WO2008062092A1 - Nanostructured oxide ceramic/n-w material, method for preparing and uses thereof - Google Patents

Nanostructured oxide ceramic/n-w material, method for preparing and uses thereof Download PDF

Info

Publication number
WO2008062092A1
WO2008062092A1 PCT/ES2007/070192 ES2007070192W WO2008062092A1 WO 2008062092 A1 WO2008062092 A1 WO 2008062092A1 ES 2007070192 W ES2007070192 W ES 2007070192W WO 2008062092 A1 WO2008062092 A1 WO 2008062092A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
tungsten
nanostructured
powder
oxidic
Prior art date
Application number
PCT/ES2007/070192
Other languages
Spanish (es)
French (fr)
Inventor
José Serafín MOYA CORRAL
Carlos Pecharroman Garcia
Sonia Lopez Esteban
Teresa Rodriguez Suarez
Luis Antonio Diaz Rodriguez
Ramón TORRECILLAS SAN MILLAN
Original Assignee
Consejo Superior De Investigaciones Cientificas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2008062092A1 publication Critical patent/WO2008062092A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0009Pigments for ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The subject matter of the present invention is an nanostructured ceramic oxide/n-w composite material of nanometric size, 1 to 20 nm, with a tungsten content between 0.05 vol.% and 30 vol.%. Also described is the method for preparing the ceramic oxide/n-W material of the invention. This novel material can be useful in the manufacture of electronic components, catalysers, structural technical ceramics and pigments, dyes and coatings on metal substrates.

Description

MATERIAL NANOESTRUCTURADO ÓXIDO CERÁMICO/N-W, PROCEDIMIENTO DE OBTENCIÓN Y SUS APLICACIONESCERAMIC OXIDE NANOESTRUCTURED MATERIAL / N-W, OBTAINING PROCEDURE AND ITS APPLICATIONS
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
Nuevos materiales como componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes, recubrimientos sobre sustratos metálicos, etc.New materials such as electronic components, catalysts, structural technical ceramics, pigments and dyes, coatings on metal substrates, etc.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
El wolframio (W) es un metal con propiedades intrínsecas excepcionales: alto punto de fusión (3422°C), gran dureza (3.43 GPa), el coeficiente de expansión térmica más bajo de todos los metales (4.5-1CT6 K"1) y una de las menores presiones de vapor dentro de los mismos:Tungsten (W) is a metal with exceptional intrinsic properties: high melting point (3422 ° C), high hardness (3.43 GPa), the thermal expansion coefficient lowest of all metals (4.5-1CT 6 K "1) and one of the lowest vapor pressures within them:
Figure imgf000002_0001
Figure imgf000002_0001
La alúmina (8.5 10"6 K"1) y la espinela (7.3 10"6 K"1) son óxidos químicamente muy estables, resistentes a la corrosión y que poseen unos coeficientes de dilatación térmicos muy similares al del wolframio (5.4-10"6 K"1) lo que minimiza posibles problemas derivados de la formación de tensiones residuales en la interfase.Alumina (8.5 10 "6 K " 1 ) and spinel (7.3 10 "6 K " 1 ) are chemically stable oxides, resistant to corrosion and have thermal expansion coefficients very similar to tungsten (5.4-10 "6 K " 1 ) which minimizes possible problems arising from the formation of residual stresses at the interface.
Por otro lado, es bien conocido el hecho de que los materiales metálicos, en el rango nanométrico, presentan menos ductilidad que los mismos materiales con tamaño de partícula micrométrico [Siegel RW, Nanostruct Mater; 3On the other hand, it is well known that metallic materials, in the nanometric range, have less ductility than the same micrometer particle size materials [Siegel RW, Nanostruct Mater; 3
(1993) 1-18] . En el caso particular del W, que presenta un alto valor de G (módulo de cizalla) , la dureza Vickers esperada - teniendo en cuenta la relación lineal que existe entre G y Hv - puede incrementarse en las nanoparticulas de wolframio hasta valores del orden de 30 GPa. Esto, conjuntamente con los altos valores de Hv que poseen las matrices de alúmina o de espinela, puede dar como resultado materiales compuestos cerámico/nanometal de dureza muy superior a la de los correspondientes compuestos microparticulados [C. Pecharromán, F. Esteban-Betegón, J. F. Bartolomé, G. Richter, y J. S. Moya, Nanoletters, 4 [4];(1993) 1-18]. In the particular case of W, which has a high value of G (shear modulus), the expected Vickers hardness - taking into account the linear relationship between G and H v - can be increased in tungsten nanoparticles to values of the order of 30 GPa. This, together with the high values of H v that alumina or spinel matrices possess, it can result in ceramic / nanometal composite materials of much greater hardness than the corresponding microparticulate compounds [C. Pecharromán, F. Esteban-Betegón, JF Bartolomé, G. Richter, and JS Moya, Nanoletters, 4 [4];
(2004) 747-51] .(2004) 747-51].
En el campo de la catálisis se han estudiado múltiples sistemas de metales y óxidos metálicos soportados sobre óxidos cerámicos para diversas aplicaciones ya que existen multitud de metales catalíticamente activos (V, Nb, Ta, Re,In the field of catalysis, multiple metal and metal oxide systems supported on ceramic oxides have been studied for various applications since there are many catalytically active metals (V, Nb, Ta, Re,
Rh, Rb, Co, Fe, Mn, Pt, Mo, etc.) con tamaños comprendidos entre algunos nanómetros y, aproximadamente 0.5 mierasRh, Rb, Co, Fe, Mn, Pt, Mo, etc.) with sizes between some nanometers and approximately 0.5 microns
[Wong Michael S; Wachs Israel E; Knowles William V. Patent WO2005/002714 de 13/01/2005; J. -W. Yoon, T. Sasaki, N. Koshizaki, Thin Solid Films 483 (2005) 276-282; T. Sanders, M. Kirchhoff, U. Specht, G. Veser, AIChE Annual Meeting, Conference Proceedings (2005) 10004; X. -H. Yun, M. -X. Chen, J. -W. Shi, W. -F. Shangguan, Shanghai Jiatong Daxue Xuebao/ Journal of Shanghai Jiatong University, 39 [11][Wong Michael S; Wachs Israel E; Knowles William V. Patent WO2005 / 002714 of 01/13/2005; J. -W. Yoon, T. Sasaki, N. Koshizaki, Thin Solid Films 483 (2005) 276-282; T. Sanders, M. Kirchhoff, U. Specht, G. Veser, AIChE Annual Meeting, Conference Proceedings (2005) 10004; X. -H. Yun, M. -X. Chen, J. -W. Shi, W. -F. Shangguan, Shanghai Jiatong Daxue Xuebao / Journal of Shanghai Jiatong University, 39 [11]
(2005) 1886-1890; L. Bultel, P. Vernoux, F. Gaillard, C. Roux, E. Siebert, Solid State Ionics, 176 (7-8) (2005) 793- 801; Y. Guo, G. Lu, X. Mo, Y. Wang, Chemistry Letters 33(2005) 1886-1890; L. Bultel, P. Vernoux, F. Gaillard, C. Roux, E. Siebert, Solid State Ionics, 176 (7-8) (2005) 793-801; Y. Guo, G. Lu, X. Mo, Y. Wang, Chemistry Letters 33
[12] (2004) 1628-1629; G. Li, W. Li, M. Zhang, K. Tao, Catalysis Today 93-95 (2004) 595-601; H. -R. Chen, J. -L. Shi, L. Li, M. -L. Rúan, D. -S. Yan, Journal Of Chemical Engineering of Japan 36 [10] (2003) 1212-1215; X. L. Pan, N. Stroh, H. Brunner, G. X. Xiong, S. S. Sheng, Separation and Purification Technology, 32 [1-3] (2003) 265-270] . Es tanta la variedad de sistemas que, hoy en dia, se encuentran catalizadores de este tipo en procesos tan diversos como industrias químicas, protección medioambiental (como por ejemplo los convertidores catalíticos de los automóviles) , en la reducción de los NOx en las plantas energéticas, en refinerías de petróleo, síntesis de medicamentos, procesos petroquímicos, etc.[12] (2004) 1628-1629; G. Li, W. Li, M. Zhang, K. Tao, Catalysis Today 93-95 (2004) 595-601; H. -R. Chen, J. -L. Shi, L. Li, M. -L. Ruan, D. -S. Yan, Journal Of Chemical Engineering of Japan 36 [10] (2003) 1212-1215; XL Pan, N. Stroh, H. Brunner, GX Xiong, SS Sheng, Separation and Purification Technology, 32 [1-3] (2003) 265-270]. Such is the variety of systems, today, such catalysts are in processes as diverse as chemical, environmental protection (such as catalytic converters for cars), in the reduction of NO x in energy plants, in oil refineries, drug synthesis, petrochemical processes, etc.
Por otro lado, existen abundantes referencias bibliográficas en la literatura relacionadas con el procesamiento de materiales cerámicos conteniendo nanopartículas metálicas, tales como Al2O3/Ni, Al203/Mo,On the other hand, there are abundant bibliographic references in the literature related to the processing of ceramic materials containing metal nanoparticles, such as Al 2 O 3 / Ni, Al 2 0 3 / Mo,
Al2O3/Cr, Al2O3/Cu, etc. La mayoría de estos materiales compuestos se han obtenido a partir de mezclas de polvosAl 2 O 3 / Cr, Al 2 O 3 / Cu, etc. Most of these composite materials have been obtained from powder mixtures
(óxido y metal) que se homogeneizan mediante las clásicas rutas por vía húmeda [M. Nawa, T. Sekino, K. Niihara, Journal of Materials Science, 29 [12] (1994) 3185-3192], o a partir de mezclas de óxido con precursores metálicos (por ejemplo, nitratos [T. Sekino, S. Etoh, Y. -H. Choa, K. Niihara, Materials Research Society Symposium- Proceedings, 501 (1998) 289-294 y S. T. Oh, J. S. Lee, K. Niihara, Scripta Mater. 44 (2001) 2117-2120] o acetilacetonato [Y. Ji, J. A. Yeomans, Journal of the European Ceramic Society 22 (2002) 1927-1936]. Otros grupos han obtenido polvos de alúmina/metal nanoestructurados mediante técnicas físicas como abrasión láser [J. Naser, H. Ferkel, NanoStructured Materials, 12 (1999) 451-451], o mediante la técnica de sol-gel [P. Bhattacharya, K. Chattopadhyay, NanoStructured Materials, 12 (1999)1077-1080].(rust and metal) that are homogenized by the classic wet routes [M. Nawa, T. Sekino, K. Niihara, Journal of Materials Science, 29 [12] (1994) 3185-3192], or from oxide mixtures with metal precursors (eg nitrates [T. Sekino, S. Etoh, Y. -H. Choa, K. Niihara, Materials Research Society Symposium- Proceedings, 501 (1998) 289-294 and ST Oh, JS Lee, K. Niihara, Scripta Mater. 44 (2001) 2117-2120] or acetylacetonate [ Y. Ji, JA Yeomans, Journal of the European Ceramic Society 22 (2002) 1927-1936] Other groups have obtained nanostructured alumina / metal powders using physical techniques such as laser abrasion [J. Naser, H. Ferkel, NanoStructured Materials, 12 (1999) 451-451], or by the sol-gel technique [P. Bhattacharya, K. Chattopadhyay, NanoStructured Materials, 12 (1999) 1077-1080].
En el caso de los polvos de alúmina/n-W, se ha encontrado en la literatura el trabajo de Sekino et al [T. Sekino, K. Niihara, NanoStructured Materials, 6 (1995) 663- 666 y T. Sekino, K. Niihara, NanoStructured Materials, 6 (1995) 663-666]. Los autores obtienen compuestos densos de dicho material a partir de mezclas homogéneas de polvos de alúmina y de óxido de wolframio. El procesamiento que siguen estos autores consiste en disolver totalmente el polvo de WO3 en una solución amoniacal, a la que posteriormente se añade el polvo de alúmina y agua destilada. Se homogeneiza la mezcla en molino de bolas, se hace un posterior secado a vacio y se calcina a 5000C en aire o Ar durante 3 horas. El polvo resultante se vuelve a moler en etanol durante 24 horas y posteriormente, se reduce en atmósfera de H2. Los autores no mencionan los tamaños ni la morfología del polvo de alúmina/n-W obtenido.In the case of alumina / nW powders, the work of Sekino et al [T. Sekino, K. Niihara, NanoStructured Materials, 6 (1995) 663-666 and T. Sekino, K. Niihara, NanoStructured Materials, 6 (1995) 663-666]. The authors obtain dense compounds of said material from homogeneous mixtures of alumina powders and tungsten oxide. The processing followed by these authors consists in completely dissolving the WO3 powder in an ammoniacal solution, to which the alumina powder and water are subsequently added. distilled The mixture is homogenized ball mill, a subsequent vacuum drying and calcined at 500 0 C in air for 3 hours or Ar is made. The resulting powder is re-ground in ethanol for 24 hours and subsequently, reduced under an H 2 atmosphere. The authors do not mention the sizes or morphology of the alumina powder / nW obtained.
Por otro lado, Yan et . al [H. Yan, B. S. Xu, Journal ofOn the other hand, Yan et. to [H. Yan, B. S. Xu, Journal of
Inorganic Materials 18 (5) 2003 1127-1130] reportan en la literatura la preparación de polvo nanoestructurado de alumina/W por precipitación heterogénea. En este caso concreto, se trata de un procesamiento pulvimetalúrgico .Inorganic Materials 18 (5) 2003 1127-1130] report in the literature the preparation of nanostructured alumina powder / W by heterogeneous precipitation. In this specific case, it is a powder metallurgical processing.
Los autores parten de Al (NO3) 3 9H2O y (NH4)2CO3 como materias primas, añaden posteriormente polvo nanométrico deThe authors start from Al (NO3) 3 9H2O and (NH4) 2CO3 as raw materials, subsequently add nanometric dust from
W y lo homogeneizan mediante una simple mezcla mecánica. Explican que obtienen el polvo nanoestructurado calcinando a vacio el gel seco de Al (OH) 3/W a 10000C durante 1 h.W and homogenize it by a simple mechanical mixture. Explain that the nanostructured powder obtained by calcining the dried gel to vacuum of Al (OH) 3 / W at 1000 0 C for 1 h.
En el caso de polvos nanoestructurados de MgAl2O4/W no se han encontrado referencias en la literatura.In the case of nanostructured powders of MgAl 2 O 4 / W no references have been found in the literature.
DESCRIPCIÓN DE LA INVENCIÓN Descripción BreveDESCRIPTION OF THE INVENTION Brief Description
Un objeto de la presente invención lo constituye un material nanoestructurado compuesto, en adelante material óxido cerámico/n—W de la invención, constituido por un material nanoestructurado óxido cerámico/n-W con un tamaño nanométrico de partícula metálica comprendido entre 1 y 100 nm, preferentemente entre 1 y 20 nm, las cuales se encuentran fuertemente adheridas al sustrato oxidico. Este material nanoestructurado óxido cerámico/nW de la invención puede presentar un contenido de wolframio entre el 0,05% y el 30% en volumen, por ejemplo, el 1%.An object of the present invention is a composite nanostructured material, hereinafter ceramic oxide / n-W material of the invention, constituted by a nanostructured ceramic oxide / nW material with a nanometric metal particle size between 1 and 100 nm, preferably between 1 and 20 nm, which are strongly adhered to the oxidic substrate. This nanostructured ceramic oxide / nW material of the invention can have a tungsten content between 0.05% and 30% by volume, for example, 1%.
Otro objeto de la invención lo constituye el procedimiento de obtención del material óxido cerámico/n-W de la invención, en adelante procedimiento de obtención de la invención, que comprende las siguientes etapas: a) el polvo oxidico se pone en suspensión en etanol absoluto, con una concentración en sólidos generalmente inferior al 85%, poniendo todo el conjunto en agitación mediante cualquier dispositivo magnético o mecánico que favorezca la dispersión, b) en paralelo, se prepara una solución de cloruro de wolframio en etanol absoluto (pureza >99%) con la concentración requerida para obtener el polvo nanoestructurado con la concentración de metal deseada, calentándose la solución por debajo de 700C, c) una vez todo el cloruro de wolframio se ha transformado en etóxido de wolframio W, (solución incolora) en la etapa b) , se añade de forma controlada a la suspensión de polvo oxidico de a) la cual se mantiene en agitación continua para favorecer la mezcla homogénea de ambos líquidos, d) el solvente restante se elimina por evaporación a una temperatura, generalmente, menor de 700C y siempre bajo agitación continua, pudiendo calentarlo en estufa a 600C durante 24 horas hasta obtener un polvo seco, e) posteriormente, el polvo seco de d) , se tamiza mediante una malla estándar, preferentemente por debajo de 63 mieras, y se calcina a temperaturas comprendidas entre 5000C y 7000C, preferentemente a 6000C, durante un periodo de tiempo suficiente para eliminar los componentes orgánicos y favorecer la cristalización del óxido de wolframio sobre la superficie de las partículas oxidicas, preferentemente, durante una hora, y f) reducir el óxido de wolframio a wolframio metálico mediante un tratamiento térmico entre 7500C y 11000C, preferentemente a 9000C, en atmósfera reductora de hidrógeno del polvo nanoestructurado de e) entre una hora y media y dos horas y media, preferentemente dos horas, con lo cual se produce la cristalización de las nanoparticulas metálicas sobre la superficie de las partículas oxidicas.Another object of the invention is the process for obtaining the ceramic oxide / nW material of the invention, hereinafter method of obtaining the invention, which comprises the following steps: a) the oxidic powder is suspended in absolute ethanol, with a solids concentration generally less than 85%, with the whole assembly being stirred by stirring. any magnetic or mechanical device that favors dispersion, b) in parallel, a solution of tungsten chloride in absolute ethanol (purity> 99%) is prepared with the concentration required to obtain the nanostructured powder with the desired metal concentration, heating the solution below 70 0 C, c) once all the tungsten chloride has been transformed into tungsten ethoxide W, (colorless solution) in step b), it is added in a controlled manner to the oxidic powder suspension of a) which is kept under continuous agitation to favor the homogeneous mixing of both liquids, d) the remaining solvent is removed by evaporation at a temperature, generally , less than 70 0 C and always under continuous agitation, being able to heat it in an oven at 60 0 C for 24 hours until obtaining a dry powder, e) subsequently, the dry powder of d), is screened by a standard mesh, preferably below of 63 microns, and it is calcined at temperatures between 500 0 C and 700 0 C, preferably at 600 0 C, for a period of time sufficient to remove the organic components and favor the crystallization of tungsten oxide on the surface of the particles oxidic, preferably, for one hour, and f) reduce the tungsten oxide to metallic tungsten by a heat treatment between 750 0 C and 1100 0 C, preferably at 900 0 C, in a hydrogen reducing atmosphere of the nanostructured powder of e) between a hour and half and two and a half hours, preferably two hours, which produces the crystallization of the metal nanoparticles on the surface of the oxidic particles.
Finalmente, otro objeto de la presente invención lo constituye el uso del material óxido cerámico/n—W de la invención en la elaboración, a titulo ilustrativo y sin que limite el alcance de invención, de productos pertenecientes al siguiente grupo: componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes y recubrimientos sobre sustratos metálicos.Finally, another object of the present invention is the use of the ceramic oxide / n-W material of the invention in the preparation, by way of illustration and without limiting the scope of the invention, of products belonging to the following group: electronic components, catalysts , structural technical ceramics, pigments and dyes and coatings on metal substrates.
Descripción DetalladaDetailed description
La invención se enfrenta al problema de proporcionar nuevos materiales nanoestructurados destinados a productos como componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes, recubrimientos sobre sustratos metálicos.The invention faces the problem of providing new nanostructured materials for products such as electronic components, catalysts, structural technical ceramics, pigments and dyes, coatings on metal substrates.
La invención se basa en que los inventores han observado que es posible obtener un polvo nanoestructurado de alúmina/W y espinela/W de elevada pureza, con un tamaño de partículas metálicas inferior a 100 nm, incluso inferior a 20 nm, y que se encuentran fuertemente adheridas al sustrato oxidico, mediante un procedimiento químico que favorece la reacción de sustitución entre el alcóxido metálico y los grupos OH que recubren la superficie de las partículas oxidicas (alúmina o espinela) donde M-OH representa esquemáticamente la superficie de las partículas oxidicas con presencia de grupos OH (alúmina o espinela) . De esta manera, se consigue un recubrimiento de las partículas oxidicas con las correspondientes moléculas órgano-metálicas [W (OCH2-CH3) x] (ver Figuras 1 a la 3) . Por otro lado, el coste de este procedimiento de obtención es bajo debido a la no utilización de cloruro durante el proceso de síntesis. En resumen, el procedimiento de obtención del material óxido cerámico/n-W de la invención se basa en dos tipos de reacciones químicas, a saber: i) La que se produce en una primera etapa entre el cloruro del wolframio y el medio solvente (etanol absoluto) , y ii) La reacción que se produce entre esta última solución y la superficie de las partículas oxídicas (alúmina o espinela) . Por tanto, un objeto de la presente invención lo constituye un material nanoestructurado compuesto, en adelante material óxido cerámico/n—W de la invención, constituido por un material nanoestructurado óxido cerámico/n-W con un tamaño nanométrico de partícula metálica comprendido entre 1 y 100 nm, preferentemente entre 1 y 20 nm, las cuales se encuentran fuertemente adheridas al sustrato oxídico. Este material nanoestructurado óxido cerámico/nW de la invención puede presentar un contenido de wolframio entre el 0,05% y el 30% en volumen, por ejemplo, el 1%.The invention is based on the fact that the inventors have observed that it is possible to obtain a nanostructured alumina powder / W and spinel / W of high purity, with a metal particle size of less than 100 nm, even less than 20 nm, and that they are strongly adhered to the oxidic substrate, by means of a chemical procedure that favors the substitution reaction between the metal alkoxide and the OH groups that cover the surface of the oxidic particles (alumina or spinel) where M-OH schematically represents the surface of the oxidic particles with presence of OH groups (alumina or spinel). In this way, a coating of the oxidic particles with the corresponding organo-metallic molecules [W (OCH 2 -CH 3 ) x ] is achieved (see Figures 1 to 3). On the other hand, the cost of this procedure is low due to the non-use of chloride during the synthesis process In summary, the process for obtaining the ceramic oxide / nW material of the invention is based on two types of chemical reactions, namely: i) The one that occurs in a first stage between tungsten chloride and the solvent medium (absolute ethanol ), and ii) The reaction that occurs between the latter solution and the surface of the oxidic particles (alumina or spinel). Therefore, an object of the present invention is a composite nanostructured material, hereinafter ceramic oxide / n-W material of the invention, constituted by a nanostructured ceramic oxide / nW material with a nanometric metal particle size between 1 and 100 nm, preferably between 1 and 20 nm, which are strongly adhered to the oxidic substrate. This nanostructured ceramic oxide / nW material of the invention can have a tungsten content between 0.05% and 30% by volume, for example, 1%.
Un objeto particular de la invención lo constituye el material óxido cerámico/n-W de la invención donde el óxido, a título ilustrativo y sin que limite el alcance de la invención, pertenece al siguiente grupo: a) alúmina, en cualquiera de sus formas cristalográficas, a saber, α, β, δ, γ, K, p, η, θ y χ, con un tamaño de grano comprendido entre 20 y 1000 nm [K. Wefers and C. Misra, Alcoa Laboratories, Oxides and Hydroxides of Aluminum (1987)], b) alúmina con cualquier óxido que pueda entrar en solución sólida en su red - tales como, por ejemplo, TÍO2, Fe2Ü3, Y2O3, etc.- y, particularmente, la cromita (Cr2C>3) cuya solución sólida con la alúmina es continua en el rango comprendido entre el 0% y el 100% en peso, y c) espinela de aluminio-magnesio (MgAl2O4) en cualquiera de sus variedades (estequiométrica, rica en alúmina o rica en magnesia) , con una relación molar que puede oscilar entre el 66 y el 91%, por ejemplo el 78%, y un tamaño de grano comprendido entre 20 y 1000 nm [E. M. Levin, Phase Equilibrium diagrams for Ceramics, The American Ceramic Society Inc., Figs 259 and 260, (1964)]. El tamaño de partícula de estos óxidos cerámicos puede ser nanométrico (<200 nm) o bien micrométrico (<10 μm) (Ejemplo 1) .A particular object of the invention is the ceramic oxide / nW material of the invention where the oxide, by way of illustration and without limiting the scope of the invention, belongs to the following group: a) alumina, in any of its crystallographic forms, namely, α, β, δ, γ, K, p, η, θ and χ, with a grain size between 20 and 1000 nm [K. Wefers and C. Misra, Alcoa Laboratories, Oxides and Hydroxides of Aluminum (1987)], b) alumina with any oxide that can enter a solid solution in its network - such as, for example, TÍO2, Fe2Ü3, Y2O3, etc.- and, in particular, chromite (Cr 2 C> 3) whose solid solution with alumina is continuous in the range between 0% and 100% by weight, and c) aluminum-magnesium spinel (MgAl 2 O 4 ) in any of its varieties (stoichiometric, rich in alumina or rich in magnesia), with a molar ratio that can range between 66 and 91%, for example 78%, and a grain size between 20 and 1000 nm [EM Levin, Phase Equilibrium diagrams for Ceramics, The American Ceramic Society Inc ., Figs 259 and 260, (1964)]. The particle size of these ceramic oxides can be nanometric (<200 nm) or micrometric (<10 μm) (Example 1).
Una realización particular de la invención lo constituye el material óxido cerámico/n-W de la invención en el que el material es α-Al2O3/nW.A particular embodiment of the invention is the ceramic oxide / nW material of the invention in which the material is α-Al 2 O 3 / nW.
Otra realización particular de la invención lo constituye el material óxido cerámico/n-W de la invención en el que el material es espinela/nW.Another particular embodiment of the invention is the ceramic oxide / n-W material of the invention in which the material is spinel / nW.
Otro objeto de la invención lo constituye el procedimiento de obtención del material óxido cerámico/n-W de la invención, en adelante procedimiento de obtención de la invención, que comprende las siguientes etapas: a) el polvo oxidico se pone en suspensión en etanol absoluto, con una concentración en sólidos generalmente inferior al 85%, poniendo todo el conjunto en agitación mediante cualquier dispositivo magnético o mecánico que favorezca la dispersión, b) en paralelo, se prepara una solución de cloruro de wolframio en etanol absoluto (pureza >99%) con la concentración requerida para obtener el polvo nanoestructurado con la concentración de metal deseada, calentándose la solución por debajo de 700C, c) una vez todo el cloruro de wolframio se ha transformado en etóxido de wolframio W, (solución incolora) en la etapa b) , se añade de forma controlada a la suspensión de polvo oxidico de a) la cual se mantiene en agitación continua para favorecer la mezcla homogénea de ambos líquidos, d) el solvente restante se elimina por evaporación a una temperatura, generalmente, menor de 700C y siempre bajo agitación continua, pudiendo calentarlo en estufa a 600C durante 24 horas hasta obtener un polvo seco, e) posteriormente, el polvo seco de d) , se tamiza mediante una malla estándar, preferentemente por debajo de 63 mieras, y se calcina a temperaturas comprendidas entre 5000C y 7000C, preferentemente a 6000C, durante un periodo de tiempo suficiente para eliminar los componentes orgánicos y favorecer la cristalización del óxido de wolframio sobre la superficie de las partículas oxidicas, preferentemente, durante una hora, y f) reducir el óxido de wolframio a wolframio metálico mediante un tratamiento térmico entre 7500C y 11000C, preferentemente a 9000C, en atmósfera reductora de hidrógeno del polvo nanoestructurado de e) entre una hora y media y dos horas y media, preferentemente dos horas, con lo cual se produce la cristalización de las nanoparticulas metálicas sobre la superficie de las partículas oxidicas.Another object of the invention is the process for obtaining the ceramic oxide / nW material of the invention, hereinafter method of obtaining the invention, which comprises the following steps: a) the oxidic powder is suspended in absolute ethanol, with a solids concentration generally less than 85%, by stirring the whole assembly by any magnetic or mechanical device that favors dispersion, b) in parallel, a solution of tungsten chloride in absolute ethanol (purity> 99%) is prepared with required for the nanostructured powder with the desired concentration of metal concentration, heating the solution below 70 0 C, c) once all the tungsten chloride has been transformed into tungsten ethoxide W, (colorless solution) in step b), it is added in a controlled manner to the oxidic powder suspension of a) which is kept under continuous stirring to promote homogeneous mixture of two liquids, d) the remaining solvent is removed by evaporation at a temperature generally below 70 0 C and always under continuous stirring and can heat it in an oven at 60 0 C for 24 hours to obtain a dry powder e) subsequently, the dry d) powder, sieved using a standard mesh, preferably below 63 microns, and calcined at temperatures between 500 0 C and 700 0 C, preferably at 600 0 C for a period of sufficient time to remove the organic components and favor the crystallization of the tungsten oxide on the surface of the oxidic particles, preferably, for one hour, and f) reduce the tungsten oxide to tungsten me by means of a heat treatment between 750 0 C and 1100 0 C, preferably at 900 0 C, in a hydrogen-reducing atmosphere of the nanostructured powder of e) between one hour and a half and two and a half hours, preferably two hours, whereby It produces the crystallization of the metal nanoparticles on the surface of the oxidic particles.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde el polvo oxidico de a) puede ser seleccionado, a titulo ilustrativo y sin que limite el alcance de la invención, entre el siguiente grupo : a) alúmina, en cualquiera de sus formas cristalográficas, a saber, α, β, δ, γ, K, p, η, θ y χ, con un tamaño de grano comprendido entre 20 y 1000 nm, b) alúmina con cualquier óxido que pueda entrar en solución sólida en su red - tales como, por ejemplo, TÍO2, Fe2O3, Y2O3 - y, particularmente, la cromita (Cr2O3) cuya solución sólida con la alúmina es continua en el rango comprendido entre el 0% y el 100% en peso, y c) espinela de aluminio-magnesio (MgAl2O4) en cualquiera de sus variedades (estequiométrica, rica en alúmina o rica en magnesia) , con una relación molar que puede oscilar entre el 66 y el 91%, por ejemplo, el 78%, y un tamaño de grano comprendido entre 20 y 1000 nm.Another particular object of the invention is the process of the invention where the oxidic powder of a) can be selected, by way of illustration and without limiting the scope of the invention, from the following group: a) alumina, in any of its crystallographic forms, namely, α, β, δ, γ, K, p, η, θ and χ, with a grain size between 20 and 1000 nm, b) alumina with any oxide that may enter a solid solution in its network - such as, for example, TIO2, Fe 2 O 3 , Y 2 O 3 - and, in particular, chromite (Cr 2 O 3 ) whose solid solution with alumina is continuous in the range between 0% and 100% by weight, and c) aluminum-magnesium spinel (MgAl 2 O 4 ) in any of its varieties (stoichiometric, rich in alumina or rich in magnesia), with a molar ratio that can range between 66 and 91%, for example, 78%, and a grain size between 20 and 1000 nm.
Otro objeto particular de la invención lo constituye el procedimiento de la invención donde la concentración de la fase metálica de cloruro de wolframio de b) puede variar en función de la concentración de wolframio que se desee obtener en el material cerámico de la invención, por ejemplo, entre 0.05 y el 30% en volumen de W, por ejemplo, de forma particular el 1% (Ejemplo 1) .Another particular object of the invention is the process of the invention where the concentration of the tungsten chloride metal phase of b) can vary depending on the tungsten concentration that is desired in the ceramic material of the invention, for example , between 0.05 and 30% by volume of W, for example, in particular 1% (Example 1).
Otra realización particular de la invención lo constituye el procedimiento de obtención de la invención donde se emplea alúmina (Ot-Al2O3) como polvo oxidico (Ejemplo 1) .Another particular embodiment of the invention is the process for obtaining the invention where alumina (Ot-Al 2 O 3 ) is used as an oxidic powder (Example 1).
Otra realización particular de la invención lo constituye el procedimiento de obtención de la invención donde se emplea espinela como polvo oxidico (Ejemplo 1) . Finalmente, otro objeto de la presente invención lo constituye el uso del material óxido cerámico/n—W de la invención en la elaboración, a titulo ilustrativo y sin que limite el alcance de invención, de productos pertenecientes al siguiente grupo: componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes y recubrimientos sobre sustratos metálicos.Another particular embodiment of the invention is the process for obtaining the invention where spinel is used as an oxidic powder (Example 1). Finally, another object of the present invention is the use of the ceramic oxide / n-W material of the invention in the preparation, by way of illustration and without limiting the scope of the invention, of products belonging to the following group: electronic components, catalysts , structural technical ceramics, pigments and dyes and coatings on metal substrates.
Como catalizador el material óxido cerámico/n—W de la invención puede ser utilizado en una gran variedad de procesos tan diversos como en la industria química, protección medioambiental (como, por ejemplo, los convertidores catalíticos de los automóviles) , en la reducción de los NOx en las plantas energéticas, en refinerías de petróleo, en síntesis de medicamentos, en procesos petroquimicos, etc.As a catalyst, the ceramic oxide / n-W material of the invention can be used in a wide variety of processes as diverse as in the chemical industry, environmental protection (such as automobile catalytic converters), in the reduction of NO x in power plants, in oil refineries, in drug synthesis, in petrochemical processes , etc.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
Figura 1.- Esquema de la reacción química entre el cloruro de wolframio y el etanol absoluto de la etapa b) del procedimiento de la invención (Fórmula 1). Figura 2.- Imagen de microscopía electrónica de transmisiónFigure 1.- Scheme of the chemical reaction between tungsten chloride and absolute ethanol from step b) of the process of the invention (Formula 1). Figure 2.- Image of transmission electron microscopy
(MET) de los polvos nanoestructurados α-Al2θ3/nW. El tamaño de las partículas metálicas está comprendido entre 5 y 20 nm. Las nanoparticulas de wolframio se encuentran monodispersas y firmemente adheridas a las partículas oxidicas .(MET) of the nanostructured powders α-Al2θ3 / nW. The size of the metal particles is between 5 and 20 nm. Tungsten nanoparticles are monodisperse and firmly adhered to the oxidic particles.
Figura 3.- Micrografia de MET correspondiente al polvo de espinela/nW. En este caso, el tamaño de las partículas metálicas está comprendido entre 3 y 20 nm.Figure 3.- MET micrograph corresponding to spinel powder / nW. In this case, the size of the metal particles is between 3 and 20 nm.
EJEMPLOS DE REALIZACIÓNEXAMPLES OF REALIZATION
Ejemplo 1.- Obtención de polvos nanoestructurados de Al2O3/nW y espinela/nW como realizaciones particulares del material óxido cerámico/n—W de la invención. Las materias primas de partida son:Example 1. Obtaining nanostructured powders of Al 2 O 3 / nW and spinel / nW as particular embodiments of the ceramic oxide / n-W material of the invention. The starting raw materials are:
- polvo oxidico: Alúmina Taimei (Ot-Al2O3, TM-DAR, Taimei Chemicals, Japón, tamaño de partícula medio de 147 nm, pureza >99%) y espinela de aluminio-magnesia (AR-78, Alcoa Industrial Chemicals, Alemania) tamaño medio de partícula de 700 nm, pureza >99%, con 78% en peso de Al2O3. Se deben utilizar tanto polvo de alúmina o de espinela de elevada pureza, con un tamaño de grano comprendido en el rango 0.1-1 μm, - Cloruro de wolframio (WCl6) [Aldrich, Tungsten (V)- oxidic powder: Taimei alumina (Ot-Al 2 O 3 , TM-DAR, Taimei Chemicals, Japan, average particle size 147 nm, purity> 99%) and aluminum magnesium spinel (AR-78, Alcoa Industrial Chemicals , Germany) average particle size of 700 nm, purity> 99%, with 78% by weight of Al 2 O 3 . Both alumina powder or spinel of high purity, with a grain size in the range 0.1-1 μm, - Tungsten Chloride (WCl 6 ) [Aldrich, Tungsten (V)
Chloride, 99,9%], y - Etanol absoluto empleado como medio solvente (Panreac del 99, 5% de pureza) .Chloride, 99.9%], and - Absolute ethanol used as solvent medium (Panreac 99.5% pure).
Para ello, se ha seguido el siguiente procedimiento, idéntico para ambos óxidos (alúmina y espinela) , con las particularidades de cada caso que a continuación. Se emplearon 50 g de alúmina (01-AI2O3) y 20 g de espinela que fueron puestos en suspensión en 70 g y 60 g de etanol absoluto, respectivamente, en continua agitación magnética [etapa a) ] . La concentración en sólidos se mantuvo por debajo del 85%. En paralelo, se utilizaron 5,348 g de cloruro de wolframio (WCl6) para la alúmina yFor this, the following procedure, identical for both oxides (alumina and spinel), has been followed, with the particularities of each case as follows. 50 g of alumina (01-AI2O3) and 20 g of spinel were used which were suspended in 70 g and 60 g of absolute ethanol, respectively, in continuous magnetic stirring [step a)]. The solids concentration remained below 85%. In parallel, 5,348 g of tungsten chloride (WCl 6 ) were used for alumina and
2,402 g WCl6 para la espinela en solución con la cantidad de etanol absoluto necesario (350 mi para la alúmina y 240 mi para la espinela) para transformar el color amarillo de la disolución del polvo de cloruro de wolframio en incoloro, calentándose la solución por debajo de 700C2.402 g WCl 6 for the spinel in solution with the amount of absolute ethanol required (350 ml for alumina and 240 ml for spinel) to transform the yellow color of the tungsten chloride powder solution into colorless, the solution being heated by below 70 0 C
[etapa b) ] . En estas dos realizaciones particulares las condiciones se definieron para establecer una concentración de la fase metálica del wolframio del 1% en el material cerámico final de la invención. En el momento de contacto entre el cloruro de wolframio y el etanol absoluto de la etapa b) del procedimiento de la invención se produce la siguiente reacción química (Fórmula 1; ver Figura 1) :[stage b)]. In these two particular embodiments the conditions were defined to establish a concentration of the tungsten metal phase of 1% in the final ceramic material of the invention. At the time of contact between tungsten chloride and absolute ethanol from step b) of the process of the invention, the following chemical reaction occurs (Formula 1; see Figure 1):
5 (CH -CH OH) + WCl W(CH -CH O) + 5 HCl (g) í5 (CH -CH OH) + WCl W (CH -CH O) + 5 HCl (g) í
3 2 ; 3 2 53 2; 3 2 5
Como se advierte en la Fórmula (1) hay un desprendimiento de ácido clorhídrico (gas) que no cesará hasta que la solución, en un principio amarilla, se transforme en incolora, momento en el que se consigue una solución de etóxido de W en etanol absoluto.As noted in Formula (1) there is a release of hydrochloric acid (gas) that will not cease until the solution, initially yellow, becomes colorless, at which time a solution of W ethoxide in absolute ethanol is achieved.
A continuación, se añade esta solución gota a gota sobre la suspensión de la alúmina y de la espinela, respectivamente, tornándose paulatinamente la solución de color blanquecino en color azul [etapa c) ] . Esta solución se siguió agitando y calentando (<70°C) hasta llevarla a un estado viscoso para finalmente introducir el conjunto en estufa a 600C durante 24 horas [etapa d) ] . El producto seco asi conseguido, se tamizó mediante una malla estándar por debajo de 63 mieras y el polvo se trató térmicamente a 6000C durante 1 hora [etapa e) ] . De nuevo, el polvo tratado se tamizó por debajo de 63 mieras y se redujo en un horno tubular en atmósfera de H2 a 9000C durante 2 horas [etapa f)] •Then, this solution is added dropwise onto the alumina and spinel suspension, respectively, gradually turning the whitish solution into blue [step c)]. This solution was stirred and heated (<70 ° C) to bring it to a viscous state to finally enter the assembly in an oven at 60 0 C for 24 hours [step d)]. The dried product thus obtained, was sieved using standard mesh below 63 microns and the powder was heat treated at 600 0 C for 1 hour [step e)]. Again, the treated powder was screened below 63 microns and reduced in a tubular oven under an atmosphere of H 2 at 900 0 C for 2 hours [step f)] •
De esta manera se han obtenido polvos nanoestructurados de α-Al2O3/nW en los que el tamaño de las partículas metálicas está comprendido entre 5 y 20 nm (Figura 2), encontrándose las nanoparticulas de wolframio monodispersas y firmemente adheridas a las partículas oxidicas tal y como se desprende del estudio realizado por MET de la interfase óxido/metal. De forma similar se ha observado que en el polvo de espinela/nW obtenido el tamaño de las partículas metálicas está comprendido entre 3 y 20 nm (Figura 3) . Finalmente, indicar que los polvos nanoestructurados de Al2O3ZnW y espinela/nW obtenidos presentan un contenido de wolframio del 1% en volumen, el cual se ha determinado mediante análisis químico posterior y coincide con la cantidad de W programada en el experimento. In this way, nanostructured α-Al 2 O 3 / nW powders have been obtained in which the size of the metal particles is between 5 and 20 nm (Figure 2), the tungsten nanoparticles being monodispersed and firmly adhered to the particles oxidic as can be seen from the MET study of the oxide / metal interface. Similarly, it has been observed that in the spinel powder / nW obtained, the size of the metal particles is between 3 and 20 nm (Figure 3). Finally, indicate that the nanostructured powders of Al 2 O 3 ZnW and spinel / nW obtained have a tungsten content of 1% by volume, which has been determined by subsequent chemical analysis and coincides with the amount of W programmed in the experiment.

Claims

REIVINDICACIONES
1.- Material nanoestructurado compuesto caracterizado porque está constituido por un material óxido cerámico/n-W con un tamaño nanométrico de partícula metálica comprendido entre 1 y 100 nm, preferentemente entre 1 y 20 nm, adheridas al sustrato oxidico y con un contenido de wolframio entre el 0,05% y el 30% en volumen. 1.- Nanostructured composite material characterized in that it is constituted by a ceramic oxide / nW material with a nanometric metal particle size between 1 and 100 nm, preferably between 1 and 20 nm, adhered to the oxidic substrate and with a tungsten content between 0.05% and 30% by volume.
2.- Material nanoestructurado compuesto según la reivindicación 1 caracterizado porque el óxido pertenece al siguiente grupo: a) alúmina, en cualquiera de sus formas cristalográficas, a saber, α, β, δ, γ, K, p, η, θ y χ, con un tamaño de grano comprendido entre 20 y 1000 nm, b) alúmina con cualquier óxido que pueda entrar en solución sólida en su red cuya solución sólida con la alúmina es continua en el rango comprendido entre el 0% y el 100% en peso, y c) espinela de aluminio-magnesio (MgAl2O4) en cualquiera de sus variedades (estequiométrica, rica en alúmina o rica en magnesia) , con una relación molar que puede oscilar entre el 66 y el 91%, por ejemplo, el 78%, y un tamaño de grano comprendido entre 20 y 1000 nm. 2. Composite nanostructured material according to claim 1 characterized in that the oxide belongs to the following group: a) alumina, in any of its crystallographic forms, namely, α, β, δ, γ, K, p, η, θ and χ , with a grain size between 20 and 1000 nm, b) alumina with any oxide that can enter into solid solution in its network whose solid solution with alumina is continuous in the range between 0% and 100% by weight , and c) aluminum-magnesium spinel (MgAl 2 O 4 ) in any of its varieties (stoichiometric, rich in alumina or rich in magnesia), with a molar ratio that can range between 66 and 91%, for example, 78%, and a grain size between 20 and 1000 nm.
3.- Material nanoestructurado compuesto según la reivindicación 2 caracterizado porque la alúmina de b) pertenece al siguiente grupo: TiO2, Fe2θ3, Y2Ü3 y cromita (Cr2O3) .3. Material nanostructured compound according to claim 2 wherein the alumina b) belongs to the following group: TiO 2, Fe 2 θ3, Y 2 Ü3 and chromite (Cr 2 O 3).
4- Material nanoestructurado compuesto según la reivindicación 2 caracterizado porque el material óxido cerámico/n-W es α-Al2O3/nW. 4- Nanostructured composite material according to claim 2 characterized in that the ceramic oxide / nW material is α-Al 2 O 3 / nW .
5.- Material nanoestructurado compuesto según la reivindicación 2 caracterizado porque el material óxido cerámico/n-W es espinela/nW. 5. Composite nanostructured material according to claim 2 characterized in that the ceramic oxide / nW material is spinel / nW.
6.- Procedimiento de obtención del material nanoestructurado según las reivindicaciones 1 a la 5 caracterizado porque comprende las siguientes etapas: a) el polvo oxidico se pone en suspensión en etanol absoluto, con una concentración en sólidos generalmente inferior al 85%, poniendo todo el conjunto en agitación mediante cualquier dispositivo magnético o mecánico que favorezca la dispersión, b) en paralelo, se prepara una solución de cloruro de wolframio en etanol absoluto (pureza >99%) con la concentración requerida para obtener el polvo nanoestructurado con la concentración de metal deseada, calentándose la solución por debajo de 700C, c) una vez todo el cloruro de wolframio se ha transformado en etóxido de wolframio W, (solución incolora) en la etapa b) , se añade de forma controlada a la suspensión de polvo oxidico de a) la cual se mantiene en agitación continua para favorecer la mezcla homogénea de ambos líquidos, d) el solvente restante se elimina por evaporación a una temperatura, generalmente, menor de 700C y siempre bajo agitación continua, pudiendo calentarlo en estufa a 600C durante 24 horas hasta obtener un polvo seco, e) posteriormente, el polvo seco de d) , se tamiza mediante una malla estándar, preferentemente por debajo de6. Procedure for obtaining the nanostructured material according to claims 1 to 5, characterized in that it comprises the following steps: a) the oxidic powder is suspended in absolute ethanol, with a solids concentration generally less than 85%, putting all the set under stirring by any magnetic or mechanical device that favors dispersion, b) in parallel, a solution of tungsten chloride in absolute ethanol (purity> 99%) is prepared with the concentration required to obtain the nanostructured powder with the metal concentration desired, it warming the solution below 70 0 C, c) once all chloride tungsten has become ethoxide tungsten W, (colorless solution) in step b) is added in a controlled manner to the powder slurry oxidic of a) which is kept under continuous agitation to favor the homogeneous mixing of both liquids, d) the remaining solvent is removed by evap prayer at a temperature, generally, less than 70 0 C and always under continuous agitation, being able to heat it in an oven at 60 0 C for 24 hours until obtaining a dry powder, e) subsequently, the dry powder of d), is screened by means of a standard mesh, preferably below
63 mieras, y se calcina a temperaturas comprendidas entre 5000C y 7000C, preferentemente a 6000C, durante un periodo de tiempo suficiente para eliminar los componentes orgánicos y favorecer la cristalización del óxido de wolframio sobre la superficie de las partículas oxidicas, preferentemente, durante una hora, y f) reducir el óxido de wolframio a wolframio metálico mediante un tratamiento térmico entre 7500C y 11000C, preferentemente a 9000C, en atmósfera reductora de hidrógeno del polvo nanoestructurado de e) entre una hora y media y dos horas y media, preferentemente dos horas, con lo cual se produce la cristalización de las nanoparticulas metálicas sobre la superficie de las partículas oxidicas. 63 microns, and is calcined at temperatures between 500 0 C and 700 0 C, preferably at 600 0 C, for a period of time sufficient to remove the organic components and favor the crystallization of tungsten oxide on the surface of the oxidic particles , preferably, for one hour, and f) reduce the tungsten oxide to metallic tungsten by a heat treatment between 750 0 C and 1100 0 C, preferably at 900 0 C, in a reducing atmosphere of hydrogen of the nanostructured powder of e) between an hour and a half and two and a half hours, preferably two hours, whereby the crystallization of the metal nanoparticles on the surface of the oxidic particles occurs.
7. - Procedimiento según la reivindicación 6 caracterizado porque el polvo oxidico de a) es seleccionado entre el siguiente grupo: a) alúmina, en cualquiera de sus formas cristalográficas, a saber, α, β, δ, γ, K, p, η, θ y χ, y con un tamaño de grano comprendido entre 20 y 1000 nm, b) alúmina con cualquier óxido que pueda entrar en solución sólida en su red y cuya solución sólida con la alúmina es continua en el rango comprendido entre el 0% y el 100% en peso, y c) espinela de aluminio-magnesio (MgAl2θ4) en cualquiera de sus variedades (estequiométrica, rica en alúmina o rica en magnesia) , con una relación molar que puede oscilar entre el 66 y el 91%, por ejemplo, el 78%, y un tamaño de grano comprendido entre 20 y 1000 nm. 7. - Method according to claim 6 characterized in that the oxidic powder of a) is selected from the following group: a) alumina, in any of its crystallographic forms, namely, α, β, δ, γ, K, p, η , θ and χ, and with a grain size between 20 and 1000 nm, b) alumina with any oxide that can enter a solid solution in its network and whose solid solution with alumina is continuous in the range between 0% and 100% by weight, and c) aluminum-magnesium spinel (MgAl2θ4) in any of its varieties (stoichiometric, rich in alumina or rich in magnesia), with a molar ratio that can range between 66 and 91%, by example, 78%, and a grain size between 20 and 1000 nm.
8.- Procedimiento según la reivindicación 7 caracterizado porque la alúmina de b) se selecciona del siguiente grupo: TiO2, Fe2O3, Y2O3 y la cromita (Cr2O3) .8. Method according to claim 7 characterized in that the alumina of b) is selected from the following group: TiO 2 , Fe 2 O 3 , Y 2 O 3 and chromite (Cr 2 O 3 ).
9.- Procedimiento según la reivindicación 7 caracterizado porque la concentración de la fase metálica de cloruro de wolframio de b) puede variar en función de la concentración de wolframio en el material a obtener, preferentemente, entre 0.05 y el 30% en volumen de W, y por ejemplo, el 1%. 9. Method according to claim 7 characterized in that the concentration of the tungsten chloride metal phase of b) can vary depending on the concentration of tungsten in the material to be obtained, preferably, between 0.05 and 30% by volume of W , and for example, 1%.
10.- Procedimiento según la reivindicación 7 caracterizado porque se emplea alúmina (Ot-Al2O3) como polvo oxidico. 10. Method according to claim 7 characterized in that alumina (Ot-Al 2 O 3 ) is used as an oxidic powder.
11.- Procedimiento según la reivindicación 7 caracterizado porque se emplea espinela como polvo oxidico. 11. Method according to claim 7 characterized in that spinel is used as oxidic powder.
12.- Uso del material nanoestructurado según las reivindicaciones 1 a la 5 en la elaboración de un producto perteneciente al siguiente grupo: componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes y recubrimientos sobre sustratos metálicos. 12. Use of the nanostructured material according to claims 1 to 5 in the preparation of a product belonging to the following group: electronic components, catalysts, structural technical ceramics, pigments and dyes and coatings on metal substrates.
PCT/ES2007/070192 2006-11-21 2007-11-20 Nanostructured oxide ceramic/n-w material, method for preparing and uses thereof WO2008062092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200602968A ES2300208B1 (en) 2006-11-21 2006-11-21 CERAMIC OXIDE NANOESTRUCTURED MATERIAL / N-W, OBTAINING PROCEDURE AND ITS APPLICATIONS.
ESP200602968 2006-11-21

Publications (1)

Publication Number Publication Date
WO2008062092A1 true WO2008062092A1 (en) 2008-05-29

Family

ID=39400676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070192 WO2008062092A1 (en) 2006-11-21 2007-11-20 Nanostructured oxide ceramic/n-w material, method for preparing and uses thereof

Country Status (2)

Country Link
ES (1) ES2300208B1 (en)
WO (1) WO2008062092A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191515A1 (en) * 2000-07-20 2005-09-01 Shipley Company, L.L.C. Very low thermal expansion composite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191515A1 (en) * 2000-07-20 2005-09-01 Shipley Company, L.L.C. Very low thermal expansion composite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIAZ L.A. ET AL.: "Alumina/molybdenum nancomposites obtained in organic media", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 23, 2003, pages 2829 - 2834, XP004450505, DOI: doi:10.1016/S0955-2219(03)00295-4 *
SEKINO T. ET AL.: "Reduction and sintering of alumina/tungsten nanocomposites-Powder processing, reduction behavior and microstructural characterization", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 108, no. 6, June 2000 (2000-06-01), pages 541 - 547 *
YAMUNA A. ET AL.: "Processing and Property Evaluation of Alumina Aerogel Based Ceramic Nanocomposites", KEY ENGINEERING MATERIALS, vol. 317-318, August 2006 (2006-08-01), pages 73 - 76 *

Also Published As

Publication number Publication date
ES2300208B1 (en) 2009-06-05
ES2300208A1 (en) 2008-06-01

Similar Documents

Publication Publication Date Title
Sarkar et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides
Wang et al. Synthesis of monodispersed La2Ce2O7 nanocrystals via hydrothermal method: A study of crystal growth and sintering behavior
FI114909B (en) Composition based on zirconium oxide and cerium oxide, process for its preparation and its use
Douy Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses
Morris et al. Ordered mesoporous alumina-supported metal oxides
Li et al. Low temperature molten salt synthesis of SrTiO3 submicron crystallites and nanocrystals in the eutectic NaCl–KCl
Keerthana et al. MgO-ZrO2 mixed nanocomposites: fabrication methods and applications
Das et al. Application of perovskites towards remediation of environmental pollutants: an overview: A review on remediation of environmental pollutants using perovskites
Gao et al. Phase transformation in the Al2O3–ZrO2 system
JP6538688B2 (en) Catalyst for methanation reaction, method for producing catalyst for methanation reaction, and method for producing methane
Behera et al. Nano alumina: a review of the powder synthesis method
Kutty et al. Low temperature synthesis of nanocrystalline magnesium aluminate spinel by a soft chemical method
Chang et al. Formation mechanism of zirconia nano-particles containing pores prepared via sol–gel-hydrothermal method
Farahmandjou et al. Synthesis and characterisation of Al₂O₃ nanoparticles as catalyst prepared by polymer co-precipitation method
KR20190113804A (en) Catalyst for methanation reaction, preparation method of catalyst for methanation reaction and preparation method of methane
Wang et al. Influence of different surfactants on crystal growth behavior and sinterability of La2Ce2O7 solid solution
Yoko et al. Formation mechanism of barium zirconate nanoparticles under supercritical hydrothermal synthesis
Teraoka et al. Synthesis of manganite perovskites by reverse homogeneous precipitation method in the presence of alkylammonium cations
Septawendar et al. Synthesis of one-dimensional ZrO2 nanomaterials from Zr (OH) 4 precursors assisted by glycols through a facile precursor-templating method
Deshpande et al. Synthesis of mesoporous ceria zirconia beads
Kasala et al. Microwave assisted synthesis and powder flowability characteristics of rare-earth aluminate (ReAlO3, Re= La, Gd, Nd, Y) powders
Hafez et al. Synthesis, characterization and color performance of novel Co2+-doped alumina/titania nanoceramic pigments
Han et al. Characterization and synthesis of ZTA nanopowders and ceramics by rotating packed bed (RPB)
Chang et al. Preparation and characterization of unique zirconia crystals within pores via a sol–gel-hydrothermal method
WO2008062092A1 (en) Nanostructured oxide ceramic/n-w material, method for preparing and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07858277

Country of ref document: EP

Kind code of ref document: A1