ES2300208A1 - Nanostructured oxide ceramic/n-w material, method for preparing and uses thereof - Google Patents

Nanostructured oxide ceramic/n-w material, method for preparing and uses thereof Download PDF

Info

Publication number
ES2300208A1
ES2300208A1 ES200602968A ES200602968A ES2300208A1 ES 2300208 A1 ES2300208 A1 ES 2300208A1 ES 200602968 A ES200602968 A ES 200602968A ES 200602968 A ES200602968 A ES 200602968A ES 2300208 A1 ES2300208 A1 ES 2300208A1
Authority
ES
Spain
Prior art keywords
alumina
tungsten
powder
oxidic
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES200602968A
Other languages
Spanish (es)
Other versions
ES2300208B1 (en
Inventor
Jose Serafin Moya Corral
Carlos Pecharroman Garcia
Sonia Lopez Esteban
Teresa Rodriguez Suarez
Luis Antonio Diaz Rodriguez
Ramon Torreciilas San Millan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES200602968A priority Critical patent/ES2300208B1/en
Priority to PCT/ES2007/070192 priority patent/WO2008062092A1/en
Publication of ES2300208A1 publication Critical patent/ES2300208A1/en
Application granted granted Critical
Publication of ES2300208B1 publication Critical patent/ES2300208B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0009Pigments for ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The subject matter of the present invention is an nanostructured ceramic oxide/n-w composite material of nanometric size, 1 to 20 nm, with a tungsten content between 0.05 vol.% and 30 vol.%. Also described is the method for preparing the ceramic oxide/n-W material of the invention. This novel material can be useful in the manufacture of electronic components, catalysers, structural technical ceramics and pigments, dyes and coatings on metal substrates.

Description

Material nanoestructurado óxido cerámico/n-W, procedimiento de obtención y sus aplicaciones.Nanostructured Oxide Material ceramic / n-W, obtaining procedure and its Applications.

Sector de la técnicaTechnical sector

Nuevos materiales como componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes, recubrimientos sobre sustratos metálicos, etc.New materials as electronic components,  catalysts, structural technical ceramics, pigments and dyes, coatings on metal substrates, etc.

Estado de la técnicaState of the art

El wolframio (W) es un metal con propiedades intrínsecas excepcionales: alto punto de fusión (3422ºC), gran dureza (3.43 GPa), el coeficiente de expansión térmica más bajo de todos los metales (4.5 \cdot 10^{-6} K^{-1}) y una de las menores presiones de vapor dentro de los mismos:Tungsten (W) is a metal with properties Intrinsic exceptional: high melting point (3422ºC), great hardness (3.43 GPa), the lowest thermal expansion coefficient of all metals (4.5 · 10-6 K-1) and one of the lower vapor pressures within them:

1one

La alúmina (8.5 10^{-6} K^{-1}) y la espinela (7.3 10^{-6} K^{-1}) son óxidos químicamente muy estables, resistentes a la corrosión y que poseen unos coeficientes de dilatación térmicos muy similares al del wolframio (5.4 \cdot 10^{-6} K^{-1}) lo que minimiza posibles problemas derivados de la formación de tensiones residuales en la interfase.The alumina (8.5 10 - 6 K - 1) and the spinel (7.3 10 - 6 K - 1) are chemically very oxides stable, resistant to corrosion and have coefficients of thermal expansion very similar to tungsten (5.4 \ cdot 10 -6 K-1) which minimizes possible problems arising from the formation of residual stresses at the interface.

Por otro lado, es bien conocido el hecho de que los materiales metálicos, en el rango nanométrico, presentan menos ductilidad que los mismos materiales con tamaño de partícula micrométrico [Siegel RW, Nanostruct Mater; 3 (1993) 1-18]. En el caso particular del W, que presenta un alto valor de G (módulo de cizalla), la dureza Vickers esperada - teniendo en cuenta la relación lineal que existe entre G y H_{v} - puede incrementarse en las nanopartículas de wolframio hasta valores del orden de 30 GPa. Esto, conjuntamente con los altos valores de H_{v} que poseen las matrices de alúmina o de espinela, puede dar como resultado materiales compuestos cerámico/nanometal de dureza muy superior a la de los correspondientes compuestos microparticulados [C. Pecharromán, F. Esteban-Betegón, J. F. Bartolomé, G. Richter, y J. S. Moya, Nanoletters, 4 [4]; (2004) 747-51].On the other hand, it is well known that metallic materials, in the nanometric range, have less ductility than the same micrometer particle size materials [Siegel RW, Nanostruct Mater ; 3 (1993) 1-18]. In the particular case of W, which has a high value of G (shear modulus), the expected Vickers hardness - taking into account the linear relationship between G and H_ {v} - can be increased in tungsten nanoparticles to values of the order of 30 GPa. This, together with the high values of H_ {v} that the alumina or spinel matrices possess, can result in ceramic / nanometal composite materials of much greater hardness than the corresponding microparticulate compounds [C. Pecharromán, F. Esteban-Betegón, JF Bartolomé, G. Richter, and JS Moya, Nanoletters , 4 [4]; (2004) 747-51].

En el campo de la catálisis se han estudiado múltiples sistemas de metales y óxidos metálicos soportados sobre óxidos cerámicos para diversas aplicaciones ya que existen multitud de metales catalíticamente activos (V, Nb, Ta, Re, Rh, Rb, Co, Fe, Mn, Pt, Mo, etc.) con tamaños comprendidos entre algunos nanómetros y, aproximadamente 0.5 micras [Wong Michael S; Wachs Israel E; Knowles William V. Patent WO2005/002714 de 13/01/2005; J.-W. Yoon, T. Sasaki, N. Koshizaki, Thin Solid Films 483 (2005) 276-282; T. Sanders, M. Kirchhoff, U. Specht, G. Veser, AIChE Annual Meeting, Conference Proceedings (2005) 10004; X.-H. Yun, M.-X. Chen, J.-W. Shi, W.-F. Shangguan, Shanghai Jiatong Daxue Xuebao/Journal of Shanghai Jiatong University, 39 [11] (2005) 1886-1890; L. Bultel, P. Vernoux, F. Gaillard, C. Roux, E. Siebert, Solid State Ionics, 176 (7-8) (2005) 793-801; Y. Guo, G. Lu, X. Mo, Y. Wang, Chemistry Letters 33 [12] (2004) 1628-1629; G. Li, W. Li, M. Zhang, K. Tao, Catalysis Today 93-95 (2004) 595-601; H.-R. Chen, J.-L. Shi, L. Li, M.-L. Ruan, D.-S. Yan, Journal Of Chemical Engineering of Japan 36 [10] (2003) 1212-1215; X.L. Pan, N. Stroh, H. Brunner, G.X. Xiong, S.S. Sheng, Separation and Purification Technology, 32 [1-3] (2003) 265-270].In the field of catalysis, multiple metal and metal oxide systems supported on ceramic oxides have been studied for various applications since there are many catalytically active metals (V, Nb, Ta, Re, Rh, Rb, Co, Fe, Mn, Pt, Mo, etc.) with sizes between some nanometers and approximately 0.5 microns [Wong Michael S; Wachs Israel E; Knowles William V. Patent WO2005 / 002714 of 01/13/2005; J.-W. Yoon, T. Sasaki, N. Koshizaki, Thin Solid Films 483 (2005) 276-282; T. Sanders, M. Kirchhoff, U. Specht, G. Veser, AIChE Annual Meeting , Conference Proceedings (2005) 10004; X.-H. Yun, M.-X. Chen, J.-W. Shi, W.-F. Shangguan, Shanghai Jiatong Daxue Xuebao / Journal of Shanghai Jiatong University , 39 [11] (2005) 1886-1890; L. Bultel, P. Vernoux, F. Gaillard, C. Roux, E. Siebert, Solid State Ionics , 176 (7-8) (2005) 793-801; Y. Guo, G. Lu, X. Mo, Y. Wang, Chemistry Letters 33 [12] (2004) 1628-1629; G. Li, W. Li, M. Zhang, K. Tao, Catalysis Today 93-95 (2004) 595-601; H.-R. Chen, J.-L. Shi, L. Li, M.-L. Rouen, D.-S. Yan, Journal Of Chemical Engineering of Japan 36 [10] (2003) 1212-1215; XL Pan, N. Stroh, H. Brunner, GX Xiong, SS Sheng, Separation and Purification Technology , 32 [1-3] (2003) 265-270].

Es tanta la variedad de sistemas que, hoy en día, se encuentran catalizadores de este tipo en procesos tan diversos como industrias químicas, protección medioambiental (como por ejemplo los convertidores catalíticos de los automóviles), en la reducción de los NO_{x} en las plantas energéticas, en refinerías de petróleo, síntesis de medicamentos, procesos petroquímicos, etc.The variety of systems is so great that, today in day, catalysts of this type are found in processes so various as chemical industries, environmental protection (such as for example the catalytic converters of cars), in the reduction of NO_ {x} in energy plants, in refineries of oil, drug synthesis, petrochemical processes, etc.

Por otro lado, existen abundantes referencias bibliográficas en la literatura relacionadas con el procesamiento de materiales cerámicos conteniendo nanopartículas metálicas, tales como Al_{2}O_{3}/Ni, Al_{2}O_{3}/Mo, Al_{2}O_{3}/Cr, Al_{2}O_{3}/Cu, etc. La mayoría de estos materiales compuestos se han obtenido a partir de mezclas de polvos (óxido y metal) que se homogeneizan mediante las clásicas rutas por vía húmeda [M. Nawa, T. Sekino, K. Niihara, Journal of Materials Science, 29 [12] (1994) 3185-3192], o a partir de mezclas de óxido con precursores metálicos (por ejemplo, nitratos [T. Sekino, S. Etoh, Y.-H. Choa, K. Niihara, Materials Research Society Symposium- Proceedings, 501 (1998) 289-294 y S.T. Oh, J.S. Lee, K. Niihara, Scripta Mater. 44 (2001) 2117-2120] o acetilacetonato [Y. Ji, J. A. Yeomans, Journal of the European Ceramic Society 22 (2002) 1927-1936]. Otros grupos han obtenido polvos de alúmina/metal nanoestructurados mediante técnicas físicas como abrasión láser [J. Naser, H. Ferkel, NanoStructured Materials, 12 (1999) 451-451], o mediante la técnica de sol-gel [P. Bhattacharya, K. Chattopadhyay, NanoStructured Materials, 12 (1999)1077-1080].On the other hand, there are abundant bibliographic references in the literature related to the processing of ceramic materials containing metal nanoparticles, such as Al 2 O 3 / Ni, Al 2 O 3 / Mo, Al 2 O_ {3} / Cr, Al_ {2} O_ {3} / Cu, etc. Most of these composite materials have been obtained from mixtures of powders (oxide and metal) that are homogenized by the classic wet routes [M. Nawa, T. Sekino, K. Niihara, Journal of Materials Science , 29 [12] (1994) 3185-3192], or from oxide mixtures with metal precursors (eg nitrates [T. Sekino, S. Etoh, Y.-H. Choa, K. Niihara, Materials Research Society Symposium-Proceedings , 501 (1998) 289-294 and ST Oh, JS Lee, K. Niihara, Scripta Mater . 44 (2001) 2117-2120] or acetylacetonate [ Y. Ji, JA Yeomans, Journal of the European Ceramic Society 22 (2002) 1927-1936] Other groups have obtained nanostructured alumina / metal powders using physical techniques such as laser abrasion [J. Naser, H. Ferkel, NanoStructured Materials , 12 (1999) 451-451], or by the sol-gel technique [P. Bhattacharya, K. Chattopadhyay, NanoStructured Materials , 12 (1999) 1077-1080].

En el caso de los polvos de alúmina/n-W, se ha encontrado en la literatura el trabajo de Sekino et al [T. Sekino, K. Niihara, NanoStructured Materials, 6 (1995) 663-666 y T. Sekino, K. Niihara, NanoStructured Materials, 6 (1995) 663-666]. Los autores obtienen compuestos densos de dicho material a partir de mezclas homogéneas de polvos de alúmina y de óxido de wolframio. El procesamiento que siguen estos autores consiste en disolver totalmente el polvo de WO_{3} en una solución amoniacal, a la que posteriormente se añade el polvo de alúmina y agua destilada. Se homogeneiza la mezcla en molino de bolas, se hace un posterior secado a vacío y se calcina a 500ºC en aire o Ar durante 3 horas. El polvo resultante se vuelve a moler en etanol durante 24 horas y posteriormente, se reduce en atmósfera de H2. Los autores no mencionan los tamaños ni la morfología del polvo de alúmina/n-W obtenido.In the case of alumina / nW powders, the work of Sekino et al [T. Sekino, K. Niihara, NanoStructured Materials , 6 (1995) 663-666 and T. Sekino, K. Niihara, NanoStructured Materials , 6 (1995) 663-666]. The authors obtain dense compounds of said material from homogeneous mixtures of alumina powders and tungsten oxide. The processing followed by these authors consists in completely dissolving the WO3 powder in an ammoniacal solution, to which the alumina powder and distilled water are subsequently added. The mixture is homogenized in a ball mill, then dried under vacuum and calcined at 500 ° C in air or Ar for 3 hours. The resulting powder is re-ground in ethanol for 24 hours and subsequently, reduced under H2 atmosphere. The authors do not mention the sizes or morphology of the alumina powder / nW obtained.

Por otro lado, Yan et. al [H. Yan, B.S. Xu, Journal of Inorganic Materials 18 (5) 2003 1127-1130] reportan en la literatura la preparación de polvo nanoestructurado de alumina/W por precipitación heterogénea. En este caso concreto, se trata de un procesamiento pulvimetalúrgico. Los autores parten de Al(NO3)3 \cdot 9H2O y (NH4)2003 como materias primas, añaden posteriormente polvo nanométrico de W y lo homogeneizan mediante una simple mezcla mecánica. Explican que obtienen el polvo nanoestructurado calcinando a vacío el gel seco de Al(OH)3/W a 1000ºC durante 1 h.On the other hand, Yan et. to [H. Yan, BS Xu, Journal of Inorganic Materials 18 (5) 2003 1127-1130] report in the literature the preparation of nanostructured alumina powder / W by heterogeneous precipitation. In this specific case, it is a powder metallurgical processing. The authors start from Al (NO3) 3 • 9H2O and (NH4) 2003 as raw materials, subsequently add nanometric W powder and homogenize it by means of a simple mechanical mixture. They explain that they obtain the nanostructured powder by vacuum calcining the dry Al (OH) 3 / W gel at 1000 ° C for 1 h.

En el caso de polvos nanoestructurados de MgAl_{2}O_{4}/W no se han encontrado referencias en la literatura.In the case of nanostructured powders of MgAl 2 O 4 / W no references found in the literature.

Descripción de la invenciónDescription of the invention Descripción brevebrief description

Un objeto de la presente invención lo constituye un material nanoestructurado compuesto, en adelante material óxido cerámico/n-W de la invención, constituido por un material nanoestructurado óxido cerámico/n-W con un tamaño nanométrico de partícula metálica comprendido entre 1 y 100 nm, preferentemente entre 1 y 20 nm, las cuales se encuentran fuertemente adheridas al sustrato oxídico. Este material nanoestructurado óxido cerámico/nW de la invención puede presentar un contenido de wolframio entre el 0,05% y el 30% en volumen, por ejemplo, el 1%.An object of the present invention constitutes it a composite nanostructured material, hereinafter oxide material / n-W ceramic of the invention, consisting of a nanostructured ceramic oxide / n-W material with a nanometric size of metal particle between 1 and 100 nm, preferably between 1 and 20 nm, which are strongly adhered to the oxidic substrate. This material nanostructured ceramic oxide / nW of the invention may present a tungsten content between 0.05% and 30% by volume, for example, 1%.

Otro objeto de la invención lo constituye el procedimiento de obtención del material óxido cerámico/n-W de la invención, en adelante procedimiento de obtención de la invención, que comprende las siguientes etapas:Another object of the invention is the procedure for obtaining the oxide material ceramic / n-W of the invention, hereinafter method of obtaining the invention, which comprises the following stages:

a) el polvo oxídico se pone en suspensión en etanol absoluto, con una concentración en sólidos generalmente inferior al 85%, poniendo todo el conjunto en agitación mediante cualquier dispositivo magnético o mecánico que favorezca la dispersión,a) the oxidic powder is suspended in absolute ethanol, with a concentration in solids generally less than 85%, putting the whole set under agitation by any magnetic or mechanical device that favors dispersion,

b) en paralelo, se prepara una solución de cloruro de wolframio en etanol absoluto (pureza >99%) con la concentración requerida para obtener el polvo nanoestructurado con la concentración de metal deseada, calentándose la solución por debajo de 70ºC,b) in parallel, a solution of tungsten chloride in absolute ethanol (purity> 99%) with the concentration required to obtain the nanostructured powder with the desired metal concentration, the solution being heated by below 70 ° C,

c) una vez todo el cloruro de wolframio se ha transformado en etóxido de wolframio W, (solución incolora) en la etapa b), se añade de forma controlada a la suspensión de polvo oxídico de a) la cual se mantiene en agitación continua para favorecer la mezcla homogénea de ambos líquidos,c) once all tungsten chloride has been transformed into tungsten ethoxide W, (colorless solution) in the step b), is added in a controlled manner to the powder suspension a) oxidic which is kept under continuous agitation to favor the homogeneous mixing of both liquids,

d) el solvente restante se elimina por evaporación a una temperatura, generalmente, menor de 70ºC y siempre bajo agitación continua, pudiendo calentarlo en estufa a 60ºC durante 24 horas hasta obtener un polvo seco,d) the remaining solvent is removed by evaporation at a temperature, generally, less than 70 ° C and always under continuous agitation, being able to heat it on stove to 60 ° C for 24 hours until a dry powder is obtained,

e) posteriormente, el polvo seco de d), se tamiza mediante una malla estándar, preferentemente por debajo de 63 micras, y se calcina a temperaturas comprendidas entre 500ºC y 700ºC, preferentemente a 600ºC, durante un período de tiempo suficiente para eliminar los componentes orgánicos y favorecer la cristalización del óxido de wolframio sobre la superficie de las partículas oxídicas, preferentemente, durante una hora, ye) subsequently, the dry powder of d), is sieve using a standard mesh, preferably below 63 microns, and calcined at temperatures between 500 ° C and 700 ° C, preferably at 600 ° C, for a period of time enough to eliminate organic components and favor Crystallization of tungsten oxide on the surface of the oxidic particles, preferably, for one hour, and

f) reducir el óxido de wolframio a wolframio metálico mediante un tratamiento térmico entre 750ºC y 1100ºC, preferentemente a 900ºC, en atmósfera reductora de hidrógeno del polvo nanoestructurado de e) entre una hora y media y dos horas y media, preferentemente dos horas, con lo cual se produce la cristalización de las nanopartículas metálicas sobre la superficie de las partículas oxídicas.f) reduce tungsten oxide to tungsten metallic by a heat treatment between 750ºC and 1100ºC, preferably at 900 ° C, under hydrogen reducing atmosphere of the e) nanostructured powder between one hour and a half and two hours and half, preferably two hours, which produces the crystallization of metal nanoparticles on the surface of the oxidic particles.

Finalmente, otro objeto de la presente invención lo constituye el uso del material óxido cerámico/n-W de la invención en la elaboración, a título ilustrativo y sin que limite el alcance de invención, de productos pertenecientes al siguiente grupo: componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes y recubrimientos sobre sustratos metálicos.Finally, another object of the present invention it is the use of the oxide material / n-W ceramic of the invention in the process, to illustrative title and without limiting the scope of invention, of products belonging to the following group: components electronics, catalysts, structural technical ceramics, pigments and dyes and coatings on substrates metallic

Descripción detalladaDetailed description

La invención se enfrenta al problema de proporcionar nuevos materiales nanoestructurados destinados a productos como componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes, recubrimientos sobre sustratos metálicos.The invention faces the problem of provide new nanostructured materials intended for Products such as electronic components, catalysts, ceramics structural technique, pigments and dyes, coatings on metal substrates

La invención se basa en que los inventores han observado que es posible obtener un polvo nanoestructurado de alúmina/W y espinela/W de elevada pureza, con un tamaño de partículas metálicas inferior a 100 nm, incluso inferior a 20 nm, y que se encuentran fuertemente adheridas al sustrato oxídico, mediante un procedimiento químico que favorece la reacción de sustitución entre el alcóxido metálico y los grupos OH que recubren la superficie de las partículas oxídicas (alúmina o espinela) donde M-OH representa esquemáticamente la superficie de las partículas oxídicas con presencia de grupos OH (alúmina o espinela). De esta manera, se consigue un recubrimiento de las partículas oxídicas con las correspondientes moléculas órgano-metálicas [W (OCH_{2}-CH_{3})_{x}] (ver Figuras 1 a la 3). Por otro lado, el coste de este procedimiento de obtención es bajo debido a la utilización de cloruro durante el proceso de síntesis. En resumen, el procedimiento de obtención del material óxido cerámico/n-W de la invención se basa en dos tipos de reacciones químicas, a saber:The invention is based on the fact that the inventors have observed that it is possible to obtain a nanostructured powder of alumina / W and spinel / W of high purity, with a size of metal particles less than 100 nm, even less than 20 nm, and that are strongly adhered to the oxidic substrate, through a chemical procedure that favors the reaction of replacement between metal alkoxide and the OH groups that cover the surface of the oxidic particles (alumina or spinel) where M-OH schematically represents the surface of the oxidic particles with the presence of OH groups (alumina or spinel) In this way, a coating of the oxidic particles with the corresponding molecules organ-metal [W (OCH_2 -CH3) x] (see Figures 1 to the 3). On the other hand, the cost of this procurement procedure it is low due to the use of chloride during the process of synthesis. In summary, the procedure for obtaining the material ceramic oxide / n-W of the invention is based on two types of chemical reactions, namely:

i)i)
La que se produce en una primera etapa entre el cloruro del wolframio y el medio solvente (etanol absoluto), yThe that occurs in a first stage among tungsten chloride and the solvent medium (absolute ethanol), and

ii)ii)
La reacción que se produce entre esta última solución y la superficie de las partículas oxídicas (alúmina o espinela).The reaction that occurs between the latter solution and the surface of the oxidic particles (alumina or spinel).

Por tanto, un objeto de la presente invención lo constituye un material nanoestructurado compuesto, en adelante material óxido cerámico/n-W de la invención, constituido por un material nanoestructurado óxido cerámico/n-W con un tamaño nanométrico de partícula metálica comprendido entre 1 y 100 nm, preferentemente entre 1 y 20 nm, las cuales se encuentran fuertemente adheridas al sustrato oxídico. Este material nanoestructurado óxido cerámico/nW de la invención puede presentar un contenido de wolframio entre el 0,05% y el 30% en volumen, por ejemplo, el 1%.Therefore, an object of the present invention is  constitutes a composite nanostructured material, hereinafter ceramic oxide / n-W material of the invention, constituted by a nanostructured oxide material ceramic / n-W with a nano particle size metal between 1 and 100 nm, preferably between 1 and 20 nm, which are strongly adhered to the substrate oxidic This nanostructured ceramic oxide / nW material of the invention may have a tungsten content between 0.05% and 30% by volume, for example, 1%.

Un objeto particular de la invención lo constituye el material óxido cerámico/n-W de la invención donde el óxido, a título ilustrativo y sin que limite el alcance de la invención, pertenece al siguiente grupo:A particular object of the invention is constitutes the ceramic oxide / n-W material of the invention where the oxide, by way of illustration and without limiting the scope of the invention, belongs to the following group:

a) alúmina, en cualquiera de sus formas cristalográficas, a saber, \alpha, \beta, \delta, \gamma, \kappa, \rho, \eta, \theta y \chi, con un tamaño de grano comprendido entre 20 y 1000 nm [K. Wefers and C. Misra, Alcoa Laboratories, Oxides and Hydroxides of Aluminum (1987)],a) alumina, in any form crystallographic, namely?,??,?,?, \ kappa, \ rho, \ eta, \ theta and \ chi, with a grain size between 20 and 1000 nm [K. Wefers and C. Misra, Alcoa Laboratories, Oxides and Hydroxides of Aluminum (1987)],

b) alúmina con cualquier óxido que pueda entrar en solución sólida en su red - tales como, por ejemplo, TiO_{2}, Fe_{2}O_{3}, Y_{2}O_{3}, etc.- y, particularmente, la cromita (Cr_{2}O_{3}) cuya solución sólida con la alúmina es continua en el rango comprendido entre el 0% y el 100% en peso, yb) alumina with any oxide that may enter in solid solution in your network - such as, for example, TiO2, Fe 2 O 3, Y 2 O 3, etc. - and, in particular, the chromite (Cr 2 O 3) whose solid solution with alumina is continues in the range between 0% and 100% by weight, Y

c) espinela de aluminio-magnesio (MgAl_{2}O_{4}) en cualquiera de sus variedades (estequiométrica, rica en alúmina o rica en magnesia), con una relación molar que puede oscilar entre el 66 y el 91%, por ejemplo el 78%, y un tamaño de grano comprendido entre 20 y 1000 nm [E. M. Levin, Phase Equilibrium diagrams for Ceramics, The American Ceramic Society Inc., Figs 259 and 260, (1964)].c) aluminum-magnesium spinel (MgAl 2 O 4) in any of its varieties (stoichiometric, rich in alumina or rich in magnesia), with a molar ratio that can range between 66 and 91%, for example 78%, and a grain size between 20 and 1000 nm [E. M. Levin, Phase Equilibrium diagrams for Ceramics, The American Ceramic Society Inc., Figs 259 and 260, (1964)].

El tamaño de partícula de estos óxidos cerámicos puede ser nanométrico (<200 nm) o bien micrométrico (<10 \mum) (Ejemplo 1).The particle size of these ceramic oxides it can be nanometric (<200 nm) or micrometric (<10 um) (Example 1).

Una realización particular de la invención lo constituye el material óxido cerámico/n-W de la invención en el que el material es \alpha-Al_{2}O_{3}/nW.A particular embodiment of the invention is constitutes the ceramic oxide / n-W material of the invention in which the material is α-Al 2 O 3 / nW.

Otra realización particular de la invención lo constituye el material óxido cerámico/n-W de la invención en el que el material es espinela/nW.Another particular embodiment of the invention is constitutes the ceramic oxide / n-W material of the invention in which the material is spinel / nW.

Otro objeto de la invención lo constituye el procedimiento de obtención del material óxido cerámico/n-W de la invención, en adelante procedimiento de obtención de la invención, que comprende las siguientes etapas:Another object of the invention is the procedure for obtaining the oxide material ceramic / n-W of the invention, hereinafter method of obtaining the invention, which comprises the following stages:

a) el polvo oxídico se pone en suspensión en etanol absoluto, con una concentración en sólidos generalmente inferior al 85%, poniendo todo el conjunto en agitación mediante cualquier dispositivo magnético o mecánico que favorezca la dispersión,a) the oxidic powder is suspended in absolute ethanol, with a concentration in solids generally less than 85%, putting the whole set under agitation by any magnetic or mechanical device that favors dispersion,

b) en paralelo, se prepara una solución de cloruro de wolframio en etanol absoluto (pureza >99%) con la concentración requerida para obtener el polvo nanoestructurado con la concentración de metal deseada, calentándose la solución por debajo de 70ºC,b) in parallel, a solution of tungsten chloride in absolute ethanol (purity> 99%) with the concentration required to obtain the nanostructured powder with the desired metal concentration, the solution being heated by below 70 ° C,

c) una vez todo el cloruro de wolframio se ha transformado en etóxido de wolframio W, (solución incolora) en la etapa b), se añade de forma controlada a la suspensión de polvo oxídico de a) la cual se mantiene en agitación continua para favorecer la mezcla homogénea de ambos líquidos,c) once all tungsten chloride has been transformed into tungsten ethoxide W, (colorless solution) in the step b), is added in a controlled manner to the powder suspension a) oxidic which is kept under continuous agitation to favor the homogeneous mixing of both liquids,

d) el solvente restante se elimina por evaporación a una temperatura, generalmente, menor de 70ºC y siempre bajo agitación continua, pudiendo calentarlo en estufa a 60ºC durante 24 horas hasta obtener un polvo seco,d) the remaining solvent is removed by evaporation at a temperature, generally, less than 70 ° C and always under continuous agitation, being able to heat it on stove to 60 ° C for 24 hours until a dry powder is obtained,

e) posteriormente, el polvo seco de d), se tamiza mediante una malla estándar, preferentemente por debajo de 63 micras, y se calcina a temperaturas comprendidas entre 500ºC y 700ºC, preferentemente a 600ºC, durante un período de tiempo suficiente para eliminar los componentes orgánicos y favorecer la cristalización del óxido de wolframio sobre la superficie de las partículas oxídicas, preferentemente, durante una hora, ye) subsequently, the dry powder of d), is sieve using a standard mesh, preferably below 63 microns, and calcined at temperatures between 500 ° C and 700 ° C, preferably at 600 ° C, for a period of time enough to eliminate organic components and favor Crystallization of tungsten oxide on the surface of the oxidic particles, preferably, for one hour, and

       \global\parskip0.900000\baselineskip\ global \ parskip0.900000 \ baselineskip
    

f) reducir el óxido de wolframio a wolframio metálico mediante un tratamiento térmico entre 750ºC y 1100ºC, preferentemente a 900ºC, en atmósfera reductora de hidrógeno del polvo nanoestructurado de e) entre una hora y media y dos horas y media, preferentemente dos horas, con lo cual se produce la cristalización de las nanopartículas metálicas sobre la superficie de las partículas oxídicas.f) reduce tungsten oxide to tungsten metallic by a heat treatment between 750ºC and 1100ºC, preferably at 900 ° C, under hydrogen reducing atmosphere of the e) nanostructured powder between one hour and a half and two hours and half, preferably two hours, which produces the crystallization of metal nanoparticles on the surface of the oxidic particles.

Otro objeto particular de la invención lo constituye el procedimiento de la invención donde el polvo oxídico de a) puede ser seleccionado, a título ilustrativo y sin que limite el alcance de la invención, entre el siguiente grupo:Another particular object of the invention is constitutes the process of the invention where the oxidic powder of a) can be selected, by way of illustration and without limit the scope of the invention, among the following group:

a) alúmina, en cualquiera de sus formas cristalográficas, a saber, \alpha, \beta, \delta, \gamma, \kappa, \rho, \eta, \theta y \chi con un tamaño de grano comprendido entre 20 y 1000 nm,a) alumina, in any form crystallographic, namely?,??,?,?, \ kappa, \ rho, \ eta, \ theta and \ chi with a grain size between 20 and 1000 nm,

b) alúmina con cualquier óxido que pueda entrar en solución sólida en su red - tales como, por ejemplo, TiO_{2}, Fe_{2}O_{3}, Y_{2}O_{3} - y, particularmente, la cromita (Cr_{2}O_{3}) cuya solución sólida con la alúmina es continua en el rango comprendido entre el 0% y el 100% en peso, yb) alumina with any oxide that may enter in solid solution in your network - such as, for example, TiO2, Fe 2 O 3, Y 2 O 3 - and, in particular, chromite (Cr 2 O 3) whose solid solution with alumina is continuous in the range between 0% and 100% by weight, and

c) espinela de aluminio-magnesio (MgAl_{2}O_{4}) en cualquiera de sus variedades (estequiométrica, rica en alúmina o rica en magnesia), con una relación molar que puede oscilar entre el 66 y el 91%, por ejemplo, el 78%, y un tamaño de grano comprendido entre 20 y 1000 nm.c) aluminum-magnesium spinel (MgAl 2 O 4) in any of its varieties (stoichiometric, rich in alumina or rich in magnesia), with a molar ratio that can range between 66 and 91%, for example, 78%, and a grain size between 20 and 1000 nm.

Otro objeto particular de la invención lo constituye el procedimiento de la invención donde la concentración de la fase metálica de cloruro de wolframio de b) puede variar en función de la concentración de wolframio que se desee obtener en el material cerámico de la invención, por ejemplo, entre 0.05 y el 30% en volumen de W, por ejemplo, de forma particular el 1% (Ejemplo 1).Another particular object of the invention is constitutes the process of the invention where the concentration of the tungsten chloride metal phase of b) may vary in function of the tungsten concentration desired in the ceramic material of the invention, for example, between 0.05 and 30% in volume of W, for example, in particular 1% (Example one).

Otra realización particular de la invención lo constituye el procedimiento de obtención de la invención donde se emplea alúmina (\alpha-Al_{2}O_{3}) como polvo oxídico (Ejemplo 1).Another particular embodiment of the invention is it constitutes the method of obtaining the invention where uses alumina (α-Al 2 O 3) as powder oxidic (Example 1).

Otra realización particular de la invención lo constituye el procedimiento de obtención de la invención donde se emplea espinela como polvo oxídico (Ejemplo 1).Another particular embodiment of the invention is it constitutes the method of obtaining the invention where use spinel as an oxidic powder (Example 1).

Finalmente, otro objeto de la presente invención lo constituye el uso del material óxido cerámico/n-W de la invención en la elaboración, a título ilustrativo y sin que limite el alcance de invención, de productos pertenecientes al siguiente grupo: componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes y recubrimientos sobre sustratos metálicos.Finally, another object of the present invention it is the use of the oxide material / n-W ceramic of the invention in the process, to illustrative title and without limiting the scope of invention, of products belonging to the following group: components electronics, catalysts, structural technical ceramics, pigments and dyes and coatings on substrates metallic

Como catalizador el material óxido cerámico/n-W de la invención puede ser utilizado en una gran variedad de procesos tan diversos como en la industria química, protección medioambiental (como, por ejemplo, los convertidores catalíticos de los automóviles), en la reducción de los NO_{x} en las plantas energéticas, en refinerías de petróleo, en síntesis de medicamentos, en procesos petroquímicos, etc.As catalyst the oxide material Ceramic / n-W of the invention can be used in a wide variety of processes as diverse as in the industry chemical, environmental protection (such as, for example, catalytic converters of automobiles), in reducing NO_ {x} in power plants, in oil refineries, in drug synthesis, in petrochemical processes, etc.

Descripción de las figurasDescription of the figures

Figura 1.- Esquema de la reacción química entre el cloruro de wolframio y el etanol absoluto de la etapa b) del procedimiento de la invención (Fórmula 1).Figure 1.- Scheme of the chemical reaction between tungsten chloride and absolute ethanol from stage b) of Process of the invention (Formula 1).

Figura 2.- Imagen de microscopía electrónica de transmisión (MET) de los polvos nanoestructurados \alpha-Al_{2}O_{3}/nW. El tamaño de las partículas metálicas está comprendido entre 5 y 20 nm. Las nanopartículas de wolframio se encuentran monodispersas y firmemente adheridas a las partículas oxídicas.Figure 2.- Image of electron microscopy of Transmission (MET) of nanostructured powders α-Al 2 O 3 / nW. The size of the Metal particles are between 5 and 20 nm. The tungsten nanoparticles are monodispersed and firmly adhered to the oxidic particles.

Figura 3.- Micrografía de MET correspondiente al polvo de espinela/nW. En este caso, el tamaño de las partículas metálicas está comprendido entre 3 y 20 nm.Figure 3.- MET micrograph corresponding to spinel powder / nW. In this case, the particle size Metallic is between 3 and 20 nm.

Ejemplos de realizaciónExamples of realization Ejemplo 1Example 1 Obtención de polvos nanoestructurados de Al_{2}O_{3}/nW y espinela/nW como realizaciones particulares del material óxido cerámico/n-W de la invenciónObtaining nanostructured powders of Al 2 O 3 / nW and spinel / nW as particular embodiments of the oxide material ceramic / n-W of the invention

Las materias primas de partida son:The starting raw materials are:

--
polvo oxídico: Alúmina Taimei (\alpha-Al_{2}O_{3}, TM-DAR, Taimei Chemicals, Japón, tamaño de partícula medio de 147 nm, pureza >99%) y espinela de aluminio-magnesia (AR-78, Alcoa Industrial Chemicals, Alemania) tamaño medio de partícula de 700 nm, pureza >99%, con 78% en peso de Al_{2}O_{3}. Se deben utilizar tanto polvo de alúmina o de espinela de elevada pureza, con un tamaño de grano comprendido en el rango 0.1-1 \mum,oxidic powder: Taimei alumina (α-Al 2 O 3, TM-DAR, Taimei Chemicals , Japan, average particle size 147 nm, purity> 99%) and aluminum magnesium spinel (AR-78 , Alcoa Industrial Chemicals , Germany) average particle size of 700 nm, purity> 99%, with 78% by weight of Al 2 O 3. Both alumina or spinel powder of high purity should be used, with a grain size in the range 0.1-1 µm,

--
Cloruro de wolframio (WC16) [Aldrich, Tungsten (V) Chloride, 99,9%], yTungsten Chloride (WC16) [ Aldrich , Tungsten (V) Chloride, 99.9%], and

--
Etanol absoluto empleado como medio solvente (Panreac del 99,5% de pureza).Absolute ethanol used as solvent medium ( Panreac 99.5% pure).

       \global\parskip1.000000\baselineskip\ global \ parskip1.000000 \ baselineskip
    

Para ello, se ha seguido el siguiente procedimiento, idéntico para ambos óxidos (alúmina y espinela), con las particularidades de cada caso que a continuación.For this, the following has been followed procedure, identical for both oxides (alumina and spinel), with the particularities of each case that below.

Se emplearon 50 g de alúmina (\alpha-Al_{2}O_{3}) y 20 g de espinela que fueron puestos en suspensión en 70 g y 60 g de etanol absoluto, respectivamente, en continua agitación magnética [etapa a)]. La concentración en sólidos se mantuvo por debajo del 85%. En paralelo, se utilizaron 5,348 g de cloruro de wolframio (WCl_{6}) para la alúmina y 2,402 g WCl_{6} para la espinela en solución con la cantidad de etanol absoluto necesario (350 ml para la alúmina y 240 ml para la espinela) para transformar el color amarillo de la disolución del polvo de cloruro de wolframio en incoloro, calentándose la solución por debajo de 70ºC [etapa b)]. En estas dos realizaciones particulares las condiciones se definieron para establecer una concentración de la fase metálica del wolframio del 1% en el material cerámico final de la invención.50 g of alumina were used (α-Al 2 O 3) and 20 g of spinel which they were suspended in 70 g and 60 g of absolute ethanol, respectively, in continuous magnetic stirring [step a)]. The solids concentration remained below 85%. In In parallel, 5.348 g of tungsten chloride (WCl6) were used for alumina and 2,402 g WCl6 for spinel in solution with the amount of absolute ethanol required (350 ml for alumina and 240 ml for the spinel) to transform the color yellow of the tungsten chloride powder solution in colorless, heating the solution below 70 ° C [step b)]. In these two particular embodiments the conditions are defined to establish a concentration of the metallic phase of tungsten 1% in the final ceramic material of the invention.

En el momento de contacto entre el cloruro de wolframio y el etanol absoluto de la etapa b) del procedimiento de la invención se produce la siguiente reacción química (Fórmula 1; ver Figura 1):At the time of contact between chloride tungsten and absolute ethanol from step b) of the process of The invention produces the following chemical reaction (Formula 1; see Figure 1):

22

Como se advierte en la Fórmula (1) hay un desprendimiento de ácido clorhídrico (gas) que no cesará hasta que la solución, en un principio amarilla, se transforme en incolora, momento en el que se consigue una solución de etóxido de W en etanol absoluto.As noted in Formula (1) there is a evolution of hydrochloric acid (gas) that will not cease until the solution, initially yellow, becomes colorless, moment in which an ethoxide solution of W is achieved in absolute ethanol

A continuación, se añade esta solución gota a gota sobre la suspensión de la alúmina y de la espinela, respectivamente, tornándose paulatinamente la solución de color blanquecino en color azul [etapa c)]. Esta solución se siguió agitando y calentando (<70ºC) hasta llevarla a un estado viscoso para finalmente introducir el conjunto en estufa a 60ºC durante 24 horas [etapa d)]. El producto seco así conseguido, se tamizó mediante una malla estándar por debajo de 63 micras y el polvo se trató térmicamente a 600ºC durante 1 hora [etapa e)]. De nuevo, el polvo tratado se tamizó por debajo de 63 micras y se redujo en un horno tubular en atmósfera de H_{2} a 900ºC durante 2 horas [etapa f)].Then, this solution is added drop by drop on the alumina and spinel suspension, respectively, gradually becoming the color solution off-white in blue [stage c)]. This solution was followed. stirring and heating (<70 ° C) to a viscous state to finally introduce the assembly in an oven at 60ºC for 24 hours [stage d)]. The dried product thus obtained was screened using a standard mesh below 63 microns and the powder is heat treated at 600 ° C for 1 hour [step e)]. Again the treated powder was screened below 63 microns and reduced by a tubular oven in H2 atmosphere at 900 ° C for 2 hours [stage f)].

De esta manera se han obtenido polvos nanoestructurados de \alpha-Al_{2}O_{3}/nW en los que el tamaño de las partículas metálicas está comprendido entre 5 y 20 nm (Figura 2), encontrándose las nanopartículas de wolframio monodispersas y firmemente adheridas a las partículas oxídicas tal y como se desprende del estudio realizado por MET de la interfase óxido/metal. De forma similar se ha observado que en el polvo de espinela/nW obtenido el tamaño de las partículas metálicas está comprendido entre 3 y 20 nm (Figura 3). Finalmente, indicar que los polvos nanoestructurados de Al_{2}O_{3}/nW y espinela/nW obtenidos presentan un contenido de wolframio del 1% en volumen, el cual se ha determinado mediante análisis químico posterior y coincide con la cantidad de W programada en el experimento.In this way powders have been obtained nanostructured of α-Al2 O3 / nW in which the size of the metal particles is comprised between 5 and 20 nm (Figure 2), finding the nanoparticles of monodispersed tungsten and firmly adhered to particles oxidic as it appears from the study conducted by MET of the oxide / metal interface. Similarly it has been observed that in spinel powder / nW obtained particle size Metallic is between 3 and 20 nm (Figure 3). Finally, indicate that the nanostructured powders of Al 2 O 3 / nW and spinel / nW obtained have a tungsten content of 1% in volume, which has been determined by chemical analysis later and matches the amount of W programmed in the experiment.

Claims (12)

1. Material nanoestructurado compuesto caracterizado porque está constituido por un material óxido cerámico/n-W con un tamaño nanométrico de partícula metálica comprendido entre 1 y 100 nm, preferentemente entre 1 y 20 nm, adheridas al sustrato oxídico y con un contenido de wolframio entre el 0,05% y el 30% en volumen.1. Composite nanostructured material characterized in that it is constituted by a ceramic oxide / nW material with a nanometric metal particle size between 1 and 100 nm, preferably between 1 and 20 nm, adhered to the oxidic substrate and with a tungsten content between 0 , 05% and 30% by volume. 2. Material nanoestructurado compuesto según la reivindicación 1 caracterizado porque el óxido pertenece al siguiente grupo:2. Composite nanostructured material according to claim 1 characterized in that the oxide belongs to the following group: a) alúmina, en cualquiera de sus formas cristalográficas, a saber, \alpha, \beta, \delta, \gamma, \kappa, \rho, \eta, \theta y \chi, con un tamaño de grano comprendido entre 20 y 1000 nm,a) alumina, in any form crystallographic, namely?,??,?,?, \ kappa, \ rho, \ eta, \ theta and \ chi, with a grain size between 20 and 1000 nm, b) alúmina con cualquier óxido que pueda entrar en solución sólida en su red cuya solución sólida con la alúmina es continua en el rango comprendido entre el 0% y el 100% en peso, yb) alumina with any oxide that may enter in solid solution in your network whose solid solution with alumina it is continuous in the range between 0% and 100% by weight, Y c) espinela de aluminio-magnesio (MgAl_{2}O_{4}) en cualquiera de sus variedades (estequiométrica, rica en alúmina o rica en magnesia), con una relación molar que puede oscilar entre el 66 y el 91%, por ejemplo, el 78%, y un tamaño de grano comprendido entre 20 y 1000 nm.c) aluminum-magnesium spinel (MgAl 2 O 4) in any of its varieties (stoichiometric, rich in alumina or rich in magnesia), with a molar ratio that can range between 66 and 91%, for example, 78%, and a grain size between 20 and 1000 nm. 3. Material nanoestructurado compuesto según la reivindicación 2 caracterizado porque la alúmina de b) pertenece al siguiente grupo: TiO_{2}, Fe_{2}O_{3}, Y_{2}O_{3} y cromita (Cr_{2}O_{3}).3. Composite nanostructured material according to claim 2 characterized in that the alumina of b) belongs to the following group: TiO 2, Fe 2 O 3, Y 2 O 3 and chromite (Cr 2) } O_ {3}). 4. Material nanoestructurado compuesto según la reivindicación 2 caracterizado porque el material óxido cerámico/n-W es a-Al_{2}O_{3}/nW.4. Composite nanostructured material according to claim 2 characterized in that the ceramic oxide / nW material is a-Al2O3 / nW. 5. Material nanoestructurado compuesto según la reivindicación 2 caracterizado porque el material óxido cerámico/n-W es espinela/nW.5. Composite nanostructured material according to claim 2 characterized in that the ceramic oxide / nW material is spinel / nW. 6. Procedimiento de obtención del material nanoestructurado según las reivindicaciones 1 a la 5 caracterizado porque comprende las siguientes etapas:6. Procedure for obtaining the nanostructured material according to claims 1 to 5, characterized in that it comprises the following steps: a) el polvo oxídico se pone en suspensión en etanol absoluto, con una concentración en sólidos generalmente inferior al 85%, poniendo todo el conjunto en agitación mediante cualquier dispositivo magnético o mecánico que favorezca la dispersión,a) the oxidic powder is suspended in absolute ethanol, with a concentration in solids generally less than 85%, putting the whole set under agitation by any magnetic or mechanical device that favors dispersion, b) en paralelo, se prepara una solución de cloruro de wolframio en etanol absoluto (pureza >99%) con la concentración requerida para obtener el polvo nanoestructurado con la concentración de metal deseada, calentándose la solución por debajo de 70ºC,b) in parallel, a solution of tungsten chloride in absolute ethanol (purity> 99%) with the concentration required to obtain the nanostructured powder with the desired metal concentration, the solution being heated by below 70 ° C, c) una vez todo el cloruro de wolframio se ha transformado en etóxido de wolframio W, (solución incolora) en la etapa b), se añade de forma controlada a la suspensión de polvo oxídico de a) la cual se mantiene en agitación continua para favorecer la mezcla homogénea de ambos líquidos,c) once all tungsten chloride has been transformed into tungsten ethoxide W, (colorless solution) in the step b), is added in a controlled manner to the powder suspension a) oxidic which is kept under continuous agitation to favor the homogeneous mixing of both liquids, d) el solvente restante se elimina por evaporación a una temperatura, generalmente, menor de 70ºC y siempre bajo agitación continua, pudiendo calentarlo en estufa a 60ºC durante 24 horas hasta obtener un polvo seco,d) the remaining solvent is removed by evaporation at a temperature, generally, less than 70 ° C and always under continuous agitation, being able to heat it on stove to 60 ° C for 24 hours until a dry powder is obtained, e) posteriormente, el polvo seco de d), se tamiza mediante una malla estándar, preferentemente por debajo de 63 micras, y se calcina a temperaturas comprendidas entre 500ºC y 700ºC, preferentemente a 600ºC, durante un período de tiempo suficiente para eliminar los componentes orgánicos y favorecer la cristalización del óxido de wolframio sobre la superficie de las partículas oxídicas, preferentemente, durante una hora, ye) subsequently, the dry powder of d), is sieve using a standard mesh, preferably below 63 microns, and calcined at temperatures between 500 ° C and 700 ° C, preferably at 600 ° C, for a period of time enough to eliminate organic components and favor Crystallization of tungsten oxide on the surface of the oxidic particles, preferably, for one hour, and f) reducir el óxido de wolframio a wolframio metálico mediante un tratamiento térmico entre 750ºC y 1100ºC, preferentemente a 900ºC, en atmósfera reductora de hidrógeno del polvo nanoestructurado de e) entre una hora y media y dos horas y media, preferentemente dos horas, con lo cual se produce la cristalización de las nanopartículas metálicas sobre la superficie de las partículas oxídicas.f) reduce tungsten oxide to tungsten metallic by a heat treatment between 750ºC and 1100ºC, preferably at 900 ° C, under hydrogen reducing atmosphere of the e) nanostructured powder between one hour and a half and two hours and half, preferably two hours, which produces the crystallization of metal nanoparticles on the surface of the oxidic particles. 7. Procedimiento según la reivindicación 6 caracterizado porque el polvo oxídico de a) es seleccionado entre el siguiente grupo:7. Method according to claim 6 characterized in that the oxidic powder of a) is selected from the following group: a) alúmina, en cualquiera de sus formas cristalográficas, a saber, \alpha, \beta, \delta, \gamma, \kappa, \rho, \eta, \theta y \chi, y con un tamaño de grano comprendido entre 20 y 1000 nm,a) alumina, in any form crystallographic, namely?,??,?,?, \ kappa, \ rho, \ eta, \ theta and \ chi, and with a size of grain between 20 and 1000 nm, b) alúmina con cualquier óxido que pueda entrar en solución sólida en su red y cuya solución sólida con la alúmina es continua en el rango comprendido entre el 0% y el 100% en peso, yb) alumina with any oxide that may enter in solid solution in your network and whose solid solution with alumina it is continuous in the range between 0% and 100% by weight, Y
         \newpage\ newpage
      
c) espinela de aluminio-magnesio (MgAl_{2}O_{4}) en cualquiera de sus variedades (estequiométrica, rica en alúmina o rica en magnesia), con una relación molar que puede oscilar entre el 66 y el 91%, por ejemplo, el 78%, y un tamaño de grano comprendido entre 20 y 1000 nm.c) aluminum-magnesium spinel (MgAl 2 O 4) in any of its varieties (stoichiometric, rich in alumina or rich in magnesia), with a molar ratio that can range between 66 and 91%, for example, 78%, and a grain size between 20 and 1000 nm.
8. Procedimiento según la reivindicación 7 caracterizado porque la alúmina de b) se selecciona del siguiente grupo: TiO_{2}, Fe_{2}O_{3}, Y_{2}O_{3} y la cromita (Cr_{2}O_{3}).Method according to claim 7, characterized in that the alumina of b) is selected from the following group: TiO 2, Fe 2 O 3, Y 2 O 3 and the chromite (Cr 2) O_ {3}). 9. Procedimiento según la reivindicación 7 caracterizado porque la concentración de la fase metálica de cloruro de wolframio de b) puede variar en función de la concentración de wolframio en el material a obtener, preferentemente, entre 0.05 y el 30% en volumen de W, y por ejemplo, el 1%.Method according to claim 7, characterized in that the concentration of the tungsten chloride metal phase of b) can vary depending on the concentration of tungsten in the material to be obtained, preferably, between 0.05 and 30% by volume of W, and for example, 1%. 10. Procedimiento según la reivindicación 7 caracterizado porque se emplea alúmina (\alpha-Al_{2}O_{3}) como polvo oxídico.10. Method according to claim 7, characterized in that alumina (α-Al 2 O 3) is used as the oxidic powder. 11. Procedimiento según la reivindicación 7 caracterizado porque se emplea espinela como polvo oxídico.11. Method according to claim 7, characterized in that spinel is used as oxidic powder. 12. Uso del material nanoestructurado según las reivindicaciones 1 a la 5 en la elaboración de un producto perteneciente al siguiente grupo: componentes electrónicos, catalizadores, cerámica técnica estructural, pigmentos y colorantes y recubrimientos sobre sustratos metálicos.12. Use of nanostructured material according to claims 1 to 5 in the preparation of a product belonging to the following group: electronic components, catalysts, structural technical ceramics, pigments and dyes and coatings on metal substrates.
ES200602968A 2006-11-21 2006-11-21 CERAMIC OXIDE NANOESTRUCTURED MATERIAL / N-W, OBTAINING PROCEDURE AND ITS APPLICATIONS. Expired - Fee Related ES2300208B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200602968A ES2300208B1 (en) 2006-11-21 2006-11-21 CERAMIC OXIDE NANOESTRUCTURED MATERIAL / N-W, OBTAINING PROCEDURE AND ITS APPLICATIONS.
PCT/ES2007/070192 WO2008062092A1 (en) 2006-11-21 2007-11-20 Nanostructured oxide ceramic/n-w material, method for preparing and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200602968A ES2300208B1 (en) 2006-11-21 2006-11-21 CERAMIC OXIDE NANOESTRUCTURED MATERIAL / N-W, OBTAINING PROCEDURE AND ITS APPLICATIONS.

Publications (2)

Publication Number Publication Date
ES2300208A1 true ES2300208A1 (en) 2008-06-01
ES2300208B1 ES2300208B1 (en) 2009-06-05

Family

ID=39400676

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200602968A Expired - Fee Related ES2300208B1 (en) 2006-11-21 2006-11-21 CERAMIC OXIDE NANOESTRUCTURED MATERIAL / N-W, OBTAINING PROCEDURE AND ITS APPLICATIONS.

Country Status (2)

Country Link
ES (1) ES2300208B1 (en)
WO (1) WO2008062092A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191515A1 (en) * 2000-07-20 2005-09-01 Shipley Company, L.L.C. Very low thermal expansion composite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191515A1 (en) * 2000-07-20 2005-09-01 Shipley Company, L.L.C. Very low thermal expansion composite

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DÍAZ, L.A. et al. "{}Alumina/molybdenum nanocomposites obtained in organic media"{} Journal of the European Ceramic Society. 2003. Vol. 23, páginas 2829-2834; apartados 2.1. y 3.1. *
DÍAZ, L.A. et al. "Alumina/molybdenum nanocomposites obtained in organic media" Journal of the European Ceramic Society. 2003. Vol. 23, páginas 2829-2834; apartados 2.1. y 3.1. *
SEKINO, T. et al. "Reduction and sintering of alumina/tungsten nanocomposites- Powder processing, reduction behavior and microstuctural characterization" Journal of the Ceramic Society of Japan. Junio 2000. Vol. 108, Nº6, páginas 541-547; resumen. *
SEKINO, T. et al. "Reduction and sintering of alumina/tungsten nanocomposites- Powder processing, reduction behavior and microstuctural characterization"{} Journal of the Ceramic Society of Japan. Junio 2000. Vol. 108, Nº6, páginas 541-547; resumen. *
YAMUNA, A. et al. "Processing and Property Evaluation fo Alumina Aerogel Based Ceramic Nanocomposites" Key Engineering Materials. Agosto 2006. Vol. 317-318, páginas 73-76; apartados "Experimental" y "Conclusions". *
YAMUNA, A. et al. "Processing and Property Evaluation fo Alumina Aerogel Based Ceramic Nanocomposites"{} Key Engineering Materials. Agosto 2006. Vol. 317-318, páginas 73-76; apartados "Experimental"{} y "{}Conclusions". *

Also Published As

Publication number Publication date
ES2300208B1 (en) 2009-06-05
WO2008062092A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
Sarkar et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides
Zhang et al. A micrometer-size TiO 2 single-crystal photocatalyst with remarkable 80% level of reactive facets
Li et al. Low temperature molten salt synthesis of SrTiO3 submicron crystallites and nanocrystals in the eutectic NaCl–KCl
Morris et al. Ordered mesoporous alumina-supported metal oxides
FI114909B (en) Composition based on zirconium oxide and cerium oxide, process for its preparation and its use
US5652192A (en) Catalyst material and method of making
Keerthana et al. MgO-ZrO2 mixed nanocomposites: fabrication methods and applications
Sōmiya et al. Hydrothermal zirconia powders: a bibliography
ES2535502T3 (en) Perovskites comprising noble metals and their uses as catalysts
Das et al. Application of perovskites towards remediation of environmental pollutants: an overview: A review on remediation of environmental pollutants using perovskites
Kurland et al. Preparation of ceramic nanospheres by CO2 laser vaporization (LAVA)
JP6538688B2 (en) Catalyst for methanation reaction, method for producing catalyst for methanation reaction, and method for producing methane
US20100068130A1 (en) Process for the Production of Hydrogen Gas Employing a Thermally Stable Catalyst
Tailor et al. Synthesis and characterization of yttria-stabilized zirconia (YSZ) nano-clusters for thermal barrier coatings (TBCs) applications
Hong et al. Crystallization of Al2O3/ZrO2 solid solution powders prepared by coprecipitation
ES2300208B1 (en) CERAMIC OXIDE NANOESTRUCTURED MATERIAL / N-W, OBTAINING PROCEDURE AND ITS APPLICATIONS.
KR20150133574A (en) Manufacturing method of perovskite-type nickel based catalysts
Appalakutti et al. Process intensification of copper chromite (CuCr2O4) nanoparticle production using continuous flow microreactor
Kasala et al. Microwave assisted synthesis and powder flowability characteristics of rare-earth aluminate (ReAlO3, Re= La, Gd, Nd, Y) powders
Mirzajany et al. Seed-assisted hydrothermally synthesized AACH as the alumina precursors
Corr et al. Spontaneously formed porous and composite materials
Lu et al. Preparation of Ca0. 8Sr0. 2Ti1− xFexO3− δ (x= 0.1–0.3) nanoparticles using a flow supercritical reaction system
Fukuda et al. Decomposition free Al 2 TiO 5-MgTi 2 O 5 ceramics with low-thermal expansion coefficient
Yanase et al. Fabrication of Zr2WP2O12/ZrV0. 6P1. 4O7 composite with a nearly zero-thermal-expansion property
KR100407805B1 (en) Metal catalysts for production of carbon nano fiber/nano tube and preparation method of the same

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20080601

Kind code of ref document: A1

FG2A Definitive protection

Ref document number: 2300208B1

Country of ref document: ES

FD2A Announcement of lapse in spain

Effective date: 20180912