WO2008062598A1 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
WO2008062598A1
WO2008062598A1 PCT/JP2007/068069 JP2007068069W WO2008062598A1 WO 2008062598 A1 WO2008062598 A1 WO 2008062598A1 JP 2007068069 W JP2007068069 W JP 2007068069W WO 2008062598 A1 WO2008062598 A1 WO 2008062598A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
heat
casing
control board
cooling
Prior art date
Application number
PCT/JP2007/068069
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Kabasawa
Original Assignee
Edwards Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Japan Limited filed Critical Edwards Japan Limited
Priority to JP2008545329A priority Critical patent/JP5156640B2/en
Publication of WO2008062598A1 publication Critical patent/WO2008062598A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/068Mechanical details of the pump control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit

Definitions

  • the present invention relates to a vacuum pump, for example, a vacuum pump that performs exhaust processing of a vacuum vessel.
  • Vacuum pumps such as turbo molecular pumps and thread groove pumps are widely used in, for example, vacuum vessels that require high vacuum, such as exhaust of semiconductor manufacturing equipment and electron microscopes.
  • a vacuum pump that realizes this high vacuum environment includes a casing that forms an exterior body having an intake port and an exhaust port. And inside the casing, there is housed a structure that allows the vacuum pump to exert its exhaust function!
  • a structure that exhibits this exhaust function is roughly composed of a rotating part (rotor part) rotatably supported by a shaft and a fixed part (stator part) fixed to the casing.
  • the rotating unit includes a rotating shaft and a rotating body fixed to the rotating shaft, and the rotating body is provided with rotor blades arranged radially and in multiple stages.
  • the fixed part has a plurality of stator blades arranged in multiple stages with respect to the rotor blades.
  • the turbo molecular pump is provided with a motor for rotating the rotating shaft at a high speed.
  • a motor for rotating the rotating shaft at a high speed.
  • gas is sucked from the intake port by the action of the rotor blade and the stator blade. And exhausted from the exhaust port.
  • the pump body configured as described above is controlled in various operations by a control device (control unit).
  • the pump body and the control device as described above are connected via a dedicated cable. Since this dedicated cable is a thick bundle of many signal wires and power supply wires, the cable could not be routed easily.
  • the vacuum pump kept the pump body at a high temperature (about 60 to 80 ° C) in order to suppress product accumulation in the gas transfer path. For this reason, in a vacuum pump in which the pump body and the control device are integrated, if the control device is cooled to prevent overheating, condensation may occur inside.
  • Patent Document 2 a technique for achieving heat dissipation within the control device without suppressing condensation is proposed in Patent Document 2 below.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 173293
  • Patent Document 2 JP-A-2006-90251
  • the heat generating element is disposed so as to be in contact with the casing, and thereby heat is radiated to the outside through the casing.
  • the invention of claim 1 includes a pump body including a gas transfer mechanism that transfers gas from an intake port to an exhaust port, and a control circuit that is mounted on the pump body and controls the pump body. And a control device having a housing sealed inside, the control device comprising forced convection generating means for forcibly generating a flow in the fluid in the housing. The object is achieved.
  • the invention according to claim 2 is the vacuum pump according to claim 1, wherein the control circuit has a heating element that is heated by self-loss, and the control device is generated in the control circuit. And a cooling means for cooling the heat exchange mechanism.
  • a third aspect of the present invention is the vacuum pump according to the first or second aspect, wherein the heat exchange mechanism constitutes a fluid flow path in the casing.
  • the control device in the vacuum pump according to the first, second, or third aspect, includes the control circuit and constitutes a fluid flow path in the casing. And the heat exchange mechanism absorbs heat of the control board.
  • control boards are stacked via a gap, and the adjacent control boards constitute a fluid flow path in the casing.
  • the invention according to claim 6 is the vacuum pump according to any one of claims 1 to 5, wherein the housing of the control device communicates with a fluid flow path in the housing on a side surface.
  • the invention according to claim 7 is the vacuum pump according to claim 6, wherein the cooling means is provided in the second casing.
  • the invention according to claim 8 is the vacuum pump according to any one of claims 1 to 7, wherein the control device is attached to the pump body via a heat insulating means.
  • the cooling efficiency of the control circuit can be improved by forcibly generating a flow in the fluid in the casing of the control device.
  • FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump according to the present embodiment.
  • FIG. 2 is a perspective view showing a schematic configuration of a control device according to the present embodiment.
  • FIG. 3 is a diagram showing the air flow inside the control device when the first cooling method is used. 4] A diagram showing the air flow inside the control device when the second cooling method is used.
  • FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump 1 according to the present embodiment.
  • FIG. 1 shows a cross-sectional view of the turbo molecular pump 1 in the axial direction.
  • turbo molecular pump a so-called composite wing type molecular pump including a turbo molecular pump part T and a thread groove type pump part S will be described as an example.
  • the turbo molecular pump 1 is a vacuum pump that exhibits an exhaust function by the exhaust action of the rotor portion that rotates at a high speed and the fixed stator portion. There are pumps that have both of these structures.
  • the casing 2 forming the exterior body of the turbo molecular pump 1 has a cylindrical shape, and constitutes the exterior body of the turbo molecular pump 1 together with the base 3 provided at the bottom of the casing 2.
  • These structures that exhibit the exhaust function are roughly composed of a rotor portion 4 that is rotatably supported and a stator portion that is fixed to the casing 2.
  • the intake port 5 side is composed of a turbo-molecular pump part T
  • the exhaust port 6 side is composed of a thread groove type pump part S! /.
  • a rotor blade 8 composed of blades inclined at a predetermined angle from a plane perpendicular to the axis of the shaft 7 and extending radially from the shaft 7 is provided on the intake port 5 side (turbo molecular pump section T ).
  • the rotor portion 4 is made of a metal such as stainless steel or aluminum alloy.
  • the rotor part 4 is provided with a cylindrical member 9 made of a member having a cylindrical outer peripheral surface on the exhaust port 6 side (screw groove type pump part S).
  • the turbo molecular pump 1 has a plurality of rotor blades 8 formed in the axial direction.
  • the shaft 7 is a rotating shaft (rotor shaft) of the cylindrical member.
  • a rotor portion 4 is attached to the upper end of the shaft 7 by a plurality of bolts 10.
  • a motor part 11 for rotating the shaft 7 is arranged! /
  • the shaft 7 is arranged in the radial direction on the intake port 5 side and the exhaust port 6 side of the motor unit 11.
  • a magnetic bearing portion 12 and a magnetic bearing portion 13 for supporting the shaft are provided.
  • a magnetic bearing portion 14 for supporting the shaft 7 in the axial direction (thrust direction) is provided at the lower end of the shaft 7.
  • the shaft 7 is supported in a non-contact manner by a 5-axis control type magnetic bearing composed of magnetic bearing portions 12, 13, and 14.
  • Displacement sensors 15 and 16 are formed in the vicinity of the magnetic bearing portions 12 and 13, respectively, so that the radial displacement of the shaft 7 can be detected. Further, a displacement sensor 17 is formed at the lower end of the shaft 7 so that the axial displacement of the shaft 7 can be detected.
  • a stator portion is formed on the inner peripheral side of the casing 2.
  • This stator part consists of a stator blade 18 provided on the intake port 5 side (turbo molecular pump part T) and a thread groove spacer 19 provided on the exhaust port 6 side (screw groove type pump part S).
  • the stator blade 18 is composed of a blade that is inclined by a predetermined angle from a plane perpendicular to the axis of the shaft 7 and extends from the inner peripheral surface of the casing 2 toward the shaft 7.
  • the stator blades 18 are formed in a plurality of stages alternately with the rotor blades 8 in the axial direction.
  • the stator blades 18 of each stage are separated from each other by a cylindrical spacer 20.
  • the thread groove spacer 19 is a cylindrical member in which a spiral groove is formed on the inner peripheral surface.
  • the inner peripheral surface of the thread groove spacer 19 faces the outer peripheral surface of the cylindrical member 9 with a predetermined clearance (gap) therebetween.
  • the direction of the spiral groove formed in the thread groove spacer 19 is the direction toward the exhaust port 6 when the gas is transported through the spiral groove in the rotational direction of the rotor portion 4.
  • the depth of the spiral groove becomes shallower as it approaches the exhaust port 6.
  • the gas transported through the spiral groove is compressed as it approaches the exhaust port 6.
  • stator parts are made of metal such as stainless steel or aluminum alloy.
  • the base 3 together with the casing 2 constitutes the outer package of the turbo molecular pump 1.
  • a stator column 21 having a cylindrical shape is attached concentrically with the rotation axis of the rotor.
  • a back cover 22 is attached to the bottom of the base 3 (opening of the stator column 21). Back cover
  • the region (part) in which the casing 2, the base 3 and the back cover 22 are used as the exterior body, that is, the part where the gas transfer mechanism is configured is the pump body.
  • a control device 24 for controlling the pump body is mounted on the pump body. That is, the pump body and the control device 24 are integrated.
  • the control device 24 is disposed at the bottom of the base 3 (the opening of the stator column 21), that is, in the region facing the back cover 22.
  • a baking heater 25 is attached to the outer peripheral portion of the thread groove type pump portion S so as to surround the base 3 in the circumferential direction.
  • the baking heater 25 is constituted by an electric heating member such as a nichrome wire, and is supplied with electric power by a temperature controller.
  • the baking heater 25 generates heat when electric power is supplied, and heats the thread groove type pump section S.
  • the temperature of the gas is lowered when transferred to the thread groove type pump unit S.
  • the gas pressure is transferred to the thread groove type pump section S, it is high. That is, the gas transferred to the thread groove type pump section S is in a low temperature and high pressure state. Therefore, the thread groove type pump section S is in a state where the solid product due to the transferred gas is likely to precipitate.
  • the thread groove pump section S is kept at a high temperature by using a baking heater 25.
  • the rotor unit 4 rotates at a high speed, and the blades of the rotor blades 8 and the stator blades 18 receive a process gas that has become a high temperature due to compression heat or the like. In response to the compression heat and the like, the blade temperature of the rotor blades 8 and the stator blades 18 rises.
  • turbo molecular pump 1 is heated by heat generated from the motor unit 11 and becomes a high temperature state.
  • the pump body is in a high temperature state due to collision heat (compression heat) of gas molecules, heat generation from the motor unit 11, heating by the baking heater 25, and the like.
  • control device 24 If high-temperature heat in the pump body as described above is conducted to the control device 24, there is a possibility that a circuit (control circuit) inside the control device 24 may be defective. That is, the internal circuit of the control device 24 may be affected by heat and cause malfunction.
  • a cooling pipe 26 is embedded in the base 3 in order to reduce the influence of the heat of the pump body that the control device 24 receives.
  • the cooling pipe 26 is made of a tubular (tubular) member.
  • the cooling pipe 26 is a member that cools the periphery of the cooling pipe 26 by flowing a cooling medium, which is a heat medium, into the cooling pipe 26 so that the cooling medium absorbs heat.
  • a cooling medium which is a heat medium
  • the base 3 is forcibly cooled. This cooling effect can reduce (suppress) the heat conducted from the pump body to the control device 24.
  • the cooling pipe 26 described above is made of a member having low thermal resistance, that is, a member having high thermal conductivity, such as copper or stainless steel.
  • the coolant flowing through the cooling pipe 26, that is, the fluid for cooling the object may be a liquid or a gas.
  • the liquid coolant for example, water, a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or the like can be used.
  • ammonia, methane, ethane, halogen, helium gas, carbon dioxide gas, air, etc. can be used as the gas coolant.
  • the position of the force cooling pipe 26 in which the cooling pipe 26 is disposed on the base 3 is not limited to this.
  • it may be provided so as to be directly embedded in the stator column 21 and the back cover 22.
  • control device 24 attached to the pump body having the above-described configuration will be described.
  • FIG. 2 is a perspective view showing a schematic configuration of the control device 24 according to the present embodiment. In FIG. 2, the components constituting the control device 24 are shown separated.
  • the control device 24 includes a housing 30, a fan (blower) 40, a cooling jacket 50, a heat exchange fin 60, a control board 70, an upper lid 81 and a lower lid 82.
  • the housing 30 includes four side walls 31a to 31d constituting a frame, and a partition plate 31e that divides the inside of the housing (frame) 30 into a first region and a second region.
  • the first region is the upper part of the partition plate 31e, that is, the region between the partition plate 31e and the upper lid 81
  • the second region is the lower part of the partition plate 31e, that is, the partition plate 31e and the lower lid 82. Indicates the area between.
  • the partition plate 31e is formed integrally with the side walls 31a to 31d, and is configured such that the heat of the partition plate 31e is quickly transferred to the side walls 31a to 31d.
  • the casing 30 is made of a member having high thermal conductivity such as aluminum, copper, or aluminum alloy.
  • the partition plate 31 e is provided in a direction orthogonal to the inner side surfaces of the side walls 31 a to 31 d, that is, in a horizontal direction on the drawing.
  • the partition plate 31 e is formed with a rectangular through-hole 34 penetrating in the thickness direction in the vicinity of the end thereof, specifically in the vicinity of the side wall 31 a.
  • the fan 40 is attached such that the air blowing port closes the through hole 34.
  • the air outlet refers to an outlet for air blown from the fan 40.
  • the fan 40 functions as a means for generating forced convection.
  • a side wall 31 d constituting the housing 30 is provided with an exhaust hole 32 communicating with the first region inside the housing 30 and an intake hole 33 communicating with the second region inside the housing 30.
  • the heat exchange fin 60 has a plurality of fins for increasing the surface area, and is fixed to the partition plate 31 e in the first region inside the housing 30.
  • the heat exchange fin 60 functions as a heat exchange mechanism.
  • the heat exchange fin 60 and the partition plate 31 e are fixed (joined) so as to be in surface contact with each other in order to improve the thermal conductivity between them, that is, to increase the heat transfer speed.
  • the heat exchange fin 60 and the partition plate 31 e may be integrally formed.
  • the upper lid 81 is joined to the housing 30 so as to seal the opening end of the upper part (pump main body side) of the frame.
  • the control board 70 is a board on which a control circuit is mounted.
  • a plurality of control boards 70 are fixed to the partition plate 31e in the second region inside the housing 30.
  • a plurality of control boards 70 are stacked via spacers 71. Of the laminated control boards 70, the control board 70 closest to the partition board 31e is joined (fixed) to the partition board 31e so as to come into surface contact.
  • control circuit mounted on the control board 70 will be described.
  • the control circuit is provided with a drive circuit, a power circuit, and the like for the motor unit 11 and the magnetic bearing units 12 to 14. Further, a circuit for controlling these drive circuits and a storage element storing various information used for controlling the turbo molecular pump 1 are mounted.
  • the storage element stores information (data) such as pump operation time, error history, temperature control set temperature, and the like as pump information.
  • electrical components (elements) used in electronic circuits have an environmental temperature that takes reliability into consideration.
  • the environmental temperature of the memory elements mentioned above is about 60 ° C.
  • Such an element having low heat resistance is expressed as a low heat resistance element.
  • Each electrical component must be used within the set range of the ambient temperature when the turbo molecular pump 1 is in operation.
  • circuits that generate heat due to internal loss (internal loss) are used in the circuit provided in the control device 24.
  • a transistor element constituting an inverter circuit that is a drive circuit of the motor unit 11 corresponds to this.
  • the environmental temperature is also set in such an element that increases the amount of self-heating. Therefore, in the present embodiment, such an element with a large amount of heat generation is mounted on the control board 70 closest to the partition plate 31e so that heat is easily discharged (discharged).
  • the lower lid 82 is joined to the housing 30 so as to seal the lower open end of the frame.
  • the structure formed by the casing 30, the upper lid 81, and the lower lid 82 functions as a first casing portion.
  • the cooling jacket 50 is fixed to the formation surface of the side wall 3Id in the casing 30 by a fastening member such as a bolt.
  • the cooling jacket 50 functions as a second housing part.
  • the cooling jacket 50 is configured to be easily detached from the housing 30 by removing the fastening member, that is, detachable.
  • a cooling pipe 51 for water cooling similar to the cooling pipe 26 described above is embedded in the cooling jacket 50.
  • the cooling jacket 50 is cooled by flowing a coolant through the cooling pipe 51, and the casing 30 in contact with the cooling jacket 50 is forcibly cooled.
  • the cooling jacket 50 is formed with a concave communication passage 52 between the side wall 31d of the housing 30 and connecting the exhaust hole 32 and the intake hole 33.
  • the cooling jacket 50 is mounted so as to cover the exhaust hole 32 and the intake hole 33 of the side wall 31d of the casing 30, that is, the casing 30 is configured to be sealed by the cooling jacket 50.
  • the cooling pipe 26 is disposed on the base 3 of the pump body in order to efficiently reduce the heat transmitted from the pump body to the control device 24.
  • condensation may occur at the cooling location.
  • This condensation is a phenomenon in which water droplets appear on the cooling surface (cooling surface) below the dew point (temperature at which relative humidity becomes 100%).
  • the control device 24 in order to suppress dew condensation in the control device 24, the control device 24 is screwed and fixed to the pump body via a washer-like heat insulating member 90. That is, a heat insulating member 90 is disposed between the pump body and the control device 24.
  • the heat insulating member 90 is disposed in a region (region) that comes into contact with the pump body when the control device 24 is attached to the pump body.
  • the heat insulating member 90 is made of a material having high heat resistance such as rubber, plastic, foam material, ceramic, etc., that is, a material having a low thermal conductivity!
  • control device 24 may be fixed through a gap (specifically, a spacer 20) without closely contacting the pump body.
  • the gap between the pump body and the control device 24 functions (acts) as the heat insulating member 90.
  • the heat insulating member 90 By disposing the heat insulating member 90 in this manner, it is possible to thermally insulate (separate) the pump body and the control device 24 from each other. That is, by providing the heat insulating member 90, it is possible to suppress (reduce) the influence of cooling by the cooling pipe 26 that the control device 24 receives. As a result, a sudden temperature difference between the pump body and the control device 24 can be buffered, so that it is possible to prevent the inside of the control device 24 from being cooled to the dew point or less. 24 It is possible to appropriately suppress the occurrence of condensation inside. It should be noted that the thermally insulated pump body and the control device 24 perform temperature management independently (individually).
  • temperature control is performed by adjusting the refrigerant flowing through the cooling pipe 26 or adjusting the set temperature of the baking heater 25.
  • temperature management is performed by adjusting the refrigerant flowing through the cooling pipe 51 in the cooling jacket 50 or adjusting the position of the element disposed (arranged) inside.
  • the control device 24 in the turbo molecular pump 1 according to the present embodiment is provided with the detachable cooling jacket 50 as described above.
  • the internal cooling method in the control device 24 includes two types of cooling methods, the first cooling method when the cooling jacket 50 is attached and the second cooling method when the cooling jacket 50 is removed. They can be used according to the specifications of the molecular pump 1 and the usage environment.
  • FIG. 3 is a diagram showing the air flow inside the control device 24 when the first cooling method is used.
  • the air in the control device 24 passes through the heat exchange fins 60 and reaches the side wall 31d of the housing 30. It is sent to the communication passage 52 of the cooling jacket 50 through the provided exhaust hole 32.
  • the air in the control device 24 is sent from the communication path 52 to the second region inside the housing 30 through the intake holes 33 provided in the side wall 31d of the housing 30.
  • the air in the control device 24 passes between the stacked control boards 70 or between the control board 70 and the lower lid 82, and then is sent to the fan 40 again to circulate inside the control equipment 24. That is, the space between the fins in the heat exchange fin 60, the communication path 52, the stacked control boards 70, and the control board 70 and the lower lid 82 are circulated inside the control device 24. Functions as a gas flow path.
  • the heat generated from the mounted element is directly transferred from the control board 70 to the partition plate 31e, and then the partition board 31e.
  • the control board 70 that is transmitted from the plate 31e to the cooling jacket 50, i.e., the cooling pipe 51, through the side walls 31a to 31d, but is not in contact with the partition plate 31e the heat generated from the mounted elements is controlled.
  • the air is transmitted from the board 70 to the air passing between the stacked control boards 70 and between the control board 70 and the lower lid 82.
  • the temperature of the control board 70 is heated to 70 to 80 ° C. by the heat generated by the mounted elements.
  • the air circulating inside the control device 24 is heated to about 60 ° C. by absorbing heat from the control board 70 when passing through the arrangement area of the control board 70.
  • the cooling jacket 50 (cooling pipe 51) is passed through the air circulating in the control device 24 that removes the heat generated in the control board 70 only by the partition plate 31e. That is, it can be discharged to the outside of the control device 24.
  • the air in the control device 24 is forced to circulate, thereby suppressing the occurrence of a region in which the humidity and temperature are significantly increased inside the control device 24). Can do. As a result, overheating and condensation inside the control device 24 can be prevented appropriately.
  • the heat dissipation process can be appropriately performed even with the laminated control board 70, and therefore the control device 24 can be easily downsized.
  • the inside of the housing 30 is sealed by the cooling jacket 50, so the turbo molecular pump 1 must be installed even in an environment where condensation that does not allow contact with outside air is likely to occur. Can do.
  • the heat spot is a place (spot) where the temperature is locally increased in the room where the turbo molecular pump 1 is installed.
  • the inside of the housing 30 is sealed by the cooling jacket 50. Therefore, it is easy to take measures for waterproofing the inside of the control device 24, specifically, the control board 70 (control circuit). I'll do it.
  • the power casing 30, the partition plate which uses the cooling jacket 50 provided with the cooling pipe 51 to cool the casing 30, the partition plate 31 e and the heat exchange fins 60.
  • the cooling method of 31 e and the heat exchange fin 60 is not limited to this.
  • the casing 30, the partition plate 31e, and the heat exchange fins 60 may be cooled by bringing the cooling jacket 50 into contact with a low-temperature structure without providing the cooling pipe 51.
  • FIG. 4 is a diagram showing the flow of air inside the control device 24 when the second cooling method is used. As shown in FIG. 4, when the operation (air blowing) of the fan 40 is started with the cooling jacket 50 removed, the air is supplied to the control device 24 through the intake hole 33 provided in the side wall 31d of the housing 30. It is taken from the outside into the second area inside the housing 30.
  • the air sucked from the outside passes between the stacked control boards 70 or between the control boards 70 and the lower lid 82 and is sent to the fan 40.
  • the air in the control device 24 passes through the heat exchange fins 60 and is exhausted (exhausted) to the outside of the control device 24 through the exhaust holes 32 provided in the side wall 31 d of the housing 30.
  • the heat generated from the mounted element is directly transmitted from the control board 70 to the partition plate 31 e. Is transmitted from the partition plate 31 e to the heat exchange fin 60.
  • the heat transferred to the heat exchange fin 60 is transferred to the air passing through the heat exchange fin 60. Then, the heated air is exhausted (exhausted) from the exhaust hole 32 to the outside of the control device 24, whereby heat generated inside the control device 24 is released to the outside.
  • the heat generated from the mounted elements is transferred from the control board 70 to the laminated control board 70 or between the control board 70 and the lower lid 82. It is transmitted to the air passing between.
  • the heated air passes through the heat exchange fins 60 and is then exhausted (exhausted) from the exhaust hole 32 to the outside of the control device 24, whereby the heat generated inside the control device 24 is released to the outside.
  • the temperature of the control board 70 is heated to 70 to 80 ° C. due to heat generation of the mounted element.
  • the air taken into the control device 24 at about 30 ° C. is heated to about 40 ° C. by absorbing heat from the control substrate 70 when passing through the arrangement area of the control substrate 70.
  • the heated air passes through the heat exchange fin 60 heated to about 60 ° C. by the heat from the control board 70 in contact with the partition plate 31e, and is further heated to about 50 ° C. It is discharged outside the control device 24.
  • the heat generated in the control board 70 and the heat transferred from the control board 70 to the partition plate 31e are circulated through the circulating air taken into the control device 24. And can be discharged to the outside of the control device 24.
  • the heat dissipation process can be performed appropriately, and therefore the control device 24 can be easily downsized. .
  • the cooling system can be constructed at low cost. Further, according to the second cooling method, the inside of the control device 24 can be cooled without providing the cooling jacket 50 (cooling pipe 51), that is, no cooling water supply facility is required, so that the turbo molecule It is possible to reduce restrictions on the installation location of the pump 1.
  • the first cooling method and the second cooling method can be easily switched by switching the attachment / detachment of the cooling jacket 50.
  • one turbo molecular pump 1 can switch the cooling system of the control device 24 in this way, the cooling method of the control device 24 depends on the usage environment and specification conditions even after delivery of the product. Can be easily switched. This can reduce the cost of changing the cooling method.
  • the cooling jacket 50 is removed and the control device 24 is cooled by the second cooling method, that is, only air cooling is performed. Also, for example, in a use environment where there is a concern about malfunctions due to heat spots, the cooling jacket 50 is attached, and the cooling of the control device 24 by the first cooling method, that is, water cooling and air cooling are used in combination. Make sure to cool.
  • the force described using air as an example of the fluid in the control device 24 and the fluid in the control device 24 are not limited to this.
  • a liquid cooling method using a liquid insulator may be used as the fluid in the control device 24.
  • a circulation pump is installed instead of the fan 40 to circulate the fluid.

Abstract

A vacuum pump having a pump body and a controller integrated together, in which the inside of the controller is appropriately cooled. In a control board on which an element producing a large amount of heat is mounted and that is in contact with a partition plate, the produced heat is directly transmitted from the control board to the partition plate and then transmitted to a cooling jacket through a sidewall. On the other hand, in a control board not in contact with the partition plate, heat produced by an element mounted on the control board is transmitted from the control board to air passing between stacked control boards. Consequently,air passing between the stacked control boards is heated. When the heated air passes through heat exchange fins cooled by cooling effect of the cooling jacket, the heat is transmitted to the heat exchange fins and the cooled air is fed again to the control board. Thus, heat produced by the control board is discharged to the outside not only through the partition plate but also through the air circulating in the controller.

Description

明 細 書  Specification
真空ポンプ  Vacuum pump
技術分野  Technical field
[0001] 本発明は、真空ポンプに関し、例えば、真空容器の排気処理を行う真空ポンプに 関する。  The present invention relates to a vacuum pump, for example, a vacuum pump that performs exhaust processing of a vacuum vessel.
背景技術  Background art
[0002] ターボ分子ポンプやねじ溝式ポンプなどの真空ポンプは、例えば、半導体製造装 置の排気や、電子顕微鏡などの高真空を要する真空容器に多用されている。  [0002] Vacuum pumps such as turbo molecular pumps and thread groove pumps are widely used in, for example, vacuum vessels that require high vacuum, such as exhaust of semiconductor manufacturing equipment and electron microscopes.
この高真空の環境を実現する真空ポンプは、吸気口及び排気口を備えた外装体を 形成するケーシングを備えている。そして、このケーシングの内部には、当該真空ポ ンプに排気機能を発揮させる構造物が収納されて!/、る。この排気機能を発揮させる 構造物は、大きく分けて回転自在に軸支された回転部(ロータ部)とケーシングに対 して固定された固定部(ステータ部)から構成されて!/、る。  A vacuum pump that realizes this high vacuum environment includes a casing that forms an exterior body having an intake port and an exhaust port. And inside the casing, there is housed a structure that allows the vacuum pump to exert its exhaust function! A structure that exhibits this exhaust function is roughly composed of a rotating part (rotor part) rotatably supported by a shaft and a fixed part (stator part) fixed to the casing.
[0003] 回転部は、回転軸及びこの回転軸に固定されている回転体からなり、回転体には、 放射状にかつ多段に配設されたロータ翼が設けられている。また、固定部には、ロー タ翼に対して互!/、違いにステータ翼が多段に配設されて!/、る。  [0003] The rotating unit includes a rotating shaft and a rotating body fixed to the rotating shaft, and the rotating body is provided with rotor blades arranged radially and in multiple stages. In addition, the fixed part has a plurality of stator blades arranged in multiple stages with respect to the rotor blades.
ターボ分子ポンプには、回転軸を高速回転させるためのモータが設けられており、 このモータの働きにより回転軸が高速回転すると、ロータ翼とステータ翼との作用によ り気体が吸気口から吸引され、排気口から排出されるようになっている。  The turbo molecular pump is provided with a motor for rotating the rotating shaft at a high speed. When the rotating shaft rotates at a high speed by the function of this motor, gas is sucked from the intake port by the action of the rotor blade and the stator blade. And exhausted from the exhaust port.
このように構成されたポンプ本体は、制御装置(コントロールユニット)によって各種 動作が制御されている。  The pump body configured as described above is controlled in various operations by a control device (control unit).
[0004] 上述したようなポンプ本体と制御装置は、専用ケーブルを介して接続されている。こ の専用ケーブルは、多くの信号配線や電力供給配線を束ねた太!、ものであるため、 ケーブルの引き回しを容易に行うことができなかった。  [0004] The pump body and the control device as described above are connected via a dedicated cable. Since this dedicated cable is a thick bundle of many signal wires and power supply wires, the cable could not be routed easily.
また、ポンプ本体と制御装置とが互いに遠く離れた場所に配置される環境にお!/、て は、必然的に専用ケーブルも長くなるため、ケーブルを通過する間に信号が減衰し てしまうおそれがあった。 従来、このような専用ケーブルに起因する不具合を解消するために、専用ケーブル を用いずにポンプ本体と制御装置を接続する技術、即ち、ポンプ本体と制御装置を 一体化する技術が下記の特許文献 1に提案されて!、る。 Also, in an environment where the pump body and the control unit are located far away from each other! /, The length of the dedicated cable is inevitably longer, so the signal may be attenuated while passing through the cable. was there. Conventionally, in order to eliminate such problems caused by the dedicated cable, the technology for connecting the pump body and the control device without using the dedicated cable, that is, the technology for integrating the pump body and the control device is described in the following patent document. Proposed to 1!
[0005] また、真空ポンプは、気体移送路内における生成物の堆積を抑制するために、ボン プ本体を高温(60〜80°C程度)に保っていた。そのため、ポンプ本体と制御装置を 一体化した真空ポンプにおいて、制御装置を過熱対策のために冷却した場合、内部 で結露が生じるおそれがあった。 [0005] In addition, the vacuum pump kept the pump body at a high temperature (about 60 to 80 ° C) in order to suppress product accumulation in the gas transfer path. For this reason, in a vacuum pump in which the pump body and the control device are integrated, if the control device is cooled to prevent overheating, condensation may occur inside.
そこで、ポンプ本体と制御装置を一体化した真空ポンプにおいて、結露を抑制しな 力 ¾制御装置内部の放熱を図る技術が下記の特許文献 2に提案されている。  Therefore, in a vacuum pump in which the pump main body and the control device are integrated, a technique for achieving heat dissipation within the control device without suppressing condensation is proposed in Patent Document 2 below.
特許文献 1:特開平 11 173293号公報  Patent Document 1: Japanese Patent Laid-Open No. 11 173293
特許文献 2 :特開 2006— 90251公報  Patent Document 2: JP-A-2006-90251
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] ところで、特許文献 2で提案されて!/、る真空ポンプでは、発熱素子を筐体と接する ように配設することによって、筐体を介して外部へ放熱させている。 [0006] By the way, in the vacuum pump proposed in Patent Document 2, the heat generating element is disposed so as to be in contact with the casing, and thereby heat is radiated to the outside through the casing.
そのため、筐体と接していない領域に配設された制御回路の冷却を図ることが困難 であった。  For this reason, it has been difficult to cool the control circuit disposed in the region not in contact with the casing.
そこで、本発明は、ポンプ本体と制御装置とを一体化した真空ポンプの制御装置に おける、制御回路の冷却効率を向上させることができる真空ポンプを提供することを 目白勺とする。  Therefore, it is an object of the present invention to provide a vacuum pump capable of improving the cooling efficiency of a control circuit in a vacuum pump control device in which a pump body and a control device are integrated.
課題を解決するための手段  Means for solving the problem
[0007] 請求項 1記載の発明は、吸気口から排気口まで気体を移送する気体移送機構を内 包するポンプ本体と、前記ポンプ本体に装着され、前記ポンプ本体を制御する制御 回路を内包し、内部が密閉された筐体を有する制御装置と、を備えた真空ポンプで あって、前記制御装置は、前記筐体内の流体に強制的に流れを生じさせる強制対流 発生手段を具備したことにより前記目的を達成する。 [0007] The invention of claim 1 includes a pump body including a gas transfer mechanism that transfers gas from an intake port to an exhaust port, and a control circuit that is mounted on the pump body and controls the pump body. And a control device having a housing sealed inside, the control device comprising forced convection generating means for forcibly generating a flow in the fluid in the housing. The object is achieved.
請求項 2記載の発明は、請求項 1記載の真空ポンプにおいて、前記制御回路は、 自己損失により熱せられる発熱素子を有し、前記制御装置は、前記制御回路で生じ た熱を吸収する熱交換機構と、前記熱交換機構を冷却する冷却手段と、を具備した ことを特徴とする。 The invention according to claim 2 is the vacuum pump according to claim 1, wherein the control circuit has a heating element that is heated by self-loss, and the control device is generated in the control circuit. And a cooling means for cooling the heat exchange mechanism.
請求項 3記載の発明は、請求項 1または請求項 2記載の真空ポンプにおいて、前記 熱交換機構は、前記筐体内の流体の流路を構成することを特徴とする。  A third aspect of the present invention is the vacuum pump according to the first or second aspect, wherein the heat exchange mechanism constitutes a fluid flow path in the casing.
請求項 4記載の発明は、請求項 1、請求項 2または請求項 3記載の真空ポンプにお いて、前記制御装置は、前記制御回路が搭載され、前記筐体内の流体の流路を構 成する制御基板を具備し、前記熱交換機構は、前記制御基板の熱を吸収することを 特徴とする。  According to a fourth aspect of the present invention, in the vacuum pump according to the first, second, or third aspect, the control device includes the control circuit and constitutes a fluid flow path in the casing. And the heat exchange mechanism absorbs heat of the control board.
請求項 5記載の発明は、請求項 4記載の真空ポンプにおいて、前記制御基板は、 隙間を介して積層され、隣接する前記制御基板は、前記筐体内の流体の流路を構 成することを特徴とする。  According to a fifth aspect of the present invention, in the vacuum pump according to the fourth aspect, the control boards are stacked via a gap, and the adjacent control boards constitute a fluid flow path in the casing. Features.
請求項 6記載の発明は、請求項 1から請求項 5のいずれか 1の請求項に記載の真 空ポンプにおいて、前記制御装置の筐体は、側面に該筐体内の流体の流路と連通 した流通孔を有し、前記制御回路を内包する第 1の筐体部と、前記流通孔を覆うよう に配設された第 2の筐体部と、を備え、前記第 2の筐体部は、前記第 1の筐体部に対 して着脱可能に設けられていることを特徴とする。  The invention according to claim 6 is the vacuum pump according to any one of claims 1 to 5, wherein the housing of the control device communicates with a fluid flow path in the housing on a side surface. A first housing part including the control circuit, and a second housing part disposed so as to cover the circulation hole, the second housing part Is provided so as to be detachable from the first casing.
請求項 7記載の発明は、請求項 6記載の真空ポンプにおいて、前記冷却手段は、 前記第 2の筐体部に設けられていることを特徴とする。  The invention according to claim 7 is the vacuum pump according to claim 6, wherein the cooling means is provided in the second casing.
請求項 8記載の発明は、請求項 1から請求項 7のいずれか 1の請求項に記載の真 空ポンプにおいて、前記制御装置は、断熱手段を介して前記ポンプ本体に装着され ていることを特徴とする。  The invention according to claim 8 is the vacuum pump according to any one of claims 1 to 7, wherein the control device is attached to the pump body via a heat insulating means. Features.
発明の効果  The invention's effect
[0008] 本発明によれば、制御装置の筐体内の流体に強制的に流れを生じさせることにより 、制御回路の冷却効率を向上させることができる。  [0008] According to the present invention, the cooling efficiency of the control circuit can be improved by forcibly generating a flow in the fluid in the casing of the control device.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本実施形態に係るターボ分子ポンプの概略構成を示した図である。  FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump according to the present embodiment.
[図 2]本実施の形態に係る制御装置の概略構成を示した斜視図である。  FIG. 2 is a perspective view showing a schematic configuration of a control device according to the present embodiment.
[図 3]第 1冷却方式の利用時における制御装置内部の空気の流れを示した図である 園 4]第 2冷却方式の利用時における制御装置内部の空気の流れを示した図である 符号の説明 FIG. 3 is a diagram showing the air flow inside the control device when the first cooling method is used. 4] A diagram showing the air flow inside the control device when the second cooling method is used.
1 ターボ分子ポンプ  1 Turbo molecular pump
2 ケーシング  2 Casing
3 ベース  3 base
4 ロータ部  4 Rotor part
5 吸気口  5 Inlet
6 排気口  6 Exhaust vent
7 シャフト  7 Shaft
8 ロータ翼  8 rotor blades
9 円筒部材  9 Cylindrical member
10 ボルト  10 volts
11 モータ部  11 Motor section
12- ^ 14 磁気軸受部  12- ^ 14 Magnetic bearing
15〜; 17 変位センサ  15 ~ 17 Displacement sensor
18 ステータ翼  18 Stator blade
19 ねじ溝スぺーサ  19 Thread groove spacer
20 スぺーサ  20 Spacer
21 ステータコラム  21 Stator column
22 裏芸  22 tricks
23 コネクタ部  23 Connector section
24 制御装置  24 Control unit
25 ベーキングヒータ  25 Baking heater
26 冷却管  26 Cooling pipe
30 筐体  30 housing
31a 〜d 側壁 31e! 隔壁板 31a-d sidewall 31e! Bulkhead plate
32 排気孔  32 Exhaust hole
33 吸気孔  33 Air intake holes
34 貫通孔  34 Through hole
40 ファン  40 fans
50 冷却ジャ  50 Cooling jar
51 冷却管  51 Cooling pipe
52 連通路  52 Communication path
60 熱交換フ  60 heat exchanger
70 制御基板  70 Control board
71 スぺーサ  71 Spacer
81 ト  81 G
82 下芸  82 Crafts
90 断熱部材  90 Thermal insulation
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の好適な実施の形態について、図 1〜4を参照して詳細に説明する。  Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS.
本実施の形態では、真空ポンプの一例としてターボ分子ポンプを用いて説明する。 図 1は、本実施形態に係るターボ分子ポンプ 1の概略構成を示した図である。なお 、図 1は、ターボ分子ポンプ 1の軸線方向の断面図を示している。  In this embodiment, a turbo molecular pump is used as an example of a vacuum pump. FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump 1 according to the present embodiment. FIG. 1 shows a cross-sectional view of the turbo molecular pump 1 in the axial direction.
本実施形態では、ターボ分子ポンプの一例としてターボ分子ポンプ部 Tとねじ溝式 ポンプ部 Sを備えた、いわゆる複合翼タイプの分子ポンプを例にとり説明する。  In the present embodiment, as an example of a turbo molecular pump, a so-called composite wing type molecular pump including a turbo molecular pump part T and a thread groove type pump part S will be described as an example.
なお、ターボ分子ポンプ 1は、高速回転するロータ部と、固定したステータ部との排 気作用により、排気機能を発揮する真空ポンプであって、ターボ分子ポンプ、ねじ溝 式ポンプ、ある!/、はこれら両方の構造を合わせ持ったポンプなどがある。  The turbo molecular pump 1 is a vacuum pump that exhibits an exhaust function by the exhaust action of the rotor portion that rotates at a high speed and the fixed stator portion. There are pumps that have both of these structures.
[0012] ターボ分子ポンプ 1の外装体を形成するケーシング 2は、円筒状の形状をしており、 ケーシング 2の底部に設けられたベース 3と共にターボ分子ポンプ 1の外装体を構成 している。そして、ターボ分子ポンプ 1の外装体の内部には、ターボ分子ポンプ 1に排 気機能を発揮させる構造物つまり気体移送機構が収納されている。 これら排気機能を発揮する構造物は、大きく分けて回転自在に軸支されたロータ部 4とケーシング 2に対して固定されたステータ部から構成されている。 The casing 2 forming the exterior body of the turbo molecular pump 1 has a cylindrical shape, and constitutes the exterior body of the turbo molecular pump 1 together with the base 3 provided at the bottom of the casing 2. A structure that allows the turbo molecular pump 1 to perform an exhaust function, that is, a gas transfer mechanism, is housed inside the exterior of the turbo molecular pump 1. These structures that exhibit the exhaust function are roughly composed of a rotor portion 4 that is rotatably supported and a stator portion that is fixed to the casing 2.
また、吸気口 5側がターボ分子ポンプ部 Tにより構成され、排気口 6側がねじ溝式ポ ンプ部 Sから構成されて!/、る。  In addition, the intake port 5 side is composed of a turbo-molecular pump part T, and the exhaust port 6 side is composed of a thread groove type pump part S! /.
[0013] ロータ部 4には、シャフト 7の軸線に垂直な平面から所定の角度だけ傾斜してシャフ ト 7から放射状に伸びたブレードからなるロータ翼 8が吸気口 5側(ターボ分子ポンプ 部 T)に設けられている。なお、ロータ部 4は、ステンレスやアルミニウム合金などの金 属により構成されている。 [0013] In the rotor section 4, a rotor blade 8 composed of blades inclined at a predetermined angle from a plane perpendicular to the axis of the shaft 7 and extending radially from the shaft 7 is provided on the intake port 5 side (turbo molecular pump section T ). The rotor portion 4 is made of a metal such as stainless steel or aluminum alloy.
さらに、ロータ部 4には、外周面が円筒形状をした部材からなる円筒部材 9が排気 口 6側(ねじ溝式ポンプ部 S)に設けられて!/、る。  Further, the rotor part 4 is provided with a cylindrical member 9 made of a member having a cylindrical outer peripheral surface on the exhaust port 6 side (screw groove type pump part S).
また、ターボ分子ポンプ 1には、ロータ翼 8が軸線方向に複数段形成されている。  The turbo molecular pump 1 has a plurality of rotor blades 8 formed in the axial direction.
[0014] シャフト 7は、円柱部材の回転軸(ロータ軸)である。シャフト 7の上端にはロータ部 4 が複数のボルト 10により取り付けられている。 The shaft 7 is a rotating shaft (rotor shaft) of the cylindrical member. A rotor portion 4 is attached to the upper end of the shaft 7 by a plurality of bolts 10.
シャフト 7の軸線方向中程には、シャフト 7を回転させるモータ部 11が配設されて!/、 また、モータ部 11の吸気口 5側及び排気口 6側には、シャフト 7をラジアル方向に軸 支するための磁気軸受部 12及び磁気軸受部 13が設けられている。  In the middle of the axial direction of the shaft 7, a motor part 11 for rotating the shaft 7 is arranged! / In addition, the shaft 7 is arranged in the radial direction on the intake port 5 side and the exhaust port 6 side of the motor unit 11. A magnetic bearing portion 12 and a magnetic bearing portion 13 for supporting the shaft are provided.
さらに、シャフト 7の下端には、シャフト 7を軸線方向(スラスト方向)に軸支するため の磁気軸受部 14が設けられている。  Furthermore, a magnetic bearing portion 14 for supporting the shaft 7 in the axial direction (thrust direction) is provided at the lower end of the shaft 7.
なお、シャフト 7は、磁気軸受部 12、 13、 14から構成される 5軸制御型の磁気軸受 によって非接触で支持されて!/、る。  The shaft 7 is supported in a non-contact manner by a 5-axis control type magnetic bearing composed of magnetic bearing portions 12, 13, and 14.
また、磁気軸受部 12、 13の近傍には、それぞれ変位センサ 15、 16が形成されて おり、シャフト 7のラジアル方向の変位が検出できるようになつている。さらに、シャフト 7の下端には変位センサ 17が形成されており、シャフト 7の軸線方向の変位が検出で きるようになつている。  Displacement sensors 15 and 16 are formed in the vicinity of the magnetic bearing portions 12 and 13, respectively, so that the radial displacement of the shaft 7 can be detected. Further, a displacement sensor 17 is formed at the lower end of the shaft 7 so that the axial displacement of the shaft 7 can be detected.
[0015] ケーシング 2の内周側には、ステータ部が形成されている。このステータ部は、吸気 口 5側(ターボ分子ポンプ部 T)に設けられたステータ翼 18と、排気口 6側(ねじ溝式 ポンプ部 S)に設けられたねじ溝スぺーサ 19などから構成されている。 ステータ翼 18は、シャフト 7の軸線に垂直な平面から所定の角度だけ傾斜してケー シング 2の内周面からシャフト 7に向かって伸びたブレードから構成されている。ター ボ分子ポンプ部 Tでは、これらステータ翼 18が軸線方向に、ロータ翼 8と互い違いに 複数段形成されている。各段のステータ翼 18は、円筒形状をしたスぺーサ 20により 互いに隔てられている。 A stator portion is formed on the inner peripheral side of the casing 2. This stator part consists of a stator blade 18 provided on the intake port 5 side (turbo molecular pump part T) and a thread groove spacer 19 provided on the exhaust port 6 side (screw groove type pump part S). Has been. The stator blade 18 is composed of a blade that is inclined by a predetermined angle from a plane perpendicular to the axis of the shaft 7 and extends from the inner peripheral surface of the casing 2 toward the shaft 7. In the turbo molecular pump section T, the stator blades 18 are formed in a plurality of stages alternately with the rotor blades 8 in the axial direction. The stator blades 18 of each stage are separated from each other by a cylindrical spacer 20.
[0016] ねじ溝スぺーサ 19は、内周面にらせん溝が形成された円柱部材である。ねじ溝ス ぺーサ 19の内周面は、所定のクリアランス(間隙)を隔てて円筒部材 9の外周面に対 面するようになつている。ねじ溝スぺーサ 19に形成されたらせん溝の方向は、らせん 溝内をロータ部 4の回転方向にガスが輸送された場合、排気口 6に向力、う方向である 。らせん溝の深さは排気口 6に近づくにつれ浅くなるようになつている。そして、らせん 溝を輸送されるガスは排気口 6に近づくにつれて圧縮されるようになっている。 [0016] The thread groove spacer 19 is a cylindrical member in which a spiral groove is formed on the inner peripheral surface. The inner peripheral surface of the thread groove spacer 19 faces the outer peripheral surface of the cylindrical member 9 with a predetermined clearance (gap) therebetween. The direction of the spiral groove formed in the thread groove spacer 19 is the direction toward the exhaust port 6 when the gas is transported through the spiral groove in the rotational direction of the rotor portion 4. The depth of the spiral groove becomes shallower as it approaches the exhaust port 6. The gas transported through the spiral groove is compressed as it approaches the exhaust port 6.
これらステータ部はステンレスやアルミニウム合金などの金属を用いて構成されてい ベース 3は、ケーシング 2と共にターボ分子ポンプ 1の外装体を構成している。ベー ス 3のラジアル方向の中央には、ロータの回転軸線と同心に円筒形状を有するステ ータコラム 21が取り付けられている。  These stator parts are made of metal such as stainless steel or aluminum alloy. The base 3 together with the casing 2 constitutes the outer package of the turbo molecular pump 1. At the center of the base 3 in the radial direction, a stator column 21 having a cylindrical shape is attached concentrically with the rotation axis of the rotor.
[0017] ベース 3の底部(ステータコラム 21の開口部)に裏蓋 22が取り付けられている。裏蓋 A back cover 22 is attached to the bottom of the base 3 (opening of the stator column 21). Back cover
22には、ターボ分子ポンプ 1の内部配線を引き出し、後述する制御装置 24に接続す るためのコネクタ部 23が設けられている。  22 is provided with a connector portion 23 for drawing out the internal wiring of the turbo molecular pump 1 and connecting it to a control device 24 described later.
なお、ケーシング 2、ベース 3及び裏蓋 22を外装体とする領域 (部分)、即ち、気体 移送機構が構成されている部分をポンプ本体とする。  The region (part) in which the casing 2, the base 3 and the back cover 22 are used as the exterior body, that is, the part where the gas transfer mechanism is configured is the pump body.
本実施の形態に係るターボ分子ポンプ 1は、このポンプ本体を制御するための制御 装置 24がポンプ本体に装着されている。つまり、ポンプ本体と制御装置 24が一体化 されている。  In the turbo molecular pump 1 according to the present embodiment, a control device 24 for controlling the pump body is mounted on the pump body. That is, the pump body and the control device 24 are integrated.
制御装置 24は、ベース 3の底部(ステータコラム 21の開口部)、即ち裏蓋 22と対向 する領域に配設されて!/、る。  The control device 24 is disposed at the bottom of the base 3 (the opening of the stator column 21), that is, in the region facing the back cover 22.
[0018] ねじ溝式ポンプ部 Sの外周部には、ベース 3を周方向に囲むようにべ一キングヒー タ 25が装着されている。 ベーキングヒータ 25は、ニクロム線などの電熱部材によって構成され、温度コント口 ーラによって電力を供給される。ベーキングヒータ 25は、電力を供給されると発熱し、 ねじ溝式ポンプ部 Sを加熱するようになっている。 A baking heater 25 is attached to the outer peripheral portion of the thread groove type pump portion S so as to surround the base 3 in the circumferential direction. The baking heater 25 is constituted by an electric heating member such as a nichrome wire, and is supplied with electric power by a temperature controller. The baking heater 25 generates heat when electric power is supplied, and heats the thread groove type pump section S.
吸気口 5から吸入されたガスは、ターボ分子ポンプ部 Tを移送する間に冷却される ため、ねじ溝式ポンプ部 Sに移送される時には、ガスの温度は下がってしまう。一方、 ガスの圧力は、ねじ溝式ポンプ部 Sに移送される時には、高くなつている。つまり、ね じ溝式ポンプ部 Sに移送されるガスは、低温かつ高圧力状態となっている。従って、 ねじ溝式ポンプ部 Sは、移送されるガスによる固体生成物が析出しやすい状態となつ ている。  Since the gas sucked from the intake port 5 is cooled while the turbo molecular pump unit T is transferred, the temperature of the gas is lowered when transferred to the thread groove type pump unit S. On the other hand, when the gas pressure is transferred to the thread groove type pump section S, it is high. That is, the gas transferred to the thread groove type pump section S is in a low temperature and high pressure state. Therefore, the thread groove type pump section S is in a state where the solid product due to the transferred gas is likely to precipitate.
そこで、ねじ溝スぺーサ 19で移送されるガスによる固体生成物の析出を抑制する ために、ベーキングヒータ 25を用いてねじ溝式ポンプ部 Sを高温に保つようにしてい  Therefore, in order to suppress the precipitation of the solid product due to the gas transferred by the thread groove spacer 19, the thread groove pump section S is kept at a high temperature by using a baking heater 25.
[0019] また、ターボ分子ポンプ 1の稼働中は、ロータ部 4が高速回転し、ロータ翼 8ゃステ ータ翼 18のブレードが、圧縮熱等によって高温になったプロセスガスを受ける。そし て、これらの圧縮熱等を受けて、ロータ翼 8ゃステータ翼 18のブレードの温度が上昇 する。 During the operation of the turbo molecular pump 1, the rotor unit 4 rotates at a high speed, and the blades of the rotor blades 8 and the stator blades 18 receive a process gas that has become a high temperature due to compression heat or the like. In response to the compression heat and the like, the blade temperature of the rotor blades 8 and the stator blades 18 rises.
また、ターボ分子ポンプ 1は、モータ部 11から発生する熱などにより加熱されて高 温状態となる。  Further, the turbo molecular pump 1 is heated by heat generated from the motor unit 11 and becomes a high temperature state.
このようにポンプ本体は、気体分子の衝突熱(圧縮熱)やモータ部 11からの発熱、 ベーキングヒータ 25による加熱などにより高温状態となっている。  Thus, the pump body is in a high temperature state due to collision heat (compression heat) of gas molecules, heat generation from the motor unit 11, heating by the baking heater 25, and the like.
[0020] 上述したようなポンプ本体における高温の熱が制御装置 24に伝導してしまうと、制 御装置 24の内部の回路 (制御回路)に不具合を来すおそれがある。つまり、制御装 置 24の内部回路が熱の影響を受けて動作不良を起こすおそれがある。 [0020] If high-temperature heat in the pump body as described above is conducted to the control device 24, there is a possibility that a circuit (control circuit) inside the control device 24 may be defective. That is, the internal circuit of the control device 24 may be affected by heat and cause malfunction.
そこで、制御装置 24が受けるポンプ本体の熱の影響を低減させるために、ベース 3 には、冷却管 26が埋設されている。  Therefore, a cooling pipe 26 is embedded in the base 3 in order to reduce the influence of the heat of the pump body that the control device 24 receives.
冷却管 26は、チューブ状(管状)の部材からなる。冷却管 26は、内部に熱媒体であ る冷却材を流し、この冷却材に熱を吸収させるようにして冷却管 26周辺の冷却を行う ための部材である。 冷却管 26に冷却材を流すことによって、ベース 3が強制的に冷却される。この冷却 効果によって、ポンプ本体から制御装置 24へ伝導する熱を低減 (抑制)すること力 Sで きる。 The cooling pipe 26 is made of a tubular (tubular) member. The cooling pipe 26 is a member that cools the periphery of the cooling pipe 26 by flowing a cooling medium, which is a heat medium, into the cooling pipe 26 so that the cooling medium absorbs heat. By flowing the coolant through the cooling pipe 26, the base 3 is forcibly cooled. This cooling effect can reduce (suppress) the heat conducted from the pump body to the control device 24.
[0021] 上述した冷却管 26は、熱抵抗の低い部材つまり熱伝導率の高い部材、例えば、銅 やステンレス鋼などによって構成されている。  [0021] The cooling pipe 26 described above is made of a member having low thermal resistance, that is, a member having high thermal conductivity, such as copper or stainless steel.
また、冷却管 26に流す冷却材、つまり物体を冷却するための流体は、液体であつ ても気体であってもよい。液体の冷却材としては、例えば、水、塩化カルシウム水溶 液やエチレングリコール水溶液などを用いることができる。気体の冷却材としては、例 えば、アンモニア、メタン、ェタン、ハロゲン、ヘリウムガスや炭酸ガス、空気などを用 いること力 Sでさる。  Further, the coolant flowing through the cooling pipe 26, that is, the fluid for cooling the object may be a liquid or a gas. As the liquid coolant, for example, water, a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or the like can be used. For example, ammonia, methane, ethane, halogen, helium gas, carbon dioxide gas, air, etc. can be used as the gas coolant.
なお、本実施形態では、冷却管 26がベース 3に配設されている力 冷却管 26の配 設位置はこれに限られるものではない。例えば、ステータコラム 21、裏蓋 22の内部に 直接埋め込むように設けてもよい。  In the present embodiment, the position of the force cooling pipe 26 in which the cooling pipe 26 is disposed on the base 3 is not limited to this. For example, it may be provided so as to be directly embedded in the stator column 21 and the back cover 22.
[0022] 次に、上述したような構成を有するポンプ本体に装着される制御装置 24の構造に ついて説明する。 Next, the structure of the control device 24 attached to the pump body having the above-described configuration will be described.
図 2は、本実施の形態に係る制御装置 24の概略構成を示した斜視図である。なお 、図 2では、制御装置 24を構成する各部を離した状態で示す。  FIG. 2 is a perspective view showing a schematic configuration of the control device 24 according to the present embodiment. In FIG. 2, the components constituting the control device 24 are shown separated.
制御装置 24は、筐体 30、ファン(送風機) 40、冷却ジャケット 50、熱交換フィン 60、 制御基板 70、上蓋 81及び下蓋 82を備えている。  The control device 24 includes a housing 30, a fan (blower) 40, a cooling jacket 50, a heat exchange fin 60, a control board 70, an upper lid 81 and a lower lid 82.
筐体 30は、フレームを構成する 4つの側壁 31a〜d、及び筐体(フレーム) 30の内 部を第 1領域と第 2領域とに 2分する隔壁板 31eを備えている。  The housing 30 includes four side walls 31a to 31d constituting a frame, and a partition plate 31e that divides the inside of the housing (frame) 30 into a first region and a second region.
なお、第 1領域とは、隔壁板 31eの上部、即ち、隔壁板 31eと上蓋 81との間の領域 を示し、第 2領域とは、隔壁板 31eの下部、即ち隔壁板 31eと下蓋 82との間の領域を 示す。  The first region is the upper part of the partition plate 31e, that is, the region between the partition plate 31e and the upper lid 81, and the second region is the lower part of the partition plate 31e, that is, the partition plate 31e and the lower lid 82. Indicates the area between.
隔壁板 31eは、側壁 31 a〜dと一体に形成されており、隔壁板 31eの熱が速やかに 側壁 31 a〜dへ移動するように構成されている。  The partition plate 31e is formed integrally with the side walls 31a to 31d, and is configured such that the heat of the partition plate 31e is quickly transferred to the side walls 31a to 31d.
筐体 30は、アルミニウムや銅、アルミニウム合金などの熱伝導率の高い部材で構成 されている。 [0023] 隔壁板 31 eは、側壁 31 a〜dの内側面と直交する向き、即ち、図面上の水平方向に 設けられている。 The casing 30 is made of a member having high thermal conductivity such as aluminum, copper, or aluminum alloy. The partition plate 31 e is provided in a direction orthogonal to the inner side surfaces of the side walls 31 a to 31 d, that is, in a horizontal direction on the drawing.
隔壁板 31 eには、その端部近傍、詳しくは、側壁 31 aの近傍に厚み方向に貫通す る方形の貫通孔 34が形成されて!/、る。  The partition plate 31 e is formed with a rectangular through-hole 34 penetrating in the thickness direction in the vicinity of the end thereof, specifically in the vicinity of the side wall 31 a.
ファン 40は、その送風口が貫通孔 34を塞ぐように取り付けられている。なお、送風 口とは、ファン 40から吹き送られる空気の出口を示す。なお、このファン 40は、強制 対流発生手段として機能する。  The fan 40 is attached such that the air blowing port closes the through hole 34. Note that the air outlet refers to an outlet for air blown from the fan 40. The fan 40 functions as a means for generating forced convection.
筐体 30を構成する側壁 31 dには、筐体 30内部の第 1領域と連通する排気孔 32と、 筐体 30内部の第 2領域と連通する吸気孔 33が設けられている。  A side wall 31 d constituting the housing 30 is provided with an exhaust hole 32 communicating with the first region inside the housing 30 and an intake hole 33 communicating with the second region inside the housing 30.
[0024] 熱交換フィン 60は、表面積を広げるための複数のフィンを有し、筐体 30内部の第 1 領域において隔壁板 31 eに固定されている。なお、この熱交換フィン 60は、熱交換 機構として機能する。 The heat exchange fin 60 has a plurality of fins for increasing the surface area, and is fixed to the partition plate 31 e in the first region inside the housing 30. The heat exchange fin 60 functions as a heat exchange mechanism.
熱交換フィン 60と隔壁板 31 eは、両者間の熱伝導率を向上させるために、即ち、熱 の移動速度を上げるために、面接触するように固定 (接合)されている。  The heat exchange fin 60 and the partition plate 31 e are fixed (joined) so as to be in surface contact with each other in order to improve the thermal conductivity between them, that is, to increase the heat transfer speed.
なお、熱交換フィン 60と隔壁板 31 eとを一体形成するようにしてもよい。 また、熱交換フィン 60と隔壁板 31 eとの接触面にシリコングリースを塗布したり、また 、シリコンシートを配設したりすることが望ましい。このように、熱交換フィン 60と隔壁板 31 eとの接触面に熱伝導率の高い部材を用いることにより、両者間の熱伝導率をより 向上させること力 Sでさる。  Note that the heat exchange fin 60 and the partition plate 31 e may be integrally formed. In addition, it is desirable to apply silicon grease to the contact surface between the heat exchange fin 60 and the partition plate 31 e or to dispose a silicon sheet. In this way, by using a member having high thermal conductivity for the contact surface between the heat exchange fin 60 and the partition plate 31e, the thermal conductivity between the two can be further improved.
上蓋 81は、フレームにおける上部(ポンプ本体側)の開口端を密閉するように筐体 30に接合されている。  The upper lid 81 is joined to the housing 30 so as to seal the opening end of the upper part (pump main body side) of the frame.
[0025] 制御基板 70は、制御回路が搭載された基板であり、本実施の形態では、複数の制 御基板 70が筐体 30内部の第 2領域において隔壁板 31 eに固定されている。  [0025] The control board 70 is a board on which a control circuit is mounted. In the present embodiment, a plurality of control boards 70 are fixed to the partition plate 31e in the second region inside the housing 30.
本実施の形態では、複数の制御基板 70がスぺーサ 71を介して積層されている。 そして、積層された制御基板 70のうち最も隔壁板 31 e寄りの制御基板 70が、面接 触するように隔壁板 31 eに接合(固定)されている。  In the present embodiment, a plurality of control boards 70 are stacked via spacers 71. Of the laminated control boards 70, the control board 70 closest to the partition board 31e is joined (fixed) to the partition board 31e so as to come into surface contact.
なお、制御基板 70の配置間隔は、スぺーサ 71の高さを調節することにより任意の 値に設定することができる。 [0026] ここで、制御基板 70に搭載されている制御回路について説明する。 Note that the arrangement interval of the control boards 70 can be set to an arbitrary value by adjusting the height of the spacer 71. Here, the control circuit mounted on the control board 70 will be described.
制御回路には、モータ部 11や磁気軸受部 12〜; 14の駆動回路、電源回路などが 設けられている。さらに、これら駆動回路を制御するための回路やターボ分子ポンプ 1の制御に用いられる各種情報の格納された記憶素子が搭載されている。  The control circuit is provided with a drive circuit, a power circuit, and the like for the motor unit 11 and the magnetic bearing units 12 to 14. Further, a circuit for controlling these drive circuits and a storage element storing various information used for controlling the turbo molecular pump 1 are mounted.
なお、記憶素子には、ポンプ情報として、例えば、ポンプの運転時間、エラーの履 歴、温度制御の設定温度等の情報 (データ)が格納されて!/、る。  The storage element stores information (data) such as pump operation time, error history, temperature control set temperature, and the like as pump information.
一般に電子回路で用いられる電気部品(素子)には、信頼性を考慮した環境温度 が設定されている。例えば、上述した記憶素子の環境温度は、概ね 60°C程度となつ ている。なお、このような耐熱特性の低い素子を低耐熱素子と表現する。  In general, electrical components (elements) used in electronic circuits have an environmental temperature that takes reliability into consideration. For example, the environmental temperature of the memory elements mentioned above is about 60 ° C. Such an element having low heat resistance is expressed as a low heat resistance element.
[0027] 各電気部品は、ターボ分子ポンプ 1の動作時において環境温度の設定値範囲内 で使用しなければならない。 [0027] Each electrical component must be used within the set range of the ambient temperature when the turbo molecular pump 1 is in operation.
また、制御装置 24内部に設けられている回路には、上述した低耐熱素子の他にも 、素子内の損失(内部損失)により発熱する部品(パワー素子)も多数用いられている 。例えば、モータ部 11の駆動回路であるインバータ回路を構成するトランジスタ素子 などがこれに相当する。  In addition to the low heat resistance element described above, many circuits (power elements) that generate heat due to internal loss (internal loss) are used in the circuit provided in the control device 24. For example, a transistor element constituting an inverter circuit that is a drive circuit of the motor unit 11 corresponds to this.
このような、自己発熱量が大きくなるような素子においても、環境温度が設定されて いる。そのため、本実施の形態では、このような発熱量の多い素子は、熱が排出(放 出)されやすいように、最も隔壁板 31eに近い制御基板 70に搭載されている。  The environmental temperature is also set in such an element that increases the amount of self-heating. Therefore, in the present embodiment, such an element with a large amount of heat generation is mounted on the control board 70 closest to the partition plate 31e so that heat is easily discharged (discharged).
下蓋 82は、フレームにおける下部の開口端を密閉するように筐体 30に接合されて いる。  The lower lid 82 is joined to the housing 30 so as to seal the lower open end of the frame.
なお、筐体 30、上蓋 81、下蓋 82によって形成される構造体は、第 1の筐体部として 機能する。  Note that the structure formed by the casing 30, the upper lid 81, and the lower lid 82 functions as a first casing portion.
[0028] 冷却ジャケット 50は、筐体 30における側壁 3 Idの形成面にボルトなどの締結部材 によって固定されている。なお、冷却ジャケット 50は、第 2の筐体部として機能する。 なお、本実施の形態では、この冷却ジャケット 50は、締結部材を外すことにより容易 に筐体 30から切り離すことができるように、即ち着脱自在に構成されている。  [0028] The cooling jacket 50 is fixed to the formation surface of the side wall 3Id in the casing 30 by a fastening member such as a bolt. The cooling jacket 50 functions as a second housing part. In the present embodiment, the cooling jacket 50 is configured to be easily detached from the housing 30 by removing the fastening member, that is, detachable.
冷却ジャケット 50には、上述した冷却管 26と同様の水冷用の冷却管 51が埋め込ま れている。 冷却管 51に冷却材を流すことによって冷却ジャケット 50が冷却され、そして、冷却 ジャケット 50と接触している筐体 30が強制的に冷却される。 A cooling pipe 51 for water cooling similar to the cooling pipe 26 described above is embedded in the cooling jacket 50. The cooling jacket 50 is cooled by flowing a coolant through the cooling pipe 51, and the casing 30 in contact with the cooling jacket 50 is forcibly cooled.
冷却ジャケット 50には、図 1に示すように、筐体 30の側壁 31dとの間に、排気孔 32 と吸気孔 33を連通させる凹状の連通路 52が形成されている。  As shown in FIG. 1, the cooling jacket 50 is formed with a concave communication passage 52 between the side wall 31d of the housing 30 and connecting the exhaust hole 32 and the intake hole 33.
冷却ジャケット 50は、筐体 30の側壁 31dの排気孔 32及び吸気孔 33を覆うように装 着され、即ち、筐体 30は、冷却ジャケット 50によって密閉されるように構成されている  The cooling jacket 50 is mounted so as to cover the exhaust hole 32 and the intake hole 33 of the side wall 31d of the casing 30, that is, the casing 30 is configured to be sealed by the cooling jacket 50.
[0029] また、本実施形態では、ポンプ本体から制御装置 24 伝達する熱を効率的に低減 するために、冷却管 26をポンプ本体のベース 3に配設している。 In the present embodiment, the cooling pipe 26 is disposed on the base 3 of the pump body in order to efficiently reduce the heat transmitted from the pump body to the control device 24.
ところ力 本実施形態のように冷却管 26を用いて、部分的に強制冷却を施した場 合には、冷却箇所に結露が発生してしまうおそれがある。  However, when partial forced cooling is performed using the cooling pipe 26 as in the present embodiment, condensation may occur at the cooling location.
この結露とは、冷却部(冷却面)が露点(相対湿度が 100%となる温度)以下になる とその冷却面の上に水滴が出現する現象である。  This condensation is a phenomenon in which water droplets appear on the cooling surface (cooling surface) below the dew point (temperature at which relative humidity becomes 100%).
このような結露が制御装置 24内に発生すると、制御回路に不具合を生じるおそれ 力 sある。 When such condensation occurs in the controller 24, there fear force s cause defective control circuit.
[0030] そこで、本実施形態では、制御装置 24内の結露を抑制するために、制御装置 24 は、ワッシャー状の断熱部材 90を介してポンプ本体にねじ止め固定されている。即ち 、ポンプ本体と制御装置 24との間に断熱部材 90が配設されて!/、る。  Therefore, in the present embodiment, in order to suppress dew condensation in the control device 24, the control device 24 is screwed and fixed to the pump body via a washer-like heat insulating member 90. That is, a heat insulating member 90 is disposed between the pump body and the control device 24.
断熱部材 90は、制御装置 24がポンプ本体に取り付けられた際にポンプ本体に接 触する部位 (領域)に配設されて!/、る。  The heat insulating member 90 is disposed in a region (region) that comes into contact with the pump body when the control device 24 is attached to the pump body.
断熱部材 90は、ゴム、プラスチック、発泡材、セラミックなど熱抵抗が高い材料、即 ち熱伝導率の小さレ、材料によって構成されて!/、る。  The heat insulating member 90 is made of a material having high heat resistance such as rubber, plastic, foam material, ceramic, etc., that is, a material having a low thermal conductivity!
また、制御装置 24をポンプ本体に密着させずに、隙間(ギャップ)を介して、詳しく は、スぺーサ 20を介して固定するようにしてもよい。この場合、ポンプ本体と制御装置 24との間の隙間が断熱部材 90として機能 (作用)する。  Further, the control device 24 may be fixed through a gap (specifically, a spacer 20) without closely contacting the pump body. In this case, the gap between the pump body and the control device 24 functions (acts) as the heat insulating member 90.
[0031] このように断熱部材 90を配設することにより、ポンプ本体と制御装置 24とを熱的に 絶縁 (分離)すること力できる。つまり、断熱部材 90を設けることにより、制御装置 24 が受ける冷却管 26による冷却の影響を抑制(低減)することができる。 これにより、ポンプ本体と制御装置 24との間の急な温度差を緩衝できるため、制御 装置 24の内部が露点以下まで冷却されるような状態になることを回避することができ 従って、制御装置 24内部における結露の発生を適切に抑制することができる。 なお、熱的に絶縁されているポンプ本体と制御装置 24においては、それぞれ独立 して (個別に)温度管理を行うようにする。 [0031] By disposing the heat insulating member 90 in this manner, it is possible to thermally insulate (separate) the pump body and the control device 24 from each other. That is, by providing the heat insulating member 90, it is possible to suppress (reduce) the influence of cooling by the cooling pipe 26 that the control device 24 receives. As a result, a sudden temperature difference between the pump body and the control device 24 can be buffered, so that it is possible to prevent the inside of the control device 24 from being cooled to the dew point or less. 24 It is possible to appropriately suppress the occurrence of condensation inside. It should be noted that the thermally insulated pump body and the control device 24 perform temperature management independently (individually).
詳しくは、ポンプ本体においては、冷却管 26に流す冷媒を調整したり、ベーキング ヒータ 25の設定温度を調整したりして、温度管理を行うようにする。  Specifically, in the pump body, temperature control is performed by adjusting the refrigerant flowing through the cooling pipe 26 or adjusting the set temperature of the baking heater 25.
一方、制御装置 24においては、冷却ジャケット 50内の冷却管 51に流す冷媒を調 整したり、内部に配設(配置)する素子の位置を調整したりして温度管理を行うように する。  On the other hand, in the control device 24, temperature management is performed by adjusting the refrigerant flowing through the cooling pipe 51 in the cooling jacket 50 or adjusting the position of the element disposed (arranged) inside.
[0032] 次に、本実施の形態に係るターボ分子ポンプ 1における制御装置 24内部の冷却方 法について説明する。  Next, a method for cooling the inside of the control device 24 in the turbo molecular pump 1 according to the present embodiment will be described.
本実施の形態に係るターボ分子ポンプ 1における制御装置 24には、上述したように 着脱自在な冷却ジャケット 50が設けられて!/、る。  The control device 24 in the turbo molecular pump 1 according to the present embodiment is provided with the detachable cooling jacket 50 as described above.
そのため、制御装置 24における内部の冷却方式には、冷却ジャケット 50を装着し た場合の第 1冷却方式と、冷却ジャケット 50を取り外した場合の第 2冷却方式との 2 種類の冷却方式を、ターボ分子ポンプ 1の仕様や使用環境に応じて使い分けること ができる。  Therefore, the internal cooling method in the control device 24 includes two types of cooling methods, the first cooling method when the cooling jacket 50 is attached and the second cooling method when the cooling jacket 50 is removed. They can be used according to the specifications of the molecular pump 1 and the usage environment.
[0033] はじめに、冷却ジャケット 50を装着した第 1冷却方式による制御装置 24の冷却方 法について説明する。  First, a cooling method of the control device 24 by the first cooling method with the cooling jacket 50 attached will be described.
図 3は、第 1冷却方式の利用時における制御装置 24内部の空気の流れを示した図 である。  FIG. 3 is a diagram showing the air flow inside the control device 24 when the first cooling method is used.
図 3に示すように、冷却ジャケット 50を装着した状態でファン 40の運転 (送風)を開 始すると、制御装置 24内の空気は、熱交換フィン 60を通過し、筐体 30の側壁 31dに 設けられた排気孔 32を介して冷却ジャケット 50の連通路 52へ送られる。  As shown in FIG. 3, when the fan 40 starts operating (air blowing) with the cooling jacket 50 mounted, the air in the control device 24 passes through the heat exchange fins 60 and reaches the side wall 31d of the housing 30. It is sent to the communication passage 52 of the cooling jacket 50 through the provided exhaust hole 32.
その後、制御装置 24内の空気は、連通路 52から筐体 30の側壁 31dに設けられた 吸気孔 33を介して筐体 30内部の第 2領域へ送られる。 そして、制御装置 24内の空気は、積層された制御基板 70の間や、制御基板 70と 下蓋 82との間を通過した後、再びファン 40へ送られ制御装置 24内部を循環する。 即ち、熱交換フィン 60におけるフィンとフィンとの間、連通路 52、積層された制御基 板 70の間、及び制御基板 70と下蓋 82との間は、制御装置 24の内部を循環する空 気の流路として機能する。 Thereafter, the air in the control device 24 is sent from the communication path 52 to the second region inside the housing 30 through the intake holes 33 provided in the side wall 31d of the housing 30. The air in the control device 24 passes between the stacked control boards 70 or between the control board 70 and the lower lid 82, and then is sent to the fan 40 again to circulate inside the control equipment 24. That is, the space between the fins in the heat exchange fin 60, the communication path 52, the stacked control boards 70, and the control board 70 and the lower lid 82 are circulated inside the control device 24. Functions as a gas flow path.
[0034] 次に、第 1冷却方式の利用時における制御基板 70の放熱方法、即ち、制御基板 7 0の熱の伝達経路につ!/、て説明する。 Next, a heat dissipation method of the control board 70 when using the first cooling method, that is, a heat transfer path of the control board 70 will be described.
発熱量が多い素子が搭載された、隔壁板 31eと接触している制御基板 70では、搭 載されている素子から発生した熱は、制御基板 70から直接隔壁板 31eへ伝わり、そ して隔壁板 31eから側壁 31a〜dを介して冷却ジャケット 50、即ち、冷却管 51へ伝わ 一方、隔壁板 31 eと接触していない制御基板 70では、搭載されている素子から発 生した熱は、制御基板 70から、積層された制御基板 70の間や、制御基板 70と下蓋 82との間を通過する空気に伝わる。  In the control board 70 that is in contact with the partition plate 31e on which an element that generates a large amount of heat is mounted, the heat generated from the mounted element is directly transferred from the control board 70 to the partition plate 31e, and then the partition board 31e. On the control board 70 that is transmitted from the plate 31e to the cooling jacket 50, i.e., the cooling pipe 51, through the side walls 31a to 31d, but is not in contact with the partition plate 31e, the heat generated from the mounted elements is controlled. The air is transmitted from the board 70 to the air passing between the stacked control boards 70 and between the control board 70 and the lower lid 82.
これにより、積層された制御基板 70の間や、制御基板 70と下蓋 82との間を通過す る空気は熱せられる。  As a result, the air passing between the stacked control boards 70 or between the control boards 70 and the lower lid 82 is heated.
熱せられた空気は、冷却ジャケット 50 (冷却管 51)の冷却作用により冷却されてい る熱交換フィン 60を通過する際に、熱が熱交換フィン 60へ伝わり、冷却される。 そして、熱交換フィン 60によって冷却された空気が再び制御基板 70へ送られる。  When the heated air passes through the heat exchange fins 60 cooled by the cooling action of the cooling jacket 50 (cooling pipe 51), the heat is transferred to the heat exchange fins 60 and cooled. Then, the air cooled by the heat exchange fins 60 is sent to the control board 70 again.
[0035] 具体的には、搭載する素子の発熱により制御基板 70の温度は、 70〜80°Cにまで 熱せられる。 Specifically, the temperature of the control board 70 is heated to 70 to 80 ° C. by the heat generated by the mounted elements.
制御装置 24の内部を循環している空気は、制御基板 70の配置領域を通過する際 に、制御基板 70からの熱を吸収することにより 60°C程度にまで熱せられる。  The air circulating inside the control device 24 is heated to about 60 ° C. by absorbing heat from the control board 70 when passing through the arrangement area of the control board 70.
そして、熱せられた空気は、 20°C程度まで冷やされている冷却ジャケット 50 (冷却 管 51)の作用によって 30°C程度にまで冷却されている熱交換フィン 60を通過すると 、 40°C程度にまで冷却され、再び制御基板 70へ送られる。  When the heated air passes through the heat exchange fins 60 cooled to about 30 ° C. by the action of the cooling jacket 50 (cooling pipe 51) cooled to about 20 ° C., about 40 ° C. And is sent to the control board 70 again.
なお、ここでは、各部の温度の一例を示したものであり、使用条件により温度状態は 変化する。 [0036] このように第 1冷却方式によれば、制御基板 70で発生した熱を、隔壁板 31 eだけで なぐ制御装置 24内を循環する空気を介して、冷却ジャケット 50 (冷却管 51 )へ、即 ち制御装置 24の外部へ放出することができる。 Here, an example of the temperature of each part is shown, and the temperature state changes depending on the use conditions. [0036] Thus, according to the first cooling method, the cooling jacket 50 (cooling pipe 51) is passed through the air circulating in the control device 24 that removes the heat generated in the control board 70 only by the partition plate 31e. That is, it can be discharged to the outside of the control device 24.
第 1冷却方式によれば、制御装置 24内の空気を強制的に循環させることにより、制 御装置 24の内部において著しく湿度や温度が高くなるほたは低くなる)領域の発生 を抑制することができる。これにより、制御装置 24内部の過熱や結露を適切に防止で きる。  According to the first cooling method, the air in the control device 24 is forced to circulate, thereby suppressing the occurrence of a region in which the humidity and temperature are significantly increased inside the control device 24). Can do. As a result, overheating and condensation inside the control device 24 can be prevented appropriately.
第 1冷却方式によれば、積層された制御基板 70であっても放熱処理を適切に行う ことができるため、制御装置 24の小型化を容易に図ることができる。  According to the first cooling method, the heat dissipation process can be appropriately performed even with the laminated control board 70, and therefore the control device 24 can be easily downsized.
第 1冷却方式を用いることにより、冷却ジャケット 50により筐体 30内部が密閉される ため、外部の空気に触れることがなぐ結露が生じやすい環境下であってもターボ分 子ポンプ 1を設置することができる。  By using the first cooling method, the inside of the housing 30 is sealed by the cooling jacket 50, so the turbo molecular pump 1 must be installed even in an environment where condensation that does not allow contact with outside air is likely to occur. Can do.
また、第 1冷却方式では、冷却管 51を介して熱が外部へ放出されるように構成され ているため、ターボ分子ポンプ 1の周辺がヒートスポットとなることを防止することがで きる。ヒートスポットとは、ターボ分子ポンプ 1が設置される部屋において、局部的に温 度が高くなる場所 (スポット)を示す。  In the first cooling method, heat is released to the outside through the cooling pipe 51, so that it is possible to prevent the periphery of the turbo molecular pump 1 from becoming a heat spot. The heat spot is a place (spot) where the temperature is locally increased in the room where the turbo molecular pump 1 is installed.
[0037] 第 1冷却方式を用いることにより、冷却ジャケット 50により筐体 30内部が密閉される ため、制御装置 24内部、詳しくは制御基板 70 (制御回路)の防水対策を容易に図る こと力 Sでさる。 [0037] By using the first cooling method, the inside of the housing 30 is sealed by the cooling jacket 50. Therefore, it is easy to take measures for waterproofing the inside of the control device 24, specifically, the control board 70 (control circuit). I'll do it.
なお、上述した実施形態では、筐体 30、隔壁板 31 e及び熱交換フィン 60を冷却す るために、冷却管 51が配設された冷却ジャケット 50を用いている力 筐体 30、隔壁 板 31 e及び熱交換フィン 60の冷却方法は、これに限定されるものではない。  In the above-described embodiment, the power casing 30, the partition plate, which uses the cooling jacket 50 provided with the cooling pipe 51 to cool the casing 30, the partition plate 31 e and the heat exchange fins 60. The cooling method of 31 e and the heat exchange fin 60 is not limited to this.
例えば、冷却管 51を設けずに、冷却ジャケット 50を低温の構造体に接触させること によって、筐体 30、隔壁板 31 e及び熱交換フィン 60を冷却するようにしてもよい。  For example, the casing 30, the partition plate 31e, and the heat exchange fins 60 may be cooled by bringing the cooling jacket 50 into contact with a low-temperature structure without providing the cooling pipe 51.
[0038] 続いて、冷却ジャケット 50を外した第 2冷却方式による制御装置 24の冷却方法に ついて説明する。 [0038] Next, a cooling method of the control device 24 by the second cooling method with the cooling jacket 50 removed will be described.
図 4は、第 2冷却方式の利用時における制御装置 24内部の空気の流れを示した図 である。 図 4に示すように、冷却ジャケット 50を外した状態でファン 40の運転 (送風)を開始 すると、筐体 30の側壁 31 dに設けられた吸気孔 33を介して、空気が制御装置 24の 外部から筐体 30内部の第 2領域へ取り込まれる。 FIG. 4 is a diagram showing the flow of air inside the control device 24 when the second cooling method is used. As shown in FIG. 4, when the operation (air blowing) of the fan 40 is started with the cooling jacket 50 removed, the air is supplied to the control device 24 through the intake hole 33 provided in the side wall 31d of the housing 30. It is taken from the outside into the second area inside the housing 30.
そして、外部から吸気された空気は、積層された制御基板 70の間や、制御基板 70 と下蓋 82との間を通過し、ファン 40へ送られる。  The air sucked from the outside passes between the stacked control boards 70 or between the control boards 70 and the lower lid 82 and is sent to the fan 40.
その後、制御装置 24内の空気は、熱交換フィン 60を通過し、筐体 30の側壁 31 dに 設けられた排気孔 32から制御装置 24の外部へ排気 (排出)される。  Thereafter, the air in the control device 24 passes through the heat exchange fins 60 and is exhausted (exhausted) to the outside of the control device 24 through the exhaust holes 32 provided in the side wall 31 d of the housing 30.
即ち、熱交換フィン 60におけるフィンとフィンとの間、積層された制御基板 70の間、 及び制御基板 70と下蓋 82との間は、制御装置 24の内部を循環する空気の流路とし て機能する。  That is, between the fins in the heat exchange fin 60, between the stacked control boards 70, and between the control board 70 and the lower lid 82 are air flow paths circulating inside the control device 24. Function.
[0039] 次に、第 2冷却方式の利用時における制御基板 70の放熱方法、即ち、制御基板 7 0の熱の伝達経路につ!/、て説明する。  Next, a heat dissipation method of the control board 70 when using the second cooling method, that is, a heat transfer path of the control board 70 will be described.
発熱量が多い素子が搭載された、隔壁板 31 eと接触している制御基板 70では、搭 載されている素子から発生した熱は、制御基板 70から直接隔壁板 31 eへ伝わり、そ して隔壁板 31 eから熱交換フィン 60へ伝わる。  In the control board 70 that is in contact with the partition plate 31 e on which the element that generates a large amount of heat is mounted, the heat generated from the mounted element is directly transmitted from the control board 70 to the partition plate 31 e. Is transmitted from the partition plate 31 e to the heat exchange fin 60.
熱交換フィン 60に伝わった熱は、熱交換フィン 60を通過する空気に伝わる。そして 、熱せられた空気が、排気孔 32から制御装置 24の外部へ排気 (排出)されることによ つて、制御装置 24内部で発生した熱が外部へ放出される。  The heat transferred to the heat exchange fin 60 is transferred to the air passing through the heat exchange fin 60. Then, the heated air is exhausted (exhausted) from the exhaust hole 32 to the outside of the control device 24, whereby heat generated inside the control device 24 is released to the outside.
一方、隔壁板 31 eと接触していない制御基板 70では、搭載されている素子から発 生した熱は、制御基板 70から、積層された制御基板 70の間や、制御基板 70と下蓋 82との間を通過する空気に伝わる。  On the other hand, in the control board 70 that is not in contact with the partition plate 31 e, the heat generated from the mounted elements is transferred from the control board 70 to the laminated control board 70 or between the control board 70 and the lower lid 82. It is transmitted to the air passing between.
これにより、積層された制御基板 70の間や、制御基板 70と下蓋 82との間を通過す る空気は熱せられる。  As a result, the air passing between the stacked control boards 70 or between the control boards 70 and the lower lid 82 is heated.
熱せられた空気は、熱交換フィン 60を通過した後、排気孔 32から制御装置 24の外 部へ排気 (排出)されることによって、制御装置 24内部で発生した熱が外部へ放出さ れる。  The heated air passes through the heat exchange fins 60 and is then exhausted (exhausted) from the exhaust hole 32 to the outside of the control device 24, whereby the heat generated inside the control device 24 is released to the outside.
[0040] 具体的には、搭載する素子の発熱により制御基板 70の温度は、 70〜80°Cにまで 熱せられる。 30°C程度の制御装置 24へ取り込まれた空気は、制御基板 70の配置領域を通過 する際に、制御基板 70からの熱を吸収することにより 40°C程度にまで熱せられる。 そして、熱せられた空気は、隔壁板 31eと接触している制御基板 70からの熱により 60°C程度まで熱せられている熱交換フィン 60を通過すると、さらに 50°C程度にまで 熱せられ、制御装置 24の外部へ放出される。 Specifically, the temperature of the control board 70 is heated to 70 to 80 ° C. due to heat generation of the mounted element. The air taken into the control device 24 at about 30 ° C. is heated to about 40 ° C. by absorbing heat from the control substrate 70 when passing through the arrangement area of the control substrate 70. The heated air passes through the heat exchange fin 60 heated to about 60 ° C. by the heat from the control board 70 in contact with the partition plate 31e, and is further heated to about 50 ° C. It is discharged outside the control device 24.
なお、ここでは、各部の温度の一例を示したものであり、使用条件により温度状態は 変化する。  Here, an example of the temperature of each part is shown, and the temperature state changes depending on the use conditions.
[0041] このように第 2冷却方式によれば、制御基板 70で発生した熱、また、制御基板 70か ら隔壁板 31eへ伝わった熱は、制御装置 24へ取り込まれた循環する空気を介して、 制御装置 24の外部へ放出することができる。  Thus, according to the second cooling method, the heat generated in the control board 70 and the heat transferred from the control board 70 to the partition plate 31e are circulated through the circulating air taken into the control device 24. And can be discharged to the outside of the control device 24.
第 2冷却方式では、上述した強制空冷方式を用いることにより積層された制御基板 70であっても放熱処理を適切に行うことができるため、制御装置 24の小型化を容易 に図ることカでさる。  In the second cooling method, even if the control board 70 is laminated by using the above-described forced air cooling method, the heat dissipation process can be performed appropriately, and therefore the control device 24 can be easily downsized. .
第 2冷却方式によれば、冷却ジャケット 50 (冷却管 51)を設けることなく制御装置 24 内部の冷却を行うことができるため、冷却システムを安価に構築することができる。 また、第 2冷却方式によれば、冷却ジャケット 50 (冷却管 51)を設けることなく制御 装置 24内部の冷却を行うことができるため、即ち、冷却水の供給設備を要しないた め、ターボ分子ポンプ 1の設置場所の制約を減らすことができる。  According to the second cooling method, since the inside of the control device 24 can be cooled without providing the cooling jacket 50 (cooling pipe 51), the cooling system can be constructed at low cost. Further, according to the second cooling method, the inside of the control device 24 can be cooled without providing the cooling jacket 50 (cooling pipe 51), that is, no cooling water supply facility is required, so that the turbo molecule It is possible to reduce restrictions on the installation location of the pump 1.
[0042] 上述したように、本実施の形態によれば、冷却ジャケット 50の着脱を切り替えること で、第 1冷却方式と第 2冷却方式とを容易に切り替えることができる。 [0042] As described above, according to the present embodiment, the first cooling method and the second cooling method can be easily switched by switching the attachment / detachment of the cooling jacket 50.
このように 1つのターボ分子ポンプ 1において、制御装置 24の冷却方式を切り替え ること力 Sできるため、製品の納品後であっても、使用環境や仕様条件に応じて制御装 置 24の冷却方式の切り替えを容易に行うことができる。これにより、冷却方式の変更 時の費用を抑えることができる。  Since one turbo molecular pump 1 can switch the cooling system of the control device 24 in this way, the cooling method of the control device 24 depends on the usage environment and specification conditions even after delivery of the product. Can be easily switched. This can reduce the cost of changing the cooling method.
例えば、水冷設備の利用が困難な使用環境では、冷却ジャケット 50を外して第 2冷 却方式による制御装置 24の冷却、即ち、空冷のみの冷却を実施するようにする。 また、例えば、ヒートスポットによる不具合が懸念される使用環境では、冷却ジャケッ ト 50を装着して、第 1冷却方式による制御装置 24の冷却、即ち、水冷と空冷を併用し た冷却を実施するようにする。 For example, in an environment where it is difficult to use the water cooling facility, the cooling jacket 50 is removed and the control device 24 is cooled by the second cooling method, that is, only air cooling is performed. Also, for example, in a use environment where there is a concern about malfunctions due to heat spots, the cooling jacket 50 is attached, and the cooling of the control device 24 by the first cooling method, that is, water cooling and air cooling are used in combination. Make sure to cool.
上述した本実施の形態では、制御装置 24内の流体の一例として空気を用いて説 明した力、制御装置 24内の流体はこれに限定されるものではない。  In the above-described embodiment, the force described using air as an example of the fluid in the control device 24 and the fluid in the control device 24 are not limited to this.
例えば、第 1冷却方式のように制御装置 24の内部が密閉されている場合には、制 御装置 24内の流体として、液体の絶縁物を用いた液冷方式を用いるようにしてもよ い。但しこの場合、流体を循環させるために、ファン 40の代わりに循環用ポンプを設 ける。  For example, when the inside of the control device 24 is sealed as in the first cooling method, a liquid cooling method using a liquid insulator may be used as the fluid in the control device 24. . However, in this case, a circulation pump is installed instead of the fan 40 to circulate the fluid.

Claims

請求の範囲 The scope of the claims
[1] 吸気口から排気口まで気体を移送する気体移送機構を内包するポンプ本体と、 前記ポンプ本体に装着され、前記ポンプ本体を制御する制御回路を内包し、内部 が密閉された筐体を有する制御装置と、  [1] A pump body including a gas transfer mechanism that transfers gas from an intake port to an exhaust port, and a casing that is attached to the pump body and includes a control circuit that controls the pump body and is sealed inside. A control device comprising:
を備えた真空ポンプであって、  A vacuum pump comprising:
前記制御装置は、前記筐体内の流体に強制的に流れを生じさせる強制対流発生 手段を具備したことを特徴とする真空ポンプ。  The vacuum pump according to claim 1, wherein the control device includes forced convection generating means for forcibly generating a flow in the fluid in the casing.
[2] 前記制御回路は、自己損失により熱せられる発熱素子を有し、  [2] The control circuit has a heating element that is heated by self-loss,
前記制御装置は、  The controller is
前記制御回路で生じた熱を吸収する熱交換機構と、  A heat exchange mechanism for absorbing heat generated in the control circuit;
前記熱交換機構を冷却する冷却手段と、  Cooling means for cooling the heat exchange mechanism;
を具備したことを特徴とする請求項 1記載の真空ポンプ。  The vacuum pump according to claim 1, further comprising:
[3] 前記熱交換機構は、前記筐体内の流体の流路を構成することを特徴とする請求項[3] The heat exchange mechanism forms a fluid flow path in the casing.
1または請求項 2記載の真空ポンプ。 The vacuum pump according to claim 1 or claim 2.
[4] 前記制御装置は、前記制御回路が搭載され、前記筐体内の流体の流路を構成す る制御基板を具備し、 [4] The control device includes a control board on which the control circuit is mounted and which forms a fluid flow path in the housing.
前記熱交換機構は、前記制御基板の熱を吸収することを特徴とする請求項 1、請 求項 2または請求項 3記載の真空ポンプ。  The vacuum pump according to claim 1, claim 2, or claim 3, wherein the heat exchange mechanism absorbs heat of the control board.
[5] 前記制御基板は、隙間を介して積層され、 [5] The control board is laminated through a gap,
隣接する前記制御基板は、前記筐体内の流体の流路を構成することを特徴とする 請求項 4記載の真空ポンプ。  5. The vacuum pump according to claim 4, wherein the adjacent control board constitutes a fluid flow path in the casing.
[6] 前記制御装置の筐体は、 [6] The casing of the control device is:
側面に該筐体内の流体の流路と連通した流通孔を有し、前記制御回路を内包する 第 1の筐体部と、  A first housing portion having a flow hole communicating with a fluid flow path in the housing on a side surface and containing the control circuit;
前記流通孔を覆うように配設された第 2の筐体部と、  A second housing part disposed so as to cover the flow hole;
を備え、  With
前記第 2の筐体部は、前記第 1の筐体部に対して着脱可能に設けられていることを 特徴とする請求項 1から請求項 5のいずれ力、 1の請求項に記載の真空ポンプ。 前記冷却手段は、前記第 2の筐体部に設けられていることを特徴とする請求項 6記 載の真空ポンプ。 The vacuum according to any one of claims 1 to 5, wherein the second casing is detachably attached to the first casing. pump. The vacuum pump according to claim 6, wherein the cooling means is provided in the second casing.
前記制御装置は、断熱手段を介して前記ポンプ本体に装着されてレ、ることを特徴と する請求項 1から請求項 7のいずれか 1の請求項に記載の真空ポンプ。  The vacuum pump according to any one of claims 1 to 7, wherein the control device is attached to the pump main body via heat insulating means.
PCT/JP2007/068069 2006-11-22 2007-09-18 Vacuum pump WO2008062598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008545329A JP5156640B2 (en) 2006-11-22 2007-09-18 Vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006315554 2006-11-22
JP2006-315554 2006-11-22

Publications (1)

Publication Number Publication Date
WO2008062598A1 true WO2008062598A1 (en) 2008-05-29

Family

ID=39429539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068069 WO2008062598A1 (en) 2006-11-22 2007-09-18 Vacuum pump

Country Status (2)

Country Link
JP (1) JP5156640B2 (en)
WO (1) WO2008062598A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236469A (en) * 2009-03-31 2010-10-21 Shimadzu Corp Turbomolecular pump device
JP2013100760A (en) * 2011-11-08 2013-05-23 Shimadzu Corp Integrated turbo molecular pump
JP2014148977A (en) * 2014-04-24 2014-08-21 Shimadzu Corp Turbo-molecular pump device
US9234519B2 (en) 2009-06-09 2016-01-12 Oerlikon Leybold Vacuum Gmbh Vacuum pump
JP2018096346A (en) * 2016-12-16 2018-06-21 エドワーズ株式会社 Vacuum pump and controller provided on vacuum pump
EP3462034A1 (en) * 2017-09-28 2019-04-03 Pfeiffer Vacuum Gmbh Vacuum pump
JP2019060274A (en) * 2017-09-26 2019-04-18 株式会社島津製作所 Vacuum pump control device
CN110249129A (en) * 2017-02-17 2019-09-17 埃地沃兹日本有限公司 Controller and vacuum pump apparatus
JP2020007930A (en) * 2018-07-04 2020-01-16 株式会社島津製作所 Power supply device for vacuum pump and vacuum pump device
US20210123448A1 (en) * 2019-10-28 2021-04-29 Shimadzu Corporation Vacuum pump
WO2022030374A1 (en) * 2020-08-07 2022-02-10 エドワーズ株式会社 Vacuum pump and rotor blade for vacuum pump
US11549515B2 (en) * 2017-07-14 2023-01-10 Edwards Japan Limited Vacuum pump, temperature adjustment controller used for vacuum pump, inspection tool, and method of diagnosing temperature-adjustment function unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369299A (en) * 1986-09-10 1988-03-29 日本電気株式会社 Electronic equipment cubicle
JPH10131887A (en) * 1996-10-08 1998-05-19 Varian Assoc Inc Vacuum pumping device
JP2005236099A (en) * 2004-02-20 2005-09-02 Nec Corp Heat insulating method of electronic device cabinet, and electronic device housing type heat exchange structure applying the method thereto
JP2006090251A (en) * 2004-09-27 2006-04-06 Boc Edwards Kk Vacuum pump
JP2006250033A (en) * 2005-03-10 2006-09-21 Shimadzu Corp Turbo molecular pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369299A (en) * 1986-09-10 1988-03-29 日本電気株式会社 Electronic equipment cubicle
JPH10131887A (en) * 1996-10-08 1998-05-19 Varian Assoc Inc Vacuum pumping device
JP2005236099A (en) * 2004-02-20 2005-09-02 Nec Corp Heat insulating method of electronic device cabinet, and electronic device housing type heat exchange structure applying the method thereto
JP2006090251A (en) * 2004-09-27 2006-04-06 Boc Edwards Kk Vacuum pump
JP2006250033A (en) * 2005-03-10 2006-09-21 Shimadzu Corp Turbo molecular pump

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236469A (en) * 2009-03-31 2010-10-21 Shimadzu Corp Turbomolecular pump device
US9234519B2 (en) 2009-06-09 2016-01-12 Oerlikon Leybold Vacuum Gmbh Vacuum pump
EP2440788B1 (en) * 2009-06-09 2017-01-18 Leybold GmbH Vacuum pump
JP2013100760A (en) * 2011-11-08 2013-05-23 Shimadzu Corp Integrated turbo molecular pump
JP2014148977A (en) * 2014-04-24 2014-08-21 Shimadzu Corp Turbo-molecular pump device
CN110023629A (en) * 2016-12-16 2019-07-16 埃地沃兹日本有限公司 Vacuum pump and the control device for being provided to vacuum pump
JP2018096346A (en) * 2016-12-16 2018-06-21 エドワーズ株式会社 Vacuum pump and controller provided on vacuum pump
WO2018110466A1 (en) * 2016-12-16 2018-06-21 エドワーズ株式会社 Vacuum pump and control device provided to vacuum pump
EP3557070A4 (en) * 2016-12-16 2020-07-29 Edwards Japan Limited Vacuum pump and control device provided to vacuum pump
CN110249129A (en) * 2017-02-17 2019-09-17 埃地沃兹日本有限公司 Controller and vacuum pump apparatus
US11549515B2 (en) * 2017-07-14 2023-01-10 Edwards Japan Limited Vacuum pump, temperature adjustment controller used for vacuum pump, inspection tool, and method of diagnosing temperature-adjustment function unit
JP2019060274A (en) * 2017-09-26 2019-04-18 株式会社島津製作所 Vacuum pump control device
EP3462034A1 (en) * 2017-09-28 2019-04-03 Pfeiffer Vacuum Gmbh Vacuum pump
JP2020007930A (en) * 2018-07-04 2020-01-16 株式会社島津製作所 Power supply device for vacuum pump and vacuum pump device
US20210123448A1 (en) * 2019-10-28 2021-04-29 Shimadzu Corporation Vacuum pump
JP2021067254A (en) * 2019-10-28 2021-04-30 株式会社島津製作所 Vacuum pump
CN112727787A (en) * 2019-10-28 2021-04-30 株式会社岛津制作所 Vacuum pump
CN112727787B (en) * 2019-10-28 2022-07-12 株式会社岛津制作所 Vacuum pump
US11566626B2 (en) * 2019-10-28 2023-01-31 Shimadzu Corporation Vacuum pump
JP7467882B2 (en) 2019-10-28 2024-04-16 株式会社島津製作所 Vacuum pump
WO2022030374A1 (en) * 2020-08-07 2022-02-10 エドワーズ株式会社 Vacuum pump and rotor blade for vacuum pump

Also Published As

Publication number Publication date
JPWO2008062598A1 (en) 2010-03-04
JP5156640B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5156640B2 (en) Vacuum pump
JP5952191B2 (en) Vacuum pump control device and vacuum pump
JP4594689B2 (en) Vacuum pump
JP5218220B2 (en) Turbo molecular pump device and control device thereof
KR102459715B1 (en) Vacuum pump and control device provided in vacuum pump
JP4718862B2 (en) Electric compressor
KR101420033B1 (en) Turbo molecular pump device
JP5673497B2 (en) Integrated turbomolecular pump
JP7022265B2 (en) Vacuum pump
TW201104077A (en) A vacuum pump
JP2006177214A (en) Electric compressor
CN108506225B (en) Power supply integrated vacuum pump
JP5700158B2 (en) Turbo molecular pump device
JP4929939B2 (en) Integrated turbomolecular pump
JP2015222708A (en) Fuel cell system
JP3084622B2 (en) Turbo molecular pump
JP3619651B2 (en) Pump device
JP2005054730A (en) Feed water device of cabinet type
JPH09141138A (en) Electronic cooling part structure of ultra-centrifugal separator
US20230253854A1 (en) Electric motor with printed circuit board
KR101487021B1 (en) Pumping unit and corresponding heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008545329

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807470

Country of ref document: EP

Kind code of ref document: A1