WO2008058504A1 - Dispositif de projection thermique, procédé pour contrôler un processus de projection thermique et procédé pour enduire et/ou retoucher des pièces de turbine ou de mécanisme moteur - Google Patents

Dispositif de projection thermique, procédé pour contrôler un processus de projection thermique et procédé pour enduire et/ou retoucher des pièces de turbine ou de mécanisme moteur Download PDF

Info

Publication number
WO2008058504A1
WO2008058504A1 PCT/DE2007/001972 DE2007001972W WO2008058504A1 WO 2008058504 A1 WO2008058504 A1 WO 2008058504A1 DE 2007001972 W DE2007001972 W DE 2007001972W WO 2008058504 A1 WO2008058504 A1 WO 2008058504A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal spraying
relationship
measured
wavelengths
intensity
Prior art date
Application number
PCT/DE2007/001972
Other languages
German (de)
English (en)
Inventor
Andreas Jakimov
Manuel Hertter
Andreas KÄHNY
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Publication of WO2008058504A1 publication Critical patent/WO2008058504A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0037Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by spectrometry

Definitions

  • Apparatus for thermal spraying method for monitoring a process of thermal spraying and method for coating and / or repairing turbine or engine parts
  • the invention relates to a device for thermal spraying, a method for Ü monitoring a process of thermal spraying and a method for coating and / or repair of turbine or engine parts by means of thermal spraying.
  • thermal spraying encompasses completely different spraying methods, such as plasma spraying, arc spraying, laser spraying and flame spraying. Details on different spraying processes can be found in the DIN 32530 and the homepage of the Community of Thermal Spraying (GTS), which was launched on October 25, 2006 at www.gts-ev.de.
  • GTS Community of Thermal Spraying
  • thermal spraying The various spraying methods which fall under the term of thermal spraying have in common that a material to be applied to an object is fed to a device for thermal spraying, and that it is supplied there with thermal and kinetic energy.
  • the starting material a powder or multicomponent powder is heated so that it melts, forming microscopic beads.
  • a gas which can also be ionized (in plasma spraying), creates a beam that accelerates the material to an object to be coated.
  • EP 1 340 577 B1, EP 1 340 578 Bl and EP 1 340 580 Bl to continuously monitor a process of thermal spraying, to record physical quantities and to deduce therefrom properties of the resulting layer.
  • the position of the jet emerging during operation of a device for thermal spraying, its temperature or also the maximum light output or luminous intensity radiated by the beam is measured.
  • the object of the present invention is to expand the existing possibilities in the prior art for monitoring a process of thermal spraying so that a prediction is possible in particular for certain physical properties such as in the adhesive tensile strength or the hardness of the layer.
  • the object is achieved by a device for thermal spraying according to claim 1, a method for monitoring a process of thermal spraying according to claim 2 and a method for coating and / or repair of turbine or engine parts by means of thermal spraying according to claim 13.
  • the device according to the invention for thermal spraying comprises a spectrometer which is directed towards a jet emerging during operation of the device and for wavelength-dependent measurement of the intensity of the light emitted by the beam, and an evaluation unit arranged downstream of the spectrometer.
  • the present invention is based on the finding that the spectrum of the light emitted by the beam allows much more extensive statements. Not only the total radiated power (or maximum luminance) can vary with process conditions. Rather, different process conditions that provide different bond tensile strength and different hardness of the layer can be reflected in the spectrum at very particular wavelengths or specific wavelength intervals, which are small compared to the entire wavelength range of visible light, in fluctuations in intensity values which are (optical ) Can detect spectrometer.
  • the method according to the invention for monitoring a process of thermal spraying in which a layer is applied to an article by passing a beam of material to be applied onto the article comprises the steps of: a) deriving a relationship between the intensity of the element and the substrate Beam of emitted light at certain wavelengths or at certain wavelength intervals (which may be first selected in the context of deriving) and at least one physical property of the layer to be applied by the beam; b) measuring the intensity of the light emitted by the beam at the particular wavelengths or above the determined wavelength ranges with a spectrometer, c) closing on the value of the at least one property on the basis of the derived relationship and the measured intensities.
  • This aspect of the invention is based on Applicant's experience that there is actually a usable relationship that can be derived in step a). It must then be used only the device according to claim 1, so that on the basis of the measured variables and the intensities in particular during the process and thus also after the process of the properties is known.
  • the inventive method preferably comprises the further step d): intervention in the process of thermal spraying, if the value found in step c) does not fall within a predetermined interval.
  • the intervention may look like that simply stops the process of thermal spraying. This is particularly useful if either the thermal spraying has already progressed so far that the applied layer can no longer be manipulated or if the value found deviates so much from the desired value that a correction does not seem possible.
  • the intervention includes changing the process conditions.
  • the at least one physical parameter of the layer is measured. It is then preferred to determine the particular wavelength or the particular wavelength intervals, and these are those in which a change in intensity (in the measured spectra) correlates to a change in the measured parameter. Of the recorded spectra, only the areas on the basis of which a statement about a change of the parameter can be made are used. Once the particular wavelengths or wavelength intervals have been determined, the relationship can be quantified quickly.
  • step a) can be derived as a table, wherein in step c), as a rule, the non-correspondence of the measured values with the table entries results in a value being derived by means of interpolation.
  • step c) it is even possible to derive the relationship as a formula in which in step c) only the measured quantities must be used to obtain the value of the parameter.
  • step a it is possible to determine the relationship based on knowledge about the emission spectra of the components of the material to be applied and / or the transporting medium (the gas) and the influence of the proportions of the components on the Theoretically derive material to be applied to the physical parameter of the layer produced. While the relationship may not be as accurate as if empirically determined, it does not require testing.
  • the inventive method is used according to another aspect of the invention for continuous monitoring during coating and / or repair of turbine or engine parts using thermal spraying.
  • Turbine or engine parts are particularly large components, in which the effort of the present method is worthwhile, so that possible a high-quality coating is achieved on such components.
  • Fig. 1 illustrates the relationship between calculated and measured adhesive tensile strength in a first and a second series of samples
  • Fig. 2 illustrates the relationship between calculated and measured hardness HR1 5T in a first and a second series of samples.
  • the spectrometer is in this case directed to the beam from the transporting medium (gas or plasma) and the layer-forming material to be transported, which leaves the device for thermal spraying and is directed onto the object to be coated.
  • the adhesion strength results from the sum of the weighted-weighted line ratios of the intensities measured at the individual wavelengths and an intensity-free correction value.
  • the ratios of the intensities of the fourth and fifth, of the third and fifth as well as of the first and second wavelength are summed up in a weighted manner.
  • intensity integrals of specific wavelength ranges in relation.
  • these areas comprise only one intensity maximum.
  • FIG. 1 shows the value of the calculated HZF and the value of the measured HZF in a diagram for a plurality of development samples (see diamonds). After deriving the relationship using the development samples, a second series of samples was generated for validation, again varying the process conditions, once again recording a spectrum, and again measuring the HZF. Also, the values calculated and measured for these samples are shown in Figure 1 (see squares).
  • the straight line Gl in FIG. 1 corresponds to a complete match of calculated HZF with measured HZF.
  • the straight lines Al and Bl define an interval around the values of the line Eq.
  • FIG. 1 shows that the development samples virtually all fall into this interval.
  • Fig. 2 shows the calculated hardness HF15T against the measured hardness HF15T.
  • the Y and X axes in Fig. 2 are chosen the other way round as in Fig. 1.
  • the hardness HF15T was also measured and calculated, and also these values are in Fig. 2 entered.
  • G2 straight line
  • A2 and B2 straight lines
  • FIG. 2 illustrates only the hardness range between 90 and 96, that the deviations from the straight line G2 in the absolute numerical value are therefore particularly small.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Selon l'invention, lors d'un processus de projection thermique, un spectromètre est utilisé pour mesurer l'intensité à des longueurs d'onde définies ou des intervalles de longueurs d'onde définis. Les caractéristiques, notamment la force d'adhérence ou la dureté de la couche appliquée peuvent être déterminées d'après une relation préalablement dérivée. Les conditions de processus peuvent également être régulées dans le cadre du contrôle du processus.
PCT/DE2007/001972 2006-11-15 2007-11-02 Dispositif de projection thermique, procédé pour contrôler un processus de projection thermique et procédé pour enduire et/ou retoucher des pièces de turbine ou de mécanisme moteur WO2008058504A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006053774.2 2006-11-15
DE200610053774 DE102006053774A1 (de) 2006-11-15 2006-11-15 Vorrichtung zum thermischen Spritzen, Verfahren zum Überwachen eines Prozesses des thermischen Spritzen und Verfahren zum Beschichten und/oder Ausbessern von Turbinen- oder Triebwerksteilen

Publications (1)

Publication Number Publication Date
WO2008058504A1 true WO2008058504A1 (fr) 2008-05-22

Family

ID=39106174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001972 WO2008058504A1 (fr) 2006-11-15 2007-11-02 Dispositif de projection thermique, procédé pour contrôler un processus de projection thermique et procédé pour enduire et/ou retoucher des pièces de turbine ou de mécanisme moteur

Country Status (2)

Country Link
DE (1) DE102006053774A1 (fr)
WO (1) WO2008058504A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104162A3 (fr) * 2007-03-01 2009-07-23 Mtu Aero Engines Gmbh Procédé de production d'une couche de protection apte au rodage appliquée par projection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223688A1 (de) * 2013-11-20 2015-05-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum automatisierten Aufbringen einer Spritzbeschichtung
DE102014112723A1 (de) 2014-09-04 2016-03-10 Eaton Industries Austria Gmbh Verfahren zur Unterscheidung eines Lichtbogens von einem leuchtenden Gas enthaltend zumindest Metalldampf

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284588A2 (fr) * 2001-08-16 2003-02-19 MTU Aero Engines GmbH Procédé de monitorage d'un plasma - ou procédé de projection à la flamme
EP1332799A1 (fr) * 2002-01-31 2003-08-06 Flumesys GmbH Fluidmess- und Systemtechnik Dispositif et méthode de revêtement thermique
WO2006105762A2 (fr) * 2005-04-08 2006-10-12 Mtu Aero Engines Gmbh Systeme de surveillance de processus de pulverisation thermique
DE102005034017A1 (de) * 2005-07-18 2007-01-25 Daimlerchrysler Ag Verfahren zum Erzeugen einer Spritzschicht auf einer Oberfläche eines Werkstückes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284588A2 (fr) * 2001-08-16 2003-02-19 MTU Aero Engines GmbH Procédé de monitorage d'un plasma - ou procédé de projection à la flamme
EP1332799A1 (fr) * 2002-01-31 2003-08-06 Flumesys GmbH Fluidmess- und Systemtechnik Dispositif et méthode de revêtement thermique
WO2006105762A2 (fr) * 2005-04-08 2006-10-12 Mtu Aero Engines Gmbh Systeme de surveillance de processus de pulverisation thermique
DE102005034017A1 (de) * 2005-07-18 2007-01-25 Daimlerchrysler Ag Verfahren zum Erzeugen einer Spritzschicht auf einer Oberfläche eines Werkstückes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. SCHARFF, T. WALLENDORF UND S.MARKE: "EMISSIONSSPEKTROMETER ZUR CHARACTERISIERUNG", GALVANOTECHNIK/ DÜNNSCHICHT-/PLASMATECHNIK, vol. 9, 2003 - 2003, EUGEN G LEUZE VERLAG, pages 2268 - 2273, XP002470998 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104162A3 (fr) * 2007-03-01 2009-07-23 Mtu Aero Engines Gmbh Procédé de production d'une couche de protection apte au rodage appliquée par projection

Also Published As

Publication number Publication date
DE102006053774A1 (de) 2008-05-21

Similar Documents

Publication Publication Date Title
DE69327463T2 (de) Verfahren und Vorrichtung zur Bestimmung des Russgehaltes von Kautschukmischungen
DE3545158C2 (fr)
DE19617917A1 (de) Verfahren zum Bewerten eines Kohlenwasserstoff-Kraftstoffes
DE102007038483A1 (de) Lernendes Verfahren zur Herstellung von Farbrezepturen
DE10210518A1 (de) Verfahren zur Entschichtung von Triebwerksbauteilen und Vorrichtung zur Durchführung des Verfahrens
WO2008058504A1 (fr) Dispositif de projection thermique, procédé pour contrôler un processus de projection thermique et procédé pour enduire et/ou retoucher des pièces de turbine ou de mécanisme moteur
EP3075906B1 (fr) Installation d'impregnation et son procede de surveillance
DE10207733B4 (de) Spektroskopieverfahren
WO2012035060A1 (fr) Procédé de traitement d'aubes de turbine ainsi que dispositif à cet effet
DE102008010562A1 (de) Verfahren zum Instrumenten-Abgleich von Mehrwinkel-Farbmessgeräten
DE69623796T2 (de) Transmissionszelle zur messung der spektren im nahen infrarot eines kohlenwasserstoffhaltigen materials
DE102009050075B4 (de) Verfahren zur Messung der Wolkigkeit von Lackierungen auf Prüftafeln
DE10225842A1 (de) Verfahren und Vorrichtung zur Bestimmung der Strahlungsbeständigkeit eines optischen Materials
DE19605520C1 (de) Verfahren und Vorrichtung zur Charakterisierung lackierter Oberflächen
EP0842414B9 (fr) Procede et dispositif pour la caracterisation de surfaces enduites de peinture
DE102008010099A1 (de) Verfahren zur Bestimmung des Zustands eines Garguts und dieses einsetzendes Gargerät
EP1831669A1 (fr) Procede a haute sensibilite de detection des differences entre les proprietes physiquement mesurables d'un echantillon et celles d'une reference
WO2018234028A1 (fr) Procédé permettant de faire fonctionner un four de recuit
DE102004042155B4 (de) Verfahren zur Überwachung der Schichtdicke und des Tiefenprofils der chemischen Zusammensetzung einer Beschichtung von sich bewegenden Werkstücken
EP1091175A2 (fr) Procédé et dispositif pour déterminer et commander l'excès d'air dans un processus de combustion
DE19515172C1 (de) Verfahren zur Abscheidung von farbigen Schichten auf Substrate und Vorrichtung zur Durchführung des Verfahrens
WO1997030335A2 (fr) Procede pour la caracterisation in situ de particules primaires et d'agregats de particules
EP3282243B1 (fr) Procede et systeme de mesure destines a determiner le taux d'humidite d'un composant en composite de fibre
Gäbler et al. Optische in-situ Prozessverfolgung und-steuerung.
DE102021203453A1 (de) Verfahren und Vorrichtung zur additiven Fertigung dreidimensionaler Bauteile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07817763

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application