WO2008061709A1 - Mehrkomponenten-schmiermittel auf esterbasis für verbrennungsmotoren - Google Patents

Mehrkomponenten-schmiermittel auf esterbasis für verbrennungsmotoren Download PDF

Info

Publication number
WO2008061709A1
WO2008061709A1 PCT/EP2007/010042 EP2007010042W WO2008061709A1 WO 2008061709 A1 WO2008061709 A1 WO 2008061709A1 EP 2007010042 W EP2007010042 W EP 2007010042W WO 2008061709 A1 WO2008061709 A1 WO 2008061709A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
oil composition
motor oil
monoester
engine
Prior art date
Application number
PCT/EP2007/010042
Other languages
English (en)
French (fr)
Inventor
Lothar Bendel
Original Assignee
Lothar Bendel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lothar Bendel filed Critical Lothar Bendel
Priority to EP07846690A priority Critical patent/EP2129756A1/de
Publication of WO2008061709A1 publication Critical patent/WO2008061709A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/34Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/72Esters of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/74Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/78Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids, hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • C10M2207/2815Esters of (cyclo)aliphatic monocarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/302Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monocarboxylic acids, dicarboxylic acids and dihydroxy compounds only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/304Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids derived from the combination of monohydroxy compounds, dihydroxy compounds and dicarboxylic acids only and having no free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/14Metal deactivation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • Multi-component ester-based lubricant for internal combustion engines Multi-component ester-based lubricant for internal combustion engines
  • the present invention relates to an engine oil composition which can be used in internal combustion engines of all kinds, which consists of a biodegradable synthetic monoester as base oil, a biodegradable polar complex ester as extreme pressure additive, a VI improver (viscosity index improver) and a Depending on the type of engine, different - standard motor oil additive package and one - if not part of the standard additive package - copper deactivator composed.
  • This novel motor oil composition eliminates the conditions of dry and mixed friction common in mineral and synthetic oils, which in turn results in a significant reduction in friction.
  • Classic internal combustion engines consist of a variety of metallic main components such as pistons, liners, connecting rods, connecting rod bearings, crankshafts, valves, camshafts, which move at relatively high speed against each other while covering long wear paths.
  • these components are made of metallic materials such as cast iron, steel, aluminum, brass and bronze alloys (in addition, but also use motors that consist of ceramic parts) and therefore subject to a system-typical wear that is summarized in a frictional loss. For cars, about 8 to 12% of the power supplied is lost, for trucks about 12 to 16%.
  • the friction points are supplied with oil, which protects the sliding materials against wear, corrosion or welding (seizing).
  • Synthetic engine oils are used to lubricate internal combustion engines.
  • the base oils used for the synthetic motor oils are synthesized from petrochemical raw materials.
  • Synthetic engine oils are generally based on polyalphaolefins (PAO) with a synthetic ester added to about 10 to 15%.
  • PAO's are synthesized from ethylene as a basic building block in a chemical process. The hydrocarbon compounds resulting from this process have a defined molecular structure.
  • DD 282 470 A5 runs on a lubricating oil formulation with improved tribological properties in the mixed friction area. which is suitable for use in particular for the production of motor oils, gear oils and industrial oils addition, which achieves the effect of friction and wear reduction by the addition of Alkylaminomethy- lenphosphonklastern as a friction modifier a base oil or a fully-formulated (mineral) oil be added.
  • DD 289 424 A7 is essentially characterized by a content of the lubricant on a liquid, oily or waxy compound from the group of highly fluorinated mono- or oligomeric carbon compounds which contain atoms or atomic groups bonded to carbons in regular or irregular intervals, in particular -Cl, -OH, -OR, -SH, -SR, where R is a moiety, as an effective component whose content is between 0.01 and 5.0 mass%.
  • the lubricant is suitable for metallic friction surfaces, for example for track rod or joint lubrication, as an additive for lubricants, lubricating oils, inlet oils, diesel oils, fuels or fuel-oil mixtures, especially in internal combustion engines.
  • DD 297 08 653 describes a functional fluid that combines the properties of a lubricant and a cooling liquid in itself, due to their novel composition has significant advantages over known motor oils but mainly also applies to engines that consist of ceramic parts.
  • DE 695 20 1 13 relates to an ester-based lubricant for particular use in two-stroke engines.
  • DE 690 24 465 relates to a lubricant composition of ⁇ - ⁇ -unsaturated dicarboxylic esters and olefinically unsaturated compounds. Under DE 43 17 980 ; DE 43 17 943, DE 42 35 197 lubricant additives are described.
  • ester-based lubricants are described, ranging from edible lubricants for high-pressure compressors to cosmetically usable lubricants based on jojoba.
  • the described invention in view of the disadvantages of the lubricating compositions of the prior art, is based on the problems of dry and mixed friction by substituting the stated constraints for rough surfaces by replacing the conventional mineral and synthetic lubricants with a biodegradable, ester-based lubricant in the engine compartment of conventional internal combustion engines by building a permanent lubricating film eliminate with the effects of reduced fuel consumption and reduced wear of the surfaces.
  • the engine oil composition comprises a biodegradable organic monoester as base oil, a biodegradable organic complex ester as extreme pressure additive, a viscosity index improver (VI improver), a - depending on the type of engine (diesel / gasoline engine) - Standard motor oil additive package and - if not already part of the standard engine oil additive package - copper deactivator.
  • VIP improver viscosity index improver
  • the oil molecules of the pending invention are polar and therefore have adhesion to ferrous materials.
  • a firmly adhering lubricating film makes the described compulsion to the rough surface superfluous, above all in cylinders. Since the oil molecules also adhere to smooth surfaces, the addition of extreme pressure additives (EP additives) prevents the metal contact of the friction points. This has the consequence that the metal is plastically deformed at the friction points, instead of welding. The metallic surface is plastically deformed and smoothed. Due to the described tribological effect of the plastic deformation of the friction points, the friction loss in the engine is reduced, the fuel consumption in the 4-cylinder engine drops by up to 10% and in the 6-cylinder engine by up to 15%. It has also been observed that, due to the described plastic deformation, the wear of the metallic surfaces is reduced and that the motors reach a longer service life.
  • EP additives extreme pressure additives
  • An additional side effect of the described invention is that, due to the affinity of the ester molecules for the metallic surface, the dependence on the oil pressure decreases and the runflat property in the engine improves.
  • the organic monoester as the base liquid is derived from a monovalent alcohol and a monovalent acid having a carbon chain between C14-C20.
  • the organic monoester has a kinematic viscosity at a temperature of 100 0 C gem. ASTM D 445 between 5 and 6 mm 2 / sec.
  • the monoesters which are particularly suitable as base liquid for use in the invention are in standard esterification processes of natural monovalent carboxylic acids having a linear or branched carbon chain of C6-C30, preferably ClO-C25, more preferably C12-C22 and most preferably C14-C20 and monovalent alcohols a linear or branched carbon chain of C6-C30, preferably C10-C25, more preferably C12-C22 and most preferably C14-C20 obtained.
  • the particularly preferred monoesters are selected from a monovalent alcohol having a linear or branched C14-C20 carbon chain, preferably a saturated branched alcohol having a carbon chain of C16-Cl8 and a natural, monovalent carboxylic acid having a linear or branched carbon chain of C14- C20, preferably saturated acids, in particular with a carbon chain of C16-C18.
  • the length of the carbon chain and the linearity of the structure have a significant effect on the lubricity of the lubricant. Too short a carbon chain and too linear a structure lead to too low a viscosity, which would affect the lubricity and performance of the engine oil.
  • the preferred mono-esters are biodegradable (OECD 301, CEC 33) and have a pour point gem. ASTM D97 of less than -33 degrees, an acid content of less than 0.1 mgKOH / g, a water content of less than 0.1% and a hydroxyl content of less than 3 mgKOH / g.
  • the organic complex ester as extreme pressure additive is obtained from polyalcohols, polyvalent acid, monoalcohols and / or monoacid.
  • An extreme pressure additive is the component of the engine oil that regulates the pressure load on the lubricant.
  • the oldest extreme pressure additive is pure sulfur. The higher the pressure load, the later it comes to the contact of the friction points (metal-metal contact) and thus to wear.
  • the polyhydric alcohol used to prepare the complex ester may be di-, tri or tetravalent, preferably neopentyl glycol.
  • the polyvalent acid used to make the complex ester has a carbon chain between C6 and C54.
  • the complex ester is the reaction product of the mixture of two different divi- nal acids and neo pentyl glycol as the alcohol, with a mixture of a short chain and a long chain divalent acid being especially preferred, and a monoalcohol to terminate the reaction.
  • the kinematic viscosity of the organic complex ester acc. ASTM D 445 is greater than 1500 mm2 / sec at a temperature of 100 ° C.
  • VI improver viscosity index improver
  • a standard additive package e.g., a copper deactivator
  • a copper deactivator e.g., a copper deactivator
  • a viscosity index improver is a component that improves the lubricity of the lubricant.
  • VI improvers enables the production of multigrade motor oils. VI improvers increase or increase the viscosity of an oil and thus improve the viscosity-temperature behavior.
  • Standard additive packages consist of detergents, dispersants, antioxidants, anti-corrosion agents and anti-wear agents.
  • Detergents are detergent-active substances that counteract the formation of deposits on thermally stressed components. Dispersants are used to envelop solid and liquid impurities that are introduced into the oil via the engine operation and to keep them dispersed in finely divided form; This prevents deposits in the engine. Antioxidants are used to slow down the aging process of the lubricant. Anti-corrosive agents are used to protect against metal surface attack, and anti-wear agents are used to protect against wear and are used to build a very thin film of lubricant.
  • a copper deactivator leads to the passivation of iron and copper particles and thus to the termination or weakening of the catalytic effects of these metals on the aging process.
  • the lubricant composed according to the invention can be composed quantitatively in the following manner:
  • Monoester 50-95% preferably 60-90%, more preferably
  • the invention fulfills the described requirements, namely:
  • PCMO diesel and petrol engines
  • the described invention is suitable to be further developed in accordance with changed and stricter emissions regulations for vehicles (Euro 5, which will come into force at the latest 2010).
  • Euro 5 which will come into force at the latest 2010.
  • a lubricant can be realized that complies with the emission limits shown.
  • the lubricant has been composed quantitatively in the manner set out in the following table:
  • the invention is not limited to the use of the named components and products.
  • the used additive package OLOA 8901 from Chevron Oronite is a standard high-performance additive package.
  • the package consists of cleaning agents, dispersing agents, antioxidants, anti-corrosion agents and anti-wear agents. Comparable products of, for example, the companies Lubrizol or Ethyl could also be used for the invention.
  • Numbers 1 to 4 show the pressure load of various commercially available motor oils.
  • the compressive load of the first prototype of the described invention (No. 5) roughly corresponds to the compressive load of commercially available petroleum-based reference products (Nos. 1 to 4), but did not yield the desired effect.
  • the table describes the difference in fuel consumption between a low pressure lubricant and a higher pressure lubricant. After the addition of 2% of an extreme pressure additive, significantly better values were measured than those of the lubricant without corresponding of the extreme pressure additive.
  • the recorded data was determined with a data logger, in which all relevant data (speed, consumption, oil and water temperature) were stored.
  • Figure 7 shows the metallurgical evaluation of 100Cr6 steel that was subjected to lubrication lubrication in a Falex test with Avia SAE 15 W40 engine oil, a commercial engine oil. It is a pronounced feeding lane, in the overview and in detail to recognize, which documents the wear due to metal-metal contact of the friction points.
  • Figure 8 also shows, in overview and in detail, the metallurgical evaluation of 100Cr6 steel exposed to lubrication in a Falex test using the invention described herein.
  • the feeding track is noticeably smaller here compared to the feeding track documented in Figure 7.
  • Figure 9 shows in cross-section the metallurgical evaluation of steel 100Cr6 exposed to lubrication by the Falex test by means of the applied invention, in overview and in detail. Clearly a deformed layer can be seen, the surface has been compacted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Abstract

Es wird eine in Verbrennungsmotoren aller Art einsetzbare Motorölzusammensetzung, bestehend aus einem biologisch abbaubaren synthetischen Monoester als Basisöl, einem biologisch abbaubaren polaren komplexen Ester als Extreme-Pressure-Additiv, einem Viskositätsindex-Verbesserer (VI-Improver) und einem - je nach Motorenart (Diesel- /Ottomotor) unterschiedlichen - Standardmotoröladditivpaket sowie einem - sofern nicht bereits Bestandteil des Standardmotoröladditivpaketes - Kupfer-Deaktivator beschrieben, die in dieser Zusammensetzung aufgrund ihrer physikalisch-chemikalischen Eigenschaften einen an der Oberfläche der Reibstellen haftenden, stabilen Schmierfilm bildet, die Zustände der Trocken- und Mischreibung eliminiert, die Reibung in einem Motorraum verringert, die Abhängigkeit vom Öldruck senkt, zu einer Verbesserung der Notlaufeigenschaften führt und zu einer Senkung des Kraftstoffverbrauchs führt. Dabei stellen die verwendeten Ester in Standardveresterungsverfahren hergestellte, spezielle chemische Moleküle dar, bei dem verwendeten VI-Improver, dem Standard-Motoröladditivpaket sowie dem Kupfer-Deaktivator handelt es sich um gängige, am Markt erhältliche Produkte.

Description

Mehrkomponenten-Schmiermittel auf Esterbasis für Verbrennungsmotoren
Beschreibung
Die vorliegende Erfindung bezieht sich auf eine in Verbrennungsmotoren aller Art einsetzbare Motorölzusammensetzung, die sich aus einem biologisch abbaubaren synthetischen Monoester als Basisöl, einem biologisch abbaubaren polaren komplexen Ester als Extreme-Pressure-Additiv, einem Vl-Improver (Viskositätsindex- Verbesserer) und einem - je nach Motorenart unterschiedlichen - Standardmotorölad- ditivpaket sowie einem - falls nicht Bestandteil des Standardadditivpakets - Kupfer- Deaktivator zusammensetzt.
Diese neuartige Motorenölzusammensetzung bewirkt, dass die bei Mineral- und Syntheseölen üblichen Zustände der Trocken- und Mischreibung eliminiert werden, was wiederum zu einer signifikanten Senkung der Reibleistung führt.
Sie findet Anwendung in Verbrennungsmotoren aller Art, die aus herkömmlichen metallischen Materialien hergestellt sind.
Klassische Verbrennungsmotoren bestehen aus einer Vielzahl von metallischen Hauptbauelementen wie Kolben, Laufbüchsen, Pleueln, Pleuellagern, Kurbelwellen, Ventilen, Nockenwellen, die sich mit relativ hoher Geschwindigkeit gegeneinander bewegen und dabei lange Verschleißwege zurücklegen. Typischerweise werden diese Bauelemente aus metallischen Werkstoffen wie Gusseisen, Stahl, Aluminium, Messing und Bronzelegierungen hergestellt (daneben finden aber auch Motoren Verwendung, die aus keramischen Teilen bestehen) und unterliegen daher einem systemtypischen Verschleiß den man in einer Reibleistung zusammenfasst. Beim Pkw gehen ca. 8 bis 12 % der zugeführten Leistung verloren, beim Lkw ca. 12 bis 16 %. Um die Reibung und Verschleiß zwischen den Bauteilen so gering wie möglich zu halten, werden die Reibstellen mit Öl versorgt, welches die aufeinander gleitenden Werkstoffe vor Verschleiß, Korrosion oder Verschweißen (Fressen) schützt.
Bis zur Entwicklung der Verbrennungsmotoren wurden hauptsächlich Schmierstoffe auf pflanzlicher Basis eingesetzt, die aber nicht die zur Verwendung in Verbrennungsmotoren erforderliche Temperaturstabilität aufwiesen.
Heute finden Mineralöle, Hydrocracköle und synthetische Motoröle zur Schmierung von Verbrennungsmotoren Verwendung. Die für die synthetischen Motoröle verwendeten Grundöle sind aus petrochemischen Grundstoffen synthetisiert. Synthetische Motorenöle beruhen allgemein auf Polyalphaolefinen (PAO) mit einem synthetischen Ester als Zusatz von ca. 10 bis 15 %. PAO's werden aus Ethylen als Grundbaustein in einem chemischen Prozess synthetisiert. Die aus diesem Prozess resultierenden Koh- lenwasserstoffverbindungen weisen eine definierte Molekülstruktur auf.
Bei unpolaren Ölen (wie beispielsweise Mineralölen und erdölbasierten Syntheseölen) ist die Versorgung der Reibstellen abhängig vom Öldruck und es entstehen Zustände der Trocken- und Mischreibung. Vor allem in den Zylinderbuchsen herrscht permanent Mischreibung. Um den Schmierfilm nicht abreißen zu lassen, müssen die Oberflächen rau sein, damit sich in den „Tälern" Öldeponien bilden können. Am oberen Kolbenring herrscht Trockenreibung, wenn der Kolben sich am oberen Totpunkt (OT) befindet. Durch ein leichtes Kippen des Kolbens entsteht unerwünschter Verschleiß, der die Leistung des Motors verringert.
Es hat in der Vergangenheit verschiedene Ansätze gegeben, die erläuterten Zustände der Trocken- und Mischreibung allgemein und insbesondere in Verbrennungsmotoren positiv zu beeinflussen. Die folgenden Lösungsvorschläge, die gleichermaßen Verfahren zur Herstellung von Schmierstoffen als auch die Zusammensetzung λ'on Schmier- Stoffen betreffen, sind zu nennen: - J -
DD 282 470 A5 läuft auf eine Schmierölformulierung mit verbesserten tribologischen Eigenschaften im Mischreibungsgebiet. die für den Einsatz insbesondere zur Herstellung von Motorenölen, Getriebeölen und Industrieölen geeignet ist, hinaus, welche den Effekt der Reibungs- und Verschleißsenkung durch den Zusatz von Alkylaminomethy- lenphosphonsäureestern erreicht, die als Friction Modifier einem Grundöl bzw. einem vollformulierten (Mineral-)Öl zugegeben werden.
DD 289 424 A7 ist im wesentlichen gekennzeichnet durch einen Gehalt des Schmiermittels an einer flüssigen, öligen oder wachsartigen Verbindung aus der Gruppe hochfluorierter mono- oder oligomerer Kohlenstoffverbindungen, die in der Molekel in regel- oder unregelmäßigen Abständen Atome oder Atomgruppierungen an Kohlenstoffe gebunden enthalten, insbesondere -Cl, -OH, -OR, -SH, -SR, wobei R einen Molekülrest bedeutet, als wirksame Komponente, deren Gehalt zwischen 0,01 und 5,0 Ma.-% beträgt. Das Schmiermittel ist für metallische Reibflächen, beispielsweise für Spurstangen- oder Gelenkschmierung, als Zusatz für Schmierstoffe, Schmieröle, Einlauföle, Dieselöle, Kraftstoffe oder Kraftstoff-Öl-Gemische insbesondere in Verbrennungskraftmaschinen geeignet.
Für lebensdauergeschmierte Verbrennungsmotoren beschreibt DD 297 08 653 eine Funktionsflüssigkeit, die die Eigenschaften eines Schmiermittels und einer Kühlflüssigkeit in sich vereint, aufgrund ihrer neuartigen Zusammensetzung erhebliche Vorteile gegenüber bekannten Motorenölen aufweist vor allem aber auch Anwendung findet in Motoren, die aus keramischen Teilen bestehen.
DE 695 20 1 13 betrifft ein esterbasiertes Schmiermittel zur besonderen Verwendung in Zweitaktmotoren.
DE 690 24 465 betrifft eine Schmiermittelzusammensetzung aus α-ß-ungesättigten Dicarbonestern und olefinisch ungesättigten Verbindungen. Unter DE 43 17 980; DE 43 17 943, DE 42 35 197 werden Schmiermitteladditive beschrieben.
Daneben werden verschiedene esterbasierte Schmiermittel beschrieben, deren Palette von genießbaren Schmiermitteln für Hochdruckkompressoren bis zu kosmetisch einsetzbaren Schmiermitteln auf Jojoba-Basis reichen.
Keine der im Stand der Technik beschriebenen Schmiermittelzusammensetzungen trägt zum Aufbau eines permanenten, an der Oberfläche der Reibstellen haftenden Schmierfilms bei. Die geschilderten Vorschläge haben die Verbesserung mineralischer und synthetischer Schmiermittel zum Ziel, die bekannten Schwächen unpolarer Schmiermittel werden jedoch nicht beseitigt.
Technische Aufgabe
Der beschriebenen Erfindung liegt im Hinblick auf die Nachteile der Schmierzusammensetzungen des Standes der Technik die Aufgabe zugrunde, unter Anknüpfung an die dargelegten Zwänge zu rauen Oberflächen durch Ersetzung der herkömmlichen mineralischen und synthetischen Schmiermittel mittels eines biologisch abbaubaren, esterbasierten Schmiermittels die Zustände der Trocken- und Mischreibung im Motorraum herkömmlicher Verbrennungsmotoren durch den Aufbau eines permanenten Schmierfilms zu beseitigen mit den Effekten verminderten Kraftstoffverbrauchs und verminderten Verschleißes der Oberflächen.
Die Aufgabe wird durch die in den Ansprüchen 1 bis 17 definierte Motorölzusammen- setzung vorteilhafterweise gelöst. Um die negativen Zustände der Trocken- und Mischreibung zu eliminieren, wird eine neue Schmierstrategie verfolgt. Die Motoröl- zusammensetzung lässt sich in erfindungsgemäßen Verwendungen der Ansprüche 18 bis 21 einsetzen. Detaillierte Beschreibung der Erfindung
Erfindungsgemäß umfasst die Motorölzusammensetzung einen biologisch abbaubaren organischen Monoester als Basisöl, einen biologisch abbaubaren organischen komple- xen Ester als Extreme-Pressure-Additiv, einen Viskositätsindex-Verbesserer (VI- Improver), ein - je nach Motorenart (Diesel- / Ottomotor) unterschiedliches - Stan- dardmotoröladditivpaket und einen - sofern nicht bereits Bestandteil des Standardmo- toröladditivpaketes - Kupfer-Deaktivator. Diese Zusammensetzung hat folgende unerwartete technische Eigenschaften:
Im Unterschied zu PAO-Ölen sind die Ölmoleküle der angemeldeten Erfindung polar und haben daher eine Adhäsion zu eisenhaltigen Materialien.
Durch die auf die Sauerstoffatome zurückzuführende teilweise Ladungstrennung ent- steht ein Dipol, der zu einer im Vergleich zu unpolaren Kohlenwasserstoffen (= Mineralölen) deutlich höheren Haftung an Metalloberflächen führt. Aufgrund der höheren Affinität der Esteröle gegenüber Metalloberflächen bleibt der Schmierfilm auch bei Stillstand des Motors erhalten.
Ein fest haftender Schmierfilm macht den beschriebenen Zwang zur rauen Oberfläche, vor allem in Zylindern, überflüssig. Da die Ölmoleküle auch an glatten Oberflächen haften bleiben, wird durch die Zugabe von Extrem-Pressure-Additiven (EP- Additiven) der Metall-Kontakt der Reibstellen verhindert. Das hat zur Folge, dass das Metall an den Reibstellen plastisch verformt wird, statt zu verschweißen. Die metallische Ober- fläche wird plastisch verformt und eingeglättet. Durch den beschriebenen tribologi- schen Effekt der plastischen Verformung der Reibstellen wird die Reibleistung im Motor verringert, der Kraftstoffverbrauch im 4-Zylindermotor sinkt um bis zu 10 % und im 6-Zylindermotor um bis zu 15 %. Weiter wurde beobachtet, dass sich aufgrund der beschriebenen plastischen Verformung der Verschleiß der metallischen Oberflächen verringert und Motoren eine höhere Lebensdauer erreichen.
Ein zusätzlicher Nebeneffekt der beschriebenen Erfindung ist, dass aufgrund der Affinität der Estermoleküle zur metallischen Oberfläche die Abhängigkeit vom Öldruck sinkt und die Notlaufeigenschaft im Motor sich verbessert.
Der organische Monoester als Basisflüssigkeit wird aus einem monovalenten Alkohol und einer monovalenten Säure mit einer Kohlenstoffkette zwischen C14-C20 gewonnen. Der organische Monoester hat bei einer Temperatur von 100 0C eine kinematische Viskosität gem. ASTM D 445 zwischen 5 und 6 mm2/Sek.
Die zum Einsatz in der Erfindung als Basisflüssigkeit besonders geeigneten Monoester werden in Standardversterungsverfahren aus natürlichen monovalenten Carbonsäuren mit einer linearen oder verzweigten Kohlenstoffkette von C6-C30, bevorzugt ClO- C25, besonders bevorzugt C12-C22 und am meisten bevorzugt C14-C20 und monovalenten Alkoholen mit einer linearen oder verzweigten Kohlenstoffkette von C6-C30, bevorzugt C10-C25, besonders bevorzugt C12-C22 und am meisten bevorzugt C14- C20 gewonnen.
Die besonders bevorzugten Monoester werden aus einem monovalenten Alkohol mit einer linearen oder verzweigten C14-C20 Kohlenstoffkette, vorzugsweise einem gesättigten verzweigten Alkohol mit einer Kohlenstoffkette von C 16-Cl 8 und einer natürli- chen, monovalenten Carbonsäure mit einer linearen oder verzweigten Kohlenstoffkette von C14-C20, vorzugsweise gesättigte Säuren, insbesondere mit einer Kohlenstoffkette von C16-C18, hergestellt. Länge der Kohlenstoffkette und die Linearität der Struktur haben erhebliche Auswirkungen auf die Schmierfähigkeit des Schmiermittels. Eine zu kurze Kohlenstoffkette und eine zu lineare Struktur führen zu einer zu geringen Viskosität, welche die Schmierfähigkeit und die Leistung des Motoröls beeinträchtigen würde. Die bevorzugten Mono-Ester sind biologisch abbaubar (OECD 301; CEC 33) und haben einen Stockpunkt gem. ASTM D97 von weniger als - 33 Grad, einen Säureanteil von weniger als 0,1 mgKOH/g, einen Wasseranteil von weniger als 0,1 % und einen Hydroxylanteil von weniger als 3 mgKOH/g.
Der organische komplexe Ester als Extreme-Pressure- Additiv wird aus Polyalkoholen, polyvalenter Säure, Monoalkoholen und/oder Monosäure gewonnen. Ein Extreme- Pressure-Additiv ist derjenige Bestandteil des Motoröls, der die Druckbelastung des Schmiermittels reguliert. Das älteste Extreme-Pressure- Additiv ist reiner Schwefel. Je höher die Druckbelastung, desto später kommt es zum Kontakt der Reibstellen (Metall-Metall-Kontakt) und damit zum Verschleiß.
Der zur Erstellung des komplexen Esters verwendete Polyalkohol kann di-, tri oder tetravalent sein, vorzugsweise Neo Pentyl Glycol.
Die für die Herstellung des komplexen Esters eingesetzte polyvalente Säure hat eine Kohlenstoffkette zwischen C6 und C54.
Der komplexe Ester ist das Reaktionsprodukt der Mischung zweier verschiedener diva- lenter Säuren und Neo Pentyl Glycol als Alkohol, wobei eine Mischung einer kurzket- tigen und einer langkettigen divalenten Säure besonders bevorzugt ist, und eines Mo- noalkohols zur Beendigung der Reaktion. Die kinematische Viskosität des organischen komplexen Ester gem. ASTM D 445 ist bei einer Temperatur von 100°C größer als 1500 mm2/sec.
Zur Vervollständigung des Schmiermittels können dem organischen Monoester und dem komplexen Ester noch weitere Additive zugesetzt sein, wie ein herkömmlicher Viskositätsindex-Verbesserer (VI-Improver), ein Standardadditivpaket und - sofern nicht bereits Bestandteil des Standardadditivpakets - ein Kupfer-Deaktivator beigege- ben werden. Ein Viskositätsindex- Verbesserer ist ein Bestandteil, der die Schmierfähigkeit des Schmiermittels verbessert. Der Einsatz von VI-Verbesserern ermöglicht die Herstellung von Mehrbereichs-Motorenölen. VI -Verbesserer erhöhen bzw. strecken die Viskosität eines Öles und verbessern somit das Viskositäts-Temperatur-Verhalten.
Standardadditivpakete bestehen aus Detergentien, Dispergierungsmitteln, Antioxidati- onsmitteln, Antikorrosionsmitteln und Antiverschleißmitteln.
Detergentien sind waschaktive Substanzen, die der Bildung von Ablagerungen an thermisch belasteten Bauteilen entgegenwirken. Dispergierungsmittel werden eingesetzt, um feste und flüssige Verunreinigungen, die über den Motorbetrieb in das Öl eingetragen werden, zu umhüllen und fein verteilt in Schwebe zu halten; dadurch werden Ablagerungen im Motor verhindert. Antioxidationsmittel werden verwendet, um den Alterungsprozess des Schmiermittels zu verlangsamen. Antikorrosionsmittel wer- den zum Schutz gegen Angriffe auf die metallische Oberfläche eingesetzt und Antiverschleißmitteln werden zum Schutz vor Verschleiß eingesetzt und dienen dem Aufbau eines äußerst dünnen Schmierfilms.
Ein Kupfer-Deaktivator führt zum Passivieren von Eisen- und Kupferpartikeln und damit zur Beendigung bzw. Abschwächung der katalytischen Einwirkungen dieser Metalle auf den Alterungsprozess.
Es hat sich gezeigt, dass das erfindungsgemäß zusammengesetzte Schmiermittel mengenmäßig in der folgenden Weise zusammengesetzt werden kann:
Bestandteile Menge
Monoester 50-95%, bevorzugt 60-90%, besonders bevorzugt
65-80 % Komplexer Ester 0,5-20%, bevorzugt 0,75-10%, besonders bevorzugt
1-5 % VI-Improver 2-7 % herkömmliches Additivpaket 20-25 %
Kupfer-Deaktivator < 0. r %
Prozentangaben in Gewichtsprozent
Wegen der stetigen Erhöhungen der Ölpreise, beschränkter Verfügbarkeit von Erdöl und steigender Umweltsensibilität hat das Interesse an biologisch abbaubaren Motorölen stark zugenommen.
Ein Hauptmotiv der Schmierstoff-Hersteller ist die Sorge um die Umwelt, die sich beispielsweise in strengeren Verbrauchswerten - wie im Kyoto-Protokoll von 1997 vereinbart - widerspiegelt. Im Kyoto-Protokoll haben sich die Industriestaaten auf eine Verringerung der Treibhausgase um 5 % in den Jahren 2008 - 2012, bezogen auf den Level von 1990, verständigt.
Neben der Forderung nach einer Emissionsverminderung und verbesserter Kraftstoff- leistungsfähigkeit verlangt die Industrie Motoröle mit langen Ölwechselintervallen, mit geringen Verbrennungsrückständen, mit hoher Temperaturtragfähigkeit, mit niedriger Verdampfungsrate (Noack) und mit guten Notlaufeigenschaften. Die Erfindung erfüllt die geschilderten Anforderungen, nämlich:
PCMO (Diesel und Benzinmotoren): ACEA A3, B3 und API SJ
HDDO: ACEA E4-98, API CF und Euro 2
Die beschriebene Erfindung ist geeignet, in Anpassung an geänderte und verschärfte Emissionsvorschriften für Fahrzeuge (Euro 5, welches spätestens 2010 in Kraft treten wird) entsprechend weiterentwickelt zu werden. Durch Verwendung der entsprechenden Additivpakete ist ein Schmiermittel realisierbar, das die dargestellten Emissionsgrenzwerte einhält. Ausführungsbeispiel
Zur Überprüfung der Wirkweise der beschriebenen Erfindung ist das Schmiermittel mengenmäßig in der in der folgenden Tabelle ausgeführten Weise zusammengesetzt worden:
Bestandteile Menge
Monoester 72,2 %
Komplexer Ester 2 %
VI-Improver 2,9 %
Additivpaket 22,8 %
Kupfer-Deaktivator 0,1 %
Prozeπtangaben in Gewichtsprozent
Als Monoester ist PRJOLUBE® 1976 (Hersteller: Uniqema), als Komplexester PRIO- LUBE® 3986 (Hersteller: Uniqema), als VI-Improver Paratone 8006 (Hersteller: Chevron Oronite), als Additivpaket OLOA 8901 (Hersteller: Chevron Oronite) und als Kupfer-Deaktivator Plexol 156 verwendet worden.
Die Erfindung ist nicht auf die Verwendung der namentlich genannten Bestandteile und Produkte beschränkt.
Das verwendete Additivpaket OLOA 8901 der Fa. Chevron Oronite ist ein Standard- Hochleistungs-Additiv-Paket. Das Paket besteht aus Reinigungsmitteln, Dispergie- rungsmitteln, Antioxidationsmitteln, Antikorrosionsmitteln und Antiverschleißmitteln. Für die Erfindung könnten auch vergleichbare Produkte beispielsweise der Firmen Lubrizol oder Ethyl verwendet werden.
Die genannten Bestandteile sind gemischt worden, das Schmiermittel wurde einem Falex-Test zur Ermittlung der Druckbelastung unterzogen. Bei diesem Falex-Test wird eine Lagerwalze gegen eine rotierende Lagerschale gepresst, die mit dem zu testenden Schmierstoff geschmiert ist. Die Krafteinwirkung wird solange erhöht, bis es zum Fresser kommt. Die Wirkweise des Druckbelastungstests (Falex-Tests) zeigt Abbildung 1. Die Krafteinwirkung bis zum Reißen des Schmierfilms ist ein Indikator für die Druckbelastung des Schmierstoffes.
Die Druckbelastung der beschriebenen Erfindung im Vergleich zu herkömmlichen Schmiermitteln zeigt die folgende Tabelle:
Figure imgf000013_0001
Unter den Nummern 1 bis 4 wird die Druckbelastung verschiedener marktüblicher Motorenöle ausgewiesen. Die Druckbelastung des ersten Prototyps der beschriebenen Erfindung (Nr. 5) entspricht in etwa der Druckbelastung der marktüblichen erdölbasierten Referenzprodukte (Nr. 1 bis 4), erbrachte aber nicht die gewünschte Wirkung.
Die Erhöhung der Druckbelastung im zweiten Prototyp der beschriebenen Erfindung (Nr. 6) um 19,6% bestätigte die Richtigkeit der vorstehenden Ausführungen.
Die beschriebene Erfindung ist in der Praxis hinsichtlich der Auswirkungen auf den Kraftstoffverbrauch untersucht worden. Verschiedene Tests haben eine Verminderung des Kraftstoffverbrauchs im 4-Zylinder-Motor um bis zu 10 % und im 6-Zylinder- Motor um bis zu 15 % ergeben. Die nachfolgende Tabelle stellt die Kraftstoffersparnis in einem PKW (Fiat Uno, 75 PS) dar:
Figure imgf000014_0001
Leerlauf Öltemp. 1000C L-00.143 06.01.03 7.44
01.009 02.03.03 4.60
Verbrauchssenkung in % -38,17
Die Tabelle beschreibt den Unterschied im Kraftstoffverbrauch zwischen einem Schmiermittel mit niedriger Druckbelastung und einem Schmiermittel mit höherer Druckbelastung. Nach der Zugabe von 2 % eines Extreme-Pressure-Additivs wurden deutlich bessere Werte gemessen als diese von dem Schmiermittel ohne entsprechen- des Extreme-Pressure-Additiv erzielt wurden. Die ausgewiesenen Daten wurden mit einem Data-Logger ermittelt, in dem alle relevanten Daten (Geschwindigkeit, Verbrauch. Öl- und Wassertemperatur) gespeichert wurden.
Die positiven Auswirkungen sind tabellarisch dokumentiert:
Wie der Abbildung 2 zu entnehmen ist, sank der Verbrauch von ca. 7 1/100 km auf ca. 5 1 / 100 km.
Außerdem wurde festgestellt, dass der Verbrauch bei Bergauf-Fahrten von ca. 9 1 / 100 km auf ca. 7,7 1 / 100 km sank (Abbildung 3).
Weiter ergab sich, dass der Kraftstoffverbrauch im Leerlauf von ca. 7 1 auf ca. 4 1 sank (Abbildung 4)
Schließlich konnte im Bergauf-Fahren ein positiver Einfluss auf die Geschwindigkeit festgestellt werden (Abbildung 5).
Die nachfolgende Tabelle dokumentiert den Kraftstoffverbrauch in einem LKW (Sca- nia 124L).
Figure imgf000015_0001
Figure imgf000016_0001
Die gefundenen Ergebnisse basieren auf einer vorher/nachher Aufzeichnung. Über eine Strecke von 80.000 km wurde vor Verwendung der hier beschriebenen Erfindung ein durchschnittlicher Kraftstoffverbrauch von 34,35 1 / 100 km gemessen. Die rechte Hälfte der Tabelle berücksichtigt die Auswirkungen der geschleppten Last und die Charakteristik der Strecken. Der sich ergebende Mehrverbrauch wurde vom Ist- Verbrauch abgezogen und damit der tatsächliche Verbrauch bereinigt.
Zu erkennen ist, dass der durchschnittliche Kraftstoffverbrauch auf 29,55 1 / 100 km gefallen ist. Den Verbrauchsverlauf dokumentiert A bbildung 6.
Die tribologischen Effekte der Verschweißung und der plastischen Verformung wurden rasterelektronenmikroskopisch untersucht. Abbildung 7 zeigt die metallkundliche Beurteilung von Stahl 100Cr6, der in einem Falex-Test der Schmierung der Schmierung mit Avia SAE 15 W40-Motorenöl, einem handelsüblichen Motorenöl, ausgesetzt war. Es ist eine ausgeprägte Fressspur, in der Übersicht und im Detail zu erkennen, die den Verschleiß infolge Metall-Metall-Kontaktes der Reibstellen dokumentiert.
Abbildung 8 zeigt — ebenfalls in der Übersicht und im Detail - die metallkundliche Beurteilung von Stahl 100Cr6, der in einem Falex-Test der Schmierung mittels der hier beschriebenen Erfindung ausgesetzt war. Die Fressspur ist hier im Vergleich zu der in Abbildung 7 dokumentierten Fressspur merklich kleiner. Λbbildung 9 zeigt im Querschnitt die metallkundliche Beurteilung von Stahl 100Cr6, der durch Falex-Test der Schmierung mittels der angemeldeten Erfindung ausgesetzt war, in der Übersicht und im Detail. Deutlich ist eine verformte Schicht zu erkennen, die Oberfläche ist verdichtet worden.

Claims

Patentansprüche
1. Motorölzusammensetzung, umfassend einen organischen Monoester als Basisöl und einen organischen komplexen Ester als Extreme-Pressure- Additiv.
2. Motorölzusammensetzung gemäß Anspruch 1, wobei der Monoester von einem monovalenten organischen Alkohol und einer monovalenten organischen Säure abgeleitet ist.
3. Motorölzusammensetzung gemäß Anspruch 2, wobei die monovalente Säure eine monovalente Säure mit einer linearen oder verzweigten C14-C20- Kohlenstoffkette, vorzugsweise einer verzweigten C16-C18-Kohlenstoffkette, und besonders bevorzugt einer gesättigten, verzweigten C16-C18- Kohlenstoffkette darstellt.
4. Motorölzusammensetzung gemäß einem der Ansprüche 2 bis 3, wobei der monovalente Alkohol ein monovalenter Alkohol mit einer linearen oder verzweigten C14-C20-Kohlenstoffkette, vorzugsweise einer verzweigten C16-C18- Kohlenstoffkette, und besonders bevorzugt einer gesättigten, verzweigten C 16- Cl 8-Kohlenstoffkette darstellt.
5. Motorölzusammensetzung gemäß einem der Ansprüche 1 bis 4, wobei die monovalente Säure und/oder der monovalente Alkohol ein Naturprodukt darstellt.
6. Motorölzusammensetzung gemäß einem der Ansprüche 1 bis 5, wobei der Monoester eine Viskosität von 5 bis 6 mm2/sec bei 100 0C aufweist.
7. Motorölzusammensetzung gemäß einem der Ansprüche 1 bis 6, wobei der Monoester biologisch abbaubar ist.
8. Motorölzusammensetzung gemäß einem der Ansprüche 1 bis 7, wobei der Mo- noester einen Stockpunkt von -33 0C aufweist.
9. Motorölzusammensetzung gemäß einem der Ansprüche 1 bis 8, wobei der Mo- noester einen Säureanteil von weniger als 0,1 mgKOH/g ausweist.
10. Motorölzusammensetzung gemäß einem der Ansprüche 1 bis 9, wobei der Mo- noester einen Wassergehalt von weniger als 0, 1 % aufweist.
1 1. Motorölzusammensetzung gemäß einem der Ansprüche 1 bis 10, wobei der
Monoester einen Hydroxylanteil von weniger als 3 mgKOH/g aufweist.
12. Motorölzusammensetzung gemäß einem der Ansprüche 1 bis 11, wobei der komplexe Ester (a) von einem Polyalkohol und mindestens einer Monosäure, (b) einer Polysäure und mindestens einem Monoalkohol oder (c) mindestens einem Polyalkohol und mindestens einer Polysäure abgeleitet ist.
13. Motorölzusammensetzung gemäß Anspruch 12, wobei der Polyalkohol ein di-, tri- oder tetravalenter Polyalkohol darstellt.
14. Motorölzusammensetzung gemäß Anspruch 13, wobei der Polyalkohol Neo- pentylglykol darstellt.
15. Motorölzusammensetzung gemäß einem der Ansprüche 12 bis 14, wobei die Polysäure eine Polysäure mit einer linearen oder verzweigten C6-C54-
Kohlenstoffkette darstellt.
16. Motorölzusammensetzung gemäß einem der Ansprüche 12 bis 15, wobei der komplexe Ester eine Viskosität von mehr als 1500 mm2/sec bei 100 °C auf- weist.
17. Motorölzusammensetzung gemäß einem der Ansprüche 1 bis 16, wobei das EP- Additiv Priolube 3986 darstellt.
18. Verwendung der Zusammensetzung nach einem der Ansprüche 1 bis 16 als Motoröl zur Verminderung der Reibung in einem Motorraum.
19. Verwendung der Zusammensetzung nach Ansprüche 18 als Motoröl zur Eliminierung der Zustände der Trocken- und Mischreibung.
20. Verwendung der Zusammensetzung nach einem der Ansprüche 1 bis 17 als
Motoröl zur Senkung der Abhängigkeit der Ölversorgung an den Reibstellen vom Öldruck.
21. Verwendung der Zusammensetzung nach einem der Ansprüche 1 bis 17 als Mo- toröl zur Verbesserung der Notlaufeigenschaft.
PCT/EP2007/010042 2006-11-20 2007-11-20 Mehrkomponenten-schmiermittel auf esterbasis für verbrennungsmotoren WO2008061709A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07846690A EP2129756A1 (de) 2006-11-20 2007-11-20 Mehrkomponenten-schmiermittel auf esterbasis für verbrennungsmotoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006054511A DE102006054511B4 (de) 2006-11-20 2006-11-20 Motorölzusammensetzung und deren Verwendung
DE102006054511.7 2006-11-20

Publications (1)

Publication Number Publication Date
WO2008061709A1 true WO2008061709A1 (de) 2008-05-29

Family

ID=38925640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/010042 WO2008061709A1 (de) 2006-11-20 2007-11-20 Mehrkomponenten-schmiermittel auf esterbasis für verbrennungsmotoren

Country Status (3)

Country Link
EP (1) EP2129756A1 (de)
DE (1) DE102006054511B4 (de)
WO (1) WO2008061709A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116900A1 (en) * 2015-12-28 2017-07-06 Exxonmobil Research And Engineering Company High viscosity index monomethyl ester lubricating oil base stocks and methods of making and use thereof
US9976099B2 (en) 2015-12-28 2018-05-22 Exxonmobil Research And Engineering Company Low viscosity low volatility lubricating oil base stocks and methods of use thereof
US10077409B2 (en) 2015-12-28 2018-09-18 Exxonmobil Research And Engineering Company Low viscosity low volatility lubricating oil base stocks and methods of use thereof
US10233403B2 (en) 2016-11-03 2019-03-19 EXXONMOBiL RESEARCH AND ENGiNEERENG COMPANY High viscosity index monomethyl ester lubricating oil base stocks and methods of making and use thereof
US10316265B2 (en) 2015-12-28 2019-06-11 Exxonmobil Research And Engineering Company Low viscosity low volatility lubricating oil base stocks and methods of use thereof
CN110305723A (zh) * 2019-07-17 2019-10-08 东莞市巴斯特能源科技有限公司 一种新型节能环保型汽油机油组合物及其制备方法
US20230265353A1 (en) * 2020-07-22 2023-08-24 Idemitsu Kosan Co.,Ltd. Lubricating oil composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013101246A1 (de) * 2013-02-08 2014-08-14 Bayerische Motoren Werke Aktiengesellschaft Reibungsreduziertes Gleitsystem
JP6218695B2 (ja) * 2013-12-16 2017-10-25 富士フイルム株式会社 乗用および商用の四輪自動車の内燃機関用潤滑油組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2187894A1 (en) * 1972-06-12 1974-01-18 Inst Francais Du Petrole Lubricants for 2-stroke and rotary engines - contg high-viscosity simple, complex or ether esters as base lubricant
GB1513541A (en) * 1976-02-10 1978-06-07 Henkel Kgaa Lubricating and anti-tack compositions useful in the shaping of thermoplastic materials
US5378249A (en) * 1993-06-28 1995-01-03 Pennzoil Products Company Biodegradable lubricant
WO2002053688A2 (en) * 2001-01-05 2002-07-11 Hatco Corporation Biodegradable polyneopentyl polyol based synthetic ester blends and lubricants

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701730A (en) * 1970-12-23 1972-10-31 Grace W R & Co Extreme pressure properties of synthetic lubricants
US5880075A (en) * 1997-09-22 1999-03-09 Exxon Chemical Patents Inc Synthetic biodegradable lubricants and functional fluids
AU2001247771A1 (en) * 2000-03-28 2001-10-08 Chevron Oronite Company Llc Oil compositions having improved fuel economy efficiency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2187894A1 (en) * 1972-06-12 1974-01-18 Inst Francais Du Petrole Lubricants for 2-stroke and rotary engines - contg high-viscosity simple, complex or ether esters as base lubricant
GB1513541A (en) * 1976-02-10 1978-06-07 Henkel Kgaa Lubricating and anti-tack compositions useful in the shaping of thermoplastic materials
US5378249A (en) * 1993-06-28 1995-01-03 Pennzoil Products Company Biodegradable lubricant
WO2002053688A2 (en) * 2001-01-05 2002-07-11 Hatco Corporation Biodegradable polyneopentyl polyol based synthetic ester blends and lubricants

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116900A1 (en) * 2015-12-28 2017-07-06 Exxonmobil Research And Engineering Company High viscosity index monomethyl ester lubricating oil base stocks and methods of making and use thereof
US9976099B2 (en) 2015-12-28 2018-05-22 Exxonmobil Research And Engineering Company Low viscosity low volatility lubricating oil base stocks and methods of use thereof
US10077409B2 (en) 2015-12-28 2018-09-18 Exxonmobil Research And Engineering Company Low viscosity low volatility lubricating oil base stocks and methods of use thereof
US10316265B2 (en) 2015-12-28 2019-06-11 Exxonmobil Research And Engineering Company Low viscosity low volatility lubricating oil base stocks and methods of use thereof
US10233403B2 (en) 2016-11-03 2019-03-19 EXXONMOBiL RESEARCH AND ENGiNEERENG COMPANY High viscosity index monomethyl ester lubricating oil base stocks and methods of making and use thereof
CN110305723A (zh) * 2019-07-17 2019-10-08 东莞市巴斯特能源科技有限公司 一种新型节能环保型汽油机油组合物及其制备方法
US20230265353A1 (en) * 2020-07-22 2023-08-24 Idemitsu Kosan Co.,Ltd. Lubricating oil composition

Also Published As

Publication number Publication date
EP2129756A1 (de) 2009-12-09
DE102006054511B4 (de) 2009-06-10
DE102006054511A1 (de) 2008-05-21

Similar Documents

Publication Publication Date Title
DE102006054511B4 (de) Motorölzusammensetzung und deren Verwendung
DE69414770T2 (de) Dieselölzusammensetzung
US7745382B2 (en) Synthetic lubricant additive with micro lubrication technology to be used with a broad range of synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam
DE3404243A1 (de) Schmierstoffe mit triglyceriden als hauptkomponente
CN1869179A (zh) 润滑十字头发动机的方法
KR20010030835A (ko) 복합 에스테르, 이를 포함하는 배합물, 및 이들의 용도
CN1140618C (zh) 润滑组合物
US20140162915A1 (en) Enhanced Lubricant Formulation
DE2232099C3 (de) Schmiermittelpräparate für Zweitaktmotoren
SU1026655A3 (ru) Смазочный состав дл двигателей внутреннего сгорани
EP3299443A1 (de) Additiv für schmieröl und schmierölzusammensetzung
RU2356938C2 (ru) Смазочная композиция
DE3737782A1 (de) Synthetische schmieroelmischung
US7601677B2 (en) Triglyceride based lubricant
CN102329682A (zh) 多功能润滑添加剂
Weller Jr et al. A study of the effect of chemical structure on friction and wear: Part 1--synthetic ester base fluids
CN101244458A (zh) 一种金属纳米微粒表面调理剂
Kratzer et al. New synthetic lubricants
DE3832419A1 (de) Schmiermittel auf schmieroelbasis zum schmieren von rotierenden und/oder gleitenden oberflaechen
DE60124319T2 (de) Schmierstoffzusammensetzung
Masjuki et al. Environmentally friendly bio-lubricant lubricity testing
Bardy et al. Motor Oil Thickening-A CLR Engine Test Procedure Which Correlates with Field Service
RU2246531C2 (ru) Состав для повышения износостойкости узлов трения
Alani The change in Diesel Engine Oil Properties During Performance
JP2004018555A (ja) 潤滑油用添加剤及び潤滑油

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07846690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007846690

Country of ref document: EP