WO2008059687A1 - Rotary motor - Google Patents
Rotary motor Download PDFInfo
- Publication number
- WO2008059687A1 WO2008059687A1 PCT/JP2007/070223 JP2007070223W WO2008059687A1 WO 2008059687 A1 WO2008059687 A1 WO 2008059687A1 JP 2007070223 W JP2007070223 W JP 2007070223W WO 2008059687 A1 WO2008059687 A1 WO 2008059687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- rotor
- rotary electric
- electric motor
- bracket
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/10—Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
- H02K5/203—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
Definitions
- the present invention relates to a fully-closed rotary electric motor, and particularly to an electric motor having a cooling gas circulated inside the electric motor by a fan and a cooling liquid for cooling the frame of the electric motor.
- Patent Document 1 discloses a configuration for cooling an electric motor itself in a fully-closed rotary electric motor.
- the rotor is provided with two fans (an internal fan in the stator frame and an external fan outside the stator frame), and the circulating gas is fixed while circulating the gas in the stator frame by the internal fan.
- the cooling air introduced from the outside by an external fan is introduced into the ventilation path provided outside the stator frame.
- the ventilation path is provided with a heat radiating rib for cooling.
- Patent Document 1 JP-A-9 149599
- the cooling structure in the conventional fully-closed rotary motor as described above has a problem that the entire motor becomes large because the heat dissipating rib, the outer fan, and the cover of the outer fan are provided outside the stator frame. .
- the present invention is configured as follows.
- the invention according to claim 1 supports a substantially cylindrical frame that holds the stator winding on the inner peripheral surface, a bracket that seals both ends of the frame, and a bearing provided on the bracket. And a rotor that is rotated by electromagnetic action of the stator winding, and a fin is provided in the rotor, a frame ventilation hole is provided in a member of the frame, and the fin The internal gas of the frame is circulated while passing through the frame ventilation holes to remove heat from the internal space of the motor, and a frame water channel is further provided in the frame member, and the internal gas passing through the frame ventilation holes is moved forward.
- the rotary electric motor removes heat by the liquid flowing in the frame water channel.
- the fin is provided on one end face in the axial direction of the rotor, and is a plurality of fins arranged in the rotational direction of the rotor, the fin being connected to the inner wall of the bracket.
- the invention according to claim 3 is the rotary electric motor according to claim 2, wherein the rotor is provided with a plurality of rotor ventilation holes penetrating in the direction of the rotation axis of the rotor.
- the invention according to claim 4 is characterized in that one end of the rotor ventilation hole has a protruding edge, the directional force S at the tip of the protruding portion, and the same direction as the direction in which the rotor mainly rotates
- the invention according to claim 5 is the rotary electric motor according to claim 3, wherein the rotor ventilation hole is disposed closer to the rotation shaft than the fin and is provided at a position facing the bearing of the bracket. It is.
- the frame ventilation hole is a passage extending in the direction of the rotation axis in a member of the frame, and both ends of the frame ventilation hole are respectively formed on the inner peripheral surface of the frame.
- the invention according to claim 7 is the rotary electric motor according to claim 6, wherein one end of the frame ventilation hole opens toward a coil end portion of the stator winding.
- the frame water channel is a plurality of water channels extending in the axial direction within the members of the frame, and the liquid flows in an axial direction opposite to each other in the adjacent frame water channel.
- the rotary electric motor according to claim 1 is configured as described above.
- the bracket is composed of first and second brackets that seal both ends of the frame, and the first and second brackets are adjacent to each other in the frame water channel.
- a folding groove facing only one water channel is formed, and the two water channels adjacent to the frame water channel communicate with each other by the folding groove.
- the invention according to claim 10 is the rotary electric motor according to claim 8, wherein the frame ventilation holes are arranged so as to be positioned between the frame water channels.
- the invention according to claim 11 is provided in a substantially cylindrical frame for holding the stator winding and the stator core on the inner peripheral surface, a bracket for sealing both ends of the frame, and a bearing provided in the bracket. And a rotor that is supported and rotated by the electromagnetic action of the stator winding, and the rotor is provided with fins, and a frame ventilation groove is provided on an inner peripheral surface of the frame.
- the internal gas of the frame is circulated while passing through the frame ventilation groove to remove heat from the internal space of the electric motor, and a frame water channel is further provided in the frame member. It is an rotating electric motor to heat removal by the liquid flowing pre SL gas inside the frame waterway passing.
- the invention according to claim 12 is the rotary electric motor according to claim 11, wherein a protrusion projecting into the frame ventilation groove is provided on the outer peripheral surface of the stator core.
- heat can be removed by circulating the internal gas of the electric motor using the fins, and the internal gas that has been circulated and warmed can be cooled by the cooling water channel using the liquid provided in the frame.
- the heat transfer from the frame itself, that is, the stator winding can be sufficiently removed by the cooling water channel.
- the circulating internal gas is provided in the rotor. Since it passes through the air hole, it is easy to circulate inside.
- one end of the frame ventilation hole is configured to open to the coil end portion of the stator winding, the circulating gas collides with the coil end portion, and the coil end portion Also cut with heat removal.
- the entire electric motor can be uniformly cooled. According to this, it can be easily configured by the folded grooves of the first and second brackets so that the liquid flows in the adjacent frame water channels are in different directions.
- the first and second brackets are also cooled, so that they are held by the first and second brackets! Touch with S.
- the frame ventilation holes are arranged so as to be located between the frame water channels, when the circulated gas passes through the frame ventilation holes, it is effectively prevented by the cooling liquid in the frame water channels. Since it is cooled, the temperature of the internal gas of the motor can be increased.
- the stator springs wound around the stator core can also remove heat.
- the ventilation part of the frame into a groove shape, it is possible to easily process the frame parts compared to deep hole processing that is difficult to process in the case of frame ventilation holes. wear.
- the protrusion since the protrusion is provided, when the internal gas circulates, the surface area of the outer peripheral surface of the stator core to which the circulating air is blown increases, so that the cooling effect of the stator core is large. Thus, the heat removal effect of the stator winding wound around the stator core can be increased.
- FIG. 1 is a sectional side view of a rotary electric motor according to a first embodiment of the present invention.
- FIG. 4 View of only the first end ring 14 in Fig. 1 as viewed from the Z direction.
- FIG. 6 is a sectional side view of a rotary electric motor according to a second embodiment of the present invention.
- FIG. 1 shows a side sectional view of a rotary electric motor 1 according to a first embodiment of the present invention.
- Reference numeral 2 denotes a cylindrical frame, and a cylindrical stator winding 3 and a stator core 30 are held on the inner periphery thereof.
- a lead 4 connected to the stator winding 3 is led out of the motor from a B bracket 11 to be described later, and a current is sent to the stator winding 3 through the lead 4 from a power source (not shown).
- a rotor core 5 is provided on the inner periphery of the stator winding 3 via a predetermined electromagnetic gap 6.
- the rotor core 5 has a cylindrical shape formed by laminating thin disc-shaped electromagnetic steel plates, and a permanent magnet (not shown) is embedded therein.
- the rotary shaft 7 is fitted on the inner periphery of the rotor core 5! /, And do not rotate with each other! / It is fixed.
- both ends of the cylindrical frame 2 are attached so as to seal the internal spaces of the A bracket 10, the B bracket 11 and the force frame 2.
- the A bracket 10 holds the outer periphery of the bearing 8
- the B bracket 11 holds the outer periphery of the bearing 9.
- Both ends of the rotary shaft 7 are fitted into the inner circumferences of the bearings 8 and 9, respectively, so that the rotary shaft 7 is held rotatably.
- One end of the rotary shaft 7 penetrates the A bracket 10, and a load (not shown) is attached to the front end.
- a resolver 12 is provided at the other end of the rotary shaft 7! /, And is configured to detect the angle of the rotary shaft 7! /.
- the fin is provided in the rotor to circulate the gas in the space of the frame 2 to remove this heat, and the cooling liquid circulated in the members of the frame 2
- the present invention has a cooling structure by air cooling and water cooling (liquid cooling), and these cooling structures will be described below.
- FIG. 2 and FIG. 3 in addition to FIG. Figure 2 shows the overall view from YY 'in Figure 1. In other words, FIG.
- Fig. 2 is a view seen from the side opposite to the load, and shows a perspective view of the B bracket 11.
- Fig. 3 shows an overall view from the load side in Fig. 1. Therefore, the XX 'cross-sectional view in Fig. 2 or Fig. 3 is Fig. 1.
- FIG. 1 shows only the first end ring 14 as seen from the Z direction. Further, FIG. 5 shows only the second end ring 15 as viewed from the W direction in FIG.
- the first end ring 14 is provided with a plurality of fins 16 on one surface thereof.
- the fins 16 are erected almost vertically from the first end ring 14, and are arranged near the outer peripheral portion of the first end ring 14, and a plurality of fins 16 are arranged over the entire periphery! In the present embodiment, it is equally divided into eight places on the entire circumference.
- Reference numeral 17 denotes a balancing screw hole provided in the same manner as the arrangement of the fins 16 for attaching a weight or the like to remove centrifugal force due to eccentricity when the rotor 13 rotates.
- the first end ring 14 is provided with a plurality of rotor ventilation holes 18 on the further center side of the fins 16. The rotor ventilation holes 18 pass through the first end ring 14. In the present embodiment, it is equally divided into eight places on the entire circumference.
- the same number of rotor ventilation holes 18 are formed in the rotor core 5 at positions corresponding to the rotor ventilation holes 18 of the first end ring 14.
- the same number of rotor ventilation holes 18 are formed in the second end ring 15 at positions corresponding to the first end ring 14 and the rotor ventilation holes 18 of the rotor core 5.
- the rotor ventilation hole 18 is formed as a ventilation path of the rotor 13 penetrating from the load side to the anti-load side.
- the frame 2 is provided with a frame ventilation hole 19.
- the frame ventilation hole 19 is a hole provided in the member of the frame 2 so as to be substantially along the axial direction of the rotary shaft 7, and one end of the hole is on the load side of the A bracket 10 and the stator winding 3. There is an opening (penetration) in the space between the parts. Further, the other end of the hole penetrates the space between the B bracket 11 and the anti-load side portion of the stator winding 3.
- a plurality of frame ventilation holes 19 are provided on the entire circumference of the member of the cylindrical frame 2. In this example, it is arranged at 5 locations all around!
- the pressure in the portion of the A space 20 in FIG. 1 increases due to the action of the fins 16, so that the gas in the internal space of the frame 2 flows as shown by the arrow 21, It enters the vent hole 19.
- the gas that has passed through the frame ventilation hole 19 moves from the load side to the anti-load side, and enters the internal space of the frame 2 again.
- the gas enters the rotor ventilation hole 18 of the rotor 13 and the electromagnetic gap 6 while passing through the coil end 22 of the stator winding 3.
- the rotor ventilation hole 18 and the electromagnetic gap 6 reach the load side space of the rotor 13 while moving from the opposite load side to the load side.
- the gas in the internal space in the frame 2 circulates, and the stator winding 3, the rotor core 5, and the coil end 22 are cooled.
- the rotor ventilation hole 18 is arranged at a position facing the housing portion of the A bracket 10 that holds the outer periphery of the bearing 8 or the bearing 8 as in this embodiment, the cooling of the bearing 8 is also expected. it can.
- the rotor ventilation holes 18 and the like of the second end ring 15 are formed so that a part of the edge of the hole protrudes and the tip of the protruding part is sharp. ing.
- the pointed direction is arranged to be the same direction as the rotation direction in which the present motor is mainly used, as indicated by the rotation direction of the arrow in FIG. For example, if an electric motor is used for a generator, the rotation direction mainly used is naturally determined. With this shape, the surrounding gas is easily drawn into the hole from the rotor ventilation hole 18 of the second end ring 15. Further, in this embodiment, as shown in FIG.
- the end of the frame ventilation hole 19 penetrating into the internal space of the frame 2 is inclined as indicated by 23, or the bearing of the A bracket 10 facing the fin 16 8
- the above gas It is configured so that the circulation of the air is eliminated without resistance.
- a total of 20 water channels 26a to 26t are formed in the member of the frame 2 in the same direction as the axial direction of the rotary shaft 7, By circulating a cooling liquid such as cooling water through these water channels, the heat mainly transmitted from the stator winding 3 is removed.
- An inlet for injecting liquid into the frame water channels 26a to 26t is an A joint 27, and an outlet force for allowing the liquid to flow out is a joint 28.
- the A joint 27 and the B joint 28 are inserted into the B bracket 11.
- a seal member such as an O-ring is appropriately provided around the portion connecting the water channels so that no liquid leakage occurs.
- the liquid flowing in from the A joint 27 first enters the 26a channel. It flows in and moves to the load side.
- the folded groove 29 formed in the A bracket 10 is formed so as to face the water channel 26a, so that the liquid flows into the folded groove 29.
- the folding groove 29 is formed so as to be opposed to and communicate with the water channel 26b adjacent to the water channel 26a, the liquid flows into the water channel 26b so as to be folded back at the folding groove 29, and this time, the load is counter-loaded from the load side. Move to the side.
- the folded groove 29 formed in the B bracket 11 is formed so as to face the water channel 26b, so that the liquid flows into the folded groove 29.
- the folding groove 29 is formed so as to be opposed to and communicate with the water channel 26c adjacent to the water channel 26b, the liquid turns back again and flows into the water channel 26c, and again moves from the anti-load side to the load side. To do. Thereafter, with the same configuration, the cooling liquid moves in the adjacent water channels 26a to 26t while moving from the load side to the counter load side, and finally flows out from the B joint 28. Therefore, the heat transferred from the stator winding 3 is removed while moving through the water channels 26 in the members of the frame 2.
- the frame ventilation holes 19 described above for the air cooling structure and the frame water passages 26a to 26t described for the water cooling structure will be supplemented.
- the frame ventilation holes 19 by arranging the frame ventilation holes between the plurality of frame water channels, the gas circulated through the frame 2 and warmed is removed by the frame water channels 26 when passing through the frame ventilation holes 19. It is configured as follows. That is, as shown in FIG. 2 or FIG. 3, the frame ventilation hole 19 has a force at five locations on the entire circumference.
- the plurality of frame ventilation holes 19 are located between the frame water channels 26a to 26t in the frame 2 member. It is arranged as follows. Further, the frame ventilation holes 19 can be arranged without interfering with the frame water channels 26 because both ends of each ventilation hole are formed so as to penetrate the inner peripheral surface of the cylindrical frame 2.
- the heat generated in the stator winding 3 and the rotor 13 is removed from the frame 2 by the water cooling configuration, and is circulated through the internal space of the frame 2 by the air cooling configuration. Heat is also removed by gas.
- the circulating and warmed gas removes heat inside the motor while being removed by the action of the water cooling structure in the frame 2 member, so even if the motor is placed in a high temperature environment, the temperature of the gas inside the motor Does not rise excessively.
- FIG. FIG. 6 shows a sectional side view of the rotary electric motor 1 according to the second embodiment of the present invention.
- FIG. 7 shows the overall view from VV 'in Figure 6. That is, FIG. 7 is a view seen from the side opposite to the load, and shows a perspective view of the B bracket 11. Note that the description of the same components as those of the first embodiment in the second embodiment is omitted, and different points will be described.
- the second embodiment is different from the first embodiment in the air cooling configuration.
- 31 is a frame ventilation groove
- 32 is a protrusion provided on the outer periphery of the stator core
- frame ventilation groove 31 is a groove provided on the inner periphery of frame 2, which is provided along the axial direction of frame 2. It has been. As shown in FIG.
- the cross section of the groove is U-shaped and penetrates the inner periphery of the frame 2 at the top of the U-shape.
- a total of five locations are provided at positions that do not interfere with the frame water channel 26 on the entire circumference of the cylinder of the frame 2.
- the protrusion 32 is an outer peripheral portion of the stator core 30 and is provided along the axial direction of the stator core 30. As shown in FIG. 7, the protrusion has a substantially triangular cross section and is formed so as to protrude into the frame ventilation groove 31.
- the second embodiment of the present invention is different from the first embodiment in that the frame ventilation hole 19 is penetrated to the inner peripheral surface of the frame 2 to form a groove-shaped frame ventilation groove 31 and the stator.
- the protrusion 32 is provided on the outer peripheral surface of the core 30 so as to protrude into the frame ventilation groove 31.
- the protrusion 32 has a small total cross-sectional area in the axial direction so that it does not become a resistance of the circulating gas and has a large total area protruding into the frame ventilation groove 31. Therefore, in this embodiment, it is better to provide a small groove around the force triangle having a triangular cross section and to increase the surface area of the protrusion 32.
- the protrusion 32 is preferably integrated with the stator core 30.
- the stator core 30 may be manufactured by laminating thin electromagnetic steel plates having protrusions 32.
- the bead of the welded portion may be formed into a protruding shape such as the protruding portion 32.
- the function and effect of the air cooling configuration according to the second embodiment of the present invention will be described.
- the stator winding 3 held by the stator core 30 on the inner periphery can also remove heat from the stator core 30 side, and the stator winding 3, which is the main heat source, is effective. Heat can be removed.
- the protrusion 32 on the outer peripheral surface of the stator core 30 so as to protrude into the frame ventilation groove 31 the surface area of the outer peripheral surface of the stator core 30 with which the circulating gas comes into contact is increased.
- the cooling effect of the stator core 30 is increased, and the heat removal effect of the stator winding 3 wound around the stator core 30 can be increased.
- the ventilation part of frame 2 has a groove shape, it is easier to machine two parts of the frame compared to the hole machining, which is difficult to drill deeply like the frame ventilation hole 19 in the first embodiment. I can.
- the present invention can be used for a rotary motor that cools by using both a fan and a cooling liquid in addition to a fully-closed rotary motor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
- Motor Or Generator Frames (AREA)
Abstract
A rotary motor so constituted as to be effectively cooled even when it is placed under a high temperature environment. Fins (16) are formed on a rotor (13) and frame ventilation holes (26) are formed in the members of a frame (2). A gas in the frame (2) is circulated while being passed through the frame ventilation holes (26) by the fins (16) to remove the heat in the internal space of the motor (1). Furthermore, frame water channels (19) are formed in the members of the frame (2), whereby the heat of the internal gas passing through the frame ventilation holes (19) can be removed by the liquid flowing in the frame water channels (19).
Description
明 細 書 Specification
回転電動機 Rotating motor
技術分野 Technical field
[0001] 本発明は、全閉形の回転電動機において、特に、ファンにより電動機内部で循環さ れる冷却気体と、電動機のフレームを冷却する冷却液体とを有するものに関する。 背景技術 TECHNICAL FIELD [0001] The present invention relates to a fully-closed rotary electric motor, and particularly to an electric motor having a cooling gas circulated inside the electric motor by a fan and a cooling liquid for cooling the frame of the electric motor. Background art
[0002] 全閉形の回転電動機において、その電動機自身の冷却を行うための構成には、例 えば特許文献 1のようなものが開示されている。特許文献 1では、回転子に 2つのファ ン(固定子枠内の内部ファンと固定子枠外の外扇)を設け、内部ファンによって固定 子枠内の気体を循環させつつ、この循環気体を固定子枠内の通風路に導入し、また 、外扇によって外部から導入した冷却風を固定子枠外に設けた通風路に導入してい る。通風路には冷却用の放熱リブが設けられている。この構成によって、固定子枠内 で循環して暖められた気体の熱は固定子枠に伝熱され、一方、外扇による冷却風に よって、固定子枠外の通風路に設けた冷却リブから循環気体の熱と巻線等からの熱 とが冷却される。 For example, Patent Document 1 discloses a configuration for cooling an electric motor itself in a fully-closed rotary electric motor. In Patent Document 1, the rotor is provided with two fans (an internal fan in the stator frame and an external fan outside the stator frame), and the circulating gas is fixed while circulating the gas in the stator frame by the internal fan. The cooling air introduced from the outside by an external fan is introduced into the ventilation path provided outside the stator frame. The ventilation path is provided with a heat radiating rib for cooling. With this configuration, the heat of the gas circulated and warmed in the stator frame is transferred to the stator frame, and circulated from the cooling ribs provided in the ventilation path outside the stator frame by the cooling air from the external fan. Gas heat and heat from windings are cooled.
特許文献 1:特開平 9 149599号公報 Patent Document 1: JP-A-9 149599
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0003] ところ力 上記のような従来の全閉形回転電動機における冷却構造では、固定子 枠外に放熱リブ、外扇及び外扇のカバーらを設けているので、電動機全体が大きく なるという問題がある。 [0003] However, the cooling structure in the conventional fully-closed rotary motor as described above has a problem that the entire motor becomes large because the heat dissipating rib, the outer fan, and the cover of the outer fan are provided outside the stator frame. .
また、電動機が設置される環境温度が特に高い場合、従来のような外扇と放熱リブ による冷却では、循環する内部気体が効果的に冷却されにくいという問題がある。 課題を解決するための手段 In addition, when the ambient temperature in which the motor is installed is particularly high, there is a problem that the circulating internal gas is not effectively cooled by the conventional cooling with the external fan and the heat radiating rib. Means for solving the problem
[0004] 上記問題を解決するため、本発明は、次のように構成したのである。 In order to solve the above problem, the present invention is configured as follows.
請求項 1に記載の発明は、固定子巻線を内周面に保持する略円筒状のフレームと 、前記フレームの両端を密閉するブラケットと、前記ブラケットに設けられた軸受に支
持され、前記固定子巻線の電磁作用によって回転するロータと、とを備える回転電動 機において、前記ロータにフィンを設けるとともに、前記フレームの部材内にフレーム 通風穴を設け、前記フィンによって、前記フレームの内部気体を前記フレーム通風穴 を通過させながら循環させて電動機の内部空間の除熱を行い、前記フレームの部材 内にさらにフレーム水路を設け、前記フレーム通風穴を通過する前記内部気体を前 記フレーム水路に流れる液体によって除熱させる回転電動機とするものである。 請求項 2に記載の発明は、前記フィンは、前記ロータの軸方向の一端面に突出して 設けられ、前記ロータの回転方向に並ぶ複数のフィンであって、該フィンが前記ブラ ケットの内壁との間の空間に位置するよう前記ロータに設けられている請求項 1記載 の回転電動機とするものである。 The invention according to claim 1 supports a substantially cylindrical frame that holds the stator winding on the inner peripheral surface, a bracket that seals both ends of the frame, and a bearing provided on the bracket. And a rotor that is rotated by electromagnetic action of the stator winding, and a fin is provided in the rotor, a frame ventilation hole is provided in a member of the frame, and the fin The internal gas of the frame is circulated while passing through the frame ventilation holes to remove heat from the internal space of the motor, and a frame water channel is further provided in the frame member, and the internal gas passing through the frame ventilation holes is moved forward. The rotary electric motor removes heat by the liquid flowing in the frame water channel. According to a second aspect of the present invention, the fin is provided on one end face in the axial direction of the rotor, and is a plurality of fins arranged in the rotational direction of the rotor, the fin being connected to the inner wall of the bracket. The rotary electric motor according to claim 1, wherein the rotor is provided in a space between the rotors.
請求項 3に記載の発明は、前記ロータに、前記ロータの回転軸方向に貫通する複 数のロータ通風穴が設けられている請求項 2記載の回転電動機とするものである。 請求項 4に記載の発明は、前記ロータ通風穴の一端は、縁の一部が突縁しており、 突縁した部分の先端の方向力 S、前記ロータが主に回転する方向と同方向となるよう形 成されている請求項 3記載の回転電動機とするものである。 The invention according to claim 3 is the rotary electric motor according to claim 2, wherein the rotor is provided with a plurality of rotor ventilation holes penetrating in the direction of the rotation axis of the rotor. The invention according to claim 4 is characterized in that one end of the rotor ventilation hole has a protruding edge, the directional force S at the tip of the protruding portion, and the same direction as the direction in which the rotor mainly rotates The rotary electric motor according to claim 3, wherein the rotary electric motor is configured to be
請求項 5に記載の発明は、前記ロータ通風穴が、前記フィンより回転軸寄りに配置 されるとともに、前記ブラケットの軸受に対向する位置に設けられている請求項 3記載 の回転電動機とするものである。 The invention according to claim 5 is the rotary electric motor according to claim 3, wherein the rotor ventilation hole is disposed closer to the rotation shaft than the fin and is provided at a position facing the bearing of the bracket. It is.
請求項 6に記載の発明は、前記フレーム通風穴は、前記フレームの部材内におい て概ね回転軸方向に延びる通路であって、該フレーム通風穴の両端は、それぞれが 前記フレームの内周面に向かい、前記固定子巻線を挟むように開口している請求項 1記載の回転電動機とするものである。 According to a sixth aspect of the present invention, the frame ventilation hole is a passage extending in the direction of the rotation axis in a member of the frame, and both ends of the frame ventilation hole are respectively formed on the inner peripheral surface of the frame. 2. The rotary electric motor according to claim 1, wherein the rotary motor is open so as to face the stator winding.
請求項 7に記載の発明は、前記フレーム通風穴の一端は前記固定子巻線のコイル エンド部分に向かって開口してレ、る請求項 6記載の回転電動機とするものである。 請求項 8に記載の発明は、前記フレーム水路は、前記フレームの部材内で軸方向 に延在する複数の水路であって、前記液体が、隣合う前記フレーム水路を軸方向に 互いに反対に流れるよう構成されている請求項 1記載の回転電動機とするものである
請求項 9に記載の発明は、前記ブラケットは、前記フレームの両端を密閉する第一 及び第二のブラケットで構成され、前記第一及び第二のブラケットには前記フレーム 水路のうち、隣合う 2つの水路のみに対向する折り返し溝が形成され、該折り返し溝 によって前記フレーム水路の隣合う 2つの水路が折り返すよう連通される請求項 8記 載の回転電動機とするものである。 The invention according to claim 7 is the rotary electric motor according to claim 6, wherein one end of the frame ventilation hole opens toward a coil end portion of the stator winding. According to an eighth aspect of the present invention, the frame water channel is a plurality of water channels extending in the axial direction within the members of the frame, and the liquid flows in an axial direction opposite to each other in the adjacent frame water channel. The rotary electric motor according to claim 1 is configured as described above. In the invention according to claim 9, the bracket is composed of first and second brackets that seal both ends of the frame, and the first and second brackets are adjacent to each other in the frame water channel. 9. The rotary electric motor according to claim 8, wherein a folding groove facing only one water channel is formed, and the two water channels adjacent to the frame water channel communicate with each other by the folding groove.
請求項 10に記載の発明は、前記フレーム通風穴が、前記フレーム水路の間に位 置するよう配置されて!/、る構成されてレ、る請求項 8記載の回転電動機とするものであ 請求項 11に記載の発明は、固定子巻線と固定子コアを内周面に保持する略円筒 状のフレームと、前記フレームの両端を密閉するブラケットと、前記ブラケットに設けら れた軸受に支持され、前記固定子巻線の電磁作用によって回転するロータと、とを 備える回転電動機において、前記ロータにフィンを設けるとともに、前記フレームの内 周面にフレーム通風溝を設け、前記フィンによって、前記フレームの内部気体を前記 フレーム通風溝を通過させながら循環させて電動機の内部空間の除熱を行い、前記 フレームの部材内にさらにフレーム水路を設け、前記フレーム通風穴を通過する前 記内部気体を前記フレーム水路に流れる液体によって除熱させる回転電動機とする ものである。 The invention according to claim 10 is the rotary electric motor according to claim 8, wherein the frame ventilation holes are arranged so as to be positioned between the frame water channels. The invention according to claim 11 is provided in a substantially cylindrical frame for holding the stator winding and the stator core on the inner peripheral surface, a bracket for sealing both ends of the frame, and a bearing provided in the bracket. And a rotor that is supported and rotated by the electromagnetic action of the stator winding, and the rotor is provided with fins, and a frame ventilation groove is provided on an inner peripheral surface of the frame. The internal gas of the frame is circulated while passing through the frame ventilation groove to remove heat from the internal space of the electric motor, and a frame water channel is further provided in the frame member. It is an rotating electric motor to heat removal by the liquid flowing pre SL gas inside the frame waterway passing.
請求項 12に記載の発明は、前記固定子コアの外周面に、前記フレーム通風溝内 へ突出した突起部が設けられている請求項 11記載の回転電動機とするものである。 発明の効果 The invention according to claim 12 is the rotary electric motor according to claim 11, wherein a protrusion projecting into the frame ventilation groove is provided on the outer peripheral surface of the stator core. The invention's effect
請求項 1に記載の発明によると、フィンによって電動機の内部気体を循環させて除 熱を行えるとともに、フレームに備えた液体による冷却水路によって、循環して暖まつ た内部気体も冷却させることができる。勿論、冷却水路によってフレーム自体、つまり 固定子巻線からの伝達熱も十分除熱することができる。 According to the first aspect of the present invention, heat can be removed by circulating the internal gas of the electric motor using the fins, and the internal gas that has been circulated and warmed can be cooled by the cooling water channel using the liquid provided in the frame. . Of course, the heat transfer from the frame itself, that is, the stator winding, can be sufficiently removed by the cooling water channel.
請求項 2に記載の発明によると、ロータの片方に設けたフィンがブラケットの内壁と の間の空間に位置して回るので、フィンが無い側の空間よりこの空間の圧力が上昇し 、内部気体の循環が起こりやすくなる。 According to the invention described in claim 2, since the fin provided on one side of the rotor is positioned and rotated in the space between the inner wall of the bracket, the pressure in this space rises from the space without the fin, and the internal gas It becomes easy for the circulation of.
請求項 3に記載の発明によると、循環する内部気体がロータに設けられたロータ通
風穴を通過するので内部循環しやすくなる。 According to the invention described in claim 3, the circulating internal gas is provided in the rotor. Since it passes through the air hole, it is easy to circulate inside.
請求項 4に記載の発明によると、ロータが回転する際に当該穴の周囲気体がロータ 通風穴に侵入しやすくなる。 According to the invention described in claim 4, when the rotor rotates, the gas around the hole is likely to enter the rotor ventilation hole.
請求項 5に記載の発明によると、ロータ通風穴が軸受に向かって対抗しているので 、内部気体が循環する際、軸受にも循環風がぶっかり、軸受の発熱も除去できる。 請求項 6に記載の発明によると、フレーム通風穴の両端がフレームの内周面に向か い、かつ固定子巻線の両端部分で開口しているので、循環気体がフレーム通風穴を 通過する際、固定子巻線からの電熱も十分除熱することができる。 According to the invention described in claim 5, since the rotor ventilation holes are opposed to the bearing, when the internal gas circulates, the circulating air is also blown to the bearing, and the heat generation of the bearing can be removed. According to the invention described in claim 6, since both ends of the frame ventilation hole face the inner peripheral surface of the frame and are opened at both ends of the stator winding, the circulating gas passes through the frame ventilation hole. At this time, the electric heat from the stator winding can be sufficiently removed.
請求項 7に記載の発明によると、フレーム通風穴の一端は、固定子巻線のコイルェ ンド部分に開口するように構成されているので、循環する気体がコイルエンド部分に もぶつかり、コイルエンド部分も除熱で切る。 According to the invention described in claim 7, since one end of the frame ventilation hole is configured to open to the coil end portion of the stator winding, the circulating gas collides with the coil end portion, and the coil end portion Also cut with heat removal.
請求項 8に記載の発明によると、フレーム水路に流れる液体は、隣合う水路で異な る方向に流れるよう構成されているので、電動機全体を均一に冷却することができる 請求項 9に記載の発明によると、隣合うフレーム水路の液体の流れが異なる方向に なるよう、第一及び第二のブラケットの折り返し溝によって簡単に構成できる。また、 液体が第一及び第二のブラケットで折り返しながら流れるので、これら第一及び第二 のブラケットも冷却するので、第一及び第二のブラケットに保持されて!、る軸受も冷却 すること力 Sでさる。 According to the invention described in claim 8, since the liquid flowing in the frame water channel is configured to flow in different directions in the adjacent water channel, the entire electric motor can be uniformly cooled. According to this, it can be easily configured by the folded grooves of the first and second brackets so that the liquid flows in the adjacent frame water channels are in different directions. In addition, since the liquid flows while turning back at the first and second brackets, the first and second brackets are also cooled, so that they are held by the first and second brackets! Touch with S.
請求項 10に記載の発明によると、フレーム通風穴がフレーム水路の間に位置する よう配置されているので、循環した気体がフレーム通風穴を通過する際に、効果的に フレーム水路の冷却液体によって冷却されるので、電動機の内部気体の温度が上昇 することを ί卬ぇることができる。 According to the invention described in claim 10, since the frame ventilation holes are arranged so as to be located between the frame water channels, when the circulated gas passes through the frame ventilation holes, it is effectively prevented by the cooling liquid in the frame water channels. Since it is cooled, the temperature of the internal gas of the motor can be increased.
請求項 11に記載の発明によると、固定子コアの外周面の一部がフレーム通風溝と 接しているため、内部気体が循環する際、固定子コアの外周面にも循環風が直接ぶ つかり、固定子コアを冷却するため、固定子コアに巻かれた固定子巻泉も除熱できる 。また、フレームの通風部を溝形状にすることにより、フレーム通風穴の場合に加工 が困難な掘り込みの深い穴加工に比べ、フレーム部品の加工を容易に行うことがで
きる。 According to the invention of claim 11, since a part of the outer peripheral surface of the stator core is in contact with the frame ventilation groove, when the internal gas circulates, the circulating air directly collides with the outer peripheral surface of the stator core. In order to cool the stator core, the stator springs wound around the stator core can also remove heat. In addition, by making the ventilation part of the frame into a groove shape, it is possible to easily process the frame parts compared to deep hole processing that is difficult to process in the case of frame ventilation holes. wear.
請求項 12に記載の発明によると、突起部を設けたので、内部気体が循環する際、 循環風がぶっかる固定子コアの外周面の表面積が広くなるため、固定子コアの冷却 効果が大きくなり、固定子コアに巻かれた固定子巻線の除熱効果も大きくすることが できる。 According to the invention of claim 12, since the protrusion is provided, when the internal gas circulates, the surface area of the outer peripheral surface of the stator core to which the circulating air is blown increases, so that the cooling effect of the stator core is large. Thus, the heat removal effect of the stator winding wound around the stator core can be increased.
図面の簡単な説明 Brief Description of Drawings
[0006] [図 1]本発明の第 1の実施例における回転電動機の側断面図 [0006] FIG. 1 is a sectional side view of a rotary electric motor according to a first embodiment of the present invention.
[図 2]図 1にお!/、て YY'から見た全体図 [Figure 2] Figure 1! /, Overall view from YY '
[図 3]図 1にお!/、て負荷側から見た全体図 [Figure 3] Figure 1! / Overall view from the load side
[図 4]図 1におレ、て第一のエンドリング 14のみを Z方向から見た図 [Fig. 4] View of only the first end ring 14 in Fig. 1 as viewed from the Z direction.
[図 5]図 1において第二のエンドリング 15のみを W方向から見た図 [Fig.5] View of only the second end ring 15 in Fig. 1 as viewed from the W direction
[図 6]本発明の第 2の実施例における回転電動機の側断面図 FIG. 6 is a sectional side view of a rotary electric motor according to a second embodiment of the present invention.
[図 7]図 6において W'から見た全体図 [Figure 7] Overall view from W 'in Figure 6
符号の説明 Explanation of symbols
[0007] 1 回転電動機 [0007] One-rotation motor
2 フレーム 2 frames
3 固定子巻線 3 Stator winding
4 リード 4 lead
5 ロータコア 5 Rotor core
6 電磁ギャップ 6 Electromagnetic gap
7 回転軸 7 Rotating axis
8、 9軸受 8, 9 bearings
10 Aブラケット 10 A bracket
11 Bブラケット 11 B bracket
12 レゾノレノ 12 Resonore
13 ロータ 13 Rotor
14 第一のエンドェリング 14 First endelling
15 第二のエンドェリング
17 バランス用ネジ穴 15 Second endelling 17 Screw holes for balancing
18 ロータ通風穴 18 Rotor ventilation holes
19 フレーム通風穴 19 Frame ventilation hole
20 空間 A 20 Space A
21 矢印 21 arrow
22 コイルエンド 22 Coil end
23、 24、 25 傾斜 23, 24, 25 tilt
26a〜t フレーム水路 26a-t frame waterway
27 A継手 27 A fitting
28 B継手 28 B fitting
29 折り返し溝 29 Folding groove
30 固定子コア 30 Stator core
31 フレーム通気溝 31 Frame ventilation groove
32 突起部 32 Protrusion
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1 Example 1
[0009] まず、本発明の第 1の実施例における回転電動機の構成の概要について図 1によ り説明する。図 1は、本発明の第 1の実施例における回転電動機 1の側断面図を示し ている。 First, an outline of the configuration of the rotary electric motor in the first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a side sectional view of a rotary electric motor 1 according to a first embodiment of the present invention.
2は円筒状のフレームで、この内周に円筒状の固定子巻線 3と固定子コア 30とが保 持されている。固定子巻線 3と接続されるリード 4は、後述する Bブラケット 11から電動 機の外部へと導出されており、図示しない電源からリード 4を介して固定子巻線 3に 電流が送出される。固定子巻線 3の内周にはロータコア 5が、所定の電磁ギャップ 6を 介して設けられている。ロータコア 5は薄い円盤状の電磁鋼板が積層されて形成され た円筒状のもので、その内部に図示しない永久磁石が埋設されている。ロータコア 5 の内周には回転軸 7が嵌合されて!/、て、互いに回転しな!/、よう図示しな!/、キーなどで
固定されている。 Reference numeral 2 denotes a cylindrical frame, and a cylindrical stator winding 3 and a stator core 30 are held on the inner periphery thereof. A lead 4 connected to the stator winding 3 is led out of the motor from a B bracket 11 to be described later, and a current is sent to the stator winding 3 through the lead 4 from a power source (not shown). . A rotor core 5 is provided on the inner periphery of the stator winding 3 via a predetermined electromagnetic gap 6. The rotor core 5 has a cylindrical shape formed by laminating thin disc-shaped electromagnetic steel plates, and a permanent magnet (not shown) is embedded therein. The rotary shaft 7 is fitted on the inner periphery of the rotor core 5! /, And do not rotate with each other! / It is fixed.
一方、円筒状のフレーム 2の両端には Aブラケット 10と Bブラケット 11と力 フレーム 2 の内部空間を封じるように取り付けられている。そして、 Aブラケット 10には軸受 8の 外周が保持され、 Bブラケット 11には軸受 9の外周が保持されている。軸受 8、 9の内 周に回転軸 7の両端部がそれぞれ嵌入されて!/、て、これにより回転軸 7は回転自在 に保持されている。回転軸 7の一端は Aブラケット 10に対して貫通しており、その先 端に図示しない負荷が取り付けられる。一方回転軸 7の他端には、レゾルバ 12が設 けられて!/、て、回転軸 7の角度検出を行うよう構成されて!/、る。 On the other hand, both ends of the cylindrical frame 2 are attached so as to seal the internal spaces of the A bracket 10, the B bracket 11 and the force frame 2. The A bracket 10 holds the outer periphery of the bearing 8, and the B bracket 11 holds the outer periphery of the bearing 9. Both ends of the rotary shaft 7 are fitted into the inner circumferences of the bearings 8 and 9, respectively, so that the rotary shaft 7 is held rotatably. One end of the rotary shaft 7 penetrates the A bracket 10, and a load (not shown) is attached to the front end. On the other hand, a resolver 12 is provided at the other end of the rotary shaft 7! /, And is configured to detect the angle of the rotary shaft 7! /.
以上が本発明の第 1の実施例における回転電動機の構成概要であって、これらは 既に公知の構成である。本実施例では、所謂 IPMモータの構成を示している。 なお、以下、説明の便宜上、図 1の右側つまり Aブラケット 10側を負荷側、図 1の左 側つまり Bブラケット 11側を反負荷側と呼称する。また、ロータコア 5と回転軸 7とをま とめてロータ 13と呼称する。 The above is the outline of the configuration of the rotary motor according to the first embodiment of the present invention, and these are already known configurations. In this embodiment, a so-called IPM motor configuration is shown. Hereinafter, for convenience of explanation, the right side in FIG. 1, that is, the A bracket 10 side is referred to as the load side, and the left side in FIG. The rotor core 5 and the rotating shaft 7 are collectively referred to as a rotor 13.
[0010] 以上のような回転電動機では、主に、固定子巻線 3及びロータコア 5で発生する熱 損失を放熱させる必要があることはいうまでもない。そこで本発明では、概ね、ロータ に設けたフィンによってフレーム 2の空間内で気体の循環を行わせてこの熱を除熱さ せるとともに、フレーム 2の部材内を循環させた冷却用液体によって、電動機全体の 冷却を行わせつつ、フレーム 2内を循環した気体を効率よく冷却させる構成について 開示する。即ち、本発明では空冷と水冷 (液冷)による冷却構造を有しており、以下、 これらの冷却構造について説明する。冷却構造を説明するにあたって、図 1に加えて 図 2及び図 3も参照する。図 2は図 1において YY'から見た全体図を示している。つま り図 2は反負荷側から見た図であって、 Bブラケット 11を透視した図を示している。ま た、図 3は図 1において負荷側から見た全体図を示している。従って、図 2或いは図 3 における XX'断面図が図 1である。 [0010] Needless to say, in the rotary electric motor as described above, it is necessary to radiate mainly heat loss generated in the stator winding 3 and the rotor core 5. Therefore, in the present invention, generally, the fin is provided in the rotor to circulate the gas in the space of the frame 2 to remove this heat, and the cooling liquid circulated in the members of the frame 2 A configuration for efficiently cooling the gas circulated in the frame 2 while cooling is disclosed. That is, the present invention has a cooling structure by air cooling and water cooling (liquid cooling), and these cooling structures will be described below. In describing the cooling structure, refer to FIG. 2 and FIG. 3 in addition to FIG. Figure 2 shows the overall view from YY 'in Figure 1. In other words, FIG. 2 is a view seen from the side opposite to the load, and shows a perspective view of the B bracket 11. Fig. 3 shows an overall view from the load side in Fig. 1. Therefore, the XX 'cross-sectional view in Fig. 2 or Fig. 3 is Fig. 1.
[0011] まず、フレーム 2内の気体を循環させながら電動機内部を除熱する空冷構成につ いて説明する。図 1のように、本実施例ではロータコア 5の両端に第一のエンドエリン グ 14と第二のエンドリング 15とが設けられている。これらのエンドリングは、ロータコア 5を両端から狭持するようにロータコア 5に対して一体的に構成されている。図 1にお
いて第一のエンドリング 14のみを Z方向から見た図が図 4である。また、図 1において 第二のエンドリング 15のみを W方向から見た図が図 5である。 [0011] First, an air cooling configuration for removing heat from the inside of the electric motor while circulating the gas in the frame 2 will be described. As shown in FIG. 1, in this embodiment, a first end ring 14 and a second end ring 15 are provided at both ends of the rotor core 5. These end rings are formed integrally with the rotor core 5 so as to sandwich the rotor core 5 from both ends. Figure 1 Fig. 4 shows only the first end ring 14 as seen from the Z direction. Further, FIG. 5 shows only the second end ring 15 as viewed from the W direction in FIG.
第一のエンドリング 14には、その一面に複数のフィン 16が設けられている。フィン 1 6は第一のエンドリング 14からほぼ垂直に立設されていて、第一のエンドリング 14の 外周部分に近!/、箇所に全周にわたつて複数配置されて!/、る。本実施例では全周 8 箇所に等分配置されている。なお、 17はフィン 16の配置と同様に設けられたバラン ス用ネジ穴であって、ロータ 13が回転したときの偏芯による遠心力を除去するために おもりなどを取り付けるためのものである。また、第一のエンドリング 14には、フィン 16 らのさらに中心側に複数のロータ通風穴 18が設けられている。ロータ通風穴 18らは 第一のエンドリング 14を貫通している。本実施例では全周 8箇所に等分配置されて いる。 The first end ring 14 is provided with a plurality of fins 16 on one surface thereof. The fins 16 are erected almost vertically from the first end ring 14, and are arranged near the outer peripheral portion of the first end ring 14, and a plurality of fins 16 are arranged over the entire periphery! In the present embodiment, it is equally divided into eight places on the entire circumference. Reference numeral 17 denotes a balancing screw hole provided in the same manner as the arrangement of the fins 16 for attaching a weight or the like to remove centrifugal force due to eccentricity when the rotor 13 rotates. Further, the first end ring 14 is provided with a plurality of rotor ventilation holes 18 on the further center side of the fins 16. The rotor ventilation holes 18 pass through the first end ring 14. In the present embodiment, it is equally divided into eight places on the entire circumference.
そして、ロータコア 5にも、第一のエンドリング 14のロータ通風穴 18と対応する位置 に、同じ数だけのロータ通風穴 18が形成されている。 The same number of rotor ventilation holes 18 are formed in the rotor core 5 at positions corresponding to the rotor ventilation holes 18 of the first end ring 14.
また、第二のエンドリング 15にも、第一のエンドリング 14とロータコア 5のロータ通風 穴 18と対応する位置に、同じ数だけのロータ通風穴 18が形成されている。 Further, the same number of rotor ventilation holes 18 are formed in the second end ring 15 at positions corresponding to the first end ring 14 and the rotor ventilation holes 18 of the rotor core 5.
従って、ロータ通風穴 18は、負荷側から反負荷側へ貫通するロータ 13の通風路とし て形成されている。 Therefore, the rotor ventilation hole 18 is formed as a ventilation path of the rotor 13 penetrating from the load side to the anti-load side.
一方、図 1に示すように、フレーム 2にはフレーム通風穴 19が設けられている。フレ ーム通風穴 19は、概ね回転軸 7の軸方向と沿うようにフレーム 2の部材に設けられた 穴であって、その穴の一端は、 Aブラケット 10と固定子巻線 3の負荷側部分との間の 空間に開口(貫通)している。また、その穴の他端は、 Bブラケット 11と固定子巻線 3 の反負荷側部分との間の空間に貫通している。フレーム通風穴 19は、図 2あるいは 図 3が示すように、円筒状のフレーム 2の部材の全周に複数箇所設けられている。本 実施例では全周 5箇所に配置されて!/、る。 On the other hand, as shown in FIG. 1, the frame 2 is provided with a frame ventilation hole 19. The frame ventilation hole 19 is a hole provided in the member of the frame 2 so as to be substantially along the axial direction of the rotary shaft 7, and one end of the hole is on the load side of the A bracket 10 and the stator winding 3. There is an opening (penetration) in the space between the parts. Further, the other end of the hole penetrates the space between the B bracket 11 and the anti-load side portion of the stator winding 3. As shown in FIG. 2 or FIG. 3, a plurality of frame ventilation holes 19 are provided on the entire circumference of the member of the cylindrical frame 2. In this example, it is arranged at 5 locations all around!
以上の構成によれば、ロータ 13が回転すると、フィン 16の作用によって、図 1の A 空間 20の部分の気圧が上昇するので、フレーム 2の内部空間の気体は矢印 21のよ うに流れ、フレーム通風穴 19へと侵入していく。フレーム通風穴 19を通過した気体は 、負荷側から反負荷側へと移動し、再びフレーム 2の内部空間へと侵入する。そして
気体は固定子巻線 3のコイルエンド 22の部分を通過しながら、ロータ 13のロータ通 風穴 18と、電磁ギャップ 6へと侵入する。そしてロータ通風穴 18と電磁ギャップ 6を反 負荷側から負荷側へと移動しながら、ロータ 13の負荷側の空間へと到達する。 According to the above configuration, when the rotor 13 rotates, the pressure in the portion of the A space 20 in FIG. 1 increases due to the action of the fins 16, so that the gas in the internal space of the frame 2 flows as shown by the arrow 21, It enters the vent hole 19. The gas that has passed through the frame ventilation hole 19 moves from the load side to the anti-load side, and enters the internal space of the frame 2 again. And The gas enters the rotor ventilation hole 18 of the rotor 13 and the electromagnetic gap 6 while passing through the coil end 22 of the stator winding 3. The rotor ventilation hole 18 and the electromagnetic gap 6 reach the load side space of the rotor 13 while moving from the opposite load side to the load side.
このように、ロータ 13が回転していればフレーム 2内の内部空間の気体は循環し、 固定子巻線 3、ロータコア 5、コイルエンド 22を冷却する。また、本実施例のように、軸 受 8或いは軸受 8の外周を保持する Aブラケット 10のハウジング部分に対向するよう な位置にロータ通風穴 18を配置していれば、軸受 8の冷却も期待できる。 Thus, if the rotor 13 is rotating, the gas in the internal space in the frame 2 circulates, and the stator winding 3, the rotor core 5, and the coil end 22 are cooled. Further, if the rotor ventilation hole 18 is arranged at a position facing the housing portion of the A bracket 10 that holds the outer periphery of the bearing 8 or the bearing 8 as in this embodiment, the cooling of the bearing 8 is also expected. it can.
[0013] なお、第二のエンドリング 15のロータ通風穴 18らは、図 4が示すように、穴の縁の一 部が突縁しており、突出した部分の先端は尖るように形成されている。そしてその尖 つた方向は、図 4の矢印の回転方向が示すように、本電動機が主に使用される回転 方向と同方向となるよう配置されている。例えば電動機が発電機に使用されるならば 、主に使用される回転方向が自ずと決定される。この形状により、第二のエンドリング 15のロータ通風穴 18から周囲の気体が穴に引き込まれやすくなるようになつている。 また本実施例では、図 1のように、フレーム 2の内部空間へと貫通するフレーム通風 穴 19の端部を 23で示すように傾斜させたり、フィン 16と対向する Aブラケット 10の軸 受 8のハウジング部分を 24で示すように傾斜させたり、或いは、ロータ 13の反負荷側 と対向する Bブラケット 11の軸受 9のハウジング部分を、 25で示すように傾斜させたり することで、上記の気体の循環が抵抗無くなされるように構成されている。 In addition, as shown in FIG. 4, the rotor ventilation holes 18 and the like of the second end ring 15 are formed so that a part of the edge of the hole protrudes and the tip of the protruding part is sharp. ing. The pointed direction is arranged to be the same direction as the rotation direction in which the present motor is mainly used, as indicated by the rotation direction of the arrow in FIG. For example, if an electric motor is used for a generator, the rotation direction mainly used is naturally determined. With this shape, the surrounding gas is easily drawn into the hole from the rotor ventilation hole 18 of the second end ring 15. Further, in this embodiment, as shown in FIG. 1, the end of the frame ventilation hole 19 penetrating into the internal space of the frame 2 is inclined as indicated by 23, or the bearing of the A bracket 10 facing the fin 16 8 By inclining the housing portion of the bearing 9 as shown by 24, or by inclining the housing portion of the bearing 9 of the B bracket 11 facing the opposite side of the rotor 13 as shown by 25, the above gas It is configured so that the circulation of the air is eliminated without resistance.
[0014] 次に、フレーム 2の部材内を循環させた冷却用液体によって冷却する水冷構成に ついて説明する。 [0014] Next, a water-cooling configuration in which cooling is performed by the cooling liquid circulated through the members of the frame 2 will be described.
図 1、図 2及び図 3が示すように、本実施例ではフレーム 2の部材内に回転軸 7の軸 方向と同じ方向でフレーム水路 26a〜26tの計 20本の水路が形成されており、これら 水路に冷却水などの冷却用液体を流通させることで、主に固定子巻線 3から伝達さ れてくる熱を除熱させる。フレーム水路 26a〜26tに液体を流入させるための入口が A継手 27であり、流出させるための出口力 ¾継手 28である。本実施例では A継手 27 及び B継手 28は Bブラケット 11に揷入されている。以下、特に説明はしないが、水路 を繋ぐ部分の周囲には、 Oリングなどのシール部材が適宜設けられていて、液漏れが 発生しないよう構成されている。 A継手 27から流入された液体はまず、 26aの水路に
流入して負荷側へと移動する。一方、水路 26aの負荷側では、 Aブラケット 10に形成 された折り返し溝 29が水路 26aと対向するように形成されているので、この折り返し溝 29に液体が流入する。また、この折り返し溝 29は水路 26aに隣接する水路 26bとも 対向し、連通するよう形成されているので、液体は折り返し溝 29で折り返すように水 路 26bに流入し、今度は負荷側から反負荷側へと移動する。そして、水路 26bの反 負荷側では、 Bブラケット 11に形成された折り返し溝 29が水路 26bと対向するように 形成されているので、この折り返し溝 29に液体が流入する。同様に、この折り返し溝 29は水路 26bに隣接する水路 26cとも対向し、連通するよう形成されているので、液 体は再び折り返して水路 26cに流入し、再び反負荷側から負荷側へと移動する。以 下、同様な構成で、冷却用液体が、隣合う水路 26a〜26tを負荷側から反負荷側方 向へいったりきたりしながら移動し、最後に B継手 28から流出される。従ってフレーム 2の部材内のこれら水路 26を移動する間に、固定子巻線 3から伝達されてきた熱を 除熱する。 As shown in FIGS. 1, 2 and 3, in this embodiment, a total of 20 water channels 26a to 26t are formed in the member of the frame 2 in the same direction as the axial direction of the rotary shaft 7, By circulating a cooling liquid such as cooling water through these water channels, the heat mainly transmitted from the stator winding 3 is removed. An inlet for injecting liquid into the frame water channels 26a to 26t is an A joint 27, and an outlet force for allowing the liquid to flow out is a joint 28. In this embodiment, the A joint 27 and the B joint 28 are inserted into the B bracket 11. Although not specifically described below, a seal member such as an O-ring is appropriately provided around the portion connecting the water channels so that no liquid leakage occurs. The liquid flowing in from the A joint 27 first enters the 26a channel. It flows in and moves to the load side. On the other hand, on the load side of the water channel 26a, the folded groove 29 formed in the A bracket 10 is formed so as to face the water channel 26a, so that the liquid flows into the folded groove 29. Further, since the folding groove 29 is formed so as to be opposed to and communicate with the water channel 26b adjacent to the water channel 26a, the liquid flows into the water channel 26b so as to be folded back at the folding groove 29, and this time, the load is counter-loaded from the load side. Move to the side. On the opposite load side of the water channel 26b, the folded groove 29 formed in the B bracket 11 is formed so as to face the water channel 26b, so that the liquid flows into the folded groove 29. Similarly, since the folding groove 29 is formed so as to be opposed to and communicate with the water channel 26c adjacent to the water channel 26b, the liquid turns back again and flows into the water channel 26c, and again moves from the anti-load side to the load side. To do. Thereafter, with the same configuration, the cooling liquid moves in the adjacent water channels 26a to 26t while moving from the load side to the counter load side, and finally flows out from the B joint 28. Therefore, the heat transferred from the stator winding 3 is removed while moving through the water channels 26 in the members of the frame 2.
[0015] ここで、特にフレーム 2の部材内において、先に空冷構造で説明したフレーム通風 穴 19と、水冷構造で説明したフレーム水路 26a〜26tとの位置関係について補足す る。本発明では複数のフレーム水路の間にフレーム通風穴を配置することで、フレー ム 2内を循環して暖められた気体がフレーム通風穴 19を通過する際に、フレーム水 路 26によって除熱されるよう構成されている。つまり、フレーム通風穴 19は、図 2或い は図 3が示すように全周 5箇所にある力 この複数のフレーム通風穴 19がフレーム 2 の部材において、フレーム水路 26a〜tの間に位置するよう配置されている。また、フ レーム通風穴 19は、それぞれの通風穴の両端が、円筒状フレーム 2の内周面に貫 通するように形成されているので、フレーム水路 26らと干渉せず配置できる。 [0015] Here, particularly in the members of the frame 2, the positional relationship between the frame ventilation holes 19 described above for the air cooling structure and the frame water passages 26a to 26t described for the water cooling structure will be supplemented. In the present invention, by arranging the frame ventilation holes between the plurality of frame water channels, the gas circulated through the frame 2 and warmed is removed by the frame water channels 26 when passing through the frame ventilation holes 19. It is configured as follows. That is, as shown in FIG. 2 or FIG. 3, the frame ventilation hole 19 has a force at five locations on the entire circumference. The plurality of frame ventilation holes 19 are located between the frame water channels 26a to 26t in the frame 2 member. It is arranged as follows. Further, the frame ventilation holes 19 can be arranged without interfering with the frame water channels 26 because both ends of each ventilation hole are formed so as to penetrate the inner peripheral surface of the cylindrical frame 2.
[0016] 従って本発明では、固定子巻線 3やロータ 13で発生した熱は、上記水冷構成によ りフレーム 2から除熱され、一方、上記空冷構成によりフレーム 2の内部空間を循環し た気体によっても除熱される。そして、循環して暖められた気体はフレーム 2の部材 内で水冷構成の作用によって除熱されながら電動機内を除熱させるので、電動機が 高温環境下に置かれても、電動機内部の気体の温度が過度に上昇することもない。 実施例 2
[0017] 次に、本発明の第 2の実施例における回転電動機の構成の概要について図 6及び 図 7により説明する。図 6は、本発明の第 2の実施例における回転電動機 1の側断面 図を示している。図 7は図 6において VV'から見た全体図を示している。つまり図 7は 反負荷側から見た図であって、 Bブラケット 11を透視した図を示している。なお、第 2 の実施例の構成要素で第 1の実施例と同じものについてはその説明を省略し、異な る点について説明する。第 2の実施例は、第 1の実施例に対して空冷構成が異なる。 図において、 31はフレーム通風溝、 32は固定子コア外周に設けられた突起部であ フレーム通風溝 31はフレーム 2の内周に設けられた溝で、フレーム 2の軸方向に沿つ て設けられている。図 7が示すように、溝の断面は U字形状になっていて、 U字の上 部でフレーム 2の内周に対して貫通している。また、フレーム 2の円筒全周においてフ レーム水路 26と干渉しない位置に計 5箇所設けてある。 Accordingly, in the present invention, the heat generated in the stator winding 3 and the rotor 13 is removed from the frame 2 by the water cooling configuration, and is circulated through the internal space of the frame 2 by the air cooling configuration. Heat is also removed by gas. The circulating and warmed gas removes heat inside the motor while being removed by the action of the water cooling structure in the frame 2 member, so even if the motor is placed in a high temperature environment, the temperature of the gas inside the motor Does not rise excessively. Example 2 Next, an outline of the configuration of the rotary motor in the second embodiment of the present invention will be described with reference to FIGS. 6 and 7. FIG. FIG. 6 shows a sectional side view of the rotary electric motor 1 according to the second embodiment of the present invention. Figure 7 shows the overall view from VV 'in Figure 6. That is, FIG. 7 is a view seen from the side opposite to the load, and shows a perspective view of the B bracket 11. Note that the description of the same components as those of the first embodiment in the second embodiment is omitted, and different points will be described. The second embodiment is different from the first embodiment in the air cooling configuration. In the figure, 31 is a frame ventilation groove, 32 is a protrusion provided on the outer periphery of the stator core, and frame ventilation groove 31 is a groove provided on the inner periphery of frame 2, which is provided along the axial direction of frame 2. It has been. As shown in FIG. 7, the cross section of the groove is U-shaped and penetrates the inner periphery of the frame 2 at the top of the U-shape. In addition, a total of five locations are provided at positions that do not interfere with the frame water channel 26 on the entire circumference of the cylinder of the frame 2.
突起部 32は固定子コア 30の外周部分であって固定子コア 30の軸方向に沿って設 けられている突起である。図 7が示すように、突起の断面は略三角形状になっていて 、上記フレーム通風溝 31の溝に突出するように形成されている。 The protrusion 32 is an outer peripheral portion of the stator core 30 and is provided along the axial direction of the stator core 30. As shown in FIG. 7, the protrusion has a substantially triangular cross section and is formed so as to protrude into the frame ventilation groove 31.
すなわち、本発明の第 2の実施例が第 1の実施例と異なる点は、フレーム通風穴 19 をフレーム 2の内周面へ貫通させて溝形状のフレーム通風溝 31としたことと、固定子 コア 30の外周面に、フレーム通風溝 31内へ突出するように突起部 32を設けたことで ある。 That is, the second embodiment of the present invention is different from the first embodiment in that the frame ventilation hole 19 is penetrated to the inner peripheral surface of the frame 2 to form a groove-shaped frame ventilation groove 31 and the stator. The protrusion 32 is provided on the outer peripheral surface of the core 30 so as to protrude into the frame ventilation groove 31.
突起部 32は、循環する気体の抵抗にならないように軸方向の断面積は小さぐフレ ーム通風溝 31内へ突出する部分の総面積は広いことが望ましい。よって、本実施例 では断面を三角形状としている力 三角の周囲に小さな溝をつけ、突起部 32の表面 積を大きくしたほうがよりよい。また、熱伝達を考慮すると、突起部 32は固定子コア 30 と一体となっていることが望ましい。一例として、固定子コア 30を薄い円盤状の電磁 鋼板を積層して形成する際、突起部 32を有する薄い電磁鋼板を積層して固定子コ ァ 30を製作すればよい。また、その他の例として、電磁鋼板を積層してこれらを溶接 する場合、溶接部のビードを突起部 32のような突起形状にすることも挙げられる。 It is desirable that the protrusion 32 has a small total cross-sectional area in the axial direction so that it does not become a resistance of the circulating gas and has a large total area protruding into the frame ventilation groove 31. Therefore, in this embodiment, it is better to provide a small groove around the force triangle having a triangular cross section and to increase the surface area of the protrusion 32. In consideration of heat transfer, the protrusion 32 is preferably integrated with the stator core 30. As an example, when the stator core 30 is formed by laminating thin disk-shaped electromagnetic steel plates, the stator core 30 may be manufactured by laminating thin electromagnetic steel plates having protrusions 32. As another example, when magnetic steel sheets are laminated and welded, the bead of the welded portion may be formed into a protruding shape such as the protruding portion 32.
[0018] 次に、本発明の第 2の実施例による空冷構成の作用効果を説明する。
本実施例では、フレーム 2の内部気体が循環する際、固定子コア 30の外周面の一部 力 Sフレーム通風溝 31と接しているため、固定子コア 30の外周面にも循環する気体が 直接接触し、固定子コア 30を冷却する。このため、第 2の実施例では固定子コア 30 が内周に保持する固定子巻線 3は、固定子コア 30側からも除熱でき、主な発熱源で ある固定子巻線 3を効果的に除熱できる。 Next, the function and effect of the air cooling configuration according to the second embodiment of the present invention will be described. In this embodiment, when the internal gas in the frame 2 circulates, a partial force on the outer peripheral surface of the stator core 30 is in contact with the S-frame ventilation groove 31, so that the circulating gas also flows on the outer peripheral surface of the stator core 30. The stator core 30 is cooled by direct contact. For this reason, in the second embodiment, the stator winding 3 held by the stator core 30 on the inner periphery can also remove heat from the stator core 30 side, and the stator winding 3, which is the main heat source, is effective. Heat can be removed.
さらに、固定子コア 30の外周面に、フレーム通風溝 31内へ突出するように突起部 3 2を設けることにより、循環気体が接触する固定子コア 30の外周面の表面積が広くな るため、固定子コア 30の冷却効果が大きくなり、固定子コア 30に巻かれた固定子巻 線 3の除熱効果も大きくすることができる。 Furthermore, by providing the protrusion 32 on the outer peripheral surface of the stator core 30 so as to protrude into the frame ventilation groove 31, the surface area of the outer peripheral surface of the stator core 30 with which the circulating gas comes into contact is increased. The cooling effect of the stator core 30 is increased, and the heat removal effect of the stator winding 3 wound around the stator core 30 can be increased.
また、フレーム 2の通風部を溝形状にしたので、第 1の実施例のフレーム通風穴 19 のように、掘り込みの深い加工が困難な穴加工に比べ、フレーム 2部品の加工を容易 に fiうことができる。 In addition, since the ventilation part of frame 2 has a groove shape, it is easier to machine two parts of the frame compared to the hole machining, which is difficult to drill deeply like the frame ventilation hole 19 in the first embodiment. I can.
産業上の利用可能性 Industrial applicability
本発明は、全閉形の回転電動機のほか、ファンと冷却液体とを併用して冷却する回 転電動機に利用できる。
INDUSTRIAL APPLICABILITY The present invention can be used for a rotary motor that cools by using both a fan and a cooling liquid in addition to a fully-closed rotary motor.
Claims
[1] 固定子巻線と固定子コアを内周面に保持する略円筒状のフレームと、前記フレー ムの両端を密閉するブラケットと、前記ブラケットに設けられた軸受に支持され、前記 固定子巻線の電磁作用によって回転するロータと、とを備える回転電動機にお!/、て、 前記ロータにフィンを設けるとともに、前記フレームの部材内にフレーム通風穴を設 け、前記フィンによって、前記フレームの内部気体を前記フレーム通風穴を通過させ ながら循環させて電動機の内部空間の除熱を行レ \ [1] A substantially cylindrical frame that holds a stator winding and a stator core on an inner peripheral surface, a bracket that seals both ends of the frame, and a bearing provided on the bracket, and the stator And a rotor that rotates by electromagnetic action of windings! /, And a fin in the rotor and a frame ventilation hole in a member of the frame, and the fin allows the frame to The internal gas of the motor is circulated while passing through the frame ventilation holes to remove heat from the internal space of the motor.
前記フレームの部材内にさらにフレーム水路を設け、前記フレーム通風穴を通過す る前記内部気体を前記フレーム水路に流れる液体によって除熱させることを特徴とす る回転電動機。 A rotary electric motor characterized in that a frame water channel is further provided in a member of the frame, and the internal gas passing through the frame ventilation hole is removed by heat flowing through the frame water channel.
[2] 前記フィンは、前記ロータの軸方向の一端面に突出して設けられ、前記ロータの回 転方向に並ぶ複数のフィンであって、該フィンが前記ブラケットの内壁との間の空間 に位置するよう前記ロータに設けられていることを特徴とする請求項 1記載の回転電 動機。 [2] The fins are a plurality of fins that protrude from one end surface in the axial direction of the rotor and are arranged in the rotation direction of the rotor, and the fins are located in a space between the inner wall of the bracket. The rotary electric machine according to claim 1, wherein the rotary electric machine is provided on the rotor.
[3] 前記ロータに、前記ロータの回転軸方向に貫通する複数のロータ通風穴が設けら れていることを特徴とする請求項 2記載の回転電動機。 3. The rotary electric motor according to claim 2, wherein the rotor is provided with a plurality of rotor ventilation holes penetrating in the rotation axis direction of the rotor.
[4] 前記ロータ通風穴の一端は、縁の一部が突縁しており、突縁した部分の先端の方 向力 前記ロータが主に回転する方向と同方向となるよう形成されていることを特徴と する請求項 3記載の回転電動機。 [4] One end of the rotor ventilation hole has a protruding edge, and the direction force at the tip of the protruding portion is formed to be in the same direction as the direction in which the rotor mainly rotates. 4. The rotary electric motor according to claim 3, wherein
[5] 前記ロータ通風穴が、前記フィンより回転軸寄りに配置されるとともに、前記ブラケッ トの軸受に対向する位置に設けられていることを特徴とする請求項 3記載の回転電動 機。 5. The rotary motor according to claim 3, wherein the rotor ventilation hole is disposed closer to the rotation axis than the fin and is provided at a position facing the bearing of the bracket.
[6] 前記フレーム通風穴は、前記フレームの部材内において概ね回転軸方向に延びる 通路であって、該フレーム通風穴の両端は、それぞれが前記フレームの内周面に向 力、い、前記固定子巻線を挟むように開口していることを特徴とする請求項 1記載の回 転電動機。 [6] The frame ventilation hole is a passage extending substantially in the direction of the rotation axis in the frame member, and both ends of the frame ventilation hole are directed toward the inner peripheral surface of the frame, and are fixed. 2. The rotating motor according to claim 1, wherein the rotating motor is opened so as to sandwich the child winding.
[7] 前記フレーム通風穴の一端は前記固定子巻線のコイルエンド部分に向かって開口 していることを特徴とする請求項 6記載の回転電動機。
7. The rotary electric motor according to claim 6, wherein one end of the frame ventilation hole opens toward a coil end portion of the stator winding.
[8] 前記フレーム水路は、前記フレームの部材内で軸方向に延在する複数の水路であ つて、前記液体が、隣合う前記フレーム水路を軸方向に互いに反対に流れるよう構 成されていること特徴とする請求項 1記載の回転電動機。 [8] The frame water channel is a plurality of water channels extending in the axial direction in the frame member, and the liquid is configured to flow in the axial direction opposite to each other in the adjacent frame water channel. The rotary electric motor according to claim 1.
[9] 前記ブラケットは、前記フレームの両端を密閉する第一及び第二のブラケットで構 成され、前記第一及び第二のブラケットには前記フレーム水路のうち、隣合う 2つの 水路のみに対向する折り返し溝が形成され、該折り返し溝によって前記フレーム水路 の隣合う 2つの水路が折り返すよう連通されることを特徴とする請求項 8記載の回転 電動機。 [9] The bracket is composed of first and second brackets that seal both ends of the frame, and the first and second brackets face only two adjacent water channels out of the frame water channels. 9. The rotary electric motor according to claim 8, wherein a folding groove is formed, and the two water channels adjacent to the frame water channel are communicated with each other by the folding groove.
[10] 前記フレーム通風穴が、前記フレーム水路の間に位置するよう配置されている構成 されていることを特徴とする請求項 8記載の回転電動機。 10. The rotary electric motor according to claim 8, wherein the frame ventilation holes are arranged so as to be positioned between the frame water channels.
[11] 固定子巻線と固定子コアを内周面に保持する略円筒状のフレームと、前記フレー ムの両端を密閉するブラケットと、前記ブラケットに設けられた軸受に支持され、前記 固定子巻線の電磁作用によって回転するロータと、とを備える回転電動機にお!/、て、 前記ロータにフィンを設けるとともに、前記フレームの内周面にフレーム通風溝を設 け、前記フィンによって、前記フレームの内部気体を前記フレーム通風溝を通過させ ながら循環させて電動機の内部空間の除熱を行レ \ [11] A substantially cylindrical frame that holds the stator winding and the stator core on the inner peripheral surface, a bracket that seals both ends of the frame, and a bearing provided on the bracket, and the stator And a rotor that is rotated by electromagnetic action of the winding! /, And a fin on the rotor and a frame ventilation groove on the inner peripheral surface of the frame, The internal gas in the frame is circulated while passing through the frame ventilation groove to remove heat from the internal space of the motor.
前記フレームの部材内にさらにフレーム水路を設け、前記フレーム通風穴を通過す る前記内部気体を前記フレーム水路に流れる液体によって除熱させることを特徴とす る回転電動機。 A rotary electric motor characterized in that a frame water channel is further provided in a member of the frame, and the internal gas passing through the frame ventilation hole is removed by heat flowing through the frame water channel.
[12] 前記固定子コアの外周面に、前記フレーム通風溝内へ突出した突起部が設けられ て!/、ることを特徴とする請求項 11記載の回転電動機。
12. The rotary electric motor according to claim 11, wherein a projection protruding into the frame ventilation groove is provided on the outer peripheral surface of the stator core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008544098A JPWO2008059687A1 (en) | 2006-11-17 | 2007-10-17 | Rotating motor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-310889 | 2006-11-17 | ||
JP2006310889 | 2006-11-17 | ||
JP2007212613 | 2007-08-17 | ||
JP2007-212613 | 2007-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008059687A1 true WO2008059687A1 (en) | 2008-05-22 |
Family
ID=39401500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/070223 WO2008059687A1 (en) | 2006-11-17 | 2007-10-17 | Rotary motor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2008059687A1 (en) |
WO (1) | WO2008059687A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010115539A1 (en) | 2009-04-08 | 2010-10-14 | Sew-Eurodrive Gmbh & Co. Kg | Electric motor |
JP2011524251A (en) * | 2008-06-13 | 2011-09-01 | アルストム テクノロジー リミテッド | Electronically controlled journal loading system |
WO2011154205A3 (en) * | 2010-06-11 | 2012-09-20 | Siemens Aktiengesellschaft | Dynamoelectric machine having air/liquid cooling |
WO2013152473A1 (en) * | 2012-04-10 | 2013-10-17 | General Electric Company | System and method for cooling an electric motor |
WO2019165523A1 (en) * | 2018-03-02 | 2019-09-06 | Weg Equipamentos Elétricos S.a. | Electric rotating machine with heat exchange channels for air and for liquid |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09149599A (en) * | 1995-11-27 | 1997-06-06 | Hitachi Ltd | Totally enclosed rotating electric machine |
JPH09285072A (en) * | 1996-04-11 | 1997-10-31 | Nikkiso Co Ltd | High-speed motor |
JPH09285073A (en) * | 1996-04-19 | 1997-10-31 | Fuji Electric Co Ltd | Coolant-cooled dynamo-electric machine |
JP2000116061A (en) * | 1998-10-07 | 2000-04-21 | Mitsubishi Motors Corp | Cooling structure of rotating electric machine |
JP2006025521A (en) * | 2004-07-07 | 2006-01-26 | Toshiba Corp | Full closure motor for driving vehicle |
JP2006050683A (en) * | 2004-07-30 | 2006-02-16 | Toshiba Corp | Full closing motor for vehicle |
-
2007
- 2007-10-17 JP JP2008544098A patent/JPWO2008059687A1/en active Pending
- 2007-10-17 WO PCT/JP2007/070223 patent/WO2008059687A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09149599A (en) * | 1995-11-27 | 1997-06-06 | Hitachi Ltd | Totally enclosed rotating electric machine |
JPH09285072A (en) * | 1996-04-11 | 1997-10-31 | Nikkiso Co Ltd | High-speed motor |
JPH09285073A (en) * | 1996-04-19 | 1997-10-31 | Fuji Electric Co Ltd | Coolant-cooled dynamo-electric machine |
JP2000116061A (en) * | 1998-10-07 | 2000-04-21 | Mitsubishi Motors Corp | Cooling structure of rotating electric machine |
JP2006025521A (en) * | 2004-07-07 | 2006-01-26 | Toshiba Corp | Full closure motor for driving vehicle |
JP2006050683A (en) * | 2004-07-30 | 2006-02-16 | Toshiba Corp | Full closing motor for vehicle |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011524251A (en) * | 2008-06-13 | 2011-09-01 | アルストム テクノロジー リミテッド | Electronically controlled journal loading system |
WO2010115539A1 (en) | 2009-04-08 | 2010-10-14 | Sew-Eurodrive Gmbh & Co. Kg | Electric motor |
WO2011154205A3 (en) * | 2010-06-11 | 2012-09-20 | Siemens Aktiengesellschaft | Dynamoelectric machine having air/liquid cooling |
RU2561146C2 (en) * | 2010-06-11 | 2015-08-27 | Сименс Акциенгезелльшафт | Air to water cooled dynamo-electric machine |
US9225224B2 (en) | 2010-06-11 | 2015-12-29 | Siemens Aktiengesellschaft | Dynamoelectric machine having air/liquid cooling |
WO2013152473A1 (en) * | 2012-04-10 | 2013-10-17 | General Electric Company | System and method for cooling an electric motor |
WO2019165523A1 (en) * | 2018-03-02 | 2019-09-06 | Weg Equipamentos Elétricos S.a. | Electric rotating machine with heat exchange channels for air and for liquid |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008059687A1 (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5482376B2 (en) | Hermetic rotary electric machine | |
EP2135344B1 (en) | Cooling an electrical machine | |
US20150162805A1 (en) | Rotor of rotating electrical machine and rotating electrical machine | |
WO2013001645A1 (en) | Rotating electrical machine | |
KR101114713B1 (en) | A electric motor and cooling unit thereof | |
JP2007053844A (en) | Fan motor | |
CN111725928B (en) | Rotating electric machine and rotor shaft | |
JP2004312898A (en) | Rotor, stator, and rotating machine | |
WO2008059687A1 (en) | Rotary motor | |
JP6007951B2 (en) | Rotating electric machine | |
KR20140097676A (en) | A device for cooling a motor | |
KR20110136055A (en) | electric motor having complex cooling casing | |
JP2009011059A (en) | Rotary electric machine | |
WO2016079806A1 (en) | Rotary electric machine | |
WO2022044450A1 (en) | Rotary electrical machine | |
CN111628589B (en) | Rotary electric machine | |
JP5724301B2 (en) | Generator cooling structure | |
KR101114689B1 (en) | A electric motor and cooling unit thereof | |
JP4213537B2 (en) | Rotor and permanent magnet electric device | |
EP4152567B1 (en) | Rotary electric machine | |
EP4350958A1 (en) | Rotary electrical machine | |
KR100656270B1 (en) | Induction generator advanced heat conduction of stator core | |
JP6459853B2 (en) | Rotating electric machine | |
JP2023152327A (en) | Rotary electric machine | |
CN115664091A (en) | Electrical machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07829957 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008544098 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07829957 Country of ref document: EP Kind code of ref document: A1 |