WO2008060864A1 - Flexographic printing with curing during transfer to substrate - Google Patents
Flexographic printing with curing during transfer to substrate Download PDFInfo
- Publication number
- WO2008060864A1 WO2008060864A1 PCT/US2007/083322 US2007083322W WO2008060864A1 WO 2008060864 A1 WO2008060864 A1 WO 2008060864A1 US 2007083322 W US2007083322 W US 2007083322W WO 2008060864 A1 WO2008060864 A1 WO 2008060864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- feature
- flexographic printing
- substrate
- flexographic
- curing
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 109
- 239000000463 material Substances 0.000 claims abstract description 176
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000002904 solvent Substances 0.000 claims description 37
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 230000005855 radiation Effects 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 239000003999 initiator Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000001802 infusion Methods 0.000 claims description 3
- 238000001723 curing Methods 0.000 description 32
- -1 langasite (LGS) Chemical compound 0.000 description 14
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 239000011521 glass Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical class C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 229960004592 isopropanol Drugs 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical class C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920000120 polyethyl acrylate Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- HQOVXPHOJANJBR-UHFFFAOYSA-N 2,2-bis(tert-butylperoxy)butane Chemical compound CC(C)(C)OOC(C)(CC)OOC(C)(C)C HQOVXPHOJANJBR-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical compound C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- YIJYFLXQHDOQGW-UHFFFAOYSA-N 2-[2,4,6-trioxo-3,5-bis(2-prop-2-enoyloxyethyl)-1,3,5-triazinan-1-yl]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCN1C(=O)N(CCOC(=O)C=C)C(=O)N(CCOC(=O)C=C)C1=O YIJYFLXQHDOQGW-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- PVBUTZWGEJHWSJ-UHFFFAOYSA-N 2-morpholin-4-yl-1-phenylpropan-1-one Chemical compound C=1C=CC=CC=1C(=O)C(C)N1CCOCC1 PVBUTZWGEJHWSJ-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 241000428199 Mustelinae Species 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical group C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-OPQQBVKSSA-N [(1s,3r,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] prop-2-enoate Chemical compound C1C[C@]2(C)[C@H](OC(=O)C=C)C[C@H]1C2(C)C PSGCQDPCAWOCSH-OPQQBVKSSA-N 0.000 description 1
- LFOXEOLGJPJZAA-UHFFFAOYSA-N [(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)phosphoryl]-(2,6-dimethoxyphenyl)methanone Chemical compound COC1=CC=CC(OC)=C1C(=O)P(=O)(CC(C)CC(C)(C)C)C(=O)C1=C(OC)C=CC=C1OC LFOXEOLGJPJZAA-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920003180 amino resin Chemical class 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- FPODCVUTIPDRTE-UHFFFAOYSA-N bis(prop-2-enyl) hexanedioate Chemical compound C=CCOC(=O)CCCCC(=O)OCC=C FPODCVUTIPDRTE-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000005520 diaryliodonium group Chemical group 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- TUJWIYZCAPMHSA-UHFFFAOYSA-N dipentylphosphoryloxybenzene Chemical compound CCCCCP(=O)(CCCCC)OC1=CC=CC=C1 TUJWIYZCAPMHSA-UHFFFAOYSA-N 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-IHWYPQMZSA-N isocrotonic acid Chemical compound C\C=C/C(O)=O LDHQCZJRKDOVOX-IHWYPQMZSA-N 0.000 description 1
- 239000012948 isocyanate Chemical class 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- FAQJJMHZNSSFSM-UHFFFAOYSA-N phenylglyoxylic acid Chemical compound OC(=O)C(=O)C1=CC=CC=C1 FAQJJMHZNSSFSM-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 125000005409 triarylsulfonium group Chemical group 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F3/00—Cylinder presses, i.e. presses essentially comprising at least one cylinder co-operating with at least one flat type-bed
- B41F3/46—Details
- B41F3/54—Impression cylinders; Supports therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F5/00—Rotary letterpress machines
- B41F5/24—Rotary letterpress machines for flexographic printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F23/00—Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
- B41F23/04—Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F23/00—Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
- B41F23/04—Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
- B41F23/0403—Drying webs
- B41F23/0406—Drying webs by radiation
- B41F23/0409—Ultraviolet dryers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M1/00—Inking and printing with a printer's forme
- B41M1/02—Letterpress printing, e.g. book printing
- B41M1/04—Flexographic printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M7/00—After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M7/00—After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
- B41M7/0081—After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M7/00—After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
- B41M7/009—After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using thermal means, e.g. infrared radiation, heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41P—INDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
- B41P2200/00—Printing processes
- B41P2200/10—Relief printing
- B41P2200/12—Flexographic printing
Definitions
- This disclosure relates to printing; particularly to flexographic printing; and more particularly to high resolution flexographic printing.
- Dot gain is a well known problem in the flexographic printing industry. It is understood that dot gain on a printed web can be partially attributed to a relative slippage between printing features of the flexographic printing plate and the surface of the web being printed. Slippage happens in the nip between a deformable printing tool and a back-up roll and is due to either incompressibility of the material of the printing plate or mismatch of surface velocities of the printing plate and the web. Dot gain for small features is more pronounced than for large features. This is because slippage of a small distance is considerably larger relative to a small dot than the same slippage distance with a considerably larger dot.
- a method for flexographic printing comprises transferring a curable material from a donor substrate to a feature of a flexographic printing plate; and transferring the curable material from the feature of the flexographic printing plate to a recipient substrate.
- the method further comprises curing the material while the material is in contact with both the feature and the recipient substrate.
- the curing may comprise exposing the material to energy, such as e-beam radiation, UV radiation, or heat.
- the method may further comprise reducing the oxygen content in the environment of the curing material, e.g., by introducing nitrogen into the curing environment.
- the method may comprise precuring the material prior to transferring the material from the feature of the flexographic printing plate to the recipient substrate.
- the method may also further comprise removing solvent from a material prior to transfer of the curable material from the donor substrate to the feature of the printing plate.
- the method is useful for features of any size. However, the advantages of the method may be more recognized when using features having a lateral dimension of 15 micrometers or less; e.g., 10 micrometers or less, or 5 micrometers or less.
- a system for flexographic printing comprises a flexographic roll configured to attachably receive a flexographic printing plate comprising one or more features.
- the features are capable of transferring a curable material to a recipient substrate.
- the system further comprises a backup roll positioned relative to the flexographic roll such that movement of the backup roll relative to the flexographic roll is capable of causing a recipient substrate to move between the backup roll and the flexographic roll to allow the curable material to be transferred from the features to the recipient substrate.
- the system further comprises a first energy source for curing the material, the first energy source being positioned to cause curing of the material while the material is in contact with the features and the recipient substrate.
- the first energy source may be capable of emitting energy, e.g., UV radiation, e-beam radiation, or heat.
- the system may further comprise a second energy source for pre-curing the material.
- the second energy source is positioned to cause pre-curing of the material prior to transfer of the material from the feature to the recipient substrate.
- the system may further comprise a nitrogen infusion apparatus configured to introduce nitrogen at a location where material is transferred from the feature to the recipient substrate.
- the system is useful for flexographic printing plates having features of any size. However, the advantages of the system may be more recognized when using plates having features with a lateral dimension of 15 micrometers or less; e.g., 10 micrometers or less or 5 micrometers or less.
- the methods and systems described herein provide several advantages. For example, curing material while it is in contact with both a feature of a flexographic printing plate and a recipient substrate prevents slippage between the feature and the recipient substrate.
- removal of solvent as described in embodiments herein, not only allows for the material to be cured while it is in contact with both a feature of a flexographic printing plate and a recipient substrate, but also facilitates the deposition of the material on a donor substrate because the material can comprise solvent that will be later removed.
- FIGS. 1-4 are flow diagrams of flexographic printing methods.
- FIGS. 5-9 are side views of diagrammatic representations of flexographic printing systems or compontents thereof.
- FIG. 10 is a micrograph image of hardcoat lines printed on a glass slide using an exemplary system and method.
- Curing printable material while it is in contact with both a feature of a flexographic printing plate and a recipient substrate prevents slippage between the feature and the recipient substrate and increases fidelity of flexographic printing. While this is the case for flexographic printing plates having features of any size, the benefits of transfer of reduced-solvent material will be more evident with features having smaller lateral dimensions. In part this is because existing flexographic printing systems have lateral dimensions greater than about 20 micrometers and the amount of slippage relative to features of such large sizes is comparatively small. However, as the lateral dimensions of the features decrease much beyond the current limitations of the size of the features; i.e., less than about 15 to 20 micrometers, the relative size of the slippage increases. The methods and systems described herein allow for the curing of material while it is in contact with both the feature of the flexographic printing plate and the recipient substrate.
- the methods and systems described herein may be used with flexographic printing plates having features of any size. However, the advantages of the methods and systems may be more recognized when using features having a lateral dimension of 15 micrometers or less; e.g., 10 micrometers or less, or 5 micrometers or less. Flexographic plates having features with lateral dimensions of 15 micrometers or less may be as described in, e.g., US Provisional Patent Application Serial No. 60/865,979, entitled "SOLVENT-ASSISTED EMBOSSING OF FLEXOGRAPHIC PRINTING PLATES" to Pekurovsky, et al, filed on even date herewith, which application is incorporated herein by reference in its entirety to the extent that it does not contradict the disclosure presented herein.
- flexographic printing means a rotary printing using a flexible printing plate; i.e., a flexographic printing plate. Any material that may be transferred from a flexographic printing plate to a recipient substrate may be "printed".
- a "material" to be printed means a composition that is capable of being transferred from a feature of a flexographic printing plate to a recipient substrate.
- a material may comprise a solvent, and various components dissolved, dispersed, suspended, or the like in the solvent.
- curing means a process of hardening of a material. Typically, curing refers to increasing cross-linking within the material.
- a “curable” material thus refers to a material that may be hardened, typically through cross-linking.
- a material may be partially cured or fully cured.
- a material that is “pre-cured” is a material that is partially cured. It will be understood that curing subsequent to pre-curing may result in a partially cured or fully cured material.
- cuing environment means the environment in which curing occurs.
- flexographic printing plate means a printing plate having features onto which material to be transferred to a recipient substrate may be disposed, wherein the plate or the features are capable of deforming when contacting the recipient substrate (relative to when not contacting the recipient substrate).
- a flexographic printing plate may be a flat plate that can be attached to a roll; e.g., by mounting tape, or a sleeve attached to a chuck, such as with DupontTM CRYEL® round plates.
- feature means a raised projection of a flexographic printing plate.
- the raised projection has a distal surface (or land), onto which material may be disposed.
- donor substrate means a substrate onto which a material transferable to a feature of a flexographic printing plate may be disposed.
- Donor substrates may be in any form suitable for the transfer of material to a feature.
- donor substrates may be films, plates or rolls.
- carrier substrate means a substrate onto which a material may be printed.
- substrates include but are not limited to inorganic substrates such as quartz, glass, silica and other oxides or ceramics such as alumina, indium tin oxide, lithium tantalate (LiTaO.sub.3), lithium niobate (LiNbO.
- thermoplastics such as polyesters (e.g., polyethylene terephthalate or polyethylene naphthalates), polyacrylates (e.g., polymethyl methacrylate or "PMMA"), poly(vinyl acetate) (“PVAC”), poly(vinylbutyral) (“PVB)", poly(ethyl acrylate) (“PEA”), poly(diphenoxyphosphazene) (“PDPP”), polycarbonate (“PC”), polypropylene (“PP”), high density polyethylene (“HDPE”), low density polyethylene (“LDPE”), polysulfone (“PS”), polyether
- any curable material capable of being transferred to and from a feature of a flexographic printing plate may be used in accordance with the teachings presented herein.
- the material may comprise a curable resin.
- Illustrative examples of resins that are capable of being polymerized by a free radical mechanism that can be used herein include acrylic -based resins derived from epoxies, polyesters, polyethers, and urethanes, ethylenically unsaturated compounds, aminoplast derivatives having at least one pendant acrylate group, isocyanate derivatives having at least one pendant acrylate group, epoxy resins other than acrylated epoxies, and mixtures and combinations thereof.
- the term acrylate is used here to encompass both acrylates and methacrylates.
- U.S. Pat. 4,576,850 discloses examples of cross-linkable resins that may be used in cube corner element arrays and may be useful as the materials described herein.
- Ethylenically unsaturated resins include both monomeric and polymeric compounds that contain atoms of carbon, hydrogen and oxygen, and optionally nitrogen, sulfur, and the halogens may be used herein. Oxygen or nitrogen atoms, or both, are generally present in ether, ester, urethane, amide, and urea groups. Ethylenically unsaturated compounds preferably have a molecular weight of less than about 4,000 and preferably are esters made from the reaction of compounds containing aliphatic monohydroxy groups, aliphatic polyhydroxy groups, and unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, iso-crotonic acid, maleic acid, and the like. Such materials are typically readily available commercially and can be readily cross linked.
- trimethylolpropane triacrylate glyceroltriacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and tris(2-acryloyloxyethyl)isocyanurate.
- ethylenically unsaturated compounds and resins include styrene, divinylbenzene, vinyl toluene, N-vinyl formamide, N-vinyl pyrrolidone, N-vinyl caprolactam, monoallyl, polyallyl, and polymethallyl esters such as diallyl phthalate and diallyl adipate, and amides of carboxylic acids such as N,N-diallyladipamide.
- Photopolymerization initiators that can be blended with acrylic compounds include the following: benzil, methyl o-benzoate, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, etc., benzophenone/tertiary amine, acetophenones such as 2,2-diethoxyacetophenone, benzyl methyl ketal, 1- hydroxycyclohexylphenyl ketone, 2- hydroxy-2-methyl-l-phenylpropan-l-one, l-(4- isopropylphenyl)-2-hydroxy-2-methylpropan- 1 -one, 2-benzyl-2-N,N-dimethylamino- 1 -(4- morpholinophenyl)-l-butanone, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 2- methyl-l-4(methylthio), phenyl
- thermal initiators examples include peroxides such as acetyl and benzoyl peroxides.
- thermal initiators include, but are not limited to, 4,4'-azobis(4-cyanovaleric acid), 1,1'- azobis(cyclohexanecarbonitrile), 2,2'-azobis(2-methylpropionitrile), benzoyl peroxide, 2,2-bis(tert-butylperoxy)butane, 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane, bis[l-(tert- butylperoxy)-l-methylethyl]benzene, tert-butyl hydroperoxide, tert-butyl peracetate, tert- butyl peroxide, tert-butyl peroxybenzoate, cumene hydroperoxide, dicumyl peroxide, lauroyl peroxide, peracetic acid, and, potassium peroxides.
- the photoinitiator may be ⁇ -hydroxyketone, phenylglyoxylate, benzildimethyl ketal, ⁇ - aminoketone, monoacylphosphine, bisacylphosphine, and mixtures thereof.
- Cationically polymerizable materials includeE but are not limited to materials containing epoxy and vinyl ether functional groups, and may be used herein. These systems are photoinitiated by onium salt initiators, such as triarylsulfonium, and diaryliodonium salts.
- Materials may also comprise a solvent.
- Any solvent in which the components of the material may be dissolved, dispersed, suspended or the like may be used.
- the solvent may be an organic compound that does not appreciably participate in the cross-linking reaction and which exists in a liquid phase at room temperature and 1 atmosphere.
- the viscosity and surface tension of the solvent are not specifically limited. Examples of suitable solvents include chloroform, acetonitrile, methylethylketone, ethylacetate, and mixtures thereof.
- Any amount of solvent capable of dissolving, dispersing, suspending, etc. the components of the material may be used.
- a sufficient amount of solvent will be used so that the material can readily be disposed on a donor substrate.
- the amount of solvent will range from 60 to 90 wt %, e.g. 70 to 80 wt %, with respect to the total weight of the material.
- a curable material is preferably a flowable material at room temperature or at temperatures at which flexographic printing processes are carried out.
- FIG. 1 provides an example of such a method.
- the method depicted in FIG. 1 comprises transferring a curable material from a donor substrate to a feature of a flexographic printing plate (100).
- the curable material is then transferred from the feature to a recipient substrate (120).
- the method further comprises curing the material when the material is in contact with both the feature and the recipient substrate (130).
- the method may further comprise reducing the oxygen content in the environment where the material is in contact with the feature and the recipient substrate; i.e., in the curing environment. This can be done, e.g., by introducing nitrogen into the curing environment.
- any known or future developed technique for curing the material may be used in accordance with the methods described herein.
- e-beam radiation may be used to initiate cross-linking within the material.
- heat or UV radiation may be used. If heat or UV radiation is used, it may be desirable to include a photo initiator or a thermal initiator in the material composition.
- the energy source will be positioned such that emitted energy will be effective to cure the material while it is contact with the feature and the recipient substrate.
- the substrate or alternatively the printing plate and feature, and perhaps the flexographic roll, may be penetrable by the UV radiation so that the radiation can reach the material when it is in contact with both the feature and the substrate.
- the recipient substrate may be preheated prior to transfer of the material from the feature to the substrate so that the material may be cured when it is in contact with both the feature and the substrate.
- Other possibilities are envisioned and readily understandable by those of skill in the art.
- a method for flexographic printing may comprise removing solvent from a material disposed on a donor substrate to produce a curable material (180). In most cases, at least a portion of the solvent will be removed from a material prior to the material being cured. Any known or future developed technique suitable for removing solvent from the material may be employed. Solvent may be removed from the material according to the teachings described in the aforementioned U.S. Provisional Patent Application Serial No. 60/865,979, entitled "SOLVENT REMOVAL ASSISTED MATERIAL
- FIG. 4 illustrates an exemplary method for flexographic printing.
- the method comprises transferring a curable material from a donor substrate to a features of a flexographic printing plate (100) and precuring the material transferred to the feature (150).
- the material may be precured as described above for curing. It will be understood that precuring the material will result in a material that is partially cured by the time the material comes into contact with the recipient substrate.
- the method further comprises transferring the precured material from the feature to a recipient substrate (160) and curing the pre-cured material while the pre-cured material is in contact with both the feature and the recipient substrate.
- FIGS. 1-4 may be intermixed, interchanged, combined, etc. as appropriate.
- the step of reducing the oxygen content in the curing environment (140) in FIG. 2 may be applied to the methods shown in FIGS. 3 and 4; the step of removing a solvent from a material on a donor substrate (180) shown in FIG. 3 may be performed with the methods shown in FIGS. 2 and 4; etc.
- material 220 when initially disposed on a donor substrate may comprise a fully saturated solution, (ii) solvent may be removed, actively or passively, from material 220 prior to transfer to a feature of a flexographic printing plate to produce a curable material, (iii) curable material 220 may be pre-cured while disposed on the feature and (iv) material 220 transferred to the recipient substrate will be cured or further cured.
- the system 1000 comprises a donor substrate 210 configured to receive material 220 to be printed on a recipient substrate 250.
- the system 1000 includes a flexographic roll 230 configured to attachably receive a flexographic printing plate 280.
- Flexographic printing plate 280 may be attached to flexographic roll 230 using any suitable technique.
- One suitable technique includes attaching flexographic plate 280 to flexographic roll 230 using an adhesive.
- Flexographic roll 230 is moveable relative to the donor substrate 210 such that material 220 may be transferred from donor substrate 210 to a feature 260 of a flexographic printing plate 280.
- 5A further includes a backup roll 240 positioned relative to flexographic roll 230 such that movement of backup roll 240 relative to flexographic roll 230 is capable of causing recipient substrate 250 to move between flexographic roll 230 and backup roll 240, allowing material 220 to be transferred from feature 260 of printing plate 280.
- the system 1000 depicted in FIG. 5B includes two backup rolls 240A, 240B positioned relative to flexographic roll 230 such that movement of backup rolls 240A, 240B relative to flexographic roll 230 is capable of causing recipient substrate 250 to move between flexographic roll 230 and backup rolls 240A, 240B, allowing material 220 to be transferred from feature 260 of printing plate 280.
- Flexographic roll 230 and substrate roll 240, 240A, 240B depicted in FIG. 5 may be in the form of cylinders and the rolls 230, 240, 240A, 240B may rotate about the respective central axes of the cylinders. Such rotation allows printing plate 280 attached to flexographic roll 230 to contact material 220 and then transfer material 220 to recipient substrate 250. Such rotation also allows recipient substrate 250 to move between flexographic roll 230 and substrate roll 240, 240A, 240B.
- the system 1000 depicted in FIG. 5C includes a reservoir 300 for housing material 220.
- inking roll 290 rotates about its central axis and relative to reservoir 300, material 220 is transferred to donor substrate 210.
- Flexographic roll 230 to which flexographic plate 280 may be attached, rotates relative to inking roll 290 such that material 220 is transferred to feature 260 of flexographic printing plate 280.
- solvent may be passively removed from material 220; e.g., through evaporation.
- material 220 material may then be transferred from feature 260 of plate 280 to recipient substrate 250.
- energy source 330, 330A is positioned such that emitted energy can cure material while material 220 is in contact with both feature 260 of printing plate 280 and recipient substrate 250. If energy source 330, 330A emits radiation, recipient substrate 250 should be substantially transparent to the radiation to allow curing of the material 220.
- energy source 330, 330A may be placed at any location suitable for curing material 220 as it is in contact with both feature 260 and recipient substrate 250.
- energy source 330, 330A may be placed within backup roll 240 (e.g., in FIG.
- the systems 1000 may further comprise a nitrogen infusion apparatus 340 configured to introduce nitrogen to the location where the material is transferred from the feature 260 to the recipient substrate 250 to facilitate curing of the material 220.
- a system 1000 may comprise a second energy source 330B for pre-curing the material 220 prior to transfer to recipient substrate 250. Pre-curing of the material 220 can serve to obtain a material 220 having properties; e.g. viscosity, thickness, adhesion, tack, etc., desirable for transferring the material 220 from the feature 260 to the recipient substrate 250.
- a flexographic roll 230 to which a flexographic plate 280 is attached is shown.
- feature 260 of the flexographic plate 280 contacts material 220 disposed on donor substrate 210 and material 220 is transferred to feature 260. If material 220 is viscous; e.g. if solvent has been removed from material 220, an imprint 270 may be left on donor substrate 210.
- material 220 disposed on feature 260 comes into contact with recipient substrate 250. While material 220 is in contact with both feature 260 and recipient substrate 250, material 220 is cured, initiated by energy emitted from energy source 330.
- FIG. 9 depicts a system 1000 having a solvent removal apparatus 320.
- Any apparatus capable of removing solvent from material 220 on donor substrate 210 associated with inking roll 290 may be employed.
- suitable solvent removal apparatuses 320 include microwave or infrared radiation apparatuses to assist in solvent evaporation or dryers.
- a doctor blade 310 is depicted in FIG. 9. Blade 310 is in contact with at least a portion of donor substrate 210, which is associated with inking roll 290. Blade 310 is capable of at least partially removing one or more imprints 270 from donor substrate 210.
- any apparatus for removing or reducing imprints may be used.
- donor substrate 210 which is associated with inking roll 290, is rendered suitable for receiving additional material 220.
- the system 1000 of FIG. 5, 6 or FIG. 7 may include a solvent removal apparatus 320 or a blade 310 as depicted in FIG. 9.
- donor substrate 210 which is shown as a film or plate in FIGS. 5A, 5B, and 6-8 may be in the form of a roll or attached to a roll, as depicted in FIGS. 5C and 9.
- a micro-flexographic printing plate was prepared as described in US Patent Application Serial No. 60/865,979, entitled “SOLVENT-ASSISTED EMBOSSING OF FLEXOGRAPHIC PRINTING PLATES” to Mikhail Pekurovsky et al, filed on even date herewith.
- the plate was prepared by taking a polymeric film having a micro- replicated linear prismatic structure (BEF 90/50, commercially available from 3M Co.), referred to as BEF master, depositing a thin layer of methyl ethyl ketone on its structured surface, and then positioning a CYREL® flexographic plate (type TDR B 6.35 mm thick, with removed cover sheet, commercially available from DuPont Co.) on the top of the microreplicated surface. After 15 hours, the CYREL® plate was exposed to UV radiation through the attached micro-replicated film in a UV processor equipped with a mercury Fusion UV curing lamp (model MC-6RQN, Rockville, MD, 200 watt/in), run at approximately 5 fpm. The micro-replicated flexographic printing plate was then detached from the BEF master.
- BEF master a polymeric film having a micro- replicated linear prismatic structure
- CYREL® flexographic plate type TDR B 6.35 mm thick, with removed cover sheet,
- microreplicated flexographic printing plate was then attached to a 12.7 cm-diameter glass cylinder by flexographic mounting tape (type 1120, commercially available from 3M Co.).
- a thin layer of type 906 hardcoat (33 wt% solids ceramer hardcoat dispersion containing 32 wt% 20nm Si ⁇ 2 nano-particles, 8 wt% N,N-dimethyl acrylamid, 8 wt% methacryloxypropyl trimethoxysilane and 52 wt% pentaerythritol tri/tetra acrylate (PETA) in isopropylalcohol (IPA), 3M Co., St.
- IPA isopropylalcohol
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Printing Methods (AREA)
- Decoration By Transfer Pictures (AREA)
- Printing Plates And Materials Therefor (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
- Push-Button Switches (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009537266A JP2010510091A (en) | 2006-11-15 | 2007-11-01 | Flexographic printing with curing during transfer to substrate |
CN200780042596XA CN101674942B (en) | 2006-11-15 | 2007-11-01 | Flexographic printing with curing during transfer to substrate |
DE602007013085T DE602007013085D1 (en) | 2006-11-15 | 2007-11-01 | FLEXODRUCK WITH HARDENING DURING TRANSFER TO A SUBSTRATE |
EP07863780A EP2084012B1 (en) | 2006-11-15 | 2007-11-01 | Flexographic printing with curing during transfer to substrate |
BRPI0718766-1A2A BRPI0718766A2 (en) | 2006-11-15 | 2007-11-01 | CLEAR FLEXOGRAPHIC PRINTING DURING TRANSFER TO SUBSTRATE |
AT07863780T ATE500973T1 (en) | 2006-11-15 | 2007-11-01 | FLEXO PRINTING WITH CURING DURING TRANSFER TO A SUBSTRATE |
US12/514,906 US9340053B2 (en) | 2006-11-15 | 2007-11-01 | Flexographic printing with curing during transfer to substrate |
US15/092,163 US9579877B2 (en) | 2006-11-15 | 2016-04-06 | Flexographic printing with curing during transfer to substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86596806P | 2006-11-15 | 2006-11-15 | |
US60/865,968 | 2006-11-15 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/514,906 A-371-Of-International US9340053B2 (en) | 2006-11-15 | 2007-11-01 | Flexographic printing with curing during transfer to substrate |
US15/092,163 Division US9579877B2 (en) | 2006-11-15 | 2016-04-06 | Flexographic printing with curing during transfer to substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008060864A1 true WO2008060864A1 (en) | 2008-05-22 |
Family
ID=39092992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/083322 WO2008060864A1 (en) | 2006-11-15 | 2007-11-01 | Flexographic printing with curing during transfer to substrate |
Country Status (9)
Country | Link |
---|---|
US (2) | US9340053B2 (en) |
EP (1) | EP2084012B1 (en) |
JP (1) | JP2010510091A (en) |
KR (1) | KR20090079946A (en) |
CN (1) | CN101674942B (en) |
AT (1) | ATE500973T1 (en) |
BR (1) | BRPI0718766A2 (en) |
DE (1) | DE602007013085D1 (en) |
WO (1) | WO2008060864A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015044671A1 (en) * | 2013-09-27 | 2015-04-02 | De La Rue International Limited | Method of manufacturing pattern on a substrate web and apparatus therefor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011090641A2 (en) * | 2009-12-30 | 2011-07-28 | 3M Innovative Properties Company | Method of using a mask to provide a patterned substrate |
GB2510311B (en) * | 2011-10-25 | 2018-05-02 | Eastman Kodak Co | Flexographic printing using flexographic printing roll configurations |
KR20160068874A (en) * | 2013-10-11 | 2016-06-15 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Plasma treatment of flexographic printing surface |
US9398698B2 (en) * | 2013-12-19 | 2016-07-19 | Eastman Kodak Company | Forming patterns of electrically conductive materials |
JP6417215B2 (en) * | 2014-12-26 | 2018-10-31 | 株式会社シンク・ラボラトリー | Gravure printing apparatus, ink jet apparatus, and aqueous liquid deposit drying method |
WO2018175022A1 (en) * | 2017-03-22 | 2018-09-27 | 3M Innovative Properties Company | Buff-coated article and method of making the same |
DE102017107041A1 (en) * | 2017-03-31 | 2018-10-04 | die 12monate Armin Glaser & Klaus Pietsch GbR (vertretungsberechtigter Gesellschafter Klaus Pietsch, 02727 Ebersbach-Neugersdorf) | Method and device for UV curing of a photohardenable substance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5407708A (en) * | 1994-01-27 | 1995-04-18 | W.R. Grace & Co.-Conn. | Method and apparatus for applying radiation curable inks in a flexographic printing system |
US20040099388A1 (en) * | 2002-11-27 | 2004-05-27 | Kimberly-Clark Worldwide, Inc. | Structural printing of absorbent webs |
US20050241519A1 (en) * | 2003-05-16 | 2005-11-03 | Aylor John E | Heat sink vacuum plate for printing press ultraviolet curing system |
Family Cites Families (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3264103A (en) | 1962-06-27 | 1966-08-02 | Du Pont | Photopolymerizable relief printing plates developed by dry thermal transfer |
CA1099435A (en) | 1971-04-01 | 1981-04-14 | Gwendyline Y. Y. T. Chen | Photosensitive block copolymer composition and elements |
US4323636A (en) | 1971-04-01 | 1982-04-06 | E. I. Du Pont De Nemours And Company | Photosensitive block copolymer composition and elements |
JPS5071413A (en) | 1973-10-25 | 1975-06-13 | ||
JPS51145605A (en) | 1975-06-06 | 1976-12-14 | Kanazawa Furekiso Kk | Method of reproducing flexographic printing plate from photosensitive resin plate |
JPS52123707A (en) | 1976-04-09 | 1977-10-18 | Kuraray Co | Excellent print method |
US4209551A (en) | 1977-12-28 | 1980-06-24 | Toppan Printing Co., Ltd. | Method of fabricating a phosphor screen of a color television picture tube |
JPS54154606A (en) | 1978-05-24 | 1979-12-05 | Mitsubishi Heavy Ind Ltd | Flexo printer |
US4576850A (en) | 1978-07-20 | 1986-03-18 | Minnesota Mining And Manufacturing Company | Shaped plastic articles having replicated microstructure surfaces |
US4427759A (en) | 1982-01-21 | 1984-01-24 | E. I. Du Pont De Nemours And Company | Process for preparing an overcoated photopolymer printing plate |
US4460675A (en) | 1982-01-21 | 1984-07-17 | E. I. Du Pont De Nemours And Company | Process for preparing an overcoated photopolymer printing plate |
US4753865A (en) | 1986-01-22 | 1988-06-28 | E. I. Du Pont De Nemours And Company | Photosensitive compositions containing microgels |
US4726877A (en) | 1986-01-22 | 1988-02-23 | E. I. Du Pont De Nemours And Company | Methods of using photosensitive compositions containing microgels |
US4894315A (en) | 1988-08-30 | 1990-01-16 | E. I. Du Pont De Nemours And Company | Process for making flexographic printing plates with increased flexibility |
US4956252A (en) | 1988-08-30 | 1990-09-11 | E. I. Dupont De Nemours And Company | Aqueous processible photosensitive compositions containing core shell microgels |
US5116548A (en) * | 1989-08-29 | 1992-05-26 | American Bank Note Holographics, Inc. | Replicaton of microstructures by casting in controlled areas of a substrate |
JPH0410933A (en) | 1990-04-27 | 1992-01-16 | Toppan Printing Co Ltd | Manufacture of print plate |
US5175072A (en) | 1990-07-26 | 1992-12-29 | Minnesota Mining And Manufacturing Company | Flexographic printing plate process |
US5215859A (en) | 1990-07-26 | 1993-06-01 | Minnesota Mining And Manufacturing Company | Backside ionizing irradiation in a flexographic printing plate process |
US5015556A (en) | 1990-07-26 | 1991-05-14 | Minnesota Mining And Manufacturing Company | Flexographic printing plate process |
EP0469735B1 (en) | 1990-07-31 | 1998-06-10 | Minnesota Mining And Manufacturing Company | Device for forming flexographic printing plate |
DE4205682A1 (en) | 1992-02-25 | 1993-08-26 | Berrenbaum Gmbh | DEVICE AND METHOD FOR PRINTING MATERIALS |
US6210854B1 (en) | 1993-08-27 | 2001-04-03 | E. I. Du Pont De Nemours And Company | Aqueous developable flexographic printing plate |
US5535673A (en) * | 1993-11-03 | 1996-07-16 | Corning Incorporated | Method of printing a color filter |
WO1995012494A1 (en) * | 1993-11-03 | 1995-05-11 | Corning Incorporated | Color filter and method of printing |
US5540147A (en) | 1994-12-02 | 1996-07-30 | Corning Incorporated | Method for forming a contoured planarizing layer for a color filter |
JP3698749B2 (en) * | 1995-01-11 | 2005-09-21 | 株式会社半導体エネルギー研究所 | Liquid crystal cell manufacturing method and apparatus, and liquid crystal cell production system |
JP3282064B2 (en) | 1995-02-28 | 2002-05-13 | 株式会社オーク製作所 | Apparatus and method for measuring degree of cure of ultraviolet-curable transfer coating material containing colorant |
JPH08309961A (en) | 1995-05-24 | 1996-11-26 | Dainippon Printing Co Ltd | Method and apparatus for printing |
US6737154B2 (en) | 1995-06-26 | 2004-05-18 | 3M Innovative Properties Company | Multilayer polymer film with additional coatings or layers |
DE19639761A1 (en) | 1996-09-27 | 1998-04-02 | Du Pont Deutschland | Flexographic printing forms with improved resistance to UV-curable printing inks |
DE19736339B4 (en) | 1997-08-21 | 2004-03-18 | Man Roland Druckmaschinen Ag | Temperature control of a printing unit and temperature control device |
US6045894A (en) | 1998-01-13 | 2000-04-04 | 3M Innovative Properties Company | Clear to colored security film |
AU1374700A (en) | 1998-11-19 | 2000-06-13 | Nilpeter A/S | Method and device for rotational moulding of surface relief structures |
US6232361B1 (en) | 1998-12-11 | 2001-05-15 | Sun Chemical Corporation | Radiation curable water based cationic inks and coatings |
US6277232B1 (en) | 1999-04-22 | 2001-08-21 | Mbna America Bank, N.A. | Method of manufacturing a plastic card with a lenticular lens therein |
US6472028B1 (en) * | 1999-08-12 | 2002-10-29 | Joseph Frazzitta | Method of producing a high gloss coating on a printed surface |
US6764014B2 (en) | 1999-09-07 | 2004-07-20 | American Express Travel Related Services Company, Inc. | Transaction card |
JP2001171066A (en) * | 1999-12-20 | 2001-06-26 | Nippon Barcode Co Ltd | Relief printing plate, original plate, storage medium and printing method |
US6371018B1 (en) | 2000-04-04 | 2002-04-16 | Karat Digital Press L.P. | Method and apparatus for anilox roller scoring prevention |
JP3705340B2 (en) * | 2000-04-10 | 2005-10-12 | 凸版印刷株式会社 | Thick film pattern forming letterpress, thick film pattern forming method using the same, and thick film pattern forming letterpress manufacturing method |
JP2002196479A (en) | 2000-12-26 | 2002-07-12 | Toyobo Co Ltd | Photosensitive resin composition and original plate for flexograpy board |
JP4549545B2 (en) | 2001-01-24 | 2010-09-22 | 大日本印刷株式会社 | Electromagnetic shielding material manufacturing method and pattern forming method |
WO2002068833A1 (en) | 2001-02-26 | 2002-09-06 | Sugatsune Kogyo Co., Ltd. | Hinge device |
US6926957B2 (en) * | 2001-06-29 | 2005-08-09 | 3M Innovative Properties Company | Water-based ink-receptive coating |
JP4519641B2 (en) * | 2002-07-01 | 2010-08-04 | インカ・ディジタル・プリンターズ・リミテッド | Printing with ink |
US7591903B2 (en) | 2002-08-13 | 2009-09-22 | 3M Innovative Properties Company | Die having multiple orifice slot |
JP4144299B2 (en) * | 2002-08-30 | 2008-09-03 | 凸版印刷株式会社 | Method of manufacturing transferred object and thick film pattern |
US20040045419A1 (en) | 2002-09-10 | 2004-03-11 | Bryan William J. | Multi-diamond cutting tool assembly for creating microreplication tools |
US6887792B2 (en) | 2002-09-17 | 2005-05-03 | Hewlett-Packard Development Company, L.P. | Embossed mask lithography |
JP4192003B2 (en) | 2003-01-10 | 2008-12-03 | 株式会社日立プラントテクノロジー | Printing apparatus, printing method, and manufacturing method of liquid crystal display device |
JP2004268319A (en) * | 2003-03-06 | 2004-09-30 | Dainippon Printing Co Ltd | Method for printing continuous fine line by flexographic printing and method for manufacturing laminate/electromagnetic wave shielding material using the former |
KR100568581B1 (en) | 2003-04-14 | 2006-04-07 | 주식회사 미뉴타텍 | Composition for mold used in forming micropattern, and mold prepared therefrom |
US7070406B2 (en) | 2003-04-29 | 2006-07-04 | Hewlett-Packard Development Company, L.P. | Apparatus for embossing a flexible substrate with a pattern carried by an optically transparent compliant media |
JP4442166B2 (en) * | 2003-09-04 | 2010-03-31 | 凸版印刷株式会社 | Method for forming fine pattern, method for manufacturing color filter for liquid crystal display, and manufacturing apparatus |
JP2005144923A (en) * | 2003-11-18 | 2005-06-09 | Toyo Ink Mfg Co Ltd | Manufacturing method of printed matter |
US7682775B2 (en) | 2004-03-05 | 2010-03-23 | E. I. Du Pont De Nemours And Company | Process for preparing a flexographic printing plate |
JP2005288904A (en) * | 2004-03-31 | 2005-10-20 | Fuji Photo Film Co Ltd | Image recorder |
CN102004393B (en) | 2004-04-27 | 2013-05-01 | 伊利诺伊大学评议会 | Composite patterning devices for soft lithography |
KR100662784B1 (en) * | 2004-04-30 | 2007-01-02 | 엘지.필립스 엘시디 주식회사 | Nethod for forming black matrix of liquid crystal display device |
EP1594001B1 (en) | 2004-05-07 | 2015-12-30 | Obducat AB | Device and method for imprint lithography |
US20060018021A1 (en) | 2004-07-26 | 2006-01-26 | Applied Opsec, Inc. | Diffraction-based optical grating structure and method of creating the same |
JP2006056049A (en) * | 2004-08-18 | 2006-03-02 | Asahi Printing Co Ltd | Label printing method |
EP1657070B1 (en) | 2004-11-10 | 2008-04-23 | Sony Deutschland GmbH | A stamp for soft lithography, in particular micro contact printing and a method of preparing the same |
EP1700680A1 (en) | 2005-03-09 | 2006-09-13 | EPFL Ecole Polytechnique Fédérale de Lausanne | Easy release fluoropolymer molds for micro- and nano-pattern replication |
US20060272534A1 (en) * | 2005-06-03 | 2006-12-07 | Daniel Lieberman | Systems and methods for printing surface relief structures |
CN102016814B (en) | 2005-06-17 | 2013-10-23 | 北卡罗来纳大学查珀尔希尔分校 | Nanoparticle fabrication methods, systems, and materials |
EP2082286B1 (en) | 2006-11-15 | 2013-12-25 | 3M Innovative Properties Company | Solvent-assisted embossing of flexographic printing plates |
CN101535055B (en) | 2006-11-15 | 2012-06-13 | 3M创新有限公司 | Flexographic printing method and system |
WO2008060918A1 (en) | 2006-11-15 | 2008-05-22 | 3M Innovative Properties Company | Card with color-shifting film |
-
2007
- 2007-11-01 US US12/514,906 patent/US9340053B2/en active Active
- 2007-11-01 AT AT07863780T patent/ATE500973T1/en not_active IP Right Cessation
- 2007-11-01 EP EP07863780A patent/EP2084012B1/en not_active Not-in-force
- 2007-11-01 WO PCT/US2007/083322 patent/WO2008060864A1/en active Application Filing
- 2007-11-01 JP JP2009537266A patent/JP2010510091A/en active Pending
- 2007-11-01 BR BRPI0718766-1A2A patent/BRPI0718766A2/en not_active IP Right Cessation
- 2007-11-01 CN CN200780042596XA patent/CN101674942B/en not_active Expired - Fee Related
- 2007-11-01 KR KR1020097009833A patent/KR20090079946A/en not_active Application Discontinuation
- 2007-11-01 DE DE602007013085T patent/DE602007013085D1/en active Active
-
2016
- 2016-04-06 US US15/092,163 patent/US9579877B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5407708A (en) * | 1994-01-27 | 1995-04-18 | W.R. Grace & Co.-Conn. | Method and apparatus for applying radiation curable inks in a flexographic printing system |
US5407708B1 (en) * | 1994-01-27 | 1997-04-08 | Grace W R & Co | Method and apparatus for applying radiation curable inks in a flexographic printing system |
US20040099388A1 (en) * | 2002-11-27 | 2004-05-27 | Kimberly-Clark Worldwide, Inc. | Structural printing of absorbent webs |
US20050241519A1 (en) * | 2003-05-16 | 2005-11-03 | Aylor John E | Heat sink vacuum plate for printing press ultraviolet curing system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015044671A1 (en) * | 2013-09-27 | 2015-04-02 | De La Rue International Limited | Method of manufacturing pattern on a substrate web and apparatus therefor |
GB2520605A (en) * | 2013-09-27 | 2015-05-27 | Rue De Int Ltd | Method of manufacturing pattern and apparatus therefor |
CN105813846A (en) * | 2013-09-27 | 2016-07-27 | 德拉鲁国际有限公司 | Method of manufacturing pattern on a substrate web and apparatus therefor |
EP3049249B1 (en) | 2013-09-27 | 2018-11-21 | De La Rue International Limited | Method of manufacturing pattern on a substrate web and apparatus therefor |
AU2014326432B2 (en) * | 2013-09-27 | 2019-04-04 | De La Rue International Limited | Method of manufacturing pattern on a substrate web and apparatus therefor |
US10343393B2 (en) | 2013-09-27 | 2019-07-09 | De La Rue International Limited | Method of manufacturing pattern and apparatus therefor |
GB2520605B (en) * | 2013-09-27 | 2020-06-03 | De La Rue Int Ltd | Method of manufacturing pattern and apparatus therefor |
Also Published As
Publication number | Publication date |
---|---|
KR20090079946A (en) | 2009-07-22 |
US9340053B2 (en) | 2016-05-17 |
EP2084012B1 (en) | 2011-03-09 |
JP2010510091A (en) | 2010-04-02 |
EP2084012A1 (en) | 2009-08-05 |
US9579877B2 (en) | 2017-02-28 |
US20120137911A1 (en) | 2012-06-07 |
CN101674942A (en) | 2010-03-17 |
DE602007013085D1 (en) | 2011-04-21 |
CN101674942B (en) | 2012-01-25 |
ATE500973T1 (en) | 2011-03-15 |
US20160214371A1 (en) | 2016-07-28 |
BRPI0718766A2 (en) | 2014-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9579877B2 (en) | Flexographic printing with curing during transfer to substrate | |
AU2019229332B2 (en) | A process for transferring microstructures to a final substrate | |
AU684925B2 (en) | Method and apparatus for manufacturing linerless labels | |
JP4980886B2 (en) | Embossing device | |
US8323438B2 (en) | Method for fixing a radiation-curable gel-ink image on a substrate | |
EP2086767B1 (en) | Solvent removal assisted material transfer for flexographic printing | |
JP2004532144A5 (en) | ||
RU2008112754A (en) | TYPEWRITER | |
ATE416918T1 (en) | FLAT PLATE PRINTING PLATE PRECURSOR AND PLANT PLANT PRINTING PROCESS | |
CN101119808A (en) | Process for making non-continuous articles with microstructures | |
JP2011520650A (en) | Method and apparatus for attaching a cold film material to a sheet material in a processing machine | |
WO2013063084A1 (en) | A method for reducing glare via a flexographic printing process | |
JP2007268714A (en) | Method and equipment for printing | |
EP0758956A1 (en) | Image-transfer process | |
WO2008084191A1 (en) | Lithographic coating | |
JP2004264666A (en) | Manufacturing method of adhesive label | |
JPH08137393A (en) | Successive label body | |
JP2012208436A (en) | Method of manufacturing color filter for display device | |
TW202332568A (en) | Imprinting process | |
JP2013072945A (en) | Method of manufacturing color filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780042596.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07863780 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097009833 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2009537266 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007863780 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12514906 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0718766 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090514 |