WO2008062555A1 - Novel polypeptide having epimerase activity and use thereof - Google Patents

Novel polypeptide having epimerase activity and use thereof Download PDF

Info

Publication number
WO2008062555A1
WO2008062555A1 PCT/JP2007/001253 JP2007001253W WO2008062555A1 WO 2008062555 A1 WO2008062555 A1 WO 2008062555A1 JP 2007001253 W JP2007001253 W JP 2007001253W WO 2008062555 A1 WO2008062555 A1 WO 2008062555A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
oligosaccharide
present
amino acid
seq
Prior art date
Application number
PCT/JP2007/001253
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Ito
Shigeki Hamada
Shigeaki Ito
Hirokazu Matsui
Hidenori Taguchi
Jun Watanabe
Megumi Nishimukai
Original Assignee
National University Corporation Hokkaido University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University filed Critical National University Corporation Hokkaido University
Priority to JP2008545310A priority Critical patent/JPWO2008062555A1/en
Publication of WO2008062555A1 publication Critical patent/WO2008062555A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/10Laxatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • Novel polypeptide having epimerase activity and use thereof
  • the present invention relates to a novel polypeptide and use thereof. More specifically, the present invention relates to a polypeptide having 2_epimerase activity for oligosaccharides having ⁇ -, 4-links, a method for producing the same, Hetero-oligosaccharides synthesized using peptides, methods for their synthesis, and their use
  • Carbohydrates are the main energy source of living organisms and are precursors in the biosynthesis of other compounds such as fatty acids, triglycerides, and several amino acids. Carbohydrates also play an important role as structural components of connective tissue, neural tissue, bacterial cell walls, and nucleic acids. In addition to such roles as nutrients and / or constituents in living organisms, it has recently been clarified that carbohydrates play an important role in the transmission of various information in vivo as sugar chains possessed by glycoproteins. In addition to genetic engineering and / or protein engineering, glycoengineering is attracting attention.
  • Oligosaccharide which is a carbohydrate bound with about 2 to 10 monosaccharides, is contained in, for example, root nodules and / or mammalian milk, and is widely distributed in animal and plant tissues. .
  • many oligosaccharides having a pharmacological action have been discovered, and pharmaceuticals and / or health foods using them have been actively developed (see, for example, Patent Documents 1 and 2).
  • Hetero-oligosaccharides are formed by combining two or more different monosaccharides. It is a sugar and is known to have various physiological activities. For this reason, hetero-oligosaccharides are used in a wide range of fields.
  • a method for producing a hetero-oligosaccharide there is a method for producing a hetero-oligosaccharide from darcos monophosphoric acid and a saccharide using the reverse reaction of cellobiose phosphorylase (see Patent Document 3).
  • Cellobiose phosphorylase is originally an enzyme that phosphorylates cellobiose into glucose 1-phosphate and glucose. By utilizing this reversible reaction, glucose 1-phosphate is used.
  • Various hetero-oligosaccharides have been synthesized from these and various sugars.
  • Luminococcus albus (R um inococcusalbus (R. a I bus)) 7 ⁇ (registered as AT CC 27 2 1 0), an obligate anaerobic rumen bacterium, has 2 cellobioses. —It is known to have an epimerizing activity, and its existence was suggested as cellobiose epimerase (CE) (see Non-Patent Document 1). In order to prove that this activity of being secreted into the culture medium of this fungus is due to CE as a single enzyme, many researchers have attempted to separate and purify the enzyme. However, the enzyme has not yet been purified and identified, and its actual state is unknown.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-256730 (published on 8th October 1996)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-47402 (published on February 18, 1995)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2-16992 (published on January 19, 1990)
  • Patent Document 4 Special No. 2001-204489 (published July 31, 1991
  • Non-patent document 1 TR Tyler and JM Leatherwood (1 96 /) Arc h. B ioch em. B iophy s. 1 TR 9, ⁇ 3 ⁇ 3. Disclosure of the Invention
  • the hetero-oligosaccharide synthesis method using the method as described in Patent Document 4 has the following disadvantages: (1) The raw material is expensive; (2) Multiple substrates and Enzymes are required, resulting in increased costs and complex reaction conditions; (3) In the reaction using sucrose, the reaction process is a single step, but the target hetero-oligosaccharide is in the reaction solution. In addition to the unreacted substrate (sucrose), the fructose produced by sucrose degradation, the unreacted receptor sugar and multiple sugars, the separation of the desired hetero-oligosaccharide is complicated. (4) In the synthesis method using cellobiose phosphorylase, the sugar at the non-reducing end side is limited to glucose.
  • the reaction product of the enzyme CE (EC 5.1.3.11), whose existence was suggested in Non-Patent Document 1, is 4_0_S_D_glucoviranosyl 1-D-mannose (glucosyl mannose; GI c -Ma n).
  • this enzyme is a secretory enzyme, and detailed properties of the enzyme, substrate specificity, and detailed structure of the product have not yet been determined.
  • CE has a unique enzymatic activity and is a very interesting enzyme from an enzymatic viewpoint. Therefore, many advantages and usefulness can be expected for hetero-oligosaccharide synthesis using this enzyme.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel oligosaccharide synthesis method by realizing purification of CE and elucidating various enzyme chemical properties. It is in.
  • the polypeptide according to the present invention comprises (i) an amino acid sequence represented by SEQ ID NO: 1; (ii) one or several amino acids in the amino acid sequence represented by SEQ ID NO: 1 are substituted, An added or deleted amino acid sequence; or (C) an amino acid sequence having 51% homology or more with the amino acid sequence represented by SEQ ID NO: 1, and a polypeptide comprising any one amino acid sequence It is characterized by having epimerase activity for oligosaccharides having at least S-1, 4 bonds.
  • the polypeptide according to the present invention is (i) derived from a bacterium of the genus Ruminococcus; (B) the apparent molecular weight by SDS-PAGE is 40 to 42 kDa. (C) having the amino acid sequence shown in SEQ ID NO: 4 at the N-terminus; and (D) having a biological property of having at least 2 epimerase activity for oligosaccharides having 4 bonds; It is a feature.
  • the polypeptide according to the present invention further has (E) an activity of 2-epomerizing glucose at the reducing end of at least cellobiose, cellotriose, cellotetraose or lactose; (F) UV radiation (G) isoelectric point (p I) is 4.69; (H) activity shown in (D) is a metal salt (eg, Fe 3 +, Co 2 + , Cu 2 + , P b 2 +, Z n 2 +, or Ag + ); (I) The activity shown in (D) is inhibited by a chemical (eg, N-promosuccimi , Odoacetic acid or p-chloromer benzoate); (J) The maximum activity shown in (D) is pH 7.7-8 in Britton-Robinson buffer .
  • E an activity of 2-epomerizing glucose at the reducing end of at least cellobiose, cellotriose, cellotetraose or lactose
  • UV radiation G) isoelectric point (p I)
  • (K) (D) has the property that the maximum activity shown in (D) is shown in Tris-maleate buffer at 28-32 ° C. preferable.
  • the preferred concentration of the metal salt or chemical is 1 mM, and the preferred concentration of the buffer is 40 to 1 O OmM.
  • the activity shown in the above property (E) is reversible, and the polypeptide according to the present invention also catalyzes the reversible reaction.
  • the polynucleotide according to the present invention is characterized by encoding the above-mentioned polypeptide.
  • the polynucleotide according to the present invention comprises: (A) a nucleotide sequence represented by SEQ ID NO: 2; (B) one or several nucleotides in the nucleotide sequence represented by SEQ ID NO: 2 are substituted, added or missing. Or (C) a polynucleotide comprising a complementary sequence of the base sequence shown in SEQ ID NO: 2 and a base sequence that is hybridized under stringent conditions, and having an epimerase activity for oligosaccharides It is characterized by coding the possessed polypeptide.
  • a vector according to the present invention is characterized by containing the above-mentioned polynucleotide.
  • a method for producing a polypeptide according to the present invention is characterized by using the above-mentioned vector.
  • a kit for producing a polypeptide according to the present invention comprises the above vector
  • the transformant according to the present invention is characterized by containing the above-mentioned polynucleotide.
  • the transformant according to the present invention is preferably a bacterium belonging to the genus Ruminococcus, and more preferably a luminococcus albus (R. a I b us).
  • a method for producing a polypeptide according to the present invention is characterized by using the transformant described above.
  • a kit for producing a polypeptide according to the present invention is characterized by comprising the above-described transformant.
  • the antibody according to the present invention is characterized by specifically binding to the above-mentioned polypeptide.
  • a method for producing a polypeptide according to the present invention is characterized by using the above-mentioned antibody.
  • a kit for producing a polypeptide according to the present invention is characterized by comprising the above-described antibody.
  • a method for synthesizing a hetero-oligosaccharide according to the present invention is characterized by including a step of reacting the above-mentioned polypeptide with an oligosaccharide having a ⁇ - ⁇ , 4-bond.
  • a reagent kit for synthesizing a hetero-oligosaccharide according to the present invention is characterized by comprising the above-mentioned polypeptide.
  • the reagent kit according to the present invention preferably further comprises an oligosaccharide having ⁇ - ⁇ , 4 bonds.
  • a reagent composition for synthesizing a hetero-oligosaccharide according to the present invention is characterized by containing the above-mentioned polypeptide.
  • the functional food according to the present invention is characterized in that it contains a compound produced using the above-mentioned polypeptide in order to function as a prebiotic.
  • the functional food according to the present invention is preferably a bifidobacterial growth promoter and a low-strength (indigestible) food. Further, the functional food according to the present invention may contain a further functional substance.
  • the functional food according to the present invention may be provided as a single product in the form of a composition or in the form of a kit.
  • the method for producing a functional food according to the present invention comprises the above-described polypeptide,
  • the method for producing a functional food according to the present invention may further include a step of adding a further functional substance to the food.
  • the functional food for improving the intestinal environment is characterized by containing 4_0_; S_D_galactopyranosyl_D-mannose.
  • the functionality Food is intended to improve the intestinal environment by promoting the growth of bifidobacteria.
  • the functional food for improving lipid metabolism according to the present invention is characterized by containing 4_0_; S_D_galactopyranosyl_D-mannose.
  • the functional food is intended to improve lipid metabolism by reducing blood cholesterol levels.
  • the functional food for promoting mineral absorptivity according to the present invention is characterized by containing 4-0-; 3_D_galactobilanosyl-D-mannose.
  • the functional food for diabetic patients according to the present invention is characterized by containing 4_0_; S_D_galactobilanosyl 1-D-mannose.
  • the low-strength low-reactivity sweetener according to the present invention is characterized by containing 4_0_; S_D-galactobillanoyl D-mannose.
  • the constipation improving agent according to the present invention is characterized by containing 4_0_; S_D_galactopyranosyl_D_mannose.
  • polypeptide according to the present invention By using the polypeptide according to the present invention, it is possible to easily and abundantly produce 4_0_; S_D_galactobyrosine D-mannose, etc., from a product in which the reducing end glucose of the cellooligosaccharide is 2-epidemerized or lactose. In addition to being able to synthesize, the desired hetero-oligosaccharide can be easily synthesized. Thus, it is possible to provide functionality food material (e.g., non-caloric or low-calorie foods, or Mi Neraru (particularly, Ca 2 +, etc.) excellent food absorption) at low cost. In addition, if the present invention is used, foods or food additives that cause a reduction in blood cholesterol can be developed. Furthermore, it is possible to promote the growth of bifidobacteria with anti-enteric action. However, this does not deny that other physiological activities can be recognized.
  • functionality food material e.g., non-caloric or low-
  • FIG. 1 is a scheme showing a reaction catalyzed by a polypeptide according to the present invention to isomerize the hydroxyl group at the 2nd-position glucose of cellobiose and convert it to GIc-Man.
  • FIG. 2 is a scheme showing a reaction catalyzed by a polypeptide according to the present invention to isomerize the 2-position hydroxyl group of glucose at the reducing end of lactose and convert it to epilactose.
  • FIG. 3 is a CBB-stained photograph of an SDS-PAGE gel showing a polypeptide according to the present invention purified using various chromatographic methods.
  • M molecular weight marker
  • C crude extract
  • P CE purified enzyme preparation.
  • FIG. 4 shows a polypeptide according to the present invention comprising N-acetyl-D-glucosamine (A), UDP-glucose (B), glucose_6_phosphate (C), glucose (D), Mannose (E), Fluke I (F), Galax I (G), Xylose (H), Arabinose (I), Sophorose (J), Lamina Revios (K), Gentiobiose (L), Rak TLC was used for the reaction products of Tols (M), Maltose (N), Sucrose (O), Cellobiose (P), Cellotriose (Q) and Cellotetraose (R) as substrates. It is a figure which shows the result of praying.
  • FIG. 5 shows the 1 H-NMR (a) and 13 C-NMR (b) spectra of the product (epitaxial!) From lactose produced by the polypeptide of the present invention. is there.
  • FIG. 6 shows 1 H-NMR (a) and 13 C-NMR (b) of the product (G lc -GI c-Man) from cellotriose produced by the polypeptide of the present invention. This is the Spectra.
  • FIG. 7 is a scheme showing a reaction catalyzed by a polypeptide according to the present invention to isomerize the hydroxyl group at the 2-position of the reducing terminal glucose of cellotriose and convert it to GI cGIc-Man.
  • Fig.8 is epirac! This is a result showing that (a) or DFA III (b) has a mineral absorption promoting effect.
  • FIG. 9 shows the results showing that epilactose has a mineral absorption promoting effect.
  • Panel B Mg 2 +, Panel C respectively the absorption of Z n 2 +.
  • FIG. 10 is a graph showing the Ca 2 + absorption-promoting effect of epicrust measured by the inverted sack method.
  • the vertical axis represents the amount of C a 2 + absorbed per length (cm) of the small intestine used for the sac.
  • FIG. 11 is a graph showing the change in the total cholesterol level in the rats ingesting the dietary supplement with epilactose. Panel A represents fasting and Panel B represents feeding.
  • FIG. 12 is a graph showing changes in blood neutral lipid, phospholipid, and cholesterol levels in rats fed an epilactose supplemented diet.
  • FIG. 13 is a graph showing changes in blood glucose level after feeding epilactose.
  • the present inventors have refined CE derived from Rumicoccus albus (R. a I bu s) N E 1 found by themselves and attempted to elucidate various enzyme chemical properties. This enzyme isomerized the 2-position hydroxyl group of cellobiose at the reducing end side glucose and catalyzed the interconversion to G I c — Man (Fig. 1). Of the three types of epimerases described above, CE is the only epimerase that acts at position 2 on the reducing end side.
  • the present invention provides a polypeptide having 2-epimerase activity for oligosaccharides having a ⁇ -4 bond.
  • a “polypeptide according to the present invention” has 2-epimerase activity against oligosaccharides derived from bacteria of the genus Ruminococcus and having at least ⁇ - ⁇ , 4 bonds. Polypeptides or variants thereof are contemplated, more particularly CE or variants thereof.
  • the bacterium is preferably R. a I bus, more preferably R. a I bus N E 1 strain. R. albus N E 1 described in the present specification can be provided by the accession number F ERM P-2 1 03 6 (National Institute of Advanced Industrial Science and Technology Patent Organism Depositary).
  • CE from Ruminococcusa I bus (R. a I bus) NE 1 has an apparent molecular weight of about 41 k D according to SDS-PAGE. a (for example, 40 to 42 kDa) and having the amino acid sequence shown in SEQ ID NO: 4 at the N-terminus. This apparent molecular weight is calculated from the actual amino acid sequence because it varies slightly depending on the degree of post-translational modification in the polypeptide (protein) used and the concentration of the gel used for SDS_PAGE. One skilled in the art will readily appreciate that the molecular weight can be from about 35 kDa to about 46 kDa.
  • the molecular weight calculated based on the CE sequence information identified by the present inventors is 452 17 Da.
  • the apparent molecular weight by SDS-PAGE is 43.1 kDa.
  • the activity of the polypeptide according to the present invention is preferably an activity of isomerizing the 2-position hydroxyl group of the sugar on the reducing end side of the oligosaccharide.
  • oligosaccharide is intended to be a sugar composed of 2 to 10 monosaccharides, and the number of monosaccharides is preferably 2 to 6, cellobiose, cellotrio More preferably, it is monos, cellotetraose or lactose.
  • the polypeptide according to the present invention has a maximum absorption of ultraviolet rays of 2 78 to 28 80 nm and an isoelectric point (p I) of 4.69. is there.
  • the 2-epepimerase activity for the oligosaccharide is a metal salt (for example, Fe 3 + , Co 2 + , Cu 2 + , P b 2 +, Z n 2 + or A g +) and is inhibited by chemicals (eg N_prosuccimide, codoacetic acid or p-chloromercurybenzoate).
  • the concentration of the metal salt or chemical substance preferable for inhibiting the activity of the polypeptide according to the present invention is 1 mM.
  • 2_epepimerase activity with respect to the above oligosaccharide has a maximum activity at pH 7.7 to 8.2 in Priton-Robinson buffer, and T Its maximum activity is shown at 28-32 ° C in ris_maleic acid buffer.
  • the preferred concentration of the buffer is 40-1OOmM.
  • polypeptide is used interchangeably with “peptide” or "protein”.
  • fragment of a polypeptide is intended to be a partial fragment of the polypeptide.
  • Polypeptides according to the present invention may also be isolated from natural sources or chemically synthesized.
  • isolated polypeptide or protein is intended to be a polypeptide or protein that has been removed from its natural environment.
  • recombinantly produced polypeptides and proteins expressed in host cells can be expressed as simple as natural or recombinant polypeptides and proteins that have been substantially purified by any suitable technique. It is thought that they are separated.
  • the polypeptide according to the present invention was purified from R. a I bus NE 1.
  • the polypeptide according to the present invention is not limited to this, and other natural purified products. Products, products of chemical synthesis procedures, or products produced by recombinant techniques from prokaryotic hosts.
  • a person skilled in the art will know the entire amino acid sequence of the polypeptide according to the present invention and the entire nucleotide sequence (or open reading sequence) of the polynucleotide encoding the polypeptide. Frame or part of it).
  • a polynucleotide encoding a polypeptide according to the present invention can be obtained as follows.
  • the method for isolating a polynucleotide encoding the polypeptide according to the present invention includes a step of preparing a genomic library prepared from cells expressing the polypeptide according to the present invention.
  • a genomic library prepared from cells expressing the polypeptide according to the present invention.
  • plasmids plasmids, cosmids, phages, YACs, etc.
  • a method of screening a gene library for confirming the presence of a polynucleotide encoding a polypeptide according to the present invention is an oligonucleotide based on amino acid sequence information shown in SEQ ID NO: 1. Includes the process of preparing the probe. Using the standard triplet genetic code, oligonucleotide sequences of about 17 base pairs or longer can be prepared by conventional in vitro synthesis techniques. This oligonucleotide sequence is synthesized to correspond to the full length or a part of the amino acid sequence shown in SEQ ID NO: 1.
  • the obtained oligonucleotide is then labeled with a radionuclide, an enzyme, biotin, a fluorescent reagent, etc., and used as a probe for screening a gene library.
  • a polymerase chain reaction (PCR) using a degenerate primer designed based on the amino acid sequence shown in SEQ ID NO: 1 may be performed.
  • the polynucleotide encoding the polypeptide according to the present invention is the above gene. It can be obtained from recombinant DNA recovered from library isolates. Polynucleotides encoding the polypeptides according to the invention can be obtained by sequencing the non-vector single nucleotide sequences of these recombinant molecules. Nucleotide sequence information is available from widely used DNA sequencing protocols (eg, S. L. Berger and AR Kimmel (1 987) M ethods E nz ymo to 1 52, 307, A cad em ic P ress, NY) (incorporated herein by reference)) can be obtained using, for example, sequencing methods that can be found in.
  • DNA sequencing protocols eg, S. L. Berger and AR Kimmel (1 987)
  • polypeptides of the present invention Of all amino acids, as well as upstream and downstream nucleotide sequences.
  • Nucleotide sequences obtained from gene library isolates specific for the polypeptides according to the present invention are subjected to analysis in order to identify important regions of the polypeptide genes according to the present invention.
  • the These important areas include open reading frames, promoter sequences, and termination sequences.
  • the analysis of nucleotide sequence information is preferably performed on a computer.
  • Software suitable for analyzing nucleotide sequences for important regions is commercially available and includes, for example, forces such as D NAS IS TM (Pharmacia LKBT echnology, Piscataway, NJ).
  • amino acid sequence information obtained from N-terminal sequencing of the purified polypeptide according to the present invention is used to improve the accuracy of the nucleotide sequence analysis. It is also important.
  • the polypeptide according to the present invention can be expressed by a recombinant technique when the nucleotide sequence of the polynucleotide encoding the polypeptide according to the present invention is functionally inserted into a vector.
  • “functionally inserted” is intended to be inserted into an expression vector according to the appropriate open reading frame and orientation.
  • the preferred starting material is a genomic library isolate encoding the polypeptide according to the present invention. More preferably, it is a polynucleotide obtained by the method described above.
  • the polynucleotide encoding the polypeptide according to the present invention is inserted downstream of the promoter, followed by a stop codon and, if desired, produced as a hybrid protein and Subsequent cleavage can be used.
  • sequences specific to the host cell that improve the production yield of the polypeptide of the present invention are used, and appropriate control sequences (such as an enhancer sequence, polyadenylation sequence, and ribosome binding site). Is added to the expression vector.
  • the appropriate coding sequence Once the appropriate coding sequence has been isolated, it can be expressed using a variety of different expression systems; eg, bacteria, yeast, baculovirus or mammalian cells.
  • the polypeptide according to the present invention may be any polypeptide in which amino acids are peptide-bonded, but is not limited thereto, and may be a complex polypeptide including a structure other than the polypeptide.
  • polypeptide according to the present invention may include an additional polypeptide.
  • Additional polypeptides include, for example, epitope labeled polypeptides such as H i s, My c, F I ag and the like.
  • a polypeptide according to the present invention is an extract from a natural bacterium, or a transformant genetically modified to produce a polypeptide according to the present invention (for example, prokaryotic cells and Eukaryotic cells) can be easily purified by affinity chromatography using an antibody capable of specifically binding to the polypeptide of the present invention.
  • polypeptides according to the present invention and the polypeptides derived from the polypeptides according to the present invention may be produced using a wide variety of other known protein purification techniques (eg, ammonium sulfate fractionation, solvent precipitation, immunoprecipitation, Gel filtration, ion exchange chromatography, hydrophobic chromatography, isoelectric precipitation, electrofocusing, electrophoresis, etc.) may be used alone or in combination.
  • protein purification techniques eg, ammonium sulfate fractionation, solvent precipitation, immunoprecipitation, Gel filtration, ion exchange chromatography, hydrophobic chromatography, isoelectric precipitation, electrofocusing, electrophoresis, etc.
  • the fraction isolated in the course of the purification may be immunoassay using the polypeptide-specific antibody according to the present invention, or the polypeptide-specific bioassay according to the present invention (for example, lactose or The presence of the polypeptide according to the present invention can be analyzed by analysis using an enzymatic reaction using cellooligosaccharide as a substrate and analysis of its product.
  • the antibody specific for the polypeptide of the present invention immunizes an appropriate vertebrate host (eg, rabbit) with the purified polypeptide of the present invention alone or in combination with a normal adjuvant. It is produced by. Usually, two or more immunizations are included, and blood or spleen is taken several days after the last injection.
  • immunoglobulins can be precipitated, isolated, and purified by a variety of standard techniques. This includes affinity purification using a polypeptide according to the invention bound to a solid surface such as a gel or bead in an affinity ram.
  • spleen cells are usually fused with immortalized lymphocytes, such as bone marrow cell lines, under selective conditions for hyperidoma formation.
  • immortalized lymphocytes such as bone marrow cell lines
  • the hybridomas can then be cloned under limited dilution conditions and their supernatants can be screened for antibodies with the desired specificity.
  • Techniques for producing antibodies are known in the literature, for example, “Antibibodies: AL aboratry Manual, E. Harbor and Ed. Lane, Ed., Old Spring Harbor Laboratories Press, NY (1 988 ) "(Incorporated herein by reference).
  • variant has the polypeptide according to the present invention; 2-epimerase activity for oligosaccharides having S_1,4 bonds Polypeptides that hold are intended.
  • mutants one or several amino acids are substituted, added, or deleted in the amino acid sequence of CE derived from R. a I bus NE 1.
  • examples include mutants containing lost, inverted, translocated, repetitive and type-substituted amino acid sequences.
  • any base group of a polynucleotide that codes for a polypeptide can be mutated.
  • a deletion mutant or an addition mutant can be prepared by designing a primer corresponding to an arbitrary site of a polynucleotide encoding a polypeptide.
  • the objective can be achieved by random mutation.
  • it can be easily determined whether or not the produced mutant has a 2-epimerase activity for an oligosaccharide having a desired _ 1,4 bond. obtain.
  • Preferred variants are conservative or non-conservative amino acid substitutions, deletions, or With additions. Silent substitution, addition, and deletion are preferred, and conservative substitution is particularly preferred. These do not change the 2_epimerase activity of the polypeptide according to the present invention for oligosaccharides having ⁇ - ⁇ , 4 bonds.
  • Representative conservative substitutions include substitution of one amino acid for another in the hydrophobic amino acids AI a, V a I, Leu, and II e; hydroxyl amino acids Ser and T exchange of hr, exchange of acidic residues A sp and GI u, substitution between amido amino acids A sn and GI n, exchange of basic amino acids L ys and A rg, and aromatic amino acids P he, Examples include substitution between Tyr.
  • mutants include deletion of one or several bases in the base sequence encoding CE from R. a I bus NE 1. It is preferably coded by a polynucleotide comprising a base sequence inserted, substituted, or added.
  • a variant is one or several bases of a complementary sequence of a base sequence encoding CE from R. a I bus NE 1.
  • the hybridization is “M o l e c u l a r C l o n i n g: A
  • stringent hybridization conditions refers to hybridization solutions (50% formamide, 5 XSSC (1 50 1 ⁇ 1 a CI, 1 5 in 5 mM sodium phosphate (pH 7.6), 5 X Denhardt's solution, 10% dextran sulfate, and 20 g / mL denatured sheared salmon sperm DN A) It is intended to wash the filter in 0.1 X SSC at approximately 65 ° C after a total incubation of 42 ° C.
  • a polynucleotide that hybridizes to a “portion” of the polynucleotide, at least about 15 nucleotides (nt) of the reference polynucleotide, and more preferably at least about 20 nt, even more preferably at least about 3 O nt, and Even more preferably, a polynucleotide (either DNA or RNA) that hybridizes to a polynucleotide longer than about 30 nt is contemplated.
  • a polynucleotide (oligonucleotide) that hybridizes to a “part” of the polynucleotide is also useful as a detection probe as discussed in more detail herein.
  • another example of a variant is at least 50% identical to the base sequence encoding CE from R.
  • a I bus NE 1 more preferably at least 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 65%, 70%, 72%, 75%, 80%, 82%, 85%, It is preferably encoded by a polynucleotide comprising a base sequence that is 90%, 92%, 95%, 96%, 97%, 98% or 99% identical.
  • a natural sequence that is homologous at the amino acid level with CE from the NE 1 strain shows only 51% homology.
  • the reference nucleotide sequence of the polynucleotide according to the present invention is based on the reference (QU ERY) polynucleotide comprising at least 95 ⁇ 1 ⁇ 2 identical nucleotide sequence to the nucleotide sequence. Identical to the reference sequence except that it can contain up to 5 mismatches per 100 nucleotides (bases) of the reference base sequence of the polynucleotide encoding the polypeptide of the invention.
  • Any specific nucleic acid molecule is, for example, at least 50%, 51%, 52%, 53%, 54%, 55% of the nucleotide sequence of the polynucleotide encoding the polypeptide of the present invention.
  • the identity also referred to as global sequence alignment
  • QU ERY reference sequence
  • target sequence DL B rut I ag et al. (1 990) Is determined using the FAS TDB computer program based on the azorego rhythm (Comp. A pp Biosci. 6, 237 (incorporated herein by reference)).
  • the F AS TDB program When calculating, manual corrections are made to the results, taking into account the fact that 5 'and 3' shortenings of the target sequence are not taken into account.
  • the percent identity is 5 'and 3' of the subject sequence that are not matched / aligned QU ERY sequences Is corrected by calculating the number of bases as a percentage of the total bases in the QU ERY sequence.
  • the determination of whether a nucleotide is matched / aligned is determined by the results of the FAS TDB sequence alignment. This percentage is then subtracted from the identity percentage calculated by the above FAS TDB program using the specified parameter, resulting in a final identity. —Reach gender percent score. This corrected score is used for the purpose of this embodiment. Only the 5 'and 3' bases outside the target sequence that do not match / align with the QU ERY sequence are calculated to manually adjust the percent identity score, as shown in the FASTDB alignment. Is done. For example, a 90 base subject sequence is aligned with a 100 base QU ERY sequence to determine percent identity.
  • the deletion occurs at the 5 ′ end of the subject sequence, so the FAS TDB alignment does not show a match / alignment of the first 10 bases at the 5 ′ end.
  • 10 unpaired bases represent 10% of the sequence (number of unmatched bases at 5 'and 3' ends / total number of bases in QU ERY sequence), so 10% Is subtracted from the identity percent score calculated by the F AS TDB program. If the remaining 90 residues are perfectly matched, the final percent identity is 90%.
  • a 90 residue subject sequence is compared to a 100 base QU ERY sequence. In this case, the deletion is an internal deletion, so there is no base at the 5 'end or 3' end of the subject sequence that is not aligned / aligned with the QUERY sequence.
  • the percent identity calculated by FAS TDB is not manually corrected. Again, only the 5 'and 3' end bases of the target sequence that do not match / align with the QU ER Y sequence are manually corrected. No other manual correction is made for the purposes of this embodiment.
  • the present invention provides a polypeptide having 2_ epimerase activity for oligosaccharides having S_1, 4 bonds.
  • the polypeptide according to the present invention has 2-epimerase activity for cellobiose, but also has 2-epimerase activity for cellooligosaccharides other than lactose or cholebiose.
  • the polypeptide according to the present invention having such properties is very useful for the synthesis of a novel oligosaccharide.
  • the method of synthesizing a hetero-oligosaccharide using the polypeptide according to the present invention has the following advantages compared with the synthesis method described in Patent Document 4: (1) Because it is a reaction of 1 substrate-1 enzyme, the reaction system is simple and inexpensive. Yes; (2) Since there is no reaction by-product, purification of the target product is easy and suitable for mass production; (3) Since the substrate specificity for non-reducing end sugars is not strict, Hetero-oligosaccharides that cannot be synthesized by the synthesis method can be synthesized.
  • the present invention also provides a polynucleotide that codes for a polypeptide having 2_epimemerase activity to an oligosaccharide having a ⁇ -, 4 bond.
  • polynucleotide is used interchangeably with “gene”, “nucleic acid” or “nucleic acid molecule” and is intended to be a polymer of nucleotides.
  • base sequence is used interchangeably with “nucleic acid sequence” or “nucleotide sequence” and refers to deoxyribonucleotides (abbreviated as A, G, C, and T). Shown as an array.
  • a polynucleotide containing the base sequence shown in SEQ ID NO: 2 or a fragment thereof is a polynucleotide containing a sequence shown by each of the deoxynucleotides A, G, C and / or T of SEQ ID NO: 2. Or a fragment of it is intended.
  • the polynucleotide according to the present invention may exist in the form of R N A (eg, m R N A) or D N A (eg, c D N A or genomic D N A).
  • DNA may be double stranded or single stranded.
  • Single stranded DNA or RNA can be the coding strand (also known as the sense strand) or can be the non-coding strand (also known as the antisense strand).
  • oligonucleotide is intended to be a combination of several to several tens of nucleotides, and is used interchangeably with “polynucleotide”. Oligonucleotides are represented by the number of nucleotides polymerized, such as dinucleotides and trinucleotides for short ones and 30 or 10 for long ones. Oligonucleotides are chemically synthesized, even if they are produced as longer polynucleotide fragments. May be.
  • polynucleotide according to the present invention can also be fused to the polynucleotide encoding the tag tag (tag sequence or marker sequence) described above on its 5 'side or 3' side.
  • the polynucleotide according to the present invention comprises an untranslated region sequence or a vector sequence.
  • It may contain a sequence such as (including an expression vector sequence).
  • CE is an intracellular enzyme. It is obvious. However, it should be noted that this does not completely deny that an undiscovered secretory mechanism exists in CE.
  • the object of the present invention is to: a polypeptide having 2_epimerase activity for oligosaccharides having S_1,4 bonds; and 2_epimerase activity for oligosaccharides having S-1,4 bonds
  • the present invention is to provide a polynucleotide that encodes a polypeptide having a nucleotide, and does not exist in a method for preparing a polypeptide, a method for preparing a polynucleotide, or the like specifically described in the present specification.
  • the present invention also provides an antibody that specifically binds to a polypeptide having 2_epimerase activity against an oligosaccharide having a ⁇ -, 4 bond.
  • antibody refers to an immunoglobulin (
  • Peptide antibodies are produced by methods well known in the art. For example, M. Chow et al., (1985) Proc. Natl. A cad. Sc, USA 82, 910, and F. J. Bittle et al., (1985) J. Ge. n. See V iro 66, 2347, both of which are incorporated herein by reference.
  • animals can be immunized with free peptide; however, anti-peptide antibody titers couple the peptide to a macromolecular carrier (eg, mosianin or tetanus toxoid to keyhole limpet). Can be boosted.
  • a macromolecular carrier eg, mosianin or tetanus toxoid to keyhole limpet.
  • peptides containing cysteine are coupled to a carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester, while other peptides such as glutaraldehyde. More common linking agents can be used to couple to the carrier.
  • Animals such as rabbits, rats, and mice are either free or carrier-coupled peptides, such as intraperitoneal and intraperitoneal in emeraldions containing about 100 g of peptide or carrier protein and Freund's adjuvant. Immunized by intradermal injection.
  • titer of anti-peptide antibodies that can be detected by ELISA assay using, for example, free peptides adsorbed on a solid surface, for example, at intervals of about 2 weeks can be needed.
  • the titer of anti-peptide antibodies in serum from immunized animals can be determined by selection of anti-peptide antibodies, e.g., adsorption to peptides on solid supports and elution of selected antibodies by methods well known in the art. Can be increased.
  • an "antibody” according to the present invention refers to a complete antibody molecule and an antibody fragment (eg, "313") that can specifically bind to a polypeptide according to the present invention. And “(ab ′) 2 fragments”. F ab and F (ab ′) 2 fragments lack the Fc portion of the complete antibody and are removed more rapidly by circulation and Rarely have non-specific tissue binding of antibodies (RL Wa h I et al., (1 983) J. Nu c to Me d. 24, 3 1 6 (incorporated herein by reference)). Therefore, these fragments are preferred.
  • additional antibodies that can bind to the peptide antigens of the polypeptides of the invention can be produced in a two-step procedure through the use of anti-idiotype antibodies.
  • Such a method uses the fact that the antibody itself is an antigen, and thus it is possible to obtain an antibody that binds to a secondary antibody.
  • an antibody that specifically binds to a polypeptide according to the present invention is used to immunize an animal (preferably a mouse).
  • the splenocytes of such animals are then used to produce hybridoma cells, and the hybridoma cells have the ability to bind to antibodies that specifically bind to the polypeptides of the invention.
  • Such an antibody includes an anti-idiotype antibody against an antibody that specifically binds to the polypeptide of the present invention, and induces the formation of an antibody that specifically binds to the polypeptide of the present invention.
  • F ab and F (ab ′) 2 and other fragments of the antibodies according to the invention can be used according to the methods disclosed herein.
  • Such fragments are typically produced by proteolytic cleavage using enzymes such as papain (resulting in Fab fragments) or pepsin (resulting in F (ab ') 2 fragments).
  • the polypeptide binding fragments according to the invention can be produced by the application of recombinant DNA technology or by synthetic chemistry.
  • the antibody according to the present invention may be a chimeric monoclonal antibody.
  • Such antibodies can be generated using genetic constructs derived from hybridoma cells that produce the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. For previous reports, see SL Morrison, (1 98 5) Science, 229, 1202; VT O i et al., (1 986) B io T echniques 4, 2 1 4; S. C abi I ly and H L. Heyneker, US Pat. No. 4, 8 1 6,567; M. T aniguchi and M. Kurosawa, EP 1 7 1 496; SL Morrison and L. Herzenberg, EP 1 73494; M.
  • antibodies of the present invention at least, have a Poribe petit de antibodies that recognize fragments of the present invention (e.g., "3 13 Oyobi" (ab ') 2 fragment) That is, it should be noted that an immunoglobulin comprising an antibody fragment that recognizes the polypeptide of the present invention and an Fc fragment of a different antibody molecule is also included in the present invention.
  • the antibody according to the present invention when used, it is a polypeptide according to the present invention; a polypeptide having 2-epimerase activity with respect to an oligosaccharide having S_1,4 bonds can be easily obtained.
  • the polypeptide according to the present invention can be produced by combining with affinity chromatography and the like. That is, the present invention also provides a method for producing a polypeptide using the antibody, a kit for producing a polypeptide comprising the antibody, and a method for producing the polypeptide and a specific kit for producing the polypeptide. Those skilled in the art who have read this specification will readily understand these embodiments.
  • the present invention provides a vector that is used to produce a polypeptide having 2_epimerase activity for oligosaccharides having ⁇ _4 linkages.
  • the vector according to the present invention may be a vector used for in vitro translation or a vector used for recombinant expression.
  • the vector according to the present invention includes the above-described polynucleotide according to the present invention. If it is a thing, it will not specifically limit.
  • a recombinant expression vector into which a polynucleotide c D ⁇ coding for a polypeptide having 2_epimelase activity for an oligosaccharide having a ⁇ -, 4 bond is inserted.
  • Examples of the method for producing the recombinant expression vector include, but are not limited to, a method using plasmid, phage, or cosmid.
  • the specific type of vector is not particularly limited, and a vector that can be expressed in a host cell can be appropriately selected. That is, according to the type of host cell, a promoter sequence is appropriately selected in order to reliably express the polynucleotide according to the present invention, and a vector in which this and the polynucleotide according to the present invention are incorporated into various plasmids, etc. What is necessary is just to use as an expression vector. In addition, transformation of the host with the expression vector can also be performed according to conventional methods.
  • Such best practices include tetracycline resistance genes or ampicillin resistance genes for culturing in E. coli (E s c h e r i c h i a c o l i), Bacillus subtilis (B a c i l l u s su b t i i i s), and other bacteria.
  • the method of introducing the expression vector into a host cell is not particularly limited, and a conventionally known method such as an electroporation method, a calcium phosphate method, a ribosome method, or a DEA E dextran method is preferable.
  • a conventionally known method such as an electroporation method, a calcium phosphate method, a ribosome method, or a DEA E dextran method is preferable.
  • a conventionally known method such as an electroporation method, a calcium phosphate method, a ribosome method, or a DEA E dextran method is preferable.
  • the vector according to the present invention when used, if the polynucleotide is introduced into an organism or a cell, the polypeptide having 2_epepimerase activity for an oligosaccharide having an S_1,4 bond is introduced into the organism or cell. Can be expressed. Furthermore, the vector according to the present invention can be used in a cell-free protein synthesis system. For example, it is possible to synthesize a polypeptide having 2-epimerase activity for oligosaccharide having 4 bonds.
  • the vector according to the present invention should include at least a polynucleotide encoding the polypeptide according to the present invention. That is, it should be noted that vectors other than the expression vector are also included in the technical scope of the present invention.
  • the polypeptide according to the present invention can be easily produced. That is, the present invention also provides a method for producing a polypeptide using the vector, a kit for producing a polypeptide comprising the vector, and a method for producing a polypeptide and a kit for producing a polypeptide. Specific embodiments are readily understood by those of ordinary skill in the art who have read this specification.
  • the present invention provides a transformant in which a polynucleotide that codes for a polypeptide having 2_epimerase activity for an oligosaccharide having a ⁇ _4 bond is introduced. If the transformant according to the present invention is used, the polypeptide according to the present invention can be produced easily and in large quantities.
  • the term “transformant” is intended to include not only cells, tissues or organs, but also living organisms, but cells (especially prokaryotic cells, fungi (eg, And filamentous fungi).
  • the transformant according to the present invention is characterized in that a polypeptide having a 2-epimerase activity for an oligosaccharide having a ⁇ _4 bond is expressed.
  • a polypeptide having 2-epimerase activity with respect to an oligosaccharide having ⁇ -, 4 bonds is stably expressed, but it may be expressed transiently.
  • the transformant according to the present invention comprises a recombinant vector comprising a polynucleotide that codes for a polypeptide having 2_epimerase activity for oligosaccharide having 4 linkages. Polypeptides with 2_epepimerase activity against oligosaccharides with ⁇ - and 4-bonds can be expressed. It is obtained by introducing it into living organisms.
  • the present invention when the transformant according to the present invention is used, the polypeptide according to the present invention can be easily produced. That is, the present invention also provides a method for producing a polypeptide using the transformant, a kit for producing a polypeptide comprising the transformant, and a method for producing the polypeptide and polypeptide production. Those skilled in the art who have read this specification will readily understand the specific embodiment of the kit.
  • kits, reagent compositions and methods for synthesizing hetero-oligosaccharides The present invention provides kits, reagent compositions and methods for synthesizing hetero-oligosaccharides. By using the present invention, it is possible not only to synthesize GIc_Man much much more easily than the conventional method, but also to easily obtain a new oligosaccharide.
  • the kit for synthesizing the hetero-oligosaccharide according to the present invention comprises the polypeptide according to the present invention.
  • the kit according to the present invention may be provided with a reagent for promoting the enzymatic reaction of the polypeptide or a reagent for appropriately performing the enzymatic reaction.
  • These reagents can be appropriately selected depending on the enzyme reaction.
  • the carbon source used when applying the kit according to the present invention is not particularly limited, and examples thereof include cellooligosaccharides (disaccharide, trisaccharide, tetrasaccharide, pentasaccharide, hexasaccharide, etc.) and lactose. .
  • Bulk materials for obtaining these carbon sources include, for cello-oligosaccharides, unused resources including cellulose or low-utilized resources (for example, pulp), but are not limited to these.
  • ⁇ -, 4 Hemicellulose containing conjugated polysaccharides can also be mentioned as a bulk material.
  • examples of bulk materials include raw milk such as sushi and goats, powdered milk, and whey. These bulk materials may be used directly or may be decomposed in advance by adding a degrading enzyme (for example, cellulase or xylanase).
  • the reagent composition for synthesizing the hetero-oligosaccharide according to the present invention includes the polypeptide according to the present invention.
  • the reagent composition according to the present invention comprises a polypeptide according to the present invention.
  • a reagent for promoting the enzymatic reaction of the polypeptide described above, or a reagent for appropriately performing the enzymatic reaction may be included together.
  • the carbon source used when applying the reagent composition according to the present invention is not particularly limited. Power cellooligosaccharides (disaccharide, trisaccharide, tetrasaccharide, pentasaccharide, hexasaccharide, etc.) and lactose are included. Can be mentioned. Bulk materials for obtaining these carbon sources are as described above.
  • the method of synthesizing the hetero-oligosaccharide according to the present invention uses the polypeptide according to the present invention.
  • the method according to the present invention includes a step of incubating the polypeptide according to the present invention together with an oligosaccharide having a ⁇ -, 4 bond.
  • the oligosaccharide is preferably lactose or cellooligosaccharide.
  • the carbon source used when applying the method according to the present invention is not particularly limited, and examples include cellooligosaccharides (disaccharides, trisaccharides, tetrasaccharides, pentasaccharides, hexasaccharides, etc.) and lactose. . Bulk materials for obtaining these carbon sources are as described above. If HPLC, silica gel, activated charcoal column chromatography, etc. are used, the synthesized hetero-oligosaccharide can be purified at a large production level.
  • Prebiotics is defined by GR Gibson and MB Roberfroid (1 995) (J. Nut r. 1 25, 1 401) as “intestinal flora (group of microorganisms inhabiting the digestive tract). (Mainly anaerobic bacteria)), which has a positive impact on the health of the host by improving the balance of the food.
  • intestinal flora group of microorganisms inhabiting the digestive tract. (Mainly anaerobic bacteria)
  • a substance that promotes improvement of the intestinal environment by growing microorganisms useful in the intestinal environment for example, probiotics such as lactic acid bacteria and bifidobacteria
  • a useful microbial growth factor for example, probiotics such as lactic acid bacteria and bifidobacteria
  • Typical prebiotics include indigestible substances such as oligosaccharides, fermented whey products from propionic acid bacteria, and food fiber. Oligosaccharides serve as food for probiotics, The fiber stores enteric bacteria and assists in their growth. [01 13]
  • the effects of prebiotics include absorption of minerals, blood cholesterol and neutral fat levels, prevention of arteriosclerosis, blood sugar levels, diabetes improvement, obesity, Activation of exercise, improvement of constipation, activation of immunity, prevention of infectious diseases, prevention of cancer, suppression of blood ammonia level, improvement of hepatic encephalopathy due to decreased liver function, promotion of vitamin synthesis by enteric bacteria Examples include, but are not limited to, promoting absorption of various minerals and improving symptoms of ulcerative colitis.
  • Bifidobacteria can assimilate epilactose (Table 6).
  • epilactose promotes the growth of cecal bifidobacteria in rats, reducing pH (Table 9), and reducing the amount of short-chain fatty acids and organic acids in the cecum. Since it can be increased (Table 10), the intestinal environment can be improved and can be used as a functional food for improving the intestinal environment.
  • Epilactos has the ability to promote mineral absorption capacity (Figs. 8, 9 and 10), and therefore, the mineral absorption capacity promoter or mineral It can be used as a functional food for promoting absorption.
  • Example 9 since Epi lactose increases the content of the cecum (Table 9), it can be used as an agent for improving constipation.
  • Example 10 Epilactos can reduce the amount of cholesterol in the blood ( Figures 11 and 12), and therefore, lipid metabolism improving agents or lipids can be reduced. It can be used as a functional food for improving metabolism.
  • epilactose is difficult to digest and absorb in the stomach and intestine (Table 7), and is low in calories, as shown in Example 11 and also increased in blood glucose after eating. Therefore, it can be used as a functional food for diabetics who need to avoid an increase in blood glucose level (Fig. 13).
  • Epilactose is weak in sweetness and can be used as a low-strength, low-sweetening agent.
  • the present invention provides a functional food and a method for producing the same.
  • the functional food according to the present invention is characterized in that it contains epilactose, which is an oligosaccharide having a ⁇ _4 bond, a growth promoter for bifidobacteria, a constipation improving agent, A lipid metabolism improving agent, a low-calorie food or a mineral absorption promoter is preferred.
  • the functional food according to the present invention may contain a further functional substance other than epilactose.
  • the functional food according to the present invention is characterized by comprising a compound produced using a polypeptide having epimerase activity for oligosaccharides having ⁇ 4 bonds.
  • the above-described polypeptide may be reacted with an oligosaccharide having ⁇ - ⁇ , 4 bonds, and the reaction product may be added to the food.
  • epilactose can be produced as a reaction product by reacting the above polypeptide with lactose.
  • this reaction product can improve the intestinal environment, promote mineral absorption, act as a lipid. Since it has functions such as metabolism improving action, low caloric properties, and also does not cause an increase in blood glucose level, the function of the reaction product can be obtained by adding the reaction product to other foods. Added functional foods can be produced.
  • reaction product epilactose
  • the reaction product has a lower sweetness than sucrose, so it can be used as a low-strength, low-sweetness sweetener to produce low-strength, low-sweetness foods while suppressing sweetness.
  • the reaction product, epilactose is a natural raw material containing lactose, especially livestock milk such as ushi, goat or hidge as raw or degreased. It can be produced by reacting with a polypeptide. It is also possible to react whey (milk) fraction collected from livestock milk and processed milk such as low-fat milk, low-protein milk, and non-fat ⁇ deproteinized milk or low-lactose milk with the above-mentioned polypeptides. Epilactose can be produced.
  • the present invention may be provided as a symbiotic that combines probiotics and prebiotics and a method for producing the same.
  • Carbon source is optional
  • Tris buffer (1 O OmM Tris—maleic acid buffer (pH 7. 8) ⁇ 0 UL 1 0 OmM cellobiose for the purpose of inhibiting S-glucosidase activity 5 L, enzyme solution 10 L
  • the reaction was performed at 30 ° C, the reaction time was adjusted according to the enzyme activity, and the reaction was stopped by boiling for 5 minutes. Reaction products were identified using thin-layer chromatography (TLC).
  • Quantitative measurement was performed according to the following method.
  • the composition of the reaction solution is 100m MT ris _ maleate buffer (pH 7.0) 3.2mL, 10OmM lac! 6.2 mL (2 1 2 mg) of the enzyme and 1.6 mL (10.9 JI g) of enzyme solution were allowed to react at 30 ° C for 20 or 40 minutes. After stopping the reaction by boiling the sample for 5 minutes, ion exchange resin (AG 50 1 —X 8 resin, Bio_Rad) column, and a non-adsorbable fraction was obtained by centrifugation.
  • ion exchange resin AG 50 1 —X 8 resin, Bio_Rad
  • N E 1 strain a bacterium having a high CE activity was selected and named N E 1 strain.
  • This bacterium is an anaerobic bacterium, depending on the growth conditions, present alone, in double or short chain, and spherical or oval (0.3-1.5 X 0.7-1.8 m) .
  • the bacterium was Gram positive and assimilated cellulose, cellobiose, xylan, lactose and glucose.
  • CI was added and incubated at 65 ° C for 10 minutes. 8 mL of black mouth form was added and mixed gently at room temperature for 30 minutes. 6 minutes at 6,000 rpm, chamber The aqueous layer was recovered by separating it into a water layer, an intermediate layer, and a phenol layer by centrifugal separation with temperature. An equal volume of phenol / black mouth form was added to the recovered aqueous layer and mixed gently at room temperature. Again, the aqueous layer was recovered by separating it into an aqueous layer, an intermediate layer, and a phenol layer by centrifugation at 6,000 rpm for 20 minutes at room temperature.
  • the region encoding 16 S r DNA was PCR amplified using 27 f primer and 1 492 r primer. PCR was performed using TaKaRa PCR TymalCyCerD ice, and TaKaRa EX Taq was used as the DNA polymerase. The amplified fragments were separated by agarose gel electrophoresis and purified with G FX PCR DNA and Gel Band Purification Kit (Amersh am Biosciences). The purified fragment was ligated to p GEM—T easy (Prome ega) and transformed into E. coli XL 1-BI ue.
  • Sequence reaction was performed using M ix (B ec kman Co ulter), and C EQ8000 (B ec kman Co ulter) was used for sequence angle analysis.
  • the composition of the reaction solution was in accordance with the manual, and the reaction time and temperature were determined according to the size of the target fragment or the primer used in the reaction.
  • Primers used for sequence reaction and PCR (SEQ ID NOs: 5 to 1 1) Table 2 shows the list.
  • the base sequence of the obtained 16 S rRNA is SEQ ID NO: 3.
  • the nucleotide sequence shown in SEQ ID NO: 3 showed 99% homology with that of the standard strain (typestrain) R. a I bus ATCC 27210. In view of the above bacteriological properties, the £ 1 strain was identified as an aI bus.
  • the R. a I bus N E 1 strain obtained in Example 1 was used.
  • As a pre-culture liquid medium 1% cereal biose was added to RM medium.
  • the RGC medium modified from the RGC A medium described in the ATCC manual, the medium reported by Ty Ir et al. (Non-Patent Document 1), etc. can be used, but our medium can be prepared more easily.
  • Ammonium sulfate was added to the active fraction obtained by anion exchange chromatography (DEAE) to make it 50% saturated, and then it was subjected to R E S O U R S E ETH (Am er s s s c e nc es) using FPLC Sy s tem.
  • the carrier was pre-equilibrated with buffer B (2 OmM MES (pH 6.0), 1 mM EDTA, 1 mM dithiothreyl I (DTT), 50% saturated ammonium sulfate).
  • Elution was performed with a linear concentration gradient that decreased the ammonium sulfate concentration from 50% saturation to 0% saturation, and 100 mL fractions were collected in 1.5 mL portions (flow rate: 1.5 mL / min). The elution fraction was desalted using Microcon (MiiIipore) and then subjected to activity measurement and SDS_PAGE.
  • the active fraction obtained by hydrophobic interaction chromatography was dialyzed against buffer C (5 mM phosphate buffer (pH 6.0), 1 mM EDTA, 1 mM dithiothreitol), and then the same buffer.
  • the solution was applied to hydroxyapatite (Wako Pure Chemical Industries, Ltd.) that had been equilibrated with the solution. Washing after adsorption was performed using buffer D (5 mM phosphate buffer (pH 6.0), 1 mM EDTA, 1 mM dithiothre !, 0.5 M KCI). Elution was performed with a linear concentration gradient that increased the phosphate concentration from 5 mM to 20 OmM, and 100 mL each of 4 mL was collected.
  • the active fraction (4.5 mL) obtained by anion exchange chromatography (RESOURCE Q) was fractionated into five 0.9 mL portions. Each fraction was pre-equilibrated with buffer E (2 OmM MES (pH 6.0), 1 mM EDTA, 1 mM dithiosyl I, 0.1 MN a CI) using FP LC syst em. Superdex 200 HR 1 0/30 (Amersham Biosciences) was used. Elution with the same buffer 50 fractions of 250 L were collected (flow rate: 0.5 ml / min, collected 20 minutes after the start of elution).
  • buffer E 2 OmM MES (pH 6.0), 1 mM EDTA, 1 mM dithiosyl I, 0.1 MN a CI
  • CE activity was measured qualitatively and quantitatively according to the procedure described in Example 1.
  • Proteins were quantified according to the Bradford method (M. M. Bradford, (1976) AnaI. Biochem. 72, 248). A calibration curve was prepared using bovine serum albumin.
  • the protein contained in the gel after SDS—PAGE was transferred to a P VDF membrane using T RAN S—BLOT SDS EM I—DRY T RAN SFERCELL (Bio-Rad). Blotted buffer to the transfer (2 5 mM T ris, 1 92 mM glycine, 0. 1% SDS, 20% methanol) using a 1 hour at a constant current of membrane 1 cm 2 per 0. 8 m A I went. After staining the transferred membrane with Ponso_S, the target band was cut out and the N-terminal amino acid sequence was analyzed using a protein sequencer.
  • Submarine electrophoresis Mupid-2 (C o smo B io) is used for the agarose gel electrophoresis apparatus, and A garose L 03 (T a K a R a) is used for the agarose for electrophoresis. used.
  • Sample solution contains dye for electrophoresis (0.25% bromophenol blue, 0.25% xylene cyanol, 30% glyceride) is added 1/10 volume, and 1 XTAE (4 OmM Tris_HC I, 1 mM EDTA (pH 8.0)) was used. The gel after electrophoresis was immersed and stained in 1 X TAE to which ethimub mouth amide was added.
  • a 1 Kb Plus DNA L adder (Invitrogen) was used for DNA molecular weight control. Recovery of various DNA fragments separated by electrophoresis from an agarose gel was performed using GEN EC LEAN III kit (BIO 1101) according to the manufacturer's instructions.
  • Genomic information of R. a l b u s 8 strain is stored in T IG R (h t p p
  • Primer_ 5, 1 GATGATGAGAACGGCGGCT TT— 3 '(SEQ ID NO: 1 2) and 5' -GCTTCCGCCTGCACCCACCAT A-3 '( SEQ ID NO: 1 3) was constructed, and PCR was performed using the chromosomal DNA of R. albus NE 1 as a saddle. 95 ° C for 1 minute, 60 ° C for 30 seconds, 7
  • Chromosomal DNA of isolated R. albus N E 1 was digested with various restriction enzymes (Pst I, Pvu I I, E co R I, E co RV, B g I I I). Using 10 U of restriction enzyme per 3 g of chromosome DNA 3 7. After reacting with C for 12 hours, 10 U restriction enzyme was further added and allowed to react for 12 hours. The reaction solution was subjected to electrophoresis using a 0.8% agarose gel. The DNA was separated by electrophoresis at a constant voltage of 30 V for 4 hours.
  • the isolated DNA was transferred to Hybond_N + (Amersham Biosciences), which is a Nai-Kan-Mu, using capillary action according to a conventional method, and the DNA was fixed to the Nai-Cann membrane by UV irradiation. .
  • Detection was performed according to the manufacturer's instructions, and C D P—S tar (R o c h e) was used as the luminescent substrate.
  • the X-ray film was exposed to FUJIMEDICALLX_RAYFILM (FUJIFILM) for 1 minute.
  • the base sequence was determined by the method of d angelo Xy of Sang ger et al. (F. Sang ger et al., (1 977) P ro c. Nat l. A c a d. S c i. U SA, 74, 5463).
  • the DNA fragment amplified by PCR or the amplified fragment was subcloned into the multicloning site of pT7Bluevector, and the purified plasmid was used as a saddle to perform sequencing.
  • the substrate specificity of CE was analyzed qualitatively using TLC.
  • the composition of the reaction mixture was 100 mM Tris _ maleate buffer (pH 7.0), 3.2 mL, 100 mM Lac!
  • the reaction volume was 6.2 mL (2 12 mg) and the enzyme solution was 1.6 mL (10.9 IJ g).
  • the reaction was stopped by boiling the sample for 5 minutes and the entire volume was subjected to TLC.
  • the product was isolated by coloring a part of the TLC plate and measuring the mobility of the reaction product, and then scraping the silica gel.
  • the obtained product was extracted with twice the amount of silica gel demineralized water, and then concentrated with a rotary evaporator (Tokyo Rika Kikai).
  • the composition of the reaction mixture was 4.1 mL of 10 O mM Tris_maleic acid buffer (pH 7.0) and 2.7 mL (1 36 mg) of 10 O mM cellotriose. After the reaction solution was separated and purified by the same procedure as above, the enzyme solution was adjusted to 1.8 mL (12.2 ⁇ g), and then the high resolution nuclear magnetic resonance (NMR) apparatus (BRUKER AM X -1 000 spectrometer (5 000 MHz)), 1 H and 13 C spectra were measured ( 1 H _ NMR and 13 C NMR).
  • NMR nuclear magnetic resonance
  • a single protein was obtained electrophoretically by five-step kumatography (Fig. 3). The yield was about 0.2% (10.2 ⁇ g).
  • CE activity was measured with various buffer solutions (0.1 M, pH 7.8), the highest activity was found in glycylglycine mono-NaOH. The specific activity of the enzyme in this buffer solution is 3 6 U / mg.
  • the molecular weight of the purified enzyme estimated from S DS_P AG E was about 43.1 kDa.
  • the molecular extinction coefficient of the purified enzyme (E value, absorbance at 280 nm with 1% enzyme solution) was about 18 (when bovine serum albumin was used as the standard protein).
  • the maximum enzyme activity is at pH 7.7 to 8.2 (in 40 mM Britton-Robinson buffer), and the maximum enzyme activity is 28 to 32 ° C (4 OmM Tris_malein). Acid buffer).
  • Enzyme activity is Fe 3 + , Co 2 + , Cu 2 + , Z n 2 + , P b 2 + , Ag +, N-bromosuccinide, thioacetic acid, p-chloropolymer benzoate ( 1 mM each) (when the enzyme was pretreated at 30 ° C for 30 minutes).
  • the purified protein was subjected to SDS-PAGE, transferred to a PVDF membrane, and the target band was cut out.
  • the ⁇ terminal sequence of the target protein was decoded.
  • the obtained heel end sequence was MMISEIRQE LTDHIPIFPFWNKRD (SEQ ID NO: 4).
  • the enzyme of the present invention was measured by thin layer chromatography (TLC) for GI c NA c-2-epi activity using acetyl glucosamine, which is a substrate of GI c NA c _2 epi. As a result of confirmation, no reaction product was obtained.
  • the enzyme of the present invention is used in reactions using UDP-glucose, glucose_6_phosphate and various monosaccharides as substrates. However, no reaction product was obtained in any reaction.
  • Enzymes of the present invention can be converted into typical disaccharides such as maltose (1-1, 4), sucrose, sophorose ( ⁇ _1, 2), laminobiosis (S_1, 3). ) And gentiobiose ( ⁇ -, 6) as a substrate, no reaction product was obtained.
  • gentiobiose ⁇ -, 6
  • no reaction product was obtained.
  • lactose yS — 1, 4
  • spots other than the substrate were detected as reaction products.
  • no epimerase has been known that produces a terminal oligosaccharide using lactose as a substrate.
  • spots other than the substrate were detected as reaction products (FIG. 4).
  • Table 4 summarizes the above results, and the results of using cellopentaose and cepoxahexaose as substrates. From these results, it was clarified that this enzyme is a novel epimerase enzyme having a substrate specificity completely different from the epimerase reported so far. In addition, the reactivity of various sugars suggested that this enzyme may act only on oligosaccharides having S-1, 4 bonds. [01 67] Also, TLC confirmed that the products of epilactose or GI c _ Man as a substrate were lactose or cellobiose, respectively (not shown) . This result shows that the CE according to the present invention performs a reversible catalytic reaction.
  • the structure of the resulting oligosaccharide was analyzed. Specifically, an enzymatic reaction was performed using lactose as a substrate, the reaction products were separated by TL C, and the product was isolated by scraping the silica gel. This product was hydrolyzed with trifluoroacetic acid, and the degradation product was detected by TLC. As a result, it was observed that the product was galactose and mannose. From this, this enzyme is similar to cellobiose; by using lactose having 4 bonds as a substrate and converting reduced terminal glucose to mannose, a novel oligosaccharide; S-4 galactosylmannose It was thought that it was generated.
  • the product from lactose was purified according to the procedure described in Example 2.
  • the sample after extraction was concentrated, and the solvent was replaced with heavy water using a rotary evaporator, followed by 1 H-NMR and 13 C-NMR, and 1 H and 13 C spectra were measured.
  • TSP [2, 2, 3, 3-D 4] sod I um 3—i — (trimethy I s I I I propanoate) was used as an external standard. (Fig. 5).
  • the composition of the reaction mixture when cellotriose was used as a substrate was 4.1 mL of 100 mM Tris-maleic acid buffer (pH 7.0) and 2 of 10 OmM cell triotriose. 7 mL (1 36 mg) and the enzyme solution were 1.8 mL (1 2 g), and reacted at 25 ° C for a while. The reaction was stopped by boiling for 5 minutes, and the entire amount was subjected to TLC. After confirming the formation of a reaction product by coloring a part of the TLC plate, the silica gel was scraped off and the product was isolated. After extraction with deionized water twice the amount of silica gel, the mixture was concentrated on a rotary evaporator.
  • the amino acid sequence and base sequence of the mature CE enzyme of the N E 1 strain were found to be the sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2.
  • the N-terminal amino acid sequence (SEQ ID NO: 4) obtained by a previous experiment was completely identical to that of the amino acid sequence shown in SEQ ID NO: 1.
  • the molecular weight of CE was 45, 2 17 Da.
  • a polynucleotide encoding the CE enzyme (polypeptide) (having the base sequence shown in SEQ ID NO: 2) was expressed by the following method.
  • Genomic DNA was used as a cage, and the entire CE gene was amplified by PCR. 9 5 C for 1 minute, 55. C for 30 seconds, 7 2. The reaction for 2 minutes at C was performed 30 cycles. The DNA fragment was recovered from the reaction solution, and after confirming that no mutation was introduced into the subcloned amplified fragment, it was inserted into the E. coli expression vector pET-23a (+) vector.
  • the host Escherichiacoli BL2 1 (DE 3) was transformed with the expression plasmid and then selected on LB agar medium supplemented with 100 g / mL ampicillin at the final concentration. Incubated at 37 ° C for 1 hour. Inoculate 200 mL of the same liquid medium in a 50 Om L Erlenmeyer flask with 4 mL of the pre-culture solution (total 400 mL) and shake culture at 200 rpm at 37 ° C. Nourished. When the absorbance at 600 nm reached 0.6, IPTG was added to a final concentration of 1 mM to induce expression of the target protein. All operations after incubation were performed at 4 ° C.
  • the active fraction obtained by anion exchange chromatography was dialyzed against buffer B (5 mM phosphate buffer (pH 6.0), 1 mM EDTA, 1 mM dithiothreitol), and equilibrated with the same buffer in advance. Washed after adsorption, buffer C (5 mM phosphate buffer (pH 6.0), 1 mM EDTA 1 mM dithiothresyl I, 0.5 M KC) I) was used. Elution was performed with a linear phosphate gradient of 5 mM 20 OmM and collected in 41 1 to 100 fractions.
  • buffer B 5 mM phosphate buffer (pH 6.0), 1 mM EDTA, 1 mM dithiothreitol
  • buffer C 5 mM phosphate buffer (pH 6.0), 1 mM EDTA 1 mM dithiothresyl I, 0.5 M KC) I
  • Elution was performed with a linear phosphate gradient of 5
  • the recombinant enzyme obtained by purification gave a single band with SDS_PAGE. 20 mg of a purified sample with a yield of about 70% and a specific activity of about 10 Ug was obtained. [0182] 4) Enzymatic properties of recombinant enzymes
  • Bifidobacteria were cultured in a medium containing epilactose (Table 5), and a growth test was conducted.
  • the Bifidobacteria strains tested were Bifidobacterium bifidum J CM 1 255, B. breve J CM 1 1 92, Bifidobacteria B. longum J CM 1 2 1 7 B. adolescentis J CM 1 275, B. infantis JCM 1 222, Bifidobacteria catenatum (B catenulat um) J CM 1 1 94.
  • the concentration of the medium was adjusted to several times.
  • test sugar solution was sterilized by filtration and then added to the medium (final concentration 1%).
  • Table 6 shows the growth of epilactose. It was found that any bifidobacteria can use epilactose.
  • the Japanese Pharmacopoeia Disintegration Test 1st liquid was used to examine digestive tolerance in the stomach. That is, artificial gastric juice (0.4% sodium chloride, 1.4% concentrated hydrochloric acid) 25 1_ of 2 times concentration is added to 25 L of 1 O OmM epilactose aqueous solution, and then left at 37 ° C for 2 hours. did. After neutralizing the above solution by adding 100 mM sodium hydroxide, the solution was applied to AG501_XB resin, and a non-adsorbing fraction was obtained by centrifugation. Remaining epilactose in the same way as quantitative measurement of CE activity Quantitatively. Digestion resistance was examined for lactose and sucrose as well as for epilactose.
  • Table 7 shows the digestive resistance of epilactose, lactose and sucrose in the stomach and intestine. Epilactose was confirmed to have high stability against digestive juices in the stomach and intestine.
  • Caco_2 cells are epithelial cell lines established from human colon cancer tissue and cultured on flasks and permeable membranes to form a polar monolayer. Caco_2 cells can be separated into small intestinal epithelial cells without the use of differentiation-inducing agents by culturing for about 2 to 3 weeks in a medium supplemented with 10 to 15% urine fetal serum. Turn into. TJ is formed between cells, and microvilli are formed on the brush border membrane side of the cells. And some minerals are absorbed through this TJ. Rats were used; the addition of indigestible sugars, which had been shown to promote Ca 2+ absorption in n V ivo experiments, increased C a 2+ absorption. It has been suggested that this Ca absorption promoting action is mediated by TJ (T. Suzuki and H. Hara, (2004) J. Nutr. 1 34, 1 935).
  • difract a kind of indigestible saccharide having C a 2+ absorption promoting action.
  • a human colon cancer-derived cell line C aco_2 (HTB 37, passage number 19) was purchased from AT CC. 10 OmL / L urine fetal serum (inactivated, T emo T race), 44 mM Na 2 C0 3 , 1 mM Na—hyzorenoic acid, 50,000 IU / L penicillin, and 5 Dulbecco's modified Eag Ieme dium (Invitrogen) supplemented with Omg / L streptomycin sulfate is used as the medium.
  • the aco_2 cells were cultured at 37 ° C. in the presence of 5% carbon dioxide and 95% air in a 75 cm 2 cell culture flask (Corning). In this experiment, Caco_2 cells with passage number 39 were used.
  • T ranswe II Transwell System
  • Poasa 0.4 culture area 1.0 cm 2 (Corning) was used.
  • Intercellular permeability was evaluated by measuring transepithelial electrical resistance (T ER) according to the following method.
  • the final concentration should be 0, 20, 40, and 80 mM for each indigestible saccharide on the brush border side. Added to the solution.
  • each difficultly digested saccharide was removed and replaced with a culture medium.
  • the TER at 24 hours after the medium change was restored to the initial value of 1 200-1400 ⁇ cm 2 for both Epilac I and D FA III.
  • the prepared reverse sac contains Ca 2 + and epilactose 0, 50, and 100 mM, respectively (1 25 mM NaCI, 4 mM KCI, 10 mM CaCI 2 2H 2 O 3 OmM Tris, 10 mM D—glucose, pH 7.4, osmotic pressure adjusted by Na CI) 1 Transfer to a 5 Om L centrifuge tube containing 5 mL Shake on a water bath at 37 ° C, 1 10 osci II ation / min. After shaking for 30 minutes, the internal solution in the inverted sac was collected, and the Ca 2+ concentration was measured with a commercially available measurement kit (Calcium C Test Koichi, Wako Pure Chemical Industries). In addition, the length of the small intestine reversal sack was measured with a ruler. The results are shown in FIG.
  • the vertical axis in Fig. 10 represents the amount of C a 2+ absorbed per length (cm) of the small intestine used for the sac.
  • the Ca 2+ concentration in the internal fluid collected from both the jejunum and ileum increased. From this, it was confirmed that epilactose has a function of promoting C a 2+ absorption not only in the large intestine but also in the jejunum and ileum.
  • Rats were raised for 15 days under the conditions of Example 8, and then laparotomized under ether anesthesia. Both ends of the cecum were ligated with sutures, the cecum containing the contents was removed, and the total cecal weight was measured. After removing the cecal contents, the cecal wall weight was measured. The value obtained by subtracting the cecal wall weight from the total cecal weight was taken as the cecal content weight. A 4-fold amount of deionized water was added to a portion of the cecum contents (diluted 5 times) and homogenized under ice-cooling. A portion of the homogenizer was centrifuged, and the pH of the supernatant was measured.
  • Reagent 20 mM Bis-Tris aqueous solution containing 5 mM p-toluenesulfonic acid aqueous solution and 100 M EDTA
  • cecum content was anaerobic dilution buffer (20 g / LB ufferedpeptonewater (D ⁇ fco), 0.5 g / L-Sing Inn (Wako Pure Chemical Industries), 1 mL / L Tw e en 80 (Wako Pure Chemical Industries) was suspended in 1 g / LB actoagar (D ifco )), it was further diluted it with dilution buffer scratch.
  • anaerobic dilution buffer (20 g / LB ufferedpeptonewater (D ⁇ fco), 0.5 g / L-Sing Inn (Wako Pure Chemical Industries), 1 mL / L Tw e en 80 (Wako Pure Chemical Industries) was suspended in 1 g / LB actoagar (D ifco )), it was further diluted it with dilution buffer scratch.
  • BL agar medium (Eiken Chemical) supplemented with 50 ml L / L horse defibrinated blood (Nippon Biotest) was used, and the number of lactic acid bacteria was 8 g / L L.
  • LBS agar (Difco) supplemented with abl em cop owd er (O xoid) and 1.3 ml / L acetic acid was used. After culturing the plate coated with the cecal content dilution in Aneropackenki (Mitsubishi Gas Chemical) at 37 ° C for 24 hours, the number of colonies was counted.
  • Aneropackenki Mitsubishi Gas Chemical
  • DNA was extracted from a part of the cecal contents using Fecal DNA I solation Kit (MO Bio). Using Sma rt Cycler II (C epheid), the number of bifidobacteria was determined by realtime PCR. The counting was performed under the following conditions.
  • the composition of the reaction solution is 200 n Mg B ifif-F, 200 n Mg B ifif _ R, 1 x SYBRP remix E x T aq (Takara Bio), initial denaturation 9 5 ° C, after 30 seconds, 9 6 4 at 5 ° C for 5 seconds. C for 1 5 seconds, 7 2. C for 15 cycles of 15 seconds.
  • Table 9 shows the total cecal weight, cecal wall weight, cecal content weight, and pH of the cecal content, and Table 10 shows the organic acid content in the cecal content.
  • the content of the cecal content was increased by the intake of epilactose-added feed.
  • the amount and cecal wall weight increased significantly compared to the group that received the control diet. Since an increase in the content of the cecum means an increase in the number of defecations, epilactose is expected to have an effect of improving constipation.
  • the total anaerobic bacterial count in the cecum (I o g 10 C FU / g contents) was compared to the control diet group 9.4 ⁇ 0.2, epilac! In the dietary supplement group, there was an increase of 10.2 ⁇ 0.2.
  • the number of lactic acid bacteria (I o g 10 C FU / g content) is as follows: In the dietary supplement group, it was 9.1 ⁇ 0.1, and increased by about 10 times as a result of intake of the diet supplemented with epilactose.
  • the number of bifidobacteria (I o g 10 copy number / g content) is epilac against the control diet group 5.6 ⁇ 0.3! It was 7.8 ⁇ 0.3 in the dietary supplement group, and increased by about 150 times due to the intake of epilactos supplemented diet.
  • WIStar-ST rats Four-week-old male WIStar-ST rats (Japan SLC) were housed individually in stainless cages and allowed to freely feed and feed (ion exchange water). Body weight and food intake were measured every morning at the same time. The state of the animal individual was judged using hair loss and / or diarrhea as an index. The test feed was changed every day and the drinking water was changed every 3 days.
  • the breeding room was set to room temperature 23 ⁇ 1 ° C, temperature around 60%, and light / dark period to 12 hours (light period 8:00 to 20:00, dark period 20:00 to 8:00). After raising with AIN 93G standard refined feed (basic diet) for 5 days, They were bred for 15 days on the test feeds shown in Table 8 (epi-lactose added diet, lactose-added diet) or control diet.
  • Blood was collected from the tail vein at 7 o'clock, 7 days later, 14 days later at 9 o'clock (at the time of feeding) and 20:00 (at the time of fasting), and centrifuged at 4 ° C, 3000 rpm for 10 minutes.
  • CE is an aldose 1-epimemerase in that it rearranges the configuration of the hydroxyl group bonded to the carbon atom at the 2-position of the reducing end glucose of cellobiose and catalyzes the reaction leading to glucosylmannose. (EC 5. 1. 3. 3) and Mal I Spi-Epimelase (EC 5. 1. 3. 2 1) are different.
  • CE is very interesting from an enzymological point of view because it has a very unique enzymatic activity.
  • elucidation of various enzyme chemistry properties of CE, acquisition of CE-encoding gene (CE gene), and analysis of amino acid sequence have never been done so far.
  • CE derived from R. albus NE 1 When CE derived from R. albus NE 1 is used, the present inventors produce GI c -Man using cellobiose as a substrate (Fig. 1), but also cellotriose and cellotetraose. Was found to be integrated into 2—epima (Fig. 4, Fig. 7). Furthermore, it has been found that when CE uses lactose as a substrate, it produces epi- lactose (Figs. 2 and 5).
  • epilactose is possible by enzymatic synthesis using p-nitrophenylgalactose and mannose as substrates; and 3-galactosidase (M. Miy amo to and K. A jisaka (2004) BIOSCI. ⁇ ⁇ otechno I. B ioch em. D 8, 2086).
  • This production method can also produce galactosyl mannose at different binding positions, and the target product can be easily isolated by subsequent enzymatic treatment. Practicality is higher than the manufacturing method described above.
  • p_nitrophenylgalactose is used as a substrate, the cost is high, which is not suitable for an industrial production method.
  • the enzymatic synthesis method of epicase by CE is highly practical because of its low cost, simple reaction conditions, and few contaminants. It can be said that it is a synthesis method. However, it is practically difficult to prepare a large amount of this enzyme using R. a I bus which is a difficult-to-culture bacterium. From this point of view, it is very effective to isolate the CE gene and obtain a large amount of recombinant enzyme. Furthermore, since the physiological significance and metabolic mechanism of CE in R. a I b us has not been clarified, it also makes a great academic contribution.
  • the present invention synthesizes a new oligosaccharide such as GIc_Man, particularly in the case of epilactose, in the food field, functional foods (for example, foods having an action to improve the intestinal environment, Non-caloric or low-calorie foods or minerals (especially foods with excellent absorption of C a 2 +) can be provided at low prices.
  • functional foods for example, foods having an action to improve the intestinal environment, Non-caloric or low-calorie foods or minerals (especially foods with excellent absorption of C a 2 +) can be provided at low prices.
  • foods or food additives that cause a reduction in blood cholesterol can be developed, which is also useful in the pharmaceutical / pharmaceutical field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Seasonings (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed are: a enzyme for use in the production of an oligosaccharide having a β-1,4 bond; a process for producing the oligosaccharide; and a functional food relying on a novel function of the oligosaccharide. Specifically disclosed are: a polypeptide comprising an amino acid sequence selected from the items (A) to (C) and having an epimerase activity for at least an oligosaccharide having a β-1,4 bond: (A) the amino acid sequence depicted in SEQ ID NO:1; (B) an amino acid sequence having the substitution, addition or deletion of one or several amino acid residues in the amino acid sequence depicted in SEQ ID NO:1; and (C) an aminoacid sequence having a 51% or more homology to the amino acid sequence depicted in SEQ ID NO:1; and a functional food containing 4-O-β-D-galactopyranosyl-D-mannose.

Description

明 細 書  Specification
ェピメラーゼ活性を有する新規ポリぺプチドおよびその利用 技術分野  Novel polypeptide having epimerase activity and use thereof
[0001 ] 本発明は、 新規ポリペプチドおよびその利用に関するものであり、 より詳 細には、 β— , 4結合を有するオリゴ糖に対する 2 _ェピメラーゼ活性を 有するポリべプチドおよびその製造方法、 該ポリべプチドを用いて合成した ヘテロオリゴ糖およびその合成方法、 ならびにこれらの利用に関するもので  [0001] The present invention relates to a novel polypeptide and use thereof. More specifically, the present invention relates to a polypeptide having 2_epimerase activity for oligosaccharides having β-, 4-links, a method for producing the same, Hetero-oligosaccharides synthesized using peptides, methods for their synthesis, and their use
背景技術 Background art
[0002] 炭水化物は、 生物の主要なエネルギー源であり、 脂肪酸、 トリグリセリ ド 、 およびいくつかのアミノ酸のような他の化合物の生合成における前駆体で ある。 炭水化物はまた、 結合組織、 神経組織、 細菌細胞壁、 および核酸の構 造的成分として重要な役割を担っている。 このような生体における栄養成分 および/または構成成分としての役割以外に、 炭水化物は、 糖タンパク質な どが有する糖鎖として生体内の種々の情報伝達において重要な役割を担うこ とが近年明らかにされており、 遺伝子工学および/またはタンパク質工学だ けでなく糖鎖工学が注目を集めている。  [0002] Carbohydrates are the main energy source of living organisms and are precursors in the biosynthesis of other compounds such as fatty acids, triglycerides, and several amino acids. Carbohydrates also play an important role as structural components of connective tissue, neural tissue, bacterial cell walls, and nucleic acids. In addition to such roles as nutrients and / or constituents in living organisms, it has recently been clarified that carbohydrates play an important role in the transmission of various information in vivo as sugar chains possessed by glycoproteins. In addition to genetic engineering and / or protein engineering, glycoengineering is attracting attention.
[0003] 単糖が 2〜 1 0個程度結合した炭水化物であるォリゴ糖は、 例えば、 根菜 類の根粒部分および または哺乳動物の乳汁に含まれており、 動植物の組織 中に広く分布している。 また、 薬理作用を持ったオリゴ糖が数多く発見され ており、 これらを利用した医薬品および/または健康食品の開発も盛んに行 われている (例えば、 特許文献 1および 2などを参照のこと) 。  [0003] Oligosaccharide, which is a carbohydrate bound with about 2 to 10 monosaccharides, is contained in, for example, root nodules and / or mammalian milk, and is widely distributed in animal and plant tissues. . In addition, many oligosaccharides having a pharmacological action have been discovered, and pharmaceuticals and / or health foods using them have been actively developed (see, for example, Patent Documents 1 and 2).
[0004] 近年、 様々な生理機能を有するオリゴ糖に注目が寄せられている。 機能性 オリゴ糖合成を目的とした多くの研究開発が行われており、 機能性オリゴ糖 の研究開発として、 様々なオリゴ糖が工業的規模で生産されてきた。 現在で は, 特定保健用食品の半数以上が機能性成分としてォリゴ糖を含んでいる。  [0004] In recent years, attention has been focused on oligosaccharides having various physiological functions. Much research and development has been conducted for the purpose of synthesizing functional oligosaccharides, and various oligosaccharides have been produced on an industrial scale as research and development of functional oligosaccharides. At present, more than half of foods for specified health use contain oligosaccharide as a functional ingredient.
[0005] ヘテロオリゴ糖は、 2種類以上の異なる単糖が結合して形成されるォリゴ 糖であり、 種々の生理活性を有することが知られている。 そのため、 ヘテロ オリゴ糖は広範な分野において利用されている。 ヘテロオリゴ糖の製造方法 の一例としては、 セロビオースホスホリラーゼの逆反応を利用してダルコ一 ス一 1一リン酸と糖類から製造する方法がある (特許文献 3を参照のこと) 。 セロビオースホスホリラ一ゼは、 本来セロビオースをグルコース一 1—リ ン酸とグルコースとに加リン酸分解する酵素であるが、 この反応が可逆的で あることを利用して、 グルコース一 1—リン酸と種々の糖類とから様々なへ テロオリゴ糖が合成されている。 [0005] Hetero-oligosaccharides are formed by combining two or more different monosaccharides. It is a sugar and is known to have various physiological activities. For this reason, hetero-oligosaccharides are used in a wide range of fields. As an example of a method for producing a hetero-oligosaccharide, there is a method for producing a hetero-oligosaccharide from darcos monophosphoric acid and a saccharide using the reverse reaction of cellobiose phosphorylase (see Patent Document 3). Cellobiose phosphorylase is originally an enzyme that phosphorylates cellobiose into glucose 1-phosphate and glucose. By utilizing this reversible reaction, glucose 1-phosphate is used. Various hetero-oligosaccharides have been synthesized from these and various sugars.
[0006] し力、し、 上述したヘテロオリゴ糖の製造方法は、 グルコース一 1―リン酸 が高価であるため、 製造されるへテロオリゴ糖が高価になるという欠点を有 する。 また、 この方法は、 反応時に生成されるリン酸を反応終了後に除去す る必要がある。 さらに、 この方法を用いた場合、 ヘテロオリゴ糖の収率に限 界がある。 また、 このようなヘテロオリゴ糖の製造方法以外の方法として、 安価でありかつ入手容易なスクロースに、 グルコース— 1—リン酸の存在下 で、 スクロースホスホリラ一ゼとセ口ビオースホスホリラーゼとを作用させ ることによって反応時にリン酸が副生しない方法が特許文献 4に記載されて いる。 [0006] However, the above-described method for producing a hetero-oligosaccharide has the disadvantage that the produced mono-oligosaccharide is expensive because glucose mono-phosphate is expensive. In this method, phosphoric acid generated during the reaction must be removed after the reaction is completed. Furthermore, when this method is used, the yield of heterooligosaccharide is limited. As a method other than the method for producing such hetero-oligosaccharides, sucrose phosphorylase and cholebiose phosphorylase are allowed to act on sucrose, which is inexpensive and readily available, in the presence of glucose-1-phosphate. Patent Document 4 describes a method in which phosphoric acid is not by-produced during the reaction.
[0007] 偏性嫌気性ル一メン細菌であるルミノコッカス アルブス (R um i n o c o c c u s a l b u s (以下、 R. a I b u s) ) 7^ (AT CC 27 2 1 0として登録されている。 ) がセロビオースを 2—ェピマ一化する活性 を有することは知られており、 セロビオースェピメラ一ゼ (C E) としてそ の存在が示唆されていた (非特許文献 1を参照のこと) 。 この菌の培養液に 分泌されるというこの活性が単一の酵素としての C Eによるものであること を証明するために、 多くの研究者によって酵素の分離精製が試みられてきた 。 しかしながら、 未だに本酵素の純化および同定には至っておらず、 その実 体は不明である。  [0007] Luminococcus albus (R um inococcusalbus (R. a I bus)) 7 ^ (registered as AT CC 27 2 1 0), an obligate anaerobic rumen bacterium, has 2 cellobioses. —It is known to have an epimerizing activity, and its existence was suggested as cellobiose epimerase (CE) (see Non-Patent Document 1). In order to prove that this activity of being secreted into the culture medium of this fungus is due to CE as a single enzyme, many researchers have attempted to separate and purify the enzyme. However, the enzyme has not yet been purified and identified, and its actual state is unknown.
特許文献 1 :特開平 8— 256730号公報 (平成 8年 (1 996) 1 0月 8 日公開) 特許文献 2:特開 2003-47402公報 (平成 1 5年 2月 1 8日公開) 特許文献 3:特開平 2 _ 1 6992号公報 (平成 2年 1月 1 9日公開) 特許文献 4:特開 2001 -204489号公報 (平成 1 3年 7月 31 日公開 非特許文献 1 : T. R. T y l e rと J. M. L e a t h e r wo o d (1 9 6 / ) A r c h. B i o c h em. B i o p h y s. 1 Π 9 , ν3 θ 3。 発明の開示 Patent Document 1: Japanese Patent Application Laid-Open No. 8-256730 (published on 8th October 1996) Patent Document 2: Japanese Patent Application Laid-Open No. 2003-47402 (published on February 18, 1995) Patent Document 3: Japanese Patent Application Laid-Open No. 2-16992 (published on January 19, 1990) Patent Document 4: Special No. 2001-204489 (published July 31, 1991 Non-patent document 1: TR Tyler and JM Leatherwood (1 96 /) Arc h. B ioch em. B iophy s. 1 TR 9, ν3 θ 3. Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 特許文献 4に記載されるような方法を用いるヘテロオリゴ糖合成法は、 以 下のような不都合を有する : (1 ) 原料が高価である ; (2) 合成するため に複数の基質および酵素を必要とし、 その結果、 コストが上昇し、 反応条件 の設定が複雑化する ; (3) スクロースを用いる反応において、 反応工程は 一段階であるものの、 反応液中には目的のへテロオリゴ糖以外に未反応の基 質 (スクロース) 、 スクロースの分解によって生じるフルク ト一ス、 未反応 の受容体糖および複数の糖が混在しているため、 目的のへテロオリゴ糖の分 離が複雑である ; (4) セロビオースホスホリラ一ゼを用いた合成法では、 非還元末端側の糖がグルコースに限定される。  [0008] The hetero-oligosaccharide synthesis method using the method as described in Patent Document 4 has the following disadvantages: (1) The raw material is expensive; (2) Multiple substrates and Enzymes are required, resulting in increased costs and complex reaction conditions; (3) In the reaction using sucrose, the reaction process is a single step, but the target hetero-oligosaccharide is in the reaction solution. In addition to the unreacted substrate (sucrose), the fructose produced by sucrose degradation, the unreacted receptor sugar and multiple sugars, the separation of the desired hetero-oligosaccharide is complicated. (4) In the synthesis method using cellobiose phosphorylase, the sugar at the non-reducing end side is limited to glucose.
[0009] 非特許文献 1においてその存在が示唆された酵素 CE (EC 5. 1. 3 . 1 1 ) の反応生成物は、 4_0_ S _D_グルコビラノシル一D—マンノ一 ス (グルコシルマンノース; G I c-Ma n) であると推定された。 しかし 、 本酵素が分泌酵素であるのか否かは決定されておらず、 また、 酵素の詳細 な諸性質や、 基質特異性、 生成物の詳細な構造決定は未だなされていない。  [0009] The reaction product of the enzyme CE (EC 5.1.3.11), whose existence was suggested in Non-Patent Document 1, is 4_0_S_D_glucoviranosyl 1-D-mannose (glucosyl mannose; GI c -Ma n). However, whether or not this enzyme is a secretory enzyme has not been determined, and detailed properties of the enzyme, substrate specificity, and detailed structure of the product have not yet been determined.
[0010] 上述したように C Eは独特な酵素活性を有しており、 酵素学的観点から非 常に興味深い酵素である。 よって、 本酵素を用いたヘテロオリゴ糖合成に対 して多くの利点および有用性を期待することができる。  [0010] As described above, CE has a unique enzymatic activity and is a very interesting enzyme from an enzymatic viewpoint. Therefore, many advantages and usefulness can be expected for hetero-oligosaccharide synthesis using this enzyme.
[0011] 本発明は、 上記の問題点に鑑みてなされたものであり、 その目的は、 CE の精製を実現し、 その酵素化学的諸性質を解明して新規オリゴ糖合成方法を 提供することにある。  [0011] The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel oligosaccharide synthesis method by realizing purification of CE and elucidating various enzyme chemical properties. It is in.
課題を解決するための手段 [0012] 本発明者らは、 上述のような問題点を解決するため、 C E産生菌を自然界 に求め、 探索してきた。 その結果、 牛ル一メンから分離した R. a I b u s が産生する酵素の中から、 優れた C Eを見出し (実施例 1を参照) 、 また、 この微生物の産生する C Eをコードする遺伝子を取得し (実施例 2と以下の 文章を参照) 、 本発明を完成するに至った。 本発明に係るポリペプチドは、 β - Λ , 4結合を有するオリゴ糖に対する 2 _ェピメラーゼ活性を有するこ とを特徴としており、 解決しょうとする課題を克服するに至った。 Means for solving the problem [0012] In order to solve the above-mentioned problems, the present inventors have sought and searched for CE-producing bacteria in nature. As a result, an excellent CE was found from the enzymes produced by R. a I bus isolated from cattle rumen (see Example 1), and a gene encoding CE produced by this microorganism was obtained. (See Example 2 and the text below) to complete the present invention. The polypeptide according to the present invention is characterized by having 2_epimerase activity for oligosaccharides having β-Λ, 4 bonds, and has overcome the problem to be solved.
[0013] すなわち、 本発明に係るポリペプチドは、 (Α) 配列番号 1に示されるァ ミノ酸配列; ( Β) 配列番号 1で示されるアミノ酸配列中の 1個もしくは数 個のアミノ酸が置換、 付加もしくは欠失された、 アミノ酸配列; または (C ) 配列番号 1で示されるアミノ酸配列と 5 1 %以上の相同性を有するアミノ 酸配列、 のいずれか 1つのアミノ酸配列からなるポリペプチドであって、 少 なくとも; S— 1 , 4結合を有するオリゴ糖に対するェピメラーゼ活性を有す ることを特徴としている。  [0013] That is, the polypeptide according to the present invention comprises (i) an amino acid sequence represented by SEQ ID NO: 1; (ii) one or several amino acids in the amino acid sequence represented by SEQ ID NO: 1 are substituted, An added or deleted amino acid sequence; or (C) an amino acid sequence having 51% homology or more with the amino acid sequence represented by SEQ ID NO: 1, and a polypeptide comprising any one amino acid sequence It is characterized by having epimerase activity for oligosaccharides having at least S-1, 4 bonds.
[0014] 本発明に係るポリペプチドは、 (Α) ルミノコッカス (R u m i n o c o c c u s) 属の細菌由来である ; (B) S D S— P AG Eによる見かけの分 子量が 40〜42 k D aである ; (C) 配列番号 4に示されるアミノ酸配列 を N末端に有する ; および (D) 少なくとも; 4結合を有するオリゴ 糖に対する 2 _ェピメラーゼ活性を有する、 という生物学的性状を有してい ることを特徴としている。 本発明に係るポリペプチドはさらに、 (E) 少な <ともセロビオース、 セロ トリオ一ス、 セロテトラオースまたはラク ト一ス の還元末端のグルコースを 2 _ェピマー化する活性を有する ; (F) 紫外線 の最大吸収が 2 7 8〜2 80 n mである ; ( G ) 等電点 ( p I ) が 4. 6 9 である ; (H) (D) に示される活性が金属塩 (例えば、 F e 3 +、 C o 2 +、 C u 2 +、 P b 2 + , Z n 2 +またはA g+) で阻害される ; ( I ) (D) に示さ れる活性が化学物質 (例えば、 N—プロモスクシミ ド、 ョード酢酸または p —クロロマ一キュリーベンゾェ一ト) で阻害される ; (J ) (D) に示され る活性の最大活性が、 ブリットン一ロビンソン緩衝液中で p H 7. 7〜 8. 2にて示される ; または (K) (D) に示される活性の最大活性が、 T r i s—マレイン酸緩衝液中で 28〜32°Cにて示される、 という性状を有して いることが好ましい。 上記金属塩または化学物質の好ましい濃度は 1 mMで あり、 上記緩衝液の好ましい濃度は 40〜 1 O OmMである。 また、 上記性 状 (E) に示した活性は、 可逆的であり、 本発明に係るポリペプチドは、 当 該可逆的反応もまた触媒する。 [0014] The polypeptide according to the present invention is (i) derived from a bacterium of the genus Ruminococcus; (B) the apparent molecular weight by SDS-PAGE is 40 to 42 kDa. (C) having the amino acid sequence shown in SEQ ID NO: 4 at the N-terminus; and (D) having a biological property of having at least 2 epimerase activity for oligosaccharides having 4 bonds; It is a feature. The polypeptide according to the present invention further has (E) an activity of 2-epomerizing glucose at the reducing end of at least cellobiose, cellotriose, cellotetraose or lactose; (F) UV radiation (G) isoelectric point (p I) is 4.69; (H) activity shown in (D) is a metal salt (eg, Fe 3 +, Co 2 + , Cu 2 + , P b 2 +, Z n 2 +, or Ag + ); (I) The activity shown in (D) is inhibited by a chemical (eg, N-promosuccimi , Odoacetic acid or p-chloromer benzoate); (J) The maximum activity shown in (D) is pH 7.7-8 in Britton-Robinson buffer . Or (K) (D) has the property that the maximum activity shown in (D) is shown in Tris-maleate buffer at 28-32 ° C. preferable. The preferred concentration of the metal salt or chemical is 1 mM, and the preferred concentration of the buffer is 40 to 1 O OmM. Moreover, the activity shown in the above property (E) is reversible, and the polypeptide according to the present invention also catalyzes the reversible reaction.
[0015] 本発明に係るポリヌクレオチドは、 上記ポリペプチドをコードすることを 特徴としている。 [0015] The polynucleotide according to the present invention is characterized by encoding the above-mentioned polypeptide.
[0016] 本発明に係るポリヌクレオチドは、 (A) 配列番号 2に示される塩基配列 ; (B) 配列番号 2に示される塩基配列中の 1個もしくは数個のヌクレオチ ドが置換、 付加もしくは欠失された、 塩基配列; または (C) 配列番号 2に 示される塩基配列の相補配列とストリンジェン卜な条件下でハイプリダイズ する塩基配列からなるポリヌクレオチドであって、 オリゴ糖に対するェピメ ラーゼ活性を有するポリべプチドをコ一ドすることを特徴としている。  [0016] The polynucleotide according to the present invention comprises: (A) a nucleotide sequence represented by SEQ ID NO: 2; (B) one or several nucleotides in the nucleotide sequence represented by SEQ ID NO: 2 are substituted, added or missing. Or (C) a polynucleotide comprising a complementary sequence of the base sequence shown in SEQ ID NO: 2 and a base sequence that is hybridized under stringent conditions, and having an epimerase activity for oligosaccharides It is characterized by coding the possessed polypeptide.
[0017] 本発明に係るベクタ一は、 上記ポリヌクレオチドを含んでいることを特徴 としている。  [0017] A vector according to the present invention is characterized by containing the above-mentioned polynucleotide.
[0018] 本発明に係るポリペプチドの生産方法は、 上記ベクターを用いることを特 徵としている。  [0018] A method for producing a polypeptide according to the present invention is characterized by using the above-mentioned vector.
[0019] また、 本発明に係るポリペプチドを生産するためのキットは、 上記べクタ [0019] A kit for producing a polypeptide according to the present invention comprises the above vector
—を備えていることを特徴としている。 It is characterized by having —.
[0020] 本発明に係る形質転換体は、 上記ポリヌクレオチドを含んでいることを特 徵としている。 本発明に係る形質転換体は、 ルミノコッカス (R um i n o c o c c u s) 属の細菌であることが好ましく、 ルミノコッカス アルブス (R. a I b u s) であることがより好ましい。 [0020] The transformant according to the present invention is characterized by containing the above-mentioned polynucleotide. The transformant according to the present invention is preferably a bacterium belonging to the genus Ruminococcus, and more preferably a luminococcus albus (R. a I b us).
[0021] 本発明に係るポリペプチドの生産方法は、 上記の形質転換体を用いること を特徴としている。 [0021] A method for producing a polypeptide according to the present invention is characterized by using the transformant described above.
[0022] また、 本発明に係るポリペプチドを生産するためのキットは、 上記形質転 換体を備えていることを特徴としている。 [0023] 本発明に係る抗体は、 上記のポリべプチドと特異的に結合することを特徴 としている。 [0022] A kit for producing a polypeptide according to the present invention is characterized by comprising the above-described transformant. [0023] The antibody according to the present invention is characterized by specifically binding to the above-mentioned polypeptide.
[0024] 本発明に係るポリべプチドの生産方法は、 上記の抗体を用いることを特徴 としている。  [0024] A method for producing a polypeptide according to the present invention is characterized by using the above-mentioned antibody.
[0025] また、 本発明に係るポリペプチドを生産するためのキットは、 上記抗体を 備えていることを特徴としている。  [0025] A kit for producing a polypeptide according to the present invention is characterized by comprising the above-described antibody.
[0026] 本発明に係るヘテロオリゴ糖を合成する方法は、 上記のポリペプチドを、 β - Λ , 4結合を有するオリゴ糖と反応させる工程を包含することを特徴と している。 [0026] A method for synthesizing a hetero-oligosaccharide according to the present invention is characterized by including a step of reacting the above-mentioned polypeptide with an oligosaccharide having a β-Λ, 4-bond.
[0027] 本発明に係るヘテロオリゴ糖を合成するための試薬キットは、 上記のポリ ぺプチドを備えていることを特徴としている。 本発明に係る試薬キットは、 β - Λ , 4結合を有するオリゴ糖をさらに備えていることが好ましい。  [0027] A reagent kit for synthesizing a hetero-oligosaccharide according to the present invention is characterized by comprising the above-mentioned polypeptide. The reagent kit according to the present invention preferably further comprises an oligosaccharide having β-Λ, 4 bonds.
[0028] 本発明に係るヘテロオリゴ糖を合成するための試薬組成物は、 上記のポリ ぺプチドを含んでいることを特徴としている。  [0028] A reagent composition for synthesizing a hetero-oligosaccharide according to the present invention is characterized by containing the above-mentioned polypeptide.
[0029] 本発明に係る機能性食品は、 プレバイオテイクスとして機能するために、 上記のポリべプチドを用いて生産される化合物を含んでいることを特徴とし ている。 本発明に係る機能性食品は、 ビフィズス菌の成長促進剤および低力 口リー性 (難消化性) 食品であることが好ましい。 また、 本発明に係る機能 性食品は、 さらなる機能性物質を含んでいてもよい。 なお、 本発明に係る機 能性食品は、 組成物の形態で単品にて提供されても、 キットの形態にて提供 されてもよい。  [0029] The functional food according to the present invention is characterized in that it contains a compound produced using the above-mentioned polypeptide in order to function as a prebiotic. The functional food according to the present invention is preferably a bifidobacterial growth promoter and a low-strength (indigestible) food. Further, the functional food according to the present invention may contain a further functional substance. The functional food according to the present invention may be provided as a single product in the form of a composition or in the form of a kit.
[0030] 本発明に係る機能性食品の製造方法は、 上記のポリべプチドを、 Π  [0030] The method for producing a functional food according to the present invention comprises the above-described polypeptide,
4結合を有するオリゴ糖と反応させる工程; および反応生成物を食品に添加 する工程を包含することを特徴としている。 本発明に係る機能性食品の製造 方法は、 上記食品にさらなる機能性物質を添加する工程をさらに包含しても よい。  And a step of reacting with an oligosaccharide having 4 bonds; and a step of adding a reaction product to food. The method for producing a functional food according to the present invention may further include a step of adding a further functional substance to the food.
[0031 ] 本発明に係る腸内環境改善用機能性食品は、 4 _0_ ;S _ D _ガラク トピラ ノシル _ D—マンノースを含有することを特徴としている。 特に当該機能性 食品は、 ビフィズス菌の増殖を促進することで腸内環境を改善するためのも のである。 [0031] The functional food for improving the intestinal environment according to the present invention is characterized by containing 4_0_; S_D_galactopyranosyl_D-mannose. In particular the functionality Food is intended to improve the intestinal environment by promoting the growth of bifidobacteria.
[0032] 本発明に係る脂質代謝改善用機能性食品は、 4_0_;S_D_ガラク トピラ ノシル _D—マンノースを含有することを特徴としている。 特に当該機能性 食品は、 血中コレステロール量を減少させることで脂質代謝を改善するため のものである。  [0032] The functional food for improving lipid metabolism according to the present invention is characterized by containing 4_0_; S_D_galactopyranosyl_D-mannose. In particular, the functional food is intended to improve lipid metabolism by reducing blood cholesterol levels.
[0033] 本発明に係るミネラル吸収能促進用機能性食品は、 4 -0- ;3 _ D _ガラク トビラノシル一D—マンノースを含有することを特徴としている。  [0033] The functional food for promoting mineral absorptivity according to the present invention is characterized by containing 4-0-; 3_D_galactobilanosyl-D-mannose.
[0034] 本発明に係る糖尿病患者用機能性食品は、 4_0_;S_D_ガラク トビラノ シル一D—マンノースを含有することを特徴としている。 [0034] The functional food for diabetic patients according to the present invention is characterized by containing 4_0_; S_D_galactobilanosyl 1-D-mannose.
[0035] 本発明に係わる低力口リ一性低甘味料は、 4 _0_;S _ D—ガラク トビラノシ ル一 D—マンノースを含有することを特徴とする。 [0035] The low-strength low-reactivity sweetener according to the present invention is characterized by containing 4_0_; S_D-galactobillanoyl D-mannose.
[0036] 本発明に係わる便秘改善剤は、 4_0_;S _D_ガラク トピラノシル _D_ マンノースを含有することを特徴とする。 [0036] The constipation improving agent according to the present invention is characterized by containing 4_0_; S_D_galactopyranosyl_D_mannose.
発明の効果  The invention's effect
[0037] 本発明に係るポリペプチドを用いれば、 セロオリゴ糖の還元末端グルコ一 スが 2—ェピマ一化した生成物や乳糖から 4_0_;S_D_ガラク トビラノシ ルー D—マンノースなどを容易にかつ大量に合成することができるだけでな く、 所望のへテロオリゴ糖を容易に合成することができる。 これにより、 機 能性食品素材 (例えば、 ノンカロリーもしくは低カロリーの食品、 またはミ ネラル (特に、 Ca2 +など) の吸収に優れた食品) を低価格で提供すること ができる。 また、 本発明を用いればは血中コレステロールの減少を生じさせ る食品または食品添加物を開発することができる。 さらに、 制腸作用などを 有するビフィズス菌の成長を促進することが可能である。 但し、 上記以外の 生理活性が認めうることを否定するものではない。 [0037] By using the polypeptide according to the present invention, it is possible to easily and abundantly produce 4_0_; S_D_galactobyrosine D-mannose, etc., from a product in which the reducing end glucose of the cellooligosaccharide is 2-epidemerized or lactose. In addition to being able to synthesize, the desired hetero-oligosaccharide can be easily synthesized. Thus, it is possible to provide functionality food material (e.g., non-caloric or low-calorie foods, or Mi Neraru (particularly, Ca 2 +, etc.) excellent food absorption) at low cost. In addition, if the present invention is used, foods or food additives that cause a reduction in blood cholesterol can be developed. Furthermore, it is possible to promote the growth of bifidobacteria with anti-enteric action. However, this does not deny that other physiological activities can be recognized.
[0038] 4_0_ S_D_ガラク トピラノシル一D—マンノースは別名エピラク I ス (e p i l a c t o s e) とも呼ばれ、 牛乳中にごく微量存在することが 知られている (T. R. I . Ca t a l d i ら, (1 999) A n a l . C h e m. 7 1 , 491 9 ) 。 本化合物を以下エピラク ! スと略記する。 図面の簡単な説明 [0038] 4_0_ S_D_Garactopyranosyl-D-mannose, also known as epilactose, is known to exist in trace amounts in milk (TR I. Cataldi et al., (1 999) A nal. C he m. 7 1, 491 9). Following this compound epilac! Abbreviated as “su”. Brief Description of Drawings
[図 1]図 1は、 本発明に係るポリペプチドが触媒する、 セロビオースの還元末 端側グルコースの 2位水酸基を異性化して G I c-Ma nに変換する反応を 示すスキームである。 [FIG. 1] FIG. 1 is a scheme showing a reaction catalyzed by a polypeptide according to the present invention to isomerize the hydroxyl group at the 2nd-position glucose of cellobiose and convert it to GIc-Man.
[図 2]図 2は、 本発明に係るポリペプチドが触媒する、 ラク トースの還元末端 側グルコースの 2位水酸基を異性化してエピラク トースに変換する反応を示 すスキームである。  FIG. 2 is a scheme showing a reaction catalyzed by a polypeptide according to the present invention to isomerize the 2-position hydroxyl group of glucose at the reducing end of lactose and convert it to epilactose.
[図 3]図 3は、 種々のクロマトグラフィ一を用いて精製した本発明に係るポリ ペプチドを示す S DS— P AG Eゲルの CBB染色写真である。 M、 分子量 マーカー; C、 粗抽出液; P、 CE精製酵素標品。  FIG. 3 is a CBB-stained photograph of an SDS-PAGE gel showing a polypeptide according to the present invention purified using various chromatographic methods. M, molecular weight marker; C, crude extract; P, CE purified enzyme preparation.
[図 4]図 4は、 本発明に係るポリペプチドを、 N—ァセチル _D—グルコサミ ン (A) 、 U DP—グルコース (B) 、 グルコース _6_リン酸 (C) 、 グ ルコース (D) 、 マンノース (E) 、 フルク I ス (F) 、 ガラク I ス ( G) 、 キシロース (H) 、 ァラビノース ( I ) 、 ソホロ一ス (J) 、 ラミナ リビオ一ス (K) 、 ゲンチオビオース (L) 、 ラク ト一ス (M) 、 マルト一 ス (N) 、 スクロース (O) 、 セロビオース (P) 、 セロ トリオ一ス (Q) およびセロテトラオース (R) を基質として行った反応生成物を T LCで分 祈した結果を示す図である。  [FIG. 4] FIG. 4 shows a polypeptide according to the present invention comprising N-acetyl-D-glucosamine (A), UDP-glucose (B), glucose_6_phosphate (C), glucose (D), Mannose (E), Fluke I (F), Galax I (G), Xylose (H), Arabinose (I), Sophorose (J), Lamina Revios (K), Gentiobiose (L), Rak TLC was used for the reaction products of Tols (M), Maltose (N), Sucrose (O), Cellobiose (P), Cellotriose (Q) and Cellotetraose (R) as substrates. It is a figure which shows the result of praying.
[図 5]図 5は、 本発明に係るポリペプチドが生成したラク トースからの生成物 (エピラク ! ス) の1 H— NMR (a) と13 C— NMR (b) のスぺク トラ である。 [FIG. 5] FIG. 5 shows the 1 H-NMR (a) and 13 C-NMR (b) spectra of the product (epitaxial!) From lactose produced by the polypeptide of the present invention. is there.
[図 6]図 6は、 本発明に係るポリペプチドが生成したセロ トリオースからの生 成物 (G l c -G I c— Ma n) の1 H— NMR (a) と13 C— NMR (b) のスぺク トラである。 [FIG. 6] FIG. 6 shows 1 H-NMR (a) and 13 C-NMR (b) of the product (G lc -GI c-Man) from cellotriose produced by the polypeptide of the present invention. This is the Spectra.
[図 7]図 7は、 本発明に係るポリペプチドが触媒する、 セロ トリオースの還元 末端側グルコースの 2位水酸基を異性化して G I c-G I c—Ma nに変換 する反応を示すスキームである。 [図 8]図 8は、 エピラク ! ス (a) または D FA I I I (b) がミネラル吸 収促進作用を有することを示す結果である。 FIG. 7 is a scheme showing a reaction catalyzed by a polypeptide according to the present invention to isomerize the hydroxyl group at the 2-position of the reducing terminal glucose of cellotriose and convert it to GI cGIc-Man. [Fig.8] Fig.8 is epirac! This is a result showing that (a) or DFA III (b) has a mineral absorption promoting effect.
[図 9]図 9は、 エピラク トースがミネラル吸収促進作用を有することを示す結 果である。 パネル Aは C a 2 +、 パネル Bは Mg2 +、 パネル Cは Z n 2 +の吸収 をそれぞれ示す。 [FIG. 9] FIG. 9 shows the results showing that epilactose has a mineral absorption promoting effect. Panel A + C a 2, Panel B Mg 2 +, Panel C respectively the absorption of Z n 2 +.
[図 10]図 1 0は、 反転サック法で測定した、 エピラク ト一スの C a 2+吸収促 進効果を示す図である。 縦軸は、 サックに用いた小腸の長さ (cm) 当たり の C a 2 +吸収量を表す。 [FIG. 10] FIG. 10 is a graph showing the Ca 2 + absorption-promoting effect of epicrust measured by the inverted sack method. The vertical axis represents the amount of C a 2 + absorbed per length (cm) of the small intestine used for the sac.
[図 11]図 1 1は、 エピラク ト一ス添加食を摂取したラットにおける血中総コ レステロール値の変化を示すグラフである。 パネル Aが絶食時、 パネル Bが 摂食時を表す。  [FIG. 11] FIG. 11 is a graph showing the change in the total cholesterol level in the rats ingesting the dietary supplement with epilactose. Panel A represents fasting and Panel B represents feeding.
[図 12]図 1 2は、 エピラク ト一ス添加食を摂取したラットにおける血中の中 性脂質、 リン脂質、 コレステロール量の変化を示すグラフである。  [FIG. 12] FIG. 12 is a graph showing changes in blood neutral lipid, phospholipid, and cholesterol levels in rats fed an epilactose supplemented diet.
[図 13]図 1 3は、 エピラク トース摂食後の血糖値の変化を表したグラフであ る。  [FIG. 13] FIG. 13 is a graph showing changes in blood glucose level after feeding epilactose.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 異性化酵素の一つに分類されるェピメラーゼは、 これまでに 32種類の存 在が報告されている。 その多くは、 ヌクレオチドやリン酸、 ァシル基などの 修飾を受けた糖類を基質とするものであり、 未修飾の糖を基質とするものは アルド一ス 1—ェピメラ一ゼ (E C 5. 1. 3. 3) 、 マル! ス 1—ェ ピメラ一ゼ (EC 5. 1. 3. 2 1 ) および C E (EC 5. 1. 3. 1 1 ) の 3種類だけである。  [0040] Up to now, 32 types of epimerases classified as one of isomerases have been reported. Many of them use sugars modified with nucleotides, phosphates, acyl groups, etc. as substrates, and those with unmodified sugars as substrates are aldos 1-epimeraise (EC 5.1. 3. 3) There are only three types: Malus 1-epimelase (EC 5.1.3.2 1) and CE (EC 5. 1. 3. 1 1).
[0041] 本発明者らは、 自ら見出したルミノコッカス アルブス (R. a I b u s ) N E 1由来の C Eを精製し、 酵素化学的諸性質の解明を試みた。 本酵素は セロビオースの還元末端側グルコースの 2位水酸基を異性化し、 G I c _M a nへの相互変換を触媒した (図 1 ) 。 上述した 3種類のェピメラ一ゼのう ち還元末端側の 2位に作用するェピメラーゼは C Eのみである。  [0041] The present inventors have refined CE derived from Rumicoccus albus (R. a I bu s) N E 1 found by themselves and attempted to elucidate various enzyme chemical properties. This enzyme isomerized the 2-position hydroxyl group of cellobiose at the reducing end side glucose and catalyzed the interconversion to G I c — Man (Fig. 1). Of the three types of epimerases described above, CE is the only epimerase that acts at position 2 on the reducing end side.
[0042] このように、 C Eの触媒する反応は非常に独特であったので、 本発明者ら は、 本酵素をセロビオース以外の基質に作用させるあるいは本酵素の基質特 異性を改変することで、 新規の生成物が得られるのではないかと考え、 C E による新規ォリゴ糖合成をさらに試みた。 [0042] Thus, since the reaction catalyzed by CE was very unique, the present inventors Thought that a new product could be obtained by making this enzyme act on a substrate other than cellobiose or modifying the substrate specificity of this enzyme, and further attempted synthesis of a new oligosaccharide by CE.
[0043] 〔 1〕 ポリべプチドおよびポリヌクレオチド [0043] [1] Polypeptide and polynucleotide
〔 1 _ 1〕 ポリべプチド  [1_1] Polypeptide
本発明は、 β _ 4結合を有するオリゴ糖に対する 2 _ェピメラーゼ活 性を有するポリべプチドを提供する。  The present invention provides a polypeptide having 2-epimerase activity for oligosaccharides having a β-4 bond.
本明細書中において使用される場合、 「本発明に係るポリペプチド」 は、 ルミノコッカス (R u m i n o c o c c u s) 属の細菌由来の、 少なくとも β - Λ , 4結合を有するオリゴ糖に対する 2—ェピメラーゼ活性を有するポ リペプチドまたはその変異体が意図され、 より詳細には、 C Eまたはその変 異体が意図される。 上記細菌は、 R. a I b u sであることが好ましく、 R . a I b u s N E 1系統であることがより好ましい。 なお、 本明細書中に 記載される R. a l b u s N E 1は、 受託番号 F E RM P- 2 1 03 6 (独立行政法人産業技術総合研究所特許生物寄託センター) によつて提供さ れ得る。  As used herein, a “polypeptide according to the present invention” has 2-epimerase activity against oligosaccharides derived from bacteria of the genus Ruminococcus and having at least β-Λ, 4 bonds. Polypeptides or variants thereof are contemplated, more particularly CE or variants thereof. The bacterium is preferably R. a I bus, more preferably R. a I bus N E 1 strain. R. albus N E 1 described in the present specification can be provided by the accession number F ERM P-2 1 03 6 (National Institute of Advanced Industrial Science and Technology Patent Organism Depositary).
[0044] 本明細書中において使用される場合、 「R u m i n o c o c c u s a I b u s (R. a I b u s) N E 1由来の C E」 は、 S D S— P AG Eによ る見かけの分子量が約 4 1 k D a (例えば、 40〜 42 k D a ) であり、 配 列番号 4に示されるアミノ酸配列を N末端に有していることを特徴としてい る。 なお、 この見かけの分子量は、 用いたポリペプチド (タンパク質) にお ける翻訳後修飾の程度や、 S D S _ P AG Eに用いるゲルの濃度によって若 干変動するため、 実際のアミノ酸配列から計算される分子量が約 3 5 k D a 〜約 46 k D aであり得ることを当業者は容易に理解する。 なお、 本発明者 らによって同定された C Eの配列情報に基づいて計算された分子量は 452 1 7 D aである。 また、 図 3のレーン Pに示される単一のバンドの位置を正 確に表せば、 S D S— P AG Eによる見かけの分子量は 43. 1 k D aであ る。 [0045] 本発明に係るポリべプチドの有する活性は、 オリゴ糖の還元末端側である 糖の 2位水酸基を異性化する活性であることが好ましい。 本明細書中におい て使用される場合、 「オリゴ糖」 は、 2〜1 0個の単糖からなる糖が意図さ れ、 単糖の数は、 2〜 6個が好ましく、 セロビオース、 セロ トリオ一ス、 セ ロテトラオースまたはラク トースであることがより好ましい。 [0044] As used herein, "CE from Ruminococcusa I bus (R. a I bus) NE 1" has an apparent molecular weight of about 41 k D according to SDS-PAGE. a (for example, 40 to 42 kDa) and having the amino acid sequence shown in SEQ ID NO: 4 at the N-terminus. This apparent molecular weight is calculated from the actual amino acid sequence because it varies slightly depending on the degree of post-translational modification in the polypeptide (protein) used and the concentration of the gel used for SDS_PAGE. One skilled in the art will readily appreciate that the molecular weight can be from about 35 kDa to about 46 kDa. The molecular weight calculated based on the CE sequence information identified by the present inventors is 452 17 Da. In addition, if the position of the single band shown in lane P in Fig. 3 is accurately represented, the apparent molecular weight by SDS-PAGE is 43.1 kDa. [0045] The activity of the polypeptide according to the present invention is preferably an activity of isomerizing the 2-position hydroxyl group of the sugar on the reducing end side of the oligosaccharide. As used herein, “oligosaccharide” is intended to be a sugar composed of 2 to 10 monosaccharides, and the number of monosaccharides is preferably 2 to 6, cellobiose, cellotrio More preferably, it is monos, cellotetraose or lactose.
[0046] 後述の実施例に示されるように、 本発明に係るポリペプチドは、 紫外線の 最大吸収が 2 7 8〜 2 8 0 n mであり、 等電点 ( p I ) が 4 . 6 9である。 また、 本発明に係るポリペプチドにおいて、 上記オリゴ糖に対する 2—ェピ メラ一ゼ活性は、 金属塩 (例えば、 F e 3 +、 C o 2 +、 C u 2 +、 P b 2 + , Z n 2 +または A g +) で阻害され、 化学物質 (例えば、 N _プロモスクシミ ド、 ョ —ド酢酸または p—クロロマ一キュリーベンゾェ一ト) で阻害される。 なお 、 本発明に係るポリべプチドの有する活性を阻害するために好ましい上記金 属塩または化学物質の濃度は 1 m Mである。 さらに、 本発明に係るポリぺプ チドにおいて、 上記オリゴ糖に対する 2 _ェピメラ一ゼ活性は、 プリットン —ロビンソン緩衝液中で p H 7 . 7〜8 . 2にてその最大活性が示され、 T r i s _マレイン酸緩衝液中で 2 8〜3 2 °Cにてその最大活性が示される。 なお、 上記緩衝液の好ましい濃度は 4 0〜 1 O O m Mである。 [0046] As shown in the Examples below, the polypeptide according to the present invention has a maximum absorption of ultraviolet rays of 2 78 to 28 80 nm and an isoelectric point (p I) of 4.69. is there. In addition, in the polypeptide according to the present invention, the 2-epepimerase activity for the oligosaccharide is a metal salt (for example, Fe 3 + , Co 2 + , Cu 2 + , P b 2 +, Z n 2 + or A g +) and is inhibited by chemicals (eg N_prosuccimide, codoacetic acid or p-chloromercurybenzoate). The concentration of the metal salt or chemical substance preferable for inhibiting the activity of the polypeptide according to the present invention is 1 mM. Further, in the polypeptide according to the present invention, 2_epepimerase activity with respect to the above oligosaccharide has a maximum activity at pH 7.7 to 8.2 in Priton-Robinson buffer, and T Its maximum activity is shown at 28-32 ° C in ris_maleic acid buffer. The preferred concentration of the buffer is 40-1OOmM.
[0047] 本明細書中で使用される場合、 用語 「ポリペプチド」 は、 「ペプチド」 ま たは 「タンパク質」 と交換可能に使用される。 また、 ポリペプチドの 「フラ グメント」 は、 当該ポリペプチドの部分断片が意図される。 本発明に係るポ リペプチドはまた、 天然供給源より単離されても、 化学合成されてもよい。  [0047] As used herein, the term "polypeptide" is used interchangeably with "peptide" or "protein". In addition, “fragment” of a polypeptide is intended to be a partial fragment of the polypeptide. Polypeptides according to the present invention may also be isolated from natural sources or chemically synthesized.
[0048] 用語 「単離された」 ポリペプチドまたはタンパク質は、 その天然の環境か ら取り出されたポリペプチドまたはタンパク質が意図される。 例えば、 宿主 細胞中で発現された組換え産生されたポリべプチドおよびタンパク質は、 任 意の適切な技術によって実質的に精製されている天然または組換えのポリべ プチドおよびタンパク質と同様に、 単離されていると考えられる。  [0048] The term "isolated" polypeptide or protein is intended to be a polypeptide or protein that has been removed from its natural environment. For example, recombinantly produced polypeptides and proteins expressed in host cells can be expressed as simple as natural or recombinant polypeptides and proteins that have been substantially purified by any suitable technique. It is thought that they are separated.
[0049] 本発明に係るポリペプチドは、 R . a I b u s N E 1から精製されたが 、 本発明に係るポリペプチドとしてはこれに限定されず、 他の天然の精製産 物、 化学合成手順の産物、 または原核生物宿主から組換え技術によって産生 された産物を包含する。 [0049] The polypeptide according to the present invention was purified from R. a I bus NE 1. However, the polypeptide according to the present invention is not limited to this, and other natural purified products. Products, products of chemical synthesis procedures, or products produced by recombinant techniques from prokaryotic hosts.
[0050] 本明細書の記載に基づけば、 当業者は、 本発明に係るポリペプチドの全ァ ミノ酸配列および該ポリべプチドをコ一ドするポリヌクレオチドの全塩基配 列 (または、 オープンリーディングフレームもしくはその一部) を取得する ことができる。 例えば、 本発明に係るポリペプチドをコードするポリヌクレ ォチドは、 以下のように取得され得る。  [0050] Based on the description of the present specification, a person skilled in the art will know the entire amino acid sequence of the polypeptide according to the present invention and the entire nucleotide sequence (or open reading sequence) of the polynucleotide encoding the polypeptide. Frame or part of it). For example, a polynucleotide encoding a polypeptide according to the present invention can be obtained as follows.
[0051 ] 本発明に係るポリべプチドをコ一ドするポリヌクレオチドの単離方法は、 本発明に係るポリべプチドを発現する細胞から調製されるゲノムライブラリ 一を作製する工程を包含する。 本発明に係るポリべプチドをコ一ドするポリ ヌクレオチドを単離するためには、 ゲノムライブラリーを用いる方が好まし し、。 プラスミ ド、 コスミ ド、 ファージ、 Y A Cなどの広範囲に入手可能なク ローニングベクターを用いて、 本発明に係るポリべプチドまたはその部分を コ一ドするヌクレオチド配列を単離するのに適した遺伝子ライブラリ一を作 成し得る。  [0051] The method for isolating a polynucleotide encoding the polypeptide according to the present invention includes a step of preparing a genomic library prepared from cells expressing the polypeptide according to the present invention. In order to isolate a polynucleotide encoding the polypeptide according to the present invention, it is preferable to use a genomic library. A gene library suitable for isolating a nucleotide sequence encoding a polypeptide according to the present invention or a portion thereof using a wide range of cloning vectors such as plasmids, cosmids, phages, YACs, etc. One can be created.
[0052] 本発明に係るポリべプチドをコ一ドするポリヌクレオチドの存在を確認す るために遺伝子ライブラリ一をスクリーニングする方法は、 配列番号 1に示 されるァミノ酸配列情報に基づくォリゴヌクレオチドプローブを調製するェ 程を包含する。 標準トリプレット遺伝暗号を用いて、 約 1 7塩基対またはそ れより長いオリゴヌクレオチド配列が、 通常のインビトロ合成技術によって 調製され得る。 このオリゴヌクレオチド配列は、 配列番号 1に示されるアミ ノ酸配列の全長または一部分に対応するように合成される。 得られたォリゴ ヌクレオチドは、 次いで、 放射性核種、 酵素、 ビォチン、 蛍光試薬などで標 識され、 そして遺伝子ライブラリ一をスクリーニングするためのプローブと して使用される。 また、 配列番号 1に示されるアミノ酸配列に基づいて設計 した縮重プライマ一を用いるポリメラ一ゼ連鎖反応 (P C R ) を行ってもよ い。  [0052] A method of screening a gene library for confirming the presence of a polynucleotide encoding a polypeptide according to the present invention is an oligonucleotide based on amino acid sequence information shown in SEQ ID NO: 1. Includes the process of preparing the probe. Using the standard triplet genetic code, oligonucleotide sequences of about 17 base pairs or longer can be prepared by conventional in vitro synthesis techniques. This oligonucleotide sequence is synthesized to correspond to the full length or a part of the amino acid sequence shown in SEQ ID NO: 1. The obtained oligonucleotide is then labeled with a radionuclide, an enzyme, biotin, a fluorescent reagent, etc., and used as a probe for screening a gene library. Alternatively, a polymerase chain reaction (PCR) using a degenerate primer designed based on the amino acid sequence shown in SEQ ID NO: 1 may be performed.
[0053] 本発明に係るポリべプチドをコ一ドするポリヌクレオチドは、 上記遺伝子 ライブラリー単離物から回収される組換え D N Aから得られ得る。 本発明に 係るポリべプチドをコ一ドするポリヌクレオチドは、 これらの組換え分子の 非べクタ一ヌクレオチド配列の配列決定によって得られ得る。 ヌクレオチド 配列情報は、 広く用いられている D N A配列決定プロ トコル (例えば、 S. L . B e r g e rと A. R. K i mm e l ( 1 987) M e t h o d s E n z ymo に 1 52, 307, A c a d em i c P r e s s, N Y) (本明細書中に参考として援用される) ) 中に見いだされ得る配列決定法な どを使用して得られ得る。 いくつかの組換え D N A単離物 (c D NAからの 単離物およびゲノムライブラリ一からの単離物の両方を包含する) からのヌ クレオチド配列情報を組み合わせて、 本発明に係るポリべプチドの全ァミノ 酸のコ一ド配列、 ならびに上流ヌクレオチド配列および下流ヌクレオチド配 列を提供し得る。 [0053] The polynucleotide encoding the polypeptide according to the present invention is the above gene. It can be obtained from recombinant DNA recovered from library isolates. Polynucleotides encoding the polypeptides according to the invention can be obtained by sequencing the non-vector single nucleotide sequences of these recombinant molecules. Nucleotide sequence information is available from widely used DNA sequencing protocols (eg, S. L. Berger and AR Kimmel (1 987) M ethods E nz ymo to 1 52, 307, A cad em ic P ress, NY) (incorporated herein by reference)) can be obtained using, for example, sequencing methods that can be found in. By combining nucleotide sequence information from several recombinant DNA isolates (including both isolates from cDNA and isolates from a single genomic library), the polypeptides of the present invention Of all amino acids, as well as upstream and downstream nucleotide sequences.
[0054] 本発明に係るポリべプチドに特異的な遺伝子ライブラリー単離物から得ら れたヌクレオチド配列は、 本発明に係るポリべプチド遺伝子の重要な領域を 同定するために分析に供される。 これらの重要な領域には、 オープンリーデ イングフレーム、 プロモータ一配列、 終止配列などが包含される。 ヌクレオ チド配列情報の分析は、 好ましくは、 コンピュータ一で行われる。 重要な領 域についてヌクレオチド配列を分析するのに適したソフトウエアは市販され ており、 これには、 例えば、 D NAS I STM (P h a r ma c i a L K B T e c h n o l o g y, P i s c a t a w a y, N J ) など力《包含される 。 本発明に係るポリヌクレオチド配列情報を分析する際に、 精製された本発 明に係るポリベプチドの N末端配列決定から得られたァミノ酸配列情報を使 用してそのヌクレオチド配列分析の精度を向上させることも重要である。 [0054] Nucleotide sequences obtained from gene library isolates specific for the polypeptides according to the present invention are subjected to analysis in order to identify important regions of the polypeptide genes according to the present invention. The These important areas include open reading frames, promoter sequences, and termination sequences. The analysis of nucleotide sequence information is preferably performed on a computer. Software suitable for analyzing nucleotide sequences for important regions is commercially available and includes, for example, forces such as D NAS IS TM (Pharmacia LKBT echnology, Piscataway, NJ). The When analyzing polynucleotide sequence information according to the present invention, the amino acid sequence information obtained from N-terminal sequencing of the purified polypeptide according to the present invention is used to improve the accuracy of the nucleotide sequence analysis. It is also important.
[0055] 本発明に係るポリべプチドは、 本発明に係るポリべプチドをコ一ドするポ リヌクレオチドの塩基配列がベクター中に機能的に挿入される場合、 組換え 技術によって発現され得る。 本明細書中において使用される場合、 「機能的 に挿入される」 は、 適切なオープンリーディングフレームおよび方向に従つ て発現ベクター中に挿入されることが意図される。 [0056] このように、 本明細書を読んだ当業者は、 本発明によって、 β— , 4結 合を有するオリゴ糖に対する 2—ェピメラーゼ活性を有するポリべプチドだ けでなく、 該ポリべプチドをコ一ドするポリヌクレオチドもまた提供される ことを、 容易に理解する。 本発明に係るポリペプチドをコードするポリヌク レオチドについては、 本明細書中下記にて詳述する。 本発明に係るポリぺプ チドの完全なオープンリーディングフレームを含む遺伝子構築物を作製する 場合、 好ましい出発物質は本発明に係るポリべプチドをコードするゲノムラ イブラリー単離物である。 より好ましくは、 上述した方法によって取得した ポリヌクレオチドである。 [0055] The polypeptide according to the present invention can be expressed by a recombinant technique when the nucleotide sequence of the polynucleotide encoding the polypeptide according to the present invention is functionally inserted into a vector. As used herein, “functionally inserted” is intended to be inserted into an expression vector according to the appropriate open reading frame and orientation. [0056] As described above, those skilled in the art who have read this specification, according to the present invention, not only a polypeptide having 2-epimerase activity for an oligosaccharide having a β-, 4-bond, but also the polypeptide. It will be readily appreciated that polynucleotides that code for are also provided. The polynucleotide encoding the polypeptide according to the present invention will be described in detail later in this specification. When producing a gene construct comprising the complete open reading frame of a polypeptide according to the present invention, the preferred starting material is a genomic library isolate encoding the polypeptide according to the present invention. More preferably, it is a polynucleotide obtained by the method described above.
[0057] 典型的には、 本発明に係るポリべプチドをコ一ドするポリヌクレオチドは 、 プロモーターの下流に挿入され、 それに停止コ ドンが続く力 所望であれ ばハイプリッドタンパク質としての生産とそれに続く開裂が、 使用され得る 。 一般的には、 本発明に係るポリペプチドの生産収率を向上させる宿主細胞 に特異的な配列が使用され、 そして適切な制御配列 (ェンハンサ一配列、 ポ リアデニル化配列、 およびリボソーム結合部位など) が発現ベクターに付加 される。 いったん適切なコード配列が単離されると、 これは、 種々の異なる 発現系;例えば、 細菌、 酵母、 バキュロウィルスまたは哺乳動物細胞を用い て発現され得る。 本発明に係るポリペプチドは、 アミノ酸がペプチド結合し ているポリペプチドであればよいが、 これに限定されるものではなく、 ポリ ぺプチド以外の構造を含む複合ポリべプチドであってもよい。  [0057] Typically, the polynucleotide encoding the polypeptide according to the present invention is inserted downstream of the promoter, followed by a stop codon and, if desired, produced as a hybrid protein and Subsequent cleavage can be used. In general, sequences specific to the host cell that improve the production yield of the polypeptide of the present invention are used, and appropriate control sequences (such as an enhancer sequence, polyadenylation sequence, and ribosome binding site). Is added to the expression vector. Once the appropriate coding sequence has been isolated, it can be expressed using a variety of different expression systems; eg, bacteria, yeast, baculovirus or mammalian cells. The polypeptide according to the present invention may be any polypeptide in which amino acids are peptide-bonded, but is not limited thereto, and may be a complex polypeptide including a structure other than the polypeptide.
[0058] また、 本発明に係るポリペプチドは、 付加的なポリペプチドを含むもので あってもよい。 付加的なポリペプチドとしては、 例えば、 H i s、 M y c、 F I a g等のェピトープ標識ポリべプチドが挙げられる。  [0058] In addition, the polypeptide according to the present invention may include an additional polypeptide. Additional polypeptides include, for example, epitope labeled polypeptides such as H i s, My c, F I ag and the like.
[0059] 例えば、 本発明に係るポリペプチドは、 天然の細菌からの抽出物、 または 本発明に係るポリぺプチドを産生するように遺伝的に改変された形質転換体 (例えば、 原核生物細胞および真核生物細胞) から、 本発明に係るポリぺプ チドと特異的に結合し得る抗体を用いたァフィ二ティ一クロマトグラフィ一 によって、 容易に精製され得る。 抗体ァフィ二ティ一クロマトグラフィーの 使用に加えて、 本発明に係るポリべプチドおよび本発明に係るポリべプチド 由来のポリペプチドは、 他の広範な公知のタンパク質精製技術 (例えば、 硫 安分画、 溶媒沈殿、 免疫沈降法、 ゲル濾過、 イオン交換クロマトグラフィー 、 疎水クロマトグラフィー、 等電点沈殿、 エレク トロフォーカシング、 電気 泳動法など) を単独または組み合わせて用いて精製され得る。 [0059] For example, a polypeptide according to the present invention is an extract from a natural bacterium, or a transformant genetically modified to produce a polypeptide according to the present invention (for example, prokaryotic cells and Eukaryotic cells) can be easily purified by affinity chromatography using an antibody capable of specifically binding to the polypeptide of the present invention. Antibody affinity chromatography In addition to use, the polypeptides according to the present invention and the polypeptides derived from the polypeptides according to the present invention may be produced using a wide variety of other known protein purification techniques (eg, ammonium sulfate fractionation, solvent precipitation, immunoprecipitation, Gel filtration, ion exchange chromatography, hydrophobic chromatography, isoelectric precipitation, electrofocusing, electrophoresis, etc.) may be used alone or in combination.
[0060] 精製の過程で単離された画分は、 本発明に係るポリべプチド特異的抗体を 用いたィムノアツセィ、 または本発明に係るポリべプチド特異的バイオアツ セィ (例えば、 ラク ト一スまたはセロオリゴ糖を基質として用いる酵素反応 およびその生成物の解析) を用いて分析されることによって、 本発明に係る ポリぺプチドの存在を分析され得る。  [0060] The fraction isolated in the course of the purification may be immunoassay using the polypeptide-specific antibody according to the present invention, or the polypeptide-specific bioassay according to the present invention (for example, lactose or The presence of the polypeptide according to the present invention can be analyzed by analysis using an enzymatic reaction using cellooligosaccharide as a substrate and analysis of its product.
[0061] 本発明に係るポリペプチドに特異的な抗体は、 適切な脊椎動物宿主 (例え ば、 ゥサギ) を、 精製された本発明に係るポリペプチドを単独でまたは通常 のアジュバントと組み合わせて免疫することによって産生される。 普通、 2 つかそれ以上の免疫感作が含まれ、 そして血液または脾臓が、 最後の注射の 数日後に採取される。 ポリクロ一ナル抗血清については、 免疫グロブリンは 、 種々の標準的技法により、 沈降、 単離、 および精製され得る。 これには、 ァフィ二ティ一力ラム中のゲルまたはビーズのような固体表面に結合した本 発明に係るポリべプチドを用いるァフィ二ティ一精製が含まれる。 モノクロ ーナル抗体については、 脾臓細胞が、 通常、 不死化リンパ球、 例えば骨髄細 胞株とハイプリ ドーマ形成のための選択的条件下で融合される。 次いでハイ プリ ドーマは、 限定的希釈条件下でクローニングされ得、 そしてそれらの上 清が、 所望の特異性を有する抗体についてスクリーニングされ得る。 抗体を 産生する技法は文献に公知であり、 例えば、 「A n t i b o d i e s : A L a b o r a t r y Ma n u a l、 E. H a r l owと D. L a n e編, C o l d S p r i n g H a r b o r L a b o r a t o r i e s P r e s s, N Y ( 1 988) 」 (本明細書中に参考として援用される) に例示 される。  [0061] The antibody specific for the polypeptide of the present invention immunizes an appropriate vertebrate host (eg, rabbit) with the purified polypeptide of the present invention alone or in combination with a normal adjuvant. It is produced by. Usually, two or more immunizations are included, and blood or spleen is taken several days after the last injection. For polyclonal antisera, immunoglobulins can be precipitated, isolated, and purified by a variety of standard techniques. This includes affinity purification using a polypeptide according to the invention bound to a solid surface such as a gel or bead in an affinity ram. For monoclonal antibodies, spleen cells are usually fused with immortalized lymphocytes, such as bone marrow cell lines, under selective conditions for hyperidoma formation. The hybridomas can then be cloned under limited dilution conditions and their supernatants can be screened for antibodies with the desired specificity. Techniques for producing antibodies are known in the literature, for example, “Antibibodies: AL aboratry Manual, E. Harbor and Ed. Lane, Ed., Old Spring Harbor Laboratories Press, NY (1 988 ) "(Incorporated herein by reference).
[0062] このように、 本明細書を読んだ当業者は、 本発明によって、 β— Α , 4結 合を有するオリゴ糖に対する 2—ェピメラーゼ活性を有するポリべプチドぉ よび該ポリペプチドをコードするポリヌクレオチドだけでなく、 該ポリぺプ チドと特異的に結合する抗体もまた提供されることを、 容易に理解する。 本 発明に係るポリべプチドと特異的に結合する抗体については、 本明細書中下 記にて詳述する。 [0062] As described above, those skilled in the art who have read this specification can make β-—, It is easy to provide not only a polypeptide having a 2-epimerase activity against an oligosaccharide having a combination and a polynucleotide encoding the polypeptide, but also an antibody that specifically binds to the polypeptide. To understand. The antibody that specifically binds to the polypeptide of the present invention will be described in detail later in this specification.
[0063] 本明細書中においてタンパク質またはポリべプチドに関して用いられる場 合、 用語 「変異体」 は、 本発明に係るポリペプチドの有する; S _ 1 , 4結合 を有するォリゴ糖に対する 2—ェピメラーゼ活性を保持するポリベプチドが 意図される。  [0063] As used herein with respect to a protein or polypeptide, the term "variant" has the polypeptide according to the present invention; 2-epimerase activity for oligosaccharides having S_1,4 bonds Polypeptides that hold are intended.
[0064] 本明細書中において使用される場合、 変異体の一例としては、 R . a I b u s N E 1由来の C Eのアミノ酸配列において、 1個もしくは数個のアミ ノ酸が置換、 付加、 欠失、 逆位、 転座、 反復およびタイプ置換されたァミノ 酸配列を含む変異体が挙げられる。  [0064] As used herein, as an example of a mutant, one or several amino acids are substituted, added, or deleted in the amino acid sequence of CE derived from R. a I bus NE 1. Examples include mutants containing lost, inverted, translocated, repetitive and type-substituted amino acid sequences.
[0065] ポリぺプチドのァミノ酸配列中のいくつかのァミノ酸が、 このポリぺプチ ドの構造または機能に有意に影響することなく容易に改変し得ることは、 当 該分野において周知である。 さらに、 人為的に改変させるだけではく、 天然 のタンパク質において、 当該タンパク質の構造または機能を有意に変化させ ない変異体が存在することもまた周知である。  [0065] It is well known in the art that some amino acids in the amino acid sequence of a polypeptide can be easily modified without significantly affecting the structure or function of the polypeptide. . Furthermore, it is also well known that there are mutants in natural proteins that do not change artificially, but do not significantly alter the structure or function of the protein.
[0066] 当業者は、 周知技術を使用してポリべプチドのアミノ酸配列において 1ま たは数個のアミノ酸を容易に変異させることができる。 例えば、 公知の点変 異導入法に従えば、 ポリべプチドをコ一ドするポリヌクレオチドの任意の塩 基を変異させることができる。 また、 ポリペプチドをコードするポリヌクレ ォチドの任意の部位に対応するプライマーを設計して欠失変異体または付加 変異体を作製することができる。 さらに、 ランダム変異によっても目的は達 成される。 さらに、 本明細書中に記載される活性測定方法を用いれば、 作製 した変異体が所望の _ 1 , 4結合を有するオリゴ糖に対する 2—ェピメラ ーゼ活性を有するか否かを容易に決定し得る。  [0066] One skilled in the art can readily mutate one or several amino acids in the amino acid sequence of a polypeptide using well-known techniques. For example, according to a known point mutation introduction method, any base group of a polynucleotide that codes for a polypeptide can be mutated. In addition, a deletion mutant or an addition mutant can be prepared by designing a primer corresponding to an arbitrary site of a polynucleotide encoding a polypeptide. In addition, the objective can be achieved by random mutation. Furthermore, by using the activity measurement method described in the present specification, it can be easily determined whether or not the produced mutant has a 2-epimerase activity for an oligosaccharide having a desired _ 1,4 bond. obtain.
[0067] 好ましい変異体は、 保存性もしくは非保存性アミノ酸置換、 欠失、 または 添加を有する。 好ましくは、 サイレント置換、 添加、 および欠失であり、 特 に好ましくは、 保存性置換である。 これらは、 本発明に係るポリペプチドの β - Λ , 4結合を有するオリゴ糖に対する 2 _ェピメラーゼ活性を変化させ ない。 [0067] Preferred variants are conservative or non-conservative amino acid substitutions, deletions, or With additions. Silent substitution, addition, and deletion are preferred, and conservative substitution is particularly preferred. These do not change the 2_epimerase activity of the polypeptide according to the present invention for oligosaccharides having β-Λ, 4 bonds.
[0068] 代表的な保存性置換としては、 疎水性アミノ酸 A I a、 V a I 、 L e u、 および I I eの中での 1つのアミノ酸の別のアミノ酸への置換; ヒドロキシ ルアミノ酸 S e rおよび T h rの交換、 酸性残基 A s pおよび G I uの交換 、 ァミ ド型ァミノ酸 A s nおよび G I nの間の置換、 塩基性ァミノ酸 L y s および A r gの交換、 ならびに芳香属アミノ酸 P h e、 T y rの間の置換な どが挙げられる。  [0068] Representative conservative substitutions include substitution of one amino acid for another in the hydrophobic amino acids AI a, V a I, Leu, and II e; hydroxyl amino acids Ser and T exchange of hr, exchange of acidic residues A sp and GI u, substitution between amido amino acids A sn and GI n, exchange of basic amino acids L ys and A rg, and aromatic amino acids P he, Examples include substitution between Tyr.
[0069] 本明細書中において使用される場合、 変異体の他の例としては、 R. a I b u s N E 1由来の C Eをコードする塩基配列において、 1個もしくは数 個の塩基が欠失、 挿入、 置換、 もしくは付加された塩基配列からなるポリヌ クレオチドによってコ一ドされることが好ましい。  [0069] As used herein, other examples of mutants include deletion of one or several bases in the base sequence encoding CE from R. a I bus NE 1. It is preferably coded by a polynucleotide comprising a base sequence inserted, substituted, or added.
[0070] 本明細書中において使用される場合、 変異体の別の例としては、 R. a I b u s N E 1由来の C Eをコ一ドする塩基配列の相補配列の 1個もしくは 数個の塩基が置換、 付加、 欠失もしくは挿入された塩基配列からなるポリヌ クレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオ チドによってコ一ドされることが好ましい。  [0070] As used herein, another example of a variant is one or several bases of a complementary sequence of a base sequence encoding CE from R. a I bus NE 1. Is preferably encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of a substituted, added, deleted or inserted nucleotide sequence.
[0071] ハイブリダィゼ一シヨンは、 「M o l e c u l a r C l o n i n g : A  [0071] The hybridization is “M o l e c u l a r C l o n i n g: A
L a b o r a t o r y M a n u a l fed片反, J . S a m b r o o kと D. W. R u s s l l編, C o l d S p r i n g H a r b o r L a b o r a t o r y , N Y (200 1 ) 」 (本明細書中に参考として援用される ) に記載されている方法のような周知の方法で行うことができる。 通常、 温 度が高いほど、 塩濃度が低いほどストリンジエンシーは高くなり (ハイプリ ダイズし難くなる) 、 より相同なポリヌクレオチドを取得することができる 。 適切なハイブリダィゼーシヨン温度は、 塩基配列やその塩基配列の長さに よって異なり、 例えば、 アミノ酸 6個をコードする 1 8塩基からなる D N A フラグメントをプローブとして用いる場合、 50°C以下の温度が好ましい。 Laboratory Manual fed reversal, edited by J. Sambrook and DW Russll, C. Old Spring Harbor, NY (200 1) (incorporated herein by reference) It can be performed by a known method such as a method. Usually, the higher the temperature and the lower the salt concentration, the higher the stringency (which makes it difficult to hybridize), and a more homologous polynucleotide can be obtained. The appropriate hybridization temperature depends on the base sequence and the length of the base sequence. For example, DNA consisting of 18 bases encoding 6 amino acids. When fragments are used as probes, temperatures below 50 ° C are preferred.
[0072] 本明細書中で使用される場合、 用語 「ストリンジェン卜なハイブリダィゼ —ション条件」 は、 ハイブリダイゼ一ション溶液 ( 50 %ホルムァミ ド、 5 X S S C (1 50 1\1の a C I、 1 5 mMのクェン酸三ナトリゥム) 、 5 OmMのリン酸ナトリウム (p H 7. 6) 、 5 Xデンハート液、 1 0 %硫酸 デキストラン、 および 20 g/mLの変性剪断サケ精子 DN Aを含む) 中 にて 42 °Cで一晚インキュベーションした後、 約 65°Cにて 0. 1 X SSC 中でフィルタ一を洗浄することが意図される。 ポリヌクレオチドの 「一部」 にハイブリダィズするポリヌクレオチドによって、 参照のポリヌクレオチド の少なくとも約 1 5ヌクレオチド (n t ) 、 そしてより好ましくは少なくと も約 20 n t、 さらにより好ましくは少なくとも約 3 O n t、 そしてさらに より好ましくは約 30 n tより長いポリヌクレオチドにハイブリダイズする ポリヌクレオチド (DN Aまたは RN Aのいずれか) が意図される。 このよ うなポリヌクレオチドの 「一部」 にハイブリダィズするポリヌクレオチド ( オリゴヌクレオチド) は、 本明細書中においてより詳細に考察されるような 検出用プローブとしても有用である。 [0072] As used herein, the term “stringent hybridization conditions” refers to hybridization solutions (50% formamide, 5 XSSC (1 50 1 \ 1 a CI, 1 5 in 5 mM sodium phosphate (pH 7.6), 5 X Denhardt's solution, 10% dextran sulfate, and 20 g / mL denatured sheared salmon sperm DN A) It is intended to wash the filter in 0.1 X SSC at approximately 65 ° C after a total incubation of 42 ° C. Depending on the polynucleotide that hybridizes to a “portion” of the polynucleotide, at least about 15 nucleotides (nt) of the reference polynucleotide, and more preferably at least about 20 nt, even more preferably at least about 3 O nt, and Even more preferably, a polynucleotide (either DNA or RNA) that hybridizes to a polynucleotide longer than about 30 nt is contemplated. Such a polynucleotide (oligonucleotide) that hybridizes to a “part” of the polynucleotide is also useful as a detection probe as discussed in more detail herein.
[0073] 本明細書中において使用される場合、 変異体の別の例としては、 R. a I b u s N E 1由来の C Eをコ一ドする塩基配列と少なくとも 50%同一、 より好ましくは少なくとも 51 %、 52 %、 53 %、 54 %、 55 %、 56 %、 57%、 58%、 59%、 60%、 65%、 70%、 72%、 75%、 80%、 82%、 85%、 90%、 92%, 95%、 96%、 97%、 98 %または 99%同一である塩基配列からなるポリヌクレオチドによってコ一 ドされることが好ましい。 また、 N E 1株由来の C Eとアミノ酸レベルで相 同性を示す天然の配列は、 最高でも 51 %の相同性を示すに過ぎない。 なお 、 この配列は、 クロストリディウム フアイ トファ一メンタンス (C I o s t r i d i u m p h y t o f e r me n t a n s) 由来の N—ァシゾレグ、ノレ コサミン 2 _ェピメラ一ゼ (G l c NA c_2_e p i タンパク質 (登録番 号 Q 1 F K V 5) である。 [0074] 例えば、 「本発明に係るポリべプチドをコ一ドするポリヌクレオチドの参 照 (QU E RY) 塩基配列に少なくとも 95 <½同一の塩基配列からなるポリ ヌクレオチド」 によって、 対象塩基配列が、 本発明に係るポリペプチドをコ -ドするポリヌクレオチドの参照塩基配列の 1 00ヌクレオチチド (塩基) あたり 5つまでの不一致 (m i sma t c h) を含み得ることを除いて、 参 照配列に同一であるということが意図される。 換言すれば、 参照塩基配列に 少なくとも 95<½同一の塩基配列からなるポリヌクレオチドを得るために、 参照配列における塩基の 5 %までが、 欠失され得るかまたは別の塩基で置換 され得るか、 あるいは参照配列における全塩基の 5 <½までの多くの塩基が、 参照配列に挿入され得る。 参照配列のこれらの不一致は、 参照塩基配列の 5 ' または 3' 末端位置または参照配列における塩基中で個々にかまたは参照 配列内の 1以上の隣接した群においてのいずれかで分散されて、 これらの末 端部分の間のどこでも起こり得る。 [0073] As used herein, another example of a variant is at least 50% identical to the base sequence encoding CE from R. a I bus NE 1, more preferably at least 51 %, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 65%, 70%, 72%, 75%, 80%, 82%, 85%, It is preferably encoded by a polynucleotide comprising a base sequence that is 90%, 92%, 95%, 96%, 97%, 98% or 99% identical. In addition, a natural sequence that is homologous at the amino acid level with CE from the NE 1 strain shows only 51% homology. This sequence is the N-vasizoleg, Norecosamin 2_epimerase (G lc NA c_2_e pi protein (registration number Q 1 FKV 5) derived from C. ostridium phytofermentans. is there. [0074] For example, the reference nucleotide sequence of the polynucleotide according to the present invention is based on the reference (QU ERY) polynucleotide comprising at least 95 <½ identical nucleotide sequence to the nucleotide sequence. Identical to the reference sequence except that it can contain up to 5 mismatches per 100 nucleotides (bases) of the reference base sequence of the polynucleotide encoding the polypeptide of the invention. It is intended to be. In other words, up to 5% of the bases in the reference sequence can be deleted or replaced with another base to obtain a polynucleotide comprising a base sequence at least 95 <½ identical to the reference base sequence, Alternatively, as many bases as 5 <½ of all bases in the reference sequence can be inserted into the reference sequence. These discrepancies in the reference sequence are dispersed either individually at the 5 ′ or 3 ′ end position of the reference base sequence or at the base in the reference sequence or in one or more adjacent groups within the reference sequence, Can occur anywhere between the end of
[0075] 任意の特定の核酸分子が、 例えば、 本発明に係るポリペプチドをコードす るポリヌクレオチドの塩基配列に対して、 少なくとも 50 %、 5 1 %、 52 %、 53%、 54%、 55%、 56%、 57%、 58%、 59%、 60%、 65%、 70%、 72%、 75%、 80%、 82%、 85%、 90%、 92 %, 95%、 96%、 97%、 98%または 99%同一であるか否かは、 公 知のコンピュータ一プログラム (例えば、 B e s t f i t p r o g r am (W I s c o n s i n s e q u e n c e A n a l y s i s P a c k a g e, V e r s i o n 8 f o r U n i x (登 ϊ求商標) , G e n e t i c s し om p u t e r G r o u p, U n i v e r s i t y R e s e a r c h P a r k, 5 / 5 S c i e n c e D r i v e, Ma d i s o n , W I 537 1 1 ) を使用して決定され得る。 B e s t f i tは、 Sm i t hおよび Wa t e r m a nの局所的相同性アルゴリズム (T. F. Sm i t hと M. S . Wa t e r ma n ( 1 98 1 ) A d v. A p p に Ma t h. 2, 482 (本明細書中に参考として援用される) ) を用いて、 2つの 配列間の最も良好な相同性セグメントを見出す。 最も相同性が高い (B e s t f i t ) または任意の他の配列整列プログラムを用いて、 特定の配列が、 本発明に従う参照配列に対して、 例えば、 95%同一であるか否かを決定す る場合は、 同一性のパーセン卜が参照塩基配列の全長にわたって計算され、 そして参照配列におけるヌクレオチド数全体の 5%までの相同性におけるギ ヤップが許容されるように、 パラメーターが設定される。 [0075] Any specific nucleic acid molecule is, for example, at least 50%, 51%, 52%, 53%, 54%, 55% of the nucleotide sequence of the polynucleotide encoding the polypeptide of the present invention. %, 56%, 57%, 58%, 59%, 60%, 65%, 70%, 72%, 75%, 80%, 82%, 85%, 90%, 92%, 95%, 96%, Whether 97%, 98% or 99% are identical is determined by a known computer program (for example, Bestfitprogr am (WI sconsinsequence Analysis package, Version 8 for Unix), G enetics and om puter G roup, U niversity R esearch Park, 5/5 Science Drive, Madison, WI 537 1 1) B estfit is the locality of Sm ith and Wa terman Using homology algorithm (TF Smith and MS Watterman (1 98 1) A d v. A pp Mat h. 2, 482 (incorporated herein by reference)) Find the best homologous segment between two sequences Highest homology (B es tfit) or any other sequence alignment program, to determine whether a particular sequence is, for example, 95% identical to a reference sequence according to the present invention, the percent identity Is calculated over the entire length of the reference sequence, and the parameters are set to allow a gap in homology of up to 5% of the total number of nucleotides in the reference sequence.
特定の実施形態では、 参照 (QU ERY) 配列 (本発明に係る配列) と対 象配列との間の同一性 (全体的な配列整列ともいわれる) は、 D. L. B r u t I a gら (1 990) のァゾレゴリズム (Comp. A p p に B i o s c i . 6, 237 (本明細書中に参考として援用される) ) に基づく FAS T D Bコンピュータ一プログラムを使用して決定される。 %同一性を計算す るために、 D N A配列の F A S T D B整列において使用される好ましいパラ メータ一は: Ma t r i x = U n i t a r y , k— t u p I e = 4、 M i s ma t c h P e n a l t y = 1 , J o i n i n g, P e n a l t y = 3 0、 Ra n d om i z a t i o n G r o u p L e n g t h = 0, C u t o f f S c o r e = 1 , G a p P e n a l t y = 5, G a p S i z e P e n a I t y = 0. 05, W i n d ow S i z e = 500または対象 塩基配列の長さ (どちらかより短い方) である。 この実施形態に従って、 対 象配列が、 5' または 3' 欠失に起因して (内部の欠失が理由ではなく) Q U E R Y配列よりも短い場合、 F AS T D Bプログラムが、 同一性パ一セン トを算定する場合に、 対象配列の 5' 短縮化および 3' 短縮化を考慮しない という事実を考慮して、 手動の補正が結果に対してなされる。 QU ERY配 列と比較して 5' 末端または 3' 末端が短縮化された対象配列については、 同一性パーセントは、 一致/整列していない、 対象配列の 5' および 3' で ある QU ERY配列の塩基数を、 QU ERY配列の総塩基のパーセントとし て計算することにより補正される。 ヌクレオチドが一致/整列しているか否 かの決定は、 F AS T D B配列整列の結果によって決定される。 次いで、 こ のパ一セン卜が、 指定されたパラメータ一を使用する上記の FAS T D Bプ ログラムによって計算された同一性パ一セン卜から差し引かれ、 最終的な同 —性パーセントスコアに到達する。 この補正されたスコアが、 本実施形態の 目的で使用されるものである。 QU ERY配列と一致/整列していない対象 配列の 5 ' 塩基および 3 ' 塩基の外側の塩基のみが、 F A S T D B整列に示 されるように、 同一性パ一セントスコアを手動で調整する目的で計算される 。 例えば、 90塩基の対象配列が、 同一性パーセントを決定するために 1 0 0塩基の QU ERY配列と整列される。 その欠失は、 対象配列の 5' 末端で 生じ、 従って FAS T D B整列は、 5' 末端の最初の 1 0塩基の一致/整列 を示さない。 1 0個の不対合塩基は、 配列の 1 0% (整合していない 5' 末 端および 3' 末端での塩基の数/ QU ERY配列中の塩基の総数) を表し、 そのため 1 0%が、 F AS T D Bプログラムによって計算される同一性パ一 セン卜のスコアから差し引かれる。 残りの 90残基が完全に整合する場合、 最終的な同一性パーセントは 90%である。 別の例において、 90残基の対 象配列が、 1 00塩基の QU ERY配列と比較される。 この場合、 その欠失 は内部欠失であり、 そのため Q U E R Y配列と整合/整列しない対象配列の 5' 末端または 3' 末端の塩基は存在しない。 この場合、 FAS TDBによ つて算定される同一性パーセントは、 手動で補正されない。 再度、 QU ER Y配列と整合/整列しない対象配列の 5' 末端および 3' 末端の塩基のみが 手動で補正される。 他の手動の補正は、 本実施形態の目的のためにはなされ ない。 In a specific embodiment, the identity (also referred to as global sequence alignment) between a reference (QU ERY) sequence (sequence according to the invention) and a target sequence is DL B rut I ag et al. (1 990) Is determined using the FAS TDB computer program based on the azorego rhythm (Comp. A pp Biosci. 6, 237 (incorporated herein by reference)). To calculate% identity, the preferred parameters used in FASTDB alignment of DNA sequences are: Matrix = Unit, k—tup I e = 4, M is ma tch Penalty = 1, Joining , P enalty = 30, Randomization G roup L ength = 0, Cutoff S core = 1, G ap P enalty = 5, G ap S ize P ena I ty = 0. 05, W ind ow S ize = 500 or the length of the target nucleotide sequence (whichever is shorter). According to this embodiment, if the target sequence is shorter than the QUERY sequence (due to an internal deletion) due to a 5 'or 3' deletion, the F AS TDB program When calculating, manual corrections are made to the results, taking into account the fact that 5 'and 3' shortenings of the target sequence are not taken into account. For subject sequences that are truncated at the 5 'or 3' end compared to the QU ERY sequence, the percent identity is 5 'and 3' of the subject sequence that are not matched / aligned QU ERY sequences Is corrected by calculating the number of bases as a percentage of the total bases in the QU ERY sequence. The determination of whether a nucleotide is matched / aligned is determined by the results of the FAS TDB sequence alignment. This percentage is then subtracted from the identity percentage calculated by the above FAS TDB program using the specified parameter, resulting in a final identity. —Reach gender percent score. This corrected score is used for the purpose of this embodiment. Only the 5 'and 3' bases outside the target sequence that do not match / align with the QU ERY sequence are calculated to manually adjust the percent identity score, as shown in the FASTDB alignment. Is done. For example, a 90 base subject sequence is aligned with a 100 base QU ERY sequence to determine percent identity. The deletion occurs at the 5 ′ end of the subject sequence, so the FAS TDB alignment does not show a match / alignment of the first 10 bases at the 5 ′ end. 10 unpaired bases represent 10% of the sequence (number of unmatched bases at 5 'and 3' ends / total number of bases in QU ERY sequence), so 10% Is subtracted from the identity percent score calculated by the F AS TDB program. If the remaining 90 residues are perfectly matched, the final percent identity is 90%. In another example, a 90 residue subject sequence is compared to a 100 base QU ERY sequence. In this case, the deletion is an internal deletion, so there is no base at the 5 'end or 3' end of the subject sequence that is not aligned / aligned with the QUERY sequence. In this case, the percent identity calculated by FAS TDB is not manually corrected. Again, only the 5 'and 3' end bases of the target sequence that do not match / align with the QU ER Y sequence are manually corrected. No other manual correction is made for the purposes of this embodiment.
[0077] 以上のように、 本発明は、 ; S_ 1 , 4結合を有するオリゴ糖に対する 2_ ェピメラーゼ活性を有するポリべプチドを提供する。 本発明に係るポリぺプ チドは、 セロビオースに対する 2—ェピメラーゼ活性を有するが、 ラク トー スまたはセ口ビオース以外のセロオリゴ糖に対する 2 _ェピメラーゼ活性を も有する。 このような性質を併せ持つ本発明に係るポリペプチドは、 新規ォ リゴ糖の合成に非常に有用である。  [0077] As described above, the present invention provides a polypeptide having 2_ epimerase activity for oligosaccharides having S_1, 4 bonds. The polypeptide according to the present invention has 2-epimerase activity for cellobiose, but also has 2-epimerase activity for cellooligosaccharides other than lactose or cholebiose. The polypeptide according to the present invention having such properties is very useful for the synthesis of a novel oligosaccharide.
[0078] なお、 本発明に係るポリべプチドを用いてヘテロオリゴ糖を合成する方法 は、 特許文献 4に記載されるような合成法と比較して、 以下のような利点を 有する : (1 ) 1基質— 1酵素の反応であるので、 反応系が簡便かつ安価で ある ; (2 ) 反応副生物が無いため目的の生成物の精製が容易であり、 大量 生産に好適である ; (3 ) 非還元末端糖についての基質特異性が厳密ではな いので、 上述した合成法では合成し得ないヘテロオリゴ糖を合成することが できる。 [0078] The method of synthesizing a hetero-oligosaccharide using the polypeptide according to the present invention has the following advantages compared with the synthesis method described in Patent Document 4: (1) Because it is a reaction of 1 substrate-1 enzyme, the reaction system is simple and inexpensive. Yes; (2) Since there is no reaction by-product, purification of the target product is easy and suitable for mass production; (3) Since the substrate specificity for non-reducing end sugars is not strict, Hetero-oligosaccharides that cannot be synthesized by the synthesis method can be synthesized.
[0079] 〔1—2〕 ポリヌクレオチド  [0079] [1-2] Polynucleotide
上述したように、 本発明はまた、 β— , 4結合を有するオリゴ糖に対す る 2 _ェピメラーゼ活性を有するポリべプチドをコ一ドするポリヌクレオチ ドを提供する。  As described above, the present invention also provides a polynucleotide that codes for a polypeptide having 2_epimemerase activity to an oligosaccharide having a β-, 4 bond.
[0080] 本明細書中で使用される場合、 用語 「ポリヌクレオチド」 は、 「遺伝子」 、 「核酸」 または 「核酸分子」 と交換可能に使用され、 ヌクレオチドの重合 体が意図される。 本明細書中で使用される場合、 用語 「塩基配列」 は、 「核 酸配列」 または 「ヌクレオチド配列」 と交換可能に使用され、 デォキシリポ ヌクレオチド (A、 G、 Cおよび Tと省略される) の配列として示される。 また、 「配列番号 2に示される塩基配列を含むポリヌクレオチドまたはその フラグメント」 とは、 配列番号 2の各デォキシヌクレオチド A、 G、 Cおよ び/または Tによって示される配列を含むポリヌクレオチドまたはその断片 部分が意図される。  [0080] As used herein, the term "polynucleotide" is used interchangeably with "gene", "nucleic acid" or "nucleic acid molecule" and is intended to be a polymer of nucleotides. As used herein, the term “base sequence” is used interchangeably with “nucleic acid sequence” or “nucleotide sequence” and refers to deoxyribonucleotides (abbreviated as A, G, C, and T). Shown as an array. In addition, “a polynucleotide containing the base sequence shown in SEQ ID NO: 2 or a fragment thereof” is a polynucleotide containing a sequence shown by each of the deoxynucleotides A, G, C and / or T of SEQ ID NO: 2. Or a fragment of it is intended.
[0081 ] 本発明に係るポリヌクレオチドは、 R N A (例えば m R N A ) の形態、 ま たは D N Aの形態 (例えば、 c D N Aまたはゲノム D N A ) で存在し得る。 D N Aは、 二本鎖または一本鎖であり得る。 一本鎖 D N Aまたは R N Aは、 コード鎖 (センス鎖としても知られる) であり得るか、 または、 非コード鎖 (アンチセンス鎖としても知られる) であり得る。  [0081] The polynucleotide according to the present invention may exist in the form of R N A (eg, m R N A) or D N A (eg, c D N A or genomic D N A). DNA may be double stranded or single stranded. Single stranded DNA or RNA can be the coding strand (also known as the sense strand) or can be the non-coding strand (also known as the antisense strand).
[0082] 本明細書中で使用される場合、 用語 「オリゴヌクレオチド」 は、 ヌクレオ チドが数個ないし数十個結合したものが意図され、 「ポリヌクレオチド」 と 交換可能に使用される。 オリゴヌクレオチドは、 短いものはジヌクレオチド 、 トリヌクレオチドといわれ、 長いものは 3 0マ一または 1 0 0マ一という ように重合しているヌクレオチドの数で表される。 オリゴヌクレオチドはよ り長いポリヌクレオチドのフラグメントとして生成されても、 化学合成され てもよい。 [0082] As used herein, the term "oligonucleotide" is intended to be a combination of several to several tens of nucleotides, and is used interchangeably with "polynucleotide". Oligonucleotides are represented by the number of nucleotides polymerized, such as dinucleotides and trinucleotides for short ones and 30 or 10 for long ones. Oligonucleotides are chemically synthesized, even if they are produced as longer polynucleotide fragments. May be.
[0083] 本発明に係るポリヌクレオチドはまた、 その 5 ' 側または 3 ' 側で上述の タグ標識 (タグ配列またはマーカ一配列) をコードするポリヌクレオチドに 融合され得る。  [0083] The polynucleotide according to the present invention can also be fused to the polynucleotide encoding the tag tag (tag sequence or marker sequence) described above on its 5 'side or 3' side.
[0084] 本発明に係るポリヌクレオチドは、 非翻訳領域の配列またはべクタ一配列  [0084] The polynucleotide according to the present invention comprises an untranslated region sequence or a vector sequence.
(発現べクタ一配列を含む) などの配列を含むものであってもよい。  It may contain a sequence such as (including an expression vector sequence).
[0085] なお、 本発明の C Eの全塩基配列 (配列番号 2 ) およびアミノ酸配列 (配 列番号 1 ) にはそれぞれシグナル配列およびシグナルべプチドは存在しない ので、 C Eが菌体内酵素であることは明白である。 但し、 このことは、 未だ 未発見の分泌機構が C Eに存在することを完全に否定するものではないこと を付記しておく。  [0085] It should be noted that since the signal sequence and signal peptide do not exist in the entire base sequence (SEQ ID NO: 2) and amino acid sequence (SEQ ID NO: 1) of CE of the present invention, CE is an intracellular enzyme. It is obvious. However, it should be noted that this does not completely deny that an undiscovered secretory mechanism exists in CE.
[0086] 本発明の目的は、 ; S _ 1 , 4結合を有するオリゴ糖に対する 2 _ェピメラ ーゼ活性を有するポリペプチド、 および; S— 1 , 4結合を有するオリゴ糖に 対する 2 _ェピメラーゼ活性を有するポリべプチドをコ一ドするポリヌクレ ォチドを提供することにあるのであって、 本明細書中に具体的に記載したポ リベプチド作製方法およびポリヌクレオチド作製方法等に存するのではない 。 従って、 上記各方法以外によって取得される; S _ 1 , 4結合を有するオリ ゴ糖に対する 2 _ェピメラーゼ活性を有するポリべプチド、 および; S - 1 , 4結合を有するォリゴ糖に対する 2—ェピメラーゼ活性を有するポリベプチ ドをコ一ドするポリヌクレオチドもまた本発明の技術的範囲に属することに 留意すべきである。  [0086] The object of the present invention is to: a polypeptide having 2_epimerase activity for oligosaccharides having S_1,4 bonds; and 2_epimerase activity for oligosaccharides having S-1,4 bonds The present invention is to provide a polynucleotide that encodes a polypeptide having a nucleotide, and does not exist in a method for preparing a polypeptide, a method for preparing a polynucleotide, or the like specifically described in the present specification. Therefore, obtained by a method other than the above methods; a polypeptide having 2_epimerase activity for oligosaccharides having S_l, 4 bonds; and 2-epimerase activity for oligosaccharides having S_l, 4 bonds; It should be noted that a polynucleotide encoding a polypeptide having a phenotype also belongs to the technical scope of the present invention.
[0087] 〔2〕 抗体 [0087] [2] Antibody
上述したように、 本発明はまた、 β— , 4結合を有するオリゴ糖に対す る 2 _ェピメラーゼ活性を有するポリべプチドと特異的に結合する抗体を提 供する。 本明細書中で使用される場合、 用語 「抗体」 は、 免疫グロブリン ( As described above, the present invention also provides an antibody that specifically binds to a polypeptide having 2_epimerase activity against an oligosaccharide having a β-, 4 bond. As used herein, the term “antibody” refers to an immunoglobulin (
I g A、 I g D、 I g E、 I g G、 I g Mおよびこれらの F a bフラグメン ト、 F ( a b ' ) 2フラグメント、 F cフラグメント) を意味し、 例としては 、 ポリクローナル抗体、 モノクローナル抗体、 単鎖抗体、 抗イディォタイプ 抗体およびヒト化抗体が挙げられるが、 これらに限定されない。 IgA, IgD, IgE, IgG, IgM and their Fab fragments, F (ab ') 2 fragment, Fc fragment), for example, polyclonal antibodies, Monoclonal antibody, single chain antibody, anti-idiotype Examples include but are not limited to antibodies and humanized antibodies.
[0088] ペプチド抗体は、 当該分野に周知の方法によって作製される。 例えば、 M . C h owら、 (1 985) P r o c. N a t l . A c a d. S c に U S A 82, 91 0、 および F. J . B i t t l eら、 (1 985) J . G e n. V i r o に 66, 2347 (これらはいずれも本明細書中に参考 として援用される) を参照のこと。 一般には、 動物は遊離ペプチドで免疫化 され得る ; し力、し、 抗ペプチド抗体力価はペプチドを高分子キャリア (例え ば、 キーホールリンぺッ卜へモシァニンまたは破傷風トキソィ ド) にカップ リングすることにより追加免疫され得る。 例えば、 システィンを含有するべ プチドは、 m—マレイミ ドベンゾィル一N—ヒドロキシスクシンイミ ドエス テルのようなリンカ一を使用してキャリアにカップリングされ、 一方、 他の ペプチドは、 グルタルアルデヒドのようなより一般的な連結剤を使用してキ ャリアにカップリングされ得る。 ゥサギ、 ラット、 およびマウスのような動 物は、 遊離またはキャリア—カップリングペプチドのいずれかで、 例えば、 約 1 00 gのぺプチドまたはキャリアタンパク質および F r e u n dのァ ジュバントを含むェマルジヨンの腹腔内および/または皮内注射により免疫 化される。 いくつかの追加免疫注射が、 例えば、 固体表面に吸着された遊離 ペプチドを使用して E L I S Aアツセィにより検出され得る有用な力価の抗 ペプチド抗体を提供するために、 例えば、 約 2週間の間隔で必要とされ得る 。 免疫化動物からの血清における抗ペプチド抗体の力価は、 抗ペプチド抗体 の選択により、 例えば、 当該分野で周知の方法による固体支持体上のぺプチ ドへの吸着および選択された抗体の溶出により増加され得る。  [0088] Peptide antibodies are produced by methods well known in the art. For example, M. Chow et al., (1985) Proc. Natl. A cad. Sc, USA 82, 910, and F. J. Bittle et al., (1985) J. Ge. n. See V iro 66, 2347, both of which are incorporated herein by reference. In general, animals can be immunized with free peptide; however, anti-peptide antibody titers couple the peptide to a macromolecular carrier (eg, mosianin or tetanus toxoid to keyhole limpet). Can be boosted. For example, peptides containing cysteine are coupled to a carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester, while other peptides such as glutaraldehyde. More common linking agents can be used to couple to the carrier. Animals such as rabbits, rats, and mice are either free or carrier-coupled peptides, such as intraperitoneal and intraperitoneal in emeraldions containing about 100 g of peptide or carrier protein and Freund's adjuvant. Immunized by intradermal injection. In order to provide useful titers of anti-peptide antibodies that can be detected by ELISA assay using, for example, free peptides adsorbed on a solid surface, for example, at intervals of about 2 weeks Can be needed. The titer of anti-peptide antibodies in serum from immunized animals can be determined by selection of anti-peptide antibodies, e.g., adsorption to peptides on solid supports and elution of selected antibodies by methods well known in the art. Can be increased.
[0089] 本明細書中で使用される場合、 本発明に係る 「抗体」 は、 本発明に係るポ リベプチドと特異的に結合し得る完全な抗体分子および抗体フラグメント ( 例えば、 「 3 13ぉょび「 ( a b' ) 2フラグメント) を含むことを意味する。 F a bおよび F (a b' ) 2フラグメントは完全な抗体の F c部分を欠いてお り、 循環によってさらに迅速に除去され、 そして完全な抗体の非特異的組織 結合をほとんど有し得ない (R. L. Wa h I ら、 (1 983) J . N u c に M e d. 24, 3 1 6 (本明細書中に参考として援用される) ) 。 従 つて、 これらのフラグメントが好ましい。 [0089] As used herein, an "antibody" according to the present invention refers to a complete antibody molecule and an antibody fragment (eg, "313") that can specifically bind to a polypeptide according to the present invention. And “(ab ′) 2 fragments”. F ab and F (ab ′) 2 fragments lack the Fc portion of the complete antibody and are removed more rapidly by circulation and Rarely have non-specific tissue binding of antibodies (RL Wa h I et al., (1 983) J. Nu c to Me d. 24, 3 1 6 (incorporated herein by reference)). Therefore, these fragments are preferred.
[0090] さらに、 本発明に係るポリべプチドのぺプチド抗原と結合し得るさらなる 抗体が、 抗イディォタイプ抗体の使用を通じて二工程手順で産生され得る。 このような方法は、 抗体それ自体が抗原であるという事実を使用し、 従って 、 二次抗体に結合する抗体を得ることが可能である。 この方法に従って、 本 発明に係るポリペプチドと特異的に結合する抗体は、 動物 (好ましくは、 マ ウス) を免疫するために使用される。 次いで、 このような動物の脾細胞はハ イブリ ドーマ細胞を産生するために使用され、 そしてハイプリ ドーマ細胞は 、 本発明に係るポリべプチドと特異的に結合する抗体に結合する能力が本発 明に係るポリぺプチド抗原によってブロックされ得る抗体を産生するクロー ンを同定するためにスクリーニングされる。 このような抗体は、 本発明に係 るポリぺプチドと特異的に結合する抗体に対する抗イディォタイプ抗体を含 み、 そしてさらなる本発明に係るポリべプチドと特異的に結合する抗体の形 成を誘導するために動物を免疫するために使用され得る。  [0090] Furthermore, additional antibodies that can bind to the peptide antigens of the polypeptides of the invention can be produced in a two-step procedure through the use of anti-idiotype antibodies. Such a method uses the fact that the antibody itself is an antigen, and thus it is possible to obtain an antibody that binds to a secondary antibody. According to this method, an antibody that specifically binds to a polypeptide according to the present invention is used to immunize an animal (preferably a mouse). The splenocytes of such animals are then used to produce hybridoma cells, and the hybridoma cells have the ability to bind to antibodies that specifically bind to the polypeptides of the invention. Screened to identify clones that produce antibodies that can be blocked by the polypeptide antigen. Such an antibody includes an anti-idiotype antibody against an antibody that specifically binds to the polypeptide of the present invention, and induces the formation of an antibody that specifically binds to the polypeptide of the present invention. Can be used to immunize animals to
[0091] F a bおよび F (a b' ) 2ならびに本発明に係る抗体の他のフラグメント は、 本明細書中で開示される方法に従って使用され得ることが、 明らかであ る。 このようなフラグメントは、 代表的には、 パパイン (F a bフラグメン トを生じる) またはペプシン (F (a b' ) 2フラグメントを生じる) のよう な酵素を使用するタンパク質分解による切断によって産生される。 あるいは 、 本発明に係るポリべプチド結合フラグメントは、 組換え D N A技術の適用 または合成化学によって産生され得る。 [0091] It is clear that F ab and F (ab ′) 2 and other fragments of the antibodies according to the invention can be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage using enzymes such as papain (resulting in Fab fragments) or pepsin (resulting in F (ab ') 2 fragments). Alternatively, the polypeptide binding fragments according to the invention can be produced by the application of recombinant DNA technology or by synthetic chemistry.
[0092] 本発明に係る抗体は、 キメラモノクローナル抗体であり得る。 このような 抗体は、 上記のモノクローナル抗体を生成するハイプリ ドーマ細胞由来の遺 伝構築物を用いて生成され得る。 キメラ抗体を生成するための方法は、 当該 分野で公知である。 既報については、 S. L. Mo r r i s o n, ( 1 98 5) S c i e n c e, 229, 1 202 ; V. T. O i ら、 (1 986) B i o T e c h n i q u e s 4, 2 1 4 ; S. C a b i I l yおよび H . L. H e y n e k e r、 米国特許第 4, 8 1 6, 567号; M. T a n i g u c h i および M. K u r o s a w a、 E P 1 7 1 496 ; S. L. M o r r i s o nおよび L. H e r z e n b e r g、 E P 1 73494 ; M . S. N e u b e r g e rおよび T. H. R a b b i t t s、 WO 860 1 533 ; R. R. R o b i n s o nおよび A. Y. L i u、 WO 870 267 1 ; G. L. B o u l i a n n eら、 (1 984) N a t u r e, 3 1 2, 643 ; M. S. N e u b e r g e rら、 (1 985) N a t u r e, 3 1 4, 268 (これらはいずれも本明細書中に参考として援用される ) を参照のこと。 [0092] The antibody according to the present invention may be a chimeric monoclonal antibody. Such antibodies can be generated using genetic constructs derived from hybridoma cells that produce the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. For previous reports, see SL Morrison, (1 98 5) Science, 229, 1202; VT O i et al., (1 986) B io T echniques 4, 2 1 4; S. C abi I ly and H L. Heyneker, US Pat. No. 4, 8 1 6,567; M. T aniguchi and M. Kurosawa, EP 1 7 1 496; SL Morrison and L. Herzenberg, EP 1 73494; M. S N euberger and TH Rabbitts, WO 860 1 533; RR R obinson and AY Liu, WO 870 267 1; GL Boulianne et al., (1 984) Nature, 3 1 2, 643; MS N euberger et al., ( 1 985) Nature, 3 1 4, 268, both of which are incorporated herein by reference.
[0093] このように、 本発明に係る抗体は、 少なくとも、 本発明に係るポリべプチ ドを認識する抗体フラグメント (例えば、 「 3 13ぉょび「 (a b ' ) 2フラグ メント) を備えていればよいといえる。 すなわち、 本発明に係るポリべプチ ドを認識する抗体フラグメントと、 異なる抗体分子の F cフラグメントとか らなる免疫グロブリンも本発明に含まれることに留意すべきである。 [0093] Thus, antibodies of the present invention, at least, have a Poribe petit de antibodies that recognize fragments of the present invention (e.g., "3 13 Oyobi" (ab ') 2 fragment) That is, it should be noted that an immunoglobulin comprising an antibody fragment that recognizes the polypeptide of the present invention and an Fc fragment of a different antibody molecule is also included in the present invention.
[0094] このように、 本発明に係る抗体を用いれば、 本発明に係るポリペプチドで ある; S _ 1 , 4結合を有するオリゴ糖に対する 2 _ェピメラーゼ活性を有す るポリべプチドを容易に取得し得、 ァフィ二ティークロマトグラフィ一等と 組み合わせることにより、 本発明に係るポリベプチドを生産することができ る。 すなわち、 本発明は、 上記抗体を用いるポリペプチドの生産方法、 上記 抗体を備えているポリべプチド生産用キットもまた提供し、 ポリべプチドの 生産方法およびポリべプチド生産用キッ卜の具体的な態様を、 本明細書を読 んだ当業者は容易に理解する。  [0094] Thus, when the antibody according to the present invention is used, it is a polypeptide according to the present invention; a polypeptide having 2-epimerase activity with respect to an oligosaccharide having S_1,4 bonds can be easily obtained. The polypeptide according to the present invention can be produced by combining with affinity chromatography and the like. That is, the present invention also provides a method for producing a polypeptide using the antibody, a kit for producing a polypeptide comprising the antibody, and a method for producing the polypeptide and a specific kit for producing the polypeptide. Those skilled in the art who have read this specification will readily understand these embodiments.
[0095] 〔3〕 ベクター  [0095] [3] Vector
本発明は、 β _ 4結合を有するオリゴ糖に対する 2 _ェピメラーゼ活 性を有するポリべプチドを生成するために使用されるベクターを提供する。 本発明に係るベクタ一は、 インビトロ翻訳に用いるベクタ一であっても組換 え発現に用いるベクタ一であってもよい。  The present invention provides a vector that is used to produce a polypeptide having 2_epimerase activity for oligosaccharides having β_4 linkages. The vector according to the present invention may be a vector used for in vitro translation or a vector used for recombinant expression.
[0096] 本発明に係るベクターは、 上述した本発明に係るポリヌクレオチドを含む ものであれば、 特に限定されない。 例えば、 β— , 4結合を有するオリゴ 糖に対する 2 _ェピメラーゼ活性を有するポリベプチドをコ一ドするポリヌ クレオチドの c D Ν Αが挿入された組換え発現ベクターなどが挙げられる。 組換え発現べクタ一の作製方法としては、 プラスミ ド、 ファージ、 またはコ スミ ドなどを用いる方法が挙げられるが特に限定されない。 [0096] The vector according to the present invention includes the above-described polynucleotide according to the present invention. If it is a thing, it will not specifically limit. For example, a recombinant expression vector into which a polynucleotide c D Ν coding for a polypeptide having 2_epimelase activity for an oligosaccharide having a β-, 4 bond is inserted. Examples of the method for producing the recombinant expression vector include, but are not limited to, a method using plasmid, phage, or cosmid.
[0097] ベクターの具体的な種類は特に限定されず、 宿主細胞中で発現可能なべク ターが適宜選択され得る。 すなわち、 宿主細胞の種類に応じて、 確実に本発 明に係るポリヌクレオチドを発現させるために適宜プロモーター配列を選択 し、 これと本発明に係るポリヌクレオチドを各種プラスミ ド等に組み込んだ ベクタ一を発現べクタ一として用いればよい。 また、 発現べクタ一による宿 主の形質転換もまた、 慣用的な手法に従つて行うことができる。  [0097] The specific type of vector is not particularly limited, and a vector that can be expressed in a host cell can be appropriately selected. That is, according to the type of host cell, a promoter sequence is appropriately selected in order to reliably express the polynucleotide according to the present invention, and a vector in which this and the polynucleotide according to the present invention are incorporated into various plasmids, etc. What is necessary is just to use as an expression vector. In addition, transformation of the host with the expression vector can also be performed according to conventional methods.
[0098] 上記発現ベクターを用いて形質転換された宿主を、 培養、 栽培または飼育 した後、 培養物等から慣用的な手法 (例えば、 濾過、 遠心分離、 細胞の破砕 、 ゲル濾過クロマトグラフィー、 イオン交換クロマトグラフィー等) に従つ て、 目的タンパク質を回収、 精製することができる。  [0098] After culturing, cultivating or raising a host transformed with the above expression vector, conventional methods (for example, filtration, centrifugation, cell disruption, gel filtration chromatography, ion The target protein can be recovered and purified according to exchange chromatography.
[0099] 発現べクタ一は、 少なくとも 1つの選択マーカ一を含むことが好ましい。  [0099] The expression vector preferably includes at least one selection marker.
このようなマ一力一としては、 大腸菌 (E s c h e r i c h i a c o l i ) 、 枯草菌 (B a c i l l u s s u b t i l i s) 、 および他の細菌にお ける培養についてはテトラサイクリン耐性遺伝子またはアンピシリン耐性遺 伝子などが挙げられる。  Such best practices include tetracycline resistance genes or ampicillin resistance genes for culturing in E. coli (E s c h e r i c h i a c o l i), Bacillus subtilis (B a c i l l u s su b t i i i s), and other bacteria.
[0100] 上記発現ベクターを宿主細胞に導入する方法、 すなわち形質転換法も特に 限定されるものではなく、 電気穿孔法、 リン酸カルシウム法、 リボソーム法 、 D EA Eデキストラン法等の従来公知の方法を好適に用いることができる  [0100] The method of introducing the expression vector into a host cell, that is, the transformation method is not particularly limited, and a conventionally known method such as an electroporation method, a calcium phosphate method, a ribosome method, or a DEA E dextran method is preferable. Can be used for
[0101] 本発明に係るベクターを使用すれば、 上記ポリヌクレオチドを生物または 細胞に導入すれば、 当該生物または細胞中に; S _ 1 , 4結合を有するオリゴ 糖に対する 2 _ェピメラーゼ活性を有するポリベプチドを発現させることが できる。 さらに、 本発明に係るベクターを無細胞タンパク質合成系に用いれ ば、 4結合を有するオリゴ糖に対する 2 _ェピメラーゼ活性を有す るポリぺプチドを合成することができる。 [0101] When the vector according to the present invention is used, if the polynucleotide is introduced into an organism or a cell, the polypeptide having 2_epepimerase activity for an oligosaccharide having an S_1,4 bond is introduced into the organism or cell. Can be expressed. Furthermore, the vector according to the present invention can be used in a cell-free protein synthesis system. For example, it is possible to synthesize a polypeptide having 2-epimerase activity for oligosaccharide having 4 bonds.
[0102] このように、 本発明に係るベクターは、 少なくとも、 本発明に係るポリべ プチドをコードするポリヌクレオチドを含めばよいといえる。 すなわち、 発 現ベクター以外のベクターも、 本発明の技術的範囲に含まれる点に留意すベ きである。 [0102] Thus, it can be said that the vector according to the present invention should include at least a polynucleotide encoding the polypeptide according to the present invention. That is, it should be noted that vectors other than the expression vector are also included in the technical scope of the present invention.
[0103] このように、 本発明に係るベクターを用いれば、 本発明に係るポリべプチ ドを容易に生産することができる。 すなわち、 本発明は、 上記ベクターを用 いるポリべプチドの生産方法、 上記ベクターを備えているポリべプチド生産 用キットもまた提供し、 ポリぺプチドの生産方法およびポリぺプチド生産用 キッ卜の具体的な態様を、 本明細書を読んだ当業者は容易に理解する。  [0103] As described above, when the vector according to the present invention is used, the polypeptide according to the present invention can be easily produced. That is, the present invention also provides a method for producing a polypeptide using the vector, a kit for producing a polypeptide comprising the vector, and a method for producing a polypeptide and a kit for producing a polypeptide. Specific embodiments are readily understood by those of ordinary skill in the art who have read this specification.
[0104] 〔4〕 形質転換体  [4] Transformant
本発明は、 β _ 4結合を有するオリゴ糖に対する 2 _ェピメラーゼ活 性を有するポリべプチドをコ一ドするポリヌクレオチドが導入された形質転 換体を提供する。 本発明に係る形質転換体を用いれば、 本発明に係るポリべ プチドを容易にかつ大量に生成することができる。 本明細書中で使用される 場合、 用語 「形質転換体」 は、 細胞、 組織または器官だけでなく、 生物個体 をも含むことが意図されるが、 細胞 (特に、 原核生物細胞、 菌類 (例えば、 糸状菌など) であることが好ましい。  The present invention provides a transformant in which a polynucleotide that codes for a polypeptide having 2_epimerase activity for an oligosaccharide having a β_4 bond is introduced. If the transformant according to the present invention is used, the polypeptide according to the present invention can be produced easily and in large quantities. As used herein, the term “transformant” is intended to include not only cells, tissues or organs, but also living organisms, but cells (especially prokaryotic cells, fungi (eg, And filamentous fungi).
[0105] 本発明に係る形質転換体は、 β _ 4結合を有するオリゴ糖に対する 2 —ェピメラーゼ活性を有するポリベプチドが発現されていることを特徴とす る。 本発明に係る形質転換体は、 β— , 4結合を有するオリゴ糖に対する 2 _ェピメラーゼ活性を有するポリベプチドが安定的に発現することが好ま しいが、 一過性に発現していてもよい。  [0105] The transformant according to the present invention is characterized in that a polypeptide having a 2-epimerase activity for an oligosaccharide having a β_4 bond is expressed. In the transformant according to the present invention, it is preferable that a polypeptide having 2-epimerase activity with respect to an oligosaccharide having β-, 4 bonds is stably expressed, but it may be expressed transiently.
[0106] 一実施形態において、 本発明に係る形質転換体は、 Π 4結合を有す るォリゴ糖に対する 2 _ェピメラーゼ活性を有するポリべプチドをコ一ドす るポリヌクレオチドを含む組換えベクターを、 β— , 4結合を有するオリ ゴ糖に対する 2 _ェピメラーゼ活性を有するポリべプチドが発現され得るよ うに生物中に導入することによって取得される。 [0106] In one embodiment, the transformant according to the present invention comprises a recombinant vector comprising a polynucleotide that codes for a polypeptide having 2_epimerase activity for oligosaccharide having 4 linkages. Polypeptides with 2_epepimerase activity against oligosaccharides with β- and 4-bonds can be expressed. It is obtained by introducing it into living organisms.
[0107] このように、 本発明に係る形質転換体を用いれば、 本発明に係るポリぺプ チドを容易に生産することができる。 すなわち、 本発明は、 上記形質転換体 を用いるポリべプチドの生産方法、 上記形質転換体を備えているポリべプチ ド生産用キットもまた提供し、 ポリぺプチドの生産方法およびポリぺプチド 生産用キッ卜の具体的な態様を、 本明細書を読んだ当業者は容易に理解する  [0107] As described above, when the transformant according to the present invention is used, the polypeptide according to the present invention can be easily produced. That is, the present invention also provides a method for producing a polypeptide using the transformant, a kit for producing a polypeptide comprising the transformant, and a method for producing the polypeptide and polypeptide production. Those skilled in the art who have read this specification will readily understand the specific embodiment of the kit.
[0108] 〔5〕 ヘテロオリゴ糖を合成するためのキット、 試薬組成物および方法 本発明は、 ヘテロオリゴ糖を合成するためのキット、 試薬組成物および方 法を提供する。 本発明を用いれば、 G I c _ M a nを従来法よりもはるかに 簡便に合成することができるだけでなく、 新規ォリゴ糖を容易に取得するこ とができる。 [5] Kits, reagent compositions and methods for synthesizing hetero-oligosaccharides The present invention provides kits, reagent compositions and methods for synthesizing hetero-oligosaccharides. By using the present invention, it is possible not only to synthesize GIc_Man much much more easily than the conventional method, but also to easily obtain a new oligosaccharide.
[0109] 本発明に係るヘテロオリゴ糖を合成するためのキットは、 本発明に係るポ リペプチドを備えている。 本発明に係るキットは、 本発明に係るポリべプチ ド以外に、 該ポリペプチドの酵素反応を促進するための試薬、 または該酵素 反応を適切に行うための試薬を一緒に備えていてもよく、 これらの試薬は酵 素反応に応じて適宜選択され得る。 本発明に係るキットを適用する際に使用 される炭素源としては、 特に限定されないが、 セロオリゴ糖 (2糖、 3糖、 4糖、 5糖、 6糖など) およびラク ト一スが挙げられる。 これらの炭素源を 得るためのバルク資材としては、 セロオリゴ糖については、 セルロースを含 む未利用資源または低利用資源 (例えば、 パルプなど) が挙げられるがこれ らに限定されず、 β— , 4結合多糖を含むへミセルロースもまたバルク資 材として挙げられる。 また、 ラク ト一スについては、 バルク資材として、 ゥ シ、 ャギゃヒッジなどの生乳、 粉ミルク、 乳清 (ホエイ) 等が挙げられる。 これらのバルク資材は、 直接用いられても、 分解酵素 (例えば、 セルラーゼ およびキシラナーゼなど) を添加して予め分解させておいてもよい。  [0109] The kit for synthesizing the hetero-oligosaccharide according to the present invention comprises the polypeptide according to the present invention. In addition to the polypeptide according to the present invention, the kit according to the present invention may be provided with a reagent for promoting the enzymatic reaction of the polypeptide or a reagent for appropriately performing the enzymatic reaction. These reagents can be appropriately selected depending on the enzyme reaction. The carbon source used when applying the kit according to the present invention is not particularly limited, and examples thereof include cellooligosaccharides (disaccharide, trisaccharide, tetrasaccharide, pentasaccharide, hexasaccharide, etc.) and lactose. . Bulk materials for obtaining these carbon sources include, for cello-oligosaccharides, unused resources including cellulose or low-utilized resources (for example, pulp), but are not limited to these. Β-, 4 Hemicellulose containing conjugated polysaccharides can also be mentioned as a bulk material. For lactose, examples of bulk materials include raw milk such as sushi and goats, powdered milk, and whey. These bulk materials may be used directly or may be decomposed in advance by adding a degrading enzyme (for example, cellulase or xylanase).
[01 10] 本発明に係るヘテロオリゴ糖を合成するための試薬組成物は、 本発明に係 るポリペプチドを含む。 本発明に係る試薬組成物は、 本発明に係るポリぺプ チド以外に、 上述した該ポリペプチドの酵素反応を促進するための試薬、 ま たは該酵素反応を適切に行うための試薬を一緒に含んでもよい。 本発明に係 る試薬組成物を適用する際に使用される炭素源としては、 特に限定されない 力 セロオリゴ糖 (2糖、 3糖、 4糖、 5糖、 6糖など) およびラク ト一ス が挙げられる。 これらの炭素源を得るためのバルク資材としては、 上述した 通りである。 [0110] The reagent composition for synthesizing the hetero-oligosaccharide according to the present invention includes the polypeptide according to the present invention. The reagent composition according to the present invention comprises a polypeptide according to the present invention. In addition to tide, a reagent for promoting the enzymatic reaction of the polypeptide described above, or a reagent for appropriately performing the enzymatic reaction may be included together. The carbon source used when applying the reagent composition according to the present invention is not particularly limited. Power cellooligosaccharides (disaccharide, trisaccharide, tetrasaccharide, pentasaccharide, hexasaccharide, etc.) and lactose are included. Can be mentioned. Bulk materials for obtaining these carbon sources are as described above.
[0111] 本発明に係るヘテロオリゴ糖を合成するための方法は、 本発明に係るポリ ペプチドを用いる。 一実施形態において、 本発明に係る方法は、 本発明に係 るポリペプチドを、 β— , 4結合を有するオリゴ糖とともにインキュベ一 卜する工程を包含する。 上記オリゴ糖は、 ラク ト一スまたはセロオリゴ糖で あることが好ましい。 本発明に係る方法を適用する際に使用される炭素源と しては、 特に限定されないが、 セロオリゴ糖 (2糖、 3糖、 4糖、 5糖、 6 糖など) およびラク トースが挙げられる。 これらの炭素源を得るためのバル ク資材としては、 上述した通りである。 なお、 H P LC、 シリカゲル、 活性 炭カラムクロマトグラフィ一などを用いれば、 合成したヘテロオリゴ糖を大 量生産レベルで精製することができる。  [0111] The method of synthesizing the hetero-oligosaccharide according to the present invention uses the polypeptide according to the present invention. In one embodiment, the method according to the present invention includes a step of incubating the polypeptide according to the present invention together with an oligosaccharide having a β-, 4 bond. The oligosaccharide is preferably lactose or cellooligosaccharide. The carbon source used when applying the method according to the present invention is not particularly limited, and examples include cellooligosaccharides (disaccharides, trisaccharides, tetrasaccharides, pentasaccharides, hexasaccharides, etc.) and lactose. . Bulk materials for obtaining these carbon sources are as described above. If HPLC, silica gel, activated charcoal column chromatography, etc. are used, the synthesized hetero-oligosaccharide can be purified at a large production level.
[0112] 〔6〕 機能性食品  [0112] [6] Functional food
「プレバイオテイクス」 は、 G. R. G i b s o nと M. B. Ro b e r f r o i d ( 1 995) ( J . N u t r. 1 25, 1 401 ) による定義で は, 「腸内フローラ (消化管内に生息している微生物群 (主に嫌気性菌) ) のバランスを改善することによって宿主の健康に好影響を与える、 食品。 」 とされており、 本明細書中で使用される場合、 「動物 (ヒトを含む) の腸内 環境において有用な微生物 (例えば、 乳酸菌、 ビフィズス菌などのプロバイ ォテイクス) を増殖させて、 腸内環境の改善を促進する物質」 が意図され、 有用微生物増殖因子ともいう。 代表的なプレバイオテイクスとしては、 オリ ゴ糖などの難消化性物質、 プロピオン酸菌による乳清発酵物、 および食物繊 維などが挙げられ、 オリゴ糖は、 プロバイオテイクスのエサとなり、 食物繊 維は腸内細菌を貯留させてその増殖を補助する。 [01 13] プレバイオテイクスの効果としては、 ミネラル分吸収促進効果、 血中コレ ステロールや中性脂肪値の抑制、 動脈硬化の予防、 血糖値の抑制、 糖尿病の 改善、 肥満の改善、 腸の運動の活性化、 便秘の改善、 免疫能の活性化、 感染 症の予防、 癌の予防、 血中アンモニア値の抑制、 肝機能低下による肝性脳症 の改善、 腸内細菌によるビタミン類合成の促進、 各種ミネラルの吸収の促進 、 潰瘍性大腸炎の症状の改善などが挙げられるが、 これらに限定されない。 また、 プレバイオテイクスの摂取によってミネラル (例えば、 C a 2 +、 M g 2 +、 Z n 2 +、 F e 3 +など) の吸収が改善されることが、 最近の研究によって明 らかにされており、 特に C a 2 +の吸収促進効果が注目されている。 オリゴ糖 は、 ミネラル分吸収促進効果を有する場合がある。 この作用機序は、 オリゴ 糖が小腸または大腸の内面の細胞と細胞との間の細胞相互結合組織の隙間 ( いわゆる、 タイ トジャンクション (T J ) ) を広げることによって各種ミネ ラルの吸収が促進されるためであると考えられている。 “Prebiotics” is defined by GR Gibson and MB Roberfroid (1 995) (J. Nut r. 1 25, 1 401) as “intestinal flora (group of microorganisms inhabiting the digestive tract). (Mainly anaerobic bacteria)), which has a positive impact on the health of the host by improving the balance of the food. "As used herein," of animals (including humans) A substance that promotes improvement of the intestinal environment by growing microorganisms useful in the intestinal environment (for example, probiotics such as lactic acid bacteria and bifidobacteria) is also referred to as a useful microbial growth factor. Typical prebiotics include indigestible substances such as oligosaccharides, fermented whey products from propionic acid bacteria, and food fiber. Oligosaccharides serve as food for probiotics, The fiber stores enteric bacteria and assists in their growth. [01 13] The effects of prebiotics include absorption of minerals, blood cholesterol and neutral fat levels, prevention of arteriosclerosis, blood sugar levels, diabetes improvement, obesity, Activation of exercise, improvement of constipation, activation of immunity, prevention of infectious diseases, prevention of cancer, suppression of blood ammonia level, improvement of hepatic encephalopathy due to decreased liver function, promotion of vitamin synthesis by enteric bacteria Examples include, but are not limited to, promoting absorption of various minerals and improving symptoms of ulcerative colitis. In addition, recent research has shown that prebiotic intake improves the absorption of minerals (eg, C a 2 + , Mg 2 +, Z n 2 +, F e 3 +, etc.). It is, in particular attention is C a 2 + absorption promoting effect. Oligosaccharides may have a mineral absorption promoting effect. The mechanism of action is that oligosaccharides promote the absorption of various minerals by widening the intercellular tissue gap (so-called tit junction (TJ)) between cells inside the small or large intestine. It is thought to be because of this.
[01 14] 以下の実施例に示すように、 本発明に係るポリペプチドを用いて; S _ 1 , 4結合を有するラク トースから合成したヘテロオリゴ糖であるエピラク トー スを合成する方法を用いればプレバイオテイクスとしての機能性食品が提供 され得ることを、 本明細書を読んだ当業者は容易に理解する。  [0114] As shown in the following Examples, by using the polypeptide according to the present invention; a method of synthesizing epilactose, which is a hetero-oligosaccharide synthesized from lactose having an S_1,4 bond, Those of ordinary skill in the art who have read this specification will readily appreciate that functional foods as prebiotics can be provided.
[01 15] 例えば、 実施例 5に示されるように、 ビフィズス菌は、 エピラク ト一スを 資化することができる (表 6 ) 。 また、 実施例 9に示されるように、 エピラ ク ト一スはラットの盲腸内ビフィズス菌の増殖を促進させ、 p Hの低下 (表 9 ) と盲腸内の短鎖脂肪酸量と有機酸量を増加させることができるので (表 1 0 )、 腸内環境を改善することができ、 腸内環境改善用機能性食品として利用 することができる。  [0115] For example, as shown in Example 5, Bifidobacteria can assimilate epilactose (Table 6). In addition, as shown in Example 9, epilactose promotes the growth of cecal bifidobacteria in rats, reducing pH (Table 9), and reducing the amount of short-chain fatty acids and organic acids in the cecum. Since it can be increased (Table 10), the intestinal environment can be improved and can be used as a functional food for improving the intestinal environment.
[01 16] また、 実施例 7と 8に示されるように、 エピラク ト一スはミネラル吸収能 促進能を有しており (図 8、 9と 1 0 ) 、 従ってミネラル吸収能促進剤又は ミネラル吸収促進用機能性食品として利用することができる。  [01 16] In addition, as shown in Examples 7 and 8, Epilactos has the ability to promote mineral absorption capacity (Figs. 8, 9 and 10), and therefore, the mineral absorption capacity promoter or mineral It can be used as a functional food for promoting absorption.
[01 17] さらに、 実施例 9に示されるように、 エピラク ト一スは盲腸内容物を増加 させるので (表 9 ) 、 便秘改善剤として利用することができる。 [01 18] さらに、 実施例 1 0に示されるように、 エピラク ト一スは血中コレステロ 一ル量を減少させることができ (図 1 1 と 1 2 ) 、 従って脂質代謝改善剤又 は脂質代謝改善用機能性食品として利用することができる。 [0117] Furthermore, as shown in Example 9, since Epi lactose increases the content of the cecum (Table 9), it can be used as an agent for improving constipation. [01 18] Furthermore, as shown in Example 10, Epilactos can reduce the amount of cholesterol in the blood (Figures 11 and 12), and therefore, lipid metabolism improving agents or lipids can be reduced. It can be used as a functional food for improving metabolism.
[01 1 9] また、 エピラク ト一スは胃や腸で消化吸収されにくく(表 7 )、 低カロリー であると共に、 実施例 1 1に示されるように、 摂食後の血糖値の上昇も見ら れないことから (図 1 3 ) 、 血糖値の上昇を避ける必要のある糖尿病患者用 機能性食品として利用することができる。  [01 1 9] In addition, epilactose is difficult to digest and absorb in the stomach and intestine (Table 7), and is low in calories, as shown in Example 11 and also increased in blood glucose after eating. Therefore, it can be used as a functional food for diabetics who need to avoid an increase in blood glucose level (Fig. 13).
[0120] また、 エピラク トースは甘味が弱いので、 低力口リー性低甘味剤として利 用することができる。  [0120] Epilactose is weak in sweetness and can be used as a low-strength, low-sweetening agent.
[0121 ] すなわち、 本発明は機能性食品およびその製造方法を提供する。 一実施形 態において、 本発明に係る機能性食品は、 β _ 4結合を有するオリゴ糖 であるエピラク ト一スを含んでいることを特徴としており、 ビフィズス菌の 成長促進剤、 便秘改善剤、 脂質代謝改善剤、 低カロリー性食品またはミネラ ル吸収能促進剤であることが好ましい。 なお、 本発明に係る機能性食品は、 エピラク トース以外のさらなる機能性物質を含んでもよい。  [0121] That is, the present invention provides a functional food and a method for producing the same. In one embodiment, the functional food according to the present invention is characterized in that it contains epilactose, which is an oligosaccharide having a β_4 bond, a growth promoter for bifidobacteria, a constipation improving agent, A lipid metabolism improving agent, a low-calorie food or a mineral absorption promoter is preferred. The functional food according to the present invention may contain a further functional substance other than epilactose.
[0122] 他の実施形態において、 本発明に係る機能性食品は、 Π 4結合を有 するオリゴ糖に対するェピメラーゼ活性を有するポリペプチドを用いて生産 される化合物を含んでいることを特徴としている。  [0122] In another embodiment, the functional food according to the present invention is characterized by comprising a compound produced using a polypeptide having epimerase activity for oligosaccharides having Π4 bonds.
[0123] 本実施形態に係る機能性食品を製造するためには、 上記のポリべプチドを 、 β - Λ , 4結合を有するオリゴ糖と反応させ、 反応産物を食品に添加すれ ばよい。 例えば、 上記のポリペプチドをラク トースと反応させることでェピ ラク トースを反応産物として製造することができるが、 この反応産物は前述 の通り、 腸内環境改善作用、 ミネラル吸収能促進作用、 脂質代謝改善作用、 低カロリー性、 さらには血糖値の上昇をもたらさない等の機能を有している ことから、 前記反応産物を他の食品に添加することで、 前記反応産物が有す る機能が付加された機能性食品を製造することができる。 さらに反応産物で あるエピラク ト一スは、 スクロースより低甘味であるので、 甘みを抑えつつ 、 低力口リーの飲食品を製造するための低力口リー性低甘味料として利用す ることができる。 [0123] In order to produce the functional food according to the present embodiment, the above-described polypeptide may be reacted with an oligosaccharide having β-Λ, 4 bonds, and the reaction product may be added to the food. For example, epilactose can be produced as a reaction product by reacting the above polypeptide with lactose. As described above, this reaction product can improve the intestinal environment, promote mineral absorption, act as a lipid. Since it has functions such as metabolism improving action, low caloric properties, and also does not cause an increase in blood glucose level, the function of the reaction product can be obtained by adding the reaction product to other foods. Added functional foods can be produced. In addition, the reaction product, epilactose, has a lower sweetness than sucrose, so it can be used as a low-strength, low-sweetness sweetener to produce low-strength, low-sweetness foods while suppressing sweetness. Can.
[0124] 反応産物であるエピラク ト一スは、 ラク ト一スを含む天然原料である乳、 特にゥシ、 ャギあるいはヒッジなどの家畜乳を生乳のまま、 あるいは脱脂し てから、 上記のポリペプチドと反応させることで製造することができる。 ま た、 家畜乳から回収されるホエイ (乳精) 画分や、 低脂肪乳、 低タンパク乳 、 脱脂■脱タンパク乳あるいは低乳糖乳などの加工乳を上記のポリべプチド と反応させることでも、 エピラク トースを製造することができる。  [0124] The reaction product, epilactose, is a natural raw material containing lactose, especially livestock milk such as ushi, goat or hidge as raw or degreased. It can be produced by reacting with a polypeptide. It is also possible to react whey (milk) fraction collected from livestock milk and processed milk such as low-fat milk, low-protein milk, and non-fat ■ deproteinized milk or low-lactose milk with the above-mentioned polypeptides. Epilactose can be produced.
[0125] なお、 本発明は、 プロバイオテイクスとプレバイオテイクスとを組み合わ せたシンバイオテイクスおよびその製造方法として提供されてもよい。  [0125] The present invention may be provided as a symbiotic that combines probiotics and prebiotics and a method for producing the same.
[0126] 以下に、 本発明を実施例によってさらに詳細に説明するが、 本発明はこれ らの実施例に限定されるものではなく、 請求項および上記実施形態に示した 範囲で種々の変更が可能であり、 異なる実施形態にそれぞれ開示された技術 的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲 に含まれる。  [0126] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples, and various modifications may be made within the scope of the claims and the above embodiments. Embodiments that can be obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention.
実施例  Example
[0127] 〔実施例 1 : N E 1株の分離法と菌学的性質〕  [Example 1: Isolation method and mycological properties of N E 1 strain]
[ 1. 菌株の分離法]  [1. Strains isolation method]
力ニューレ付きの牛からルーメン内容物を採取し、 嫌気性希釈液 (M. P . B r y a n tと L. A. B u r k e y ( 1 953) J . D a i r y S c に 36, 205) を用いて 1 05倍に希釈した。 希釈液をイノキュラムと し RGCA (Ame r i c a n T y p e C u l t u r e Co l l e c t i o n (ATCC) に記載) ) 培地のロールチューブを作製した。 ロール チューブ内寒天表層に出現したコロニーを RM_濾紙培地に接種し、 濾紙を 崩壊させた株を選択した。 RM培地の組成を表 1に示した。 Collected rumen contents from the force Nyure with bovine anaerobic diluent (M. P. B ryant and LA B urkey (1 953) J . D in airy S c 36, 205) 1 0 5 -fold with Dilute to The diluted solution was used as an inoculum. RGCA (described in American Type Culture Collection (ATCC))) A roll tube of medium was prepared. Colonies that appeared on the surface of the agar in the roll tube were inoculated into the RM_filter paper medium, and strains that disrupted the filter paper were selected. The composition of RM medium is shown in Table 1.
[0128] ほ 1] ミネラル溶液 I 75 ml [0128] 1) Mineral solution I 75 ml
ミネラル溶液 11 b) 75 ml Mineral solution 11 b ) 75 ml
パク卜ペプトン 2.0 g  Park 卜 Peptone 2.0 g
酵母エキス 1.2 g  Yeast extract 1.2 g
ルーメン液 300 ml  Lumen solution 300 ml
L-システィン塩酸塩■ H。0 0.5 g  ■ L-cystine hydrochloride. 0 0.5 g
セ口ビオース 10 g  Segubiose 10 g
0.1% レサズリン溶液 1 ml  0.1 ml resazurin solution 1 ml
8% Na2C03 50 ml 8% Na 2 C0 3 50 ml
( H 6.8に調整する) 1 し  (Adjust to H 6.8) 1
a)ミネラル溶液 1の組成 4.5g KH2P04/L a ) Composition of mineral solution 1 4.5 g KH 2 P0 4 / L
b)ミネラル溶液【Iの組成 4.5g NaCI, 4.5g (NH4)2S04, 0.1g MnS04-H20, b ) Mineral solution [Composition of I 4.5 g NaCI, 4.5 g (NH 4 ) 2 S0 4 , 0.1 g MnS0 4 -H 2 0,
0.33g CaCI2-2H20, 0.512g MgS04.7H , 0.33g CaCI 2 -2H 2 0, 0.512g MgS0 4 .7H,
0.1g FeS04-7Hz0, 0.1g ZnS04-7H20, 0.1g FeS0 4 -7H z 0, 0.1g ZnS0 4 -7H 2 0,
0.01 g CoCI2-7H20/L 0.01 g CoCI 2 -7H 2 0 / L
e)炭素源は任意 e ) Carbon source is optional
[0129] [2. C E活性測定] [0129] [2. CE activity measurement]
定性的測定法として、 共存すると考えられる; S—グルコシダーゼ活性を阻 害する目的で、 T r i s緩衝液 (1 O OmM T r i s—マレイン酸緩衝液 ( p H 7. 8) ^ 0 U L 1 0 OmM セロビオース 5 L、 酵素液 1 0 L) を精製過程に用いた。 30°Cで反応させ、 酵素活性の強弱によって反応 時間を調整し、 5分間煮沸することにより反応を停止させた。 薄層クロマト グラフィ一 (T L C) を用いて反応生成物を同定した。 反応液 2. 5 / しを 0. 5 mm厚ガラスプレ一ト S i l i c a g e l 60 F 254 (M e r c k ) にスポットした後、 展開液 [2—プロパノール —ブタノ一ル/ H20 = 7 : 1 : 2, v/v] で展開した。 乾燥後、 p_ァニスアルデヒド溶液を噴 霧し、 ホットプレートまたはオーブンで加熱して発色させた。 As a qualitative assay, it is thought to coexist; Tris buffer (1 O OmM Tris—maleic acid buffer (pH 7. 8) ^ 0 UL 1 0 OmM cellobiose for the purpose of inhibiting S-glucosidase activity 5 L, enzyme solution 10 L) was used in the purification process. The reaction was performed at 30 ° C, the reaction time was adjusted according to the enzyme activity, and the reaction was stopped by boiling for 5 minutes. Reaction products were identified using thin-layer chromatography (TLC). After spotting the reaction solution 2.5 / and 0.5 mm thick glass plate Silicagel 60 F 254 (Merck), the developing solution [2-propanol-butanol / H 2 0 = 7: 1: 2 , v / v]. After drying, the p_anisaldehyde solution was sprayed and heated in a hot plate or oven to develop color.
[0130] 定量的測定法を、 以下の方法に従って行った。 反応液の組成を、 1 00m M T r i s _マレイン酸緩衝液 (p H 7. 0) 3. 2m L、 1 0 OmM ラク ! スを 6. 2 m L (2 1 2mg) 、 酵素液 1. 6m L ( 1 0. 9 JI g ) とし、 30°Cで 20分間または 40分間反応させた。 サンプルを 5分間煮 沸することによって反応を停止させた後、 イオン交換樹脂 (AG 50 1 —X 8レジン、 B i o _ R a d ) カラムに供し、 遠心分離により非吸着性画分を 得た。 このうちの 1 0 μ Lを高速液体クロマトグラフィ一 (カラム: S h ο d e x S u g a r S P 08 1 0 (S h o d e x) 、 溶離液:水、 流速 : 0. 6 m L/分、 カラム温度: 80°C、 検出器:気化光散乱検出器 (オル テック) ) に供し、 おおよそ 1 7分の保持時間で溶出されるエピラク ト一ス に由来するピークの面積から反応液中のエピラク トース濃度を計算した。 検 量線は試薬のエピラク トース (S i g m a) を用いて作成した。 酵素反応速 度は、 反応が直線的に進行する反応開始 20分後から 40分後の間に生成す るエピラク ト一スにより計算し、 1分間に 1 ; U m o Iのエピラク ト一スを生 成する反応速度を 1ユニット (U) と定義した。 酵素の比活性は牛血清アル ブミンを標準タンパク質として計算し、 U/m gとして表示した。 [0130] Quantitative measurement was performed according to the following method. The composition of the reaction solution is 100m MT ris _ maleate buffer (pH 7.0) 3.2mL, 10OmM lac! 6.2 mL (2 1 2 mg) of the enzyme and 1.6 mL (10.9 JI g) of enzyme solution were allowed to react at 30 ° C for 20 or 40 minutes. After stopping the reaction by boiling the sample for 5 minutes, ion exchange resin (AG 50 1 —X 8 resin, Bio_Rad) column, and a non-adsorbable fraction was obtained by centrifugation. 10 μL of this was analyzed by high performance liquid chromatography (column: Sh o dex Sugar SP 08 10 (Shodex), eluent: water, flow rate: 0.6 mL / min, column temperature: 80 ° C, detector: vaporized light scattering detector (Oltech)), and calculated the epilactose concentration in the reaction solution from the area of the peak derived from epilactose eluted with a retention time of approximately 17 minutes . The calibration curve was prepared using the reagent epilactose (Sigma). Enzyme reaction rate is calculated from the epicose generated between 20 min and 40 min after the start of the reaction, where the reaction proceeds linearly, 1 per minute; The reaction rate produced was defined as 1 unit (U). The specific activity of the enzyme was calculated using bovine serum albumin as a standard protein and expressed as U / mg.
[0131] [3. N E 1株の菌学的性質]  [0131] [3. Mycological properties of N E 1 strain]
得られた分離菌の中で、 高い C E活性を有する菌を選択し N E 1株と命名 した。 本菌は絶対嫌気性菌であり、 生育条件により、 単独、 二連鎖または短 連鎖で存在し、 球状または卵形 (0. 3〜 1 . 5 X 0. 7〜 1 . 8 m) で あった。 また、 本菌は、 グラム陽性であり、 セルロース、 セロビオース、 キ シラン、 ラク I ス、 グルコースを資化した。  Among the obtained isolates, a bacterium having a high CE activity was selected and named N E 1 strain. This bacterium is an anaerobic bacterium, depending on the growth conditions, present alone, in double or short chain, and spherical or oval (0.3-1.5 X 0.7-1.8 m) . The bacterium was Gram positive and assimilated cellulose, cellobiose, xylan, lactose and glucose.
[0132] [4. £ 1株染色体0 八の調製]  [0132] [4. Preparation of £ 1 strain chromosome 0-8]
RM—C培地を用いて R. a I b u s N E 1を培養した後、 遠心分離に より培養上清を除去した。 得られた沈殿を 5. 6 7 m Lの 1 0mM T r i s _ H C I ( 1 mM E D T A含有) (T E) に懸濁し、 0. 3 m Lの 1 0 % S D Sと 9 Lの 2 Om g/m L プロティナ一ゼ K ( T a K a R a ) を添加し、 混合した後に 3 7。Cで 1時間保温した。 反応液に 1 . 2 5 m Lの 4M N a C I を添加して穩やかに混合し、 塩濃度を 0. 7 Mに調製した後 、 0. 8 1_の1 0%セチルトリメチルアンモニゥムブロミ ド (c e t y I t r i m e t h y I a mm o n ι u m b r o m i d e / M N a After culturing R. a I bus N E 1 using RM-C medium, the culture supernatant was removed by centrifugation. The resulting precipitate was suspended in 5.67 7 mL of 10 mM Tris_HCI (containing 1 mM EDTA) (TE), 0.3 mL of 10% SDS and 9 L of 2 Omg / m Add L Proteinase K (T a K a R a) and mix 3 7. Incubated at C for 1 hour. Add 1.25 mL of 4M NaCI to the reaction mixture and mix gently to adjust the salt concentration to 0.7 M, then 0.8 1_ 10% cetyltrimethylammonium. Mbromide (cety I trimethy I a mm on ι umbromide / MN a
C I を添加して 6 5°Cで 1 0分間保温した。 8 m Lのクロ口ホルムを加え、 室温で 30分間かけてゆつくり混合した。 6 , 000 r p mで 20分間、 室 温による遠心分離によって水層、 中間層、 フエノール層に分け、 水層を回収 した。 回収した水層に等量のフエノール/クロ口ホルムを加え、 室温でゆつ <りと混合した。 再び、 6, 000 r pmで 20分間、 室温による遠心分離 によって水層、 中間層、 フエノール層に分け、 水層を回収した。 回収した水 層に等量の 2 _プロパノールを加えてゆつくりと混合し、 染色体 DN Aを沈 殿させた。 沈殿を回収し、 70%エタノールでリンスした後、 4°Cで 1 2, 000 r pmにて 5分間遠心した。 得られた染色体 DN Aを、 適量の T Eに 溶解し、 _20°Cで保存した。 CI was added and incubated at 65 ° C for 10 minutes. 8 mL of black mouth form was added and mixed gently at room temperature for 30 minutes. 6 minutes at 6,000 rpm, chamber The aqueous layer was recovered by separating it into a water layer, an intermediate layer, and a phenol layer by centrifugal separation with temperature. An equal volume of phenol / black mouth form was added to the recovered aqueous layer and mixed gently at room temperature. Again, the aqueous layer was recovered by separating it into an aqueous layer, an intermediate layer, and a phenol layer by centrifugation at 6,000 rpm for 20 minutes at room temperature. An equal amount of 2_propanol was added to the collected aqueous layer and mixed gently to precipitate chromosome DNA. The precipitate was collected, rinsed with 70% ethanol, and then centrifuged at 12,000 rpm for 5 minutes at 4 ° C. The obtained chromosome DNA was dissolved in an appropriate amount of TE and stored at -20 ° C.
[5. £ 1株の1 63 r DNA配列の決定]  [5. Determination of 1 63 r DNA sequence of £ 1 strain]
上述の染色体 D N Aをテンプレート D N Aとして用い、 27 f プライマ一 および 1 492 rプライマ一を用いて 1 6 S r D N Aをコ一ドする領域を P C R増幅した。 PCRを、 T a Ka Ra PCR T h e r ma l C y c I e r D i c eを用いて行い、 D N Aポリメラ一ゼとして、 T a K a R a EX T a qを使用した。 増幅断片をァガロースゲル電気泳動によって 分離後 G FX P C R D N A a n d G e l Ba n d P u r i f i c a t i o n k i t (Ame r s h am B i o s c i e n c e s) で精 製した。 精製断片を p GEM— T e a s y (P r om e g a) に連結し、 大腸菌 X L 1—B I u eを形質転換した。 これをアンピシリン濃度が 50 §/ 1_の1_8寒天培地に塗布し、 シングルコロニーを形成させた。 形成し たコロニーを拾い、 アンピシリン濃度が 50 §/ 1_の1_8液体培地で培 養した。 培養液を遠心により集菌し、 Q I A p r e p S p i n M i n i p r e p K i t (Q I AG E N) を用いプラスミ ドの回収を行なった。 調 製したプラスミ ドをテンプレートとし、 DTCS Q u i c k S t a r tUsing the chromosomal DNA described above as a template DNA, the region encoding 16 S r DNA was PCR amplified using 27 f primer and 1 492 r primer. PCR was performed using TaKaRa PCR TymalCyCerD ice, and TaKaRa EX Taq was used as the DNA polymerase. The amplified fragments were separated by agarose gel electrophoresis and purified with G FX PCR DNA and Gel Band Purification Kit (Amersh am Biosciences). The purified fragment was ligated to p GEM—T easy (Prome ega) and transformed into E. coli XL 1-BI ue. This was applied to a 1_8 agar medium with an ampicillin concentration of 50 § / 1_ to form a single colony. The formed colonies were picked and cultured in a 1_8 liquid medium with an ampicillin concentration of 50 § / 1_. The culture was collected by centrifugation, and the plasmid was collected using QIA prep Spin Miniprep Kit (QI AG EN). Using the prepared plasmid as a template, use DTCS Quick Start
M i x (B e c kma n Co u l t e r) を用いてシーケンス反応を行 い、 シーケンス角 ¥析には C EQ8000 (B e c kma n Co u l t e r ) を使用した。 反応溶液の組成はマニュアルに従い、 反応時間および温度は 、 目的断片のサイズあるいは反応に用いたプライマーに応じて決定した。 な おシーケンス反応および PC Rに使用したプライマ一 (配列番号 5〜1 1 ) の一覧を表 2に示した。 得られた 1 6 S r RN Aの塩基配列が配列番号 3 である。 配列番号 3に示した塩基配列は、 標準菌株 ( t y p e s t r a i n ) R. a I b u s A T C C 2721 0のものと 99 %の相同性を示した 。 上述の菌学的性質に鑑みて、 £ 1株は a I b u sであると同定され た。 Sequence reaction was performed using M ix (B ec kman Co ulter), and C EQ8000 (B ec kman Co ulter) was used for sequence angle analysis. The composition of the reaction solution was in accordance with the manual, and the reaction time and temperature were determined according to the size of the target fragment or the primer used in the reaction. Primers used for sequence reaction and PCR (SEQ ID NOs: 5 to 1 1) Table 2 shows the list. The base sequence of the obtained 16 S rRNA is SEQ ID NO: 3. The nucleotide sequence shown in SEQ ID NO: 3 showed 99% homology with that of the standard strain (typestrain) R. a I bus ATCC 27210. In view of the above bacteriological properties, the £ 1 strain was identified as an aI bus.
[0134] [表 2]  [0134] [Table 2]
27f 5' -agagtttgatcctggctcag-3' 27f 5 '-agagtttgatcctggctcag-3'
1492r 5' -ggctaccttgttacgactt-3'  1492r 5 '-ggctaccttgttacgactt-3'
529r 5' -accgcggckgctggc-3'  529r 5 '-accgcggckgctggc-3'
786f 5' -gattagataccctggtag-3'  786f 5 '-gattagataccctggtag-3'
926 r 5' -ccgtcaattcctttragttt-3'  926 r 5 '-ccgtcaattcctttragttt-3'
T7W 5' -taatacgactcactatagggc-3'  T7W 5 '-taatacgactcactatagggc-3'
SP6 5' -atttaggtgacactatagaatactc-3'  SP6 5 '-atttaggtgacactatagaatactc-3'
[0135] 〔実施例 2 : R. a I b u s N E 1の C Eの調製〕 [Example 2: Preparation of CE of R. a I bus N E 1]
[ 1. 培養方法]  [1. Culture method]
実施例 1にて得られた R. a I b u s N E 1株を使用した。 前培養用液 体培地として RM培地に 1 %セ口ビオースを添加した。 A T C Cマニュアル に記載されている RGC A培地を改良した RGC培地、 T y I e rら (非特 許文献 1 ) が報告した培地なども使用可能であるが、 我々の培地はより簡便 に調製し得る。  The R. a I bus N E 1 strain obtained in Example 1 was used. As a pre-culture liquid medium, 1% cereal biose was added to RM medium. The RGC medium modified from the RGC A medium described in the ATCC manual, the medium reported by Ty Ir et al. (Non-Patent Document 1), etc. can be used, but our medium can be prepared more easily.
前培養の場合、 加圧培養試験管 (三紳工業) に上述の培地 2 OmLを入れ、 嫌気性菌培養装置 AG— 2 (三紳工業) を用いて試験管内を二酸化炭素ガス で置換した後、 滅菌した。 凍結保存状態にある菌体を氷上で融解した後、 1 m Lを接種し、 35 °Cで 24時間静置培養した。  In the case of pre-culture, after placing 2 OmL of the above medium in a pressure culture test tube (Sangent Industrial) and replacing the inside of the test tube with carbon dioxide gas using the anaerobic bacteria culture device AG-2 (Sangent Industrial) Sterilized. The cells in the frozen state were thawed on ice, then inoculated with 1 mL and cultured at 35 ° C for 24 hours.
[0136] 本培養の場合、 1 Lまたは 50 Om Lの広口メジュ一ムビン ( I WA K I ) にそれぞれ 75 Om L、 375 m Lの上述の培地を入れ、 嫌気性菌培養装 置 AG_ 2を用いてメジユームビン内を二酸化炭素ガスで置換した後、 滅菌 した。 本培地にそれぞれ 2 Om L、 1 Om Lの前培養液を接種し、 35°Cで 1週間静置培養した。 なお、 接種する際も嫌気性菌培養装置 A G_ 2により 、 二酸化炭素置換を行った。 通常、 炭素源としては、 セロビオースまたは濾 紙を適宜用いれば C Eが効率よく菌体内に発現される。 前培養で得られた培 養液を、 加圧培養試験管に入れたまま— 80°Cで保存した。 [0136] In the case of main culture, 75 Om L and 375 mL of the above-mentioned medium are placed in 1 L or 50 Om L wide-mouthed medium bin (I WA KI), respectively, and an anaerobic culture apparatus AG_2 is used. Then, the inside of the medium bottle was replaced with carbon dioxide gas, and then sterilized. Inoculate the medium with 2 Om L and 1 Om L of preculture at 35 ° C, respectively. The culture was stationary for 1 week. In addition, carbon dioxide substitution was performed using an anaerobic bacteria culture apparatus A G — 2 at the time of inoculation. Usually, cellobiose or filter paper is appropriately used as the carbon source, so that CE is efficiently expressed in the cells. The culture solution obtained in the pre-culture was stored at −80 ° C. while being placed in a pressure culture test tube.
[0137] [2 :粗酵素液の調製] [0137] [2: Preparation of crude enzyme solution]
上述の培地を用いて R. a I b u s N E 1を 1週間培養した後、 遠心分 離により菌体を回収した。 1 5 1_の1 1\1 フエニルメタンスルフォニル フロリ ド ( P M S F) を含む緩衝液 A ( 1 0 OmM T r i s—マレイン酸 ( p H 7. 0) 、 1 mM EDTA、 1 mM ジチオスレィ ! ル) に懸濁 後, フレンチプレスにより菌体を破砕した。 菌体破砕後、 1 2, 000 r p mにて 30分間の遠心分離を行い、 得られた上清を粗酵素液とした。 得られ た培養上清に 70%飽和となるように硫酸アンモニゥムを加え、 一晚穩やか に撹拌した後、 1 2, 000 r pm、 30分間遠心分離した。 得られた沈殿 を、 1 mM PMS Fを含む緩衝液 A ( 2 OmM MES ( p H 6. 0) 、 After culturing R. a I bus N E 1 for 1 week using the above medium, the cells were collected by centrifugation. 1 5 1_ 1 1 \ 1 Phenylmethanesulfonyl fluoride (PMSF) containing buffer A (10 OmM Tris-maleic acid (pH 7.0), 1 mM EDTA, 1 mM dithiothre!) After suspension, the cells were crushed with a French press. After disrupting the cells, centrifugation was performed at 12,000 rpm for 30 minutes, and the resulting supernatant was used as a crude enzyme solution. Ammonium sulfate was added to the obtained culture supernatant to 70% saturation, and the mixture was stirred gently and then centrifuged at 12,000 rpm for 30 minutes. The resulting precipitate was added to buffer A (2 OmM MES (pH 6.0) containing 1 mM PMS F,
1 mM EDTA、 1 mM ジチオスレィ ! ル) に懸濁した後、 緩衝液 A で透析したものを粗酵素液とした。 なお、 培養後の操作を全て 4°Cで行った 1 mM EDTA, 1 mM dithiothre! The crude enzyme solution was dialyzed with Buffer A after being suspended in All operations after incubation were performed at 4 ° C.
[0138] [3. CEの精製] [0138] [3. Purification of CE]
(1 ) 陰イオン交換クロマトグラフィー  (1) Anion exchange chromatography
D t A b S e p h a r o s e し l_— o B (Ame r s h am B i o s c i e n c e s) を用いる場合、 サンプルを緩衝液 Aで透析した後、 予め 同緩衝液で平衡化した担体に供した。 N a C I濃度を 0 Mから 0. 6 Mへ増 加させる直線濃度勾配によって溶出を行い、 4mLずつ 1 00画分を回収し た。  In the case of using DtAbSep h a r o s e l_—o B (Ame r s h am B i o s c i enc e s), the sample was dialyzed with buffer A and then applied to a carrier previously equilibrated with the same buffer. Elution was carried out with a linear concentration gradient increasing the Na C I concentration from 0 M to 0.6 M, and 100 mL fractions were collected in 4 mL aliquots.
[0139] RESOURCE Q (Ame r s h am B i o s c i e n c e s) を 用し、る ½合は、 F P Lし S y s t em (Ame r s h am B I O S C I e n c e s) を使用し、 上記と同様の操作を行った。 ただし、 N a C I濃度 を 0Mから 0. 5 Mへ増加させる直線濃度勾配によって溶出を行い、 0. 5 m Lずつ 1 00画分を回収した (流速: 0. 5mL/m i n ) 。 [0139] Using RESOURCE Q (Ame rsh am Biosciences), FPL was performed, and System (Ame rsh am BIOSCIences) was used, and the same operation as above was performed. However, elution is performed with a linear concentration gradient that increases the Na CI concentration from 0 M to 0.5 M, and 0.5 100 mL fractions were collected in milliliters (flow rate: 0.5 mL / min).
[0140] (2) 疎水性相互作用クロマトグラフィー [0140] (2) Hydrophobic interaction chromatography
陰イオン交換クロマトグラフィ一 (DEAE— S e p h a r o s e) で得 られた活性画分に硫酸アンモニゥムを加えて 50%飽和とした後、 F P L C S y s t e mを用いて R E S O U R S E ETH ( Am e r s h a m B i o s c i e n c e s) に供した。 担体を、 緩衝液 B (2 OmM MES ( p H 6. 0) 、 1 mM EDTA、 1 mM ジチオスレィ I ル (D T T) 、 50%飽和硫酸アンモニゥム) で予め平衡化しておいた。 硫酸アンモニゥ ム濃度を 50%飽和から 0%飽和へ減少させる直線濃度勾配によって溶出を 行い、 1. 5 m Lずつ 1 00画分を回収した (流速: 1. 5mL/m i n ) 。 溶出画分を、 M i c r o c o n (M i I I i p o r e) を用いて脱塩した 後、 活性測定および S D S _ P A G Eに供した。  Ammonium sulfate was added to the active fraction obtained by anion exchange chromatography (DEAE) to make it 50% saturated, and then it was subjected to R E S O U R S E ETH (Am er s s s c e nc es) using FPLC Sy s tem. The carrier was pre-equilibrated with buffer B (2 OmM MES (pH 6.0), 1 mM EDTA, 1 mM dithiothreyl I (DTT), 50% saturated ammonium sulfate). Elution was performed with a linear concentration gradient that decreased the ammonium sulfate concentration from 50% saturation to 0% saturation, and 100 mL fractions were collected in 1.5 mL portions (flow rate: 1.5 mL / min). The elution fraction was desalted using Microcon (MiiIipore) and then subjected to activity measurement and SDS_PAGE.
[0141] (3) 吸着クロマトグラフィー [0141] (3) Adsorption chromatography
疎水性相互作用クロマトグラフィ一で得られた活性画分を緩衝液 C ( 5 m M リン酸緩衝液 (p H 6. 0) 、 1 mM EDTA、 1 mM ジチォス レイ トール) で透析した後、 同緩衝液で予め平衡化しておいたヒドロキシァ パタイ ト (H y d r o x y a p a t i t e ;和光純薬工業) に供した。 吸着 後の洗浄を、 緩衝液 D (5mM リン酸緩衝液 (p H 6. 0) 、 1 mM E DTA、 1 mM ジチオスレィ ! ル、 0. 5M KC I ) を用いて行った 。 リン酸濃度を 5 mMから 20 OmMへ増加させる直線濃度勾配によって溶 出を行い、 4m Lずつ 1 00画分を回収した。  The active fraction obtained by hydrophobic interaction chromatography was dialyzed against buffer C (5 mM phosphate buffer (pH 6.0), 1 mM EDTA, 1 mM dithiothreitol), and then the same buffer. The solution was applied to hydroxyapatite (Wako Pure Chemical Industries, Ltd.) that had been equilibrated with the solution. Washing after adsorption was performed using buffer D (5 mM phosphate buffer (pH 6.0), 1 mM EDTA, 1 mM dithiothre !, 0.5 M KCI). Elution was performed with a linear concentration gradient that increased the phosphate concentration from 5 mM to 20 OmM, and 100 mL each of 4 mL was collected.
[0142] (4) ゲルろ過クロマトグラフィー [0142] (4) Gel filtration chromatography
陰イオン交換クロマトグラフィー (RESOURCE Q) で得られた活 性画分 4. 5mLを 0. 9m Lずつ 5つに分画した。 各画分を、 FP LC s y s t emを用いて、 緩衝液 E (2 OmM MES ( p H 6. 0) 、 1 mM EDTA、 1 mM ジチォスレイ I ル、 0. 1 M N a C I ) で予 め平衡化しておいた S u p e r d e x 200 H R 1 0/30 (Am e r s h a m B i o s c i e n c e s) に供した。 同緩衝液にて溶出を行い 、 250 Lずつ 50画分を回収した (流速: 0. 5 m L/m i n、 溶出 開始 20分後から回収) 。 The active fraction (4.5 mL) obtained by anion exchange chromatography (RESOURCE Q) was fractionated into five 0.9 mL portions. Each fraction was pre-equilibrated with buffer E (2 OmM MES (pH 6.0), 1 mM EDTA, 1 mM dithiosyl I, 0.1 MN a CI) using FP LC syst em. Superdex 200 HR 1 0/30 (Amersham Biosciences) was used. Elution with the same buffer 50 fractions of 250 L were collected (flow rate: 0.5 ml / min, collected 20 minutes after the start of elution).
[0143] [4. C E活性測定] [0143] [4. CE activity measurement]
実施例 1に記載の手順に従い、 C E活性を定性的および定量的に測定した  CE activity was measured qualitatively and quantitatively according to the procedure described in Example 1.
[0144] [5. タンパク質の定量] [0144] [5. Protein quantification]
ブラドフォード法 (M. M. B r a d f o r d , ( 1 976) A n a I . B i o c h em. 72, 248 ) に従って、 タンパク質を定量した。 検量線 は牛血清アルブミンを用いて作製した。  Proteins were quantified according to the Bradford method (M. M. Bradford, (1976) AnaI. Biochem. 72, 248). A calibration curve was prepared using bovine serum albumin.
[0145] [6. S DS— PAG E]  [0145] [6. S DS— PAG E]
S DS— PAG Eを、 L a emm l iの方法 (U. K. L a e mm I i , ( 1 970) N a t u r e, 227, 680) に従つて行った。 4. 8 %濃 縮ゲル、 1 0%分離ゲルを使用し、 泳動装置には M i n i P r o t e a n I I I (B i o-R a d) を用いて 20 m Aの定電流で泳動した。 泳動後のゲ ゾレを、 S i m p l y B l u e s a f e S t a i n ( I n v i t r o g e n) ま 7二は s i l — B e s t S t a i n f o r " r o t e ι n/ PA G E (ナカライテスク) を用いて染色した。  S DS—PAG E was performed according to the method of Laemmli (U. K. LaemmIi, (1970) Natre, 227, 680). 4. An 8% concentrated gel and a 10% separation gel were used, and electrophoresis was carried out at a constant current of 20 mA using MiniProteanIII (Bio-Rad) as the electrophoresis apparatus. The gel after electrophoresis was stained with S i m p l y B l e e s a f e S t a i n (I n v i t r o g e n) or 7 n i s i l — B e S t Sta i n f o r "r o te n / PAGE (Nacalai Tesque).
[0146] [7. N末端アミノ酸配列と塩基配列の解析]  [0146] [7. Analysis of N-terminal amino acid sequence and nucleotide sequence]
S DS— P AG E後のゲル中に含まれるタンパク質を、 T RAN S— B L OT S D S EM I —D RY T RAN S F E R C E L L (B i o - R a d) を用いて P VD F膜に転写した。 転写にはブロッテイング緩衝液 (2 5 mM T r i s、 1 92 mM グリシン、 0. 1 % S D S、 20 %メタ ノール) を使用し、 メンブレン 1 cm2あたり 0. 8 m Aの定電流で 1時間行 つた。 転写後のメンブレンをポンソ _Sで染色後、 目的バンドを切り出し、 プロテインシーケンサ一を用いて N末端アミノ酸配列を解析した。 The protein contained in the gel after SDS—PAGE was transferred to a P VDF membrane using T RAN S—BLOT SDS EM I—DRY T RAN SFERCELL (Bio-Rad). Blotted buffer to the transfer (2 5 mM T ris, 1 92 mM glycine, 0. 1% SDS, 20% methanol) using a 1 hour at a constant current of membrane 1 cm 2 per 0. 8 m A I went. After staining the transferred membrane with Ponso_S, the target band was cut out and the N-terminal amino acid sequence was analyzed using a protein sequencer.
[0147] ァガロースゲル電気泳動装置には、 サブマリン型電気泳動漕 M u p i d - 2 (C o smo B i o) を使用し、 電気泳動用ァガロースには、 A g a r o s e L 03 (T a K a R a) を使用した。 試料溶液には、 泳動用色素 (0. 25% ブロモフエノールブル一、 0. 25% キシレンシァノール 、 30 % グリセ口一ル) を 1 / 1 0倍容加え、 泳動用緩衝液に 1 X T A E (4 OmM T r i s_HC I、 1 mM E D T A ( p H 8. 0) ) を用 いた。 泳動後のゲルを、 ェチジゥムブ口マイ ドを加えた 1 X TAE中に浸し 染色した。 DN A分子量マ一力一には、 1 Kb P l u s DNA L a d d e r ( I n v i t r o g e n) を使用した。 電気泳動によって分離した各 種 D N A断片のァガロースゲルからの回収を, GEN EC L EAN I I I k i t (B I O 1 01 ) を使用して、 製造業者の指示書に従って行った。 [0147] Submarine electrophoresis Mupid-2 (C o smo B io) is used for the agarose gel electrophoresis apparatus, and A garose L 03 (T a K a R a) is used for the agarose for electrophoresis. used. Sample solution contains dye for electrophoresis (0.25% bromophenol blue, 0.25% xylene cyanol, 30% glyceride) is added 1/10 volume, and 1 XTAE (4 OmM Tris_HC I, 1 mM EDTA (pH 8.0)) was used. The gel after electrophoresis was immersed and stained in 1 X TAE to which ethimub mouth amide was added. A 1 Kb Plus DNA L adder (Invitrogen) was used for DNA molecular weight control. Recovery of various DNA fragments separated by electrophoresis from an agarose gel was performed using GEN EC LEAN III kit (BIO 1101) according to the manufacturer's instructions.
[0148] [ 8. クローンの塩基配列およびァミノ酸配列の相同性解析] [8148] [8. Homology analysis of clone base sequence and amino acid sequence]
R. a l b u s 8株のゲノム情報を T I G R ( h t t p„www. t Genomic information of R. a l b u s 8 strain is stored in T IG R (h t p p
1 g r . o r g/) より得た。 本遺伝子は未同定遺伝子として記載されてい る。 D RAW32 (A c a C l o n e s o f t wa r e) を用いて塩基配 列の解析を、 B LAS T (S. F. A l t s c h u l ら、 (1 990) J . Mo に B i o l . 21 5, 403) を用いて相同性検索を行った。 塩基配 列およびアミノ酸配列の多重整列 (アラインメント) には C I u s t a I W ( J . D. T h omp s o nら、 (1 994) N u c に A c i d s R e s. 22, 4673) を使用した。 1 g r .o r g /). This gene is described as an unidentified gene. Analysis of nucleotide sequence using D RAW32 (A ca Clonesoft wa re) and homology using B LAST (SF Altschul et al., (1 990) J. Mo and B iol. 21 5, 403) I did a search. For the multiple alignment (alignment) of the base sequence and amino acid sequence, C I u s t a I W (J. D. T h omp s o n et al., (1 994) N c c and A c i ds R e s. 22, 4673) was used.
[0149] R. a l b u s N E 1遺伝子のクロ一ニングおよび塩基配列の決定を、 以下の方法に従って行った。 なお、 以下に述べる手法は一例であって、 本発 明を限定するものではない。  [0149] Cloning of the R. albus N E 1 gene and determination of the nucleotide sequence were performed according to the following method. Note that the method described below is an example, and does not limit the present invention.
[0150] 先ず、 R. a l b u s 8株の染色体由来の未同定遺伝子の配列をもとに プライマ _ (5, 一 GATGATGAGAACGGCGGCT T T— 3' ( 配列番号 1 2) および 5' -GCTTCCGCCTGCACCCACCAT A- 3' (配列番号 1 3) ) を構築し、 R. a l b u s N E 1の染色体 D N Aを錶型として PC Rを行った. 95°Cで 1分間、 60°Cで 30秒間、 7 [0150] First, based on the sequence of the unidentified gene from the chromosome of R. albus 8 strain, Primer_ (5, 1 GATGATGAGAACGGCGGCT TT— 3 '(SEQ ID NO: 1 2) and 5' -GCTTCCGCCTGCACCCACCAT A-3 '( SEQ ID NO: 1 3)) was constructed, and PCR was performed using the chromosomal DNA of R. albus NE 1 as a saddle. 95 ° C for 1 minute, 60 ° C for 30 seconds, 7
2 °Cで 2分間の反応を 30サイクル行った。 得られた反応生成物に基づいて 、 完全に一致するプライマ一 (5' —CGCT T AT ATGACACTGG GCG— 3' (配列番号 1 4) および 5' -TCAGCCTGTCAGCT A C C T T C- 3' (配列番号 1 5) ) を構築し、 P C R D I G L a b e l i n g M I X (R o c h e) を用いて同様のサイクルで P C Rを行う ことで, D I Gで標識されたプローブを作製した。 Thirty cycles of reaction at 2 ° C for 2 minutes were performed. Based on the reaction products obtained, the perfectly matched primers (5'-CGCT T AT ATGACACTGG GCG-3 '(SEQ ID NO: 1 4) and 5'-TCAGCCTGTCAGCT ACCTT C-3 '(SEQ ID NO: 15)) was constructed, and PCR was performed in the same cycle using PCRDIGL abeling MIX (Roche) to produce a probe labeled with DIG.
[0151] 単離した R. a l b u s N E 1の染色体 D N Aを種々の制限酵素 ( P s t I、 P v u I I、 E c o R I、 E c o RV、 B g I I I ) を用いて消化し た。 3 gの染色体 D N A当り 1 0 Uの制限酵素を用いて 3 7。Cで 1 2時間 反応させた後, さらに 1 0 Uの制限酵素を添加して 1 2時間反応させた。 反 応液を、 0. 8%ァガロースゲルを用いた電気泳動に供した。 30 Vの定電 圧で 4時間電気泳動して、 D N Aを分離した。 分離した D N Aを、 常法に従 し、ナイ口ン月莫である H y b o n d _ N+ (Am e r s h a m B i o s c i e n c e s) に毛細管現象を利用して転写し, U V照射により D N Aをナイ口 ン膜に固定した。 [0151] Chromosomal DNA of isolated R. albus N E 1 was digested with various restriction enzymes (Pst I, Pvu I I, E co R I, E co RV, B g I I I). Using 10 U of restriction enzyme per 3 g of chromosome DNA 3 7. After reacting with C for 12 hours, 10 U restriction enzyme was further added and allowed to react for 12 hours. The reaction solution was subjected to electrophoresis using a 0.8% agarose gel. The DNA was separated by electrophoresis at a constant voltage of 30 V for 4 hours. The isolated DNA was transferred to Hybond_N + (Amersham Biosciences), which is a Nai-Kan-Mu, using capillary action according to a conventional method, and the DNA was fixed to the Nai-Cann membrane by UV irradiation. .
[0152] ハイブリダィゼ一シヨンおよび検出には、 A n t i — D i g o x i g e n i n -A P (R o c h e) を使用した。 上記の手順で調製した標識プローブ ならびにナイロン膜を使用して、 ハイブリダィゼ一シヨンを 60°Cで 1 6時 間行った。 プローブを、 ハイブリダィゼ一シヨン溶液 1 m L当り 1 0 n gに て使用した。 膜の洗浄を、 0. 1 % S D S、 0. 1 X S S C溶液中にて 6 8°Cで 1 5分間振盪させることで行い, 同様の操作を合計 3回行った。 検出 を、 製造業者の指示書に従って行い、 発光基質には C D P— S t a r (R o c h e) を使用した。 X線フィルムには、 F U J I M E D I CA L X_ RA Y F I LM ( F U J I F I LM) を使用し、 1分間感光させた。  [0152] For the hybridization and detection, A n t i — D i g o x i g e n i n -A P (R o c h e) was used. Hybridization was performed at 60 ° C for 16 hours using the labeled probe prepared by the above procedure and a nylon membrane. The probe was used at 10 ng / mL of the hybridization solution. The membrane was washed by shaking in 0.1% S DS, 0.1 X S S C solution at 68 ° C for 15 minutes, and the same operation was performed three times in total. Detection was performed according to the manufacturer's instructions, and C D P—S tar (R o c h e) was used as the luminescent substrate. The X-ray film was exposed to FUJIMEDICALLX_RAYFILM (FUJIFILM) for 1 minute.
[0153] R. a l b u s N E 1の染色体 D N A 3 gを 1 0 Uの E c o R Iで消 化し, フエノール/クロ口ホルム抽出により D N Aを精製した。 精製後、 ェ タノ一ル沈殿を行い 4 Lの T Eに溶解し, 4°Cで一晚セルフライゲ一ショ ンを行った。 セルフライゲ一シヨン後の反応液を錶型とし, プローブの配列 をもとに設計したプライマ一 (5' -CGAGAAG G T AG C T GA CA G G C T GAAG T T C C- 3' (配列番号 1 6 ) および 5 ' —C CA T C A T C CAG T A T A C T C CA C CG T A T T C- 3' (配列番号 1 7 ) ) を用いて i n v e r s e P CRを行った。 95°〇で1分間、 55°Cで 3 0秒間、 72 °Cで 4分間の反応を 30サイクル行った。 i n v e r s e P C Rにより増幅した D N A断片を錶型としてシークェンス反応を行うことに より、 C E遺伝子を含む近傍の塩基配列情報を取得した。 得られた配列情報 に基づいて C E遺伝子全長を含む配列の取得を目的としたプライマ一 (5' -CT CT TATAG T TGCACATATATAAT TGAGG-3' ( 配列番号 1 8) および 5' -T T CCATG TAG T T CT CCT T T CG G- 3' (配列番号 1 9) ) を作製し、 R. a l b u s N E 1の染色体 D N Aを錶型に増幅した D N A断片を p T 7 B l u e v e c t o r (N o v a g e n ) にサブクロ一ニングした。 [0153] 3 g of chromosomal DNA of R. albus NE 1 was extinguished with 10 U Eco RI, and the DNA was purified by phenol / chloroform extraction. After purification, ethanol precipitation was performed and dissolved in 4 L of TE, and self-ligation was performed at 4 ° C. The reaction solution after self-ligation is a vertical type and is designed based on the probe sequence (5 '-CGAGAAG GT AG CT GA CA GGCT GAAG TTC C-3' (SEQ ID NO: 1 6) and 5 '— C CA TCATC CAG TATACTC CA C CG TATT C- 3 '(SEQ ID NO: 1 7) ) Was used to perform inverse PCR. Thirty cycles of reaction were performed at 95 ° O for 1 minute, 55 ° C for 30 seconds, and 72 ° C for 4 minutes. By performing a sequencing reaction using a DNA fragment amplified by inverse PCR as a saddle shape, information on the base sequence in the vicinity including the CE gene was obtained. Based on the obtained sequence information, primers (5 '-CT CT TATAG T TGCACATATATAAT TGAGG-3' (SEQ ID NO: 1 8) and 5 '-TT CCATG TAG TT CT CCT TT CG G-3 ′ (SEQ ID NO: 19)) was prepared, and a DNA fragment obtained by amplifying the chromosomal DNA of R. albus NE 1 into a cage was subcloned into pT 7 Blue vector (N ovagen).
[0154] 塩基配列を、 S a n g e rらの d i d e o X y法により決定した (F. S a n g e rら、 ( 1 977) P r o c. N a t l . A c a d. S c i . U S A, 74, 5463) 。 P C Rによって増幅された D N A断片またはそ の増幅断片を p T 7 B l u e v e c t o rのマルチクローニングサイ ト にサブクロ一ニングし、 精製したプラスミ ドを錶型として, シークェンス反 <、を行った。 シークェンス反 J心には、 B i g D y e T e r m i n a t o r v . 1 C y c l e S e q u e n c i n g k i t ^ A p p I ι e d B i o s y s t em s) を使用した。 解析には、 A B I P R I SM 3 1 0 e n e t i c A n a l y z e r f o r W i n d ow s (登 録商標) (A p p I i e d B i o s y s t em s) を用しゝた。  [0154] The base sequence was determined by the method of d angelo Xy of Sang ger et al. (F. Sang ger et al., (1 977) P ro c. Nat l. A c a d. S c i. U SA, 74, 5463). The DNA fragment amplified by PCR or the amplified fragment was subcloned into the multicloning site of pT7Bluevector, and the purified plasmid was used as a saddle to perform sequencing. For the anti-sequence J, we used B i g D y e T e r m i n a t o r v .1 C y c l e S e q u e n c i n g k i t ^ A p p I ι e d B i o s y s t em s). For the analysis, A B I P R I SM 3 10 e n e t i c A n a y z e r f o r W i indow s (registered trademark) (A p p I i e d B i o ys y s t em s) was used.
[0155] [9. 基質特異性]  [0155] [9. Substrate specificity]
C Eの基質特異性を、 T L Cを用いて定性的に解析した。 反応液の組成を 、 1 00mM T r i s—マレイン酸緩衝液 (p H 7. 0) 1 5 1_、 1 O OmM 各種基質 5 L、 精製酵素 5 L (34 n g) とし、 25°Cで一 晚反応させた。 サンプルを、 5分間煮沸することによって反応を停止させた 後、 T L Cに供した (展開溶媒系; 2 _プロパノール —ブタノール/ H 2 0=7 : 1 : 2) 。 The substrate specificity of CE was analyzed qualitatively using TLC. The composition of the reaction solution was 100 mM Tris-maleic acid buffer (pH 7.0) 1 5 1_, 1 O OmM substrate 5 L, purified enzyme 5 L (34 ng) Reacted. After stopping the reaction by boiling the sample for 5 minutes, it was subjected to TLC (developing solvent system; 2_propanol-butanol / H 2 0 = 7: 1: 2).
[0156] [ 1 0. 反応生成物の解析] ( 1 ) ラク トースを基質とした場合 [0156] [1 0. Analysis of reaction products] (1) When lactose is used as a substrate
反応液の組成を、 1 0 0 mM T r i s _マレイン酸緩衝液 (p H 7. 0 ) を 3. 2 m L、 1 0 0 mM ラク ! スを 6. 2 m L ( 2 1 2 m g ) 、 酵 素液を 1 . 6 m L ( 1 0. 9 IJ g ) とし、 2 5°Cで一晚反応させた。 サンプ ルを 5分間煮沸することによって反応を停止させ、 全量を T L Cに供した。 T L Cプレー卜の一部を発色させ、 反応生成物の移動度を測定した後にシリ 力ゲルを削り取ることによって、 生成物を単離した。 得られた生成物を、 シ リカゲルの 2倍量の脱塩水で抽出した後、 ロータリーエバポレーター (東京 理化機械) で濃縮した。 本生成物は來雑物として微量のラク トースを含むの で、 全量を再び T L Cに供し、 同様の操作を行うことで反応生成物を精製し た。 精製後の反応生成物 5 0 L ( 2 6 2 g ) に 8 M トリフルォロ酢酸 を 5 0 1_加え、 3時間 1 0 0°Cに放置することによって完全に加水分解さ せた。 遠心濃縮器を用いて本反応液の溶媒を脱塩水に置換した後、 反応性生 物を T L Cに供することによって分解産物を定性的に同定した。  The composition of the reaction mixture was 100 mM Tris _ maleate buffer (pH 7.0), 3.2 mL, 100 mM Lac! The reaction volume was 6.2 mL (2 12 mg) and the enzyme solution was 1.6 mL (10.9 IJ g). The reaction was stopped by boiling the sample for 5 minutes and the entire volume was subjected to TLC. The product was isolated by coloring a part of the TLC plate and measuring the mobility of the reaction product, and then scraping the silica gel. The obtained product was extracted with twice the amount of silica gel demineralized water, and then concentrated with a rotary evaporator (Tokyo Rika Kikai). Since this product contains a trace amount of lactose as a contaminant, the entire product was again subjected to TL C, and the reaction product was purified by the same operation. To the reaction product after purification, 50 M (2 62 g) was added with 8 M trifluoroacetic acid and then left to stand at 100 ° C. for 3 hours for complete hydrolysis. After replacing the solvent of this reaction solution with demineralized water using a centrifugal concentrator, the degradation product was qualitatively identified by subjecting the reactive product to TL C.
[0157] ( 2 ) セロ トリオースを基質とした場合 [0157] (2) When cellotriose is used as substrate
反応液の組成を 1 0 O mM T r i s _マレイン酸緩衝液 (p H 7. 0 ) を 4. 1 m L、 1 0 O mM セロ トリオ一スを 2. 7 m L ( 1 3 6 m g ) 、 酵素液を 1 . 8 m L ( 1 2. 2 μ g ) とし、 上記と同様の操作を行うこと によって反応生成物を分離精製した後、 高分解能核磁気共鳴 (N M R) 装置 ( B R U K E R AM X - 5 0 0 s p e c t r o m e t e r ( 5 0 0 M H z ) ) に供し、 1 Hおよび13 Cのスぺク トラを測定した (1 H _ N M Rと13 C - N M R) 。 The composition of the reaction mixture was 4.1 mL of 10 O mM Tris_maleic acid buffer (pH 7.0) and 2.7 mL (1 36 mg) of 10 O mM cellotriose. After the reaction solution was separated and purified by the same procedure as above, the enzyme solution was adjusted to 1.8 mL (12.2 μg), and then the high resolution nuclear magnetic resonance (NMR) apparatus (BRUKER AM X -1 000 spectrometer (5 000 MHz)), 1 H and 13 C spectra were measured ( 1 H _ NMR and 13 C NMR).
[0158] 〔B. 結果〕 [0158] [B. Results]
[ 1 . C Eの精製]  [1. Purification of CE]
5段階のク口マトグラフィ一により、 電気泳動的に単一のタンパク質を得 た (図 3 ) 。 収率は約 0. 2 % ( 1 0 2 μ g ) であった。 各種緩衝液 (0. 1 M、 p H 7. 8 ) で C E活性を測定したところ、 グリシルグリシン一 N a O Hにおいて最も高い活性を示した。 この緩衝溶液中での酵素の比活性は 3 . 6 U/mgであった。 A single protein was obtained electrophoretically by five-step kumatography (Fig. 3). The yield was about 0.2% (10.2 μg). When CE activity was measured with various buffer solutions (0.1 M, pH 7.8), the highest activity was found in glycylglycine mono-NaOH. The specific activity of the enzyme in this buffer solution is 3 6 U / mg.
[0159] S DS_P AG E上から推定される精製酵素の分子量は約 43. 1 k D a であった。 精製酵素の分子吸光係数 (E値、 1 %酵素溶液で 280 n mにお ける吸光度) は約 1 8であった (牛血清アルブミンを標準タンパク質とした 場合) 。 また、 酵素活性の最大活性は p H 7. 7〜8. 2にある (40mM ブリットン—ロビンソン緩衝液中) であり、 酵素活性の最大活性は 28〜 32°C (4 OmM T r i s_マレイン酸緩衝液中) であった。 酵素活性は 、 F e3 +、 Co2 +、 C u2 +、 Z n2 +、 P b 2 + , Ag+、 N—ブロモスクシミ ド、 ョ一ド酢酸、 p—クロロマ一キュリーベンゾェ一ト (各々 1 mM) で阻 害された (酵素を 30°Cで 30分前処理した場合) 。 [0159] The molecular weight of the purified enzyme estimated from S DS_P AG E was about 43.1 kDa. The molecular extinction coefficient of the purified enzyme (E value, absorbance at 280 nm with 1% enzyme solution) was about 18 (when bovine serum albumin was used as the standard protein). The maximum enzyme activity is at pH 7.7 to 8.2 (in 40 mM Britton-Robinson buffer), and the maximum enzyme activity is 28 to 32 ° C (4 OmM Tris_malein). Acid buffer). Enzyme activity is Fe 3 + , Co 2 + , Cu 2 + , Z n 2 + , P b 2 + , Ag +, N-bromosuccinide, thioacetic acid, p-chloropolymer benzoate ( 1 mM each) (when the enzyme was pretreated at 30 ° C for 30 minutes).
[0160] (表 3 : CE精製の工程)  [0160] (Table 3: CE purification process)
[0161] [表 3]  [0161] [Table 3]
Figure imgf000047_0001
Figure imgf000047_0001
[0162] [2. Ν末端アミノ酸配列の解析および基質特異性] [0162] [2. Analysis of amino acid sequence at the heel terminal and substrate specificity]
精製タンパク質を S DS— PAGEに供し、 PVD F膜に転写した後、 目 的バンドを切り出した。 目的のタンパク質の Ν末端配列を解読した。 得られ た Ν末端配列は MM I S E I RQE LTDH I I P FWN K L R D (配列番 号 4) であった。 類似性を有するアミノ酸配列を B LAS Tにて検索したが 、 高い相同性を示すアミノ酸配列は得られなかった (データは示さない) 。  The purified protein was subjected to SDS-PAGE, transferred to a PVDF membrane, and the target band was cut out. The Ν terminal sequence of the target protein was decoded. The obtained heel end sequence was MMISEIRQE LTDHIPIFPFWNKRD (SEQ ID NO: 4). Although amino acid sequences having similarities were searched by BLAST, amino acid sequences showing high homology were not obtained (data not shown).
[0163] そこで、 一部ゲノム配列が明らかとなっている R. a I b u s 8株のゲ ノムデータベース T I G Rで、 本配列と類似性を持つァミノ酸配列を検索し た結果、 23残基のうち 1 8残基が一致する配列 MMKEEVKQE LTS H I I P FWN KLRD (配列番号 20) を見出した。 R. a I b u s 8 株のゲノムデータベースに掲載されているこのタンパク質は、 バクテロイデ ス フラギリス (B a c t e r o i d e s f r a g i I i s ) Y C H 4 6 、 ミクロブルビファー デグラダンス (M i c r o b u l b i f e r d e g r a d a n s ) 2 - 4 0由来の G I c N A c _ 2 _ e p i とそれぞれ 4 0 %、 3 7 o/oの割合でアミノ酸配列が一致していた。 G I c N A c - 2 - e p i は、 ァセチルグルコサミンの 2位の水酸基を異性化し、 N—ァセチルマン ノサミンを生成する酵素である。 [0163] Therefore, a search for an amino acid sequence having similarity to this sequence in the genomic database TIGR of R. a I bus 8 strain, whose genome sequence was partially clarified, revealed that out of 23 residues. 1 A sequence MMKEEVKQE LTS HIIP FWN KLRD (SEQ ID NO: 20) was found that matched 8 residues. This protein listed in the genome database of R. a I bus 8 strain is Bacteroide Bacteroidesfragi I is YCH 4 6, GI c NA c _ 2 _ epi from Microburbiferdegradans 2-40 and amino acid sequences at 40% and 37 o / o, respectively Was consistent. GI c NA c-2-epi is an enzyme that isomerizes the hydroxyl group at the 2-position of acetyl glucosamine to produce N-acetyl methyl nosamine.
[0164] そこで、 本発明の酵素を、 G I c N A c _ 2 _ e p iの基質であるァセチ ルグルコサミンを基質とする G I c N A c - 2 - e p i活性について薄層ク 口マトグラフィ一 (T L C) で確認したところ、 反応生成物は得られなかつ た。 また、 これまでに報告のあるェピメラーゼの活性を有するか否かを検討 するために、 本発明の酵素を、 U D P—グルコース、 グルコース _ 6 _リン 酸および種々の単糖を基質とした反応に供したが、 いずれの反応においても 反応生成物は得られなかった。  [0164] Therefore, the enzyme of the present invention was measured by thin layer chromatography (TLC) for GI c NA c-2-epi activity using acetyl glucosamine, which is a substrate of GI c NA c _2 epi. As a result of confirmation, no reaction product was obtained. In addition, in order to examine whether or not the epimerase activity has been reported so far, the enzyme of the present invention is used in reactions using UDP-glucose, glucose_6_phosphate and various monosaccharides as substrates. However, no reaction product was obtained in any reaction.
[0165] 本発明の酵素を、 代表的な 2糖であるマルト一ス (ひ一 1 , 4) 、 スクロ —ス、 ソホロ一ス (β _ 1 , 2 ) 、 ラミナリビオ一ス (S_ 1 , 3 ) および ゲンチオビオース (β— , 6 ) を基質とした酵素反応に供した場合も、 反 応生成物は得られなかった。 しかし、 驚くことに、 本発明の酵素を、 ラク ト —ス (yS_ 1 , 4) を基質とした反応に供したところ、 基質以外のスポット が反応生成物として検出された。 これまでに、 ラク ト一スを基質としてへテ 口オリゴ糖を生成するェピメラ一ゼは知られていない。 また、 本発明の酵素 を、 少なくともセロビオース、 セロ トリオースおよびセロテトラオースとと もに反応に供した場合も、 基質以外のスポッ卜が反応生成物として検出され た (図 4) 。  [0165] Enzymes of the present invention can be converted into typical disaccharides such as maltose (1-1, 4), sucrose, sophorose (β_1, 2), laminobiosis (S_1, 3). ) And gentiobiose (β-, 6) as a substrate, no reaction product was obtained. Surprisingly, however, when the enzyme of the present invention was subjected to a reaction using lactose (yS — 1, 4) as a substrate, spots other than the substrate were detected as reaction products. To date, no epimerase has been known that produces a terminal oligosaccharide using lactose as a substrate. Further, when the enzyme of the present invention was subjected to the reaction with at least cellobiose, cellotriose and cellotetraose, spots other than the substrate were detected as reaction products (FIG. 4).
[0166] 以上の結果、 ならびにセロペンタオースおよびセ口へキサオースを基質と した場合の結果を表 4にまとめた。 これらの結果から、 本酵素がこれまでに 報告されたェピメラーゼとは全く異なる基質特異性を有する新規ェピメラー ゼ酵素であることが明らかとなった。 また各種糖の反応性から、 本酵素が; S - 1 , 4結合を有するオリゴ糖のみに作用する可能性が示唆された。 [01 67] また、 エピラク ト一スまたは G I c _ M a nを基質として反応させた際の 生成物が、 それぞれラク ト一スまたはセロビオースであることを、 T L Cで 確認した (図は示さず) 。 この結果は、 本発明に係る C Eが可逆的触媒反応 を行なうことを示している。 [0166] Table 4 summarizes the above results, and the results of using cellopentaose and cepoxahexaose as substrates. From these results, it was clarified that this enzyme is a novel epimerase enzyme having a substrate specificity completely different from the epimerase reported so far. In addition, the reactivity of various sugars suggested that this enzyme may act only on oligosaccharides having S-1, 4 bonds. [01 67] Also, TLC confirmed that the products of epilactose or GI c _ Man as a substrate were lactose or cellobiose, respectively (not shown) . This result shows that the CE according to the present invention performs a reversible catalytic reaction.
[01 68] (表 4 :精製タンパク質の基質特異性)  [01 68] (Table 4: Substrate specificity of purified protein)
[01 69] [表 4]  [01 69] [Table 4]
基質 生成物 Substrate Product
/V -ァセチル -D-ダルコサミン ND / V-acetyl-D-Darkosamine ND
UDP-グルコース ND  UDP-glucose ND
グルコース- 6-リン酸 ND  Glucose-6-phosphate ND
グルコース ND  Glucose ND
マンノース ND  Mannose ND
フルク I ス ND  Fluk I ND
ガラク 卜ース ND  Garaku 卜 ND
キシロース ND  Xylose ND
ァラビノース ND  Arabinose ND
ソホロース ND  Sophorose ND
ラミナリビオース ND  Laminaribiose ND
ゲンチオビオース ND  Gentiobiose ND
ラク ト一ス D  Rakutosu D
マルト一ス ND  Marutous ND
スクロース ND  Sucrose ND
イソマル! ス ND  Isomare! Su ND
セロビオース D  Cellobiose D
セロ トリオース D  Cerro Triose D
セロテトラオース D  Cellotetraose D
セロペンタオース D  Cellopentaose D
セ口へキサオース D  Seguchi Hexaose D
ND:検出されなかった ND: Not detected
D :検出された [0170] [3. 反応生成物の同定] D: Detected [0170] [3. Identification of reaction products]
上述の基質特異性の解析から、 セロビオース以外に、 少なくともセロオリ ゴ糖およびラク トースが上記の新規酵素の基質になり得ることが明らかとな つた。 このことは、 これまでに報告のない新規オリゴ糖が合成されたことを 示唆する。  From the analysis of the substrate specificity described above, it has been clarified that, in addition to cellobiose, at least cello-oligosaccharide and lactose can be substrates for the above-mentioned novel enzyme. This suggests that a novel oligosaccharide that has never been reported has been synthesized.
[0171] そこで、 この生成オリゴ糖の構造を解析した。 具体的には、 ラク ト一スを 基質として酵素反応を行い、 反応生成物を T L Cにより分離した後、 シリカ ゲルを削り取ることで生成物を単離した。 この生成物を、 トリフルォロ酢酸 を用いて酸加水分解し、 分解産物を T L Cにて検出したところ、 ガラク ト一 スおよびマンノースであることが観察された。 このことから、 この酵素はセ ロビオースと同様に; 4結合を有するラク トースを基質とし、 還元末 端グルコースをマンノースに変換することで、 新規オリゴ糖; S— 4ガラ ク トシルマンノース (エピラク ト一ス) を生成したと考えられた。  [0171] Therefore, the structure of the resulting oligosaccharide was analyzed. Specifically, an enzymatic reaction was performed using lactose as a substrate, the reaction products were separated by TL C, and the product was isolated by scraping the silica gel. This product was hydrolyzed with trifluoroacetic acid, and the degradation product was detected by TLC. As a result, it was observed that the product was galactose and mannose. From this, this enzyme is similar to cellobiose; by using lactose having 4 bonds as a substrate and converting reduced terminal glucose to mannose, a novel oligosaccharide; S-4 galactosylmannose It was thought that it was generated.
[0172] 〔実施例 3 : N MRによる反応生成物の構造解析〕  [Example 3: Structural analysis of reaction product by N MR]
実施例 2に記載の手順に従い、 ラク トースからの生成物を精製した。 抽出 後のサンプルを濃縮し、 ロータリーエバポレーターを用いて溶媒を重水に置 換した後、 1 H— NMRと13 C— NMRに供し、 1 Hおよび13 Cのスぺク トラ を測定した。 なお、 外部標準として T S P ( [2, 2, 3, 3-D 4] s o d I u m 3— i — ( t r i m e t h y I s ι I y I p r o p a n o a t e) を用いた。 得られたスぺク トラは、 市販のエピラク I ス (S i gm a) と完全に一致するものであった (図 5) 。 The product from lactose was purified according to the procedure described in Example 2. The sample after extraction was concentrated, and the solvent was replaced with heavy water using a rotary evaporator, followed by 1 H-NMR and 13 C-NMR, and 1 H and 13 C spectra were measured. In addition, TSP ([2, 2, 3, 3-D 4] sod I um 3—i — (trimethy I s I I I propanoate) was used as an external standard. (Fig. 5).
[0173] セロ トリオースを基質とした場合の反応液の組成を、 1 00mM T r i s—マレイン酸緩衝液 (p H 7. 0) を 4. 1 m L、 1 0 OmM セロ ト リオ一スを 2. 7 m L ( 1 36mg) 、 酵素液を 1. 8m L ( 1 2 g) と し、 25°Cで一晚反応させた。 5分間の煮沸で反応を停止し、 全量を T L C に供した。 T L Cプレートの一部を発色させ反応生成物の生成を確認後、 シ リ力ゲルを削り取りその生成物を単離した。 シリカゲルの 2倍量の脱塩水で 抽出した後、 ロータリーエバポレーターで濃縮した。 本サンプルは夾雑物と して微量のセロ トリオースを含むため、 再び全量を T L Cに供し、 同様の操 作を行うことで精製した。 抽出後のサンプルを濃縮し、 口一タリ一エバポレ —タ一を用いて溶媒を重水に置換した後、 1 H_ NMRと13 C— NMRに供し た。 なお、 外部標準として T S Pを用いた。 得られたスぺク トルは、 過去に 報告された細胞壁多糖由来グルコピラノシル一 1 , 4 _0_;S _ D_グルコピ ラノシル 1 , 4— 0— S— D—マンノース (G I c -G I c— M a n ) のスぺ ク トラと完全に一致した (R. G o l d b e r gら、 (1 9 9 1 ) C a r b o h y d r . R e s . 2 1 0, 2 6 3) (図 6、 図 7) ) 。 [0173] The composition of the reaction mixture when cellotriose was used as a substrate was 4.1 mL of 100 mM Tris-maleic acid buffer (pH 7.0) and 2 of 10 OmM cell triotriose. 7 mL (1 36 mg) and the enzyme solution were 1.8 mL (1 2 g), and reacted at 25 ° C for a while. The reaction was stopped by boiling for 5 minutes, and the entire amount was subjected to TLC. After confirming the formation of a reaction product by coloring a part of the TLC plate, the silica gel was scraped off and the product was isolated. After extraction with deionized water twice the amount of silica gel, the mixture was concentrated on a rotary evaporator. This sample is Since it contained a small amount of cellotriose, the whole amount was again subjected to TLC and purified by the same operation. The sample after extraction was concentrated, and the solvent was replaced with heavy water using a single evaporator. The sample was then subjected to 1 H NMR and 13 C NMR. TSP was used as an external standard. The obtained spectrum is a cell wall polysaccharide-derived glucopyranosyl 1, 4 _0_; S _ D_ glucopyranosyl 1, 4— 0— S— D— mannose (GI c -GI c— Man (R. G oldberg et al., (1 9 9 1) Carbohydr. Res. 2 1 0, 2 6 3) (Fig. 6, Fig. 7)).
[0174] 〔実施例 4 :組換え酵素の調製〕  [Example 4: Preparation of recombinant enzyme]
N E 1株の成熟型 C E酵素のァミノ酸配列および塩基配列は、 配列番号 1 および配列番号 2に示される配列であることが判明した。 予め行なった実験 により得られた N末端のァミノ酸配列 (配列番号 4 ) は、 配列番号 1に示さ れるアミノ酸配列のものと完全に一致していた。 配列番号 1に示されるアミ ノ酸配列に基づけば、 C Eの分子量は 45, 2 1 7 D aであった。  The amino acid sequence and base sequence of the mature CE enzyme of the N E 1 strain were found to be the sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2. The N-terminal amino acid sequence (SEQ ID NO: 4) obtained by a previous experiment was completely identical to that of the amino acid sequence shown in SEQ ID NO: 1. Based on the amino acid sequence shown in SEQ ID NO: 1, the molecular weight of CE was 45, 2 17 Da.
[0175] C E酵素 (ポリぺプチド) をコ一ドするポリヌクレオチド (配列番号 2に 示される塩基配列を有する。 ) を以下の方法で発現させた。  [0175] A polynucleotide encoding the CE enzyme (polypeptide) (having the base sequence shown in SEQ ID NO: 2) was expressed by the following method.
[0176] [ 1. 発現プラスミ ドの構築]  [0176] [1. Construction of expression plasmid]
ゲノム D N Aを錶型とし, C E遺伝子の全長を P C Rにより増幅した. 9 5。Cで 1分間、 55。Cで 30秒間、 7 2。Cで 2分間の反応を 30サイクル行 つた。 反応液から D N A断片を回収し、 サブクロ一ニングした増幅断片に変 異が導入されていないことを確認した後、 大腸菌発現ベクター p E T— 2 3 a ( + ) ベクターに挿入した。  Genomic DNA was used as a cage, and the entire CE gene was amplified by PCR. 9 5 C for 1 minute, 55. C for 30 seconds, 7 2. The reaction for 2 minutes at C was performed 30 cycles. The DNA fragment was recovered from the reaction solution, and after confirming that no mutation was introduced into the subcloned amplified fragment, it was inserted into the E. coli expression vector pET-23a (+) vector.
[0177] [2. 酵素の誘導]  [0177] [2. Induction of enzyme]
宿主 E s c h e r i c h i a c o l i B L 2 1 (D E 3) を、 発現プ ラスミ ドで形質転換した後、 最終濃度 1 00 g/m Lのアンピシリンを加 えた L B寒天培地上で選抜し、 同様の液体培地 4 m L中にて 3 7°Cで一晚前 培養した。 50 Om L容三角フラスコに入れた同液体培地 200 m Lに前培 養液 4m Lを接種し (合計 400m L) 、 3 7 °Cで 200 r p mにて振盪培 養を行った。 600 n mにおける吸光度が 0. 6に達した時点で I P T Gを 最終濃度 1 mMになるように添加し、 目的タンパク質の発現を誘導した。 な お、 培養後の操作を全て 4°Cで行った。 The host Escherichiacoli BL2 1 (DE 3) was transformed with the expression plasmid and then selected on LB agar medium supplemented with 100 g / mL ampicillin at the final concentration. Incubated at 37 ° C for 1 hour. Inoculate 200 mL of the same liquid medium in a 50 Om L Erlenmeyer flask with 4 mL of the pre-culture solution (total 400 mL) and shake culture at 200 rpm at 37 ° C. Nourished. When the absorbance at 600 nm reached 0.6, IPTG was added to a final concentration of 1 mM to induce expression of the target protein. All operations after incubation were performed at 4 ° C.
[0178] [3. 菌体の破砕]  [0178] [3. Disruption of bacterial cells]
6, O O O r pmで 20分間の遠心分離により、 大腸菌の培養液 4 O Om Lから菌体を回収した。 この菌体を、 1 5mLの 1 mM P M S Fを含む緩 衝液 A ( 1 0 OmM T r i s—マレイン酸 (p H 7. 0) 、 1 mM E DTA 1 mM ジチオスレィ ! ル) に懸濁した後に、 フレンチプレスに より破砕した。 菌体破砕後、 1 2, O O O r pmで 30分間の遠心分離を行 し、、 得られた上清を粗酵素液とした。  6, Bacteria were recovered from 4 O OmL of E. coli culture solution by centrifugation at O O O rpm for 20 minutes. After suspending the cells in buffer solution A (10 OmM Tris-maleic acid (pH 7.0), 1 mM EDTA 1 mM dithiothre!) Containing 15 mL of 1 mM PMSF, French It was crushed by a press. After disruption of the cells, the mixture was centrifuged at 12, O O O rpm for 30 minutes, and the resulting supernatant was used as a crude enzyme solution.
[0179] [4. 組換え酵素の精製]  [0179] [4. Purification of recombinant enzyme]
1 ) 陰イオン交換クロマトグラフィー  1) Anion exchange chromatography
上述の実施例において得られた粗酵素液を、 予め緩衝液 Aで平衡化した Q — S e p h a r o s e F a s t ι- I ow (Ame r s h am B i o s c i e n c e s) に供した。 溶出を、 OM 0. 51\!の a C I直線濃度勾 配で行い、 4 1_ずっ1 00画分に分けて回収した。  The crude enzyme solution obtained in the above-described Examples was subjected to Q—Sep h a ros e Fa s t ι- I ow (Ame r s h am B i os c i nc e s) previously equilibrated with buffer A. Elution was performed with an a CI linear concentration gradient of OM 0.51 \! And collected in 4 1_100 fractions.
[0180] 2) 吸着クロマトグラフィー [0180] 2) Adsorption chromatography
陰イオン交換クロマトグラフィ一で得られた活性画分を緩衝液 B (5mM リン酸緩衝液 (p H 6. 0) 1 mM EDTA 1 mM ジチオスレ ィ トール) で透析した後、 予め同緩衝液で平衡化したヒドロキシァパタイ ト (和光純薬工業) に供した. 吸着後の洗浄は緩衝液 C (5mM リン酸緩衝 液 (p H 6. 0) 、 1 mM EDTA 1 mM ジチオスレィ I ル、 0 . 5M KC I ) を用いた。 溶出を、 5mM 20 OmMのリン酸直線濃度 勾配で行い、 4 1_ずっ1 00画分に分けて回収した。  The active fraction obtained by anion exchange chromatography was dialyzed against buffer B (5 mM phosphate buffer (pH 6.0), 1 mM EDTA, 1 mM dithiothreitol), and equilibrated with the same buffer in advance. Washed after adsorption, buffer C (5 mM phosphate buffer (pH 6.0), 1 mM EDTA 1 mM dithiothresyl I, 0.5 M KC) I) was used. Elution was performed with a linear phosphate gradient of 5 mM 20 OmM and collected in 41 1 to 100 fractions.
[0181] 3) 組換え酵素の精製度 [0181] 3) Purity of recombinant enzyme
精製して得られた組換え酵素は、 S DS_P AG Eで単一なバンドを与え た。 収率が約 70 %で、 比活性が約 1 0 U gの精製標品 20 m gを得た [0182] 4) 組換え酵素の酵素化学的性質 The recombinant enzyme obtained by purification gave a single band with SDS_PAGE. 20 mg of a purified sample with a yield of about 70% and a specific activity of about 10 Ug was obtained. [0182] 4) Enzymatic properties of recombinant enzymes
上述の酵素化学的性質の実験手法を用いて試験したところ、 本組換え C E は、 R. a l b u s N E 1由来の C Eとほぼ同じ性質であった。  When tested using the above-mentioned experimental method of enzymatic chemistry, this recombinant CE was almost the same as CE derived from R. albus N E1.
[0183] 〔実施例 5 : ビフィズス菌によるエピラク ト一スの資化性〕 [Example 5: Utilization of epilactose by bifidobacteria]
以下の手順に従って、 ビフィズス菌を、 エピラク トースを含む培地 (表 5 ) 中で培養し、 生育試験を行った。 なお、 供試したビフィズス菌株は、 ビフ ィデ /くクテリゥム フィダム (B i f i d o b a c t e r i um b i f i d u m) J CM 1 255、 ビフイデバクテリゥム ブレべ (B. b r e v e) J CM 1 1 92、 ビフイデバクテリゥム ロンガム (B. l o n g u m) J CM 1 2 1 7 ビフイデバクテリゥム ァドレセンチス (B. a d o l e s c e n t i s) J CM 1 275, ビフイデバクテリゥム イン ファンチス (B. i n f a n t i s) J C M 1 222、 ビフイデバクテリ ゥム カテヌラタム (B. c a t e n u l a t um) J CM 1 1 94であ る。  According to the following procedure, Bifidobacteria were cultured in a medium containing epilactose (Table 5), and a growth test was conducted. The Bifidobacteria strains tested were Bifidobacterium bifidum J CM 1 255, B. breve J CM 1 1 92, Bifidobacteria B. longum J CM 1 2 1 7 B. adolescentis J CM 1 275, B. infantis JCM 1 222, Bifidobacteria catenatum (B catenulat um) J CM 1 1 94.
1. 供試糖溶液を添加することにより培地が希釈されることを考慮して、 培 地の濃度を数倍の濃度で調製した。  1. Considering that the medium is diluted by adding the test sugar solution, the concentration of the medium was adjusted to several times.
2. 供試糖溶液を、 濾過滅菌した後に培地に添加した (最終濃度 1 %) 。 2. The test sugar solution was sterilized by filtration and then added to the medium (final concentration 1%).
3. 1 %グルコース含有培地中にて前培養した供試菌株の菌液を培地量の 1 %接種した。 4. 培養を、 ァネロパックケンキ (A n e r o p a c k K e n k i ;三菱ガス化学) を用いたガスパック法によって行った。 嫌気条件下 にて 37°Cで 1〜 3日間培養し、 供試菌株の資化性について検討した。 3. 1% of the medium was inoculated with the bacterial solution of the test strain pre-cultured in a medium containing 1% glucose. 4. Cultivation was carried out by the gas pack method using Aneropackenki (Anaeropackekenki; Mitsubishi Gas Chemical). The cells were cultured at 37 ° C for 1 to 3 days under anaerobic conditions, and the assimilation of the test strains was examined.
[0184] (表 5. エピラク トース資化性試験培地の組成)  [0184] (Table 5. Composition of epilactose assimilation test medium)
[0185] ほ 5] パクトレバー浸出液 '* 1000 ml [0185] 5) Pactever leachate '* 1000 ml
プロテオ一スペプトン No.3 10 g  Proteo 1 Spepton No.3 10 g
トリプチケース(BBL) 5 g  Tripty case (BBL) 5 g
酵母エキス 3 g  Yeast extract 3 g
ツイ一ン 80 1 g  Tween 80 1 g
塩類溶液 2* 5 ml Saline solution 2 * 5 ml
L -システィン 'HGI'H20 0.2 g L-Sistine 'HGI'H 2 0 0.2 g
1*パクトレバー浸出液 5.5gに 1050gの精製水を加え、 50~60°Cの温浴中で 時々攪拌しながら約 1時間半浸出した後、 濾紙で濾過したもの 1 * 1050 g of purified water added to 5.5 g of pactever leachate, leached for about 1 and a half hours with occasional stirring in a 50-60 ° C warm bath, and then filtered through filter paper
2* MgS04-7H20 10g, FeS04-7H20 0.5g, NaCI 0.5g, nS04 0.337gを、 2 * MgS0 4 -7H 2 0 10g, FeS0 4 -7H 2 0 0.5g, NaCI 0.5g, nS0 4 0.337g
250m Iの精製水に溶かしたもの  Dissolved in 250m I purified water
[0186] エピラク ト一スの生育度を表 6に示した。 何れのビフィズス菌もエピラク トースを利用することができることが判明した。 [0186] Table 6 shows the growth of epilactose. It was found that any bifidobacteria can use epilactose.
[0187] (表 6. ビフィズス菌のエピラク ト一ス資化性) [0187] (Table 6. Epilactose assimilation ability of bifidobacteria)
[0188] [表 6] [0188] [Table 6]
共試菌 B. bifidum B. breve B. longum B. adolescentis B. inTantis B. eaten ulatum 供試 ffi^^ JCM1255 JC 1192 JCM1217 JCM1275 JCM1222 JCM1194 エピラク卜一ス + + + + + + + + + + + Co-test B. bifidum B. breve B. longum B. adolescentis B. inTantis B. eaten ulatum Test ffi ^^ JCM1255 JC 1192 JCM1217 JCM1275 JCM1222 JCM1194 Epilactosis + + + + + + + + + + +
[0189] 〔実施例 6 : エピラク トースの難消化性〕 [Example 6: Indigestibility of epilactose]
エピラク トースの胃内および腸内での消化耐性を、 以下の方法により調べ た。  The digestive tolerance of epilactose in the stomach and intestine was examined by the following method.
[0190] 日本薬局方崩壊試験第 1液 (人工胃液) を用いて胃内での消化耐性を調べ た。 すなわち、 1 O OmMエピラク ト一ス水溶液 25 Lに 2倍濃度の人工 胃液 (0. 4%塩化ナトリウム、 1. 4%濃塩酸) 25 1_を添加した後、 37 °Cで 2時間静置した。 1 00 mM 水酸化ナトリゥムを添加して上記溶 液を中和した後、 A G 501 _ X Bレジンに供し、 遠心分離により非吸着性 画分を得た。 CE活性の定量的測定法と同様の方法で残存するエピラク トー スを定量した。 エピラク I スと同様にラク I ス、 スクロースについても 消化耐性を調べた。 [0190] The Japanese Pharmacopoeia Disintegration Test 1st liquid (artificial gastric juice) was used to examine digestive tolerance in the stomach. That is, artificial gastric juice (0.4% sodium chloride, 1.4% concentrated hydrochloric acid) 25 1_ of 2 times concentration is added to 25 L of 1 O OmM epilactose aqueous solution, and then left at 37 ° C for 2 hours. did. After neutralizing the above solution by adding 100 mM sodium hydroxide, the solution was applied to AG501_XB resin, and a non-adsorbing fraction was obtained by centrifugation. Remaining epilactose in the same way as quantitative measurement of CE activity Quantitatively. Digestion resistance was examined for lactose and sucrose as well as for epilactose.
[0191] 腸内での消化耐性を、 T. M i s h i maらの方法 (丄 A g r i c. F o o d C h em. 53、 7257 (2005) ) に従って調製したラット 小腸粗酵素液を用いて調べた。 すなわち、 1 O OmM エピラク トース水溶 液 25 Lにラット小腸粗酵素液 25 Lを添加した後、 37 °Cで 3時間静 置した。 上記溶液を 5分間煮沸して含まれる酵素を失活させた後、 AG 50 1 _X Bレジンに供し、 遠心分離により非吸着性画分を得た。 C E活性の定 量的測定法と同様の方法で残存するエピラク トースを定量した。 エピラク ト —スと同様にラク ト一ス、 スクロースについても消化耐性を調べた。  [0191] Intestinal resistance to digestion was examined using rat small intestine crude enzyme solution prepared according to the method of T. Mishima et al. (丄 Agri c. Food Chem. 53, 7257 (2005)). It was. Specifically, 25 L of rat small intestine crude enzyme solution was added to 25 L of 1 O OmM epilactose aqueous solution, and then allowed to stand at 37 ° C for 3 hours. The solution was boiled for 5 minutes to inactivate the contained enzyme, and then subjected to AG 50 1 —X B resin, and a non-adsorbing fraction was obtained by centrifugation. Remaining epilactose was quantified in the same manner as the quantitative measurement of CE activity. The digestibility of lactose and sucrose as well as epilactose was examined.
[0192] 胃内および腸内でのエピラク ト一ス、 ラク ト一ス、 スクロースの消化耐性 を表 7に示す。 エピラク トースは胃内および腸内において消化液に対して高 い安定性を有していることが確認された。  [0192] Table 7 shows the digestive resistance of epilactose, lactose and sucrose in the stomach and intestine. Epilactose was confirmed to have high stability against digestive juices in the stomach and intestine.
[0193] [表 7]  [0193] [Table 7]
残存率 «) Survival rate ")
胃内 腸内 エピラク トース 104 82  Stomach Intestine Epilactose 104 82
ラク 卜一ス 101 54  Raku Shinichi 101 54
スクロース 102 3  Sucrose 102 3
[0194] 〔実施例 7 : エピラク トースのミネラル吸収促進作用〕 [Example 7: Promotion of mineral absorption by epilactose]
C a c o _ 2細胞は、 ヒト大腸ガン組織から樹立された上皮細胞株であり 、 フラスコや透過性膜上に培養すると、 極性を有する単層を形成する。 また 、 C a c o_2細胞は、 1 0〜 1 5%ゥシ胎児血清添加培地による 2〜3週 間程度の培養によって、 分化誘導剤を使用することなく小腸上皮細胞様に分 化する。 細胞間には T Jが形成され、 細胞の刷子縁膜側には微絨毛が形成さ れる。 そして、 一部のミネラルはこの T Jを介して吸収される。 ラットを用 いた; n V i v oの実験にて C a 2+吸収促進作用の認められた難消化性糖 類を C a c o _ 2に添加すると、 C a 2+吸収が増加した。 この C a吸収促進 作用は T Jを介した作用であることが示唆されている (T. S u z u k i と H. H a r a , (2004) J . N u t r. 1 34、 1 935) 。 Caco_2 cells are epithelial cell lines established from human colon cancer tissue and cultured on flasks and permeable membranes to form a polar monolayer. Caco_2 cells can be separated into small intestinal epithelial cells without the use of differentiation-inducing agents by culturing for about 2 to 3 weeks in a medium supplemented with 10 to 15% urine fetal serum. Turn into. TJ is formed between cells, and microvilli are formed on the brush border membrane side of the cells. And some minerals are absorbed through this TJ. Rats were used; the addition of indigestible sugars, which had been shown to promote Ca 2+ absorption in n V ivo experiments, increased C a 2+ absorption. It has been suggested that this Ca absorption promoting action is mediated by TJ (T. Suzuki and H. Hara, (2004) J. Nutr. 1 34, 1 935).
[0195] そこで、 C a 2+吸収促進作用を有する難消化性糖類の一種であるジフラク [0195] Therefore, difract, a kind of indigestible saccharide having C a 2+ absorption promoting action.
ト一スアンヒ ドリ ド (d i _D_ f r u c t o_ f u r a n o s e 1 , 2 ' : 2, 3' d i a n h y d r i d e ; D FA I I I ) を対照として、 エピラク ト一スの T Jへの影響を検討した。  The effect of the epilactice on T J was examined using the triad anhydride (d i _D_f r u c t o_ f u r a n o s e 1, 2 ': 2, 3' d i a n h y d r i d e; DFA I I I) as a control.
[0196] ヒト大腸ガン由来細胞株 C a c o_2 ( H T B 37、 継代数 1 9 ) を AT CCから購入した。 1 0 OmL/Lのゥシ胎児血清 (非働化処理を実施、 T h e r mo T r a c e) 、 44 mM N a2C03、 1 mM N a—ヒゾレヒ ン酸、 50, 000 I U/L ペニシリン、 および 5 Om g/L ストレ プトマィシン硫酸を補充した D u l b e c c o' s mo d i f i e d E a g I e me d i um 、 I n v i t r o g e n) を培地に使用し 7二。 し a c o _ 2細胞を、 75 c m2細胞培養フラスコ (Co r n i n g) において、 5%二酸化炭素および 95%空気の存在下にて 37°Cで培養した。 本実験で は、 継代数 39の C a c o_ 2細胞を使用した。 [0196] A human colon cancer-derived cell line C aco_2 (HTB 37, passage number 19) was purchased from AT CC. 10 OmL / L urine fetal serum (inactivated, T emo T race), 44 mM Na 2 C0 3 , 1 mM Na—hyzorenoic acid, 50,000 IU / L penicillin, and 5 Dulbecco's modified Eag Ieme dium (Invitrogen) supplemented with Omg / L streptomycin sulfate is used as the medium. The aco_2 cells were cultured at 37 ° C. in the presence of 5% carbon dioxide and 95% air in a 75 cm 2 cell culture flask (Corning). In this experiment, Caco_2 cells with passage number 39 were used.
[0197] 刷子縁膜側へ添加した難消化性糖類による細胞間透過性へ影響の評価には 、 式 として、 ( Π ) H a n k s b a l a n c e d s a l t s o l u t i o n (HBSS、 1 37 mM N a C I、 5. 4 mM KC I、 4. 2 mM N a HC03、 3. 4 mM N a2H P04、 4. 4 mM K H 2 P 04 、 1. 25 mM Ca C I 2、 0. 41 mM Mg S04、 0. 49 mM M g C I 2、 1 OmM H EP ES、 1 OmM D—グルコース、 4mM L - グルタミン (p H 7. 4) ) 、 ならびに (2) 1 Mの D FA I I Iまたは エピラク ト一ス (HBSSに溶解) 溶液を使用した。 [0197] The evaluation of the effect on the intercellular permeability by the indigestible saccharide added to the brush border membrane side is as follows: (Π) Hanksbalancedsaltsolut ion (HBSS, 1 37 mM Na CI, 5.4 mM KC I, 4. 2 mM N a HC0 3, 3. 4 mM N a 2 H P0 4, 4. 4 mM KH 2 P 0 4, 1. 25 mM Ca CI 2, 0. 41 mM Mg S0 4, 0. 49 mM M g CI 2, 1 OmM H EP ES, 1 OmM D- glucose, 4 mM L - glutamine (p H 7. 4)), and (2) the D FA III or Epiraku preparative Ichisu (HBSS for 1 M Dissolution) The solution was used.
[0198] トランズゥエル■システム (T r a n s w e I I ;直径 1 2 mm、 ポアサ ィズ 0. 4 、 培養面積1. 0 c m2 ; C o r n i n g) を使用した。 細胞 間の透過性の評価を、 経上皮電気抵抗値 (T ER) の測定により、 以下の方 法に従って実施した。 [0198] Transwell System (T ranswe II; diameter 12 mm, Poasa 0.4, culture area 1.0 cm 2 (Corning) was used. Intercellular permeability was evaluated by measuring transepithelial electrical resistance (T ER) according to the following method.
1. T r a n swe l I に、 0. 63 X 1 04 e e l I s/c m2の密度で 播いた C a c o _ 2細胞を、 25— 26日間培養した。 1. C aco — 2 cells seeded in T ran swel I at a density of 0.63 × 10 4 eel I s / cm 2 were cultured for 25-26 days.
2. C a c o-2細胞を培養した T r a n swe l Iの刷子縁膜側および基 底膜側を、 HBSSで 2回リンスした後、 各々 0. 5 1_ぉょび1. OmL の H BS Sを充填した。  2. After rinsing the brush border membrane side and basement membrane side of Tran swel I cultured with C aco-2 cells twice with HBSS, each 0.5 1_powder 1. OmL of H Filled with BS S.
3. C02インキュベータ一内 (5%二酸化炭素および 95%空気の存在下に て 37 °C) で 30分間静置後、 0 m i nの測定値として T E Rを測定した。3. C0 2 incubator within one (5% carbon dioxide and 95% hands in the presence of air 37 ° C) for 30 minutes after standing was measured TER as a measure of 0 min.
4. 刷子縁膜側からの難消化性糖類の添加の影響を評価する場合は、 最終濃 度として、 各難消化性糖類が 0、 20、 40、 80mMとなるように、 刷子 縁膜側の溶液に添加した。 4. When evaluating the effects of the addition of indigestible saccharides from the brush border side, the final concentration should be 0, 20, 40, and 80 mM for each indigestible saccharide on the brush border side. Added to the solution.
[0199] その結果、 図 8に示すように、 エピラク ! スまたは D FA I I Iの Ca c o— 2への添加によって、 その濃度に依存して T E Rが低下し、 80mM 添加の 3時間後では、 エピラク ! スまたは D FA I I Iのいずれを添加し た場合においても、 丁 £ が5000 ■ cm 2付近まで低下した。 [0199] As a result, as shown in Figure 8, Epirak! Depending on the concentration of TER or D FA III added to Ca co-2, TER decreases, and after 3 hours of 80 mM addition, epilac! Even when either DFA III or DFA III was added, the amount dropped to around 5000 cm 2 .
[0200] また、 難消化性糖類の添加 3時間後の T E Rを測定した後、 各難消化性糖 類を除去、 培養培地に交換した。 培地交換 24時間後の T ERは、 エピラク I ス、 D FA I I I ともに初期値である 1 200〜1 400Ω ■ c m2に戻 つていた。 [0200] Further, after measuring TER 3 hours after addition of the hardly digestible saccharide, each difficultly digested saccharide was removed and replaced with a culture medium. The TER at 24 hours after the medium change was restored to the initial value of 1 200-1400 Ωcm 2 for both Epilac I and D FA III.
[0201] このように、 エピラク ト一スは、 T Jについてのミネラル吸収促進作用を 有する D FA I I I と同様の作用を示した。 これらの結果は、 エピラク ト一 スが C a 2 +を含むミネラル吸収促進作用を有する可能性を示すものである。 [0201] Thus, Epilactose showed the same action as DFA III, which has a mineral absorption promoting action on TJ. These results indicate the possibility that Epiraku bets one scan has a mineral absorption promoting effects, including C a 2 +.
[0202] [実施例 8 : ラッ卜に対するミネラル吸収促進作用]  [0202] [Example 8: Promotion of mineral absorption to rattle]
ラットにおけるエピラク ト一スのミネラル吸収促進作用を検討した。  The effect of epilactose on mineral absorption in rats was examined.
[0203] ( 1 ) 4週令の W i s t a r -S T系雄ラット (日本 S L C) をステンレス ケージに個別に入れて飼育し、 飼料および水 (イオン交換水) を自由に摂取 させた。 毎朝同一時刻に体重および摂食量を計測した。 動物個体の状態は、 脱毛および/または下痢などを指標にして判定した。 試験飼料は毎日、 飲水 は 3日毎に交換した。 なお、 飼育室を、 室温 23± 1 °C、 温度 60%前後、 明暗周期を 1 2時間 (明期 8 : 00〜20 : 00、 暗期 20 : 00〜 8 : 0 0) に設定した。 A I N 93 G標準精製飼料 (基本食) で 5日間飼育した後 、 表 8に示す試験飼料 (エピラク トース添加食、 ラク トース添加食) または コントロール食にて 1 5日間飼育した。 [0203] (1) Four-week-old Wistar-ST male rats (Japan SLC) were raised individually in stainless steel cages and freely fed food and water (ion exchange water) I let you. Body weight and food intake were measured every morning at the same time. The state of the animal individual was determined using hair loss and / or diarrhea as an index. The test feed was changed every day and the drinking water was changed every 3 days. The breeding room was set to room temperature 23 ± 1 ° C, temperature around 60%, and light / dark cycle 12 hours (light period 8:00 to 20:00, dark period 20:00 to 8:00:00). After 5 days of breeding with AIN 93 G standard purified feed (basic diet), the animals were reared for 15 days with the test diet shown in Table 8 (foods supplemented with epilactose, lactose supplemented diet) or control diet.
[0204] [表 8] 飼料 [0204] [Table 8] Feed
組 成  Composition
コントロール エピラク卜ース ラク I ^一ス添加  Control Epi-Lacose Lac I ^ I added
食 添加食 食  Food additive food
g/kg  g / kg
カゼイン 200.000 200.000 200.000 スクロース 644.486 599.486 599.486 エピラク I -一ス 50.000  Casein 200.000 200.000 200.000 Sucrose 644.486 599.486 599.486 Epilac I -Ice 50.000
ラク卜ース 5.000 50.000 コ一ン油 50.000 50.000 50.000 結晶セルロース 50.000 50.000 50.000 ミネラル混合 (AIN93G-MX) 35.000 35.000 35.000 ビタミン混合 (AIN93G-VMX) 10.000 10.000 10.000 しシスチン 3.000 3.000 3.000 重酒石酸コリン 2.500 2.500 2.500 t-プチルヒドロキノン 0.014 0.014 0.014  Lactose 5.000 50.000 Corn oil 50.000 50.000 50.000 Crystalline cellulose 50.000 50.000 50.000 Mineral mix (AIN93G-MX) 35.000 35.000 35.000 Vitamin mix (AIN93G-VMX) 10.000 10.000 10.000 Cystine 3.000 3.000 3.000 Choline bitartrate 2.500 2.500 2.500 t -Ptylhydroquinone 0.014 0.014 0.014
[0205] 飼育 1 2日目から 4日間の糞を採集して凍結乾燥し、 粉砕後、 約 1 gを乾 式灰化 (550°C、 1 8時間) し、 3%塩酸溶液に溶解後、 原子吸光度法 ( 偏光ゼ一マン原子吸光度計、 H I TACH I ) により、 ミネラルの測定を行 つた。 飼料 1 gも同様の操作をおこなった。 得られたミネラル量より、 4日 間のミネラルの吸収率を求めた。 [0205] Breeding 1 Feces collected for 4 days from the second day, freeze-dried, pulverized, about 1 g dry ashed (550 ° C, 18 hours), dissolved in 3% hydrochloric acid solution Minerals were measured by the atomic absorption method (polarized Zeman atomic absorption spectrometer, HI TACH I). The same operation was performed on 1 g of feed. From the amount of minerals obtained, the absorption rate of minerals for 4 days was determined.
[0206] 結果は、 図 9に示すとおり、 エピラク ト一ス摂取により、 C a 2 +、 Mg^ + 、 Z n 2+の吸収率が増加することが確認された。 [0206] As shown in Fig. 9, it was confirmed that the absorption rate of C a 2+ , Mg ^ +, and Z n 2+ increased with the intake of epilactose.
[0207] (2) 1 5日間の飼育終了後にラットを解剖して小腸を取り出し、 生理食塩 水で小腸内容物を洗い流した後、 空腸と回腸にわけてそれぞれから約 3 cm のセグメントを 3つ作り、 裏表を反転させた。 反転したセグメントの片端を 縫合絹糸 (スペシャル縫合絹糸 4号、 ハシモト) で結紫した。 他端は、 内液 ( 1 25mM N a C I、 4mM KC I、 1. 25 mM C a C I 2 ■ 2 H 2 0、 3 OmM T r i s、 1 OmM D_グルコ一ス、 p H 7. 4) 0. 7 m Lをシリンジにより注入後、 同様に結紫し、 小腸反転サックを作成した。 [0207] (2) 1 After 5 days of breeding, dissect the rat and remove the small intestine. After rinsing out the contents of the small intestine with water, three segments of about 3 cm were made from the jejunum and ileum, and the front and back sides were reversed. One end of the inverted segment was ligated with suture silk (special suture silk No. 4, Hashimoto). The other end is the internal solution (125 mM NaCI, 4 mM KCI, 1.25 mM CaCI2 2 H20, 3 OmM Tris, 1 OmM D_glucose, pH 7.4) After injecting 0.7 mL with a syringe, it was similarly purpled to create an inverted small intestine sac.
[0208] 作成した反転サックを C a 2+及びエピラク ト一スをそれぞれ 0、 50、 1 00 mM含む外液 (1 25 mM N a C I、 4mM KC I、 1 0mM C a C I 2 ■ 2 H 2 O 3 OmM T r i s、 1 0mM D—グルコース、 p H 7. 4、 浸透圧は N a C I量で調整した) 1 5m Lの入った 5 Om L遠心チ ュ一ブ (C o r n i n g) に移し、 ウォータ一バスにて 37°C、 1 1 0 o s c i I I a t i o n /m i nで振とうした。 30分間の振とう後、 反転サ ック内の内液を回収し、 C a 2+濃度を市販の測定キット (カルシウム Cテス トヮコ一、 和光純薬工業) にて測定した。 また、 小腸反転サックの長さを定 規により測定した。 その結果を図 1 0に示す。 [0208] The prepared reverse sac contains Ca 2 + and epilactose 0, 50, and 100 mM, respectively (1 25 mM NaCI, 4 mM KCI, 10 mM CaCI 2 2H 2 O 3 OmM Tris, 10 mM D—glucose, pH 7.4, osmotic pressure adjusted by Na CI) 1 Transfer to a 5 Om L centrifuge tube containing 5 mL Shake on a water bath at 37 ° C, 1 10 osci II ation / min. After shaking for 30 minutes, the internal solution in the inverted sac was collected, and the Ca 2+ concentration was measured with a commercially available measurement kit (Calcium C Test Koichi, Wako Pure Chemical Industries). In addition, the length of the small intestine reversal sack was measured with a ruler. The results are shown in FIG.
[0209] 図 1 0の縦軸は、 サックに用いた小腸の長さ (cm) 当たりの C a 2+吸収 量で表した。 エピラク ト一スの添加量に依存して、 空腸、 回腸ともに回収し た内液中の C a 2+濃度が増加した。 このことから、 エピラク ト一スが大腸の みならず空腸および回腸においても C a 2+吸収能を促進する機能を有してい ることが確認された。 [0209] The vertical axis in Fig. 10 represents the amount of C a 2+ absorbed per length (cm) of the small intestine used for the sac. Depending on the amount of epilactose added, the Ca 2+ concentration in the internal fluid collected from both the jejunum and ileum increased. From this, it was confirmed that epilactose has a function of promoting C a 2+ absorption not only in the large intestine but also in the jejunum and ileum.
[0210] 〔実施例 9 : エピラク トースの腸内環境改善作用〕  [0210] [Example 9: Epilactose improves intestinal environment]
[0211] 実施例 8の条件下でラットを 1 5日間飼育した後、 エーテル麻酔下に開腹 した。 盲腸の両端を縫合糸で結紫して内容物を含む盲腸を摘出し、 総盲腸重 量を測定した。 盲腸内容物を取り出した後、 盲腸壁重量を測定した。 総盲腸 重量から盲腸壁重量を減じた値を盲腸内容物重量とした。 盲腸内容物の一部 に 4倍量の脱イオン水を加えて (5倍希釈) 、 氷冷下でホモジナイズした。 ホモジネー卜の一部を遠心分離し、 上清の p Hを測定した。 さらにホモジネ 一卜に内部標準としてクロ トン酸を加え、 遠心分離後、 上層を採取、 同量の クロ口ホルムを加え、 混合、 遠心分離し、 再び上層を集め、 フィルターを通 したものを有機酸分析用のサンプルとし、 島津高速液体クロマトグラフ有機 酸分析システムを用い、 下記の分離条件及び検出条件で分析を行った。 [0211] Rats were raised for 15 days under the conditions of Example 8, and then laparotomized under ether anesthesia. Both ends of the cecum were ligated with sutures, the cecum containing the contents was removed, and the total cecal weight was measured. After removing the cecal contents, the cecal wall weight was measured. The value obtained by subtracting the cecal wall weight from the total cecal weight was taken as the cecal content weight. A 4-fold amount of deionized water was added to a portion of the cecum contents (diluted 5 times) and homogenized under ice-cooling. A portion of the homogenizer was centrifuged, and the pH of the supernatant was measured. In addition, add crotonic acid as an internal standard to the whole homogen, centrifuge and collect the upper layer. Add the black mouth form, mix, centrifuge, collect the upper layer again, and pass the filter to make the sample for organic acid analysis. Using the Shimadzu high performance liquid chromatograph organic acid analysis system, the following separation and detection conditions The analysis was performed.
[0212] 分離条件  [0212] Separation conditions
カラム: S h i m p a k S CR— 1 02 H ( 8 mm I . D. x 300 mm)  Column: S h i m p a k S CR— 1 02 H (8 mm I. D. x 300 mm)
移動相: 5mM p_トルエンスルホン酸水溶液  Mobile phase: 5mM p_Toluenesulfonic acid aqueous solution
流 Mi : 0. 8 m L /m i n  Flow Mi: 0.8 m L / m i n
温度 : 40 °C  Temperature: 40 ° C
検出条件  Detection condition
試薬 : 5mM p—トルエンスルホン酸水溶液及び 1 00 M E D TA を含む 20mM B i s - T r i s水溶液  Reagent: 20 mM Bis-Tris aqueous solution containing 5 mM p-toluenesulfonic acid aqueous solution and 100 M EDTA
流 Mi : 0. 8 mL/ m i n  Flow Mi: 0.8 mL / m i n
検出器: CD D—6 A  Detector: CD D-6A
温度 : 45 °C  Temperature: 45 ° C
[0213] また、 盲腸内容物の一部を嫌気性希釈バッファ一 (20 g/L B u f f e r e d p e p t o n e w a t e r ( D ι f c o) 、 0. 5 g / L―ンス丁 イン (和光純薬工業) 、 1 m L/L Tw e e n 80 (和光純薬工業) 、 1 g/L B a c t o a g a r (D i f c o) ) に懸濁し、 さらにこれを希釈 バッファ一で希釈した。 総嫌気性菌数の計数には 50m L/Lのゥマ脱繊維 血 (日本バイオテスト) を添加した B L寒天培地 (栄研化学) を、 乳酸菌数 の†数には 8 g/Lの L a b l em c o p owd e r (O x o i d) およ び 1. 3m L/Lの酢酸を添加した L BS a g a r (D i f c o) を用いた 。 盲腸内容物希釈液を塗布したプレートをァネロパックケンキ (三菱瓦斯化 学) 中、 37°C、 24時間培養した後に、 コロニー数をカウントした。 [0213] In addition, a portion of the cecum content was anaerobic dilution buffer (20 g / LB ufferedpeptonewater (D ι fco), 0.5 g / L-Sing Inn (Wako Pure Chemical Industries), 1 mL / L Tw e en 80 (Wako Pure Chemical Industries) was suspended in 1 g / LB actoagar (D ifco )), it was further diluted it with dilution buffer scratch. To count the total number of anaerobic bacteria, BL agar medium (Eiken Chemical) supplemented with 50 ml L / L horse defibrinated blood (Nippon Biotest) was used, and the number of lactic acid bacteria was 8 g / L L. LBS agar (Difco) supplemented with abl em cop owd er (O xoid) and 1.3 ml / L acetic acid was used. After culturing the plate coated with the cecal content dilution in Aneropackenki (Mitsubishi Gas Chemical) at 37 ° C for 24 hours, the number of colonies was counted.
[0214] F e c a l D NA I s o l a t i o n K i t (MO B i o) を用いて盲 腸内容物の一部から D NAを抽出した。 Sma r t C y c l e r I I (C e p h e i d ) を用いてビフィズス菌数を r e a l t i m e P C R法によつ て以下に示す条件で計数した。 反応液の組成は 200 n M g B i f i f - F 、 200 n M g B i f i f _ R、 1 x S Y B R P r e m i x E x T a q ( タカラバイオ) とし、 初期変性 9 5°C、 30秒間の後、 9 5 °Cで 5秒間、 6 4。Cで 1 5秒間、 7 2。Cで 1 5秒間の反応を 43サイクル行つた。 [0214] DNA was extracted from a part of the cecal contents using Fecal DNA I solation Kit (MO Bio). Using Sma rt Cycler II (C epheid), the number of bifidobacteria was determined by realtime PCR. The counting was performed under the following conditions. The composition of the reaction solution is 200 n Mg B ifif-F, 200 n Mg B ifif _ R, 1 x SYBRP remix E x T aq (Takara Bio), initial denaturation 9 5 ° C, after 30 seconds, 9 6 4 at 5 ° C for 5 seconds. C for 1 5 seconds, 7 2. C for 15 cycles of 15 seconds.
[0215] なお、 統計解析には、 O n e—w a y A N OVAを行い、 P値が 0. 0 5以下の ½合に、 D u n c a n s M u l t i p l e R a n g e Γ e s tを用いて平均値間の有意差を判定した。  [0215] For statistical analysis, one-way AN OVA was performed, and when the P value was 0.05 or less, a significant difference between the mean values was calculated using Duncans Multiple Range Γ est. Judged.
[0216] 総盲腸重量、 盲腸壁重量、 盲腸内容物重量と盲腸内容物の p Hを表 9に、 盲腸内容物中の有機酸含有量を表 1 0に示す。  [0216] Table 9 shows the total cecal weight, cecal wall weight, cecal content weight, and pH of the cecal content, and Table 10 shows the organic acid content in the cecal content.
[0217] [表 9] コントロール エピラクトース添 ラク卜ース P値  [0217] [Table 9] Control Epilactose-added lactose P-value
食 加食 添加食  Food Additive Additive
総盲腸重量 1.06 ±0.09 2.62 ±0.10 1.27 ±0.09 <0.0001 Total cecal weight 1.06 ± 0.09 2.62 ± 0.10 1.27 ± 0.09 <0.0001
(g/100g体重) (g / 100g body weight)
盲腸壁重量 0.23土 0.01 0.38 ± 0.02 0.24 ± 0.01 く 0.0001 Cecal wall weight 0.23 Sat 0.01 0.38 ± 0.02 0.24 ± 0.01 + 0.0001
(g/100g体重) (g / 100g body weight)
盲腸内容物重量 1.76 ±0.17 4.82 ±0.20 2.20 ±0.19 <0.0001 Cecal content weight 1.76 ± 0.17 4.82 ± 0.20 2.20 ± 0.19 <0.0001
(g) (g)
盲腸内容物 pH 7.60 ± 0.04 6.62 ±0.18 7.52 ± 0.07 0.0002  Cecal contents pH 7.60 ± 0.04 6.62 ± 0.18 7.52 ± 0.07 0.0002
[0218] [表 10] コントロール食 エピラク卜ース ラク卜ース P値 [0218] [Table 10] Control diet Epilactose Lactose P-value
添加食 添加食  Additive food additive food
含有量 (mmol /盲腸内容物)  Content (mmol / cecal content)
酢酸 88.3 ± 6.9 275 ±19 99.1 ±9.3 <0.0001 プロピ才ン酸 32.3 ±3.2 126.6 ±8.3 41.8 ±4.6 <0.0001 酪酸 17.1 ±1.3 46.2 ± 7.7 36.6 + 4.0 0.0008 総短鎖脂肪酸 138±11 447 ±31 178 ±16 <0.0001 コハク酸 1.52 ±0.43 185 ±27 11.51 ±5.86 <0.0001 乳酸 0.742 ±0,167 44.9 ± 30.6 3.04 ±1.61 0.1792  Acetic acid 88.3 ± 6.9 275 ± 19 99.1 ± 9.3 <0.0001 Propic acid 32.3 ± 3.2 126.6 ± 8.3 41.8 ± 4.6 <0.0001 Butyric acid 17.1 ± 1.3 46.2 ± 7.7 36.6 + 4.0 0.0008 Total short chain fatty acids 138 ± 11 447 ± 31 178 ± 16 <0.0001 Succinic acid 1.52 ± 0.43 185 ± 27 11.51 ± 5.86 <0.0001 Lactic acid 0.742 ± 0,167 44.9 ± 30.6 3.04 ± 1.61 0.1792
[0219] 表 9に示すように、 エピラク ト一ス添加飼料の摂取によって盲腸内容物重 量、 盲腸壁重量がコントロール食を摂取した群と比較して有意に増加した。 盲腸内内容物の増加は排便回数の増加を意味しているので、 エピラク トース は便秘の改善作用を有するものと期待される。 [0219] As shown in Table 9, the content of the cecal content was increased by the intake of epilactose-added feed. The amount and cecal wall weight increased significantly compared to the group that received the control diet. Since an increase in the content of the cecum means an increase in the number of defecations, epilactose is expected to have an effect of improving constipation.
[0220] また、 表 1 0に示されるように、 盲腸内容物中の有機酸量については、 ェ ピラク トース摂取群で短鎖脂肪酸量が有意に増加し、 総短鎖脂肪酸量はコン トロール群の 3.2倍となった。 さらに、 コハク酸量はコントロール群の 1 20 倍となった。 また有機酸量の増加に伴い、 盲腸内容物中の p Hはエピラク ト —ス摂取群で低下した。  [0220] Also, as shown in Table 10, regarding the amount of organic acids in the cecum contents, the amount of short-chain fatty acids significantly increased in the epilactose intake group, and the total amount of short-chain fatty acids in the control group 3.2 times as much. Furthermore, the amount of succinic acid was 120 times that of the control group. As the amount of organic acid increased, pH in the cecal contents decreased in the epilactose intake group.
[0221] 盲腸内総嫌気性菌数 ( I o g 1 0 C FU/g内容物) は、 コントロール食 群 9. 4±0. 2に対して、 エピラク ! ス添加食群で 1 0. 2±0. 2と 増加傾向を示した。 乳酸菌数 ( I o g 1 0 C FU/g内容物) は、 コント口 —ル食群 7. 5±0. 4に対して、 エピラク ! ス添加食群で 9. 1 ±0. 1 となり、 エピラク ト一ス添加飼料摂取により 1 0倍程度増加した。 さらに 、 ビフィズス菌数( I o g 1 0 コピー数/ g内容物)は、 コントロール食群 5 . 6±0. 3に対して、 エピラク ! ス添加食群で 7. 8±0. 3となり、 エピラク ト一ス添加飼料摂取により 1 50倍程度増加した。  [0221] The total anaerobic bacterial count in the cecum (I o g 10 C FU / g contents) was compared to the control diet group 9.4 ± 0.2, epilac! In the dietary supplement group, there was an increase of 10.2 ± 0.2. The number of lactic acid bacteria (I o g 10 C FU / g content) is as follows: In the dietary supplement group, it was 9.1 ± 0.1, and increased by about 10 times as a result of intake of the diet supplemented with epilactose. In addition, the number of bifidobacteria (I o g 10 copy number / g content) is epilac against the control diet group 5.6 ± 0.3! It was 7.8 ± 0.3 in the dietary supplement group, and increased by about 150 times due to the intake of epilactos supplemented diet.
[0222] このように、 ビフィズス菌ゃ乳酸菌といった善玉菌がエピラク ト一ス添加 飼料により増加し、 これらの菌によってエピラク ト一スの発酵が進んだもの と結論され、 エピラク ト一スのプレバイオテイクスとしての有効性が示され た。  [0222] In this way, it was concluded that good bacteria such as bifidobacteria and lactic acid bacteria were increased by the feed containing epilactose, and it was concluded that epicactus fermentation was advanced by these bacteria, The effectiveness as a take was shown.
[0223] [実施例 1 0 : エピラク トースの脂質代謝改善作用]  [0223] [Example 10: Epilactose improves lipid metabolism]
4週令の W i s t a r -S T系雄ラット (日本 S L C) をステンレスケージ に個別に入れて飼育し、 飼料および水 (イオン交換水) を自由に摂取させた 。 毎朝同一時刻に体重および摂食量を計測した。 動物個体の状態は、 脱毛お よび/または下痢などを指標にして判定した。 試験飼料は毎日、 飲水は 3日 毎に交換した。 なお、 飼育室を、 室温 23± 1 °C、 温度 60%前後、 明暗周 期を 1 2時間 (明期 8 : 00〜20 : 00、 暗期 20 : 00〜 8 : 00) に 設定した。 A I N 93G標準精製飼料 (基本食) で 5日間飼育した後、 前記 表 8に示す試験飼料 (エピラク トース添加食、 ラク トース添加食) またはコ ントロール食にて 1 5日間飼育した。 Four-week-old male WIStar-ST rats (Japan SLC) were housed individually in stainless cages and allowed to freely feed and feed (ion exchange water). Body weight and food intake were measured every morning at the same time. The state of the animal individual was judged using hair loss and / or diarrhea as an index. The test feed was changed every day and the drinking water was changed every 3 days. The breeding room was set to room temperature 23 ± 1 ° C, temperature around 60%, and light / dark period to 12 hours (light period 8:00 to 20:00, dark period 20:00 to 8:00). After raising with AIN 93G standard refined feed (basic diet) for 5 days, They were bred for 15 days on the test feeds shown in Table 8 (epi-lactose added diet, lactose-added diet) or control diet.
[0224] 飼育開始日と 7日後、 1 4日後に 9時 (摂食時) と 20時 (絶食時) に尾 静脈より採血を行い、 4°C、 3000 r pm、 1 0分間遠心分離して、 血漿 を回収し、 中性脂質、 総コレステロール、 HD Lコレステロール、 コリン型 リン脂質を、 それぞれ TG-ENカイノス ( (株) カイノス) 、 コレステロ一 ル Eテストヮコ一 (和光純薬工業) 、 HD L、 コレステロールテストヮコ一 (和光純薬工業、 P L— ENカイノス ( (株) カイノス) を使用して測定し た (図 1 1 ) 。 L D L + V L D Lコレステロールは、 総コレステロール値よ り H D Lコレステロール値を減算して求めた。 また、 1 5日間の飼育終了後 にラットを解剖して腹部大動脈血を採取し、 4°C、 3000 r pm、 1 0分 間遠心分離して、 同様にして血漿中の中性脂質、 総コレステロール、 HD L コレステロール、 コリン型リン脂質を測定した (図 1 2) 。 なお統計解析に は、 O n e—wa y ANOVAを行い、 P値力《0. 05以下の場合に、 D u n c a n s Mu l t i p l e Ra n g e T e s t ¾r用しゝて平均値間 の有意差を判定した。 [0224] Blood was collected from the tail vein at 7 o'clock, 7 days later, 14 days later at 9 o'clock (at the time of feeding) and 20:00 (at the time of fasting), and centrifuged at 4 ° C, 3000 rpm for 10 minutes. Plasma, neutral lipid, total cholesterol, HD L cholesterol, choline-type phospholipid, TG-EN Kainos (Kainos Co., Ltd.), cholesterol E-test ヮ koichi (Wako Pure Chemical Industries), HD L, Cholesterol Test Measured using KOKOI (Wako Pure Chemical Industries, PL-EN Kainos Co., Ltd., Kainos Co., Ltd.) (Figure 1 1) LDL + VLDL cholesterol is more HDL cholesterol than total cholesterol In addition, after 15 days of breeding, the rats were dissected and abdominal aortic blood was collected and centrifuged at 4 ° C, 3000 rpm for 10 minutes, and plasma was similarly obtained. Medium neutral lipid, total cholesterol, HD L cholesterol (Figure 1 2) In addition, for statistical analysis, one-way ANOVA was performed, and when the P-value power was below 0.05, the Duncans Multiple Range Test was performed. ¾r was used to determine the significant difference between the mean values.
[0225] その結果、 中性指質とリン脂質の濃度変化は確認されなかったが、 総コレ ステロール値と LD L + V LD Lコレステロール値は、 エピラク I ス添加 食群においてコントロール群に比べ低下していることが確認された。  [0225] As a result, changes in the concentrations of neutral finger and phospholipids were not confirmed, but total cholesterol and LD L + V LD L cholesterol levels were lower in the epilac I supplemented food group than in the control group It was confirmed that
[0226] [実施例 1 1 : エピラク トース摂食時の血糖値変化]  [0226] [Example 11: Change in blood glucose level during epilactose consumption]
7週齢の雌性 d d Yマウス (日本 S LC、 1群 6匹) を一晚絶食後、 ラク I スあるいはエピラク ! ス (各 0. 1 mmo I /匹) を経口投与し、 投 与 0、 30、 60、 1 20分後に尾静脈より採血し、 血糖値をグルコース C I Iテストヮコ一を用いて測定した。 結果を図 1 3に示す。  After 7-week-old female d d Y mice (Japan SLC, 6 mice per group) were fasted, Lax I or Epilac! (0.1 mmo I / animal) were orally administered, blood was collected from the tail vein at 0, 30, 60, 120 minutes after administration, and the blood glucose level was measured using a glucose CI test. The results are shown in Figure 13.
図 1 3に示されるように、 ラク トース投与群では投与後血糖値が有意に上 昇し、 投与 30分後に最高値を示す一方、 エピラク トース投与群では血糖値 の増加は認められなかった。 本結果は、 表 7に示した消化性結果と合わせて 、 エピラク ト一スが低カロリー性を有することを示している。 [0227] C Eは、 セロビオースの還元末端側グルコースの 2位炭素原子に結合した 水酸基の立体配置を転位し、 グルコシルマンノ一スを導く反応を触媒すると いう点でアルド一ス 1—ェピメラ一ゼ (E C 5. 1. 3. 3) およびマル I ス 1—ェピメラ一ゼ (EC 5. 1. 3. 2 1 ) とは異なる。 C Eは非 常に独特な酵素活性を有しているため、 酵素学的観点から非常に興味深い。 しかしながら、 C Eの酵素化学的諸性質の解明、 C Eをコードする遺伝子 ( C E遺伝子) の取得、 およびアミノ酸配列の解析は、 これまで全くなされて いなかった。 As shown in Fig. 13, the blood glucose level significantly increased after administration in the lactose administration group and reached the highest level 30 minutes after administration, while no increase in blood glucose level was observed in the epilactose administration group. This result, together with the digestibility results shown in Table 7, shows that epilactose has a low caloric character. [0227] CE is an aldose 1-epimemerase in that it rearranges the configuration of the hydroxyl group bonded to the carbon atom at the 2-position of the reducing end glucose of cellobiose and catalyzes the reaction leading to glucosylmannose. (EC 5. 1. 3. 3) and Mal I Spi-Epimelase (EC 5. 1. 3. 2 1) are different. CE is very interesting from an enzymological point of view because it has a very unique enzymatic activity. However, elucidation of various enzyme chemistry properties of CE, acquisition of CE-encoding gene (CE gene), and analysis of amino acid sequence have never been done so far.
[0228] 本発明者らは、 R. a l b u s N E 1由来の C Eを用いると、 セロビォ —スを基質として G I c -Ma nを生成するが (図 1 ) 、 さらにセロ トリオ —スおよびセロテトラオースを 2—ェピマ一化することを見出した (図 4、 図 7) 。 さらに、 特徴的なことに C Eがラク ト一スを基質とした場合、 ェピ ラク ト一スを生成することも見出した (図 2および 5) 。  [0228] When CE derived from R. albus NE 1 is used, the present inventors produce GI c -Man using cellobiose as a substrate (Fig. 1), but also cellotriose and cellotetraose. Was found to be integrated into 2—epima (Fig. 4, Fig. 7). Furthermore, it has been found that when CE uses lactose as a substrate, it produces epi- lactose (Figs. 2 and 5).
[0229] 多くのオリゴ糖が生理活性機能を有することから、 C Eの反応生成物であ るエピラク トースにおいてもその機能性が期待される。 しかしながら、 現在 のところ、 その物理化学的特性や生理活性などは明らかにされておらず、 産 業的な利用には至っていない。 エピラク トースの特性を明らかにするために は、 実用的な大量合成法を確立する必要がある。  [0229] Since many oligosaccharides have physiologically active functions, their functionality is also expected in epilactose, which is a reaction product of CE. However, at present, its physicochemical properties and physiological activities have not been clarified, and it has not been industrially used. In order to clarify the characteristics of epilactose, it is necessary to establish a practical mass synthesis method.
[0230] これまでに、 高温、 高圧条件下においてラク トースの異性化を誘導し、 ェ ピラク トースを合成することができることが報告されている力《, 夾雑物の混 在が多いこともあり有効な製法ではない (J . F. Mo r e n oら, (20 03) J . A g r i c. F o o d C h e m. 5 1 , 1 894) 。  [0230] So far, it has been reported that lactic acid can be synthesized by inducing isomerization of lactose under high temperature and high pressure conditions, effective due to the presence of many contaminants. (J. F. Moreno et al., (20 03) J. Agri c. Food C he m. 5 1, 1 894).
[0231] また, p—ニトロフエ二ルガラク ト一スおよびマンノースを基質に用いる 、 ;3—ガラク トシダ一ゼによる酵素的合成法によってもエピラク ト一スの生 成は可能である (M. M i y amo t oと K. A j i s a k a (2004) B I O S C I . Β ι o t e c h n o I . B i o c h em. D 8 , 2086 ) 。 この製法は、 結合位の異なるガラク トシルマンノースの生成も可能であ り、 その後の酵素処理によって目的生成物の単離を容易に行える点から、 前 述の製法よりも実用性は高い。 しかしながら、 基質に p _ニトロフエ二ルガ ラク トースを用いるために原価が高価となり、 工業的製法としては不向きで [0231] In addition, the production of epilactose is possible by enzymatic synthesis using p-nitrophenylgalactose and mannose as substrates; and 3-galactosidase (M. Miy amo to and K. A jisaka (2004) BIOSCI. ι ι otechno I. B ioch em. D 8, 2086). This production method can also produce galactosyl mannose at different binding positions, and the target product can be easily isolated by subsequent enzymatic treatment. Practicality is higher than the manufacturing method described above. However, since p_nitrophenylgalactose is used as a substrate, the cost is high, which is not suitable for an industrial production method.
[0232] これらの製法に比べて、 C Eによるエピラク ト一スの酵素的合成法は、 基 質が安価であること、 反応条件が単純であることおよび夾雑物が少ないこと から、 実用性に富んだ合成法といえる。 しかしながら、 難培養性細菌である R . a I b u sを用いて本酵素を大量調製することは現実的に困難である。 この点からも、 C E遺伝子を単離し、 組換え酵素を大量に取得することは非 常に有効であると考えられる。 さらに, R . a I b u sにおける C Eの生理 学的意義および代謝メカニズムなどが明らかとなっていないので、 学術的に も多大な貢献をする。 [0232] Compared to these production methods, the enzymatic synthesis method of epicase by CE is highly practical because of its low cost, simple reaction conditions, and few contaminants. It can be said that it is a synthesis method. However, it is practically difficult to prepare a large amount of this enzyme using R. a I bus which is a difficult-to-culture bacterium. From this point of view, it is very effective to isolate the CE gene and obtain a large amount of recombinant enzyme. Furthermore, since the physiological significance and metabolic mechanism of CE in R. a I b us has not been clarified, it also makes a great academic contribution.
産業上の利用可能性  Industrial applicability
[0233] 本発明を用いれば、 G l c _ M a n以外にも新規オリゴ糖を合成すること ができるので、 食品分野において、 機能性食材 (例えば、 ノンカロリーもし くは低カロリーの食品、 またはミネラル (特に C a 2 +など) 吸収に優れた食 品) を低価格で提供することができる。 本発明を用いれば、 血中コレステロ ールの減少を生じさせる食品または食品添加物などを開発することができる ので、 医薬/製薬の分野においても有用である。 [0233] By using the present invention, it is possible to synthesize novel oligosaccharides in addition to G lc _ Man, so in the food field, functional foods (for example, non-caloric or low-calorie foods or minerals) (Especially Ca 2+ ) (food with excellent absorption) can be provided at a low price. Since the present invention can develop foods or food additives that cause a decrease in blood cholesterol, it is also useful in the field of medicine / pharmaceuticals.
[0234] 本発明を用いれば、 G I c _ M a nなど新規オリゴ糖を合成するので、 特 にエピラク トースの場合は、 食品分野において、 機能性食材 (例えば、 腸内 環境改善作用を有する食品、 ノンカロリーもしくは低カロリーの食品、 また はミネラル (特に C a 2 +など) 吸収に優れた食品) を低価格で提供すること ができる。 また、 本発明を用いれば、 血中コレステロールの減少を生じさせ る食品または食品添加物などを開発することができるので、 医薬/製薬の分 野においても有用である。 [0234] Since the present invention synthesizes a new oligosaccharide such as GIc_Man, particularly in the case of epilactose, in the food field, functional foods (for example, foods having an action to improve the intestinal environment, Non-caloric or low-calorie foods or minerals (especially foods with excellent absorption of C a 2 +) can be provided at low prices. In addition, if the present invention is used, foods or food additives that cause a reduction in blood cholesterol can be developed, which is also useful in the pharmaceutical / pharmaceutical field.

Claims

請求の範囲 The scope of the claims
[1] (A) 〜 (C) のいずれか 1つのアミノ酸配列からなるポリペプチドであ つて、 少なくとも; 4結合を有するオリゴ糖に対するェピメラーゼ活 性を有することを特徴とするポリべプチド:  [1] A polypeptide comprising an amino acid sequence of any one of (A) to (C), and having at least; an epimerase activity for oligosaccharides having 4 bonds:
(A) 配列番号 1に示されるアミノ酸配列;  (A) the amino acid sequence shown in SEQ ID NO: 1;
(B) 配列番号 1で示されるアミノ酸配列中の 1個もしくは数個のアミノ酸 が置換、 付加もしくは欠失された、 アミノ酸配列; または  (B) an amino acid sequence in which one or several amino acids in the amino acid sequence represented by SEQ ID NO: 1 are substituted, added or deleted; or
(C) 配列番号 1で示されるアミノ酸配列と 51 %以上の相同性を有するァ ミノ酸配列。  (C) An amino acid sequence having 51% or more homology with the amino acid sequence represented by SEQ ID NO: 1.
[2] (A) 〜 (D) に示される生物学的性状を有していることを特徴とするポ リぺプチド: (A) ルミノコッカス (Rum i n o c o c c u s) 属の細菌 由来である ;  [2] Polypeptide characterized by having the biological properties shown in (A) to (D): (A) It is derived from a bacterium belonging to the genus Ruminococcus;
(B) S DS— P AG Eによる見かけの分子量が 40〜42 k D aである ; (B) S DS—the apparent molecular weight by PAGE is 40-42 kDa;
(C) 配列番号 4に示されるアミノ酸配列を N末端に有する ; (C) having the amino acid sequence shown in SEQ ID NO: 4 at the N-terminus;
(D) 少なくとも; 4結合を有するオリゴ糖に対する 2—ェピメラー ゼ活性を有する。  (D) At least; has 2-epimerase activity for oligosaccharides having 4 bonds.
[3] 請求項 1または 2に記載のポリペプチドをコードすることを特徴とするポ リヌクレオチド。  [3] A polynucleotide encoding the polypeptide according to claim 1 or 2.
[4] (A) 〜 (C) のいずれか 1つの塩基配列からなるポリヌクレオチドであ つて、 オリゴ糖に対するェピメラーゼ活性を有するポリべプチドをコ一ドす ることを特徴とするポリヌクレオチド:  [4] A polynucleotide comprising a nucleotide sequence of any one of (A) to (C), wherein the polynucleotide has an epimerase activity against oligosaccharides:
(A) 配列番号 2に示される塩基配列;  (A) the base sequence shown in SEQ ID NO: 2;
(B) 配列番号 2に示される塩基配列中の 1個もしくは数個のヌクレオチド が置換、 付加もしくは欠失された、 塩基配列; または  (B) a nucleotide sequence in which one or several nucleotides in the nucleotide sequence shown in SEQ ID NO: 2 are substituted, added or deleted; or
(C) 配列番号 2に示される塩基配列の相補配列とストリンジェントな条件 下でハイブリダィズする、 塩基配列。  (C) A nucleotide sequence that hybridizes with a complementary sequence of the nucleotide sequence shown in SEQ ID NO: 2 under stringent conditions.
[5] 請求項 3または 4に記載のポリヌクレオチドを含んでいることを特徴とす るベクター。 [5] A vector comprising the polynucleotide according to claim 3 or 4.
[6] β - Λ , 4結合を有するオリゴ糖に対するェピメラーゼ活性を有するポリ ぺプチドを生産する生産方法であって、 請求項 5に記載のベクターを用いる ことを特徴とする生産方法。 [6] A production method for producing a polypeptide having epimerase activity with respect to an oligosaccharide having a β-Λ, 4 bond, wherein the vector according to claim 5 is used.
[7] β - Λ , 4結合を有するオリゴ糖に対するェピメラーゼ活性を有するポリ ぺプチドを生産するためのキッ卜であって、 請求項 5に記載のベクターを備 えていることを特徴とするキット。 [7] A kit for producing a polypeptide having an epimerase activity for an oligosaccharide having a β-Λ, 4 bond, comprising the vector according to claim 5.
[8] 請求項 3または 4に記載のポリヌクレオチドを含んでいることを特徴とす る形質転換体。 [8] A transformant comprising the polynucleotide according to claim 3 or 4.
[9] ルミノコッカス (R u m i n o c o c c u s) 属の細菌であることを特徴 とする請求項 8に記載の形質転換体。  [9] The transformant according to claim 8, wherein the transformant is a bacterium belonging to the genus Ruminococcus.
[10] ゾレミノコッカス ァゾレブス (R u m i n o c o c c u s a I b u s) で あることを特徴とする請求項 9に記載の形質転換体。 [10] The transformant according to claim 9, wherein the transformant is Zoleminococcus azolevus (RuminococcusaIbus).
[11] β - Λ , 4結合を有するオリゴ糖に対するェピメラーゼ活性を有するポリ ぺプチドを生産する生産方法であって、 請求項 8に記載の形質転換体を用い ることを特徴とする生産方法。 [11] A production method for producing a polypeptide having epimerase activity with respect to an oligosaccharide having a β-Λ, 4 bond, wherein the transformant according to claim 8 is used.
[12] β - Λ , 4結合を有するオリゴ糖に対するェピメラーゼ活性を有するポリ ぺプチドを生産するためのキッ卜であって、 請求項 8に記載の形質転換体を 備えていることを特徴とするキット。 [12] A kit for producing a polypeptide having an epimerase activity with respect to an oligosaccharide having a β-Λ, 4 bond, comprising the transformant according to claim 8. kit.
[13] 請求項 1または 2に記載のポリべプチドと特異的に結合することを特徴と す^キ几体。 [13] A key body that specifically binds to the polypeptide according to claim 1 or 2.
[14] β - Λ , 4結合を有するオリゴ糖に対するェピメラーゼ活性を有するポリ ペプチドを生産する生産方法であって、 請求項 1 3に記載の抗体を用いるこ とを特徴とする生産方法。  [14] A production method for producing a polypeptide having epimerase activity with respect to an oligosaccharide having a β-Λ, 4 bond, wherein the antibody according to claim 13 is used.
[15] β - Λ , 4結合を有するオリゴ糖に対するェピメラーゼ活性を有するポリ ペプチドを生産するためのキットであって、 請求項 1 3に記載の抗体を備え ていることを特徴とするキット。 [15] A kit for producing a polypeptide having an epimerase activity for an oligosaccharide having a β-Λ, 4 bond, the kit comprising the antibody according to claim 13.
[16] 請求項 1または 2に記載のポリペプチドを、 ; S_ 1 , 4結合を有するオリ ゴ糖と反応させる工程を包含することを特徴とするヘテロオリゴ糖を合成す る方法。 [16] A hetero-oligosaccharide comprising the step of reacting the polypeptide of claim 1 or 2 with an oligosaccharide having an S_1,4 bond; Method.
[17] 請求項 1または 2に記載のポリべプチドを備えていることを特徴とするへ テロオリゴ糖を合成するための試薬キット。  [17] A reagent kit for synthesizing a hetero-oligosaccharide comprising the polypeptide according to claim 1 or 2.
[18] β - Λ , 4結合を有するオリゴ糖をさらに備えていることを特徴とする請 求項 1 7に記載の試薬キット。 [18] The reagent kit according to claim 17, further comprising an oligosaccharide having a β-Λ, 4 bond.
[19] 請求項 1または 2に記載のポリべプチドを含んでいることを特徴とするへ テロオリゴ糖を合成するための試薬組成物。 [19] A reagent composition for synthesizing a hetero-oligosaccharide comprising the polypeptide according to claim 1 or 2.
[20] 機能性食品を製造する方法であって、 [20] A method for producing a functional food comprising:
請求項 1または 2に記載のポリペプチドを、 β— Α , 4結合を有するォ リゴ糖と反応させる工程; および  Reacting the polypeptide of claim 1 or 2 with an oligosaccharide having a β-Α, 4 bond; and
反応生成物を食品に添加する工程  Adding reaction products to food
を包含することを特徴とする方法。  A method characterized by comprising.
[21] 4 _0_;S_ D_ガラク トピラノシル一D—マンノースを含有することを特 徵とする腸内環境改善用機能性食品。 [21] 4 _0_; S_ D_ Galactopyranosyl- A functional food for improving the intestinal environment, characterized by containing D-mannose.
[22] ビフィズス菌の増殖を促進することで腸内環境を改善するための、 請求項[22] A claim for improving the intestinal environment by promoting the growth of bifidobacteria.
2 1に記載の機能性食品。 2 Functional food according to 1.
[23] 4 _0_;S_ D_ガラク トピラノシル一D—マンノースを含有することを特 徵とする脂質代謝改善用機能性食品。 [23] 4 _0_; S_ D_Galactopyranosyl-Functional food for improving lipid metabolism, characterized by containing D-mannose.
[24] 血中コレステロール量を減少させることで脂質代謝を改善するための、 請 求項 2 3に記載の機能性食品。 [24] The functional food according to claim 23 for improving lipid metabolism by reducing blood cholesterol level.
[25] 4 _0_ S_ D_ガラク トピラノシル一D—マンノースを含有することを特 徵とするミネラル吸収能促進用機能性食品。 [25] 4 _0_ S_ D_ Galactopyranosyl-D Functional food for promoting mineral absorption, characterized by containing D-mannose.
[26] 4 _0_ S_ D_ガラク トピラノシル一D—マンノースを含有することを特 徵とする糖尿病患者用機能性食品。 [26] 4 _0_ S_ D_ Galactopyranosyl-D Functional food for diabetic patients, characterized by containing D-mannose.
[27] 4 _0_;S_ D_ガラク トピラノシル一D—マンノースを含有することを特 徵とする低力口リー性低甘味料。 [27] 4 _0_; S_ D_Galactopyranosyl- A low-strength, low-sweetener characterized by containing D-mannose.
[28] 4 _0_ S_ D_ガラク トピラノシル一D—マンノースを含有することを特 徵とする便秘改善剤。 [28] 4 _0_ S_ D_ Galactopyranosyl mono-D-mannose is a constipation-improving agent.
PCT/JP2007/001253 2006-11-20 2007-11-19 Novel polypeptide having epimerase activity and use thereof WO2008062555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008545310A JPWO2008062555A1 (en) 2006-11-20 2007-11-19 Novel polypeptide having epimerase activity and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006313660 2006-11-20
JP2006-313660 2006-11-20

Publications (1)

Publication Number Publication Date
WO2008062555A1 true WO2008062555A1 (en) 2008-05-29

Family

ID=39429498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001253 WO2008062555A1 (en) 2006-11-20 2007-11-19 Novel polypeptide having epimerase activity and use thereof

Country Status (2)

Country Link
JP (1) JPWO2008062555A1 (en)
WO (1) WO2008062555A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090095A1 (en) * 2009-02-05 2010-08-12 株式会社林原生物化学研究所 Cellobiose 2-epimerase, process for producing same, and use of same
JP2011217701A (en) * 2010-04-14 2011-11-04 Nippon Shokuhin Kako Co Ltd High-purity epilactose and method for producing the same
JP2011231035A (en) * 2010-04-27 2011-11-17 Nippon Shokuhin Kako Co Ltd Visceral fat accumulation preventing or accumulation improving agent
JP2013051904A (en) * 2011-09-02 2013-03-21 Snow Brand Milk Products Co Ltd Animal feed composition containing epilactose, animal mixed feed containing the same, and application of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217546A (en) * 1999-01-29 2000-08-08 Showa Sangyo Co Ltd Sweetener, pathogenic bacterial infection-inhibitory agent, intestinal function-controlling agent or aging- inhibitory agent for starch, consisting of mannose- containing hetero oligosaccharide, and food, beverage, medine or feed consisting of the same
JP2004027387A (en) * 2002-06-24 2004-01-29 Kanebo Ltd Porous acrylic fiber containing lipolysis-promoting component and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217546A (en) * 1999-01-29 2000-08-08 Showa Sangyo Co Ltd Sweetener, pathogenic bacterial infection-inhibitory agent, intestinal function-controlling agent or aging- inhibitory agent for starch, consisting of mannose- containing hetero oligosaccharide, and food, beverage, medine or feed consisting of the same
JP2004027387A (en) * 2002-06-24 2004-01-29 Kanebo Ltd Porous acrylic fiber containing lipolysis-promoting component and method for producing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] COPELAND A. ET AL.: "N-acylglucosamine 2-epimerase", Database accession no. (Q1FKV5) *
ITO S. ET AL.: "Cloning and sequencing of the cellobiose 2-epimerase gene from an obligatory anaerobe. Ruminococcus albus", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 360, no. 3, August 2007 (2007-08-01), pages 640 - 645, XP022153348, DOI: doi:10.1016/j.bbrc.2007.06.091 *
MATSUI H. ET AL.: "Ruminococcus albus Yurai Shinki Koso Cellobiose 2-epimerase no Seisei Oyobi Hanno Tokusei", J. APPL. GLYCOSCI., vol. 52, no. SUPPL., 2005, pages 40 + ABSTR. NO. CLA-5 *
SUZUKI T. ET AL.: "Various nondigestible saccharides open a paracellular calcium transport pathway with the induction of intracellular calcium signaling in human intestinal Caco-2 cells", J. NUTR., vol. 135, no. 8, 2004, pages 1935 - 1941 *
UMENE S. ET AL.: "Ruminococcus albus Yurai Cellobiose 2-epimerase no Seisei Oyobi Hanno Tokusei", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY HOKKAIDO SHIBU. JAPANESE SOCIETY OF SOIL SCIENCE AND PLANT NUTRITION HOKKAIDO SHIBU. THE JAPANESE SOCIETY OF APPLIED GLYCOSCIENCE HOKKAIDO SHIBU. THE SOCIETY FOR BIOTECHNOLOGY, JAPAN....., vol. 2, 2005, pages 13 + ABSTR. NO. A3 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090095A1 (en) * 2009-02-05 2010-08-12 株式会社林原生物化学研究所 Cellobiose 2-epimerase, process for producing same, and use of same
JP5677097B2 (en) * 2009-02-05 2015-02-25 株式会社林原 Cellobiose 2-epimerase, production method and use thereof
US9175282B2 (en) 2009-02-05 2015-11-03 Hayashibara Co., Ltd. Cellobiose 2-epimerase, its preparation and uses
JP2011217701A (en) * 2010-04-14 2011-11-04 Nippon Shokuhin Kako Co Ltd High-purity epilactose and method for producing the same
JP2011231035A (en) * 2010-04-27 2011-11-17 Nippon Shokuhin Kako Co Ltd Visceral fat accumulation preventing or accumulation improving agent
JP2013051904A (en) * 2011-09-02 2013-03-21 Snow Brand Milk Products Co Ltd Animal feed composition containing epilactose, animal mixed feed containing the same, and application of the same

Also Published As

Publication number Publication date
JPWO2008062555A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
Iqbal et al. Characterization of a heterodimeric GH2 β-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides
Gänzle Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose
CN106535927B (en) Novel polysaccharide and application thereof
Jørgensen et al. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii
Sela et al. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides
JP5042431B2 (en) A new enzyme isolated from BIFIDOBACTERIUM
US9650619B2 (en) Modified alpha-glucosidase and applications of same
Yin et al. Engineering of the Bacillus circulans β-galactosidase product specificity
Kobata Exo-and endoglycosidases revisited
Caputi et al. Biomolecular characterization of the levansucrase of Erwinia amylovora, a promising biocatalyst for the synthesis of fructooligosaccharides
Mu et al. Current studies on physiological functions and biological production of lactosucrose
CN102559528A (en) Genetically engineered bacteria used for producing stevia glycosyltransferase UGT76G1 and application thereof
Saburi Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases
US11872253B2 (en) Method for producing marine algae-derived agarotriose, and use thereof as prebiotic
CN112662604A (en) Recombinant escherichia coli for synthesizing 3-fucosyllactose and construction method thereof
Zhang et al. A novel Lactococcus lactis l-arabinose isomerase for d-tagatose production from lactose
Zhao et al. Degradation of xylan by human gut Bacteroides xylanisolvens XB1A
Plaza-Vinuesa et al. Deciphering the myrosinase-like activity of Lactiplantibacillus plantarum WCFS1 among GH1 family glycoside hydrolases
WO2008062555A1 (en) Novel polypeptide having epimerase activity and use thereof
Plou et al. β-Galactosidases for lactose hydrolysis and galactooligosaccharide synthesis
Saburi et al. Function and Structure of Lacticaseibacillus casei GH35 β-Galactosidase LBCZ_0230 with High Hydrolytic Activity to Lacto-N-biose I and Galacto-N-biose
Diez-Municio et al. Synthesis of potentially-bioactive lactosyl-oligofructosides by a novel bi-enzymatic system using bacterial fructansucrases
CN106811450A (en) One kind is difunctional to turn glucosylated-alpha N acetamino galactosidases enzyme and its expressing gene and application
Kashima et al. Identification and structural basis of an enzyme that degrades oligosaccharides in caramel
KR102132743B1 (en) Method for producing agarotriose and prebiotics use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828030

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008545310

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828030

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)