portion formed with the lower eccentric portion (58, 59) at the compressor mechanism (50) and an upper end portion formed with the large diameter eccentric portion (41, 42) at the expansion mechanism ( 60) are engaged.
[0068] 2つの下側偏心部(58, 59)は、主軸部(44)よりも大径に形成され、下側のものが 第 1下側偏心部(58)を、上側のものが第 2下側偏心部(59)をそれぞれ構成してレ、る 。第 1下側偏心部(58)と第 2下側偏心部(59)とでは、主軸部(44)の軸心に対する偏 心方向が逆になつている。  [0068] The two lower eccentric portions (58, 59) are formed to have a larger diameter than the main shaft portion (44), the lower one being the first lower eccentric portion (58) and the upper one being the first. 2 Configure the lower eccentric part (59). In the first lower eccentric portion (58) and the second lower eccentric portion (59), the eccentric directions of the main shaft portion (44) with respect to the axial center are reversed.
[0069] 2つの大径偏心部(41 , 42)は、主軸部(44)よりも大径に形成され、下側のものが 第 1大径偏心部(41)を構成し、上側のものが第 2大径偏心部(42)を構成して!/、る。 第 1大径偏心部(41)と第 2大径偏心部(42)とは、何れも同じ方向へ偏心している。第 2大径偏心部(42)の外径は、第 1大径偏心部(41)の外径よりも大きくなつている。ま た、主軸部(44)の軸心に対する偏心量は、第 2大径偏心部(42)の方が第 1大径偏 心部(41)よりも大きくなつて!/、る。 [0069] The two large-diameter eccentric parts (41, 42) are formed with a larger diameter than the main shaft part (44), and the lower one constitutes the first large-diameter eccentric part (41) and the upper one Constitutes the second large-diameter eccentric part (42)! The first large-diameter eccentric part (41) and the second large-diameter eccentric part (42) are both eccentric in the same direction. First 2 The outer diameter of the large-diameter eccentric part (42) is larger than the outer diameter of the first large-diameter eccentric part (41). Also, the amount of eccentricity of the main shaft portion (44) with respect to the shaft center is such that the second large diameter eccentric portion (42) is larger than the first large diameter eccentric portion (41)!
[0070] 図示しないが、回転軸(40)には、給油通路が形成されている。給油通路は、回転 軸(40)に沿って延び、その始端が回転軸(40)の下端に、その終端が回転軸(40)の 上側にそれぞれ開口してレ、る。圧縮機構(50)及び膨張機構 (60)へは、この給油通 路から冷凍機油が供給されるようになっている。ただし、膨張機構 (60)に供給される 冷凍機油は、最小限のものとされ、膨張機構 (60)を潤滑した冷凍機油は、第 1空間( 48)内には流出せず、流出管(39)力、ら吐出されるようになっている。  [0070] Although not shown, an oil supply passage is formed in the rotating shaft (40). The oil supply passage extends along the rotating shaft (40), and its starting end opens at the lower end of the rotating shaft (40) and its terminal end opens above the rotating shaft (40). Refrigerating machine oil is supplied to the compression mechanism (50) and the expansion mechanism (60) from this oil supply passage. However, the refrigerating machine oil supplied to the expansion mechanism (60) is minimized, and the refrigerating machine oil lubricated with the expansion mechanism (60) does not flow out into the first space (48) but flows into the outflow pipe ( 39) Power is discharged.
[0071] 圧縮機構(50)は、いわゆる揺動ピストン型のロータリ式圧縮機を構成している。こ の圧縮機構(50)は、シリンダ(51 , 52)とピストン(57)を 2つずつ備えている。圧縮機 構(50)では、下から上に向力、つて順に、リアヘッド(55)と、第 1シリンダ (51)と、中間 プレート(56)と、第 2シリンダ (52)と、フロントヘッド(54)とが積層された状態となって いる。  [0071] The compression mechanism (50) constitutes a so-called oscillating piston type rotary compressor. The compression mechanism (50) includes two cylinders (51, 52) and two pistons (57). In the compressor mechanism (50), the rear head (55), the first cylinder (51), the intermediate plate (56), the second cylinder (52), the front head ( 54) are stacked.
[0072] 第 1及び第 2シリンダ (51 , 52)の内部には、円筒状のピストン (57)が 1つずつ配置 されている。図示しないが、ピストン(57)の側面には平板状のブレードが突設され、こ のブレードは揺動ブッシュを介してシリンダ (51 , 52)に支持されている。第 1シリンダ( 51)内のピストン(57)は、回転軸(40)の第 1下側偏心部(58)と係合する。一方、第 2 シリンダ(52)内のピストン (57)は、回転軸(40)の第 2下側偏心部(59)と係合する。各 ピストン(57, 57)は、その内周面が下側偏心部(58, 59)の外周面と摺接し、その外周 面がシリンダ(51 , 52)の内周面と摺接する。そして、ピストン(57, 57)の外周面とシリ ンダ (51 , 52)の内周面との間に圧縮室(53)が形成される。  [0072] One cylindrical piston (57) is disposed inside each of the first and second cylinders (51, 52). Although not shown, a flat blade is projected on the side surface of the piston (57), and this blade is supported by the cylinders (51, 52) via a swing bush. The piston (57) in the first cylinder (51) engages with the first lower eccentric part (58) of the rotating shaft (40). On the other hand, the piston (57) in the second cylinder (52) engages with the second lower eccentric portion (59) of the rotating shaft (40). Each piston (57, 57) has its inner peripheral surface in sliding contact with the outer peripheral surface of the lower eccentric portion (58, 59), and its outer peripheral surface is in sliding contact with the inner peripheral surface of the cylinder (51, 52). A compression chamber (53) is formed between the outer peripheral surface of the piston (57, 57) and the inner peripheral surface of the cylinder (51, 52).
[0073] 第 1及び第 2シリンダ (51 , 52)には、それぞれ吸入ポート(32)が 1つずつ形成され ている。各吸入ポート(32)は、シリンダ (51 , 52)を半径方向に貫通し、その終端がシ リンダ(51 , 52)の内周面に開口している。また、各吸入ポート(32)は、吸入管(36)に よってケーシング(31)の外部へ延長されている。  [0073] One suction port (32) is formed in each of the first and second cylinders (51, 52). Each suction port (32) penetrates the cylinder (51, 52) in the radial direction, and the end thereof opens to the inner peripheral surface of the cylinder (51, 52). Each suction port (32) is extended outside the casing (31) by a suction pipe (36).
[0074] フロントヘッド(54)及びリアヘッド(55)には、それぞれ吐出ポートが 1つずつ形成 されている。フロントヘッド(54)の吐出ポートは、第 2シリンダ(52)内の圧縮室(53)を 第 2空間(49)と連通させる。リアヘッド(55)の吐出ポートは、第 1シリンダ(51)内の圧 縮室(53)を第 2空間(49)と連通させる。また、各吐出ポートは、その終端にリード弁 力 なる吐出弁が設けられ、この吐出弁によって開閉される。なお、図 2において、吐 出ポート及び吐出弁の図示は省略する。そして、圧縮機構(50)から第 2空間(49) 吐出されたガス冷媒は、吐出管(37)を通って圧縮 ·膨張ユニット(30)から送り出され [0074] One discharge port is formed in each of the front head (54) and the rear head (55). The discharge port of the front head (54) connects the compression chamber (53) in the second cylinder (52). Communicate with the second space (49). The discharge port of the rear head (55) allows the compression chamber (53) in the first cylinder (51) to communicate with the second space (49). Each discharge port is provided with a discharge valve serving as a reed valve at its end, and is opened and closed by this discharge valve. In FIG. 2, the discharge port and the discharge valve are not shown. The gas refrigerant discharged from the compression mechanism (50) into the second space (49) is sent out from the compression / expansion unit (30) through the discharge pipe (37).
[0075] 図 3に拡大して示すように、膨張機構 (60)は、いわゆる揺動ピストン型のロータリ 式膨張機で構成されている。この膨張機構 (60)には、対になったシリンダ(71 , 81)及 びピストン(75, 85)が 2組設けられている。また、膨張機構(60)には、フロントヘッド(6 1)と、中間プレート(63)と、リアヘッド(62)とが設けられている。 As shown in an enlarged view in FIG. 3, the expansion mechanism (60) is a so-called oscillating piston type rotary expander. The expansion mechanism (60) is provided with two pairs of cylinders (71, 81) and pistons (75, 85) which are paired. The expansion mechanism (60) includes a front head (61), an intermediate plate (63), and a rear head (62).
[0076] 膨張機構(60)では、下から上に向かって順に、フロントヘッド(61)、第 1シリンダ( 71)、中間プレート(63)、第 2シリンダ (81)、リアヘッド(62)が積層された状態となって いる。この状態において、第 1シリンダ(71)は、その下側端面がフロントヘッド (61)に より閉塞され、その上側端面が中間プレート (63)により閉塞されている。一方、第 2シ リンダ (81)は、その下側端面が中間プレート (63)により閉塞され、その上側端面がリ アヘッド (62)により閉塞されている。また、第 2シリンダ (81)の内径は、第 1シリンダ (7 1)の内径よりも大きくなつている。  [0076] In the expansion mechanism (60), the front head (61), the first cylinder (71), the intermediate plate (63), the second cylinder (81), and the rear head (62) are stacked in this order from bottom to top. It is in the state that was done. In this state, the first cylinder (71) has its lower end face closed by the front head (61) and its upper end face closed by the intermediate plate (63). On the other hand, the second cylinder (81) has its lower end face closed by the intermediate plate (63) and its upper end face closed by the rear head (62). In addition, the inner diameter of the second cylinder (81) is larger than the inner diameter of the first cylinder (71).
[0077] 膨張機構 (60)は、マウンティングプレート(101)を介して上記ケーシング (31)内面 に固定されている。図 4及び図 5に示すように、マウンティングプレート(101)は、円環 状の板金構造のものよりなり、円盤状のプレート本体(102)と該プレート本体(102)か ら全周にわたり下側に略 90度折り曲げられた折曲部(103)とを備えている。マウンテ イングプレート(101)は、内周側に膨張機構 (60)と固定される機構側取付部(104)を 備え、外周側にケーシング(31)と固定されるケーシング側取付部(105)を備えている  [0077] The expansion mechanism (60) is fixed to the inner surface of the casing (31) via the mounting plate (101). As shown in FIGS. 4 and 5, the mounting plate (101) is made of a ring-shaped sheet metal structure, and is formed on the lower side of the entire circumference from the disk-shaped plate body (102) and the plate body (102). And a bent portion (103) bent approximately 90 degrees. The mounting plate (101) has a mechanism side mounting portion (104) fixed to the expansion mechanism (60) on the inner peripheral side, and a casing side mounting portion (105) fixed to the casing (31) on the outer peripheral side. Have
[0078] 膨張機構 (60)のフロントヘッド (61)における上記機構側取付部(104)と接合され る接合部(67)は、フロントヘッド(61)外周から外側へ突出して設けられている。本実 施形態では、接合部 (67)は、 3箇所周方向に均等に 120° ずつ間隔をあけて形成さ れている。図 6に示すように、接合部(67)の中心には、ボルト締結孔(68)が形成され ている。このボルト締結孔(68)の周縁は、上側に向けて突出して形成されている。同 様に、機構側取付部(104)の中心には、ボルト締結孔(104a)が形成されている。この ボルト締結孔(104a)の周縁は、下側に向けて突出して形成されている。このことで、 機構側取付部(104)と接合部(67)との接触面積が小さくなつて!/、る。 [0078] The joint portion (67) to be joined to the mechanism-side mounting portion (104) in the front head (61) of the expansion mechanism (60) is provided to protrude outward from the outer periphery of the front head (61). In this embodiment, the joint portions (67) are formed at intervals of 120 ° equally in the circumferential direction at three locations. As shown in FIG. 6, a bolt fastening hole (68) is formed at the center of the joint (67). ing. The periphery of the bolt fastening hole (68) is formed to protrude upward. Similarly, a bolt fastening hole (104a) is formed at the center of the mechanism side mounting portion (104). The periphery of the bolt fastening hole (104a) is formed so as to protrude downward. This reduces the contact area between the mechanism side mounting portion (104) and the joint portion (67).
[0079] 上記ケーシング側取付部(105)は、マウンティングプレート(101)の外周から半径 方向外側へ突出したように形成されている。本実施形態では、 3箇所周方向に均等 に 120° ずつ間隔をあけて設けられている。このケーシング側取付部(105)がケーシ ング (31)内面に溶接されている。各ケーシング側取付部(105)間は、上記ケーシング (31)との間に所定のプレート外周隙間(108)が形成されている。  [0079] The casing side mounting portion (105) is formed so as to protrude radially outward from the outer periphery of the mounting plate (101). In the present embodiment, the three portions are equally spaced 120 ° apart in the circumferential direction. The casing side mounting portion (105) is welded to the inner surface of the casing (31). A predetermined plate outer peripheral gap (108) is formed between each casing side mounting portion (105) and the casing (31).
[0080] また、マウンティングプレート(101)は、機構側取付部(104)とケーシング側取付部  [0080] The mounting plate (101) includes a mechanism side mounting portion (104) and a casing side mounting portion.
(105)との間の周方向の断面積が、ケーシング側取付部(105)の周方向の断面積よ りも小さくなつている。マウンティングプレート(101)は、周方向の断面積を小さくする ための貫通孔(106, 107)を複数備えている。  The cross-sectional area in the circumferential direction with respect to (105) is smaller than the cross-sectional area in the circumferential direction of the casing side mounting portion (105). The mounting plate (101) includes a plurality of through holes (106, 107) for reducing the cross-sectional area in the circumferential direction.
[0081] 図 4に示すように、上記機構側取付部(104)とケーシング側取付部(105)とは、周 方向にずらして配置されている。つまり、本実施形態では、 2つの機構側取付部(104 )の周方向の中央位置にケーシング側取付部(105)が配置されている。  As shown in FIG. 4, the mechanism side mounting portion (104) and the casing side mounting portion (105) are arranged so as to be shifted in the circumferential direction. That is, in the present embodiment, the casing side mounting portion (105) is disposed at the center position in the circumferential direction of the two mechanism side mounting portions (104).
[0082] 回転軸(40)は、積層された状態のフロントヘッド (61)、第 1シリンダ(71)、中間プ レート(63)、第 2シリンダ(81)を貫通している。リアヘッド(62)の中央部には、該リアへ ッド(62)を厚み方向へ貫通する中央孔が形成されて!/、る。回転軸(40)の上端部は、 このリアヘッド(62)の中央孔に揷入されている。また、回転軸(40)は、その第 1大径 偏心部(41)が第 1シリンダ (71)内に位置し、その第 2大径偏心部(42)が第 2シリンダ (81)内に位置している。  The rotary shaft (40) passes through the stacked front head (61), first cylinder (71), intermediate plate (63), and second cylinder (81). A central hole penetrating the rear head (62) in the thickness direction is formed at the center of the rear head (62). The upper end of the rotating shaft (40) is inserted into the central hole of the rear head (62). The rotary shaft (40) has its first large-diameter eccentric part (41) located in the first cylinder (71) and its second large-diameter eccentric part (42) in the second cylinder (81). positioned.
[0083] 図 7及び図 8にも示すように、第 1シリンダ (71)内には第 1ピストン (75)力 第 2シリ ンダ (81)内には第 2ピストン (85)がそれぞれ設けられている。第 1及び第 2ピストン (7 5, 85)は、いずれも円環状あるいは円筒状に形成されている。第 1ピストン (75)の外 径と第 2ピストン (85)の外径とは、互いに等しくなつている。第 1ピストン (75)の内径は 第 1大径偏心部(41)の外径と、第 2ピストン (85)の内径は第 2大径偏心部(42)の外 径とそれぞれ概ね等しくなつている。そして、第 1ピストン (75)には第 1大径偏心部(4 1)力 S、第 2ピストン (85)には第 2大径偏心部(42)がそれぞれ貫通している。 [0083] As shown in Figs. 7 and 8, the first piston (75) is provided in the first cylinder (71), and the second piston (85) is provided in the second cylinder (81). ing. The first and second pistons (75, 85) are both formed in an annular shape or a cylindrical shape. The outer diameter of the first piston (75) and the outer diameter of the second piston (85) are equal to each other. The inner diameter of the first piston (75) is approximately equal to the outer diameter of the first large-diameter eccentric part (41), and the inner diameter of the second piston (85) is approximately equal to the outer diameter of the second large-diameter eccentric part (42). Yes. The first piston (75) has a first large diameter eccentric part (4 1) The second large diameter eccentric part (42) penetrates the force S and the second piston (85).
[0084] 上記第 1ピストン(75)は、その外周面が第 1シリンダ (71)の内周面に、一方の端面 力 Sフロントヘッド (61)に、他方の端面が中間プレート(63)にそれぞれ摺接している。 第 1シリンダ (71)内には、その内周面と第 1ピストン (75)の外周面との間に第 1膨張 室(72)が形成される。一方、上記第 2ピストン (85)は、その外周面が第 2シリンダ (81) の内周面に、一方の端面がリアヘッド(62)に、他方の端面が中間プレート(63)にそ れぞれ摺接している。第 2シリンダ (81)内には、その内周面と第 2ピストン (85)の外周 面との間に第 2膨張室 (82)が形成される。 [0084] The first piston (75) has an outer peripheral surface on the inner peripheral surface of the first cylinder (71), one end surface force S on the front head (61), and the other end surface on the intermediate plate (63). Each is in sliding contact. A first expansion chamber (72) is formed in the first cylinder (71) between the inner peripheral surface thereof and the outer peripheral surface of the first piston (75). On the other hand, the second piston (85) has an outer peripheral surface on the inner peripheral surface of the second cylinder (81), one end surface on the rear head (62), and the other end surface on the intermediate plate (63). It is in sliding contact. A second expansion chamber (82) is formed in the second cylinder (81) between its inner peripheral surface and the outer peripheral surface of the second piston (85).
[0085] 上記第 1及び第 2ピストン(75, 85)のそれぞれには、ブレード(76, 86)が 1つずつ 一体に設けられている。ブレード(76, 86)は、ピストン(75, 85)の半径方向へ延びる 板状に形成され、ピストン (75, 85)の外周面から外側へ突出している。第 1ピストン (7Each of the first and second pistons (75, 85) is integrally provided with one blade (76, 86). The blades (76, 86) are formed in a plate shape extending in the radial direction of the piston (75, 85), and project outward from the outer peripheral surface of the piston (75, 85). 1st piston (7
5)のブレード(76)は第 1シリンダ(71)のブッシュ孔(78)に、第 2ピストン(85)のブレー ド(86)は第 2シリンダ (81)のブッシュ孔 (88)にそれぞれ揷入されて!/、る。各シリンダ( 71, 81)のブッシュ孔(78, 88)は、シリンダ(71 , 81)を厚み方向へ貫通すると共に、シ リンダ(71 , 81)の内周面に開口している。これらのブッシュ孔(78, 88)は、貫通孔(10 6, 107)を構成している。 The blade (76) of 5) is inserted into the bush hole (78) of the first cylinder (71), and the blade (86) of the second piston (85) is inserted into the bush hole (88) of the second cylinder (81). Entered! The bush holes (78, 88) of the cylinders (71, 81) penetrate the cylinders (71, 81) in the thickness direction, and open to the inner peripheral surface of the cylinders (71, 81). These bush holes (78, 88) constitute through holes (10 6, 107).
[0086] 上記各シリンダ(71 , 81)には、一対のブッシュ(77, 87)力 組ずつ設けられている 。各ブッシュ(77, 87)は、内側面が平面となって外側面が円弧面となるように形成さ れた小片である。各シリンダ(71 , 81)において、一対のブッシュ(77, 87)は、ブッシュ 孔(78, 88)に揷入されてブレード(76, 86)を挟み込んだ状態となる。各ブッシュ(77, 87)は、その内側面がブレード(76, 86)と、その外側面がシリンダ(71 , 81)と摺動する 。そして、ピストン(75, 85)と一体のブレード(76, 86)は、ブッシュ(77, 87)を介してシ リンダ(71 , 81)に支持され、シリンダ (71 , 81)に対して回動自在で且つ進退自在とな つている。  [0086] Each cylinder (71, 81) is provided with a pair of force pairs of bushes (77, 87). Each bush (77, 87) is a small piece formed such that the inner surface is a flat surface and the outer surface is a circular arc surface. In each cylinder (71, 81), the pair of bushes (77, 87) are inserted into the bush holes (78, 88) and sandwich the blades (76, 86). Each bush (77, 87) has its inner surface sliding with the blade (76, 86) and its outer surface with the cylinder (71, 81). The blades (76, 86) integral with the piston (75, 85) are supported by the cylinders (71, 81) via the bushes (77, 87), and rotate with respect to the cylinders (71, 81). It is free to move forward and backward.
[0087] 第 1シリンダ (71)内の第 1膨張室(72)は、第 1ピストン (75)と一体の第 1ブレード(7 [0087] The first expansion chamber (72) in the first cylinder (71) has a first blade (7) integrated with the first piston (75).
6)によって仕切られ、図 7及び図 8における第 1ブレード(76)の左側が高圧側の第 1 高圧室(73)となり、その右側が低圧側の第 1低圧室(74)となっている。第 2シリンダ( 81)内の第 2膨張室 (82)は、第 2ピストン (85)と一体の第 2ブレード (86)によって仕切 られ、図 7及び図 8における第 2ブレード (86)の左側が高圧側の第 2高圧室 (83)とな り、その右側が低圧側の第 2低圧室 (84)となっている。 6) The left side of the first blade (76) in FIGS. 7 and 8 is the first high pressure chamber (73) on the high pressure side, and the right side is the first low pressure chamber (74) on the low pressure side. . The second expansion chamber (82) in the second cylinder (81) is partitioned by a second blade (86) integral with the second piston (85). 7 and 8, the left side of the second blade (86) is the high pressure side second high pressure chamber (83), and the right side is the low pressure side second low pressure chamber (84).
[0088] 上記第 1シリンダ (71)と第 2シリンダ (81)とは、それぞれの周方向におけるブッシ ュ(77, 87)の位置が一致する姿勢で配置されている。言い換えると、第 2シリンダ (81 )の第 1シリンダ (71)に対する配置角度が 0° となっている。上述のように、第 1大径 偏心部(41)と第 2大径偏心部(42)とは、主軸部(44)の軸心に対して同じ方向へ偏 心している。したがって、第 1ブレード(76)が第 1シリンダ (71)の外側へ最も退いた状 態になるのと同時に、第 2ブレード (86)が第 2シリンダ (81)の外側へ最も退いた状態 になる。 [0088] The first cylinder (71) and the second cylinder (81) are arranged in a posture in which the positions of the bushes (77, 87) in the respective circumferential directions coincide. In other words, the arrangement angle of the second cylinder (81) with respect to the first cylinder (71) is 0 °. As described above, the first large-diameter eccentric part (41) and the second large-diameter eccentric part (42) are eccentric in the same direction with respect to the axis of the main shaft part (44). Therefore, at the same time as the first blade (76) is most retracted to the outside of the first cylinder (71), the second blade (86) is most retracted to the outside of the second cylinder (81). Become.
[0089] 上記第 1シリンダ(71)には、流入ポート(34)が形成されている。流入ポート(34)は 、第 1シリンダ(71)の内周面のうち、図 7及び図 8におけるブッシュ(77)のやや左側の 箇所に開口している。流入ポート(34)は、第 1高圧室(73)と連通可能となっている。 一方、上記第 2シリンダ(81)には、流出ポート(35)が形成されている。流出ポート(35 )は、第 2シリンダ(81)の内周面のうち、図 7及び図 8におけるブッシュ(87)のやや右 側の箇所に開口している。流出ポート(35)は、第 2低圧室 (84)と連通可能となってい  The first cylinder (71) has an inflow port (34). The inflow port (34) opens at a position slightly on the left side of the bush (77) in FIGS. 7 and 8 on the inner peripheral surface of the first cylinder (71). The inflow port (34) can communicate with the first high pressure chamber (73). On the other hand, the second cylinder (81) is formed with an outflow port (35). The outflow port (35) opens at a position slightly on the right side of the bush (87) in FIGS. 7 and 8 on the inner peripheral surface of the second cylinder (81). Outflow port (35) can communicate with second low pressure chamber (84)
[0090] 上記中間プレート(63)には、連通路(93) (64)が形成されている。この連通路(93 ) (64)は、中間プレート(63)を厚み方向へ貫通している。中間プレート(63)における 第 1シリンダ(71)側の面では、第 1ブレード(76)の右側の箇所に連通路 (93) (64)の 一端が開口している。中間プレート(63)における第 2シリンダ (81)側の面では、第 2 ブレード(86)の左側の箇所に連通路 (93) (64)の他端が開口している。そして、図 7 に示すように、連通路 (93) (64)は、中間プレート(63)の厚み方向に対して斜めに延 び、第 1低圧室(74)と第 2高圧室 (83)とを互いに連通させて!/、る。 In the intermediate plate (63), communication passages (93) and (64) are formed. The communication passages (93) and (64) penetrate the intermediate plate (63) in the thickness direction. On the surface on the first cylinder (71) side of the intermediate plate (63), one end of the communication passages (93) and (64) is opened at the right side of the first blade (76). On the surface on the second cylinder (81) side of the intermediate plate (63), the other end of the communication passages (93) (64) is opened at the left side of the second blade (86). As shown in FIG. 7, the communication passages (93) (64) extend obliquely with respect to the thickness direction of the intermediate plate (63), and the first low pressure chamber (74) and the second high pressure chamber (83) And communicate with each other!
[0091] 以上のように構成された本実施形態の膨張機構 (60)では、第 1シリンダ (71)と、 そこに設けられたブッシュ(77)と、第 1ピストン (75)と、第 1ブレード(76)とが第 1ロー タリ機構部(70)を構成している。また、第 2シリンダ (81)と、そこに設けられたブッシュ (87)と、第 2ピストン (85)と、第 2ブレード (86)とが第 2ロータリ機構部(80)を構成して いる。 [0092] 図 3に示すように、ケーシング(31)の内部空間には、膨張機構(60)におけるケー シング(31)内の露出面全体を覆い、上記回転軸(40)が貫通する断熱材(90, 96)を 備えている。断熱材(90, 96)は、マウンティングプレート(101)を境に回転軸(40)の 軸方向に第 1断熱材 (90)と第 2断熱材 (96)とに分割されて!/、る。 In the expansion mechanism (60) of the present embodiment configured as described above, the first cylinder (71), the bush (77) provided there, the first piston (75), and the first The blade (76) constitutes the first rotary mechanism (70). The second cylinder (81), the bush (87) provided there, the second piston (85), and the second blade (86) constitute the second rotary mechanism (80). . [0092] As shown in FIG. 3, the inner space of the casing (31) covers the entire exposed surface in the casing (31) of the expansion mechanism (60), and the heat insulating material through which the rotating shaft (40) passes. (90, 96). The heat insulating material (90, 96) is divided into the first heat insulating material (90) and the second heat insulating material (96) in the axial direction of the rotating shaft (40) with the mounting plate (101) as a boundary! .
[0093] 下側の第 1断熱材 (90)は、上記膨張機構 (60)における圧縮機構 (50)側に当接 するように上記回転軸(40)周辺から上記ケーシング(31)内周面までを覆うように設け られている。このことで、ケーシング(31)内の雰囲気との温度差の激しい、低温の膨 張機構 (60)側の第 1空間(48)が第 1断熱材 (90)によって第 2空間(49)と区切られて いる。  [0093] The first heat insulating material (90) on the lower side extends from the periphery of the rotary shaft (40) to the inner peripheral surface of the casing (31) so as to contact the compression mechanism (50) side of the expansion mechanism (60). It is provided to cover up to. As a result, the first space (48) on the low-temperature expansion mechanism (60) side, where the temperature difference from the atmosphere in the casing (31) is significant, is changed from the second space (49) by the first heat insulating material (90). It is delimited.
[0094] 具体的には、第 1断熱材 (90)は、中心に回転軸(40)が揷通される中心孔を有す る円盤状のもので、膨張機構(60)におけるフロントヘッド(61)の下面と接するように 設けられている。回転軸(40)の外周面と、第 1断熱材(90)の内周面との間には、回 転軸(40)の回転を妨げないように最小限の隙間が形成されている。  [0094] Specifically, the first heat insulating material (90) is a disk-shaped member having a central hole through which the rotation shaft (40) passes, and the front head ( It is provided so as to contact the lower surface of 61). A minimum gap is formed between the outer peripheral surface of the rotating shaft (40) and the inner peripheral surface of the first heat insulating material (90) so as not to hinder the rotation of the rotating shaft (40).
[0095] また、図 3に示すように、上側の第 2断熱材 (96)は、天板を有する略円筒形状を 有し、膨張機構 (60)の側面及び上面のケーシング (31)内の露出面全体を被ってい る。すなわち、第 2断熱材 (96)には、流入管(38)や流出管(39)が貫通している。さら に、これら流入管(38)や流出管(39)の外周も覆うとよレ、。  Further, as shown in FIG. 3, the upper second heat insulating material (96) has a substantially cylindrical shape having a top plate, and is provided in the casing (31) on the side surface and the upper surface of the expansion mechanism (60). Covers the entire exposed surface. That is, the inflow pipe (38) and the outflow pipe (39) pass through the second heat insulating material (96). In addition, cover the outer periphery of the inflow pipe (38) and outflow pipe (39).
[0096] また、図 4に示すように、上記ケーシング側取付部(105)間の上記ケーシング(31) との間のプレート外周隙間(108)にも、上記断熱材 (90, 96)が設けられている。具体 的には、第 2断熱材 (96)の下面から突出させた部分でマウンティングプレート(101) の側面が覆われている。なお、第 1断熱材 (90)の上面から突出させた部分でマウン ティングプレート(101)の側面を覆ってもょレ、。  Further, as shown in FIG. 4, the heat insulating material (90, 96) is also provided in the plate outer peripheral gap (108) between the casing side mounting portion (105) and the casing (31). It has been. Specifically, the side surface of the mounting plate (101) is covered with a portion protruding from the lower surface of the second heat insulating material (96). Cover the side surface of the mounting plate (101) with the part protruding from the top surface of the first insulation (90).
[0097] また、第 1及び第 2断熱材 (90, 96)は、樹脂成型品で構成されて!/、る。具体的な 材料としては、耐熱性の高い(240〜250°C)、特殊エンジニアリングプラスチックが 考えられる。例えば、 PPS (ポリフエ二レンサルファイド)、 PEEK (ポリエーテルケトン) 、 PI (ポリアミド)等がある。  [0097] Further, the first and second heat insulating materials (90, 96) are made of resin molded products! Specific materials may be special engineering plastics with high heat resistance (240-250 ° C). For example, PPS (polyphenylene sulfide), PEEK (polyetherketone), PI (polyamide) and the like.
[0098] 運転動作  [0098] Driving operation
上記空調機(10)の動作について説明する。ここでは、空調機(10)の冷房運転時 及び暖房運転時の動作について説明し、続いて膨張機構 (60)の動作について説明 する。 The operation of the air conditioner (10) will be described. Here, air-conditioner (10) during cooling operation The operation during the heating operation will be described, followed by the operation of the expansion mechanism (60).
[0099] 〈冷房運転〉  [0099] <Cooling operation>
冷房運転時には、第 1四路切換弁(21)及び第 2四路切換弁(22)が図 1に破線で 示す状態に切り換えられる。この状態で圧縮 ·膨張ユニット(30)の電動機 (45)に通電 すると、冷媒回路(20)で冷媒が循環して蒸気圧縮冷凍サイクルが行われる。  During the cooling operation, the first four-way switching valve (21) and the second four-way switching valve (22) are switched to the state shown by the broken line in FIG. In this state, when the motor (45) of the compression / expansion unit (30) is energized, the refrigerant circulates in the refrigerant circuit (20), and a vapor compression refrigeration cycle is performed.
[0100] 圧縮機構 (50)で圧縮された冷媒は、吐出管(37)を通って圧縮 ·膨張ユニット(30) 力、ら吐出される。この状態で、冷媒の圧力は、その臨界圧力よりも高くなつている。こ の吐出冷媒は、室外熱交換器 (23)へ送られて室外空気へ放熱する。室外熱交換器 (23)で放熱した高圧冷媒は、流入管(38)を通って膨張機構 (60)へ流入する。膨張 機構 (60)では、高圧冷媒が膨張し、この高圧冷媒から動力が回収される。膨張後の 低圧冷媒は、流出管 (39)を通って室内熱交換器 (24)へ送られる。室内熱交換器 (24 )では、流入した冷媒が室内空気から吸熱して蒸発し、室内空気が冷却される。室内 熱交換器 (24)から出た低圧ガス冷媒は、吸入管(36)を通って吸入ポート(32)から圧 縮機構(50)へ吸入される。圧縮機構(50)は、吸入した冷媒を圧縮して吐出する。  [0100] The refrigerant compressed by the compression mechanism (50) is discharged from the compression / expansion unit (30) through the discharge pipe (37). In this state, the refrigerant pressure is higher than its critical pressure. This discharged refrigerant is sent to the outdoor heat exchanger (23) to radiate heat to the outdoor air. The high-pressure refrigerant radiated by the outdoor heat exchanger (23) flows into the expansion mechanism (60) through the inflow pipe (38). In the expansion mechanism (60), the high-pressure refrigerant expands, and power is recovered from the high-pressure refrigerant. The low-pressure refrigerant after expansion is sent to the indoor heat exchanger (24) through the outflow pipe (39). In the indoor heat exchanger (24), the refrigerant that has flowed in absorbs heat from the room air and evaporates, thereby cooling the room air. The low-pressure gas refrigerant discharged from the indoor heat exchanger (24) passes through the suction pipe (36) and is sucked into the compression mechanism (50) from the suction port (32). The compression mechanism (50) compresses and discharges the sucked refrigerant.
[0101] 〈暖房運転〉  [0101] <Heating operation>
暖房運転時には、第 1四路切換弁(21)及び第 2四路切換弁(22)が図 1に実線で 示す状態に切り換えられる。この状態で圧縮 ·膨張ユニット(30)の電動機 (45)に通電 すると、冷媒回路(20)で冷媒が循環して蒸気圧縮冷凍サイクルが行われる。  During the heating operation, the first four-way selector valve (21) and the second four-way selector valve (22) are switched to the state shown by the solid line in FIG. In this state, when the motor (45) of the compression / expansion unit (30) is energized, the refrigerant circulates in the refrigerant circuit (20), and a vapor compression refrigeration cycle is performed.
[0102] 圧縮機構 (50)で圧縮された冷媒は、吐出管(37)を通って圧縮 ·膨張ユニット(30) 力、ら吐出される。この状態で、冷媒の圧力は、その臨界圧力よりも高くなつている。こ の吐出冷媒は、室内熱交換器 (24)へ送られる。室内熱交換器 (24)では、流入した 冷媒が室内空気へ放熱し、室内空気が加熱される。室内熱交換器 (24)で放熱した 冷媒は、流入管(38)を通って膨張機構 (60)へ流入する。膨張機構 (60)では、高圧 冷媒が膨張し、この高圧冷媒力 動力が回収される。膨張後の低圧冷媒は、流出管 (39)を通って室外熱交換器 (23)へ送られ、室外空気から吸熱して蒸発する。室外熱 交換器 (23)から出た低圧ガス冷媒は、吸入管(36)を通って吸入ポート (32)から圧縮 機構(50)へ吸入される。圧縮機構(50)は、吸入した冷媒を圧縮して吐出する。 [0103] 〈膨張機構の動作〉 [0102] The refrigerant compressed by the compression mechanism (50) is discharged from the compression / expansion unit (30) through the discharge pipe (37). In this state, the refrigerant pressure is higher than its critical pressure. This discharged refrigerant is sent to the indoor heat exchanger (24). In the indoor heat exchanger (24), the refrigerant flowing in dissipates heat to the room air, and the room air is heated. The refrigerant that has dissipated heat in the indoor heat exchanger (24) flows into the expansion mechanism (60) through the inflow pipe (38). In the expansion mechanism (60), the high-pressure refrigerant expands and the high-pressure refrigerant power is recovered. The expanded low-pressure refrigerant is sent to the outdoor heat exchanger (23) through the outflow pipe (39), absorbs heat from the outdoor air, and evaporates. The low-pressure gas refrigerant discharged from the outdoor heat exchanger (23) is sucked into the compression mechanism (50) from the suction port (32) through the suction pipe (36). The compression mechanism (50) compresses and discharges the sucked refrigerant. <Operation of expansion mechanism>
膨張機構 (60)の動作について、図 8を参照しながら説明する。  The operation of the expansion mechanism (60) will be described with reference to FIG.
[0104] まず、第 1ロータリ機構部(70)の第 1高圧室 (73)へ超臨界状態の高圧冷媒が流 入する過程について説明する。回転角が 0° の状態から回転軸(40)が僅かに回転 すると、第 1ピストン (75)と第 1シリンダ(71)の接触位置が流入ポート(34)の開口部を 通過し、流入ポート(34)から第 1高圧室(73)へ高圧冷媒が流入し始める。その後、回 転軸(40)の回転角が 90° , 180° , 270° と次第に大きくなるにつれて、第 1高圧 室(73)へ高圧冷媒が流入してゆく。この第 1高圧室(73)への高圧冷媒の流入は、回 転軸(40)の回転角が 360° に達するまで続く。  [0104] First, the process by which supercritical high-pressure refrigerant flows into the first high-pressure chamber (73) of the first rotary mechanism (70) will be described. When the rotation shaft (40) slightly rotates from the state where the rotation angle is 0 °, the contact position of the first piston (75) and the first cylinder (71) passes through the opening of the inflow port (34), and the inflow port High pressure refrigerant begins to flow from (34) into the first high pressure chamber (73). Thereafter, as the rotation angle of the rotating shaft (40) gradually increases to 90 °, 180 °, and 270 °, high-pressure refrigerant flows into the first high-pressure chamber (73). The inflow of high-pressure refrigerant into the first high-pressure chamber (73) continues until the rotation angle of the rotating shaft (40) reaches 360 °.
[0105] 次に、膨張機構 (60)において冷媒が膨張する過程について説明する。回転角が 0° の状態から回転軸(40)が僅かに回転すると、第 1低圧室(74)と第 2高圧室 (83) が連通路 (93) (64)を介して互いに連通し、第 1低圧室(74)から第 2高圧室 (83)へと 冷媒が流入し始める。その後、回転軸(40)の回転角が 90° , 180° , 270° と次第 に大きくなるにつれ、第 1低圧室(74)の容積が次第に減少すると同時に第 2高圧室( 83)の容積が次第に増加し、結果として膨張室 (66)の容積が次第に増加してゆく。こ の膨張室 (66)の容積増加は、回転軸(40)の回転角が 360° に達する直前まで続く 。そして、膨張室 (66)の容積が増加する過程で膨張室 (66)内の冷媒が膨張し、この 冷媒の膨張によって回転軸(40)が回転駆動される。このように、第 1低圧室(74)内の 冷媒は、連通路 (93) (64)を通って第 2高圧室 (83)へ膨張しながら流入してゆく。  Next, a process for expanding the refrigerant in the expansion mechanism (60) will be described. When the rotation shaft (40) is slightly rotated from the state where the rotation angle is 0 °, the first low pressure chamber (74) and the second high pressure chamber (83) communicate with each other via the communication passages (93) and (64). The refrigerant begins to flow from the first low pressure chamber (74) to the second high pressure chamber (83). After that, as the rotation angle of the rotating shaft (40) gradually increases to 90 °, 180 °, 270 °, the volume of the first low pressure chamber (74) gradually decreases and the volume of the second high pressure chamber (83) decreases. The volume gradually increases, and as a result, the volume of the expansion chamber (66) gradually increases. This increase in volume of the expansion chamber (66) continues until just before the rotation angle of the rotating shaft (40) reaches 360 °. Then, the refrigerant in the expansion chamber (66) expands in the process of increasing the volume of the expansion chamber (66), and the rotation shaft (40) is rotationally driven by the expansion of the refrigerant. In this way, the refrigerant in the first low pressure chamber (74) flows into the second high pressure chamber (83) while expanding through the communication passages (93) and (64).
[0106] 続!/、て、第 2ロータリ機構部(80)の第 2低圧室 (84)から冷媒が流出してゆく過程 について説明する。第 2低圧室 (84)は、回転軸(40)の回転角が 0° の時点から流出 ポート(35)に連通し始める。つまり、第 2低圧室 (84)から流出ポート(35)へと冷媒が 流出し始める。その後、回転軸(40)の回転角が 90° , 180° , 270° と次第に大き くなつてゆき、その回転角が 360° に達するまでの間に亘つて、第 2低圧室(84)から 膨張後の低圧冷媒が流出してゆく。  [0106] Next, a process in which the refrigerant flows out from the second low pressure chamber (84) of the second rotary mechanism section (80) will be described. The second low pressure chamber (84) begins to communicate with the outflow port (35) when the rotation angle of the rotating shaft (40) is 0 °. That is, the refrigerant begins to flow from the second low pressure chamber (84) to the outflow port (35). After that, the rotation angle of the rotating shaft (40) gradually increased to 90 °, 180 °, 270 ° and until the rotation angle reached 360 °, the second low pressure chamber (84) The low-pressure refrigerant after expansion flows out.
[0107] マウンティングプレートの組付手順  [0107] Mounting plate assembly procedure
膨張機構 (60)とマウンティングプレート(101)と断熱材 (90, 96)との組付手順につ いて説明する。 [0108] まず、フロントヘッド(61)のボルト締結孔(68)と、機構側取付部(104)のボルト締 結孔(104a)にボルト(図示せず)を揷通して締め付ける。 The procedure for assembling the expansion mechanism (60), mounting plate (101), and heat insulating material (90, 96) will be described. First, a bolt (not shown) is passed through the bolt fastening hole (68) of the front head (61) and the bolt fastening hole (104a) of the mechanism side mounting portion (104) and tightened.
[0109] 次いで、マウンティングプレート(101)の下側から第 1断熱材(90)を取り付け、上 側から第 2断熱材(96)を取り付ける。このように、断熱材(90, 96)は第 1断熱材(90)と 第 2断熱材 (96)とに分割されているので、断熱材 (90, 96)が容易に組み付けられる。  [0109] Next, the first heat insulating material (90) is attached from the lower side of the mounting plate (101), and the second heat insulating material (96) is attached from the upper side. Thus, since the heat insulating material (90, 96) is divided into the first heat insulating material (90) and the second heat insulating material (96), the heat insulating material (90, 96) can be easily assembled.
[0110] 最後にケーシング側取付部(105)の外側端面をケーシング (31)の内面に溶接す  [0110] Finally, the outer end face of the casing side mounting portion (105) is welded to the inner face of the casing (31).
[0111] 〈マウンティングプレートの作用〉 [0111] <Operation of mounting plate>
第 1断熱材 (90)によって、ケーシング (31)の内部空間が膨張機構 (60)が収納さ れる第 1空間(48)と、圧縮機構(50)が収納される第 2空間(49)とに区画されて!/、るの で、第 1空間(48)は、低温、高密度となり、第 2空間(49)は、高温、低密度となる。こ のことで、ケーシング (31)内は高温高圧に保たれる、いわゆる高圧ドーム型の流体機 械となる。  Due to the first heat insulating material (90), the internal space of the casing (31) has a first space (48) in which the expansion mechanism (60) is accommodated, and a second space (49) in which the compression mechanism (50) is accommodated. As a result, the first space (48) has a low temperature and high density, and the second space (49) has a high temperature and low density. As a result, the inside of the casing (31) is a so-called high-pressure dome type fluid machine that is maintained at a high temperature and a high pressure.
[0112] マウンティングプレート(101)により膨張機構 (60)が堅固にケーシング (31)に固定 されているので、高圧冷媒によるケーシング (31)の膨らみ防止や、膨張機構 (60)の 過剰な振動が防止される。  [0112] Since the expansion mechanism (60) is firmly fixed to the casing (31) by the mounting plate (101), the casing (31) is prevented from expanding due to the high-pressure refrigerant, and excessive vibration of the expansion mechanism (60) is prevented. Is prevented.
[0113] ケーシング (31)内の雰囲気との温度差の激しい、低温の膨張機構 (60)をマウン ティングプレート(101)を介してケーシング(31)に固定することにより、従来のようにケ 一シング (31)との温度差の大きい膨張機構 (60)とケーシング (31)とを直接固定する ことが防止される。また、マウンティングプレート(101)とケーシング (31)との間の接合 部(67)がケーシング側取付部(105)のみとなるので、全周でケーシング(31)と接合さ れる場合に比べて伝熱面積が小さくなつている。このため、膨張機構 (60)内部の低 温冷媒と、圧縮機構 (50)内部の高温冷媒と間での熱伝導による熱交換が減少する。  [0113] By fixing the low temperature expansion mechanism (60), which has a large temperature difference from the atmosphere in the casing (31), to the casing (31) via the mounting plate (101), the casing is fixed as in the conventional case. It is possible to prevent the expansion mechanism (60) and the casing (31) having a large temperature difference from the single (31) from being directly fixed. In addition, since the joint (67) between the mounting plate (101) and the casing (31) is only the casing-side mounting part (105), it is transmitted as compared with the case where it is joined to the casing (31) all around. The thermal area is getting smaller. For this reason, heat exchange by heat conduction between the low temperature refrigerant inside the expansion mechanism (60) and the high temperature refrigerant inside the compression mechanism (50) is reduced.
[0114] 機構側取付部(104)とケーシング側取付部(105)とを、周方向にずらして配置す ることで、両取付部を周方向の同じ位置に設ける場合に比べて伝熱経路を長くする こと力 Sでさる。このため、熱抵抗が大きくなり、膨張機構 (60)とケーシング (31)との間 での熱交換が低減される。  [0114] By disposing the mechanism-side mounting portion (104) and the casing-side mounting portion (105) in the circumferential direction, the heat transfer path is greater than when both mounting portions are provided at the same position in the circumferential direction. Increase the length with a force S. For this reason, the thermal resistance increases, and heat exchange between the expansion mechanism (60) and the casing (31) is reduced.
[0115] 機構側取付部(104)とケーシング側取付部(105)との間の周方向の断面積を、ケ 一シング側取付部(105)の周方向の断面積よりも小さくしてマウンティングプレート(1 01)の伝熱経路の伝熱面積が小さくなつている。また、マウンティングプレート(101)を 薄板で構成される板金構造とすることで、伝熱経路の伝熱面積が小さくなつてレ、る。 また、マウンティングプレート(101)に貫通孔(106, 107)を形成することで、伝熱経路 の伝熱面積が小さくなつている。さらに、ボルト締結孔(68)の周縁を上側に向けて突 出して形成し、ボルト締結孔(104a)の周縁を下側に向けて突出して形成し、機構側 取付部(104)と接合部(67)との接触面積を小さくしている。このように、マウンティング プレート(101)と膨張機構 (60)との間の伝熱経路の伝熱面積が小さくなるので、膨張 機構(60)とケーシング(31)との間での熱交換が低減される。 [0115] The cross-sectional area in the circumferential direction between the mechanism side mounting portion (104) and the casing side mounting portion (105) is The heat transfer area of the heat transfer path of the mounting plate (101) is reduced by making it smaller than the cross-sectional area in the circumferential direction of the single-side mounting portion (105). In addition, the mounting plate (101) has a sheet metal structure made of a thin plate, so that the heat transfer area of the heat transfer path is reduced. Further, by forming the through holes (106, 107) in the mounting plate (101), the heat transfer area of the heat transfer path is reduced. Furthermore, the periphery of the bolt fastening hole (68) protrudes upward and is formed, and the periphery of the bolt fastening hole (104a) protrudes downward to form the mechanism side mounting part (104) and joint part. The contact area with (67) is reduced. In this way, the heat transfer area of the heat transfer path between the mounting plate (101) and the expansion mechanism (60) is reduced, so heat exchange between the expansion mechanism (60) and the casing (31) is reduced. Is done.
[0116] ケーシング (31)内の雰囲気との温度差の激しい、低温の膨張機構 (60)側の第 1 空間(48)を第 1断熱材 (90)で区切ることで、冷媒対流が効果的に防止される。  [0116] Refrigerant convection is effective by dividing the first space (48) on the low-temperature expansion mechanism (60) side, which has a large temperature difference from the atmosphere in the casing (31), with the first heat insulating material (90). To be prevented.
[0117] 断熱材(90, 96)は、膨張機構(60)のケーシング(31)内の露出面全体を覆ってい るので、ケーシング(31)の内部空間と断熱材(90, 96)で覆われた膨張機構(60)との 間での熱交換が防止される。このため、さらに膨張機構 (60)とケーシング (31)との間 での熱交換が低減される。  [0117] Since the heat insulating material (90, 96) covers the entire exposed surface in the casing (31) of the expansion mechanism (60), it is covered with the internal space of the casing (31) and the heat insulating material (90, 96). Heat exchange with the broken expansion mechanism (60) is prevented. For this reason, heat exchange between the expansion mechanism (60) and the casing (31) is further reduced.
[0118] マウンティングプレート(101)も断熱材(90, 96)で覆うことで、冷媒との間での熱交 換が防止され、さらに膨張機構 (60)とケーシング (31)との間での熱交換が低減され る。このため、膨張機構 (60)内部の低温冷媒と、圧縮機構 (50)内部の高温冷媒と間 での熱伝導による熱交換が減少する。  [0118] The mounting plate (101) is also covered with a heat insulating material (90, 96) to prevent heat exchange with the refrigerant, and between the expansion mechanism (60) and the casing (31). Heat exchange is reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced.
[0119] 一実施形態 1の効果  [0119] Effect of Embodiment 1
したがって、本実施形態の圧縮 ·膨張ユニット(30)によると、ケーシング (31)内の 雰囲気との温度差の激しい低温の膨張機構 (60)をケーシング (31)と直接固定するこ となぐケーシング側取付部(105)のみをケーシング(31)に溶接したマウンティングプ レート(101)を介してケーシング (31)に固定して高温のケーシング (31)と低温の膨張 機構 (60)との間での熱伝導による熱交換を減少させたことにより、さらに能力低下や 動力回収効果の低下を防止することができる。  Therefore, according to the compression / expansion unit (30) of this embodiment, the low temperature expansion mechanism (60) having a large temperature difference from the atmosphere in the casing (31) is directly fixed to the casing (31). Only the mounting part (105) is fixed to the casing (31) via the mounting plate (101) welded to the casing (31), and the space between the high-temperature casing (31) and the low-temperature expansion mechanism (60) is fixed. By reducing heat exchange due to heat conduction, it is possible to prevent further decline in capacity and power recovery effect.
[0120] 円環状のマウンティングプレート(101)の機構側取付部(104)と、ケーシング側取 付部(105)とを周方向にずらして配置して伝熱経路を長くし、熱抵抗を大きくしたこと により、さらに能力低下や動力回収効果の低下を防止することができる。 [0120] The mechanism side mounting part (104) of the annular mounting plate (101) and the casing side mounting part (105) are shifted in the circumferential direction to lengthen the heat transfer path and increase the thermal resistance. What you did As a result, it is possible to prevent further reduction in performance and power recovery effect.
[0121] マウンティングプレート(101)を薄板で構成される板金構造としたり、貫通孔(106, 107)を複数設けたり、機構側取付部(104)と接合部 (67)とを突状にしたりする等によ り、マウンティングプレート(101)における伝熱経路の伝熱面積を小さくして膨張機構 (60)とケーシング (31)との間での熱交換を低減させたことにより、さらに能力低下や 動力回収効果の低下を防止することができる。 [0121] The mounting plate (101) is a sheet metal structure composed of a thin plate, a plurality of through holes (106, 107) are provided, or the mechanism side mounting portion (104) and the joint portion (67) are projected. By reducing the heat transfer area of the heat transfer path in the mounting plate (101) and reducing heat exchange between the expansion mechanism (60) and the casing (31), the capacity is further reduced. And it can prevent the power recovery effect from decreasing.
[0122] 断熱材(90, 96)で膨張機構(60)のケーシング(31)内の露出面全体を覆ったこと により、ケーシング (31)の第 2空間(48)と断熱材 (90, 96)で覆われた膨張機構 (60) との間での熱交換を防いで、能力低下や動力回収効果の低下を防止することができ [0122] By covering the entire exposed surface in the casing (31) of the expansion mechanism (60) with the heat insulating material (90, 96), the second space (48) of the casing (31) and the heat insulating material (90, 96 ) To prevent heat exchange with the expansion mechanism (60).
[0123] プレート外周隙間(108)にも断熱材 (90, 96)を設けて冷媒との間での熱交換を防 止し、膨張機構 (60)とケーシング (31)との間での熱交換を低減させたことにより、さら に能力低下や動力回収効果の低下を防止することができる。 [0123] A heat insulating material (90, 96) is also provided in the plate outer peripheral gap (108) to prevent heat exchange with the refrigerant, and heat between the expansion mechanism (60) and the casing (31) is prevented. By reducing replacement, it is possible to prevent further reduction in capacity and power recovery effect.
[0124] 断熱材(90, 96)をマウンティングプレート(101)を境に回転軸(40)の軸方向に分 割したことにより、断熱材 (90, 96)の組付が容易となり、製造コストを低くすることがで きる。 [0124] By dividing the heat insulating material (90, 96) in the axial direction of the rotating shaft (40) with the mounting plate (101) as a boundary, the heat insulating material (90, 96) can be easily assembled and the manufacturing cost can be reduced. Can be lowered.
[0125] 実施形態 1の変形例 1  [0125] Modification 1 of Embodiment 1
図 9に示すように、上記機構側取付部(104)は、上記膨張機構 (60)の周囲よりも 表面温度の高!/、部分と膨張機構 (60)近傍の上記ケーシング (31)の周囲よりも表面 温度の低い部分とを結ぶように配置してもよい。なお、簡略化のために、貫通孔(106 , 107)は省略している。  As shown in FIG. 9, the mechanism-side mounting portion (104) has a higher surface temperature than the periphery of the expansion mechanism (60) and the periphery of the casing (31) in the vicinity of the portion and the expansion mechanism (60). Alternatively, it may be arranged so as to connect with a portion having a lower surface temperature. Note that the through holes (106, 107) are omitted for simplification.
[0126] 具体的には、図 10に示すように、膨張機構(60)の表面温度は、軸方向から見た ときに Aから F 順に低くなるように概ね周方向に分布している。実際の温度としては 、例えば、 Aが吸入温度の 30°C Fが吐出温度の 0°Cとなる。  [0126] Specifically, as shown in Fig. 10, the surface temperature of the expansion mechanism (60) is generally distributed in the circumferential direction so as to decrease in order from A to F when viewed from the axial direction. As the actual temperature, for example, A is the suction temperature 30 ° C F is the discharge temperature 0 ° C.
[0127] 一方、図 11に示すように、ケーシング(31)の表面温度は、 Aから Fへ順に低くなる ように概ね周方向に分布している。実際の温度としては、例えば、 Aが圧縮機構(50) の吐出温度の 90°Cとなり、 Fが膨張機構 (60)の吐出温度により低温 (0° 近く)となる [0128] したがって、膨張機構 (60)の表面温度の低い部分及びケーシング (31)の表面温 度の高レ、部分を避けて機構側取付部(104)を設けるとよ!/、。このように構成すること により、マウンティングプレート(101)における伝熱経路の一端にある機構側取付部( 104)が膨張機構 (60)の表面温度と該膨張機構 (60)近傍の上記ケーシング (31)との 表面温度との差が小さくなるように配置されているので、高温側から低温側への入熱 が低減する。このため、膨張機構 (60)内部の低温冷媒と、圧縮機構 (50)内部の高温 冷媒と間での熱伝導による熱交換が減少する。したがって、圧縮'膨張ユニット(30) の能力低下や動力回収効果の低下を防止することができる。 On the other hand, as shown in FIG. 11, the surface temperature of the casing (31) is distributed in the circumferential direction so as to decrease in order from A to F. For example, A is 90 ° C of the discharge temperature of the compression mechanism (50), and F is a low temperature (near 0 °) due to the discharge temperature of the expansion mechanism (60). [0128] Therefore, it is better to provide the mechanism side mounting portion (104) avoiding the low surface temperature portion of the expansion mechanism (60) and the high surface temperature portion of the casing (31)! With this configuration, the mechanism-side mounting portion (104) at one end of the heat transfer path in the mounting plate (101) moves the surface temperature of the expansion mechanism (60) and the casing (31) in the vicinity of the expansion mechanism (60). ), The heat input from the high temperature side to the low temperature side is reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced. Accordingly, it is possible to prevent a reduction in the capacity of the compression / expansion unit (30) and a reduction in the power recovery effect.
[0129] 一実施形態 1の変形例 2—  [0129] Modification 2 of Embodiment 1—
図 12に示すように、上記ケーシング側取付部(105)を膨張機構 (60)の周囲よりも 表面温度の高!/、部分と膨張機構 (60)近傍の上記ケーシング (31)の周囲よりも表面 温度の低い部分とを結ぶように配置してもよい。なお、簡略化のために、貫通孔(106 , 107)は省略している。  As shown in FIG. 12, the casing side mounting portion (105) has a higher surface temperature than the surroundings of the expansion mechanism (60), and more than the surroundings of the casing (31) in the vicinity of the portion and the expansion mechanism (60). You may arrange | position so that a part with low surface temperature may be tied. Note that the through holes (106, 107) are omitted for simplification.
[0130] すなわち、膨張機構 (60)は全体的に低温に保たれているので、ケーシング (31) の最も表面温度の高レ、A部分を避けてケーシング側取付部(105)を設けるとよ!/、。な お、流入管(38)及び流出管(39)の間は、必然的にケーシング(31)の温度は低くな るので、この位置にケーシング側取付部(105)を設けるのがよい。このように構成する ことにより、マウンティングプレート(101)における伝熱経路の一端にあるケーシング 側取付部(105)が膨張機構 (60)の表面温度と該膨張機構 (60)近傍の上記ケーシン グ(31)との表面温度との差が小さくなるように配置されているので、高温側から低温 側への入熱が低減する。このため、膨張機構 (60)内部の低温冷媒と、圧縮機構 (50) 内部の高温冷媒と間での熱伝導による熱交換が減少する。したがって、圧縮'膨張 ユニット(30)の能力低下や動力回収効果の低下を防止することができる。  [0130] That is, since the expansion mechanism (60) is kept at a low temperature as a whole, the casing-side mounting portion (105) should be provided avoiding the portion A having the highest surface temperature of the casing (31). ! / Since the temperature of the casing (31) is inevitably lowered between the inflow pipe (38) and the outflow pipe (39), it is preferable to provide the casing side mounting portion (105) at this position. With this configuration, the casing-side mounting portion (105) at one end of the heat transfer path in the mounting plate (101) is connected to the surface temperature of the expansion mechanism (60) and the casing ( 31), the heat input from the high temperature side to the low temperature side is reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced. Accordingly, it is possible to prevent a reduction in the capacity of the compression / expansion unit (30) and a reduction in the power recovery effect.
[0131] 一実施形態 1の変形例 3—  [0131] Modification 3 of Embodiment 1—
図 13に示すように、上記機構側取付部(104)と、上記膨張機構 (60)における該 機構側取付部(104)と接合される接合部 (67)との間には、断熱材料よりなる断熱スぺ ーサ(110)を配置してもよい。断熱スぺーサ(110)は常に比較的低温に保たれる膨 張機構 (60)の近傍に設けられるので、耐熱性の低い断熱材料でもよぐ選択の自由 度が高い。 As shown in FIG. 13, between the mechanism side mounting portion (104) and the joint portion (67) joined to the mechanism side mounting portion (104) in the expansion mechanism (60), a heat insulating material is used. A heat insulating spacer (110) may be arranged. The insulation spacer (110) is always installed near the expansion mechanism (60), which is kept at a relatively low temperature. High degree.
[0132] このように構成することにより、マウンティングプレート(101)と膨張機構 (60)との間 の熱抵抗が大きくなるので、膨張機構(60)とケーシング(31)との間での熱交換が低 減される。このため、膨張機構 (60)内部の低温冷媒と、圧縮機構 (50)内部の高温冷 媒と間での熱伝導による熱交換が減少する。したがって、圧縮'膨張ユニット(30)の 能力低下や動力回収効果の低下を防止することができる。  [0132] This configuration increases the thermal resistance between the mounting plate (101) and the expansion mechanism (60), so that heat exchange between the expansion mechanism (60) and the casing (31) can be achieved. Is reduced. For this reason, heat exchange due to heat conduction between the low-temperature refrigerant inside the expansion mechanism (60) and the high-temperature refrigerant inside the compression mechanism (50) is reduced. Accordingly, it is possible to prevent a reduction in the capacity of the compression / expansion unit (30) and a reduction in the power recovery effect.
[0133] (その他の実施形態)  [0133] (Other Embodiments)
本発明は、上記実施形態について、以下のような構成としてもよい。  The present invention may be configured as follows with respect to the above embodiment.
[0134] すなわち、上記実施形態では、高圧ドーム型の圧縮 ·膨張ユニット(30)としたが、 ケーシング (31)内が低圧である、いわゆる低圧ドーム型の圧縮 ·膨張ユニット(30)と してもよい。この場合には、冷媒回路 (20)力、ら冷媒が直接圧縮機構 (50)に導入され 、圧縮された冷媒が直接ケーシング (31)外に吐出されるように構成される。圧縮機構 (50)は、上記実施形態と同様の形状をした熱抵抗の大きいマウンティングプレート(1 01)を介してケーシング(31)に固定される。ケーシング(31)内の雰囲気との温度差の 激しい、高温の圧縮機構(50)をマウンティングプレート(101)を介して低温のケーシ ング (31)に固定することにより、低温のケーシング (31)と高温の膨張機構 (60)との間 での熱伝導による熱交換が減少する。したがって、能力低下や動力回収効果の低下 を防止すること力できる。  That is, in the above embodiment, the high-pressure dome type compression / expansion unit (30) is used. However, as the so-called low-pressure dome type compression / expansion unit (30) in which the inside of the casing (31) has a low pressure. Also good. In this case, the refrigerant circuit (20) force and the refrigerant are directly introduced into the compression mechanism (50), and the compressed refrigerant is directly discharged out of the casing (31). The compression mechanism (50) is fixed to the casing (31) via a mounting plate (101) having a shape similar to that of the above embodiment and having a high thermal resistance. By fixing the high-temperature compression mechanism (50), which has a large temperature difference from the atmosphere in the casing (31), to the low-temperature casing (31) via the mounting plate (101), the low-temperature casing (31) Heat exchange by heat conduction with the hot expansion mechanism (60) is reduced. Therefore, it is possible to prevent a decline in capacity and power recovery effect.
[0135] 上記各実施形態では、膨張機構 (60)は、揺動ピストン型のロータリ式膨張機で構 成したが、ローリングピストン型のロータリ式膨張機によって膨張機構 (60)を構成して もよい。この膨張機構(60)では、各ロータリ機構部(70, 80)において、ブレード(76, 8 6)がピストン(75, 85)とは別体に形成される。そして、このブレード(76, 86)は、その 先端がピストン(75, 85)の外周面に押圧され、ピストン(75, 85)の移動に伴って進退 する。  [0135] In each of the above embodiments, the expansion mechanism (60) is constituted by a swinging piston type rotary expander. However, the expansion mechanism (60) may be constituted by a rolling piston type rotary expander. Good. In the expansion mechanism (60), the blades (76, 86) are formed separately from the pistons (75, 85) in each rotary mechanism (70, 80). The tip of the blade (76, 86) is pressed against the outer peripheral surface of the piston (75, 85), and moves forward and backward as the piston (75, 85) moves.
[0136] 上記各実施形態では、圧縮機構 (50)を揺動ピストン型のロータリ式圧縮機とし、 膨張機構 (60)を揺動ピストン型のロータリ式膨張機としたが、いずれもスクロール式 のものとしてもよい。  In each of the above embodiments, the compression mechanism (50) is a swinging piston type rotary compressor and the expansion mechanism (60) is a swinging piston type rotary expander. It may be a thing.
[0137] 上記実施形態では、マウンティングプレート(101)とケーシング (31)との間のプレ ート外周隙間(108)が一定以上のとき(例えば 5mm以上)でかつこのプレート外周隙 間(108)内で冷媒がよどんでいる場合には、この隙間部分に断熱材 (90, 96)を設け なくてもよい。すなわち、一般的な断熱材 (90, 96)を構成する樹脂系材料の熱伝導 率 0. 3w/m— kに対し、二酸化炭素冷媒の熱伝導率は、膨張機構 (60)側の空間 で 0. 07w/m— kとなり、二酸化炭素冷媒の方が樹脂系材料よりも 1オーダー低くな つている。このように、ガス冷媒の熱伝達係数の方が断熱材 (90, 96)の熱伝達係数よ りも小さいので、熱交換がむしろ減少するようになる。 [0137] In the above embodiment, the pre-between the mounting plate (101) and the casing (31). If the coolant gap in the outer periphery of the plate (108) is above a certain level (for example, 5mm or more) and the refrigerant is stagnant in the outer periphery of the plate (108), heat insulation (90, 96) is placed in the gap. It does not have to be provided. In other words, the thermal conductivity of the resin-based material composing the general heat insulating material (90, 96) is 0.3 w / m—k, whereas the thermal conductivity of the carbon dioxide refrigerant is in the space on the expansion mechanism (60) side. 0.07w / m—k, and the carbon dioxide refrigerant is one order lower than the resin material. Thus, since the heat transfer coefficient of the gas refrigerant is smaller than that of the heat insulating material (90, 96), the heat exchange is rather reduced.
[0138] 上記実施形態では、機構側取付部(104)及びケーシング側取付部(105)は、そ れぞれ周方向に等間隔に 3箇所ずつ設けたが、 2箇所又は 4箇所以上設けてもよい 。その場合にも、機構側取付部(104)とケーシング側取付部(105)とは、周方向にず らして配置するとよい。 [0138] In the above embodiment, the mechanism-side mounting portion (104) and the casing-side mounting portion (105) are provided at three locations at equal intervals in the circumferential direction, but two or four or more locations are provided. Also good. Even in this case, the mechanism-side mounting portion (104) and the casing-side mounting portion (105) are preferably arranged in a circumferential direction.
[0139] 上記実施形態では、第 1及び第 2断熱材 (90, 96)は、耐熱性の高!/、特殊ェンジ二 ァリングプラスチックで形成するとしたが、実施形態 1のように温度の比較的低い膨張 機構 (60)側に設ける場合には、冷媒温度が 100°C以下となるので、耐熱性の低!/、汎 用エンジニアリングプラスチックで形成してもよい。例えば、 POM (ポリアセタール)が 考えられる。また、エポキシや、 FRPでもよいが、 FRPの場合、炭素、ガラス繊維等を 含有させると熱伝導率が高くなるという欠点がある。  [0139] In the above embodiment, the first and second heat insulating materials (90, 96) are formed of high heat resistance! /, Special engineering plastic, but the temperature comparison as in the first embodiment. When it is provided on the side of the low expansion mechanism (60), the refrigerant temperature is 100 ° C or lower, so it may be formed of low heat resistance / general-purpose engineering plastic. For example, POM (polyacetal) can be considered. Epoxy and FRP may also be used, but FRP has the disadvantage that the thermal conductivity increases when carbon, glass fiber, or the like is contained.
[0140] 上記各実施形態では、冷媒は、二酸化炭素としたが、 R410A、 R407Cやイソブタン でもよい。  [0140] In each of the above embodiments, the refrigerant is carbon dioxide, but R410A, R407C, or isobutane may be used.
[0141] 上記各実施形態では、第 2空間(49)における、圧縮機構 (50)の上側に電動機 (4 [0141] In each of the above embodiments, the electric motor (4) is disposed above the compression mechanism (50) in the second space (49).
5)を配置した力 S、圧縮機構(50)の下側に配置してもよ!/、。 5) Placed force S, may be placed under the compression mechanism (50)! /.
[0142] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物[0142] The above embodiment is an essentially preferable example, and the present invention and its applied products.
、あるいはその用途の範囲を制限することを意図するものではなレ、。 , Or not intended to limit the scope of its use.
産業上の利用可能性  Industrial applicability
[0143] 以上説明したように、本発明は、圧縮機構と膨張機構が 1つのケーシング内に収 納された流体機械について有用である。 [0143] As described above, the present invention is useful for a fluid machine in which a compression mechanism and an expansion mechanism are housed in one casing.

Claims

請求の範囲 The scope of the claims
[1] 冷媒を循環させて冷凍サイクルを行う冷媒回路(20)に設けられる流体機械であつ て、  [1] A fluid machine provided in a refrigerant circuit (20) for performing a refrigeration cycle by circulating refrigerant,
ケーシング(31)と、  A casing (31);
上記ケーシング (31)に収納されて冷媒を圧縮する圧縮機構(50)と、 上記ケーシング (31)に収納されて冷媒を膨張させる膨張機構 (60)と、 上記ケーシング (31)に設けられて上記圧縮機構 (50)及び上記膨張機構 (60)を 連結する回転軸(40)と、  A compression mechanism (50) accommodated in the casing (31) for compressing the refrigerant; an expansion mechanism (60) accommodated in the casing (31) for expanding the refrigerant; and the casing (31) provided with the above-mentioned A rotating shaft (40) connecting the compression mechanism (50) and the expansion mechanism (60);
上記圧縮機構(50)又は膨張機構 (60)を上記ケーシング (31)に固定するための マウンティングプレート(101)とを備えて!/、る  A mounting plate (101) for fixing the compression mechanism (50) or the expansion mechanism (60) to the casing (31).
ことを特徴とする流体機械。  A fluid machine characterized by that.
[2] 請求項 1に記載の流体機械において、 [2] In the fluid machine according to claim 1,
上記ケーシング (31)は、円筒容器形状を有し、  The casing (31) has a cylindrical container shape,
上記マウンティングプレート(101)は、円環状に形成され、内周側に上記圧縮機 構 (50)又は膨張機構 (60)を固定する機構側取付部(104)と、外周側に上記ケーシ ング(31)に固定されるケーシング側取付部(105)とを備え、  The mounting plate (101) is formed in an annular shape, a mechanism side mounting portion (104) for fixing the compressor mechanism (50) or the expansion mechanism (60) on the inner peripheral side, and the casing ( And a casing side mounting portion (105) fixed to 31),
上記ケーシング側取付部(105)は半径方向外側へ突出し、各ケーシング側取付 部(105)間には、上記ケーシング (31)内面との間に所定のプレート外周隙間(108) が形成され、  The casing side mounting portion (105) protrudes radially outward, and a predetermined plate outer circumferential clearance (108) is formed between the casing side mounting portions (105) and the inner surface of the casing (31).
上記機構側取付部(104)とケーシング側取付部(105)とは、周方向にずらして配 置されている  The mechanism side mounting portion (104) and the casing side mounting portion (105) are arranged so as to be shifted in the circumferential direction.
ことを特徴とする流体機械。  A fluid machine characterized by that.
[3] 請求項 2に記載の流体機械において、 [3] In the fluid machine according to claim 2,
上記冷媒回路 (20)から冷媒が直接圧縮機構 (50)に導入され、該圧縮機構 (50) 力、ら圧縮された冷媒が上記ケーシング (31)内の内部空間(49)に吐出されて該内部 空間(49)からケーシング (31)外へ流出するように構成され、  The refrigerant is directly introduced into the compression mechanism (50) from the refrigerant circuit (20), and the compressed refrigerant is discharged into the internal space (49) in the casing (31) by the compression mechanism (50) force. Configured to flow out of the internal space (49) and out of the casing (31),
上記膨張機構 (60)は、上記マウンティングプレート(101)を介して上記ケーシング (31)に固定されている ことを特徴とする流体機械。 The expansion mechanism (60) is fixed to the casing (31) via the mounting plate (101). A fluid machine characterized by that.
[4] 請求項 2に記載の流体機械において、 [4] In the fluid machine according to claim 2,
上記冷媒回路 (20)力 冷媒が直接圧縮機構 (50)に導入され、圧縮された冷媒が 直接ケーシング (31)外に吐出されるように構成され、  The refrigerant circuit (20) force is configured such that the refrigerant is directly introduced into the compression mechanism (50), and the compressed refrigerant is directly discharged out of the casing (31),
上記圧縮機構(50)は、上記マウンティングプレート(101)を介して上記ケーシング (31)に固定されている  The compression mechanism (50) is fixed to the casing (31) via the mounting plate (101).
ことを特徴とする流体機械。  A fluid machine characterized by that.
[5] 請求項 3に記載の流体機械において、 [5] The fluid machine according to claim 3,
上記機構側取付部(104)は、上記膨張機構 (60)の周囲よりも表面温度の高!/ヽ部 分と該膨張機構 (60)近傍の上記ケーシング (31)の周囲よりも表面温度の低レ、部分と を結ぶように配置されている  The mechanism-side mounting portion (104) has a surface temperature higher than that of the expansion mechanism (60) around the casing and the casing (31) in the vicinity of the expansion mechanism (60). Low level, arranged to connect the part
ことを特徴とする流体機械。  A fluid machine characterized by that.
[6] 請求項 3に記載の流体機械において、 [6] In the fluid machine according to claim 3,
上記ケーシング側取付部(105)は、上記膨張機構 (60)の周囲よりも表面温度の 高い部分と該膨張機構 (60)近傍の上記ケーシング (31)の周囲よりも表面温度の低 V、部分とを結ぶように配置されてレ、る  The casing-side mounting portion (105) includes a portion having a surface temperature higher than that of the periphery of the expansion mechanism (60) and a portion having a surface temperature lower than that of the casing (31) in the vicinity of the expansion mechanism (60). It is arranged to tie
ことを特徴とする流体機械。  A fluid machine characterized by that.
[7] 請求項 2に記載の流体機械において、 [7] In the fluid machine according to claim 2,
上記マウンティングプレート(101)は、上記機構側取付部(104)と上記ケーシング 側取付部( 105)との間の周方向の断面積が、ケーシング側取付部( 105)の周方向の 断面積よりも小さくなつている  The mounting plate (101) has a circumferential cross-sectional area between the mechanism-side mounting portion (104) and the casing-side mounting portion (105) that is greater than the circumferential cross-sectional area of the casing-side mounting portion (105). Is getting smaller
ことを特徴とする流体機械。  A fluid machine characterized by that.
[8] 請求項 2に記載の流体機械において、 [8] In the fluid machine according to claim 2,
上記マウンティングプレート(101)は、板金構造である  The mounting plate (101) has a sheet metal structure.
ことを特徴とする流体機械。  A fluid machine characterized by that.
[9] 請求項 2に記載の流体機械において、 [9] In the fluid machine according to claim 2,
上記マウンティングプレート(101)は、貫通孔(106, 107)を複数備えている ことを特徴とする流体機械。 The mounting machine (101) includes a plurality of through holes (106, 107).
[10] 請求項 2に記載の流体機械において、 [10] In the fluid machine according to claim 2,
上記ケーシング (31)の内部空間に設けられ、上記圧縮機構 (50)又は膨張機構( 60)における上記ケーシング(31)内の露出面全体を覆い、上記回転軸(40)が貫通 する断熱材(90, 96)を備えている  A heat insulating material provided in the internal space of the casing (31), covers the entire exposed surface in the casing (31) of the compression mechanism (50) or the expansion mechanism (60), and penetrates the rotating shaft (40) ( 90, 96)
ことを特徴とする流体機械。  A fluid machine characterized by that.
[11] 請求項 10に記載の流体機械において、 [11] The fluid machine according to claim 10,
上記断熱材 (90, 96)は、上記マウンティングプレート(101)を境に上記回転軸(40 )の軸方向に第 1断熱材 (90)と第 2断熱材 (96)とに分割されて!/、る  The heat insulating material (90, 96) is divided into a first heat insulating material (90) and a second heat insulating material (96) in the axial direction of the rotating shaft (40) with the mounting plate (101) as a boundary! /
ことを特徴とする流体機械。  A fluid machine characterized by that.
[12] 請求項 10に記載の流体機械において、 [12] The fluid machine according to claim 10,
上記プレート外周隙間(108)にも、上記断熱材 (90, 96)が設けられている ことを特徴とする流体機械。  The fluid machine, wherein the heat insulating material (90, 96) is also provided in the outer circumferential clearance (108) of the plate.
[13] 請求項 2に記載の流体機械において、 [13] The fluid machine according to claim 2,
上記機構側取付部(104)と、上記圧縮機構 (50)又は膨張機構 (60)における該機 構側取付部(104)と接合される接合部 (67)との少なくとも一方は、接触面積を小さく するために突状に形成されている  At least one of the mechanism side mounting portion (104) and the joint portion (67) joined to the mechanism side mounting portion (104) in the compression mechanism (50) or the expansion mechanism (60) has a contact area. Protruding to reduce size
ことを特徴とする流体機械。  A fluid machine characterized by that.
[14] 請求項 2に記載の流体機械において、 [14] The fluid machine according to claim 2,
上記機構側取付部(104)と、上記圧縮機構 (50)又は膨張機構 (60)における該機 構側取付部(104)と接合される接合部(67)との間には、断熱材料よりなる断熱スぺー サ(110)が配置されている  Between the mechanism side mounting portion (104) and the joint portion (67) joined to the mechanism side mounting portion (104) in the compression mechanism (50) or the expansion mechanism (60), a heat insulating material is used. Insulating spacer (110) is placed
ことを特徴とする流体機械。  A fluid machine characterized by that.
[15] 請求項 2に記載の流体機械において、 [15] The fluid machine according to claim 2,
上記冷媒回路 (20)は、二酸化炭素を冷媒として超臨界冷凍サイクルを行う ことを特徴とする流体機械。  The fluid circuit, wherein the refrigerant circuit (20) performs a supercritical refrigeration cycle using carbon dioxide as a refrigerant.
PCT/JP2007/072576 2006-11-24 2007-11-21 Fluid machine WO2008062839A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES07832306.0T ES2536770T3 (en) 2006-11-24 2007-11-21 Fluid machine
EP07832306.0A EP2098730B1 (en) 2006-11-24 2007-11-21 Fluid machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-317127 2006-11-24
JP2006317127A JP4997935B2 (en) 2006-11-24 2006-11-24 Fluid machinery

Publications (1)

Publication Number Publication Date
WO2008062839A1 true WO2008062839A1 (en) 2008-05-29

Family

ID=39429769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072576 WO2008062839A1 (en) 2006-11-24 2007-11-21 Fluid machine

Country Status (4)

Country Link
EP (1) EP2098730B1 (en)
JP (1) JP4997935B2 (en)
ES (1) ES2536770T3 (en)
WO (1) WO2008062839A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012019040B4 (en) * 2012-09-28 2014-08-14 Harald Teinzer Scroll engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185309U (en) * 1974-12-28 1976-07-08
JPS60132094A (en) * 1983-12-21 1985-07-13 Matsushita Electric Ind Co Ltd Enclosed type rotary compressor
JPH02123296A (en) * 1988-10-31 1990-05-10 Toshiba Corp Rotary compressor
JP2005240562A (en) * 2004-02-24 2005-09-08 Nippon Soken Inc Scroll compressor
JP2006132329A (en) * 2004-11-02 2006-05-25 Daikin Ind Ltd Fluid machine
JP2006257884A (en) * 2005-03-15 2006-09-28 Daikin Ind Ltd Displacement type expansion machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462023B2 (en) * 2003-09-08 2010-05-12 ダイキン工業株式会社 Rotary expander
JP4517684B2 (en) * 2004-03-10 2010-08-04 ダイキン工業株式会社 Rotary expander

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185309U (en) * 1974-12-28 1976-07-08
JPS60132094A (en) * 1983-12-21 1985-07-13 Matsushita Electric Ind Co Ltd Enclosed type rotary compressor
JPH02123296A (en) * 1988-10-31 1990-05-10 Toshiba Corp Rotary compressor
JP2005240562A (en) * 2004-02-24 2005-09-08 Nippon Soken Inc Scroll compressor
JP2006132329A (en) * 2004-11-02 2006-05-25 Daikin Ind Ltd Fluid machine
JP2006257884A (en) * 2005-03-15 2006-09-28 Daikin Ind Ltd Displacement type expansion machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2098730A4 *

Also Published As

Publication number Publication date
JP4997935B2 (en) 2012-08-15
JP2008128183A (en) 2008-06-05
EP2098730A4 (en) 2014-02-19
ES2536770T3 (en) 2015-05-28
EP2098730A1 (en) 2009-09-09
EP2098730B1 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
EP1795701B1 (en) Fluid machine
WO2005088078A1 (en) Fluid machine
JP4077029B2 (en) Expander and expander integrated compressor
WO2005088079A1 (en) Rotary type expansion machine
EP2871365B1 (en) Scroll compressor and air conditioner including the same
JP4617964B2 (en) Fluid machinery
JP4830811B2 (en) Fluid machinery
AU2007322707B2 (en) Fluid machine
WO2008062839A1 (en) Fluid machine
JP4765911B2 (en) Fluid machinery
JP4617822B2 (en) Rotary expander
JP4924029B2 (en) Fluid machinery
JP2007247607A (en) Fluid machine
JP2006132332A (en) Fluid machine
JP4104534B2 (en) Hermetic compressor
JP2008163831A (en) Fluid machine
JP5109985B2 (en) Expansion machine
JP2008303738A (en) Fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007832306

Country of ref document: EP