WO2008058926A2 - Procédé et dispositif de refroidissement de flux d'hydrocarbures - Google Patents

Procédé et dispositif de refroidissement de flux d'hydrocarbures Download PDF

Info

Publication number
WO2008058926A2
WO2008058926A2 PCT/EP2007/062202 EP2007062202W WO2008058926A2 WO 2008058926 A2 WO2008058926 A2 WO 2008058926A2 EP 2007062202 W EP2007062202 W EP 2007062202W WO 2008058926 A2 WO2008058926 A2 WO 2008058926A2
Authority
WO
WIPO (PCT)
Prior art keywords
streams
stream
treated
cooling
stage
Prior art date
Application number
PCT/EP2007/062202
Other languages
English (en)
Other versions
WO2008058926A3 (fr
Inventor
Willem Dam
Casper Krijno Groothuis
Original Assignee
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V. filed Critical Shell Internationale Research Maatschappij B.V.
Priority to DK07822489.6T priority Critical patent/DK2082178T3/en
Priority to EP07822489.6A priority patent/EP2082178B1/fr
Priority to AU2007321248A priority patent/AU2007321248B2/en
Publication of WO2008058926A2 publication Critical patent/WO2008058926A2/fr
Publication of WO2008058926A3 publication Critical patent/WO2008058926A3/fr
Priority to CY181101027T priority patent/CY1120954T1/el

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/027Inter-connecting multiple hot equipments upstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Definitions

  • the present invention relates to a method and apparatus for cooling, optionally also liquefying, a hydrocarbon stream such as natural gas .
  • LNG liquefied natural gas
  • natural gas comprising predominantly methane
  • the purified gas is processed through a plurality of cooling stages using heat exchangers to progressively reduce its temperature until liquefaction is achieved.
  • the liquid natural gas is then further cooled and expanded to final atmospheric pressure suitable for storage and transportation.
  • the flashed vapour from each expansion stage can be used as a source of plant fuel gas.
  • natural gas usually includes some heavier hydrocarbons and impurities, including but not limited to carbon dioxide, sulphur, hydrogen sulphide and other sulphur compounds, nitrogen, helium, water and other non-hydrocarbon acid gases, ethane, propane, butanes, C5+ hydrocarbons and aromatic hydrocarbons.
  • hydrocarbons and impurities including but not limited to carbon dioxide, sulphur, hydrogen sulphide and other sulphur compounds, nitrogen, helium, water and other non-hydrocarbon acid gases, ethane, propane, butanes, C5+ hydrocarbons and aromatic hydrocarbons.
  • the capacity of a liquefaction plant is usually determined by the availability of the gas feed stream, and the market or expected markets for products provided by the plant.
  • extra capacity at a liquefaction plant has simply involved the complete replication of all of the units dealing with the gas feed stream, from its source to its storage. All such units are often termed a "train”.
  • train Some commonality of some units of a train or its support units such as refrigeration units have been suggested, but no flexibility in the pre-treatment of the gas has been suggested.
  • LNG liquefying natural gas
  • WO 2006/009646 A2 relates to a hydrocarbon fluid processing plant including a plurality of process unit module types, including first and second process unit module types having modules intended to be sized at their respective substantially maximum processing efficiency.
  • WO 2006/009646 A2 shows a number of plant arrangements but a problem with these arrangements is that there are always complete 'trains' for treating and liquefying the hydrocarbon fluids, without flexibility therebetween.
  • the present invention provides a method of cooling a hydrocarbon stream such as natural gas, the method at least comprising the steps of: (a) providing a feed stream;
  • step (c) passing the first treated stream or streams of step (b) through an NGL extraction stage comprising one or more (number: Y) parallel NGL extraction units, the first treated stream or streams being shared to match the number of NGL extraction units, to provide one or more second treated streams; and (d) passing the second treated stream or streams of step (c) through a cooling stage comprising one or more (number: Z) parallel cooling systems, the second treated stream or streams being shared to match the number of cooling systems, to provide a cooled hydrocarbon stream or streams; wherein the number of parallel extraction units is higher than the number of parallel cooling systems .
  • the present invention provides apparatus for cooling a hydrocarbon stream such as natural gas, the apparatus at least comprising: (i) a gas treatment stage to receive a feed stream comprising one or more (number: X) parallel gas treatment units, the feed stream being divided if there is more than one gas treatment unit;
  • an NGL extraction stage to receive the treated feed stream or streams from the gas treatment stage, comprising one or more (number: Y) parallel NGL extraction units; and (i ⁇ ) a cooling stage to receive the NGL extracted stream or streams from the NGL extraction stage, comprising one or more (number: Z) parallel cooling systems to provide a treated hydrocarbon stream or streams; wherein the number of parallel NGL extraction units is higher than the number of parallel cooling systems.
  • Figure 1 is a block scheme of part of an LNG plant according to one embodiment of the present invention
  • Figure 2 is a block scheme of part of an LNG plant according to a second embodiment of the present invention.
  • Figure 3 is a block scheme of part of an LNG plant according to a third embodiment of the present invention.
  • the method and apparatus described herein comprises a gas treatment stage, an NGL extraction stage and a cooling stage.
  • the gas treatment stage comprises one or more parallel gas treatment units;
  • the NGL extraction stage comprises one or more parallel NGL extraction units;
  • the cooling stage comprises one or more parallel cooling systems.
  • the number of gas treatment units will hereinafter be represented by the letter X; the number of NGL extraction units as Y, and the number of cooling systems as Z .
  • parallel means arranged or operated in parallel with respect to other units or systems of same type when more than one of that type of unit or system is provided or alone when one unit or system of a type is provided.
  • an asymmetric arrangement between the number of gas treatment units, the number of NGL extraction units, and the number of cooling systems is provided.
  • An asymmetric configuration offers benefits in terms of overall plant availability and matching of individual unit equipment sized design capacity constraints .
  • the number of NLG extraction units is higher than the number of cooling systems (i.e. Y > Z) .
  • This advantageous choice is based on an insight that limits in vapour expander size are typically more restrictive than the size of a cooling system in terms of production capacity.
  • NGL extraction units are typically based on an expander. Thus, production capacity can be increased by operating in parallel more expander-based extraction units than there are cooling systems.
  • providing Y > Z offers the possibility of providing an excess of NGL extraction capacity relative to cooling capacity. Generating excess NGL-extracted gas may be useful to provide domestic gas from a hydrocarbon stream cooling site.
  • X or Y are unequal to Z, whereby at least one of X and Y is greater than one.
  • the asymmetry provided herein also allows the energy requirements of the liquefaction facility or plant to be more balanced.
  • An asymmetric configuration also offers the user of a plant options and flexibility should a gas treatment unit or an NGL extraction unit be off-line, i.e. non- operational, either accidentally or deliberately for maintenance, etc.. Whilst there may be some reduction in plant output or in one or more stream flows, overall, the plant can remain operational through the use of other gas treatment units and NGL extraction units.
  • the level or levels of certain impurities generally not being hydrocarbons can be reduced.
  • Two common impurities are carbon dioxide and sulphur (and sulphur-based compounds), usually present with water in the form of 'acid gas'.
  • Many processes for the removal of acid gas from a feed stream are known to those skilled in the art.
  • One common method is the use of an aqueous amine solution, often used in an extraction column termed a 'scrubber'.
  • the aqueous amine may be one or more of known materials including for example DGA, DEA, MDEA, MEA and SULFINOLTM (Shell), and combinations thereof.
  • the gas treatment stage comprises one or more parallel gas treatment units.
  • gas treatment unit is meant a unit comprising one or more solvent-fed extraction columns which remove acid gas from the hydrocarbon stream under elevated pressure (relative to solvent regeneration pressure) to produce enriched solvent and a treated hydrocarbon stream.
  • the enriched solvent is then passed within the gas treatment unit to one or more pressure let-down devices and then to one or more heaters or regeneration columns which separate the solvent from the acid gas and recycle at least a portion of the solvent to the one or more extraction columns.
  • the extraction columns and heaters or regeneration columns of the gas treatment unit represent equipment which is dedicated to a single gas treatment unit such that they are not shared with any other gas treatment units.
  • the NGL extraction stage comprises one or more parallel NGL extraction units.
  • NGL extraction unit is meant a unit comprising one or more knock-out drums from which the hydrocarbon stream is passed, via an expansion step, to one or more NGL separators which produce an NGL stream or streams, which each comprise, for instance, less than 5 mole % methane.
  • the knock-out drums and NGL separators of the NGL extraction unit represent equipment which is dedicated to a single NGL extraction unit such that they are not shared with any other NGL extraction units. However, subsequent separation of the NGL stream into individual hydrocarbon streams, often referred to as fractionation, can be carried out in a facility shared between NGL extraction units .
  • NGL extraction units as such are known to those skilled in the art. Generally, they are designed to reduce the level or levels of hydrocarbon compounds other than methane in a feed stream.
  • One common NGL extraction unit includes a separator or separation vessel, able to provide a gaseous stream that is methane-enriched, and one or more other streams . Such other stream or streams usually but not always include separate or combined streams of heavier hydrocarbons.
  • the methane-enriched stream may be passed through the cooling stage.
  • an NGL extraction unit provides a single heavier hydrocarbon rich stream, which is subsequently used either per se, or is further divided into particular heavier hydrocarbon rich streams in a separate location or unit.
  • the division of a heavier hydrocarbon rich stream can be carried out by one or more separators known in the art, such as a fractionator .
  • a fractionator using one or more columns could provide individual streams of certain heavier hydrocarbons .
  • each column could be designed to provide an individual hydrocarbon stream, such as an ethane-rich stream, a propane-rich stream, a butane-rich stream, and a C5+ -rich stream, the latter sometimes also termed a 'light condensate stream'.
  • Propane, butane and C5+ hydrocarbons are sometimes collectively termed "natural gas liquids" (NGL), and have known uses .
  • an NGL extraction unit can include a fractionator which integrally provides individual streams of certain heavier hydrocarbons such as those listed hereinbefore.
  • Cooling systems for the cooling stage are known in the art.
  • the cooling system may be a liquefying system. Cooling systems and liquefying systems may be embodied in various ways, and generally involve one or more heat exchangers and refrigerant circuits.
  • the cooling stage comprises one or more parallel cooling systems.
  • cooling system is meant a cooling system comprising one or more closed, independent refrigerant cycles. A closed refrigerant cycle does not exchange refrigerant with another cooling cycle under normal operation.
  • the closed, independent refrigerant cycle or cycles are dedicated to a single cooling system such that they are not shared with any other cooling systems .
  • a liquefying system useable with the present invention may involve a number of separate serial cooling steps, and the or each cooling step may involve one or more heat exchangers, levels or sections.
  • One arrangement involves the cooling stage having a first cooling step for pre-cooling, followed by a second cooling step for main cryogenic cooling and liquefying.
  • a first or pre-cooling step may involve reducing the temperature of a feed stream to below -0 0 C, for example in the range -10 0 C to -30 0 C.
  • a second or main cryogenic cooling step may involve cooling a feed stream to below -90 0 C or below -100 0 C, for example between -100 0 C to -130 0 C, which usually creates a hydrocarbon stream which is now liquefied, such as liquefied natural gas.
  • Each unit or system of the stages of the present invention may use the same or different parameters, such as flowrate, temperature, pressure, etc.
  • a unit or system may be taken off-line for maintenance without having to shut down the entire hydrocarbon cooling plant.
  • the present invention includes a combination of any and all of the methods herein described.
  • the number of streams for each of the stages is intended to be shared to match the number of units or systems in each stage. This may therefore require the division, sharing or combination of the feed stream or the stream or streams provided by the previous stage. Such division, sharing and/or combination may or may not involve the complete mixing of previous streams, or the complete separation of previous streams.
  • Any division, sharing and/or combination of the feed stream or stream or streams provided by a previous stage may be unequally distributed. Preferably the distribution is equal, that is, there is equidistribution of the stream or streams amongst the lines to the units or systems to which the stream or streams are intended to be passed to.
  • the division or sharing of any of the feed streams or any of the subsequent treated or cooled hydrocarbon stream or streams could be provided by any suitable divisor, for example a stream splitter.
  • any division or sharing creates two or more streams having the same composition and phases.
  • X can be 2
  • Y can be 3
  • Z can be 2.
  • the feed stream is shared or divided into two part-feed streams for the two gas treatment units in the gas treatment stage.
  • the two first treated streams provided thereby are then shared to provide three first treated streams, one for each of the NGL extraction units in the NGL extraction stage.
  • the change from two to three first treated streams may be through a common manifold, or may be by any other sharing arrangement not having a common union or junction of all streams.
  • the three second treated streams provided by the NGL extraction stage are then shared to create two second treated streams for the two cooling systems. This sharing of the second treated streams may be through a common manifold, or through any other arrangement not involving commonality or union of all the second treated streams.
  • the present invention may also be used to create a facility or plant where X is 2, Y is 2 and Z is 1. Should there be a wish or need to enlarge the capacity of the facility or plant, one or more further gas treatment units, NGL extraction units, and/or cooling systems, can be added, taking into account the design capacity of existing units, thereby avoiding the hitherto expedient of having to supply a complete and separated liquefaction ' train ' .
  • the feed stream may be any suitable hydrocarbon- containing gas stream to be cooled, but is usually a natural gas stream obtained from natural gas or petroleum reservoirs. As an alternative the natural gas stream may also be obtained from another source, also including a synthetic source such as a Fischer-Tropsch process.
  • the natural gas stream is comprised substantially of methane.
  • the feed stream comprises at least 60 mol% methane, more preferably at least 80 mol% methane.
  • Figure 1 shows a block scheme of part of a liquefied natural gas plant 1. It shows an initial feed stream 10 containing natural gas. The feed stream 10 is divided by a stream splitter 12 into two part-feed streams 20a, 20b. The division of the feed stream 10 could be based on any ratio of mass and/or volume and/or flow rate.
  • the ratio may be based on the size or capacity of the subsequent parts, systems or units of the plant, or due to other considerations.
  • One example of the ratio is an equal division of the cooled stream mass.
  • the two part-feed streams 20a, 20b pass to a gas treatment stage 2 comprising two parallel gas treatment units 14a, 14b.
  • Such gas treatment units 14a, 14b are adapted to reduce impurities, including but not limited to acid gas, in the part feed-streams 20a, 20b, and so provide two first treated streams 30a, 30b respectively.
  • Operation of gas treatment units 14a, 14b such as scrubbers are well known in the art.
  • Figure 1 shows an exit stream 15a, 15b for carbon dioxide, sulphur and any sulphur-based compounds from each gas treatment unit 14a, 14b.
  • the first treated streams 30a, 30b are passed to an NGL extraction stage 4 which comprises two parallel NGL extraction units 16a, 16b.
  • the NGL extraction units 16a, 16b provide two second treated streams 40a, 40b, which streams are methane-enriched, and which are combined to provide a combined treated stream 50.
  • the second treated feed streams 40a, 40b can be combined using a combiner 18 known in the art.
  • the combiner may be any suitable arrangement, generally involving a union or junction or piping or conduits, optionally involving one or more valves .
  • the NGL extraction units 16a, 16b also provide two heavier hydrocarbon enriched streams 17a, 17b which pass to a common fractionator 24.
  • the enriched streams 17a, 17b may be combined prior to entry into the common fractionator 24 as shown in Figure 1, or may be passed separately into the common fractionator 24.
  • the common fractionator 24 is designed to provide separate enriched streams of one or more hydrocarbons such as propane, butane and C5+ hydrocarbons, and optionally also ethane. Such enriched streams are useful products for use in the liquefying plant 1 or outside the plant. Such enriched streams are shown collectively in Figure 1 as streams 26.
  • the fractionator 24 may be a single fractionation unit, or have one or more columns, wherein each column is usually dedicated to separating and providing a particular heavier hydrocarbon. Fractionation is well known in the art and the benefit and use of individual streams of propane, butane and C5+ are also well known in the art.
  • any methane stream or methane-enriched stream provided by the fractionator 24 may be returned or recycled back into the path of the second treated streams 40a, 40b or the combined stream 50.
  • the combined treated stream 50 is then passed to a cooling stage 6.
  • the cooling stage 6 provides a cooled hydrocarbon stream 60.
  • the cooling of the combined treated stream 50 in the cooling stage 6 may involve any degree of cooling using any number of units, devices or systems or combinations thereof known in the art.
  • One example is the use of one or more heat exchangers.
  • cooling is effected by passing the combined treated stream 50 against one or more cooling or refrigerant streams and/or through one or more valves and/or separators, as known in the art.
  • the cooling stage 6 is adapted to liquefy the combined treated stream 50 so as to provide a liquefied hydrocarbon stream such as liquefied natural gas .
  • Liquefaction of the combined treated stream 50 can be carried out by passing it through a cooling system being a liquefying system 22 using one or more heat exchangers and cooling it against one or more refrigerants, either being dedicated refrigerants or other cooled streams.
  • the liquefying can involve one or more cooling and/or liquefying steps. Generally, it is intended to provide a liquefied natural gas stream having a temperature below -150 0 C, more usually between -160 0 C and 165 0 C.
  • NGL extraction stage 4 and the cooling stage 6 one or more other units or features may be involved such as valves or further treatments, or to control of the path or flow of the streams thereinbetween .
  • Figure 1 shows a method of treating a hydrocarbon stream such as natural gas wherein X is 2, Y is 2, and Z is 1. There is therefore asymmetry between the number of gas treatment units, the number of NGL extraction units, and the number of cooling systems .
  • An asymmetric configuration, particularly where Y > Z as in the embodiment of Figure 1, offers benefits as explained hereinabove .
  • FIG. 2 shows a block scheme of part of a liquefied natural gas plant Ia according to a second embodiment of the present invention.
  • a feed stream 10 is divided by a divider 12 into three part-feed streams 20a, 20b and 20c, either equally or unequally as described above.
  • the three part-feed streams 20a, 20b, 20c pass into three respective and parallel gas treatment units 14a, 14b and 14c which comprise the gas treatment stage 2.
  • the action and effect of the gas treatment units 14a, 14b, 14c is similar to those described hereinbefore. They provide three first treated streams 30a, 30b, 30c, and three other streams 15a, 15b, 15c, being for example, sulphur, carbon dioxide, etc.
  • the three first treatment streams 30a, b, c pass into respective and parallel NGL extraction units 16a, 16b, 16c, whose action and effect is similar to those described hereinbefore.
  • the units 16a, 16b, 16c provide three second treated streams 40a, 40b, 40c which are then shared for the cooling stage 6, and three heavier hydrocarbon streams 17a, 17b, 17c, whose use and/or separation can be the same or similar to that described above in Figure 1.
  • references herein to the second treated streams being "shared" include the second treated streams being able to provide one or more streams to a cooling stage, which cooling stage may comprise one or more cooling systems.
  • the one or more streams supplying the cooling system or systems may therefore comprise flow from two or more second treated streams, without involving flow from all of the second treated streams.
  • all the second treated streams collectively supply their flow to the or all of the cooling systems of the cooling stage.
  • Figure 2 it is diagrammatically represented that the three second treated streams 40a, 40b, 40c provide, via linked piping or conduits at junctions 19a, 19b, combined treated streams 50a, 50b, which pass respectively into two cooling systems 22a, 22b which comprise the cooling stage 6.
  • the cooling systems 22a, 22b preferably liquefy the combined treated streams 50a, 50b to provide two liquefied hydrocarbon streams 52a, 52b, which can be combined to provide a combined liquefied hydrocarbon stream 60, such as liquefied natural gas .
  • Figure 2 shows a method of treating a hydrocarbon stream such as natural gas wherein X is 3, Y is 3, and Z is 2.
  • FIG. 3 shows a simplified block scheme of part of a liquefied natural gas plant Ib according to a third embodiment of the present invention.
  • a feed stream 10 passes into a single gas treatment unit 100 for the gas treatment stage 2.
  • the action and effect of the gas treatment unit 100 is similar to those described hereinbefore.
  • This provides a first treated stream 3Od which is optionally passed through a separate or integral drying unit 101 to reduce its water content, and provide a drier treated stream 3Oe.
  • the drier treated stream 3Oe is then divided by a divider 32, preferably equally, into 3 part-streams 3Of, 3Og, 3Oh, which pass into three respective and parallel NGL extraction units 102a, 102b and 102c, whose action and effect is similar to those described hereinbefore, and which comprise the NGL extraction stage 4.
  • the units 102a, b, c provide three second treated streams 40a, 40b, 40c, which are then combined using a combiner 34 to provide a single combined stream 50.
  • the combined stream 50 is then divided by a divider 36 into two part-streams 50a, 50b, optionally unequally or equally, to pass into two cooling systems 103a, 103b, similar to those described above, and which comprise the cooling stage 6.
  • the cooling systems 103a, b are preferably adapted to liquefy the part-streams 50a, 50b, to provide two liquefied hydrocarbon streams 52a, 52b, which can then be combined by a combiner 38 to provide a combined liquefied hydrocarbon stream 60, such as liquefied natural gas.
  • the liquefied natural gas 60 can pass through an endflash unit 104 in a manner commonly known in the art, to provide a final liquefied product stream 70.
  • Figure 3 shows another embodiment of the present invention having a gas treatment stage with one gas treatment unit, an NGL extraction stage having three NGL extraction units, and a cooling stage comprising two parallel cooling systems, i.e. a method of treating a hydrocarbon stream such as natural gas wherein X is 1, Y is 3, and Z is 2.
  • a hydrocarbon stream such as natural gas wherein X is 1, Y is 3, and Z is 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Procédé de refroidissement d'hydrocarbures du type gaz naturel, qui comprend les étapes suivantes: (a) fourniture de flux d'alimentation (10); (b) passage de ce flux (10) dans un étage de traitement de gaz (2) à une ou plusieurs (nombre: X) unités de traitement de gaz (14a, 14b), ledit flux (10) divisé en deux ou plus de deux flux partiels (20a, 20b) si l'on dispose de plus d'une unité de traitement de gaz pour fournir un ou des premiers flux traités (30a, 30b); (c) passage du ou des premiers flux traités (30a, 30b) de l'étape (b) dans un étage d'extraction de liquide de gaz naturel (4) qui comprend une ou plusieurs unités (nombre: Y) d'extraction de liquide de gaz naturel parallèles (16a, 16b), le ou les premiers flux traités (30a, 30b) étant partagés pour correspondre au nombre d'unités d'extraction (16a, 16b), permettant de fournir un ou plusieurs seconds flux traités (40a, 40b); et(d) passage de ce ou ces seconds flux traités (40a, 40b) de l'étape (c) dans un étage de refroidissement (6) à un ou plusieurs (nombre: Z) systèmes de refroidissement parallèles (22), le ou le seconds flux traités (40a, 40b) étant partagés pour correspondre au nombre de systèmes de refroidissement (22), pour la fourniture d'un ou plusieurs flux d'hydrocarbures refroidis.
PCT/EP2007/062202 2006-11-14 2007-11-12 Procédé et dispositif de refroidissement de flux d'hydrocarbures WO2008058926A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK07822489.6T DK2082178T3 (en) 2006-11-14 2007-11-12 METHOD AND DEVICE FOR COOLING A CARBON HYDRAULIC CURRENT
EP07822489.6A EP2082178B1 (fr) 2006-11-14 2007-11-12 Procédé et dispositif pour réfrigérer un courant d'hydrocarbures
AU2007321248A AU2007321248B2 (en) 2006-11-14 2007-11-12 Method and apparatus for cooling a hydrocarbon stream
CY181101027T CY1120954T1 (el) 2006-11-14 2018-10-05 Μεθοδος και διαταξη για την ψυξη ενος ρευματος υδρογονανθρακων

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06124012 2006-11-14
EP06124012.3 2006-11-14

Publications (2)

Publication Number Publication Date
WO2008058926A2 true WO2008058926A2 (fr) 2008-05-22
WO2008058926A3 WO2008058926A3 (fr) 2009-03-12

Family

ID=37905342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/062202 WO2008058926A2 (fr) 2006-11-14 2007-11-12 Procédé et dispositif de refroidissement de flux d'hydrocarbures

Country Status (7)

Country Link
US (1) US20080134717A1 (fr)
EP (1) EP2082178B1 (fr)
AU (1) AU2007321248B2 (fr)
CY (1) CY1120954T1 (fr)
DK (1) DK2082178T3 (fr)
RU (1) RU2464510C2 (fr)
WO (1) WO2008058926A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100319397A1 (en) * 2009-06-23 2010-12-23 Lee Ron C Cryogenic pre-condensing method and apparatus
US9046302B2 (en) 2009-10-27 2015-06-02 Shell Oil Company Apparatus and method for cooling and liquefying a fluid
US9612050B2 (en) * 2012-01-12 2017-04-04 9052151 Canada Corporation Simplified LNG process
RU2754482C2 (ru) * 2017-02-28 2021-09-02 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Дополненная установка по производству сжиженного природного газа и способ ее работы

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6662589B1 (en) * 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas
US20040118153A1 (en) * 2002-09-30 2004-06-24 Sawchuk Jeffrey H. Modular LNG process
WO2006009646A2 (fr) * 2004-06-18 2006-01-26 Exxonmobil Upstream Research Company Installation de traitement de gaz naturel liquefie a capacite variable
WO2006087331A1 (fr) * 2005-02-17 2006-08-24 Shell Internationale Research Maatschappij B.V. Installation et procede de liquefaction de gaz naturel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435198A (en) * 1982-02-24 1984-03-06 Phillips Petroleum Company Separation of nitrogen from natural gas
FR2545589B1 (fr) * 1983-05-06 1985-08-30 Technip Cie Procede et appareil de refroidissement et liquefaction d'au moins un gaz a bas point d'ebullition, tel que par exemple du gaz naturel
US4541852A (en) * 1984-02-13 1985-09-17 Air Products And Chemicals, Inc. Deep flash LNG cycle
US4901533A (en) * 1986-03-21 1990-02-20 Linde Aktiengesellschaft Process and apparatus for the liquefaction of a natural gas stream utilizing a single mixed refrigerant
DE69523437T2 (de) * 1994-12-09 2002-06-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Anlage und Verfahren zur Gasverflüssigung
DZ2535A1 (fr) * 1997-06-20 2003-01-08 Exxon Production Research Co Procédé perfectionné pour la liquéfaction de gaz naturel.
US6295833B1 (en) * 2000-06-09 2001-10-02 Shawn D. Hoffart Closed loop single mixed refrigerant process
US6945075B2 (en) * 2002-10-23 2005-09-20 Elkcorp Natural gas liquefaction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118153A1 (en) * 2002-09-30 2004-06-24 Sawchuk Jeffrey H. Modular LNG process
US6662589B1 (en) * 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas
WO2006009646A2 (fr) * 2004-06-18 2006-01-26 Exxonmobil Upstream Research Company Installation de traitement de gaz naturel liquefie a capacite variable
WO2006087331A1 (fr) * 2005-02-17 2006-08-24 Shell Internationale Research Maatschappij B.V. Installation et procede de liquefaction de gaz naturel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TARAKAD R R ET AL: "Modular Engineering - Applications in Liquefaction Plant Design" GASTECH MEETING ON LNG AND LPG, XX, XX, 25 November 1986 (1986-11-25), XP002310296 *

Also Published As

Publication number Publication date
CY1120954T1 (el) 2019-12-11
RU2464510C2 (ru) 2012-10-20
AU2007321248A1 (en) 2008-05-22
US20080134717A1 (en) 2008-06-12
WO2008058926A3 (fr) 2009-03-12
RU2009122376A (ru) 2010-12-20
EP2082178A2 (fr) 2009-07-29
AU2007321248B2 (en) 2010-09-02
EP2082178B1 (fr) 2018-08-29
DK2082178T3 (en) 2018-11-26

Similar Documents

Publication Publication Date Title
US9435583B2 (en) Method and apparatus for liquefying a hydrocarbon stream
RU2607708C2 (ru) Способ и устройство для удаления азота из криогенной углеводородной композиции
AU2007274267B2 (en) Method and apparatus for cooling a hydrocarbon stream
RU2731351C2 (ru) Способ и система для получения потока тощего метансодержащего газа
WO2008015224A2 (fr) Procédé et appareil pour liquéfier un flux d'hydrocarbure
US20070283718A1 (en) Lng system with optimized heat exchanger configuration
WO2008034874A2 (fr) Procédé et appareil pour produire un courant d'hydrocarbure refroidi
EP2082178B1 (fr) Procédé et dispositif pour réfrigérer un courant d'hydrocarbures
US20170067684A1 (en) Mixed refrigerant distributed chilling scheme
WO2007141227A2 (fr) Procédé et appareil de traitement d'un flux d'hydrocarbure
RU2612974C2 (ru) Способ и устройство для удаления азота из криогенной углеводородной композиции
US20080264099A1 (en) Domestic gas product from an lng facility
JP5615543B2 (ja) 炭化水素流の液化方法及び装置
KR20130088141A (ko) 메탄을 포함하는 탄화수소 스트림의 처리 방법 및 이를 위한 장치
US20100307193A1 (en) Method and apparatus for cooling and separating a hydrocarbon stream
WO2010055153A2 (fr) Procédé et dispositif pour liquéfier un flux d'hydrocarbure et bâtiment flottant ou plate-forme au large comprenant ceux-ci
US20200033054A1 (en) Additional liquid natural gas plant and method of operating thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07822489

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007822489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007321248

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007321248

Country of ref document: AU

Date of ref document: 20071112

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009122376

Country of ref document: RU

Kind code of ref document: A