WO2008062668A1 - Electron beam irradiating device - Google Patents

Electron beam irradiating device Download PDF

Info

Publication number
WO2008062668A1
WO2008062668A1 PCT/JP2007/071606 JP2007071606W WO2008062668A1 WO 2008062668 A1 WO2008062668 A1 WO 2008062668A1 JP 2007071606 W JP2007071606 W JP 2007071606W WO 2008062668 A1 WO2008062668 A1 WO 2008062668A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
electron
emitted
shape
chamber
Prior art date
Application number
PCT/JP2007/071606
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Kawai
Tatsuya Matsumura
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2008062668A1 publication Critical patent/WO2008062668A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means

Definitions

  • Electron beam irradiation device
  • the present invention relates to an electron beam irradiation apparatus.
  • a chamber that forms an electron beam passage hole, an electron gun that emits an electron beam provided on one end side of the chamber, a plurality of electron guns provided on the other end side of the chamber There exist some which are provided with the electron beam transmission unit which has an electron beam transmission member (for example, refer to patent documents 1).
  • Such an electron beam irradiation apparatus is particularly effective when the area to be irradiated with the electron beam is relatively wide because the electron beam emitted from the electron gun is deflected so as to sequentially pass through all the electron beam transmitting members. It is.
  • the electron beam transmission unit is provided with a plurality of electron beam transmission members because the electron beam transmission member is generally made of beryllium or the like.
  • each electron beam transmitting member is reduced in area to prevent the electron beam transmitting member from being damaged.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-239920
  • the electron beam irradiation apparatus as described above has the following problems. That is, when the electron beam emitted from the electron gun is deflected so as to sequentially pass through all the electron beam transmitting members, in the electron beam transmitting unit, adjacent electron beams that are adjacent to each other only by the electron beam transmitting member. The electron beam is also applied to the frame portion between the transmissive members. Therefore, the frame portion between adjacent electron beam transmitting members generates heat, and in the worst case, it may melt.
  • the present invention has been made in view of such circumstances, and in an electron beam transmission unit, an electron that can suppress the generation of heat at a frame portion between adjacent electron beam transmission members. It aims at providing a beam irradiation apparatus.
  • an electron beam irradiation apparatus emits an electron beam emitted from a force sword, provided in a chamber for forming an electron beam passage hole, and one end side of the chamber.
  • An electron gun an electron beam transmission unit provided on the other end side of the chamber and having a plurality of electron beam transmission members arranged in a predetermined direction, and an electron beam emitted from the electron gun and passing through the electron beam passage hole Focusing means for focusing, and deflecting means for deflecting the electron beam focused by the focusing means and passing through the electron beam passage hole in a predetermined direction, and in the direction of emission of the electron beam from the electron gun,
  • the shape of the electron emission portion and the shape of the electron beam transmission portion of the electron beam transmission member are substantially similar to each other.
  • the electron beam emitted from the electron gun is focused by the focusing means when passing through the electron beam passage hole, deflected in a predetermined direction by the deflecting means, and the predetermined direction
  • the electron beam transmission unit having a plurality of electron beam transmission members arranged in a row is irradiated.
  • the shape of the electron emission portion of the force sword and the shape of the electron beam transmission portion of the electron beam transmission member are substantially similar to each other.
  • the electron beam irradiation apparatus controls the focusing means so that the image of the electron beam applied to the electron beam transmission member is substantially the same as the shape of the electron beam transmission part in the emission direction.
  • Preferably means are provided.
  • each electron beam transmission member is emitted from the electron beam transmission unit to the outside while suppressing heat generation at the frame portion between adjacent electron beam transmission members.
  • the electron dose can be made uniform.
  • the electron gun has an intermediate electrode that generates an electric field that focuses the electron beam emitted from the electron emission portion.
  • the electron beam is also focused by the intermediate electrode before being focused by the focusing means. This prevents the electron beam image irradiated on the electron beam transmitting member from being distorted. it can.
  • the electron beam passage hole can be narrowed and the chamber can be downsized.
  • the electron beam transmission unit and the deflecting means are integrally rotatable with respect to the electron emission portion. Even when the image of the electron beam focused by the focusing means rotates with respect to the shape of the electron emitting part in the direction of emission of the electron beam from the electron gun, the electron beam transmission unit and the deflecting means with respect to the electron emitting part As a result, the force S matches the image of the electron beam applied to the electron beam transmitting member and the shape of the electron beam transmitting portion in the direction of emission of the electron beam from the electron gun.
  • the electron beam transmission part in the emission direction, preferably has a rectangular shape having a predetermined direction as a longitudinal direction. In this case, it is possible to irradiate the electron beam linearly along a predetermined direction while reducing the area of the electron beam transmitting portion and preventing the electron beam transmitting member from being damaged. Furthermore, since the electron emission portion is also rectangular in the direction of emission of the electron beam from the electron gun, it is possible to increase the amount of emitted electron springs compared to point-like ones.
  • the present invention in the electron beam transmission unit, it is possible to prevent the frame portion between adjacent electron beam transmission members from generating heat.
  • FIG. 1 is a longitudinal sectional view of an embodiment of an electron beam irradiation apparatus according to the present invention.
  • FIG. 2 is an enlarged longitudinal sectional view around the force sword of FIG.
  • FIG. 3 is an enlarged plan view around the force sword of FIG.
  • FIG. 4 is an enlarged vertical sectional view around the electron beam transmission unit of FIG.
  • FIG. 5 is a sectional view taken along line V—V in FIG.
  • FIG. 6 is an enlarged plan view of the periphery of the electron beam transmission unit of FIG.
  • FIG. 7 is a diagram showing a relationship between an electron beam image irradiated on an electron beam transmitting member and the shape of an electron beam transmitting part.
  • Bunch means 7 ... deflection coil (deflection means), 9 ... control part (control means), 10 ... electron gun, 11 ... force sword, 11a ... electron emission part, 17 ... intermediate electrode 20 ... Electron beam transmission unit, 21 ... Electron beam transmission member, 21a ... Electron beam transmission part, ⁇ ... Electron beam.
  • the electron beam irradiation apparatus 1 is hermetically sealed in the chamber 3 so as to close the chamber 3 that forms the electron beam passage hole 2 and the rear end (one end) 2a of the electron beam passage hole 2.
  • an electron beam transmission unit 20 that is airtightly attached to the chamber 3 so as to block the front end (other end) 2b of the electron beam passage hole 2.
  • the electron gun 10 emits the electron beam EB emitted from the force sword 11 in the Z-axis direction.
  • the electron beam EB emitted from the electron gun 10 passes through the electron beam passage hole 2 with a directing force toward the electron beam transmission unit 20.
  • the electron beam transmissive unit 20 has a plurality (here, five) of electron beam transmissive members 21 arranged in the Y-axis direction (predetermined direction).
  • the side irradiated with the electron beam EB by the electron beam irradiation apparatus 1 is the front side, and the opposite side is the rear side.
  • the electron beam EB emitted from the electron gun 10 is deflected in the Y-axis direction so as to sequentially pass through all the electron beam transmitting members 21.
  • the electron beam irradiation device 1 is used to irradiate an irradiation object that flows on the line in an inert gas such as nitrogen with an electron beam EB to dry, sterilize, or modify the surface of the irradiation object. Is done.
  • the chamber 3 includes a chamber 3 to which the electron gun 10 is attached and a chamber 3 to which the electron beam transmission unit 20 is attached.
  • Chamber 3 is formed in a cylindrical shape with metal
  • the cross section of the electron beam passage hole 2 formed by the chamber 3 is circular, and the electron beam passage hole 2 has a shape in which a small diameter portion on the front side and a large diameter portion on the rear side are connected.
  • the chamber 3 is formed in a trapezoidal plate shape from metal. Electron beam formed by chamber 3
  • the cross section of the passage hole 2 is a rectangular shape whose longitudinal direction is the Y-axis direction, and the electron beam passage hole 2 is The shape is divergent only in the Y-axis direction toward the front side.
  • a flange 4 formed of a metal into a disk shape.
  • Electron gun 10 In the chamber 3, an alignment coil 6 and a focusing coil (focusing means) 6 are arranged so as to be paired with the small diameter portion of the electron beam passage hole 2 interposed therebetween. Electron gun 10
  • the alignment beam 6 causes the electron beam ⁇ that passes through the sub-wire passage hole 2 to shift the mechanical center of each member constituting the electron gun section 10 and the passage of the electron beam ⁇ and the residual magnetism of each component member.
  • a deflection coil (biasing means) 7 is disposed on the front surface of the flange 4. Focused by the focusing coil 6 and passed through the electron beam passage hole 2.
  • the passing electron beam ⁇ is deflected by the deflection coil 7 in the ⁇ axis direction.
  • An exhaust pipe 8 for connecting the electron beam passage hole 2 and a vacuum pump (not shown) is formed in the chamber 3. Thereby, the inside of the chamber 3 (that is, the electron beam passage hole 2) is evacuated. Further, the electron beam irradiation apparatus 1 includes a control unit (control means) 9 for controlling the whole.
  • the electron gun 10 includes a case 12 formed of a metal in a rectangular parallelepiped shape, an insulating block 13, and a high breakdown voltage type connector 14.
  • the case 12 is airtightly fixed to the rear end portion of the chamber 3.
  • the front wall of the case 12 is provided with an opening 12a that allows the inside of the case 12 and the inside of the chamber 3 to communicate with each other.
  • an opening 12b for attaching the connector 14 is provided on the side wall of the case 12.
  • An uneven portion is provided on the inner surface of the case 12 around the opening 12b, so as to ensure the bonding strength with the insulating block 13.
  • the insulating block 13 is made of an insulating material (for example, epoxy resin) and insulates the power supply path from the connector 14 force to the cathode 11 from the outside.
  • the insulating block 13 includes a base portion 13a housed in the case 12, and a large portion of the electron beam passage hole 2 from the base portion 13a through the opening 12a.
  • a protruding portion 13b that protrudes into the diameter portion and whose front end portion faces the rear end of the small diameter portion of the electron beam passage hole 2i in the Z-axis direction.
  • the base portion 13a occupies most of the internal space of the case 12, and is in contact with the inner surface of the case 12 on the opening 12a side and the opening 12b side.
  • a film 15 made of a conductive material is affixed to a portion of the base portion 13a that does not contact the inner surface of the case 12, so that the film 15 is electrically connected to the case 12 having a ground potential.
  • the surface potential of the insulating block 13 facing the inner surface of the case 12 can be set to the ground potential, and the stability during operation can be improved.
  • the connector 14 is for supplying a high voltage to the force sword 11 from a power supply device external to the electron beam irradiation apparatus 1.
  • the connector 14 is inserted into the opening 12 b on the side wall of the case 12, and is buried and fixed in the insulating block 7 with the tip of the connector 14 positioned near the center of the insulating block 13.
  • An uneven portion is provided on the outer peripheral surface of the distal end portion of the connector 14 so as to ensure the bonding strength with the insulating block 13.
  • a proximal end portion of the connector 14 is provided with a flange inlet 14a into which a power plug for holding a distal end of an external wiring connected to the power supply device is inserted.
  • a pair of internal wires 16 and 16 are connected to the tip of the connector 14.
  • the internal wirings 16 and 16 extend from the tip of the connector 14 toward the center of the base portion 13a, and are bent at the center of the base portion 13a to extend to the front end portion of the protruding portion 13b. Sockets 31, 31 embedded in the front end portion of the protruding portion 13 b are connected to the internal wirings 16, 16.
  • the sockets 31, 31 are connected to the front end portion protruding from the front end surface of the protruding portion 13 b with a force sword 11.
  • the power supply pins 32 and 32 that are crossed are connected.
  • the power feeding pins 32 and 32 pass through the ceramic plate 33 disposed on the front end face of the protruding portion 13b, and are fixed to the ceramic plate 33 by brazing or the like.
  • the force sword 11 is a thin plate-like member that emits electrons to be an electron beam EB. That is, the cathode 11 is connected via the internal wiring 16, 16, the sockets 31 and 31, and the power supply pins 32 and 32 by a heating power supply device different from the power supply device used for emitting the electron beam EB. Thus, the electron emitter 11a (see Fig. 2) is heated to a temperature at which electrons can be emitted. After that, the force sword 11 emits electrons to be an electron beam EB when a high voltage is applied to one of the internal wirings 16 by the power supply device. Around the force sword 11, an intermediate electrode 17 which is a so-called grid is provided.
  • the intermediate electrode 17 is applied with a predetermined voltage to An electric field that focuses the electron beam EB by extracting electrons emitted from the cathode 11 is generated.
  • a predetermined voltage For applying a predetermined voltage to the intermediate electrode 17, the same potential as that of the cathode 11 can be easily applied to the intermediate electrode 17 by electrically connecting any of the internal wirings 16 near the tip of the protruding portion 13 b.
  • the internal wiring may be provided from the connector 14 in the same manner as the internal wirings 16 and 16. As a result, the electron beam EB is emitted from the electron gun 10 to the front side in the Z-axis direction.
  • a ceramic plate 33 is disposed on the front end face of the protruding portion 13b.
  • An encircling member 18 is disposed on the ceramic plate 33 so as to surround the front end portions of the power supply pins 32, 32.
  • the front end surface of the enclosing member 18 has a thin plate shape that covers and covers the front end of the opening of the enclosing member 18.
  • a lid member 19 is disposed.
  • the surrounding member 18 and the lid member 19 are made of metal and are in contact with the intermediate electrode 17. As a result, the surrounding member 18 and the lid member 19 have the same potential as the intermediate electrode 17.
  • the force sword 11, the surrounding member 18, the lid member 19, the power supply pins 32 and 32, and the ceramic plate 33 are integrally unitized. Therefore, when replacing the power sword 11, it is possible to replace this unit with force S. Accordingly, it is possible to easily replace the force sword 11 without making complicated adjustments such as positioning of the force sword 11 with respect to the lid member 19.
  • the force sword 11 is made into a thin plate shape with a high melting point metal (for example, tungsten, molybdenum, rhenium, niobium, tantalum, thorium oxide, etc.) or an alloy (for example, a mixed tungsten containing thorium oxide mixed with tungsten).
  • a rectangular electron emission portion 11a is formed and faces a rectangular aperture 19a provided on the lid member 19.
  • the aperture 19a is provided so as to include the front surface of the electron emission portion 11a when viewed from the Z-axis direction.
  • the shape is similar to that of the front surface of the electron emission portion 11a, and the distance between the edge portion of the aperture 19a and the edge portion of the front surface of the electron emission portion 11a is not in contact with each other. Yes.
  • a reflector ib supported by one of the power supply pins 32 is arranged at a distance of 0.5 mm to 1.5 mm from the electron emission portion 11a.
  • the electric field generated by the intermediate electrode 17 acts equally on the front surface of the electron emission portion 11a. Electrons are emitted substantially uniformly from the front surface of the electron emission portion 11a.
  • the electrons emitted from the electron emission part 11a are emitted as they are to the front side in the Z-axis direction.
  • electrons are also emitted from the rear and side surfaces of the electron emitting portion 11a, but among those electrons, those whose traveling direction has spread greatly are blocked by the lid member 19 without passing through the aperture 19a.
  • the reflector l ib reflects a part of the electrons emitted from the rear surface of the electron emission part 11a to the Z-axis direction side, and a part of it further reflects from the gap between the aperture 19a and the electron emission part 11a to the Z-axis. Released to the direction side. For this reason, it is placed in particular applications that require high current extraction!
  • the electron beam transmission unit 20 has a substrate 22 formed into a rectangular plate shape with brass.
  • the substrate 22 is airtightly attached to the front end surface of the chamber 3 via an O-ring 23 so that the rear end surface (one end surface) 22a contacts.
  • a frame member 24 to which the electron beam transmitting member 21 is fixed is attached to the end surface (other end surface) 22b through an O-ring 25 in an airtight manner.
  • Substrate 22 is connected to chamber 3 by bolt 26
  • the electron beam transmitting member 21 is detachably attached to the substrate 22 with bolts 27.
  • the electron beam transmitting member 21 can be kept airtight and is formed in a rectangular thin film shape using a material (for example, beryllium, titanium, aluminum, or the like) excellent in the transmittance of the electron beam EB.
  • the frame member 24 is formed in a rectangular ring shape from metal (for example, stainless steel).
  • the electron beam transmitting member 21 is airtightly fixed to the front end surface of the frame member 24 by, for example, brazing so as to cover and cover the front end of the opening of the frame member 24, and the electron beam transmitting portion of the electron beam transmitting member 21 21 a has a rectangular shape with the Y-axis direction as the longitudinal direction when viewed from the Z-axis direction. Note that, as viewed from the Z-axis direction, the shape of the electron emitting portion 11a of the force sword 11 and the shape of the electron beam transmitting portion 21a are substantially similar to each other.
  • an opening 22c having a rectangular cross-section is formed, and each opening 22c is divergent toward the rear end face 22a side of the substrate 22. It is the shape of.
  • a concave portion 22d having a rectangular cross section is formed in a portion of the rear end surface 22a of the substrate 22 facing the front end 2b of the electron beam passage hole 2.
  • the operation of the electron beam irradiation apparatus 1 configured as described above will be described.
  • the inside of the chamber 3 (that is, the electron beam passage hole 2) is evacuated by the vacuum pump through the exhaust pipe 8, and the electric power is supplied through the internal wirings 16, 16, the sockets 31, 31 and the power supply pins 32, 32.
  • a high voltage is applied to the force sword 11 by the source device, electrons are emitted from the force of the electron emitting portion 11a of the force sword 11.
  • Electrons emitted from the electron emitting portion 11a are emitted to the front side in the Z-axis direction by the aperture 19a and the reflector plate ib, accelerated and focused by the electric field generated by the intermediate electrode 17, and the electron beam EB is emitted from the electron gun.
  • the light is emitted from 10 to the front side in the Z-axis direction.
  • the electron beam EB emitted from the electron gun 10 and passing through the electron beam passage hole 2 is corrected for the central axis by the alignment coil 6, and then the electron beam transmitting member 21 by the focusing coil 6.
  • the image power S of the electron beam EB irradiated to the electron beam transmitting member 21 is controlled so as to be substantially the same as the shape of the electron beam transmitting portion 21a when viewed from the Z-axis direction.
  • the focusing coil 6 is controlled by the section 9.
  • An electron beam EB focused by the focusing coil 6 and passing through the electron beam passage hole 2 is
  • the central axial force of the electron beam EB passing through the line passing hole 2 is repeatedly changed linearly along the axial direction.
  • the time during which the electron beam EB is irradiated onto the frame portion 20a between the adjacent electron beam transmission members 21, 21 is longer than the time during which the electron beam transmission member 21 is irradiated with the electron beam EB.
  • the deflection coil 7 is controlled by the control unit 9 so as to be shortened. Such control is realized, for example, by causing the control unit 9 to pass a current whose current value changes stepwise through the deflection coil 7.
  • the electron beam EB deflected in the Y-axis direction by the deflection coil 7 is sequentially transmitted through each electron beam transmitting portion 21a and emitted to the outside.
  • the electron beam EB emitted to the outside is irradiated to an irradiation object flowing on the line in an inert gas such as nitrogen, and the irradiation object is dried, sterilized, surface-modified, and the like.
  • the electron beam EB emitted from the electron gun 10 is focused by the focusing coil 6 when passing through the electron beam passage hole 2, and is applied to the deflection coil 7.
  • the electron beam transmission unit 20 having a plurality of electron beam transmission members 21 that are deflected in the Y axis direction and arranged in the Y axis direction is irradiated.
  • the power sword 11 The shape of the child emitting portion 11a and the shape of the electron beam transmitting portion 21a of the electron beam transmitting member 21 are substantially similar to each other. Therefore, the electron beam transmitting member 21 is irradiated to the focusing coil 6.
  • Image force of the electron beam EB to be focused It becomes easy to focus the electron beam EB emitted from the electron emission portion 11a so as to be substantially the same as the shape of the electron beam transmission portion 21a in the Z-axis direction. Accordingly, the electron beam EB can be reliably emitted to the outside through each electron beam transmitting member 21, and in the electron beam transmitting unit 20, a frame portion 20a between adjacent electron beam transmitting members 21 and 21 is provided. Can be prevented from generating heat.
  • the electron beam EB emitted from the electron gun 10 and passing through the electron beam passage hole 2 is the image power S of the electron beam EB irradiated to the electron beam transmitting member 21,
  • the focusing coil 6 and the control unit 9 so as to be substantially the same as the shape of the electron beam transmitting part 21a in the Z-axis direction.
  • the electron beam EB is irradiated to the frame portion 20a between the adjacent electron beam transmissive members 21 and 21, and this portion is further suppressed from generating heat, while each electron beam transmissive unit 20 is transparent.
  • the electron dose emitted from the electron beam transmitting portion 21a to the outside can be made uniform.
  • the shape of the electron beam EB in the electron beam transmission part 21a rectangular, the X-direction width of the electron beam transmission part 2la, which is expensive and easily damaged, can be narrowed. And extending the life of the output window.
  • the electron gun 10 has an intermediate electrode 17 that generates an electric field that focuses the electron beam EB emitted from the electron emission portion 11a.
  • the electron beam EB is also focused by the intermediate electrode 17 before being focused by the focusing coil 6.
  • the electron beam passage hole 2 can be narrowed and the chamber 3 can be downsized.
  • the chamber 3 rotates about the Z axis with respect to the chamber 3 itself.
  • the electron beam transmission unit 20 and the deflection coil 7 are integrally rotatable with respect to the electron emission portion 11a.
  • an image of the electron beam EB focused by the focusing coil 6 is rotated with respect to the shape of the electron emitting portion 11a in the Z-axis direction.
  • the image of the electron beam EB irradiated on the electron beam transmission member 21 and the electrons in the Z-axis direction The shape of the line transmission part 21a can be matched.
  • the electron beam transmitting portion 21a in the Z-axis direction, has a rectangular shape with the Y-axis direction as the longitudinal direction.
  • the force S can be reduced by reducing the area of the electron beam transmitting portion 21a and irradiating the electron beam EB linearly along the Y-axis direction while preventing the electron beam transmitting member 21 from being damaged.
  • the electron emission portion 11a since the electron emission portion 11a is also rectangular, it can increase the life of the electron spring EB and increase the life of the electron spring EB compared to point-like ones. Become.

Abstract

In an electron beam irradiating device (1), an electron beam (EB), as emitted from an electron beam gun (10), is focused, when it passes through an electron beam passing hole (2), by a focusing coil (62), and is deflected in a Y-axis direction by a deflecting coil (7), so that it irradiates an electron beam penetrating unit (20) having a plurality of electron beam penetrating members (21) arranged in the Y-axis direction. Here, in a Z-axis direction, the shape of the electron beam emitting portion of a cathode (11) and the shape of the electron beam penetrating portions of the electron beam penetrating members (21) are in substantially similar relations to each other. Therefore, the electron beam (EB), as emitted from the electron beam emitting portion, can be so focused on the focusing coil (62) that the image of the electron beam (EB) to irradiate the electron beam penetrating members (21) may have substantially the same shape as that of the electron beam penetrating portions in the Z-axis direction.

Description

明 細 書  Specification
電子線照射装置  Electron beam irradiation device
技術分野  Technical field
[0001] 本発明は、電子線照射装置に関する。  [0001] The present invention relates to an electron beam irradiation apparatus.
背景技術  Background art
[0002] 従来の電子線照射装置として、電子線通過孔を形成するチャンバと、チャンバの一 端側に設けられ、電子線を出射する電子銃と、チャンバの他端側に設けられ、複数 の電子線透過部材を有する電子線透過ユニットと、を備えるものが存在する(例えば 、特許文献 1参照)。このような電子線照射装置は、電子銃から出射された電子線が 全ての電子線透過部材を順次透過するように偏向されるため、電子線を照射すべき 領域が比較的広い場合に特に有効である。なお、電子線透過ユニットに複数の電子 線透過部材が設けられるのは、電子線透過部材が一般的にベリリウム等からなる厚さ [0002] As a conventional electron beam irradiation apparatus, a chamber that forms an electron beam passage hole, an electron gun that emits an electron beam provided on one end side of the chamber, a plurality of electron guns provided on the other end side of the chamber, There exist some which are provided with the electron beam transmission unit which has an electron beam transmission member (for example, refer to patent documents 1). Such an electron beam irradiation apparatus is particularly effective when the area to be irradiated with the electron beam is relatively wide because the electron beam emitted from the electron gun is deflected so as to sequentially pass through all the electron beam transmitting members. It is. The electron beam transmission unit is provided with a plurality of electron beam transmission members because the electron beam transmission member is generally made of beryllium or the like.
10 11 m程度の薄膜であって破損し易いことに鑑み、各電子線透過部材を小面積化 して、電子線透過部材の破損を防止するためである。 In view of the fact that it is a thin film of about 10 11 m and is easily damaged, each electron beam transmitting member is reduced in area to prevent the electron beam transmitting member from being damaged.
特許文献 1 :特開 2004— 239920号公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-239920
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、上述したような電子線照射装置には、次のような問題が存在する。す なわち、電子銃から出射された電子線が全ての電子線透過部材を順次透過するよう に偏向される際に、電子線透過ユニットにおいては、電子線透過部材だけでなぐ隣 り合う電子線透過部材間のフレーム部分にも電子線が照射されることになる。そのた め、隣り合う電子線透過部材間のフレーム部分が発熱し、最悪の場合、溶融するお それがある。 However, the electron beam irradiation apparatus as described above has the following problems. That is, when the electron beam emitted from the electron gun is deflected so as to sequentially pass through all the electron beam transmitting members, in the electron beam transmitting unit, adjacent electron beams that are adjacent to each other only by the electron beam transmitting member. The electron beam is also applied to the frame portion between the transmissive members. Therefore, the frame portion between adjacent electron beam transmitting members generates heat, and in the worst case, it may melt.
[0004] そこで、本発明は、このような事情に鑑みてなされたものであり、電子線透過ュニッ トにおいて、隣り合う電子線透過部材間のフレーム部分が発熱するのを抑制すること ができる電子線照射装置を提供することを目的とする。  Therefore, the present invention has been made in view of such circumstances, and in an electron beam transmission unit, an electron that can suppress the generation of heat at a frame portion between adjacent electron beam transmission members. It aims at providing a beam irradiation apparatus.
課題を解決するための手段 [0005] 上記目的を達成するために、本発明に係る電子線照射装置は、電子線通過孔を 形成するチャンバと、チャンバの一端側に設けられ、力ソードから放出された電子線 を出射する電子銃と、チャンバの他端側に設けられ、所定の方向に並んだ複数の電 子線透過部材を有する電子線透過ユニットと、電子銃から出射されて電子線通過孔 を通過する電子線を集束する集束手段と、集束手段によって集束されて電子線通過 孔を通過する電子線を所定の方向に偏向する偏向手段と、を備え、電子銃からの電 子線の出射方向において、力ソードの電子放出部の形状と、電子線透過部材の電 子線透過部の形状とは、互いに略相似の関係にあることを特徴とする。 Means for solving the problem In order to achieve the above object, an electron beam irradiation apparatus according to the present invention emits an electron beam emitted from a force sword, provided in a chamber for forming an electron beam passage hole, and one end side of the chamber. An electron gun, an electron beam transmission unit provided on the other end side of the chamber and having a plurality of electron beam transmission members arranged in a predetermined direction, and an electron beam emitted from the electron gun and passing through the electron beam passage hole Focusing means for focusing, and deflecting means for deflecting the electron beam focused by the focusing means and passing through the electron beam passage hole in a predetermined direction, and in the direction of emission of the electron beam from the electron gun, The shape of the electron emission portion and the shape of the electron beam transmission portion of the electron beam transmission member are substantially similar to each other.
[0006] この電子線照射装置では、電子銃から出射された電子線は、電子線通過孔を通過 する際に集束手段によって集束され、偏向手段によって所定の方向に偏向されて、 その所定の方向に並んだ複数の電子線透過部材を有する電子線透過ユニットに照 射される。ここで、電子銃からの電子線の出射方向において、力ソードの電子放出部 の形状と、電子線透過部材の電子線透過部の形状とは、互いに略相似の関係にあ る。そのため、集束手段に対し、例えば、電子線透過部材に照射される電子線の像 力 電子銃からの電子線の出射方向において電子線透過部の形状と略同一となるよ うに、電子放出部から放出された電子線を集束させることが容易となる。従って、各電 子線透過部材を介して電子線を確実に外部へ出射することができると共に、電子線 透過ユニットにおレ、て、隣り合う電子線透過部材間のフレーム部分に電子線が照射 されてその部分が発熱するのを抑制することができる。  In this electron beam irradiation apparatus, the electron beam emitted from the electron gun is focused by the focusing means when passing through the electron beam passage hole, deflected in a predetermined direction by the deflecting means, and the predetermined direction The electron beam transmission unit having a plurality of electron beam transmission members arranged in a row is irradiated. Here, in the emission direction of the electron beam from the electron gun, the shape of the electron emission portion of the force sword and the shape of the electron beam transmission portion of the electron beam transmission member are substantially similar to each other. For this reason, for example, the image force of the electron beam applied to the electron beam transmitting member with respect to the focusing means, from the electron emitting portion so as to be substantially the same as the shape of the electron beam transmitting portion in the electron beam emission direction from the electron gun. It becomes easy to focus the emitted electron beam. Accordingly, the electron beam can be reliably emitted to the outside through each electron beam transmitting member, and the electron beam transmitting unit irradiates the electron beam to the frame portion between the adjacent electron beam transmitting members. It is possible to suppress that part from generating heat.
[0007] 本発明に係る電子線照射装置は、電子線透過部材に照射される電子線の像が、 出射方向において電子線透過部の形状と略同一となるように、集束手段を制御する 制御手段を備えることが好ましい。これにより、電子線透過ユニットにおいて、隣り合う 電子線透過部材間のフレーム部分が発熱するのを抑制しつつ、各電子線透過部材 にお!/、て、電子線透過部から外部へ出射される電子線量を均一化することができる。  [0007] The electron beam irradiation apparatus according to the present invention controls the focusing means so that the image of the electron beam applied to the electron beam transmission member is substantially the same as the shape of the electron beam transmission part in the emission direction. Preferably means are provided. As a result, in the electron beam transmission unit, each electron beam transmission member is emitted from the electron beam transmission unit to the outside while suppressing heat generation at the frame portion between adjacent electron beam transmission members. The electron dose can be made uniform.
[0008] 本発明に係る電子線照射装置にお!/、ては、電子銃は、電子放出部から放出された 電子線を集束する電界を発生させる中間電極を有することが好ましい。この場合、電 子線は、集束手段によって集束される前に、中間電極によっても集束されることにな る。これにより、電子線透過部材に照射される電子線の像が歪むのを防止することが できる。更に、電子放出部から放出された電子線が中間電極によって集束されるた め、電子線通過孔を狭くしてチャンバを小型化することができる。 In the electron beam irradiation apparatus according to the present invention, it is preferable that the electron gun has an intermediate electrode that generates an electric field that focuses the electron beam emitted from the electron emission portion. In this case, the electron beam is also focused by the intermediate electrode before being focused by the focusing means. This prevents the electron beam image irradiated on the electron beam transmitting member from being distorted. it can. Furthermore, since the electron beam emitted from the electron emission part is focused by the intermediate electrode, the electron beam passage hole can be narrowed and the chamber can be downsized.
[0009] 本発明に係る電子線照射装置にお!/、ては、電子線透過ユニット及び偏向手段は、 電子放出部に対して一体的に回転自在となっていることが好ましい。電子銃からの 電子線の出射方向における電子放出部の形状に対し、集束手段によって集束され る電子線の像が回転する場合であっても、電子放出部に対して電子線透過ユニット 及び偏向手段を一体的に回転させることで、電子線透過部材に照射される電子線の 像と、電子銃からの電子線の出射方向における電子線透過部の形状とを一致させる こと力 Sでさる。 [0009] In the electron beam irradiation apparatus according to the present invention, it is preferable that the electron beam transmission unit and the deflecting means are integrally rotatable with respect to the electron emission portion. Even when the image of the electron beam focused by the focusing means rotates with respect to the shape of the electron emitting part in the direction of emission of the electron beam from the electron gun, the electron beam transmission unit and the deflecting means with respect to the electron emitting part As a result, the force S matches the image of the electron beam applied to the electron beam transmitting member and the shape of the electron beam transmitting portion in the direction of emission of the electron beam from the electron gun.
[0010] 本発明に係る電子線照射装置においては、出射方向において、電子線透過部は、 所定の方向を長手方向とする長方形状となっていることが好ましい。この場合、電子 線透過部を小面積化して、電子線透過部材の破損を防止しつつ、所定の方向に沿 つて線状に電子線を照射することができる。更に、電子銃からの電子線の出射方向 において、電子放出部も長方形状となるため、点状のもの等に比べ、放出される電子 泉を増カロさせること力 Sできる。  [0010] In the electron beam irradiation apparatus according to the present invention, in the emission direction, the electron beam transmission part preferably has a rectangular shape having a predetermined direction as a longitudinal direction. In this case, it is possible to irradiate the electron beam linearly along a predetermined direction while reducing the area of the electron beam transmitting portion and preventing the electron beam transmitting member from being damaged. Furthermore, since the electron emission portion is also rectangular in the direction of emission of the electron beam from the electron gun, it is possible to increase the amount of emitted electron springs compared to point-like ones.
発明の効果  The invention's effect
[0011] 本発明によれば、電子線透過ユニットにおいて、隣り合う電子線透過部材間のフレ ーム部分が発熱するのを抑制することができる。  [0011] According to the present invention, in the electron beam transmission unit, it is possible to prevent the frame portion between adjacent electron beam transmission members from generating heat.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の係る電子線照射装置の一実施形態の縦断面図である。  FIG. 1 is a longitudinal sectional view of an embodiment of an electron beam irradiation apparatus according to the present invention.
[図 2]図 1の力ソード周辺の拡大縦断面図である。  FIG. 2 is an enlarged longitudinal sectional view around the force sword of FIG.
[図 3]図 1の力ソード周辺の拡大平面図である。  FIG. 3 is an enlarged plan view around the force sword of FIG.
[図 4]図 1の電子線透過ユニット周辺の拡大縦断面図である。  FIG. 4 is an enlarged vertical sectional view around the electron beam transmission unit of FIG.
[図 5]図 4の V— V線に沿っての断面図である。  FIG. 5 is a sectional view taken along line V—V in FIG.
[図 6]図 1の電子線透過ユニット周辺の拡大平面図である。  FIG. 6 is an enlarged plan view of the periphery of the electron beam transmission unit of FIG.
[図 7]電子線透過部材に照射される電子線の像と、電子線透過部の形状との関係を 示す図である。  FIG. 7 is a diagram showing a relationship between an electron beam image irradiated on an electron beam transmitting member and the shape of an electron beam transmitting part.
符号の説明 [0013] 1···電子線照射装置、 2, 2 , 2…電子線通過孔、 2a…電子線通過孔の後端(一 Explanation of symbols [0013] 1 ... Electron beam irradiation device, 2, 2, 2 ... electron beam passage hole, 2a ... rear end of electron beam passage hole (one
1 2  1 2
端)、 2b…電子線通過孔の前端 (他端)、 3, 3 , 3 …チャンバ、 6…集束コイル (集  End), 2b ... front end of electron beam passage hole (other end), 3, 3, 3 ... chamber, 6 ... focusing coil (collection)
1 2 2  1 2 2
束手段)、 7···偏向コイル (偏向手段)、 9···制御部(制御手段)、 10· 電子銃、 11··· 力ソード、 11a…電子放出部、 17···中間電極、 20···電子線透過ユニット、 21···電子 線透過部材、 21a…電子線透過部、 ΕΒ···電子線。  Bunch means), 7 ... deflection coil (deflection means), 9 ... control part (control means), 10 ... electron gun, 11 ... force sword, 11a ... electron emission part, 17 ... intermediate electrode 20 ... Electron beam transmission unit, 21 ... Electron beam transmission member, 21a ... Electron beam transmission part, ΕΒ ... Electron beam.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明に係る電子線照射装置の好適な実施形態について、図面を参照して 詳細に説明する。 Hereinafter, preferred embodiments of an electron beam irradiation apparatus according to the present invention will be described in detail with reference to the drawings.
[0015] 図 1に示されるように、電子線照射装置 1は、電子線通過孔 2を形成するチャンバ 3 と、電子線通過孔 2の後端(一端) 2aを塞ぐようにチャンバ 3に気密に取り付けられた 電子銃 10と、電子線通過孔 2の前端 (他端) 2bを塞ぐようにチャンバ 3に気密に取り 付けられた電子線透過ユニット 20と、を備えている。電子銃 10は、力ソード 11から放 出された電子線 EBを Z軸方向に出射する。電子銃 10から出射された電子線 EBは、 電子線透過ユニット 20に向力 て電子線通過孔 2を通過する。電子線透過ユニット 2 0は、 Y軸方向(所定の方向)に並んだ複数 (ここでは 5個)の電子線透過部材 21を有 している。なお、電子線照射装置 1によって電子線 EBが照射される側を前側、その 反対側を後側とする。  As shown in FIG. 1, the electron beam irradiation apparatus 1 is hermetically sealed in the chamber 3 so as to close the chamber 3 that forms the electron beam passage hole 2 and the rear end (one end) 2a of the electron beam passage hole 2. And an electron beam transmission unit 20 that is airtightly attached to the chamber 3 so as to block the front end (other end) 2b of the electron beam passage hole 2. The electron gun 10 emits the electron beam EB emitted from the force sword 11 in the Z-axis direction. The electron beam EB emitted from the electron gun 10 passes through the electron beam passage hole 2 with a directing force toward the electron beam transmission unit 20. The electron beam transmissive unit 20 has a plurality (here, five) of electron beam transmissive members 21 arranged in the Y-axis direction (predetermined direction). The side irradiated with the electron beam EB by the electron beam irradiation apparatus 1 is the front side, and the opposite side is the rear side.
[0016] このような電子線照射装置 1は、電子銃 10から出射された電子線 EBが全ての電子 線透過部材 21を順次透過するように Y軸方向に偏向されるため、電子線 EBを照射 すべき領域が比較的広い場合に特に有効である。例えば、電子線照射装置 1は、窒 素等の不活性ガス中においてライン上を流れる照射対象物に電子線 EBを照射し、 照射対象物の乾燥、殺菌、表面改質等を行うために使用される。  In such an electron beam irradiation apparatus 1, the electron beam EB emitted from the electron gun 10 is deflected in the Y-axis direction so as to sequentially pass through all the electron beam transmitting members 21. This is particularly effective when the area to be irradiated is relatively wide. For example, the electron beam irradiation device 1 is used to irradiate an irradiation object that flows on the line in an inert gas such as nitrogen with an electron beam EB to dry, sterilize, or modify the surface of the irradiation object. Is done.
[0017] チャンバ 3は、電子銃 10が取り付けられるチャンバ 3と、電子線透過ユニット 20が 取り付けられるチャンバ 3と、を有している。チャンバ 3は、金属により円柱状に形成  The chamber 3 includes a chamber 3 to which the electron gun 10 is attached and a chamber 3 to which the electron beam transmission unit 20 is attached. Chamber 3 is formed in a cylindrical shape with metal
2 1  twenty one
されている。チャンバ 3が形成する電子線通過孔 2の断面は円形状であり、電子線 通過孔 2は、前側の小径部と後側の大径部とが接続された形状となっている。一方、 チャンバ 3は、金属により台形板状に形成されている。チャンバ 3が形成する電子線  Has been. The cross section of the electron beam passage hole 2 formed by the chamber 3 is circular, and the electron beam passage hole 2 has a shape in which a small diameter portion on the front side and a large diameter portion on the rear side are connected. On the other hand, the chamber 3 is formed in a trapezoidal plate shape from metal. Electron beam formed by chamber 3
2 2 通過孔 2の断面は、 Y軸方向を長手方向とする長方形状であり、電子線通過孔 2は 、前側に向かって Y軸方向のみに末広がりの形状となっている。 2 2 The cross section of the passage hole 2 is a rectangular shape whose longitudinal direction is the Y-axis direction, and the electron beam passage hole 2 is The shape is divergent only in the Y-axis direction toward the front side.
[0018] チャンバ 3の後端部には、金属により円板状に形成されたフランジ 4が設けられて [0018] At the rear end of the chamber 3, there is provided a flange 4 formed of a metal into a disk shape.
2  2
おり、フランジ 4の後面は、チャンバ 3の前端面と接触している。チャンバ 3は、チヤ  The rear surface of the flange 4 is in contact with the front end surface of the chamber 3. Chamber 3
1 2 ンバ 3に対して Ζ軸回りに回転自在となっており、フランジ 4を貫通するボルト 5によつ てチャンバ 3に所望の角度で固定される。  1 2 Rotating around the shaft with respect to the member 3, and fixed to the chamber 3 at a desired angle by a bolt 5 passing through the flange 4.
[0019] チャンバ 3には、電子線通過孔 2の小径部を挟んで対になるようにァライメントコィ ノレ 6及び集束コイル (集束手段) 6が配置されている。電子銃 10から出射されて電In the chamber 3, an alignment coil 6 and a focusing coil (focusing means) 6 are arranged so as to be paired with the small diameter portion of the electron beam passage hole 2 interposed therebetween. Electron gun 10
1 2 1 2
子線通過孔 2を通過する電子線 ΕΒは、ァライメントコイル 6 によって、電子銃部 10や 電子線 ΕΒの通過経路を構成する各部材の機械的な中心のズレや、各構成部材の 残留磁気及び設置場所周辺の磁界等の影響による、所望の通過経路(電子線通過 孔 2の中心軸)に対しての電子線 ΕΒのズレを補正した後、集束コイル 6によって電 The alignment beam 6 causes the electron beam 子 that passes through the sub-wire passage hole 2 to shift the mechanical center of each member constituting the electron gun section 10 and the passage of the electron beam や and the residual magnetism of each component member. After correcting the misalignment of the electron beam に 対 し て with respect to the desired passage path (center axis of the electron beam passage hole 2) due to the influence of the magnetic field etc. around the installation site,
1 2 子線透過部材 21に対して集束される。また、フランジ 4の前面には、偏向コイル (偏 向手段) 7が配置されている。集束コイル 6によって集束されて電子線通過孔 2を通 1 2 Focused with respect to the transmission member 21. A deflection coil (biasing means) 7 is disposed on the front surface of the flange 4. Focused by the focusing coil 6 and passed through the electron beam passage hole 2.
2  2
過する電子線 ΕΒは、偏向コイル 7によって Υ軸方向に偏向される。  The passing electron beam 偏向 is deflected by the deflection coil 7 in the Υ axis direction.
[0020] チャンバ 3には、電子線通過孔 2と真空ポンプ(図示せず)とを接続する排気管 8 が形成されている。これにより、チャンバ 3内(すなわち、電子線通過孔 2)が真空引き される。また、電子線照射装置 1は、その全体を制御する制御部(制御手段) 9を備え ている。 [0020] An exhaust pipe 8 for connecting the electron beam passage hole 2 and a vacuum pump (not shown) is formed in the chamber 3. Thereby, the inside of the chamber 3 (that is, the electron beam passage hole 2) is evacuated. Further, the electron beam irradiation apparatus 1 includes a control unit (control means) 9 for controlling the whole.
[0021] 電子銃 10は、金属により直方体状に形成されたケース 12と、絶縁ブロック 13と、高 耐圧型のコネクタ 14と、を有している。  The electron gun 10 includes a case 12 formed of a metal in a rectangular parallelepiped shape, an insulating block 13, and a high breakdown voltage type connector 14.
[0022] ケース 12は、チャンバ 3の後端部に気密に固定されている。ケース 12の前壁には 、ケース 12内とチャンバ 3内とを連通させる開口 12aが設けられている。また、ケース 12の側壁には、コネクタ 14を取り付けるための開口 12bが設けられている。開口 12b の周りのケース 12の内面には凹凸部分が設けられており、絶縁ブロック 13との結合 強度の確保が図られている。  The case 12 is airtightly fixed to the rear end portion of the chamber 3. The front wall of the case 12 is provided with an opening 12a that allows the inside of the case 12 and the inside of the chamber 3 to communicate with each other. Further, an opening 12b for attaching the connector 14 is provided on the side wall of the case 12. An uneven portion is provided on the inner surface of the case 12 around the opening 12b, so as to ensure the bonding strength with the insulating block 13.
[0023] 絶縁ブロック 13は、絶縁性材料 (例えば、エポキシ樹脂等)からなり、コネクタ 14力、 らカソード 11への電力供給経路を外部から絶縁している。絶縁ブロック 13は、ケース 12内に収容された基部 13aと、基部 13aから開口 12aを通って電子線通過孔 2の大 径部内に突出し、 Z軸方向において前端部が電子線通過孔 2iの小径部の後端に対 向する突出部 13bと、を有している。基部 13aは、ケース 12の内部空間の大部分を 占めており、ケース 12の開口 12a側及び開口 12b側の内面と接触している。また、基 部 13aにおいてケース 12の内面と接触しない部分には、導電性材料からなるフィル ム 15が貼り付けられており、フィルム 15が接地電位であるケース 12と電気的に接続 されることで、ケース 12の内面に面する絶縁ブロック 13の表面電位を接地電位とす ることができ、動作時の安定性を向上させることができる。 The insulating block 13 is made of an insulating material (for example, epoxy resin) and insulates the power supply path from the connector 14 force to the cathode 11 from the outside. The insulating block 13 includes a base portion 13a housed in the case 12, and a large portion of the electron beam passage hole 2 from the base portion 13a through the opening 12a. A protruding portion 13b that protrudes into the diameter portion and whose front end portion faces the rear end of the small diameter portion of the electron beam passage hole 2i in the Z-axis direction. The base portion 13a occupies most of the internal space of the case 12, and is in contact with the inner surface of the case 12 on the opening 12a side and the opening 12b side. In addition, a film 15 made of a conductive material is affixed to a portion of the base portion 13a that does not contact the inner surface of the case 12, so that the film 15 is electrically connected to the case 12 having a ground potential. The surface potential of the insulating block 13 facing the inner surface of the case 12 can be set to the ground potential, and the stability during operation can be improved.
[0024] コネクタ 14は、電子線照射装置 1の外部の電源装置から力ソード 11に高電圧を供 給するためのものである。コネクタ 14は、ケース 12の側壁の開口 12bに差し込まれ、 コネクタ 14の先端が絶縁ブロック 13の中心付近に位置した状態で絶縁ブロック 7中 に埋没されて固定されている。コネクタ 14の先端部の外周面には凹凸部分が設けら れており、絶縁ブロック 13との結合強度の確保が図られている。  The connector 14 is for supplying a high voltage to the force sword 11 from a power supply device external to the electron beam irradiation apparatus 1. The connector 14 is inserted into the opening 12 b on the side wall of the case 12, and is buried and fixed in the insulating block 7 with the tip of the connector 14 positioned near the center of the insulating block 13. An uneven portion is provided on the outer peripheral surface of the distal end portion of the connector 14 so as to ensure the bonding strength with the insulating block 13.
[0025] コネクタ 14の基端部には、電源装置と接続された外部配線の先端を保持する電源 用プラグが揷入される揷入口 14aが設けられている。また、コネクタ 14の先端には、 1 対の内部配線 16, 16が接続されている。内部配線 16, 16は、コネクタ 14の先端か ら基部 13aの中心に向かって延在すると共に、基部 13aの中心で折り曲げられて突 出部 13bの前端部まで延在している。内部配線 16, 16には、突出部 13bの前端部 に埋設されたソケット 31 , 31が接続されており、ソケット 31 , 31には、突出部 13bの 前端面から突出した前端部に力ソード 11が掛け渡された給電用ピン 32, 32が結合 されている。なお、給電用ピン 32, 32は、突出部 13bの前端面上に配置されたセラミ ック板 33を貫通して、セラミック板 33にロウ付け等により固定されている。  [0025] A proximal end portion of the connector 14 is provided with a flange inlet 14a into which a power plug for holding a distal end of an external wiring connected to the power supply device is inserted. A pair of internal wires 16 and 16 are connected to the tip of the connector 14. The internal wirings 16 and 16 extend from the tip of the connector 14 toward the center of the base portion 13a, and are bent at the center of the base portion 13a to extend to the front end portion of the protruding portion 13b. Sockets 31, 31 embedded in the front end portion of the protruding portion 13 b are connected to the internal wirings 16, 16. The sockets 31, 31 are connected to the front end portion protruding from the front end surface of the protruding portion 13 b with a force sword 11. The power supply pins 32 and 32 that are crossed are connected. The power feeding pins 32 and 32 pass through the ceramic plate 33 disposed on the front end face of the protruding portion 13b, and are fixed to the ceramic plate 33 by brazing or the like.
[0026] 力ソード 11は、電子線 EBとなる電子を放出する薄板状部材である。すなわち、カソ ード 11は、電子線 EBを放出するために用いられる電源装置とは別の加熱用電源装 置によって、内部配線 16, 16、ソケット 31 , 31及び給電用ピン 32, 32を介して、電 子放出部 11a (図 2参照)が電子を放出可能な温度まで通電加熱される。その後、力 ソード 11は、電源装置によって、内部配線 16の一方に高電圧が印加されることで、 電子線 EBとなる電子を放出する。力ソード 11の周囲には、いわゆるグリッドである中 間電極 17が設けられている。中間電極 17は、所定の電圧が印加されることで、カソ ード 11から放出された電子を引き出して電子線 EBを集束する電界を発生させる。な お、中間電極 17に対する所定の電圧印加には、内部配線 16のいずれかと突出部 1 3bの先端付近において電気的に接続させることで、簡易的に中間電極 17へカソー ド 11と同じ電位を与えてもよいし、内部配線 16 , 16と同様にコネクタ 14から内部配 線を設けてもよい。これにより、電子線 EBが電子銃 10から Z軸方向前側に出射され [0026] The force sword 11 is a thin plate-like member that emits electrons to be an electron beam EB. That is, the cathode 11 is connected via the internal wiring 16, 16, the sockets 31 and 31, and the power supply pins 32 and 32 by a heating power supply device different from the power supply device used for emitting the electron beam EB. Thus, the electron emitter 11a (see Fig. 2) is heated to a temperature at which electrons can be emitted. After that, the force sword 11 emits electrons to be an electron beam EB when a high voltage is applied to one of the internal wirings 16 by the power supply device. Around the force sword 11, an intermediate electrode 17 which is a so-called grid is provided. The intermediate electrode 17 is applied with a predetermined voltage to An electric field that focuses the electron beam EB by extracting electrons emitted from the cathode 11 is generated. For applying a predetermined voltage to the intermediate electrode 17, the same potential as that of the cathode 11 can be easily applied to the intermediate electrode 17 by electrically connecting any of the internal wirings 16 near the tip of the protruding portion 13 b. The internal wiring may be provided from the connector 14 in the same manner as the internal wirings 16 and 16. As a result, the electron beam EB is emitted from the electron gun 10 to the front side in the Z-axis direction.
[0027] 図 2, 3に示されるように、突出部 13bの前端面には、給電用ピン 32, 32が貫通して 固定されたセラミック板 33が配置されている。セラミック板 33上には、給電用ピン 32, 32の前端部を包囲する包囲部材 18が配置されており、包囲部材 18の前端面には、 包囲部材 18の開口の前端を覆い塞ぐ薄板状の蓋部材 19が配置されている。包囲部 材 18及び蓋部材 19は、金属からなり、中間電極 17と接触している。これにより、包囲 部材 18及び蓋部材 19は、中間電極 17と同電位となる。なお、力ソード 11、包囲部材 18、蓋部材 19、給電用ピン 32, 32及びセラミック板 33は、一体的にユニット化され ている。そのため、力ソード 11の交換の際には、このユニットごと交換すること力 Sできる 。従って、蓋部材 19に対する力ソード 11の位置決め等の煩雑な調整をすることなぐ 力ソード 11を容易に交換することが可能となる。 As shown in FIGS. 2 and 3, a ceramic plate 33 is disposed on the front end face of the protruding portion 13b. An encircling member 18 is disposed on the ceramic plate 33 so as to surround the front end portions of the power supply pins 32, 32. The front end surface of the enclosing member 18 has a thin plate shape that covers and covers the front end of the opening of the enclosing member 18. A lid member 19 is disposed. The surrounding member 18 and the lid member 19 are made of metal and are in contact with the intermediate electrode 17. As a result, the surrounding member 18 and the lid member 19 have the same potential as the intermediate electrode 17. The force sword 11, the surrounding member 18, the lid member 19, the power supply pins 32 and 32, and the ceramic plate 33 are integrally unitized. Therefore, when replacing the power sword 11, it is possible to replace this unit with force S. Accordingly, it is possible to easily replace the force sword 11 without making complicated adjustments such as positioning of the force sword 11 with respect to the lid member 19.
[0028] 力ソード 11は、高融点金属(例えば、タングステン、モリブデン、レニウム、ニオブ、 タンタル、酸化トリウム等)や合金 (例えば、タングステンに酸化トリウムを混合したトリ ェテッド'タングステン等)により薄板状に形成され、蓋部材 19に設けられた長方形状 のアパーチャ 19aに臨む長方形状の電子放出部 11aを有している。アパーチャ 19a は、 Z軸方向から見て、電子放出部 11aの前面を含むように設けられている。また、そ の形状は電子放出部 11aの前面と相似形であり、アパーチャ 19aの縁部と、電子放 出部 11 aの前面の縁部とが接触しない範囲内で、その間隔が狭くなつている。電子 放出部 11 aの後側には、一方の給電用ピン 32に支持された反射板 l ibが電子放出 部 11 aと 0. 5mm〜; 1. 5mmの間隔をとつて配置されている。また、電子放出部 11a の前面と蓋部材 19の前面とが略同一平面上に位置しているため、中間電極 17によ つて発生させられる電界が電子放出部 11 aの前面に同等に作用し、電子放出部 1 1a の前面から電子が略均一に放出される。なお、電子放出部 11aから放出された電子 のうち、電子放出部 11aの前面からの電子は、そのまま Z軸方向前側に放出される。 一方、電子放出部 11aの後面および側面からも電子は放出されるが、それらの電子 のうち、その進行方向が大きく広がったものはアパーチャ 19aを通過することなく蓋部 材 19により遮断されるために、放出される電子の意図しない広がりを抑制することで 電子線 EBの形状を保持すること力 Sできる。また、反射板 l ibは、電子放出部 11aの 後面から放出された電子の一部を Z軸方向側に反射し、更にその一部が、ァパーチ ャ 19aと電子放出部 11aの隙間から Z軸方向側に放出される。そのため、特に大電流 の取り出しが必要な用途にお!/、て、必要に応じて配置されて!/、る。 [0028] The force sword 11 is made into a thin plate shape with a high melting point metal (for example, tungsten, molybdenum, rhenium, niobium, tantalum, thorium oxide, etc.) or an alloy (for example, a mixed tungsten containing thorium oxide mixed with tungsten). A rectangular electron emission portion 11a is formed and faces a rectangular aperture 19a provided on the lid member 19. The aperture 19a is provided so as to include the front surface of the electron emission portion 11a when viewed from the Z-axis direction. The shape is similar to that of the front surface of the electron emission portion 11a, and the distance between the edge portion of the aperture 19a and the edge portion of the front surface of the electron emission portion 11a is not in contact with each other. Yes. On the rear side of the electron emission portion 11a, a reflector ib supported by one of the power supply pins 32 is arranged at a distance of 0.5 mm to 1.5 mm from the electron emission portion 11a. Further, since the front surface of the electron emission portion 11a and the front surface of the lid member 19 are located on substantially the same plane, the electric field generated by the intermediate electrode 17 acts equally on the front surface of the electron emission portion 11a. Electrons are emitted substantially uniformly from the front surface of the electron emission portion 11a. The electrons emitted from the electron emission part 11a Among them, the electrons from the front surface of the electron emission portion 11a are emitted as they are to the front side in the Z-axis direction. On the other hand, electrons are also emitted from the rear and side surfaces of the electron emitting portion 11a, but among those electrons, those whose traveling direction has spread greatly are blocked by the lid member 19 without passing through the aperture 19a. In addition, it is possible to maintain the shape of the electron beam EB by suppressing the unintended spread of the emitted electrons. Further, the reflector l ib reflects a part of the electrons emitted from the rear surface of the electron emission part 11a to the Z-axis direction side, and a part of it further reflects from the gap between the aperture 19a and the electron emission part 11a to the Z-axis. Released to the direction side. For this reason, it is placed in particular applications that require high current extraction!
[0029] 図 4〜6に示されるように、電子線透過ユニット 20は、真鍮により長方形板状に形成 された基板 22を有している。基板 22は、その後端面(一端面) 22aが接触するように 、チャンバ 3の前端面に Oリング 23を介して気密に取り付けられている。基板 22の前 As shown in FIGS. 4 to 6, the electron beam transmission unit 20 has a substrate 22 formed into a rectangular plate shape with brass. The substrate 22 is airtightly attached to the front end surface of the chamber 3 via an O-ring 23 so that the rear end surface (one end surface) 22a contacts. Before board 22
2  2
端面(他端面) 22bには、電子線透過部材 21が固定された枠部材 24が Oリング 25を 介して気密に取り付けられている。基板 22は、チャンバ 3に対してボルト 26によって  A frame member 24 to which the electron beam transmitting member 21 is fixed is attached to the end surface (other end surface) 22b through an O-ring 25 in an airtight manner. Substrate 22 is connected to chamber 3 by bolt 26
2  2
着脱自在となっており、電子線透過部材 21は、基板 22に対してボルト 27によって着 脱自在となっている。  The electron beam transmitting member 21 is detachably attached to the substrate 22 with bolts 27.
[0030] 電子線透過部材 21は、気密の保持が可能で、電子線 EBの透過性に優れた材料( 例えば、ベリリウム、チタン、アルミニウム等)により長方形薄膜状に形成されている。 枠部材 24は、金属(例えば、ステンレス鋼等)により長方形環状に形成されている。 電子線透過部材 21は、枠部材 24の開口の前端を覆い塞ぐように、枠部材 24の前端 面に例えばロウ付け等により気密に固定されており、電子線透過部材 21の電子線透 過部 21 aは、 Z軸方向から見て、 Y軸方向を長手方向とする長方形状となっている。 なお、 Z軸方向から見て、力ソード 11の電子放出部 11aの形状と、電子線透過部 21a の形状とは、互いに略相似の関係にある。  [0030] The electron beam transmitting member 21 can be kept airtight and is formed in a rectangular thin film shape using a material (for example, beryllium, titanium, aluminum, or the like) excellent in the transmittance of the electron beam EB. The frame member 24 is formed in a rectangular ring shape from metal (for example, stainless steel). The electron beam transmitting member 21 is airtightly fixed to the front end surface of the frame member 24 by, for example, brazing so as to cover and cover the front end of the opening of the frame member 24, and the electron beam transmitting portion of the electron beam transmitting member 21 21 a has a rectangular shape with the Y-axis direction as the longitudinal direction when viewed from the Z-axis direction. Note that, as viewed from the Z-axis direction, the shape of the electron emitting portion 11a of the force sword 11 and the shape of the electron beam transmitting portion 21a are substantially similar to each other.
[0031] 基板 22において各電子線透過部材 21に対向する部分には、断面が長方形状の 開口 22cが形成されており、各開口 22cは、基板 22の後端面 22a側に向かって末広 力りの形状となっている。基板 22の後端面 22aにおいて電子線通過孔 2の前端 2bに 対向する部分には、断面が長方形状の凹部 22dが形成されて!/、る。  [0031] In the portion of the substrate 22 that faces each electron beam transmitting member 21, an opening 22c having a rectangular cross-section is formed, and each opening 22c is divergent toward the rear end face 22a side of the substrate 22. It is the shape of. A concave portion 22d having a rectangular cross section is formed in a portion of the rear end surface 22a of the substrate 22 facing the front end 2b of the electron beam passage hole 2.
[0032] 以上のように構成された電子線照射装置 1の動作について説明する。 [0033] 排気管 8を介して真空ポンプによってチャンバ 3内(すなわち、電子線通過孔 2)が 真空引きされ、内部配線 16, 16、ソケット 31 , 31及び給電用ピン 32, 32を介して電 源装置によって力ソード 11に高電圧が印加されると、力ソード 11の電子放出部 11a 力、ら電子が放出される。電子放出部 11aから放出された電子は、アパーチャ 19a及 び反射板 l ibによって Z軸方向前側に放出され、中間電極 17によって発生させられ た電界により加速及び集束されて、電子線 EBが電子銃 10から Z軸方向前側に出射 される。 The operation of the electron beam irradiation apparatus 1 configured as described above will be described. [0033] The inside of the chamber 3 (that is, the electron beam passage hole 2) is evacuated by the vacuum pump through the exhaust pipe 8, and the electric power is supplied through the internal wirings 16, 16, the sockets 31, 31 and the power supply pins 32, 32. When a high voltage is applied to the force sword 11 by the source device, electrons are emitted from the force of the electron emitting portion 11a of the force sword 11. Electrons emitted from the electron emitting portion 11a are emitted to the front side in the Z-axis direction by the aperture 19a and the reflector plate ib, accelerated and focused by the electric field generated by the intermediate electrode 17, and the electron beam EB is emitted from the electron gun. The light is emitted from 10 to the front side in the Z-axis direction.
[0034] 電子銃 10から出射されて電子線通過孔 2を通過する電子線 EBは、ァライメントコィ ル 6 によって中心軸の補正がなされた後、集束コイル 6によって電子線透過部材 21  The electron beam EB emitted from the electron gun 10 and passing through the electron beam passage hole 2 is corrected for the central axis by the alignment coil 6, and then the electron beam transmitting member 21 by the focusing coil 6.
1 2  1 2
に対して集束される。このとき、図 7に示されるように、電子線透過部材 21に照射され る電子線 EBの像力 S、Z軸方向から見て電子線透過部 21aの形状と略同一となるよう に、制御部 9によって集束コイル 6が制御される。  Are focused on. At this time, as shown in FIG. 7, the image power S of the electron beam EB irradiated to the electron beam transmitting member 21 is controlled so as to be substantially the same as the shape of the electron beam transmitting portion 21a when viewed from the Z-axis direction. The focusing coil 6 is controlled by the section 9.
2  2
[0035] 集束コイル 6によって集束されて電子線通過孔 2を通過する電子線 EBは、偏向コ  An electron beam EB focused by the focusing coil 6 and passing through the electron beam passage hole 2 is
2  2
ィル 7によって Y軸方向に偏向される。つまり、集束コイル 6によって集束されて電子  Deflected in the Y-axis direction by In other words, the electrons are focused by the focusing coil 6
2  2
線通過孔 2を通過する電子線 EBの中心軸力 軸方向に沿って線状に繰り返し変化 させられる。このとき、電子線透過ユニット 20において、電子線透過部材 21に電子線 EBが照射される時間より、隣り合う電子線透過部材 21 , 21間のフレーム部分 20aに 電子線 EBが照射される時間が短くなるように、制御部 9によって偏向コイル 7が制御 される。このような制御は、例えば、ステップ状に電流値が変化する電流を制御部 9が 偏向コイル 7に流すことで実現される。  The central axial force of the electron beam EB passing through the line passing hole 2 is repeatedly changed linearly along the axial direction. At this time, in the electron beam transmission unit 20, the time during which the electron beam EB is irradiated onto the frame portion 20a between the adjacent electron beam transmission members 21, 21 is longer than the time during which the electron beam transmission member 21 is irradiated with the electron beam EB. The deflection coil 7 is controlled by the control unit 9 so as to be shortened. Such control is realized, for example, by causing the control unit 9 to pass a current whose current value changes stepwise through the deflection coil 7.
[0036] 偏向コイル 7によって Y軸方向に偏向された電子線 EBは、各電子線透過部 21aを 順次透過して外部へ出射される。外部へ出射された電子線 EBは、窒素等の不活性 ガス中においてライン上を流れる照射対象物に照射され、照射対象物の乾燥、殺菌 、表面改質等が行われる。  [0036] The electron beam EB deflected in the Y-axis direction by the deflection coil 7 is sequentially transmitted through each electron beam transmitting portion 21a and emitted to the outside. The electron beam EB emitted to the outside is irradiated to an irradiation object flowing on the line in an inert gas such as nitrogen, and the irradiation object is dried, sterilized, surface-modified, and the like.
[0037] 以上説明したように、電子線照射装置 1では、電子銃 10から出射された電子線 EB は、電子線通過孔 2を通過する際に集束コイル 6 によって集束され、偏向コイル 7に  As described above, in the electron beam irradiation apparatus 1, the electron beam EB emitted from the electron gun 10 is focused by the focusing coil 6 when passing through the electron beam passage hole 2, and is applied to the deflection coil 7.
2  2
よって Y軸方向に偏向されて、 Y軸方向に並んだ複数の電子線透過部材 21を有す る電子線透過ユニット 20に照射される。ここで、 Z軸方向において、力ソード 11の電 子放出部 11aの形状と、電子線透過部材 21の電子線透過部 21aの形状とは、互い に略相似の関係にある。そのため、集束コイル 6に対し、電子線透過部材 21に照射 Accordingly, the electron beam transmission unit 20 having a plurality of electron beam transmission members 21 that are deflected in the Y axis direction and arranged in the Y axis direction is irradiated. Here, in the Z-axis direction, the power sword 11 The shape of the child emitting portion 11a and the shape of the electron beam transmitting portion 21a of the electron beam transmitting member 21 are substantially similar to each other. Therefore, the electron beam transmitting member 21 is irradiated to the focusing coil 6.
2  2
される電子線 EBの像力 Z軸方向において電子線透過部 21aの形状と略同一となる ように、電子放出部 11aから放出された電子線 EBを集束させることが容易となる。従 つて、各電子線透過部材 21を介して電子線 EBを確実に外部へ出射することができ ると共に、電子線透過ユニット 20において、隣り合う電子線透過部材 21 , 21間のフ レーム部分 20aが発熱するのを抑制することができる。  Image force of the electron beam EB to be focused It becomes easy to focus the electron beam EB emitted from the electron emission portion 11a so as to be substantially the same as the shape of the electron beam transmission portion 21a in the Z-axis direction. Accordingly, the electron beam EB can be reliably emitted to the outside through each electron beam transmitting member 21, and in the electron beam transmitting unit 20, a frame portion 20a between adjacent electron beam transmitting members 21 and 21 is provided. Can be prevented from generating heat.
[0038] また、電子線照射装置 1では、電子銃 10から出射されて電子線通過孔 2を通過す る電子線 EBは、電子線透過部材 21に照射される電子線 EBの像力 S、 Z軸方向にお いて電子線透過部 21aの形状と略同一となるように、集束コイル 6及び制御部 9によ In the electron beam irradiation apparatus 1, the electron beam EB emitted from the electron gun 10 and passing through the electron beam passage hole 2 is the image power S of the electron beam EB irradiated to the electron beam transmitting member 21, By the focusing coil 6 and the control unit 9 so as to be substantially the same as the shape of the electron beam transmitting part 21a in the Z-axis direction.
2  2
つて集束される。これにより、電子線透過ユニット 20において、隣り合う電子線透過部 材 21 , 21間のフレーム部分 20aに電子線 EBが照射されてその部分が発熱するのを より一層抑制しつつ、各電子線透過部材 21において、電子線透過部 21aから外部 へ出射される電子線量を均一化することができる。また、電子線透過部 21aにおける 電子線 EBの形状を長方形状とすることにより、高価で破損しやすい電子線透過部 2 laの X方向の幅を狭くすることができるので、装置の低価格化と出力窓の長寿命化も 併せて達成できる。  Will be focused. As a result, in the electron beam transmissive unit 20, the electron beam EB is irradiated to the frame portion 20a between the adjacent electron beam transmissive members 21 and 21, and this portion is further suppressed from generating heat, while each electron beam transmissive unit 20 is transparent. In the member 21, the electron dose emitted from the electron beam transmitting portion 21a to the outside can be made uniform. In addition, by making the shape of the electron beam EB in the electron beam transmission part 21a rectangular, the X-direction width of the electron beam transmission part 2la, which is expensive and easily damaged, can be narrowed. And extending the life of the output window.
[0039] また、電子線照射装置 1では、電子銃 10は、電子放出部 11aから放出された電子 線 EBを集束する電界を発生させる中間電極 17を有している。この場合、電子線 EB は、集束コイル 6 によって集束される前に、中間電極 17によっても集束されることに  In the electron beam irradiation apparatus 1, the electron gun 10 has an intermediate electrode 17 that generates an electric field that focuses the electron beam EB emitted from the electron emission portion 11a. In this case, the electron beam EB is also focused by the intermediate electrode 17 before being focused by the focusing coil 6.
2  2
なる。これにより、電子線透過部材 21に照射される電子線 EBの像が歪むのを防止 すること力 Sできる。更に、電子放出部 11aから放出された電子線 EBが中間電極 17に よって集束されるため、電子線通過孔 2を狭くしてチャンバ 3を小型化することができ  Become. Thereby, it is possible to prevent the image S of the electron beam EB irradiated to the electron beam transmitting member 21 from being distorted. Furthermore, since the electron beam EB emitted from the electron emission portion 11a is focused by the intermediate electrode 17, the electron beam passage hole 2 can be narrowed and the chamber 3 can be downsized.
[0040] また、電子線照射装置 1では、チャンバ 3がチャンバ 3に対して Z軸回りに回転自 [0040] Further, in the electron beam irradiation apparatus 1, the chamber 3 rotates about the Z axis with respect to the chamber 3 itself.
2 1  twenty one
在となっているため、電子線透過ユニット 20及び偏向コイル 7は、電子放出部 11aに 対して一体的に回転自在となっている。電子線照射装置 1では、 Z軸方向における電 子放出部 11aの形状に対し、集束コイル 6 によって集束される電子線 EBの像が回 転するが、電子放出部 11aに対して電子線透過ユニット 20及び偏向コイル 7を一体 的に回転させることで、電子線透過部材 21に照射される電子線 EBの像と、 Z軸方向 における電子線透過部 21aの形状とを一致させることができる。 Therefore, the electron beam transmission unit 20 and the deflection coil 7 are integrally rotatable with respect to the electron emission portion 11a. In the electron beam irradiation device 1, an image of the electron beam EB focused by the focusing coil 6 is rotated with respect to the shape of the electron emitting portion 11a in the Z-axis direction. However, by rotating the electron beam transmission unit 20 and the deflection coil 7 together with respect to the electron emission portion 11a, the image of the electron beam EB irradiated on the electron beam transmission member 21 and the electrons in the Z-axis direction The shape of the line transmission part 21a can be matched.
[0041] また、電子線照射装置 1では、 Z軸方向において、電子線透過部 21aは、 Y軸方向 を長手方向とする長方形状となっている。この場合、電子線透過部 21aを小面積化し て、電子線透過部材 21の破損を防止しつつ、 Y軸方向に沿って線状に電子線 EBを 照射すること力 Sできる。更に、 Z軸方向において、電子放出部 11aも長方形状となるた め、点状のもの等に比べ、放出される電子泉 EBを増カロさせること力 Sできることに加え 、長寿命化も可能となる。  [0041] In the electron beam irradiation apparatus 1, in the Z-axis direction, the electron beam transmitting portion 21a has a rectangular shape with the Y-axis direction as the longitudinal direction. In this case, the force S can be reduced by reducing the area of the electron beam transmitting portion 21a and irradiating the electron beam EB linearly along the Y-axis direction while preventing the electron beam transmitting member 21 from being damaged. Furthermore, in the Z-axis direction, since the electron emission portion 11a is also rectangular, it can increase the life of the electron spring EB and increase the life of the electron spring EB compared to point-like ones. Become.
産業上の利用可能性  Industrial applicability
[0042] 本発明によれば、電子線透過ユニットにお!/、て、隣り合う電子線透過部材間のフレ ーム部分が発熱するのを抑制することができる。  [0042] According to the present invention, it is possible to suppress heat generation in the frame portion between adjacent electron beam transmitting members in the electron beam transmitting unit.

Claims

請求の範囲 The scope of the claims
[1] 電子線通過孔を形成するチャンバと、 [1] a chamber for forming an electron beam passage hole;
前記チャンバの一端側に設けられ、力ソードから放出された電子線を出射する電子 銃と、  An electron gun provided on one end of the chamber and emitting an electron beam emitted from a force sword;
前記チャンバの他端側に設けられ、所定の方向に並んだ複数の電子線透過部材 を有する電子線透過ユニットと、  An electron beam transmission unit provided on the other end side of the chamber and having a plurality of electron beam transmission members arranged in a predetermined direction;
前記電子銃から出射されて前記電子線通過孔を通過する前記電子線を集束する 集束手段と、  Focusing means for focusing the electron beam emitted from the electron gun and passing through the electron beam passage hole;
前記集束手段によって集束されて前記電子線通過孔を通過する前記電子線を前 記所定の方向に偏向する偏向手段と、を備え、  Deflection means for deflecting the electron beam focused by the focusing means and passing through the electron beam passage hole in a predetermined direction,
前記電子銃からの前記電子線の出射方向において、前記力ソードの電子放出部 の形状と、前記電子線透過部材の電子線透過部の形状とは、互いに略相似の関係 にあることを特徴とする電子線照射装置。  The shape of the electron emission portion of the force sword and the shape of the electron beam transmission portion of the electron beam transmission member are substantially similar to each other in the emission direction of the electron beam from the electron gun. Electron beam irradiation device.
[2] 前記電子線透過部材に照射される前記電子線の像が、前記出射方向において前 記電子線透過部の形状と略同一となるように、前記集束手段を制御する制御手段を 備えることを特徴とする請求項 1記載の電子線照射装置。  [2] Control means for controlling the focusing means so that an image of the electron beam applied to the electron beam transmitting member is substantially the same as the shape of the electron beam transmitting portion in the emission direction. The electron beam irradiation apparatus according to claim 1, wherein:
[3] 前記電子銃は、前記電子放出部から放出された前記電子線を集束する電界を発 生させる中間電極を有することを特徴とする請求項 1記載の電子線照射装置。 3. The electron beam irradiation apparatus according to claim 1, wherein the electron gun has an intermediate electrode that generates an electric field that focuses the electron beam emitted from the electron emission unit.
[4] 前記電子線透過ユニット及び前記偏向手段は、前記電子放出部に対して一体的 に回転自在となってレ、ることを特徴とする請求項 1記載の電子線照射装置。 4. The electron beam irradiation apparatus according to claim 1, wherein the electron beam transmission unit and the deflecting unit are integrally rotatable with respect to the electron emission portion.
[5] 前記出射方向において、前記電子線透過部は、前記所定の方向を長手方向とす る長方形状となっていることを特徴とする請求項 1記載の電子線照射装置。 5. The electron beam irradiation apparatus according to claim 1, wherein, in the emission direction, the electron beam transmitting portion has a rectangular shape whose longitudinal direction is the predetermined direction.
PCT/JP2007/071606 2006-11-24 2007-11-07 Electron beam irradiating device WO2008062668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006317505A JP2008128973A (en) 2006-11-24 2006-11-24 Electron beam irradiation device
JP2006-317505 2006-11-24

Publications (1)

Publication Number Publication Date
WO2008062668A1 true WO2008062668A1 (en) 2008-05-29

Family

ID=39429606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071606 WO2008062668A1 (en) 2006-11-24 2007-11-07 Electron beam irradiating device

Country Status (3)

Country Link
JP (1) JP2008128973A (en)
TW (1) TW200832446A (en)
WO (1) WO2008062668A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10512092A (en) * 1995-01-05 1998-11-17 アメリカン・インターナショナル・テクノロジィズ・インコーポレイテッド Electron beam device with single crystal window and matched anode
JP2000206299A (en) * 1999-01-08 2000-07-28 Nissin High Voltage Co Ltd Electron beam irradiator
JP2004020233A (en) * 2002-06-12 2004-01-22 Matsushita Electric Ind Co Ltd Electron-beam tube, control method for electron beam and electron beam irradiation equipment applying the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10512092A (en) * 1995-01-05 1998-11-17 アメリカン・インターナショナル・テクノロジィズ・インコーポレイテッド Electron beam device with single crystal window and matched anode
JP2000206299A (en) * 1999-01-08 2000-07-28 Nissin High Voltage Co Ltd Electron beam irradiator
JP2004020233A (en) * 2002-06-12 2004-01-22 Matsushita Electric Ind Co Ltd Electron-beam tube, control method for electron beam and electron beam irradiation equipment applying the same

Also Published As

Publication number Publication date
JP2008128973A (en) 2008-06-05
TW200832446A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
WO2015016019A1 (en) Target for x-ray generation and x-ray generation device
US20110116603A1 (en) Microminiature x-ray tube with triode structure using a nano emitter
WO2000003412A1 (en) X-ray tube
KR102359077B1 (en) Cathode arrangement, electron gun, and lithography system comprising such electron gun
KR20140049471A (en) X-ray generating apparatus
JP6388387B2 (en) X-ray tube
JP6619916B1 (en) X-ray generator tube, X-ray generator and X-ray imaging apparatus
WO2008062666A1 (en) Electron beam irradiation device
JP2000030641A (en) X-ray tube
JP6139771B1 (en) Electron beam irradiation device
JP6100611B2 (en) X-ray generator
JP2019003863A (en) Electron beam apparatus, x-ray generating apparatus including the same, and scanning electron microscope
US20210050174A1 (en) Cathode assembly for electron gun
US10916402B2 (en) Electron beam irradiation device and electron beam irradiation method
WO2008062668A1 (en) Electron beam irradiating device
JP2007287501A (en) Transmitting x-ray tube
JP2005190757A (en) X-ray generator
WO2020136912A1 (en) Electron gun, x-ray generation device, and x-ray imaging device
JP2007242556A (en) Electron gun, energy beam generating device, electron beam generating device, and x-ray generating device
JP2011216303A (en) X-ray source and method for manufacturing x-ray source
JP7453893B2 (en) energy beam tube
WO2021210239A1 (en) Energy beam irradiation device
KR101511331B1 (en) X-ray tube
JP2019002784A (en) Electron beam irradiation device
KR101089231B1 (en) X-ray tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831337

Country of ref document: EP

Kind code of ref document: A1