WO2008060574A2 - Therapeutic contact lenses with anti-fungal delivery - Google Patents

Therapeutic contact lenses with anti-fungal delivery Download PDF

Info

Publication number
WO2008060574A2
WO2008060574A2 PCT/US2007/023952 US2007023952W WO2008060574A2 WO 2008060574 A2 WO2008060574 A2 WO 2008060574A2 US 2007023952 W US2007023952 W US 2007023952W WO 2008060574 A2 WO2008060574 A2 WO 2008060574A2
Authority
WO
WIPO (PCT)
Prior art keywords
drug
microbial
recognitive
polymeric hydrogel
agent
Prior art date
Application number
PCT/US2007/023952
Other languages
French (fr)
Other versions
WO2008060574A3 (en
Inventor
Mark E. Byrne
Allison Collins
Asa D. Vaughan
Siddarth Venkatesh
Original Assignee
Auburn University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auburn University filed Critical Auburn University
Publication of WO2008060574A2 publication Critical patent/WO2008060574A2/en
Publication of WO2008060574A3 publication Critical patent/WO2008060574A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • A61K9/0051Ocular inserts, ocular implants

Definitions

  • the invention relates to drug delivery systems. More specifically, this invention relates to systems for and methods of time released ophthalmic drug delivery using contact lenses.
  • soft, biomimetic contact lens carriers i.e., recognitive polymeric hydrogels
  • recognitive polymeric hydrogels i.e., recognitive polymeric hydrogels
  • the ocular bioavailability of drugs applied to the eye is very poor (i.e., typically less than 1-7% of the applied drug is absorbed with the rest entering the systemic circulation).
  • Factors such as ocular protective mechanisms, nasolacrimal drainage, spillage from the eye, lacrimation and tear turnover, metabolic degradation, and non-productive adsorption/absorption, etc., lead to poor drug absorption in the eye.
  • ocular barriers e.g., the cornea - a transparent, dome- shaped window covering the front of the eye; the sclera - the tough, opaque, white of the eye; and the conjunctiva - a mucous membrane of the eye with a highly vascularized stroma that covers the visible part of the sclera.
  • a topically applied drug to the eye is dispersed in the tear film and can be removed by several mechanisms such as:
  • the amount of drug delivered can be much less compared to front of the eye disease.
  • four approaches have typically been used, topical, oral (systemic delivery), intraocular, and periocular delivery.
  • Topically applied drugs diffuse through the tear film, cornea/sclera, iris, ciliary body, and vitreous before reaching posterior tissues, but due to the added transport resistances such diffusions do not typically lead to therapeutically relevant drug concentrations.
  • researchers have shown that topically applied drugs do permeate through the sclera by blocking corneal absorption and transport.
  • Intravitreal injections injections into the eye
  • require repeated injections and have potential side effects hemomorrhage, retinal detachment, cataract, etc.
  • Extended release devices have been used but require intraocular surgery and often have the same incidence of side effects.
  • Periocular drug delivery is less invasive and also requires injections or implant placement for predominantly transscleral delivery.
  • topical formulations have remained effective by the administration of very high concentrations of drug multiple times on a daily basis.
  • high concentrations can lead to negative effects such as burning, itching sensations, gritty feelings, etc., upon exposure of the medication to the surface of the eye as well as increased toxicity and increased ocular and systemic side effects.
  • traditional ophthalmic dosage forms such as solutions, suspensions, and ointments account for 90% of commercially available formulations on the market today. Solutions and suspensions (for less water soluble drugs) are most commonly used due to the ease of production and the ability to filter and easily sterilize them.
  • Eye drops refers to all topological medications administered to a surface of the eye, including but not limited to solutions, suspensions, ointments and combinations thereof.
  • drug delivery through the use of eye drops does not provide for controlled time release of the drug.
  • Eye drop medications typically have a low residence time of the drug on the surface of the eye.
  • Ocular inserts in some cases, achieve a relatively stable or constant, extended release of a drug.
  • Ocusert® Alza Corp., FDA approved in 1974
  • Lacrisert is a cellulose based polymer insert used to treat dry eyes.
  • inserts have not found widespread use due to occasional noticed or unnoticed expulsion from the eye, membrane rupture (with a burst of drug being released), increased price over conventional treatments, etc.
  • Mucoadhesive systems and in-situ forming polymers typically have problems involving the anchorage of the carrier as well as ocular irritation resulting in blinking and tear production.
  • Penetration enhancers can cause transient irritation, or alter normal protection mechanisms of the eye, and some agents can cause irreversible damage to the cornea.
  • a drug delivery system in accordance with the present invention includes a recognitive polymeric hydrogel through which a drug is delivered by contacting biological tissue.
  • the recognitive polymeric hydrogel is formed using a bio-template, which is a drug or is structurally similar to the drug, functionalized monomers, preferably having complexing sites, and cross-linking monomers, which are copolymerized using a suitable initiator, such as described in detail below.
  • the complexing sites of the recognitive polymeric hydrogel that is formed preferably mimics receptor sites of a target biological tissue, biological recognition, or biological mechanism of action.
  • the system unitizes what is referred to herein as a biomimetic recognitive polymeric hydrogel.
  • a system in accordance with one embodiment is an ophthalmic drug system.
  • the ophthalmic drug system includes soft contact lenses formed from the biomimetic recognitive polymeric hydrogel.
  • the lenses are impregnated with a drug that can be released over a duration of time while in contact with eyes.
  • the invention is directed to both corrective and refractive contact lenses as well as non-corrective and non-refractive contact lenses. While the invention as described herein refers primarily to ophthalmic drug systems, it is understood that the present invention has applications in a number of different contact drug delivery systems.
  • the biomimetic recognitive polymeric hydrogel can be used in bandages, dressings, and patch-type drug delivery systems to name a few.
  • a hydrogel matrix that is formed from silicon-based cross-linking monomers, carbon based or organic-based monomers, macromers or a combination thereof.
  • Suitable cross-linking monomers include but are not limited to Polyethylene glycol (200) dimethacrylate (PEG200DMA), ethylene glycol dimethacrylate (EGDMA), tetraethyleneglycol dimethacrylate (TEGDMA), N,N'-Methylene-bis-acrylamide and polyethylene glycol (600) dimethacrylate (PEG600DMA).
  • Suitable silicon-based cross-linking monomers can include tris(trimethylsiloxy)silyl propyl methacrylate (TRIS) and hydrophilic TRIS derivatives such as tris(trimethylsiloxy)silyl propyl vinyl carbamate (TPVC), tris(trimethylsiloxy)silyl propyl glycerol methacrylate (SIGMA), tris(trimethylsiloxy)silyl propyl methacryloxyethylcarbamate (TSMC); polydimethylsiloxane (PDMS) and PDMS derivatives, such as methacrylate end-capped fluoro-grafted PDMS crosslinker, a methacrylate end- capped urethane-siloxane copolymer crosslinker, a styrene-capped siloxane polymer containing polyethylene oxide and polypropylene oxide blocks; and siloxanes containing hydrophilic grafts or amino acid residue grafts, and siloxa
  • a solubilizing cosolvent such as dimethylsulfoxide (DMSO), isopropanol, etc. or a protecting/deprotecting group strategy.
  • Crosslinking monomer amounts can be from (0.1 to 40%, moles crosslinking monomer/moles all monomers); Functional monomers, 99.9% to 60% (moles functional monomer/moles all monomers) with varying relative portions of multiple functional monomers; initiator concentration ranging from 0.1 to 30 wt%; solvent concentration ranging from 0% to 50 wt% (but no solvent is preferred); monomer to bio-template ratio (MfT) ranging from 0.1 to 5,000, preferably 200 to 1,000, wiuY950 preferred for the ketotifen polymers presented herein, under an nitrogen or air environment (in air, the wt% of initiator should be increased above 10wt%.
  • the ophthalmic drug delivery system also includes a bio-template, that is drug molecules, prodrugs, protein, amino acid, proteinic drug, oligopeptide, polypeptide, oligonucleotide, ribonucleic acid, deoxyribonucleic acid, antibody, vitamin, or other biologically active compound.
  • a bio-template that is drug molecules, prodrugs, protein, amino acid, proteinic drug, oligopeptide, polypeptide, oligonucleotide, ribonucleic acid, deoxyribonucleic acid, antibody, vitamin, or other biologically active compound.
  • This also includes a drug with an attached bio-template.
  • the bio-template is preferably bound to the hydrogel matrix through one or more of electrostatic interactions, hydrogen bonding, hydrophobic interactions, coordination complexation, and Van der Waals forces.
  • Bio-templates are preferably weakly bound to a hydrogel matrix through functionalized monomer units, macromer units or oligomer units that are co-polymerized into the hydrogel matrix to form receptor locations within the hydrogel matrix that resemble or mimic the receptor sites or molecules associated with the biological target tissue to be treated with the drug or the biological mechanism of action.
  • a portion of the bio-template can be washed out from the recognitive hydrogel polymer, loaded with a drug.
  • the polymerization reaction forms a contact lens.
  • the gel is polymerized in a mold or compression casting. After contact lenses are formed they can be used to administer the drug through contact with eyes.
  • the recognitive hydrogel polymer can be formed into contact lenses, washed to remove a portion of the bio-template and then loaded with the drug.
  • the washing step can be illuminated or truncated. The drug release from the lenses can work without washing the drug out and reloading the drug. This is true for cases where the reaction is complete and no small monomers are released from the structure.
  • the bio-template is a drug
  • the free base form of the drug or hydrochloride salt of the drug can be used.
  • a biomimetic recognitive polymeric hydrogel is formed by making a mixture or solution that includes amounts of a bio- template or drug, functionalized monomer or monomers, cross-linking monomer or monomers and polymerization initiator in a suitable solvent or without solvent.
  • Suitable initiators include water and non-water soluble initiators, but are not limited to azobisisobutyronitrile (AEBN), 2,2-dimethoxy-2-phenyl acetophenone (DMPA), 1- hydroxycyclohexyl phenyl ketone (IrgacureO 184), 2,2-dimethoxy-l,2-diphenylethan-l-one (Irgacure 651), ammonium persulfate, iniferter such as tetraethylthiuram disulfide, or combinations thereof.
  • the polymerization can be photo-initiated, thermally-initiated, redox - initiated or a combinations thereof.
  • Functional or reactive monomers useful herein are those which possess chemical or thermodynamic compatibility with a desired bio- template.
  • the term functional monomer includes moieties or chemical compounds in which there is at least one double bond group that can be incorporated into a growing polymer chain by chemical reaction and one end that has functionality that will interact with the bio-template through one or more of electrostatic interactions, hydrogen bonding, hydrophobic interactions, coordination complexation, and Van der Waals forces.
  • Functional monomers includes macromers, oligomers, and polymer chains with pendent functionality and which have the capability of being crosslinked to create the recognitive hydrogel.
  • Crosslinking monomer includes chemicals with multiple double bond functionality that can be polymerized into a polymer network.
  • Initiator-chain transfer molecules iniferters, have been used to produce well controlled block copolymers, polymers of low polydispersity, and graft polymers as well as crosslinked polymer systems on surfaces. Of utmost importance is the control over the polymerization and associated network structure, which depends on the dynamic equilibrium between active and dormant species. Conventional free-radical polymerization is highly non-ideal and differences in theory and experimental data indicate heterogeneity within the network structure.
  • the stability of the iniferter produced radical negates its significance on the initiation and propagation steps during the polymerization reaction, which in this particular case required the addition of carbon radicals, AIBN, to initiate the polymerization reaction.
  • the stable DTC radicals reversibly terminate with growing polymer radical chains which forms a chain that can re-absorb UV light and decay back into a polymer radical and a DTC radical.
  • the limitations and structural heterogeneity of radical polymerizations caused by fast termination reactions can be reduced since iniferters provide a reversible termination reaction.
  • living or controlled polymerization examples include, but are not limited to living anioinic or cationic polymerization, ring opening metathesis polymerization (ROMP), group transfer polymerization (GOP), living Ziegler-Natta polymerization, and free-radical polymerization (e.g., iniferter polymerization, catalytic chain transfer polymerizaton, stable free radical mediated polymerization (SFRP), ATRF or atom transfer radical polymerization, reversible addition fragmentation chain transfer (RAFT) polymerization, Iodine Transfer polymerization, Selenium-centered mediated polymerization, Telluride-mediated polymerization (TERP), Stibine-mediated polymerization).
  • SFRP stable free radical mediated polymerization
  • ATRF atom transfer radical polymerization
  • RAFT reversible addition fragmentation chain transfer
  • Examples of functionalized monomers include, but are not limited to, 2-hydroxyethylmethacrylate (HEMA), Acrylic Acid (AA), Acrylamide (AM), N-vinyl 2-pyrrolidone (NVP), l-vinyl-2-pyrrolidone (VP), methyl methacrylate (MMA), methacrylic acid (MAA), acetone acrylamide, 2-ethyl-2-(hydroxymethyl)-l,3-propanediol trimethacrylate, N-(l,l-dimethyl-3-oxobutyl)acrylamide, 2-ethyl-2-(hydroxymethyl)-l,3-propanediol trimethacrylate, 2,3-dihydroxypropyl methacrylate, allyl methacrylate, 3-[3,3,5,5,5-pentamethyl-l,l-bis[pentamethyldisiloxanyl)oxy]trisiloxanyl]propyl methacrylate, 3-[3,3,3-trimethyl-l
  • biomimetic recognitive polymeric hydrogel can be formed into contact lenses or, as described above, the polymerization reaction forms the contact lenses.
  • functionalized monomers are synthesized or selected by identifying receptor sites or molecules associated with the target biological tissue to be treated by the drug or that are associated with metabolizing the drug.
  • functionalized portions of the functionalized monomers are synthesized to chemically and/or structurally resemble or mimic the receptor sites or molecules that are associated with the biological mechanism of action of the drug.
  • These functionalized monomers are then copolymerized with the cross-linking monomer or monomers used to form the hydrogel matrix, such as described above.
  • the contact lenses can be re-loaded with the drug by soaking the contact lenses in the reconstituting drug solution. While the contact lenses have been described in detail as being used to deliver antihistamines and other allergy drugs, ophthalmic drug delivery systems and methods of the present invention can be used to deliver any number of drugs through contact on the eye and/or systemically.
  • Drugs that can be delivered by the system and method of the present invention include, but are not limited to, Anti-bacterials, An ti -infectives, Anti-microbial Agents, such as anti-fungal agents (all of which generally referred to as antibiotics) such as Penicillins (including Aminopenicillins and/or penicillinas in conjunction with penicillinase inhibitor and anti-fungal agents), Cephalosporins (and the closely related cephamycins and carbapenems), Fluoroquinolones, Tetracyclines, Macrolides, Aminoglycosides.
  • Anti-bacterials include, but are not limited to, Anti-bacterials, An ti -infectives, Anti-microbial Agents, such as anti-fungal agents (all of which generally referred to as antibiotics) such as Penicillins (including Aminopenicillins and/or penicillinas in conjunction with penicillinase inhibitor and anti-fungal agents), Cephalosporins (and the closely related cephamycins and carb
  • erythromycin bacitracin zinc
  • polymyxin polymyxin B sulfates
  • neomycin gentamycin
  • tobramycin gramicidin
  • ciprofloxacin trimethoprim
  • ofloxacin levofloxacin
  • gatifloxacin moxifloxacin
  • norfloxacin sodium sulfacetamide
  • chloramphenicol tetracycline
  • azithromycin clarithyromycin, trimethoprim sulfate and bacitracin.
  • the ophthalmic drug delivery system and method of the present invention can also be used to deliver Non-steroidal (NSAIDs) and Steroidal Anti-inflammatory Agents (generally referred to as anti-inflammatory agents) including both COX-I and COX-2 inhibitors.
  • NSAIDs Non-steroidal
  • Steroidal Anti-inflammatory agents including both COX-I and COX-2 inhibitors.
  • examples include, but are not limited to, corticosteroids, medrysone, prednisolone, prednisolone acetate, prednisolone sodium phosphate, fluormetholone, dexamethasone, dexamethasone sodium phosphate, betamethasone, fluoromethasone, antazoline, fluorometholone acetate, rimexolone, loteprednol etabonate, diclofenac (diclofenac sodium), ketorolac, ketorolac tromethamine, hydrocortisone, bromf
  • the ophthalmic drug delivery system and method of the present invention can also be used to deliver Anti-histamines, Mast cell stabilizers, and Anti-allergy Agents (generally referred to as anti-histamines).
  • anti-histamines include, but are not limited, cromolyn sodium, lodoxamide tromethamine, olopatadine HCl, nedocromil sodium, ketotifen fumurate, levocabastine HCL, azelastine HCL, pemirolast (pemirolast potassium), epinastine HCL, naphazoline HCL, emedastine, antazoline, pheniramine, sodium cromoglycate, N-acetyl-aspartyl glutamic acid and amlexanox.
  • the ophthalmic drug delivery system and method are used to deliver Anti-viral Agents including, but not limited to, trifluridine and vidarabine; Anti-Cancer Therapeutics including, but not limited to, dexamethasone and 5-fluorouracil (5FU); Local Anesthetics including, but not limited to, tetracaine, proparacaine HCL and benoxinate HCL; Cycloplegics and Mydriatics including, but not limited to, Atropine sulfate, phenylephrine HCL, Cyclopentolate HCL, scopolamine HBr, homatropine HBr, tropicamide and hydroxyamphetamine Hbr; Comfort Molecules or Molecules (generally referred as lubricating agents) to treat Keratoconjunctivitis Sicca (Dry Eye) including, but not limited to, Hyaluronic acid or hyaluronan (of varying Molecular Weight, MW
  • the ophthalmic drug delivery system and method are used to deliver anti-microbial agents including, but not limited to, anti-fungal agents.
  • anti-microbial agents including, but not limited to, anti-fungal agents.
  • a number of different classes of anti-microbial or anti-fugal agents are considered to be within the scope of the present invention.
  • Suitable classes of anti-microbial or anti-fugal agents include, but are not limited to, Allyamines, other non-azole ergosterol biosynthesis inhibitors, antimetabolities, Azoles, Chitin Synthase Inhibitors, Glucan Synthesis Inhibitors, and Polyenes.
  • Allyamines include, but are not limited to, Amorolfine, Butenafine, Naftifine and Terbinafine; an example of an antimetabolite includes, but is not limited to, Flucytosine; examples of Azoles include, but are not limited to, Imadazoles and Triazoles, such as Fluconazole, Itraconazole, Ketoconazole, Posaconazole, Ravuconazole, Voriconazole, Clotrimazole, Econazole, Miconazole, Miconazole Nitrate, Oxiconazole, Sulconazole, Terconazole, Tioconazole and Enilconazole; examples of Chitin Synthase Inhibitors include, but are not limited to, Nikkomycin Z and Lufenuron; examples of Echinocandins or Glucan Synthesis Inhibitors include, but are not limited to, Caspofungin, Micafugin and Anidulafungin, examples of Polyenes include, but are not limited
  • suiatbel an ti -microbial or anti-fugal agents include, but are not limited to, Chlorhexidine gluconate, Griseofulvin, Ciclopirox Olamine, Haloprogin, Tolnaftate, Undecylenate, Povidone iodine, Silver sulfadiazine and antimicrobial peptides and glycoproteins (e.g., such as lactoferrin, ambicin, nisin, polymixin B, gramicidin S, etc.).
  • An ophthalmic drug delivery system of the present invention has particular applications for treating animals, including large animals such as horses diagnosed with equine fungal keratitis with an anti-microbial agents or anti-fungal agents such as those listed above.
  • Equine fungal keratitis is a corneal disease that accounts for 13% of all equine corneal problems. It is generally caused by corneal trauma, usually associated with injury by organic matter. The injury allows fungal microorganisms to invade the cornea and cause ulcers, anterior uvetis, corneal perforation and iris prolapse. The typical treatment for equine fungal keratitis is frequent, expensive and prolonged treatment. This is due to the number of ocular treatment barriers and the difficulty of dealing with large animals.
  • a single drop of topical ointment (the usual topical dose) has a residence time of between 2-23 minutes.
  • the bioavailability of the drug is approximately 10% of the administered dose.
  • About 44% of animals diagnosed with equine fungal keratitis go blind and a number of these cases require that the eye is removed to prevent further spreading of infection.
  • Fig. l is a flow chart showing the steps for making contact lenses, in accordance with the embodiments of the invention.
  • Fig. 2 illustrates the formation of a recognitive polymeric hydrogel, in accordance with the embodiments of the invention.
  • Fig. 3 is a flow chart of outlining steps for making funtionalized monomer used in the synthesis of recognitive polymeric hydrogels, in accordance with the embodiments of the invention.
  • Figs. 4A-C illustrate examples of sets of molecules that match, resemble or mimic each other.
  • Figs. 5A-B are graphs that compare Ketotifen equilibrium isotherms in water for a recognitive polymeric hydrogel and a control hydrogel.
  • Fig. 5C is a graph of drug loading for recognitive polymeric hydrogels of the present invention against control hydrogels to show the enhanced drug loading for recognitive polymeric hydrogels of the present invention.
  • Fig. 6 is a graph of drug release profiles for therapeutic contact lenses, in accordance with the embodiments of the invention.
  • Figs. 7A-B are graphs of drug release profiles for recognitive polymeric hydrogels, in accordance with the embodiments of the invention.
  • Fig. 8 is a graph that compares fluconazale with the fungal cytochrome P450 equilibrium isotherms in water for a recognitive polymeric hydrogel and a control hydrogel.
  • Fig. 11 illustrates drug loading differences between free radial polymerization and living polymerization and iniferter reaction strategies.
  • Hydrogels are insoluble, cross-linked polymer network structures composed of hydrophilic homo- or hetero-co-polymers, which have the ability to absorb significant amounts of water. Consequently, this is an essential property to achieve an immunotolerant surface and matrix (i.e., with respect to protein adsorption or cell adhesion). Due to their significant water content, hydrogels also possess a degree of flexibility very similar to that of natural tissue, which minimizes potential irritation to surrounding membranes and tissues.
  • hydrophilic and hydrophobic balance of a gel carrier can be altered to provide tunable contributions that present different solvent diffusion characteristics, which in turn influence the diffusive release of a drug contained within the gel matrix.
  • Soft contact lenses are made of hydrogels. Contact lenses are manufactured to have a number of characteristics such as optical quality (good transmission of visible light), high chemical and mechanical stability, manufacturability at reasonable cost, high oxygen transmissibility, tear film wettability for comfort, and resistance to accumulation of protein and lipid deposits, as well as a suitable cleaning and disinfecting scheme.
  • Soft contact lenses typically consist of poly(2-hydroxyethyl methacrylate) (PHEMA).
  • Other lens materials include HEMA copolymerized with other monomers such as methacrylic acid, acetone acrylamide, and vinyl pyrrolidone.
  • commonly used materials include copolymers of vinyl pyrrolidone and methyl methacrylate as well as copolymers of glycerol methacrylate and methyl methacrylate.
  • Minor ingredients have included a variety of other monomers as well as cross-linking agents.
  • the immersion and soaking of soft contact lenses in drug solutions has shown promise in the increase of drug bioavailability with a reduction of side effects.
  • the materials and constituent chemistry of the macromolecular chains and subsequent interaction with drugs is random and typically leads to poor drug loading.
  • the present invention is directed to the use of biomimetic imprinting of hydrogels to make hydrogel matrices that can selectively bind a drug through complexing sites leading to improved loading of a drug and controlled time release of the drug.
  • These hydrogels are referred to as recognitive polymeric hydrogels.
  • the polymerization reaction forms the contact lenses, which can be used to administer drugs through contact with the eyes, thereby replacing traditional eye drop therapies.
  • the recognitive polymeric hydrogels can be formed or fashioned into contact lenses which can be used to administer drugs through contact with the eyes, thereby replacing traditional eye drop therapies or other mechanisms of delivery.
  • ketotifen fumurate is a potent fast acting and highly selective histamine
  • Hl antagonists with a sustained duration of action.
  • Levocabastine and ketotifen fumurate inhibits itching, redness, eyelid swelling, tearing, and chemosis induced by conjunctival provocation with allergens and histamine.
  • topical application in the form of eye drops absorption is incomplete and bioavailability is low.
  • the dose is usually administered multiple times daily.
  • patients are advised not to wear soft contact lenses. Accordingly, a soft contact lens used to administer ketotifen fumurate would not only enhance the efficacy of the treatment, but also allow allergy sufferers to wear contact lenses.
  • Fig. 1 is a flow chart 100 of steps for making contact lenses, in accordance with the embodiments of the invention
  • Fig. 2 is a graphical representation of forming a recognitive polymeric hydrogel matrix 221.
  • the recognitive hydrogel set 221 is formed.
  • the recognitive hydrogel matrix 221 is formed by generating a solution 200 comprising one or more bio-template 201, one or more functionalized monomers 203 and 203', one or more cross-linking monomers 205 with or without a solvent.
  • the functionalized monomers 203 and 203' complexes with the bio-templates 201.
  • a suitable initiator or mixture initiators 207 are used to co- polymerize the functionalized monomers 203 and 203' with a cross-linking monomer 205 to form a loaded hydrogel 220 comprising a hydrogel matrix 221 with bio-templates 201 complexing at site 209 through the hydrogel matrix 221.
  • the bio-templates 201 are complexed with the hydrogel matrix 221 through weak or non-covalent interactions, as explained above, whereby the bio-templates 201 can be washed or rinsed from the loaded hydrogel 220 to form an hydrogel matrix 221, which has vacant complexing sites 209 that can be used to complex drug molecules that are structurally and/or chemically similar to the bio-templates 201. It will be clear from the discussions above and below that the bio-templates 201 can be a drug and, therefore, washing the bio-templates 201 from the hydrogel matrix 221 may not be necessary for all drug delivery systems that are synthesized.
  • the hydrogel matrix 221 can be formed into contact lenses using any technique known in the art. It is understood that the step the step 103 is not necessary when the polymerization reaction forms the contact lenses, such as described previously. Where the bio-template 201 is a drug, the contact lenses can be placed in contact with eyes in the step 107 to administer or deliver the drug to or through the eyes.
  • the recognitive hydrogel matrix or the contact lenses are loaded with a drug.
  • the recognitive hydrogel matrix or the contact lenses can be loaded with the drug by soaking the recognitive hydrogel matrix or the contact lenses in an aqueous drug solution.
  • the target tissue to be treated with the drug or biological mechanism of action is studied to determine the types of molecules or functional groups that are associated with the action of the drug at the target tissue to affect the target tissue.
  • funtionalized monomers are synthesized with functional groups that mimic or resemble molecules or functional groups that are associated with the action of the drug at the target tissue.
  • the functionalized monomers with the functional groups that mimic or resemble molecules or functional groups that are associated with metabolizing the drug at the target tissue are then used to synthesize a drug delivery system, such as described above with reference to Fig. 1.
  • the biomimetic approach is the processes of mimicking biological recognition or exploiting biological mechanisms. Specifically, it is the process of coordinating biological molecular recognition, interactions, or actions to design materials that can be structurally similar to and/or function in similar ways as biological structures.
  • Figs. 4A-C illustrate examples of sets of molecules that match, resemble or mimic each other.
  • acrylic acid can be used to mimic aspartic acid (Fig. 4A)
  • acrylaminde can be used to mimic asparagine (Fig. 4B)
  • N-vinyl pyrrolidinone can be used to mimic tyrosine (Fig. 4C).
  • Aspartic acid, asparagine, and tyrosine are known to be of the group of amino acids providing the non-covalent interactions in the ligand binding pocket for histamine.
  • Acrylic Acid (AA), Acrylamide (AM), N-Vinyl-2-Pyrrolidone (NVP) and 2-hydroxyethylmethacrylate (HEMA), Azobisisobutyronitrile (AIBN), and Ketotifen Fumarate were purchased from Sigma-Aldrich.
  • Polyethylene glycol (200) dimethacrylate (PEG200DMA) was purchased from Polysciences, Inc. All chemicals were used as received.
  • Polymer and copolymer networks were made using various mixtures of above monomers (e.g.
  • N- vinyl 2-pyrrolidone N- vinyl 2-pyrrolidone
  • VP l-vinyl-2-pyrrolidone
  • MMA methyl methacrylate
  • MAA methacrylic acid
  • acetone acrylamide ethylene glycol dimethacrylate
  • EGDMA 2-ethyl-2-(hydroxymethyl)-l,3-propanediol trimethacrylate
  • N-(l,l-dimethyl-3-oxobutyl)acrylamide 2-ethyl-2-(hydroxymethyl)-l,3-propanediol trimethacrylate, 2,3-dihydroxypropyl methacrylate, allyl methacrylate any other suitable monomers, such as those referenced previously.
  • a typical formulation consisted of 5 mole % cross-linking monomer (PEG200DMA) in a solution of Acrylamide (M), HEMA (M), Ketotifen (T), with an M/T ratio of approximately 950 (92% HEMA, 1% of remaining monomers, and approximately 1 mole% drug depending on the M/T ratio). Controls were also prepared without the template.
  • initiator AEBN was added in low light conditions, and the solutions were allowed to equilibrate for 12 hours in darkness. This step allowed the monomers and template to orient them selves and reach their free energy minima, thus beginning the configurational imprinting at the molecular level. However, this step occurs very quickly, such as on the order of minutes.
  • the solutions were then transferred to an MBRAUN Labmaster 130 1500/1000 Glovebox, which provides an inert nitrogenous and temperature-controlled atmosphere for free-radical photopolymerization. With an increase in photoinitiator wt.%, this step can proceed in air.
  • the solutions were uncapped and left open to the nitrogen until the oxygen levels reached negligible levels ( ⁇ 0.1 ppm).
  • the solutions were inserted into glass molds (6 in. by 6 in.) separated by a Teflon frame 0.8 mm wide, as measured by a Vernier caliper.
  • the glass plates were coated with chlorotrimethylsilane to prevent the polymer matrix from sticking to the glass, as it demonstrates a strong adherent tendency due to hydrogen bonding.
  • Polymerization was carried out for ten minutes at 325 V using a Dymax UV (ultra- violet) light source.
  • the intensity of radiation was 40 mW/cm 2 , as measured with a radiometer, and the temperature was 36 °C, as measured with a thermocouple.
  • the polymer was peeled off the glass plates with flowing deionized water (Millipore, 18.2 mO.cm, pH 6), and then was allowed to soften for approximately 10 minutes. Circular discs were cut using a Size 10 cork borer (13.5 mm), and were typically washed for 5 days in a continuous flow system using deionized water. All washes proceeded until the absence of detectable drug was verified by spectroscopic monitoring. To obtain dry weights, some discs were allowed to dry under laboratory conditions (20°C) for 36 hours. The discs were then transferred to a vacuum oven (27 in. Hg, 33-34°C) for 48 hours until they were dry (less than 0.1 wt% difference).
  • deionized water Millipore, 18.2 mO.cm, pH 6
  • Fig. 5A shows a graph 500 of the equilibrium binding isotherm for Ketotifen in water for Poly(acrylamide-co-HEMA-co-poly(ethylene glycol)200 dimethacrylate) hydrogel networks with a cross-linking percentage of 5%.
  • the recognitive hydrogel network is represented by the line 501 and the control hydrogel network is represented by the line 503.
  • Percentage denotes percent mole crosslinker per mole total monomers in feed.
  • the recognitive hydrogel networks is represented by the line 511 and the control hydrogel network is represented by the line 513. Percentage denotes percent mole crosslinker per mole total monomers in feed.
  • Fig. 5C shows a graph 540 of enhanced Loading of Ketotifen for Multiple Monomer Gels for Poly(n-co-HEMA-co-poly(ethylene glycol)200 dimethacrylate) Networks.
  • the Functional monomers use are acrylic acid, acrylamide, NVP, or an equal mole mixture of both.
  • the Recognitive networks are shown as hatched bars 543 and the Control networks are shown as clear bars 541.
  • Fig. 6 shows a graph 600 of Tailorable Release Profiles Of Therapeutic Contact Lenses for Poly(n-co-HEMA-co-poly(ethylene glycol)200 dimethacrylate) Networks in Artificial Lacrimal Fluid, where n is AM (represented by circles ), AA ( represented by squares), AA-AM(represented by triangles), and NVP-AA-AM (represented by diamonds) recognitive networks, respectively. Results demonstrate an approximately constant release rate of ketotifen fumurate for 1 to 5 days.
  • Fig. 7A shows a graph 700 of Release Data for
  • Fig. 7B shows a graph 725 of Release Data for Poly( AM-co- AA-co-HEMA-co-poly(ethyleneglycol)200 dimethacrylate) Networks Mass of Drug Released in Artificial Lacrimal Solution.
  • Fig. 8 shows a graph 800 of the equilibrium binding isotherm for fluconazale with the fungal cytochrome P450 in water for Poly(acrylic acid-co-HEMA-co-poly(ethylene glycol)200 dimethacrylate) hydrogel networks with a cross-linking percentage of 5%.
  • the recognitive hydrogel network is represented by the line 811 and the control hydrogel network is represented by the line 813.
  • Percentage denotes percent mole crosslinker per mole total monomers in feed.
  • hydrogels were produced with enhanced loading for ketotifen fumarate.
  • Polymers were made with the following monomers: acrylic acid (AA), N-vinyl 2-pyrrolidone (NVP), acrylamide (AM), 2-hydroxyethylmethacrylate (HEMA), and polyethylene glycol (200) dimethacrylate (PEG200DMA).
  • Poly( AM-co- AA-CO-HEMA-CO-PEG200DMA) networks demonstrate enhanced loading with a factor of 2 times increase in the loading of drug compared to conventional networks (i.e., gels prepared without template and comparable to existing contact lenses) depending on polymer formulation and polymerization conditions.
  • Poly(AM-co-HEMA-co-PEG200DMA) networks demonstrated a factor of 2 or 100% increase in the loading of drug compared to control networks with lower bond amounts.
  • Poly(AA-co-HEMA-co-PEG200DMA) networks show a factor of 6 times increase over control in the loading of ketotifen with the overall drug bound being the lowest of the polymer formulation studies (approximately 33% less ketotifen loading than the AM functionalized network).
  • Fig. 6 highlights normalized data of the fraction of drug released versus time (mass delivered at time t divided by the mass delivered at infinite time).
  • n was AA-co- AM, AM, or AA
  • the release of drug showed a relatively constant rate of release for approximately 1 day, with little difference in the release profile.
  • poly(AA-co-AM-co-NVP-co-HEMA-PEG200DMA) exhibited a five fold increase in the extended release profile (i.e., approximately 5 days).
  • the loading of drug can be controlled by the type, number, and diversity of functionality within the network.
  • the loading (and hence the mass delivery) can also be controlled by the initial loading concentration of the drug.
  • lysozyme As a model protein since it is the largest protein component in tear fluid.
  • Figs. 7A-B highlight the poly(AM-co-HEMA-co-PEG200DMA) network release profile in artificial lacrimal solution with lysozyme, which leads to a factor of 5 increase in the duration of release.
  • poly(AA-co-AM-co-NVP-co-HEMA-PEG200DMA) this could lead to a sustained release approaching 25 days.
  • the rate of polymerization for a given conversion decreased for increasing mole percentage of template molecule in pre-polymerization monomer solution.
  • the formation of polymer chains and the enhanced loading due to the configurational biomimetic effect may be related to the propagation of polymer chains.
  • the template molecule poses physical constraints to free radical and propagating chain motion and hence effectively lowers the rate of polymerization in the creation of ligand binding pockets.
  • the functional monomers were selected by analyzing the binding mechanism of fluconzale with that of fungal cytochrome P450.
  • the funtional monomers chosen were n- vinyl prrrolidone (NVP) hydroxyethyl methacrylate (HEMA) diethylaminoethyl methacrylate (DEAEM), and acrylamide (AM).
  • NDP n- vinyl prrrolidone
  • HEMA hydroxyethyl methacrylate
  • DEAEM diethylaminoethyl methacrylate
  • AM acrylamide
  • the crosslinking monomer was polyethylene glycol di methacrylate (PEG200DMA) and the initiator for the polymerization reaction was azobisisobutyronitrile, AEBN.
  • Crosslinker monomer, functional monomer, and templates were placed in an amber bottle and allowed to equilibrate in a light-controlled location.
  • the initiator was added after the monomers and template were completely mixed.
  • the solutions were mixed and used within 24 hours.
  • the control and sample solutions were added to a template between two glass plates, and polymerized using UV polymerization in a nitrogen environment.
  • the gels were washed and cut into uniform disks with a 10mm cork borer. Binding studies were performed by placing washed gels into solutions of incremental drug concentrations and recording absorbance after equilibration to determine the amount of drug bound. Release studies were performed by placing the drug-laden gel into a lacrimal solution and taking absorbance readings at regular intervals to determine the release file.
  • Fluconazole belongs to the azole class of antifungals and works by binding with the fungal cytochrome p45 lanosterol 14a-demethylase to inhibit fungal cell wall growth.
  • Mycobacterium tuberculosis P450 CYP121-fluconazole complex hydrogen bonding is provided by Threonine, Serine, and Glutamine residues with hydrophobic interactions from Valine, Phenylalanine, and Methionine.
  • Fig. 9 shows a graph 900 of a Fluconazole binding isotherm of 5% crosslinked poly-HEMA-co-AM-co-DEAEM-co-NVP-co-PEG200DMA hydrogel lenses.
  • the recognitive hydrogel network is represented by the line 911 and the control hydrogel network is represented by the line 913.
  • Fig 10 shows a graph 1000 of Fluconazole dynamic release represented by the line 1001 in artificial lacrimal solution from 5% crosslinked poly-HEMA-co-AM-co-DEAEM-co-NVP-co-PEG200DMA hydrogel lenses.
  • Fig. 11 illustrates a graph 1100 representing drug loading differences between free radial polymerization and living polymerization and iniferter reaction strategies.
  • the control polymer network is represented by the line 1113
  • the recognitive polymer network is represented by the line 1111
  • the living polymer network is represented by the line 1115.
  • a typical polymerization solution resulting in polymer designated as Recognitive Gel (Figure 11), was made with 0.187 mL ethylene glycol dimethacrylate or EGDMA(0.993 mmole), 0.16 mL methacrlyic acid or MAA(18.86 mmoles), 18.55 mg of azo-bis(isobutyronitrile) or AEBN, and 84.06 mg of EA9A template (ethyl adenine-9-acetate (EA9A)). Solutions were placed in a sonicator for several minutes until all solids were dissolved. The Control Gel solution was made with exactly the same formulation except no EA9A template was added.
  • the polymer Recognitive Gel (Iniferter) was made by addition of iniferter, 3.89 mg TED.
  • the molar ratio of the initiator to the iniferter in Recognitive Gel was 8.61 with 0.187 mL ethylene glycol dimethacrylate or EGDMA(0.993 mmole), 0.16 mL methacrlyic acid or MAA(18.86 mmoles), 18.55 mg of azo-bis(isobutyronitrile) or AD3N, and 84.06 mg of EA9A template.
  • the molar ratio of the initiator to the iniferter gave double bond conversions similar to the double bond conversions for the Recognitive Gel.
  • the temperature of polymerization was (14°C +/- 1°C throughout exothermic reaction).
  • the molar ratio of initiator to iniferter can range 0.0001 and upward.
  • the ophthalmic drug delivery system of the present invention can provide improved bioavailability and efficacy of drug delivery and exhibits controlled time release of the drug.
  • the ophthalmic drug delivery system can be tailored to exhibit properties suitable for the intended drug therapy and has a potential to replace traditional eye drop therapies and other methods.
  • This technology creates a new architecture in polymeric films to enable enhanced drug loading and delayed time release of drugs.
  • contact lenses We have applied this to contact lenses to produce a new drug delivery system comprising contact lenses.
  • These polymeric films are based on the creation of polymeric networks from a fundamental analysis of the biological recognition or biological mechanism of action of the therapeutic.
  • the technologies produced from this work involve thin films for drug delivery, which can be applied to other areas besides the ocular market. This can apply to, but is not limited to any drug delivery device or coating where one is limited on space or volume of delivery device. It can apply, but is not limited to particles, cylinders, spheres, films and coatings.
  • Implant Coatings (Orthopedic, Adhesion prevention, etc.);
  • the technology also provides an opportunity for a combination drug platform where multiple drugs are released from a single lens of film.
  • multiple drugs of a certain type (combination anti-fungal therapy) and multiple classes of drugs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

A drug delivery system is disclosed. The drug delivery system includes a recognitive polymeric hydrogel through which a drug is delivered by contacting biological tissue. The recognitive polymeric hydrogel is formed using a bio-template, which is a drug or is structurally similar to the drug, functionalized monomers, preferably having complexing sites, and cross-linking monomers, which are copolymerized using a suitable initiator. The complexing sites of the recognitive polymeric hydrogel that is formed preferably mimic receptor sites of a target biological tissue, biological recognition, or biological mechanism of action. A system in accordance with an embodiment of the invention is a contact lens for delivering a drug through contact with an eye. In a particular embodiment of the invention, the drug is an anti-microbial, such as an anti-fungal agent for treatment of large animals, such as horses.

Description

THERAPEUTIC CONTACT LENSES WITH ANTI-FUNGAL DELIVERY
Related Applications
This Application is a Continuation-in-part of the co-pending Application Serial No. 11/346,770, filed February 3, 2006, and titled "Contact Drug Delivery System," which claims priority under 35 U.S. C. § 119(e) of the co-pending U.S. Provisional Application Serial No. 60/692,042, titled "Sustained Ophthalmic Drug Delivery Via Biomimetic Recognitive Contact Lens," filed June 17, 2005, the U.S. Provisional Application Serial No. 60/736,140, titled "Sustained Ophthalmic Drug Delivery Via Biomimetic Recognitive Contact Lens," filed November 10, 2005, and the U.S. Provisional Application Serial No. 60/650,450, titled "Enhanced Loading and Extended Release Contact Lens for Histamine Antagonist Drug Ketotifen," filed February 4, 2005.
This application also claims priority under 35 U.S. C. § 119(e) of the co-pending U.S. Provisional Application Serial No. 60/858,584, titled "Therapeutic Contact Lenses with Anti- fungal Delivery," filed November 13, 2006. The co-pending Application Serial No.
11/346,770, filed February 3, 2006, and titled "Contact Drug Delivery System," the U.S. Provisional Application Serial No. 60/692,042, titled "Sustained Ophthalmic Drug Delivery Via Biomimetic Recognitive Contact Lens," filed June 17, 2005, the U.S. Provisional Application Serial No. 60/736,140, titled "Sustained Ophthalmic Drug Delivery Via Biomimetic Recognitive Contact Lens," filed November 10, 2005, the U.S. Provisional
Application Serial No. 60/650,450, titled "Enhanced Loading and Extended Release Contact Lens for Histamine Antagonist Drug Ketotifen," filed February 4, 2005 and the co-pending U.S. Provisional Application Serial No. 60/858,584, titled " Therapeutic Contact Lenses with Anti-fungal Delivery," filed November 13, 2006 are all hereby incorporated by reference.
Field of the Invention
The invention relates to drug delivery systems. More specifically, this invention relates to systems for and methods of time released ophthalmic drug delivery using contact lenses.
Background of the Invention
Delivering medications via contact lenses has been a prevailing practice since the inception of using hydrophilic, crosslinked polymer gels on the surface of the eye. In fact, the first patent in the field from Otto Wichterle in 1965 states that "bacteriostatic, bacteriocidal or otherwise medicinally active substances such as antibiotics may be dissolved in the aqueous constituent of the hydrogels to provide medication over an extended period, via diffusion." However, there is evidence that this notion of a dissolved component in an aqueous constituent has been around for a much longer period of time. Evidence exists that honey soaked linen was used in ancient Rome as an ophthalmic dressing in the treatment of disease. The biggest obstacle to using the fluid entrained in the aqueous portion of the polymer gel is maintaining a significant concentration of drug within the fluid to have a therapeutically relevant effect, which is ultimately limited by the solubility of the drug. This has been the primary reason why drug release from contact lenses has not become a clinical or commercial success. To an equivalent extent, the control over the drug delivery profile and an extended release profile is also important to therapeutic success and has not been demonstrated using these methods. Drug uptake and release by conventional (i.e., currently available) soft contact lenses can lead to a moderate intraocular concentration of drug for a very short period of time, but does not work very well due to a lack of sufficient drug loading and poor control of release. The use of soft, biomimetic contact lens carriers (i.e., recognitive polymeric hydrogels) described herein has the potential to greatly enhance ocular drug delivery by providing a significant designed and tailorable increase in drug loading within the carrier as well as prolonged and sustained release with increased bioavailability, less irritation to ocular tissue, as well as reduced ocular and systemic side effects.
The ocular bioavailability of drugs applied to the eye is very poor (i.e., typically less than 1-7% of the applied drug is absorbed with the rest entering the systemic circulation). Factors such as ocular protective mechanisms, nasolacrimal drainage, spillage from the eye, lacrimation and tear turnover, metabolic degradation, and non-productive adsorption/absorption, etc., lead to poor drug absorption in the eye. Currently, more efficient ocular delivery rests on enhancing drug bioavailability by extending delivery and/or by increasing drug transport through ocular barriers (e.g., the cornea - a transparent, dome- shaped window covering the front of the eye; the sclera - the tough, opaque, white of the eye; and the conjunctiva - a mucous membrane of the eye with a highly vascularized stroma that covers the visible part of the sclera). A topically applied drug to the eye is dispersed in the tear film and can be removed by several mechanisms such as:
(i) irritation caused by the topical application, delivery vehicle, or drug which induces lacrimation leading to dilution of drug, drainage, and drug loss via the nasolacrimal system into the nasopharynx and systemic circulation (e.g., the rate drainage increases with volume); (ii) normal lacrimation and lacrimal tear turnover (16% of tear volume per minute in humans under normal conditions); (iii) metabolic degradation of the drug in the tear film; (iv) corneal absorption of the drug and transport; (v) conjunctival absorption of the drug and scleral transport;
(vi) conjunctival "non-productive" absorption via the highly vascularized stroma leading to the systemic circulation; and
(vii) eyelid vessel absorption leading to systemic circulation.
Therefore, due to these mechanisms, a relatively low proportion of the drug reaches anterior chamber ocular tissue via productive routes such as mechanisms (iv) and (v).
For posterior eye tissue and back of the eye diseases (e.g., age-related macular degeneration, retinal degeneration, diabetic retinopathy, glaucoma, retinitis pigmentosa, etc.), the amount of drug delivered can be much less compared to front of the eye disease. To treat back of the eye disease, four approaches have typically been used, topical, oral (systemic delivery), intraocular, and periocular delivery.
Topically applied drugs diffuse through the tear film, cornea/sclera, iris, ciliary body, and vitreous before reaching posterior tissues, but due to the added transport resistances such diffusions do not typically lead to therapeutically relevant drug concentrations. However, researchers have shown that topically applied drugs do permeate through the sclera by blocking corneal absorption and transport. Intravitreal injections (injections into the eye) require repeated injections and have potential side effects (hemorrhage, retinal detachment, cataract, etc.) along with low patient compliance. Extended release devices have been used but require intraocular surgery and often have the same incidence of side effects. Periocular drug delivery is less invasive and also requires injections or implant placement for predominantly transscleral delivery.
To overcome most of these protective mechanisms, topical formulations have remained effective by the administration of very high concentrations of drug multiple times on a daily basis. For a number of drugs high concentrations can lead to negative effects such as burning, itching sensations, gritty feelings, etc., upon exposure of the medication to the surface of the eye as well as increased toxicity and increased ocular and systemic side effects. However, traditional ophthalmic dosage forms such as solutions, suspensions, and ointments account for 90% of commercially available formulations on the market today. Solutions and suspensions (for less water soluble drugs) are most commonly used due to the ease of production and the ability to filter and easily sterilize them. Ointments are used to a much lesser extent due to vision blurring, difficulty in applying to the ocular surface, and greasiness. The term "eye drops" herein refers to all topological medications administered to a surface of the eye, including but not limited to solutions, suspensions, ointments and combinations thereof. In addition to the aforementioned problems, drug delivery through the use of eye drops does not provide for controlled time release of the drug. Eye drop medications typically have a low residence time of the drug on the surface of the eye.
The efficacy of topical solutions has been improved by viscosity enhancers that increase the residence time of drugs on the surface of the eye, which ultimately lead to increased bioavailability as well as more comfortable formulations. Also, inclusion complexes have been used for poorly soluble drugs, which increase solubility without affecting permeation.
Other recent delivery methods have included in situ gel-forming systems, corneal penetration or permeation enhancers, conjunctival muco-adhesive polymers, liposomes, and ocular inserts. Ocular inserts, in some cases, achieve a relatively stable or constant, extended release of a drug. For example, ocular inserts such as Ocusert® (Alza Corp., FDA approved in 1974) consist of a small wafer that contains a drug reservoir enclosed by two ethylene-vinyl acetate copolymer membranes. The wafer is placed in the corner of the eye and provides extended release of a therapeutic agent for approximately 7 days (e.g., pilocarpine HCL, for glaucoma treatment, reducing intraocular pressure on the eye by increasing fluid drainage). Lacrisert (Merck) is a cellulose based polymer insert used to treat dry eyes. However, inserts have not found widespread use due to occasional noticed or unnoticed expulsion from the eye, membrane rupture (with a burst of drug being released), increased price over conventional treatments, etc. Mucoadhesive systems and in-situ forming polymers typically have problems involving the anchorage of the carrier as well as ocular irritation resulting in blinking and tear production. Penetration enhancers can cause transient irritation, or alter normal protection mechanisms of the eye, and some agents can cause irreversible damage to the cornea. Summary of the Invention
The present invention is directed to drug delivery methods and systems. A drug delivery system in accordance with the present invention includes a recognitive polymeric hydrogel through which a drug is delivered by contacting biological tissue. The recognitive polymeric hydrogel is formed using a bio-template, which is a drug or is structurally similar to the drug, functionalized monomers, preferably having complexing sites, and cross-linking monomers, which are copolymerized using a suitable initiator, such as described in detail below. The complexing sites of the recognitive polymeric hydrogel that is formed preferably mimics receptor sites of a target biological tissue, biological recognition, or biological mechanism of action. The system unitizes what is referred to herein as a biomimetic recognitive polymeric hydrogel.
A system in accordance with one embodiment, is an ophthalmic drug system. The ophthalmic drug system includes soft contact lenses formed from the biomimetic recognitive polymeric hydrogel. The lenses are impregnated with a drug that can be released over a duration of time while in contact with eyes. The invention is directed to both corrective and refractive contact lenses as well as non-corrective and non-refractive contact lenses. While the invention as described herein refers primarily to ophthalmic drug systems, it is understood that the present invention has applications in a number of different contact drug delivery systems. For example, the biomimetic recognitive polymeric hydrogel can be used in bandages, dressings, and patch-type drug delivery systems to name a few.
In accordance with the embodiments of the invention a hydrogel matrix that is formed from silicon-based cross-linking monomers, carbon based or organic-based monomers, macromers or a combination thereof. Suitable cross-linking monomers include but are not limited to Polyethylene glycol (200) dimethacrylate (PEG200DMA), ethylene glycol dimethacrylate (EGDMA), tetraethyleneglycol dimethacrylate (TEGDMA), N,N'-Methylene-bis-acrylamide and polyethylene glycol (600) dimethacrylate (PEG600DMA). Suitable silicon-based cross-linking monomers can include tris(trimethylsiloxy)silyl propyl methacrylate (TRIS) and hydrophilic TRIS derivatives such as tris(trimethylsiloxy)silyl propyl vinyl carbamate (TPVC), tris(trimethylsiloxy)silyl propyl glycerol methacrylate (SIGMA), tris(trimethylsiloxy)silyl propyl methacryloxyethylcarbamate (TSMC); polydimethylsiloxane (PDMS) and PDMS derivatives, such as methacrylate end-capped fluoro-grafted PDMS crosslinker, a methacrylate end- capped urethane-siloxane copolymer crosslinker, a styrene-capped siloxane polymer containing polyethylene oxide and polypropylene oxide blocks; and siloxanes containing hydrophilic grafts or amino acid residue grafts, and siloxanes containing hydrophilic blocks or containing amino acid residue grafts. The molecular structure of these monomers can be altered chemically to contain moieties that match amino acid residues or other biological molecules. In cases where the above monomers, when polymerized with hydrophilic monomers, a solubilizing cosolvent may be used such as dimethylsulfoxide (DMSO), isopropanol, etc. or a protecting/deprotecting group strategy.
Crosslinking monomer amounts can be from (0.1 to 40%, moles crosslinking monomer/moles all monomers); Functional monomers, 99.9% to 60% (moles functional monomer/moles all monomers) with varying relative portions of multiple functional monomers; initiator concentration ranging from 0.1 to 30 wt%; solvent concentration ranging from 0% to 50 wt% (but no solvent is preferred); monomer to bio-template ratio (MfT) ranging from 0.1 to 5,000, preferably 200 to 1,000, wiuY950 preferred for the ketotifen polymers presented herein, under an nitrogen or air environment (in air, the wt% of initiator should be increased above 10wt%.
The ophthalmic drug delivery system also includes a bio-template, that is drug molecules, prodrugs, protein, amino acid, proteinic drug, oligopeptide, polypeptide, oligonucleotide, ribonucleic acid, deoxyribonucleic acid, antibody, vitamin, or other biologically active compound. This also includes a drug with an attached bio-template. The bio-template is preferably bound to the hydrogel matrix through one or more of electrostatic interactions, hydrogen bonding, hydrophobic interactions, coordination complexation, and Van der Waals forces.
Bio-templates are preferably weakly bound to a hydrogel matrix through functionalized monomer units, macromer units or oligomer units that are co-polymerized into the hydrogel matrix to form receptor locations within the hydrogel matrix that resemble or mimic the receptor sites or molecules associated with the biological target tissue to be treated with the drug or the biological mechanism of action.
In accordance with the embodiments of the invention, a portion of the bio-template can be washed out from the recognitive hydrogel polymer, loaded with a drug. The polymerization reaction forms a contact lens. For example, the gel is polymerized in a mold or compression casting. After contact lenses are formed they can be used to administer the drug through contact with eyes. Alternatively, the recognitive hydrogel polymer can be formed into contact lenses, washed to remove a portion of the bio-template and then loaded with the drug. Where the bio-template is the drug, the washing step can be illuminated or truncated. The drug release from the lenses can work without washing the drug out and reloading the drug. This is true for cases where the reaction is complete and no small monomers are released from the structure. In formulations where the bio-template is a drug, the free base form of the drug or hydrochloride salt of the drug can be used.
In accordance with the method of the present invention, a biomimetic recognitive polymeric hydrogel is formed by making a mixture or solution that includes amounts of a bio- template or drug, functionalized monomer or monomers, cross-linking monomer or monomers and polymerization initiator in a suitable solvent or without solvent. Suitable initiators include water and non-water soluble initiators, but are not limited to azobisisobutyronitrile (AEBN), 2,2-dimethoxy-2-phenyl acetophenone (DMPA), 1- hydroxycyclohexyl phenyl ketone (IrgacureO 184), 2,2-dimethoxy-l,2-diphenylethan-l-one (Irgacure 651), ammonium persulfate, iniferter such as tetraethylthiuram disulfide, or combinations thereof. The polymerization can be photo-initiated, thermally-initiated, redox - initiated or a combinations thereof.
The functionalized monomer or monomers complex with the bio-template and copolymerize with cross-linking monomer or monomers to form a biomimetic recognitive polymeric hydrogel, such as described above. Functional or reactive monomers useful herein are those which possess chemical or thermodynamic compatibility with a desired bio- template. As used herein, the term functional monomer includes moieties or chemical compounds in which there is at least one double bond group that can be incorporated into a growing polymer chain by chemical reaction and one end that has functionality that will interact with the bio-template through one or more of electrostatic interactions, hydrogen bonding, hydrophobic interactions, coordination complexation, and Van der Waals forces. Functional monomers includes macromers, oligomers, and polymer chains with pendent functionality and which have the capability of being crosslinked to create the recognitive hydrogel. Crosslinking monomer includes chemicals with multiple double bond functionality that can be polymerized into a polymer network.
Initiator-chain transfer molecules, iniferters, have been used to produce well controlled block copolymers, polymers of low polydispersity, and graft polymers as well as crosslinked polymer systems on surfaces. Of utmost importance is the control over the polymerization and associated network structure, which depends on the dynamic equilibrium between active and dormant species. Conventional free-radical polymerization is highly non-ideal and differences in theory and experimental data indicate heterogeneity within the network structure.
In order to control the polymerization reaction further by altering the kinetic chain length and potentially increasing the number of recognition sites and the quality of recognition (e.g., alter the structural architecture of the polymeric network to affect template drug capacity, affinity, and diffusional transport), we investigated the use of initiator-chain transfer molecules, iniferters. By using the iniferter, tetraethylthiuram disulfide (TED), the number of binding sites was dramatically increased at approximately equivalent binding affinity. Iniferters used in this work decay into two dithiocarbamyl radicals (DTC); which are more stable compared to carbon radicals. The stability of the iniferter produced radical negates its significance on the initiation and propagation steps during the polymerization reaction, which in this particular case required the addition of carbon radicals, AIBN, to initiate the polymerization reaction. During termination steps of the polymerization reaction, the stable DTC radicals reversibly terminate with growing polymer radical chains which forms a chain that can re-absorb UV light and decay back into a polymer radical and a DTC radical. The limitations and structural heterogeneity of radical polymerizations caused by fast termination reactions can be reduced since iniferters provide a reversible termination reaction.
Examples of living or controlled polymerization include, but are not limited to living anioinic or cationic polymerization, ring opening metathesis polymerization (ROMP), group transfer polymerization (GOP), living Ziegler-Natta polymerization, and free-radical polymerization (e.g., iniferter polymerization, catalytic chain transfer polymerizaton, stable free radical mediated polymerization (SFRP), ATRF or atom transfer radical polymerization, reversible addition fragmentation chain transfer (RAFT) polymerization, Iodine Transfer polymerization, Selenium-centered mediated polymerization, Telluride-mediated polymerization (TERP), Stibine-mediated polymerization).
Examples of functionalized monomers include, but are not limited to, 2-hydroxyethylmethacrylate (HEMA), Acrylic Acid (AA), Acrylamide (AM), N-vinyl 2-pyrrolidone (NVP), l-vinyl-2-pyrrolidone (VP), methyl methacrylate (MMA), methacrylic acid (MAA), acetone acrylamide, 2-ethyl-2-(hydroxymethyl)-l,3-propanediol trimethacrylate, N-(l,l-dimethyl-3-oxobutyl)acrylamide, 2-ethyl-2-(hydroxymethyl)-l,3-propanediol trimethacrylate, 2,3-dihydroxypropyl methacrylate, allyl methacrylate, 3-[3,3,5,5,5-pentamethyl-l,l-bis[pentamethyldisiloxanyl)oxy]trisiloxanyl]propyl methacrylate, 3-[3,3,3-trimethyl-l,l-bis(trimethylsiloxy)disiloxanyl]propyl methacrylate (TRIS), N-(l,l-dimethyl-3-oxybutyl)acrylamide, dimethyl itaconate, 2,2,2,-trifluoro-l-(trifluoromethyl) ethyl methacrylate, 2,2,2-trifluroethyl methacrylate, methacryloxypropylbis(trimethylsiloxy)methylsilane, methacryloxypropylpentamethyldisiloxane,
(3-methacryloxy-2-hydroxypropyloxy)propylbis(trimethylsiloxy)methylsilane, 4-t-butyl-2- hydroxycyclohexyl methacrylate, dimethylacrylamide, glycerol methacrylate and diethylaminoethyl methacrylate (DEAEM). Functionalized monomers herein also includes short or long proteins or nucleic acids sequences. Once formed the biomimetic recognitive polymeric hydrogel can be formed into contact lenses or, as described above, the polymerization reaction forms the contact lenses.
In accordance with further embodiments of the invention, functionalized monomers are synthesized or selected by identifying receptor sites or molecules associated with the target biological tissue to be treated by the drug or that are associated with metabolizing the drug. Next, functionalized portions of the functionalized monomers are synthesized to chemically and/or structurally resemble or mimic the receptor sites or molecules that are associated with the biological mechanism of action of the drug. These functionalized monomers are then copolymerized with the cross-linking monomer or monomers used to form the hydrogel matrix, such as described above.
After the drug has been depleted from the contact lenses through the eyes, the contact lenses can be re-loaded with the drug by soaking the contact lenses in the reconstituting drug solution. While the contact lenses have been described in detail as being used to deliver antihistamines and other allergy drugs, ophthalmic drug delivery systems and methods of the present invention can be used to deliver any number of drugs through contact on the eye and/or systemically.
Drugs that can be delivered by the system and method of the present invention include, but are not limited to, Anti-bacterials, An ti -infectives, Anti-microbial Agents, such as anti-fungal agents (all of which generally referred to as antibiotics) such as Penicillins (including Aminopenicillins and/or penicillinas in conjunction with penicillinase inhibitor and anti-fungal agents), Cephalosporins (and the closely related cephamycins and carbapenems), Fluoroquinolones, Tetracyclines, Macrolides, Aminoglycosides. Specific examples include, but are not limited to, erythromycin, bacitracin zinc, polymyxin, polymyxin B sulfates, neomycin, gentamycin, tobramycin, gramicidin, ciprofloxacin, trimethoprim, ofloxacin, levofloxacin, gatifloxacin, moxifloxacin, norfloxacin, sodium sulfacetamide, chloramphenicol, tetracycline, azithromycin, clarithyromycin, trimethoprim sulfate and bacitracin.
The ophthalmic drug delivery system and method of the present invention can also be used to deliver Non-steroidal (NSAIDs) and Steroidal Anti-inflammatory Agents (generally referred to as anti-inflammatory agents) including both COX-I and COX-2 inhibitors. Examples include, but are not limited to, corticosteroids, medrysone, prednisolone, prednisolone acetate, prednisolone sodium phosphate, fluormetholone, dexamethasone, dexamethasone sodium phosphate, betamethasone, fluoromethasone, antazoline, fluorometholone acetate, rimexolone, loteprednol etabonate, diclofenac (diclofenac sodium), ketorolac, ketorolac tromethamine, hydrocortisone, bromfenac, flurbiprofen, antazoline and xylometazoline.
The ophthalmic drug delivery system and method of the present invention can also be used to deliver Anti-histamines, Mast cell stabilizers, and Anti-allergy Agents (generally referred to as anti-histamines). Examples include, but are not limited, cromolyn sodium, lodoxamide tromethamine, olopatadine HCl, nedocromil sodium, ketotifen fumurate, levocabastine HCL, azelastine HCL, pemirolast (pemirolast potassium), epinastine HCL, naphazoline HCL, emedastine, antazoline, pheniramine, sodium cromoglycate, N-acetyl-aspartyl glutamic acid and amlexanox. In yet further embodiments of the invention the ophthalmic drug delivery system and method are used to deliver Anti-viral Agents including, but not limited to, trifluridine and vidarabine; Anti-Cancer Therapeutics including, but not limited to, dexamethasone and 5-fluorouracil (5FU); Local Anesthetics including, but not limited to, tetracaine, proparacaine HCL and benoxinate HCL; Cycloplegics and Mydriatics including, but not limited to, Atropine sulfate, phenylephrine HCL, Cyclopentolate HCL, scopolamine HBr, homatropine HBr, tropicamide and hydroxyamphetamine Hbr; Comfort Molecules or Molecules (generally referred as lubricating agents) to treat Keratoconjunctivitis Sicca (Dry Eye) including, but not limited to, Hyaluronic acid or hyaluronan (of varying Molecular Weight, MW), hydroxypropyl cellulose (of varying MW), gefarnate, hydroxyeicosatetranenoic acid (15-(S)-HETE), phospholipid-HETE derivatives, phoshoroylcholine or other polar lipids, carboxymethyl cellulose (of varying MW), polyethylene glycol (of varying MW), polyvinyl alcohol (of varying MW), rebamipide, pimecrolimus, ecabet sodium and hydrophilic polymers; Immuno-suppressive and Immuno-modulating Agents including, but not limited to, Cyclosporine, tacrolimus, anti-IgE and cytokine antagonists; and Anti-Glaucoma Agents including beta blockers, pilocarpine, direct-acting miotics, prostagladins, alpha adrenergic agonists, carbonic anhydrase inhibitors including, but not limited to betaxolol HCL, levobunolol HCL, metipranolol HCL, timolol maleate or hemihydrate, carteolol HCL, carbachol, pilocarpine HCL, latanoprost, bimatoprost, travoprost, brimonidine tartrate, apraclonidine HCL, brinzolamide and dorzolamide HCL; decongestants, vasodilaters vasoconstrictors including, but not limited to epinephrine and pseudoephedrine.
In yet further embodiments of the invention the ophthalmic drug delivery system and method are used to deliver anti-microbial agents including, but not limited to, anti-fungal agents. A number of different classes of anti-microbial or anti-fugal agents are considered to be within the scope of the present invention. Suitable classes of anti-microbial or anti-fugal agents include, but are not limited to, Allyamines, other non-azole ergosterol biosynthesis inhibitors, antimetabolities, Azoles, Chitin Synthase Inhibitors, Glucan Synthesis Inhibitors, and Polyenes.
Examples of Allyamines include, but are not limited to, Amorolfine, Butenafine, Naftifine and Terbinafine; an example of an antimetabolite includes, but is not limited to, Flucytosine; examples of Azoles include, but are not limited to, Imadazoles and Triazoles, such as Fluconazole, Itraconazole, Ketoconazole, Posaconazole, Ravuconazole, Voriconazole, Clotrimazole, Econazole, Miconazole, Miconazole Nitrate, Oxiconazole, Sulconazole, Terconazole, Tioconazole and Enilconazole; examples of Chitin Synthase Inhibitors include, but are not limited to, Nikkomycin Z and Lufenuron; examples of Echinocandins or Glucan Synthesis Inhibitors include, but are not limited to, Caspofungin, Micafugin and Anidulafungin, examples of Polyenes include, but are not limited to, Amphotericin B (AmB), Natamycin, Pimaricinand Nystatin. Other suiatbel an ti -microbial or anti-fugal agents include, but are not limited to, Chlorhexidine gluconate, Griseofulvin, Ciclopirox Olamine, Haloprogin, Tolnaftate, Undecylenate, Povidone iodine, Silver sulfadiazine and antimicrobial peptides and glycoproteins (e.g., such as lactoferrin, ambicin, nisin, polymixin B, gramicidin S, etc.).
An ophthalmic drug delivery system of the present invention has particular applications for treating animals, including large animals such as horses diagnosed with equine fungal keratitis with an anti-microbial agents or anti-fungal agents such as those listed above. Equine fungal keratitis is a corneal disease that accounts for 13% of all equine corneal problems. It is generally caused by corneal trauma, usually associated with injury by organic matter. The injury allows fungal microorganisms to invade the cornea and cause ulcers, anterior uvetis, corneal perforation and iris prolapse. The typical treatment for equine fungal keratitis is frequent, expensive and prolonged treatment. This is due to the number of ocular treatment barriers and the difficulty of dealing with large animals.
For example, a single drop of topical ointment (the usual topical dose) has a residence time of between 2-23 minutes. As a result, the bioavailability of the drug is approximately 10% of the administered dose. About 44% of animals diagnosed with equine fungal keratitis go blind and a number of these cases require that the eye is removed to prevent further spreading of infection.
The physiological properties of the eye hinder the effectiveness of topical ocular drugs. Because of the effectiveness of the tear film in flushing out foreign substances, the goal of this novel ocular drug delivery method is to increase the bioavailibility by releasing a smaller concentration of the drug at a constant rate, thereby increasing the corneal contact time. Brief Description of the Drawings
Fig. l is a flow chart showing the steps for making contact lenses, in accordance with the embodiments of the invention.
Fig. 2 illustrates the formation of a recognitive polymeric hydrogel, in accordance with the embodiments of the invention.
Fig. 3 is a flow chart of outlining steps for making funtionalized monomer used in the synthesis of recognitive polymeric hydrogels, in accordance with the embodiments of the invention.
Figs. 4A-C illustrate examples of sets of molecules that match, resemble or mimic each other.
Figs. 5A-B are graphs that compare Ketotifen equilibrium isotherms in water for a recognitive polymeric hydrogel and a control hydrogel.
Fig. 5C is a graph of drug loading for recognitive polymeric hydrogels of the present invention against control hydrogels to show the enhanced drug loading for recognitive polymeric hydrogels of the present invention.
Fig. 6 is a graph of drug release profiles for therapeutic contact lenses, in accordance with the embodiments of the invention.
Figs. 7A-B are graphs of drug release profiles for recognitive polymeric hydrogels, in accordance with the embodiments of the invention. Fig. 8 is a graph that compares fluconazale with the fungal cytochrome P450 equilibrium isotherms in water for a recognitive polymeric hydrogel and a control hydrogel.
Fig. 9 shows Fluconazole binding isotherm of 5% crosslinked poly-HEMA-co-AM-co-DEAEM-co-NVP-co-PEG200DMA hydrogel lenses (N=3, T=25 C). Percentage denotes percent mole crosslinker per mole total monomers in feed. Fig. 10 shows Fluconazole dynamic release in artificial lacrimal solution from 5% crosslinked poly-HEMA-co-AM-co-DEAEM-co-NVP-co-PEG200DMA hydrogel lenses (N=3, T=25 C). Percentage denotes percent mole crosslinker per mole total monomers in feed.
Fig. 11 illustrates drug loading differences between free radial polymerization and living polymerization and iniferter reaction strategies. Detailed Description of a Preferred Embodiment
Hydrogels are insoluble, cross-linked polymer network structures composed of hydrophilic homo- or hetero-co-polymers, which have the ability to absorb significant amounts of water. Consequently, this is an essential property to achieve an immunotolerant surface and matrix (i.e., with respect to protein adsorption or cell adhesion). Due to their significant water content, hydrogels also possess a degree of flexibility very similar to that of natural tissue, which minimizes potential irritation to surrounding membranes and tissues.
The hydrophilic and hydrophobic balance of a gel carrier can be altered to provide tunable contributions that present different solvent diffusion characteristics, which in turn influence the diffusive release of a drug contained within the gel matrix. In general, one may polymerize a hydrophilic monomer with other less hydrophilic or more hydrophobic monomers to achieve desired swelling properties.
These techniques have led to a wide range of swellable hydrogels. Knowledge of the swelling characteristics is of major importance in biomedical and pharmaceutical applications since the equilibrium degree of swelling influences the diffusion coefficient through the hydrogel, surface properties and surface mobility, mechanical properties, and optical properties. Drug release depends on two simultaneous rate processes: water migration into the network and drug diffusion outward through the swollen gel.
Soft contact lenses are made of hydrogels. Contact lenses are manufactured to have a number of characteristics such as optical quality (good transmission of visible light), high chemical and mechanical stability, manufacturability at reasonable cost, high oxygen transmissibility, tear film wettability for comfort, and resistance to accumulation of protein and lipid deposits, as well as a suitable cleaning and disinfecting scheme.
Soft contact lenses typically consist of poly(2-hydroxyethyl methacrylate) (PHEMA). Other lens materials include HEMA copolymerized with other monomers such as methacrylic acid, acetone acrylamide, and vinyl pyrrolidone. Also, commonly used materials include copolymers of vinyl pyrrolidone and methyl methacrylate as well as copolymers of glycerol methacrylate and methyl methacrylate.
Minor ingredients have included a variety of other monomers as well as cross-linking agents.
The immersion and soaking of soft contact lenses in drug solutions has shown promise in the increase of drug bioavailability with a reduction of side effects. However, the materials and constituent chemistry of the macromolecular chains and subsequent interaction with drugs is random and typically leads to poor drug loading. In order to address the above referenced shortcomings, the present invention is directed to the use of biomimetic imprinting of hydrogels to make hydrogel matrices that can selectively bind a drug through complexing sites leading to improved loading of a drug and controlled time release of the drug. These hydrogels are referred to as recognitive polymeric hydrogels. The polymerization reaction forms the contact lenses, which can be used to administer drugs through contact with the eyes, thereby replacing traditional eye drop therapies. Alternatively, the recognitive polymeric hydrogels can be formed or fashioned into contact lenses which can be used to administer drugs through contact with the eyes, thereby replacing traditional eye drop therapies or other mechanisms of delivery. For example, ketotifen fumurate is a potent fast acting and highly selective histamine
Hl antagonists with a sustained duration of action. Levocabastine and ketotifen fumurate inhibits itching, redness, eyelid swelling, tearing, and chemosis induced by conjunctival provocation with allergens and histamine. With topical application in the form of eye drops, absorption is incomplete and bioavailability is low. Thus, the dose is usually administered multiple times daily. Also, due to a high concentration of drug and other constituents of the ophthalmic suspension preparation, patients are advised not to wear soft contact lenses. Accordingly, a soft contact lens used to administer ketotifen fumurate would not only enhance the efficacy of the treatment, but also allow allergy sufferers to wear contact lenses. Fig. l is a flow chart 100 of steps for making contact lenses, in accordance with the embodiments of the invention, and Fig. 2 is a graphical representation of forming a recognitive polymeric hydrogel matrix 221. Referring to Fig. 1 and Fig. 2 in the step 101, the recognitive hydrogel set 221 is formed. The recognitive hydrogel matrix 221 is formed by generating a solution 200 comprising one or more bio-template 201, one or more functionalized monomers 203 and 203', one or more cross-linking monomers 205 with or without a solvent. In the solution 200 the functionalized monomers 203 and 203' complexes with the bio-templates 201. A suitable initiator or mixture initiators 207 are used to co- polymerize the functionalized monomers 203 and 203' with a cross-linking monomer 205 to form a loaded hydrogel 220 comprising a hydrogel matrix 221 with bio-templates 201 complexing at site 209 through the hydrogel matrix 221. Preferably, the bio-templates 201 are complexed with the hydrogel matrix 221 through weak or non-covalent interactions, as explained above, whereby the bio-templates 201 can be washed or rinsed from the loaded hydrogel 220 to form an hydrogel matrix 221, which has vacant complexing sites 209 that can be used to complex drug molecules that are structurally and/or chemically similar to the bio-templates 201. It will be clear from the discussions above and below that the bio-templates 201 can be a drug and, therefore, washing the bio-templates 201 from the hydrogel matrix 221 may not be necessary for all drug delivery systems that are synthesized.
Still referring to both Fig.l and Fig. 2, after the hydrogel matrix 221 is formed, in the step 101, in the step 103 the hydrogel matrix 221 can be formed into contact lenses using any technique known in the art. It is understood that the step the step 103 is not necessary when the polymerization reaction forms the contact lenses, such as described previously. Where the bio-template 201 is a drug, the contact lenses can be placed in contact with eyes in the step 107 to administer or deliver the drug to or through the eyes. Where the bio-template 201 has been washed from the recognitive hydrogel matrix prior to or after the step 103 of forming the contact lenses from the recognitive hydrogel matrix, then in the step 109 or the step 105, respectively, the recognitive hydrogel matrix or the contact lenses are loaded with a drug. The recognitive hydrogel matrix or the contact lenses can be loaded with the drug by soaking the recognitive hydrogel matrix or the contact lenses in an aqueous drug solution. Now referring to Fig. 2 and Fig. 3., in accordance with further embodiments of the invention prior to the step of making an ophthalmic drug delivery system, such as described with reference to Fig. 1, in the step 301 the target tissue to be treated with the drug or biological mechanism of action is studied to determine the types of molecules or functional groups that are associated with the action of the drug at the target tissue to affect the target tissue. Based on this information, in the step 303, funtionalized monomers are synthesized with functional groups that mimic or resemble molecules or functional groups that are associated with the action of the drug at the target tissue. Next, in the step 100, the functionalized monomers with the functional groups that mimic or resemble molecules or functional groups that are associated with metabolizing the drug at the target tissue are then used to synthesize a drug delivery system, such as described above with reference to Fig. 1. The biomimetic approach is the processes of mimicking biological recognition or exploiting biological mechanisms. Specifically, it is the process of coordinating biological molecular recognition, interactions, or actions to design materials that can be structurally similar to and/or function in similar ways as biological structures.
Figs. 4A-C illustrate examples of sets of molecules that match, resemble or mimic each other. With reference to the bio-mimetic approach for synthesizing recognitive hydrogel polymers described above, acrylic acid can be used to mimic aspartic acid (Fig. 4A), acrylaminde can be used to mimic asparagine (Fig. 4B) and N-vinyl pyrrolidinone can be used to mimic tyrosine (Fig. 4C). Aspartic acid, asparagine, and tyrosine are known to be of the group of amino acids providing the non-covalent interactions in the ligand binding pocket for histamine. For example, structural analysis of ligand binding pockets and amino acids involved in multiple non-covalent binding points provide one of many rational frameworks to synthesize recognitive networks from functional monomers. Antihistamine has been shown to bind more tightly and have a higher affinity than histamine for the histamine binding pocket.
EXAMPLE
Materials and Methods: Acrylic Acid (AA), Acrylamide (AM), N-Vinyl-2-Pyrrolidone (NVP) and 2-hydroxyethylmethacrylate (HEMA), Azobisisobutyronitrile (AIBN), and Ketotifen Fumarate were purchased from Sigma-Aldrich. Polyethylene glycol (200) dimethacrylate (PEG200DMA) was purchased from Polysciences, Inc. All chemicals were used as received. Polymer and copolymer networks were made using various mixtures of above monomers (e.g. Poly(AA-co-AM-HEMA-PEG200DMA), Poly (AA-co-HEMA-co-PEG200DMA), Poly (AM-co-HEMA-co-PEG200DMA), Poly(AA-co- AM-CO-NVP-CO-HEMA-PEG200DMA)). Current work is directed to producing networks that can also be used in the formation of contact lens for anti-histamines with monomers and copolymers of molecules such as N- vinyl 2-pyrrolidone (NVP), l-vinyl-2-pyrrolidone (VP), methyl methacrylate (MMA), methacrylic acid (MAA), acetone acrylamide, ethylene glycol dimethacrylate (EGDMA), 2-ethyl-2-(hydroxymethyl)-l,3-propanediol trimethacrylate, N-(l,l-dimethyl-3-oxobutyl)acrylamide, 2-ethyl-2-(hydroxymethyl)-l,3-propanediol trimethacrylate, 2,3-dihydroxypropyl methacrylate, allyl methacrylate any other suitable monomers, such as those referenced previously.
Accurate quantities of monomers, template molecules and crosslinkers were added in that order, and the mixture was sonicated to obtain a homogenous solution. In particular, a typical formulation consisted of 5 mole % cross-linking monomer (PEG200DMA) in a solution of Acrylamide (M), HEMA (M), Ketotifen (T), with an M/T ratio of approximately 950 (92% HEMA, 1% of remaining monomers, and approximately 1 mole% drug depending on the M/T ratio). Controls were also prepared without the template. Next, initiator AEBN was added in low light conditions, and the solutions were allowed to equilibrate for 12 hours in darkness. This step allowed the monomers and template to orient them selves and reach their free energy minima, thus beginning the configurational imprinting at the molecular level. However, this step occurs very quickly, such as on the order of minutes.
The solutions were then transferred to an MBRAUN Labmaster 130 1500/1000 Glovebox, which provides an inert nitrogenous and temperature-controlled atmosphere for free-radical photopolymerization. With an increase in photoinitiator wt.%, this step can proceed in air. The solutions were uncapped and left open to the nitrogen until the oxygen levels reached negligible levels (< 0.1 ppm). The solutions were inserted into glass molds (6 in. by 6 in.) separated by a Teflon frame 0.8 mm wide, as measured by a Vernier caliper. The glass plates were coated with chlorotrimethylsilane to prevent the polymer matrix from sticking to the glass, as it demonstrates a strong adherent tendency due to hydrogen bonding.
Polymerization was carried out for ten minutes at 325 V using a Dymax UV (ultra- violet) light source. The intensity of radiation was 40 mW/cm2, as measured with a radiometer, and the temperature was 36 °C, as measured with a thermocouple.
The polymer was peeled off the glass plates with flowing deionized water (Millipore, 18.2 mO.cm, pH 6), and then was allowed to soften for approximately 10 minutes. Circular discs were cut using a Size 10 cork borer (13.5 mm), and were typically washed for 5 days in a continuous flow system using deionized water. All washes proceeded until the absence of detectable drug was verified by spectroscopic monitoring. To obtain dry weights, some discs were allowed to dry under laboratory conditions (20°C) for 36 hours. The discs were then transferred to a vacuum oven (27 in. Hg, 33-34°C) for 48 hours until they were dry (less than 0.1 wt% difference). Polymer penetrant uptake and swelling data were obtained in deionized water with samples taken every 5 min. for the first hour, and then every hour for 10 hours until equilibrium was reached. As the gel was removed from the water, excess surface water was dabbed with a dry Kim wipe. The equilibrium weight swelling ratio at time t, q, for a given gel was calculated using the weights of the gels at a time and the dry polymer weights, respectively, using equations based on the Archimedes principle of buoyancy. Dynamic and Equilibrium Template Binding: Dynamic template drug molecule binding was performed until equilibrium had been established for each system. Stock solutions of drug with a concentration 2 mg/ml were prepared and diluted with deionized water to produce 0.1, 0.2, 0.3, 0.4 and 0.5 mg/ml solutions. Each solution was vortexed for 30 seconds to provide homogeneity, and initial UV absorbances were noted. Gels were then inserted into the vials and were placed on a Stovall Belly Button Orbital Shaker over the entire duration of the binding cycle to provide adequate mixing. A 200 μL aliquot of each sample was placed in a Corning Costar UV-transparent microplate, and absorbance readings were taken using a Biotek Spectrophotometer at 268 nm. After measurement, the read sample was returned to the original batch, to avoid fluctuations in concentrations due to sampling methods.
Dynamic Release Studies: In obtaining the preliminary results, dynamic release studies were conducted in DI water, artificial lacrimal fluid (6.78 g/L NaCl, 2.18 g/L NaHCO3, 1.38 g/L KCl, 0.084 g/L CaCl2, 2H2O, pH 8), and lysozyme (1 mg/ml) in artificial lacrimal fluid. Gels which had been drug loaded were placed in 30 ml of DI water, and the solutions were continuously agitated with a Servodyne mixer (Cole Palmer Instrument Co.) at 120 rpm. Release of drug was monitored at 268 nm by drawing 200 μL of solution into a 96- well Corning Costar UV-transparent microplate, and measurements were taken in a Synergy UV-Vis Spectrophotometer (Biotek). Absorbances were recorded for three samples, averaged, and corrected by subtracting the relevant controls. Solutions were replaced after each reading. Separate studies were conducted to determine if infinite sink conditions existed and those conditions were matched throughout all experiments.
Polymerization Kinetics and Network Formation: Solutions were prepared with 0, 0.1, 0.5, and 1 mole percent of Ketotifen in the initial monomer solutions. Kinetic studies were conducted with a differential scanning photocalorimeter (DPC, Model No. DSC QlOO, TA Instruments with Mercury light source). Samples of 10 μL were placed in an aluminum hermetic pan and purged with nitrogen (flow rate 40 ml/min) in order to prevent oxidative inhibition. The solution was allowed to equilibrate at 35°C for 15 minutes, before being exposed to UV light at 40 mW/cm2 for 12 minutes.
The heat that radiated was measured as a function of time, and the theoretical enthalpy of the monomer solution was used to calculate the rate of polymerization, Rp, in units of fractional double bond conversion per second. Integration of the rate of polymerization curve versus time yielded the conversion as a function of time reaction rate. The presence of template and a solvent, if used, was accounted for in the calculations, as it did not participate in the polymerization reaction. Experimental results were reproducible and the greatest source of error involved the assumed theoretical enthalpies in the calculations of the rate of polymerization and conversion. For all studies, the enthalpies were assumed to have errors of + 5%. The assumptions in the copolymerization of two monomers (i.e., functional and cross- linking monomers) were that each monomer had equal reactivity and the theoretical enthalpy derived for a co-monomer mixture was an average of the enthalpies of individual monomers. The theoretical enthalpy of methacrylate double bonds was equal to 13.1 kcal mole-1 and the theoretical enthalpy of acrylate double bonds was equal to 20.6 kcal mole-1.
RESULTS
Fig. 5A shows a graph 500 of the equilibrium binding isotherm for Ketotifen in water for Poly(acrylamide-co-HEMA-co-poly(ethylene glycol)200 dimethacrylate) hydrogel networks with a cross-linking percentage of 5%. N=3 and T=25°C. The recognitive hydrogel network is represented by the line 501 and the control hydrogel network is represented by the line 503. Percentage denotes percent mole crosslinker per mole total monomers in feed.
Fig. 5B shows a graph 510 of the equilibrium binding isotherm for Ketotifen in water for Poly(acrylic acid-co-HEMA-co-poly(ethylene glycol)200 dimethacrylate) hydrogel networks with a cross-linking percentage of 5%. N=3 and T=25°C. The recognitive hydrogel networks is represented by the line 511 and the control hydrogel network is represented by the line 513. Percentage denotes percent mole crosslinker per mole total monomers in feed.
Fig. 5C shows a graph 540 of enhanced Loading of Ketotifen for Multiple Monomer Gels for Poly(n-co-HEMA-co-poly(ethylene glycol)200 dimethacrylate) Networks. The Functional monomers use are acrylic acid, acrylamide, NVP, or an equal mole mixture of both. The Recognitive networks are shown as hatched bars 543 and the Control networks are shown as clear bars 541.
Fig. 6 shows a graph 600 of Tailorable Release Profiles Of Therapeutic Contact Lenses for Poly(n-co-HEMA-co-poly(ethylene glycol)200 dimethacrylate) Networks in Artificial Lacrimal Fluid, where n is AM (represented by circles ), AA ( represented by squares), AA-AM(represented by triangles), and NVP-AA-AM (represented by diamonds) recognitive networks, respectively. Results demonstrate an approximately constant release rate of ketotifen fumurate for 1 to 5 days. Fig. 7A shows a graph 700 of Release Data for
Poly(AM-co-HEMA-co-poly(ethyleneglycol)200 dimethacrylate) Recognitive Networks. Fraction of Mass Released in Artificial Lacrimal Solution With/Without Lysozyme.
Fig. 7B shows a graph 725 of Release Data for Poly( AM-co- AA-co-HEMA-co-poly(ethyleneglycol)200 dimethacrylate) Networks Mass of Drug Released in Artificial Lacrimal Solution.
Fig. 8 shows a graph 800 of the equilibrium binding isotherm for fluconazale with the fungal cytochrome P450 in water for Poly(acrylic acid-co-HEMA-co-poly(ethylene glycol)200 dimethacrylate) hydrogel networks with a cross-linking percentage of 5%. N=3 and T=25°C. The recognitive hydrogel network is represented by the line 811 and the control hydrogel network is represented by the line 813. Percentage denotes percent mole crosslinker per mole total monomers in feed.
I. Enhanced Loading and Performance of Multiple Monomer Mixtures In the preliminary work, hydrogels were produced with enhanced loading for ketotifen fumarate. Polymers were made with the following monomers: acrylic acid (AA), N-vinyl 2-pyrrolidone (NVP), acrylamide (AM), 2-hydroxyethylmethacrylate (HEMA), and polyethylene glycol (200) dimethacrylate (PEG200DMA).
We hypothesized that gels composed of multiple functional monomers would outperform those composed of single functional monomers. For an ti -histamine recognitive polymers, this would better mimic the docking site of histamine at the molecular level providing all the relevant functionality necessary for non-covalent interactions. We have proved that loading properties of gels are improved with multiple monomer mixtures.
Gels of multiple complexation points with varying functionalities outperformed the gels formed with less diverse functional monomers and showed the highest maximum bond of ketotifen and highest difference over control gels. Equilibrium binding isotherms for
Poly( AM-co- AA-CO-HEMA-CO-PEG200DMA) networks demonstrate enhanced loading with a factor of 2 times increase in the loading of drug compared to conventional networks (i.e., gels prepared without template and comparable to existing contact lenses) depending on polymer formulation and polymerization conditions. Poly(AM-co-HEMA-co-PEG200DMA) networks demonstrated a factor of 2 or 100% increase in the loading of drug compared to control networks with lower bond amounts. Poly(AA-co-HEMA-co-PEG200DMA) networks show a factor of 6 times increase over control in the loading of ketotifen with the overall drug bound being the lowest of the polymer formulation studies (approximately 33% less ketotifen loading than the AM functionalized network). For all systems, an increase in the amount of loaded drug has been confirmed, but with the most biomimetic formulation (Poly(AA-co-AM-co-NVP-co-HEMA-PEG200DMA)) a significant increase in loading is demonstrated yielding the greatest loading potential (the highest loading achieved to date and 6x over control networks due to multiple binding points with varying functionalities) (Fig. 5C).
π. Dynamic Drug Release Profiles
Dynamic release profiles in artificial lacrimal solution and an artificial lacrimal solution with protein, demonstrated extended release of a viable therapeutic concentration of ketotifen. Release studies confirmed that release rates can be tailored via type and amount of functionality and extended from one to five days. Fig. 6 highlights normalized data of the fraction of drug released versus time (mass delivered at time t divided by the mass delivered at infinite time). For poly(n-co-HEMA-co-PEG200DMA) networks (where n was AA-co- AM, AM, or AA), the release of drug showed a relatively constant rate of release for approximately 1 day, with little difference in the release profile. However, the most structurally biomimetic network, poly(AA-co-AM-co-NVP-co-HEMA-PEG200DMA), exhibited a five fold increase in the extended release profile (i.e., approximately 5 days).
It is hypothesized that providing all the relevant functionality to the mimicked docking site with the proposed polymer synthesis technique affords a higher affinity of the drug for the network and thus an even slower release of drug compared to control networks. Furthermore, a five to seven day release profile fits quite well into the time usage of one-week extended-wear soft contact lenses.
It has been demonstrated that the loading of drug can be controlled by the type, number, and diversity of functionality within the network. The loading (and hence the mass delivery) can also be controlled by the initial loading concentration of the drug. We have demonstrated control over the cumulative mass of drug released by changing the loading concentration. By considering the relative size of our gels (e.g., gels were slightly bigger than normal lenses) and mass of drug released in comparison to typical ophthalmic eye drop dosages (ketotifen 0.25mg/mL of solution with one drop every 8 hours), the preliminary results revealed that a therapeutically relevant dosage could be delivered for extended periods of time.
To investigate the effect of protein on dynamic release, we chose lysozyme as a model protein since it is the largest protein component in tear fluid. Figs. 7A-B highlight the poly(AM-co-HEMA-co-PEG200DMA) network release profile in artificial lacrimal solution with lysozyme, which leads to a factor of 5 increase in the duration of release. For the most structurally biomimetic network, poly(AA-co-AM-co-NVP-co-HEMA-PEG200DMA), this could lead to a sustained release approaching 25 days. These studies demonstrate that the time of release may be delayed even further in an in vivo environment, leading to a substantial increase in applicability of contact lens ocular delivery.
HI. Polymerization Reaction Analysis
The rate of polymerization for a given conversion decreased for increasing mole percentage of template molecule in pre-polymerization monomer solution. Thus, the formation of polymer chains and the enhanced loading due to the configurational biomimetic effect may be related to the propagation of polymer chains. The template molecule poses physical constraints to free radical and propagating chain motion and hence effectively lowers the rate of polymerization in the creation of ligand binding pockets. These results show that CBIP is reflected at the molecular level. For a given conversion, the rate of polymerization was lower for the multiple functional monomer pre-polymerization mixtures than the single monomer mixtures. We hypothesize that CBIP with multiple monomers results in the formation of better ligand-binding pockets with enhanced loading properties which leads to slower rates of polymerization. IV. Equilibrium Swelling Profiles and Mechanical Property Analysis: Equilibrium swelling studies in DI water and 0.5 mg/ml concentrated ketotifen solution indicated that recognitive and control networks were statistically the same and that 40% of the swollen gels is water, a statistic that indicates a quality that the comfort of wearing and the oxygen permeability of these gels is in agreement with conventional contact lenses.
These studies indicated that CBIP, and not an increased porosity or surface area of the gel, is responsible for the enhanced loading properties. It also demonstrated that the loading process does not affect the rate of swelling of the polymer matrix.
Further studies on the mechanical properties of the gels have shown storage and loss moduli, glass transition temperatures and damping factors comparable to those of conventional contact lenses (data not shown). Each gel produced was optically clear and had sufficient viscoelasticity to be molded into thin films for refractive differences.
V. Synthesis of Fluconazole Recognitive Networks: The functional monomers were selected by analyzing the binding mechanism of fluconzale with that of fungal cytochrome P450. The funtional monomers chosen were n- vinyl prrrolidone (NVP) hydroxyethyl methacrylate (HEMA) diethylaminoethyl methacrylate (DEAEM), and acrylamide (AM). The crosslinking monomer was polyethylene glycol di methacrylate (PEG200DMA) and the initiator for the polymerization reaction was azobisisobutyronitrile, AEBN. Crosslinker monomer, functional monomer, and templates were placed in an amber bottle and allowed to equilibrate in a light-controlled location. The initiator was added after the monomers and template were completely mixed. The solutions were mixed and used within 24 hours. The control and sample solutions were added to a template between two glass plates, and polymerized using UV polymerization in a nitrogen environment. The gels were washed and cut into uniform disks with a 10mm cork borer. Binding studies were performed by placing washed gels into solutions of incremental drug concentrations and recording absorbance after equilibration to determine the amount of drug bound. Release studies were performed by placing the drug-laden gel into a lacrimal solution and taking absorbance readings at regular intervals to determine the release file. Fluconazole belongs to the azole class of antifungals and works by binding with the fungal cytochrome p45 lanosterol 14a-demethylase to inhibit fungal cell wall growth. By analyzing the Mycobacterium tuberculosis P450 CYP121-fluconazole complex, hydrogen bonding is provided by Threonine, Serine, and Glutamine residues with hydrophobic interactions from Valine, Phenylalanine, and Methionine. Fig. 9 shows a graph 900 of a Fluconazole binding isotherm of 5% crosslinked poly-HEMA-co-AM-co-DEAEM-co-NVP-co-PEG200DMA hydrogel lenses. The recognitive hydrogel network is represented by the line 911 and the control hydrogel network is represented by the line 913. Fig 10 shows a graph 1000 of Fluconazole dynamic release represented by the line 1001 in artificial lacrimal solution from 5% crosslinked poly-HEMA-co-AM-co-DEAEM-co-NVP-co-PEG200DMA hydrogel lenses.
VI. Forming a Living Polymer for Enhanced Drug Loading and Delay Drug Transport: Fig. 11 illustrates a graph 1100 representing drug loading differences between free radial polymerization and living polymerization and iniferter reaction strategies. The control polymer network is represented by the line 1113, the recognitive polymer network is represented by the line 1111 and the living polymer network is represented by the line 1115. A typical polymerization solution resulting in polymer designated as Recognitive Gel (Figure 11), was made with 0.187 mL ethylene glycol dimethacrylate or EGDMA(0.993 mmole), 0.16 mL methacrlyic acid or MAA(18.86 mmoles), 18.55 mg of azo-bis(isobutyronitrile) or AEBN, and 84.06 mg of EA9A template (ethyl adenine-9-acetate (EA9A)). Solutions were placed in a sonicator for several minutes until all solids were dissolved. The Control Gel solution was made with exactly the same formulation except no EA9A template was added. The polymer Recognitive Gel (Iniferter) was made by addition of iniferter, 3.89 mg TED. The molar ratio of the initiator to the iniferter in Recognitive Gel (Iniferter) was 8.61 with 0.187 mL ethylene glycol dimethacrylate or EGDMA(0.993 mmole), 0.16 mL methacrlyic acid or MAA(18.86 mmoles), 18.55 mg of azo-bis(isobutyronitrile) or AD3N, and 84.06 mg of EA9A template. In these gels, the molar ratio of the initiator to the iniferter gave double bond conversions similar to the double bond conversions for the Recognitive Gel. For polymerization, the temperature of polymerization was (14°C +/- 1°C throughout exothermic reaction). The molar ratio of initiator to iniferter can range 0.0001 and upward.
CONCLUSION:
Polymerization kinetics in the presence of the template reveal mechanisms of interaction as well as provide criteria with which other template-monomer systems can be chosen experimentally. The use of a biomimetic approach for synthesizing recognitive hydrogel polymers has led to the development of an ophthalmic drug delivery system using contact lenses formed from the recognitive hydrogel polymer. The ophthalmic drug delivery system of the present invention can provide improved bioavailability and efficacy of drug delivery and exhibits controlled time release of the drug. The ophthalmic drug delivery system can be tailored to exhibit properties suitable for the intended drug therapy and has a potential to replace traditional eye drop therapies and other methods.
This technology creates a new architecture in polymeric films to enable enhanced drug loading and delayed time release of drugs. We have applied this to contact lenses to produce a new drug delivery system comprising contact lenses. These polymeric films are based on the creation of polymeric networks from a fundamental analysis of the biological recognition or biological mechanism of action of the therapeutic. The technologies produced from this work involve thin films for drug delivery, which can be applied to other areas besides the ocular market. This can apply to, but is not limited to any drug delivery device or coating where one is limited on space or volume of delivery device. It can apply, but is not limited to particles, cylinders, spheres, films and coatings.
Areas where this technology is applicable include, but are not limited to:
Refractive and Non-refractive (Cosmetic) Contact Lenses and Ocular Implant Devices;
Bandage Contact Lenses - Refractive and Non-refractive (Cosmetic) Contact Lenses- that are placed after major or minor eye surgery to release medication during the healing process and
/or aid in ocular health;
Nasal Drug Delivery via Ocular Lenses or Devices;
Implant Coatings (Orthopedic, Adhesion prevention, etc.);
Cardiovascular Device and Stent Coatings with Drug Release; Transdermal Patches and Drug Delivery Films;
Tissue Engineering and Regeneration Materials (including in vitro);
Bandages, Wound Healing;
Tissue Regeneration Materials; and
Drug Tablet Coatings. The technology also provides an opportunity for a combination drug platform where multiple drugs are released from a single lens of film. In some cases, multiple drugs of a certain type (combination anti-fungal therapy) and multiple classes of drugs
(anti-inflammatory and antibiotic) are released to achieve more convenient and efficacious therapy. The systems of the present invention lead to delayed transport in non-swellable
(which is what lenses are) but they may affect swellable hydrogel networks in a similar manner. It is believed that in the system of the present invention that a multiplicity of the interactions (multiple functional monomers) is preferred for optimal sustained release of a drug. The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention. Specifically, it will be apparent to one of ordinary skill in the art that the device of the present invention could be implemented in several different ways and the apparatus disclosed above is only illustrative of the preferred embodiment of the invention and is in no way a limitation.

Claims

ClaimsWhat is claimed is:
1. A method of making a drug delivery system, the method comprising: a) forming a recognitive polymeric hydrogel; and b) forming the recognitive polymeric hydrogel into a contact lense with an anti- microbial.
2. The method of claim 1, wherein forming a recognitive polymeric hydrogel comprises forming a solution comprising amounts of a bio-template, a functionalized monomer and a cross-linking monomer and initiating copolymerization of the functionalized monomer and cross-linking monomer.
3. The method of claim 2, further comprising washing a portion of the bio-template from the recognitive polymeric hydrogel and loading the recognitive polymeric hydrogel with a drug.
4. The method of claim 3, wherein the anti-microbial is an anti-fungal agent.
5. The method of claim 2, further comprising washing a portion of the bio-template from the contact lense and loading the contact lens with a drug by soaking the contact lens in an aqueous drug solution.
6. The method of claim 5, wherein the anti-microbial is introduced into the recognitive polymeric hydrogel after the contact lens is formed.
7. The method of claim 2, wherein the contact lens further includes a drug.
8. The method of claim 7, wherein the drug is selected from the group consisting of an antibiotic, an anti-inflammatory, an antihistamine, an antiviral agent, a cancer drug, an anesthetic, a cycloplegic, a mydriatics, a lubricant agent, a hydrophilic agent, a decongestant, a vasoconstrictor, vasodilater, an Immuno-suppressant, an immuno-modulating agent and an anti-glaucoma agent.
9. The method of claim 4, wherein the anti-fungal agent is selected from the group consisting of Allyamines, non-azole ergosterol biosynthesis inhibitors, antimetabolities, Azoles, Chitin Synthase Inhibitors, Glucan Synthesis Inhibitorsand Polyenes.
10. A method of dispensing an anti-microbial in an eye biological tissue of an animal comprising: a) forming a recognitive polymeric hydrogel matrix impregnated with the anti- microbial; and b) placing the recognitive polymeric hydrogel in contact with a biological tissue to dispense the drug.
11. The method of claim 10, wherein the anti-microbial is an anti-fungal agent.
12. The method of claim 10, wherein forming the recognitive polymeric hydrogel matrix comprises generating a solution comprising amounts of a bio-template, a functionalized monomer and a cross-linking monomer and initiating co- polymerization of the functionalized monomer and cross-linking monomer.
13. The method of claim 12, wherein forming the recognitive polymeric hydrogel matrix produces a contact lens.
14. The method of claim 12, wherein the bio-template is the anti-microbial.
15. The method of claim 14, wherein the polymeric hydrogel matrix is further impregnated with a drug that is selected from the group consisting of an antibiotic, an anti-inflammatory, an antihistamine, an antiviral agent, a cancer drug, an anesthetic, a cycloplegic, a mydriatics, a vasodilater, a lubricant agent, a hydrophilic agent, a decongestant, a vasoconstrictor, an immuno-suppressant, an immuno-modulating agent and an anti-glaucoma agent.
16. The method of claim 10, further comprising reloading the recognitive polymeric hydrogel matrix with the anti-microbial by soaking the recognitive polymeric hydrogel matrix in an aqueous solution of the drug.
17. A system for delivering an anti-microbial drug through contact with an eye of an animal, the system comprising a contact lens, the contact lens comprising a hydrogel matrix with complexing sites that complex the anti-microbial drug and release the anti-microbial agent from the hydrogel matrix over time while in contact with a surface of the eye.
18. The drug delivery system of claim 17, wherein the hydrogel matrix comprises silicon- base polymer chains.
19. The drug delivery system of claim 17, wherein the complexing sites comprise amino acid functional groups.
20. The drug delivery system of claim 17, wherein the anti-microbial is an anti-fungal agent.
PCT/US2007/023952 2006-11-13 2007-11-13 Therapeutic contact lenses with anti-fungal delivery WO2008060574A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85858406P 2006-11-13 2006-11-13
US60/858,584 2006-11-13

Publications (2)

Publication Number Publication Date
WO2008060574A2 true WO2008060574A2 (en) 2008-05-22
WO2008060574A3 WO2008060574A3 (en) 2008-12-11

Family

ID=39402249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/023952 WO2008060574A2 (en) 2006-11-13 2007-11-13 Therapeutic contact lenses with anti-fungal delivery

Country Status (1)

Country Link
WO (1) WO2008060574A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623400B2 (en) 2011-07-08 2014-01-07 National Chiao Tung University Drug-carrying contact lens and method for fabricating the same
US8937133B2 (en) 2012-09-25 2015-01-20 National Chiao Tung University Dissoluble PDMS-modified p(HEMA-MAA) amphiphilic copolymer and method for fabricating the same
US9827250B2 (en) 2012-07-31 2017-11-28 Johnson & Johnson Vision Care, Inc. Lens incorporating myopia control optics and muscarinic agents
CN115322286A (en) * 2022-07-27 2022-11-11 金陵科技学院 Contact lens for myopia prevention and control and supporting and slowly releasing atropine and preparation method thereof
CN115576118A (en) * 2021-07-05 2023-01-06 亮点光学股份有限公司 Contact lens with multifunctional point

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668506A (en) * 1985-08-16 1987-05-26 Bausch & Lomb Incorporated Sustained-release formulation containing and amino acid polymer
US20050208102A1 (en) * 2003-04-09 2005-09-22 Schultz Clyde L Hydrogels used to deliver medicaments to the eye for the treatment of posterior segment diseases
US20060100408A1 (en) * 2002-03-11 2006-05-11 Powell P M Method for forming contact lenses comprising therapeutic agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668506A (en) * 1985-08-16 1987-05-26 Bausch & Lomb Incorporated Sustained-release formulation containing and amino acid polymer
US20060100408A1 (en) * 2002-03-11 2006-05-11 Powell P M Method for forming contact lenses comprising therapeutic agents
US20050208102A1 (en) * 2003-04-09 2005-09-22 Schultz Clyde L Hydrogels used to deliver medicaments to the eye for the treatment of posterior segment diseases

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623400B2 (en) 2011-07-08 2014-01-07 National Chiao Tung University Drug-carrying contact lens and method for fabricating the same
US9827250B2 (en) 2012-07-31 2017-11-28 Johnson & Johnson Vision Care, Inc. Lens incorporating myopia control optics and muscarinic agents
US8937133B2 (en) 2012-09-25 2015-01-20 National Chiao Tung University Dissoluble PDMS-modified p(HEMA-MAA) amphiphilic copolymer and method for fabricating the same
CN115576118A (en) * 2021-07-05 2023-01-06 亮点光学股份有限公司 Contact lens with multifunctional point
CN115322286A (en) * 2022-07-27 2022-11-11 金陵科技学院 Contact lens for myopia prevention and control and supporting and slowly releasing atropine and preparation method thereof

Also Published As

Publication number Publication date
WO2008060574A3 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
US8404271B2 (en) Contact drug delivery system
US9238003B2 (en) Extended or continuous wear silicone hydrogel contact lenses for the extended release of comfort molecules
US8388995B1 (en) Controlled and extended delivery of hyaluronic acid and comfort molecules via a contact lens platform
US8349352B2 (en) Therapeutic contact lenses with anti-fungal delivery
Guzman-Aranguez et al. Contact lenses: promising devices for ocular drug delivery
Alvarez-Lorenzo et al. Contact lenses for drug delivery: achieving sustained release with novel systems
González-Chomón et al. Soft contact lenses for controlled ocular delivery: 50 years in the making
Venkatesh et al. Biomimetic hydrogels for enhanced loading and extended release of ocular therapeutics
Gupta et al. Contact lenses in ocular therapeutics
White et al. Molecularly imprinted therapeutic contact lenses
Tashakori-Sabzevar et al. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses
EP0219208B1 (en) Substained-release formulation containing an amino acid polymer
Lanier et al. Commercialization challenges for drug eluting contact lenses
US11173064B2 (en) High-precision drug delivery by dual-domain ocular device
Ribeiro et al. Improvements in topical ocular drug delivery systems: hydrogels and contact lenses
WO2008060574A2 (en) Therapeutic contact lenses with anti-fungal delivery
US20240252429A1 (en) Extended-wear silicone hydrogel contact lenses and uses thereof
CA2829533C (en) Contact drug delivery system
Topete et al. The effects of addition of functional monomers and molecular imprinting on dual drug release from intraocular lens material
Chauhan Ocular drug delivery role of contact lenses
Yang et al. Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review
JP2005507866A (en) Drug release system for management therapy
ES2705477T3 (en) Contact drug administration system
JP4874795B2 (en) Carrier
Das et al. Contact lenses: A development towards ocular drug delivery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07870885

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07870885

Country of ref document: EP

Kind code of ref document: A2