WO2008056558A1 - Method of imprinting - Google Patents

Method of imprinting Download PDF

Info

Publication number
WO2008056558A1
WO2008056558A1 PCT/JP2007/070998 JP2007070998W WO2008056558A1 WO 2008056558 A1 WO2008056558 A1 WO 2008056558A1 JP 2007070998 W JP2007070998 W JP 2007070998W WO 2008056558 A1 WO2008056558 A1 WO 2008056558A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
mold
mold release
molding material
transfer
Prior art date
Application number
PCT/JP2007/070998
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Miyakoshi
Masahiro Morikawa
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008543031A priority Critical patent/JPWO2008056558A1/en
Publication of WO2008056558A1 publication Critical patent/WO2008056558A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0003Discharging moulded articles from the mould

Definitions

  • the present invention relates to an imprint method for transferring a microstructure provided in a mold onto a molding material by releasing the heated mold after being pressed against the molding material.
  • Patent Document 1 JP-A-2005-189128
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an imprint method in which a microstructure transferred by thermal imprint is prevented from being deformed and destroyed by a mold release process. .
  • the imprint method according to the present invention transfers a microstructure provided in the mold to the molding material by releasing the mold after pressing the heated mold against the molding material.
  • the temperature of the mold when press-contacting the mold is the transfer temperature Tt [° C]
  • the temperature of the mold when starting the mold release is the mold release start temperature Tr [° C]
  • the glass transition temperature of the molding material is Tg [° C]
  • the relative separation speed between the mold and the molding material is Vr [mm / sec]
  • the mold release start temperature Tr exceeds the glass transition temperature Tg of the molding material and is at least 3 ° C lower than the transfer temperature Tt, and the separation speed Vr is 0.001 mm / More than 2 seconds and 2 mm / second or less, the microstructure transferred to the molding material is deformed by the mold release process.
  • the reason for setting the mold release speed to Vr ⁇ 2 [mm / sec] is as follows. That is, a stress is generated in the fine structure portion with respect to the force for releasing the mold due to the contact resistance in the fine structure portion of the mold and the molding material. At this time, if the mold release speed is high, the stress rapidly increases, and if the mold is released at Tg or higher, the material to be molded is likely to be plastically deformed (permanently deformed), so that stretch deformation remains in the mold release direction. Therefore, in the present invention, the mold release speed is reduced in order to generate only the force necessary for mold release without increasing the mold release resistance, that is, the mold release speed Vr is set to Vr ⁇ 2 [mm / sec. ]
  • the reason for setting the release speed Vr to Vr ⁇ 0.001 [mm / sec] is as follows. In other words, if the mold release speed is less than 0.001 [mm / sec], the mold release speed is too slow, and plastic deformation occurs at the base of the microstructure between the microstructure and the material to be formed. This is because there is a problem that the base of the structure extends or breaks. In the imprint method, it is preferable that the following conditional expression (3) is further satisfied.
  • the fine structure is a periodic structure having a period T, a structure height ⁇ , and a structure width L, the period ⁇ being 2 m or less, and an aspect ratio (H / L) of the periodic structure after transfer. Is preferably 2 or more.
  • the molding material is preferably made of a resin material!
  • the mold may be Si, Si 2 O, Ta, Ni, NiP, glassy carbon (C), polycarbonate, or plastic.
  • the microstructure transferred by thermal imprinting is difficult to be deformed and destroyed by the release process. For this reason, the yield is improved and the productivity of the molded product is improved.
  • FIG. 1 is a diagram schematically showing a main part of an imprint apparatus capable of executing an imprint method according to the present embodiment.
  • FIG. 2 is a diagram schematically showing a configuration example of a release driving device 23 in FIG. 1.
  • FIG. 2 is a diagram schematically showing a configuration example of a release driving device 23 in FIG. 1.
  • FIG. 3 is a flowchart for explaining molding steps S01 to S07 by the imprint apparatus 10 of FIGS. 1 and 2.
  • FIG. 3 is a flowchart for explaining molding steps S01 to S07 by the imprint apparatus 10 of FIGS. 1 and 2.
  • FIG. 4 is a side cross-sectional view schematically showing a part of a repeated concavo-convex microstructure formed in a molding die of this example.
  • FIG. 5 Optical micrographs of the molding materials when the release start temperature Tr [° C] is 132, 100 and the separation speed Vr is 10 mm / sec in this example and the comparative example. a), (b), mold release start temperature Tr [° C] is 132, 135, 130, and separation speed Vr is 10 mm / sec. (C), (d), and (e) are scanning electron micrographs of each molding material.
  • FIG. 6 is a diagram showing the relationship between the mold release start temperature and the transfer area ratio in Examples and Comparative Examples.
  • FIG. 7 is a diagram showing the relationship between the filling structure height and the transfer temperature in this example.
  • FIG. 1 is a diagram schematically showing an imprint apparatus capable of executing the thermal imprint method according to the present embodiment.
  • an imprint apparatus 10 includes a press driving apparatus 11 for an imprint press, and a molding die 18 having a concavo-convex microstructure 18a in which fine undulations are periodically formed.
  • a mold driving device 23 a force sensor 22 arranged between the holding unit 20 and the mold release driving device 23 for detecting the force applied to the molding material 19, and an amplifier 2 for amplifying the detection signal from the force sensor 22 4 and feedback control of the mold release drive device 23 based on the amplified detection signal from the amplifier 24, and a control unit 25 for controlling the transfer temperature and the mold release start temperature of the molding die 18.
  • the press drive device 11 is supported by being connected to the servo motor 12, the press mechanism unit 13 that performs the press by converting the rotational motion of the servo motor 12 into a linear motion using a ball screw, and the press mechanism unit 13.
  • a drive rod 14 that drives the portion 17 up and down, and presses the molding die 18 and the molding material 19 relatively close to each other.
  • the imprint apparatus 10 includes a horizontal member 15a that supports the support portion 17 so as to be movable up and down, a horizontal base 15b that supports and fixes the release drive device 23, and a horizontal base 15b that is fixed to the horizontal base 15b and supports the horizontal member 15a. And a longitudinal member 16.
  • the imprint apparatus 10 includes a heater 17a as a heating means for heating the molding die 18 in the support portion 17, and the heater 17a is controlled by the control unit 25 and is used for pressing. 18 is raised to the transfer temperature Tt and held, and is held at the release start temperature Tr for release. Further, a temperature sensor 18b is disposed in the vicinity of the molding die 18, and the temperature of the molding die 18 is detected by the temperature sensor 18b.
  • the molding die 18 is preferably made of Si, SiO, Ta, Ni, NiP, glassy carbon (C), polycarbonate, or a fluorine-based resin.
  • Si and SiO semiconductor fabrication techniques can be used to form fine patterns, and processing is easy.
  • Ta and glassy carbon (C) have high heat resistance and are characterized by excellent durability when used as a mold. Since Ni and NiP can be used to produce molds by using a method of electric field fitting, it is easy to apply a technique in which a mold is prepared by a technique that facilitates processing of a fine structure separately and plating is used.
  • Polycarbonate has the advantage of facilitating mold replication.
  • a cooling means (not shown) for cooling the molding die 18 is provided in the vicinity of the molding die 18.
  • the molding material is preferably a thermoplastic material such as glass, PMMA, polyolefin resin, polycarbonate, polystyrene, thermoplastic polyimide!
  • FIG. 2 schematically shows a configuration example of the mold release driving device 23 of FIG.
  • the mold release drive unit 23 shown in FIG. 2 includes the servo motor 31, the ball screw rotating shaft 32 connected to the servo motor 31 and driven to rotate, and the ball screw rotating shaft 32 and the ball screw rotating shaft 32.
  • Up The linear motion part 33 that converts to the linear motion below, the drive base 34 that is driven by the linear motion part 33 via the linear motion bearing 33a, and the drive base 34 are supported via the linear motion bearing 36.
  • a support member 35 fixed to the horizontal base 15b.
  • the force sensor 22 shown in FIG. In FIG. 2, the drive base 34 is restrained in the horizontal direction by the linear motion bearing 36, and the error motion in the horizontal direction of the ball screw rotating shaft 32 is absorbed by another linear motion bearing 33a. For this reason, only the vertical force of the servo motor 31 and the ball screw rotating shaft 32 is transmitted to the drive base 34, and the drive base 34 can be moved in the vertical direction.
  • the servo motor 31 of the mold release drive device 23 of FIG. 2 has a smaller disassembly angle than the servo motor 12 of the press drive device 11 of FIG.
  • the pitch is shorter than the screw.
  • the mold release drive device 23 has a fine drive resolution! / And constitutes a fine movement mechanism! /.
  • the control unit 25 controls the amount of rotation of the servo motor 31 based on the detection signal of the force sensor 22, so that the molding material 19 on the drive base 34 can be moved at a pitch smaller than the pitch of the press drive device 11. It can be moved on the axis in the pressing direction m and can be separated from the molding die 18 at a relatively low speed (for example, about several m / second). At the time of releasing, the molding die 18 and the workpiece 19
  • the relative separation speed Vr can be controlled to 2mm / sec or less.
  • the press drive device 11 shown in FIG. 1 moves the molding die 18 on the axis in the pressing direction m at a relatively large pitch by the servo motor 12 and the press mechanism unit 13 whose driving resolution is coarse. be able to.
  • the material 19 can be approached at a relatively high speed.
  • the material to be molded 19 can be separated from the mold 18 for a relatively long time by the mold release driving device 23 and peeled off.
  • the molding die 18 in FIG. 1 is heated by energizing the heater 17a in the support unit 17 to increase the temperature (S01).
  • the temperature is detected by the temperature sensor 18b, and when the mold 18 reaches a predetermined transfer temperature Tt (eg, 135 ° C) (S02), the press
  • Tt eg, 135 ° C
  • the press The servo motor 12 of the drive unit 11 is driven to rotate, and the drive rod 14 is fast-forwarded in the press direction m below in the figure by the press mechanism 13 in a relatively short time to bring the molding die 18 close to the workpiece 19
  • the molding die 18 is pressed against the material 19 to be pressed (S03), held for a predetermined time with a predetermined pressing force (S04), and then the molding die 18 is cooled (S05).
  • the release drive device 23 of FIG. The servomotor 31 is driven to rotate, and the molding material 19 is moved downward by means of the ball screw rotating shaft 32 via the linear motion part 33 and the drive base 34, and the mold is molded at a relative separation speed Vr of 2 mm / sec or less. Release from 18 and release (S07). Thereby, the periodic uneven microstructure 18 a of the molding die 18 is transferred to the molding material 19.
  • the mold release start temperature Tr is a temperature higher than the glass transition temperature Tg (for example, 101 ° C.) of the resin material of the molding material 19.
  • the mold release start temperature Tr exceeds the glass transition temperature Tg of the resin material of the molding material 19, and the transfer temperature Tt In addition to being 3 ° C lower than that, and slowly performing mold release at a separation speed Vr of 2 mm / sec or less, the uneven microstructure transferred to the molding material 19 is deformed and destroyed in the mold release process (S07). It becomes difficult. Further, by setting the separation speed Vr to 2 mm / second or less, a preferable range of the mold release start temperature Tr is widened, and the temperature of the molding die 18 at the time of mold release can be easily controlled.
  • the mold release start temperature Tr [° C] further satisfies the condition of Tr> Tt-15 in the conditional expression (3) with respect to the transfer temperature Tt [° C]. Further, it is preferable that the transfer temperature Tt [° C.] satisfies Tt ⁇ Tg + 20 in the above conditional expression (4) with respect to the glass transition temperature Tg [° C.] of the resin material of the molding material 19.
  • the molding die has a periodic uneven microstructure as shown in Fig. 4 (structure height H: 1200 nm, structure width L: 200 nm, periodicity in a circular area of lmm diameter in the center of a 0.5 mm thick silicon substrate. T: 400 nm, aspect ratio H / L: 6). From PMMA as molding material A transparent resin sheet (glass transition temperature Tg: 101 ° C) was used, and the mold transfer temperature Tt was set to 135 ° C.
  • the minimum feed resolution of the fine movement mechanism is 0.01 m
  • the minimum feed rate by the fine movement mechanism was set to 0.2 m / sec.
  • the minimum feed resolution of the press drive device was 10 H m
  • the feed rate was 10000 H m / sec
  • the press force was 400 N (pressure about 4 MPa)
  • molding was carried out for 2 sec.
  • the examples are the same except that the release temperature Tr [° C] is 135 (Comparative Example 1), 13 3 (Comparative Example 2), and 100 (Comparative Example 3). Molding and mold release were carried out under the same conditions as in. In addition, for each of the above mold release start temperatures Tr (135, 133, 132, 130, 125, 120, 110, 100 ° C), mold release was performed at a relative separation speed Vr of 10 mm / sec (Comparative Example 4). Except for the above conditions, molding and mold release were performed under the same conditions as in the example.
  • Table 1 shows the observation results for the molding materials after the above-mentioned molding and release. From the results of Examples;! To 5, in the temperature range where the release temperature Tr is at least 3 ° C lower than the transfer temperature Tt (135 ° C) and exceeds the glass transition temperature Tg (101 ° C), And the separation speed Vr is 2mm / If it is less than 2 seconds, it can be seen that the material to be molded does not break or excessively deform when releasing (see Fig. 5 (c)).
  • FIGS. 5 (a) and 5 (b) show the case where the release temperature Tr [° C] is 132, 100 and the separation speed Vr is 1 Omm / sec (Comparative Example 4).
  • An optical micrograph of the workpiece is shown (the diameter of the circular part is lmm).
  • Figures 5 (c), (d), and (e) show that the mold release temperature Tr [° C] is 132, 135, 130 and the separation speed Vr is 10 mm / sec (Comparative Example 4). Scanning electron micrographs of the molding materials are shown.
  • the mold release start temperature Tr is 132 ° C, except when the mold release start temperature Tr is 132 ° C, as shown in Fig. 5 (d). If Tr is too high, the concavo-convex microstructure will be greatly deformed. As shown in FIG. 5 (e), if the release temperature Tr is too low, a part of the concavo-convex microstructure will be broken.
  • the transfer area ratio [%] was measured for the molding material when the separation speed Vr [mm / sec] was set to 0.01, 2, and 10 in the above examples and comparative examples.
  • the transfer area ratio is expressed as a percentage of the transfer target area of the area where the concavo-convex fine structure is transferred.
  • the defect ratio [%] 100—transfer area ratio [%].
  • Figure 6 shows the relationship between the release start temperature [° C] and the transfer area ratio [%]. As can be seen from FIG. 6, when the separation speed Vr is 0.01 and 2 mm / second, the transfer area ratio becomes 90% or more when the mold release start temperature is 110 ° C or more, and 120 to 132 ° C.
  • the mold release start temperature Tr that satisfies the above conditional expression (3) (temperature exceeding 15 ° C lower than the transfer temperature Tt, that is, temperature exceeding 120 ° C), it is close to 100% When the force becomes 133 ° C or more, the transfer area ratio decreases rapidly.
  • the mold release temperature Tr exceeds the glass transition temperature Tg and is less than the transfer temperature Tt. Further, from the results of Table 1 and Fig. 6, If the transfer temperature Tt is at least 3 ° C lower and the separation speed Vr is 2 mm / second or less, the molded material will break or break during mold release. It can be seen that excessive deformation does not occur.
  • the transfer temperature Tt was set to 105, 115, 125, 135, 145, 155. Molding and mold release were performed under the same conditions as in 5. The separation speed Vr at the time of mold release was set to lmm / second.
  • Fig. 7 shows the relationship between the measured filling structure height and the transfer temperature. The height of the filling structure of the uneven microstructure transferred to the molding material was measured. As can be seen from FIG.
  • the resin material used in the examples and comparative examples is an example, and other resin materials may be used.
  • the glass transition temperature differs depending on the material.
  • (3), and (4), appropriate release start temperature and transfer temperature are set for each material.
  • the imprint apparatus is not limited to the one shown in FIGS. 1 and 2, and any imprint apparatus may be used as long as the separation speed at the time of mold release can be controlled to 2 mm / second or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Micromachines (AREA)

Abstract

A method of imprinting in which deformation or breaking of microstructures having been transferred by thermal imprinting during die parting process can be avoided. In this method of imprinting, a heated die is brought into contact under pressure with an imprinting object and parted therefrom to thereby transfer a microstructure provided in the die to the imprinting object. In the method, the relationships of the formulae Tg<Tr≤Tt-3 and Vr≤2 are satisfied, wherein Tt refers to transfer temperature being a temperature at pressure contact of die (°C), Tr to die parting starting temperature being a temperature at starting of die parting (°C), Tg to glass transition temperature of imprinting object (°C), and Vr to relative parting speed between die and imprinting object at the parting thereof (mm/sec).

Description

明 細 書  Specification
インプリント方法  Imprint method
技術分野  Technical field
[0001] 本発明は、加熱した金型を被成形材に圧接した後に離型させることで、金型に設け られた微細構造を被成形材に転写するインプリント方法に関する。  TECHNICAL FIELD [0001] The present invention relates to an imprint method for transferring a microstructure provided in a mold onto a molding material by releasing the heated mold after being pressed against the molding material.
背景技術  Background art
[0002] 微細構造を有する金型を用いて、ポリスチレン等の樹脂を加圧成形した後に、成形 品を金型から剥離し離型することで、微小凹凸パターンを有する微細構造物を得るィ ンプリント法が公知である (例えば、下記特許文献 1参照)。  [0002] After a resin such as polystyrene is pressure molded using a mold having a microstructure, the molded product is peeled off from the mold and released to obtain a microstructure having a micro uneven pattern. A printing method is known (for example, see Patent Document 1 below).
特許文献 1 :特開 2005— 189128号公報  Patent Document 1: JP-A-2005-189128
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところ力 従来方法によれば、上記離型の際に、成形品をその成形材料のガラス転 移点温度 Tg以下まで冷却してから剥離している力 s、このような離型では金型と成形 品との熱収縮差のために微細構造パターンが破断してしまうことがあり、インプリント 成形の歩留まりが低下してしまう。特に、アスペクト比の大きい周期微細構造の場合、 上記微細構造パターンの破断が一層生じ易くなつてしまう。 [0003] However, according to the conventional method, in the above-mentioned mold release, when the molded product is cooled to the glass transition point temperature Tg or less of the molding material, the peeling force s, in such mold release, Due to the difference in thermal shrinkage between the mold and the molded product, the fine structure pattern may break, and the yield of imprint molding will be reduced. In particular, in the case of a periodic fine structure having a large aspect ratio, the fine structure pattern is more easily broken.
[0004] 本発明は、上述のような従来技術の問題に鑑み、熱式インプリントで転写した微細 構造を離型プロセスで変形 '破壊させないようにしたインプリント方法を提供すること を目的とする。  The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an imprint method in which a microstructure transferred by thermal imprint is prevented from being deformed and destroyed by a mold release process. .
課題を解決するための手段  Means for solving the problem
[0005] 熱式インプリント法においては、加熱した微細構造部を有する金型を被成形材に圧 接した後に、成形された微細形状を保持する目的で冷却固化を行うが、金型と被成 形材の線膨張係数が異なる場合がほとんどであるため、熱収縮差によって微細構造 部で相対的にずれが生じる。転写面積が大きい場合にはこのずれ量は大きくなる。こ の問題を解決するために、離型する時の温度を成形温度に近づけた (Tg以上)。とこ ろが、被成形材は温度が高!、ほど変形しやす!/、ため離間に伴レ、永久変形が残って しまうという問題が生じた。 In the thermal imprint method, after a mold having a heated microstructure is pressed against a material to be molded, cooling and solidification are performed for the purpose of maintaining the molded fine shape. In most cases, the linear expansion coefficient of the molded material is different, so a relative shift occurs in the microstructure due to the difference in thermal shrinkage. When the transfer area is large, this deviation amount becomes large. To solve this problem, the temperature at the time of mold release was brought close to the molding temperature (Tg or more). However, the material to be molded has a high temperature! The problem of end.
[0006] 以上の両問題を解決すベぐ鋭意検討の結果、離型速度を低速度で行うことにより 、上記変形の問題を解決できることを見!、だし本発明に至ったものである。  [0006] As a result of intensive studies to solve both of the above problems, it has been found that the above problem of deformation can be solved by performing the mold release speed at a low speed, and the present invention has been achieved.
[0007] すなわち、本発明によるインプリント方法は、加熱した金型を被成形材に圧接した 後に離型させることで、前記金型に設けられた微細構造を前記被成形材に転写する インプリント方法であって、前記金型を圧接するときの金型の温度を転写温度 Tt [°C] 、前記離型を開始するときの金型の温度を離型開始温度 Tr[°C]、前記被成形材の ガラス転移点温度を Tg[°C]、前記金型と前記被成形材とを離型させるときの両者の 相対的な離間速度を Vr [mm/秒]とすると、次の条件式(1 )及び(2)を満足すること を特徴とする。  That is, the imprint method according to the present invention transfers a microstructure provided in the mold to the molding material by releasing the mold after pressing the heated mold against the molding material. In this method, the temperature of the mold when press-contacting the mold is the transfer temperature Tt [° C], the temperature of the mold when starting the mold release is the mold release start temperature Tr [° C], When the glass transition temperature of the molding material is Tg [° C] and the relative separation speed between the mold and the molding material is Vr [mm / sec], the following conditions are satisfied. It satisfies the expressions (1) and (2).
Tg<Tr≤Tt- 3 (1)  Tg <Tr≤Tt- 3 (1)
0. 001≤Vr≤2 (2)  0. 001≤Vr≤2 (2)
このインプリント方法によれば、離型開始温度 Trが被成形材のガラス転移点温度 T gを越え、かつ、転写温度 Ttよりも少なくとも 3°C低いとともに、離間速度 Vrが 0. 001 mm/秒以上でかつ 2mm/秒以下であることで、被成形材に転写した微細構造が 離型プロセスで変形 '破壊し難くなるとともに、変形 '破壊し難い有効な離型開始温度 According to this imprinting method, the mold release start temperature Tr exceeds the glass transition temperature Tg of the molding material and is at least 3 ° C lower than the transfer temperature Tt, and the separation speed Vr is 0.001 mm / More than 2 seconds and 2 mm / second or less, the microstructure transferred to the molding material is deformed by the mold release process.
Trの範囲が比較的広くなるので、離型時の金型温度の制御が容易となる。 Since the range of Tr becomes relatively wide, it becomes easy to control the mold temperature during mold release.
[0008] また、離型速度を Vr≤ 2 [mm/秒]とした理由は以下のとおりである。すなわち、金 型と被成形材の微細構造部における接触抵抗により離型しょうとする力に対して微 細構造部に応力が発生する。このとき、離型速度が速いと応力が急激に上昇し、 Tg 以上での離型では被成形材が塑性変形 (永久変形)し易い状態にあるため、離型方 向に延伸変形が残る。そこで、本発明では離型抵抗を増加させずに離型に必要な力 のみを発生させて離型するために離型速度を低ぐすなわち、離型速度 Vrを、 Vr≤ 2 [mm/秒]とした。 [0008] The reason for setting the mold release speed to Vr ≤ 2 [mm / sec] is as follows. That is, a stress is generated in the fine structure portion with respect to the force for releasing the mold due to the contact resistance in the fine structure portion of the mold and the molding material. At this time, if the mold release speed is high, the stress rapidly increases, and if the mold is released at Tg or higher, the material to be molded is likely to be plastically deformed (permanently deformed), so that stretch deformation remains in the mold release direction. Therefore, in the present invention, the mold release speed is reduced in order to generate only the force necessary for mold release without increasing the mold release resistance, that is, the mold release speed Vr is set to Vr≤ 2 [mm / sec. ]
さらに、離型速度 Vrを Vr≥0. 001 [mm/秒]とした理由は以下である。すなわち、 離型速度が 0. 001 [mm/秒]未満だと、離型速度が遅すぎて、微細構造部と被成 形材との間の微細構造の根元部分で塑性変形が生じて微細構造の根元部が伸びて しまったり、破断が生じたりする不具合が生じるためである。 [0009] 上記インプリント方法において次の条件式(3)を更に満足することが好ましい。 Furthermore, the reason for setting the release speed Vr to Vr≥0.001 [mm / sec] is as follows. In other words, if the mold release speed is less than 0.001 [mm / sec], the mold release speed is too slow, and plastic deformation occurs at the base of the microstructure between the microstructure and the material to be formed. This is because there is a problem that the base of the structure extends or breaks. In the imprint method, it is preferable that the following conditional expression (3) is further satisfied.
Tr >Tt - 15 (3)  Tr> Tt-15 (3)
また、次の条件式 (4)を更に満足することが好ましぐ被成形材の微細構造への充 填性がよい。  In addition, it is preferable to satisfy the following conditional expression (4), and it is preferable to fill the microstructure of the molding material.
Tt≥Tg + 20 (4)  Tt≥Tg + 20 (4)
また、前記微細構造は、周期 T、構造高さ Η、及び構造幅 Lの周期構造であって、 前記周期 Τが 2 m以下であり、前記転写後の周期構造のアスペクト比(H/L)が 2 以上であることが好ましい。上記インプリント方法を適用することで、従来方法では成 形困難な場合が多力、つたアスペクト比(H/L)が 2以上の微細な周期構造を離型プ 口セスで変形'破壊せずに被成形材に転写できる。  The fine structure is a periodic structure having a period T, a structure height Η, and a structure width L, the period Τ being 2 m or less, and an aspect ratio (H / L) of the periodic structure after transfer. Is preferably 2 or more. By applying the above imprinting method, it is difficult to form with the conventional method, and a fine periodic structure with an aspect ratio (H / L) of 2 or more is not deformed or destroyed by a release process. Can be transferred to the molding material.
[0010] また、前記被成形材は樹脂材料からなることが好まし!/、。また、前記金型は、 Si、 Si O、 Ta、 Ni、 NiP、グラッシ一カーボン(C)、ポリカーボネート、またはフ [0010] Further, the molding material is preferably made of a resin material! The mold may be Si, Si 2 O, Ta, Ni, NiP, glassy carbon (C), polycarbonate, or plastic.
ッ素系樹脂からなることが好ましレ、。  It is preferable to be made of silicon-based resin.
発明の効果  The invention's effect
[0011] 本発明のインプリント方法によれば、熱式インプリントで転写した微細構造が離型プ 口セスで変形 '破壊し難くなる。このため、歩留まりがよくなり、成形品の生産性が向上 する。  [0011] According to the imprinting method of the present invention, the microstructure transferred by thermal imprinting is difficult to be deformed and destroyed by the release process. For this reason, the yield is improved and the productivity of the molded product is improved.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本実施の形態によるインプリント方法を実行可能なインプリント装置の要部を概 略的に示す図である。  FIG. 1 is a diagram schematically showing a main part of an imprint apparatus capable of executing an imprint method according to the present embodiment.
[図 2]図 1の離型駆動装置 23の構成例を概略的に示す図である。  2 is a diagram schematically showing a configuration example of a release driving device 23 in FIG. 1. FIG.
[図 3]図 1 ,図 2のインプリント装置 10による成形工程 S01乃至 S07を説明するための フローチャートである。  3 is a flowchart for explaining molding steps S01 to S07 by the imprint apparatus 10 of FIGS. 1 and 2. FIG.
[図 4]本実施例の成形金型に形成した繰返し凹凸微細構造の一部を模式的に示す 側断面図である。  FIG. 4 is a side cross-sectional view schematically showing a part of a repeated concavo-convex microstructure formed in a molding die of this example.
[図 5]本実施例、比較例において離型開始温度 Tr [°C]が 132, 100であり、かつ、離 間速度 Vrが 10mm/秒である場合の各被成形材の光学顕微鏡写真 (a)、 (b)であり 、離型開始温度 Tr[°C]が 132、 135、 130であり、かつ、離間速度 Vrが 10mm/秒 である場合の各被成形材の走査型電子顕微鏡写真 (c)、(d)、(e)である。 [Fig. 5] Optical micrographs of the molding materials when the release start temperature Tr [° C] is 132, 100 and the separation speed Vr is 10 mm / sec in this example and the comparative example. a), (b), mold release start temperature Tr [° C] is 132, 135, 130, and separation speed Vr is 10 mm / sec. (C), (d), and (e) are scanning electron micrographs of each molding material.
[図 6]本実施例、比較例における離型開始温度と転写面積率との関係を示す図であ  FIG. 6 is a diagram showing the relationship between the mold release start temperature and the transfer area ratio in Examples and Comparative Examples.
[図 7]本実施例における充填構造高さと転写温度との関係を示す図である。 FIG. 7 is a diagram showing the relationship between the filling structure height and the transfer temperature in this example.
符号の説明  Explanation of symbols
[0013] 10 インプリント装置 [0013] 10 imprint apparatus
18 成形金型  18 Mold
18a 凹凸微細構造  18a Irregular microstructure
19 被成形材  19 Molded material
H 構造高さ  H Structure height
L 構造幅  L Structure width
H/L アスペクト比  H / L aspect ratio
T 周期  T period
Tg ガラス転移点温度  Tg Glass transition temperature
Tr 離型開始温度  Tr release start temperature
Tt 転写温度  Tt Transfer temperature
Vr 離間速度  Vr Separation speed
m プレス方向  m Press direction
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明を実施するための最良の形態について図面を用いて説明する。図 1 は本実施の形態による熱インプリント法を実行可能なインプリント装置を概略的に示 す図である。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing an imprint apparatus capable of executing the thermal imprint method according to the present embodiment.
[0015] 図 1に示すように、インプリント装置 10は、インプリントプレスのためのプレス駆動装 置 11と、周期的に微細な凹凸が形成された凹凸微細構造 18aを有する成形金型 18 を支持し固定する支持部 17と、成形金型 18と相対的に接近し成形が行われる樹脂 材料の被成形材 19を保持し固定する保持部 20と、離型時に保持部 20を駆動する 離型駆動装置 23と、保持部 20と離型駆動装置 23との間に配置され被成形材 19に 加わるカを検知する力センサ 22と、力センサ 22からの検知信号を増幅する増幅器 2 4と、増幅器 24からの増幅された検知信号に基づいて離型駆動装置 23をフィードバ ック制御したり、また成形金型 18の転写温度や離型開始温度を制御する制御部 25 と、を備える。 As shown in FIG. 1, an imprint apparatus 10 includes a press driving apparatus 11 for an imprint press, and a molding die 18 having a concavo-convex microstructure 18a in which fine undulations are periodically formed. A supporting part 17 for supporting and fixing, a holding part 20 for holding and fixing a molding material 19 of a resin material which is molded relatively close to the molding die 18, and a driving part 20 for releasing the mold. A mold driving device 23, a force sensor 22 arranged between the holding unit 20 and the mold release driving device 23 for detecting the force applied to the molding material 19, and an amplifier 2 for amplifying the detection signal from the force sensor 22 4 and feedback control of the mold release drive device 23 based on the amplified detection signal from the amplifier 24, and a control unit 25 for controlling the transfer temperature and the mold release start temperature of the molding die 18. Prepare.
[0016] プレス駆動装置 11は、サーボモータ 12と、サーボモータ 12の回転運動をボールね じで直線運動に変換してプレスを行うプレス機構部 13と、プレス機構部 13に連結さ れて支持部 17を上下に駆動する駆動ロッド 14と、を備え、成形金型 18と被成形材 1 9とを相対的に接近させてプレスを行う。  [0016] The press drive device 11 is supported by being connected to the servo motor 12, the press mechanism unit 13 that performs the press by converting the rotational motion of the servo motor 12 into a linear motion using a ball screw, and the press mechanism unit 13. A drive rod 14 that drives the portion 17 up and down, and presses the molding die 18 and the molding material 19 relatively close to each other.
[0017] インプリント装置 10は、支持部 17を上下動可能に支持する水平部材 15aと、離型 駆動装置 23を支持し固定する水平台 15bと、水平台 15bに固定され水平部材 15a を支持する縦部材 16と、を備える。  [0017] The imprint apparatus 10 includes a horizontal member 15a that supports the support portion 17 so as to be movable up and down, a horizontal base 15b that supports and fixes the release drive device 23, and a horizontal base 15b that is fixed to the horizontal base 15b and supports the horizontal member 15a. And a longitudinal member 16.
[0018] また、インプリント装置 10は、支持部 17内に、成形金型 18を加熱する加熱手段とし てヒータ 17aを備え、ヒータ 17aは制御部 25により制御され、プレスのために成形金 型 18を転写温度 Ttに昇温させ保持し、また、離型のために離型開始温度 Trに保持 する。また、成形金型 18の近傍には温度センサ 18bが配置され、温度センサ 18bで 成形金型 18の温度を検知する。  [0018] Further, the imprint apparatus 10 includes a heater 17a as a heating means for heating the molding die 18 in the support portion 17, and the heater 17a is controlled by the control unit 25 and is used for pressing. 18 is raised to the transfer temperature Tt and held, and is held at the release start temperature Tr for release. Further, a temperature sensor 18b is disposed in the vicinity of the molding die 18, and the temperature of the molding die 18 is detected by the temperature sensor 18b.
[0019] なお、成形金型 18は、 Si、 SiO、 Ta、 Ni、 NiP、グラッシ一カーボン(C)、ポリカー ボネート、またはフッ素系樹脂からなることが好ましい。 Siと SiOについては、微細な ノ ターンを形成するのに半導体製造の手法を利用でき、加工が容易である。 Taとグ ラッシ一カーボン(C)は耐熱性に富み、金型として用いたときの耐久性に優れる特徴 がある。 Niと NiPは電界めつきの手法を用いて金型を作製できるので、母型を別途微 細構造を加工しやすい手法で作成しておいて、めっきで型を得る手法が適用しやす い。ポリカーボネートについては金型の複製が容易になるという利点がある。また、成 形金型 18の近傍には成形金型 18を冷却する冷却手段(図示省略)が設けられてい る。また、被成形材はガラス、 PMMA、ポリオレフイン系樹脂、ポリカーボネート、ポリ スチレン、熱可塑性ポリイミドなどの熱可塑性材料が好まし!/、。  [0019] The molding die 18 is preferably made of Si, SiO, Ta, Ni, NiP, glassy carbon (C), polycarbonate, or a fluorine-based resin. For Si and SiO, semiconductor fabrication techniques can be used to form fine patterns, and processing is easy. Ta and glassy carbon (C) have high heat resistance and are characterized by excellent durability when used as a mold. Since Ni and NiP can be used to produce molds by using a method of electric field fitting, it is easy to apply a technique in which a mold is prepared by a technique that facilitates processing of a fine structure separately and plating is used. Polycarbonate has the advantage of facilitating mold replication. A cooling means (not shown) for cooling the molding die 18 is provided in the vicinity of the molding die 18. The molding material is preferably a thermoplastic material such as glass, PMMA, polyolefin resin, polycarbonate, polystyrene, thermoplastic polyimide!
[0020] 図 2に図 1の離型駆動装置 23の構成例を概略的に示す。図 2の離型駆動装置 23 は、サーボモータ 31と、サーボモータ 31に連結され回転駆動されるボールねじ回転 軸 32と、ボールねじ回転軸 32とかみ合いボールねじ回転軸 32の回転運動を図の上 下の直線運動に変換する直動部 33と、直動部 33により直動軸受 33aを介して駆動 される駆動台 34と、駆動台 34を直動軸受 36を介して支持するように図 1の水平台 1 5bに固定される支持部材 35と、を備える。駆動台 34の上には図 1の力センサ 22が 配置される。図 2では、直動軸受 36で駆動台 34を水平方向に拘束し、ボールねじ回 転軸 32の水平方向の誤差運動はもう 1つの直動軸受 33aで吸収する。このため、サ ーボモータ 31とボールねじ回転軸 32の鉛直方向の力のみが駆動台 34に伝わり、駆 動台 34を上下方向に移動させることができる。 FIG. 2 schematically shows a configuration example of the mold release driving device 23 of FIG. The mold release drive unit 23 shown in FIG. 2 includes the servo motor 31, the ball screw rotating shaft 32 connected to the servo motor 31 and driven to rotate, and the ball screw rotating shaft 32 and the ball screw rotating shaft 32. Up The linear motion part 33 that converts to the linear motion below, the drive base 34 that is driven by the linear motion part 33 via the linear motion bearing 33a, and the drive base 34 are supported via the linear motion bearing 36. And a support member 35 fixed to the horizontal base 15b. The force sensor 22 shown in FIG. In FIG. 2, the drive base 34 is restrained in the horizontal direction by the linear motion bearing 36, and the error motion in the horizontal direction of the ball screw rotating shaft 32 is absorbed by another linear motion bearing 33a. For this reason, only the vertical force of the servo motor 31 and the ball screw rotating shaft 32 is transmitted to the drive base 34, and the drive base 34 can be moved in the vertical direction.
[0021] 図 2の離型駆動装置 23のサーボモータ 31は図 1のプレス駆動装置 1 1のサーボモ ータ 12よりも分解角が小さぐまた、ボールねじ回転軸 32はプレス機構部 13のボー ルねじよりもピッチが短くなつている。このように、離型駆動装置 23は、駆動の分解能 が細か!/、微動機構を構成して!/、る。制御部 25が力センサ 22の検知信号に基づ!/、て サーボモータ 31の回転量を制御することで、プレス駆動装置 11のピッチよりも小さな ピッチで駆動台 34上の被成形材 19をプレス方向 mの軸上で移動させることができ、 成形金型 18から比較的低速度(例えば、数 m/秒程度)で離すことができ、離型 時において成形金型 18と被成形材 19との相対的な離間速度 Vrを 2mm/秒以下に 制御可能である。 [0021] The servo motor 31 of the mold release drive device 23 of FIG. 2 has a smaller disassembly angle than the servo motor 12 of the press drive device 11 of FIG. The pitch is shorter than the screw. In this way, the mold release drive device 23 has a fine drive resolution! / And constitutes a fine movement mechanism! /. The control unit 25 controls the amount of rotation of the servo motor 31 based on the detection signal of the force sensor 22, so that the molding material 19 on the drive base 34 can be moved at a pitch smaller than the pitch of the press drive device 11. It can be moved on the axis in the pressing direction m and can be separated from the molding die 18 at a relatively low speed (for example, about several m / second). At the time of releasing, the molding die 18 and the workpiece 19 The relative separation speed Vr can be controlled to 2mm / sec or less.
[0022] 一方、図 1のプレス駆動装置 11は、駆動の分解能が粗ぐサーボモータ 12とプレス 機構部 13とにより、比較的大きなピッチで成形金型 18をプレス方向 mの軸上で移動 させることができる。被成形材 19に比較的高速度で接近させることができる。  On the other hand, the press drive device 11 shown in FIG. 1 moves the molding die 18 on the axis in the pressing direction m at a relatively large pitch by the servo motor 12 and the press mechanism unit 13 whose driving resolution is coarse. be able to. The material 19 can be approached at a relatively high speed.
[0023] 図 1 ,図 2のインプリント装置 10によれば、プレスのときに、プレス駆動装置 11により 成形金型 18を被成形材 19に対し比較的短時間に接近させてプレスを行うことができ [0023] According to the imprint apparatus 10 of FIGS. 1 and 2, when pressing, pressing is performed with the press driving device 11 bringing the molding die 18 closer to the molding material 19 in a relatively short time. Can
、その後、離型のときに、離型駆動装置 23により被成形材 19を成形金型 18から比較 的長時間かけて離して剥がすことができる。 Thereafter, at the time of mold release, the material to be molded 19 can be separated from the mold 18 for a relatively long time by the mold release driving device 23 and peeled off.
[0024] 次に、図 1 ,図 2のインプリント装置 10による成形工程 S01乃至 S07について図 3の フローチャートを参照しながら説明する。  Next, the molding steps S01 to S07 by the imprint apparatus 10 of FIGS. 1 and 2 will be described with reference to the flowchart of FIG.
[0025] 図 1の制御部 25の制御の下で、図 1の成形金型 18を支持部 17内のヒータ 17aに 通電することで加熱し、昇温させ(S01)、成形金型 18の温度を温度センサ 18bで検 知し、成形金型 18が所定の転写温度 Tt (例えば 135°C)に達すると(S02)、プレス 駆動装置 11のサーボモータ 12を回転駆動し、プレス機構部 13で駆動ロッド 14を図 の下方のプレス方向 mに比較的短時間で早送りし、成形金型 18を被成形材 19に接 近させ、成形金型 18を被成形材 19に押し当ててプレスし(S03)、所定のプレス力で 所定時間保持してから(S04)、成形金型 18を冷却する(S05)。 [0025] Under the control of the control unit 25 in FIG. 1, the molding die 18 in FIG. 1 is heated by energizing the heater 17a in the support unit 17 to increase the temperature (S01). The temperature is detected by the temperature sensor 18b, and when the mold 18 reaches a predetermined transfer temperature Tt (eg, 135 ° C) (S02), the press The servo motor 12 of the drive unit 11 is driven to rotate, and the drive rod 14 is fast-forwarded in the press direction m below in the figure by the press mechanism 13 in a relatively short time to bring the molding die 18 close to the workpiece 19 Then, the molding die 18 is pressed against the material 19 to be pressed (S03), held for a predetermined time with a predetermined pressing force (S04), and then the molding die 18 is cooled (S05).
[0026] 次に、成形金型 18の温度が転写温度 Ttから少なくとも 3°C低下し、離型開始温度 Tr (例えば 132°C)になると(S06)、図 2の離型駆動装置 23のサーボモータ 31を回 転駆動し、ボールねじ回転軸 32により直動部 33及び駆動台 34を介して被成形材 1 9を下方に移動させて 2mm/秒以下の相対離間速度 Vrで成形金型 18から離し離 型する(S07)。これにより、成形金型 18の周期的な凹凸微細構造 18aが被成形材 1 9に転写される。なお、上記離型開始温度 Trは、被成形材 19の樹脂材料のガラス転 移点温度 Tg (例えば 101°C)よりも高い温度である。  [0026] Next, when the temperature of the molding die 18 decreases by at least 3 ° C from the transfer temperature Tt and reaches the release start temperature Tr (eg 132 ° C) (S06), the release drive device 23 of FIG. The servomotor 31 is driven to rotate, and the molding material 19 is moved downward by means of the ball screw rotating shaft 32 via the linear motion part 33 and the drive base 34, and the mold is molded at a relative separation speed Vr of 2 mm / sec or less. Release from 18 and release (S07). Thereby, the periodic uneven microstructure 18 a of the molding die 18 is transferred to the molding material 19. The mold release start temperature Tr is a temperature higher than the glass transition temperature Tg (for example, 101 ° C.) of the resin material of the molding material 19.
[0027] 上述のインプリント方法によれば、上記条件式(1)、 (2)を満たし、離型開始温度 Tr が被成形材 19の樹脂材料のガラス転移点温度 Tgを超えかつ転写温度 Ttよりも少な くとも 3°C低いとともに、 2mm/秒以下の離間速度 Vrで離型をゆっくり行うことで、被 成形材 19に転写した凹凸微細構造が離型工程 (S07)で変形 ·破壊し難くなる。また 、離間速度 Vrを 2mm/秒以下とすることで、離型開始温度 Trの好ましい範囲が広く なり、離型時の成形金型 18の温度の制御が容易となる。  [0027] According to the imprint method described above, the above conditional expressions (1) and (2) are satisfied, the mold release start temperature Tr exceeds the glass transition temperature Tg of the resin material of the molding material 19, and the transfer temperature Tt In addition to being 3 ° C lower than that, and slowly performing mold release at a separation speed Vr of 2 mm / sec or less, the uneven microstructure transferred to the molding material 19 is deformed and destroyed in the mold release process (S07). It becomes difficult. Further, by setting the separation speed Vr to 2 mm / second or less, a preferable range of the mold release start temperature Tr is widened, and the temperature of the molding die 18 at the time of mold release can be easily controlled.
[0028] なお、離型開始温度 Tr[°C]は転写温度 Tt[°C]に対し、上記条件式(3)の Tr〉Tt —15を更に満足することが好ましい。また、転写温度 Tt[°C]は被成形材 19の樹脂 材料のガラス転移点温度 Tg[°C]に対し、上記条件式 (4)の Tt≥Tg + 20を満足す ることが好ましい。  [0028] It is preferable that the mold release start temperature Tr [° C] further satisfies the condition of Tr> Tt-15 in the conditional expression (3) with respect to the transfer temperature Tt [° C]. Further, it is preferable that the transfer temperature Tt [° C.] satisfies Tt≥Tg + 20 in the above conditional expression (4) with respect to the glass transition temperature Tg [° C.] of the resin material of the molding material 19.
実施例  Example
[0029] 以下、本発明を実施例により更に具体的に説明するが、本発明は、本実施例に限 定されるものではない。  [0029] Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
[0030] 〈実施例;!〜 5〉  <Example>! ~ 5>
成形金型は、厚さ 0. 5mmのシリコン基材の中央に直径 lmmの円形の領域に図 4 のような周期的な凹凸微細構造 (構造高さ H : 1200nm、構造幅 L : 200nm、周期 T : 400nm、アスペクト比 H/L: 6)を形成したものである。被成形材として PMMAから なる透明樹脂シート(ガラス転移点温度 Tg: 101°C)を用い、金型の転写温度 Ttを 1 35°Cに設定した。 The molding die has a periodic uneven microstructure as shown in Fig. 4 (structure height H: 1200 nm, structure width L: 200 nm, periodicity in a circular area of lmm diameter in the center of a 0.5 mm thick silicon substrate. T: 400 nm, aspect ratio H / L: 6). From PMMA as molding material A transparent resin sheet (glass transition temperature Tg: 101 ° C) was used, and the mold transfer temperature Tt was set to 135 ° C.
[0031] 図 1,図 2と同様のインプリント装置を用い、離型駆動装置においてサーボモータの 分解角とボールねじのピッチを組み合わせることで、微動機構の最小送り分解能を 0 .01 mとし、微動機構による最小送り速度を 0· 2 m/秒とした。また、プレス駆動 装置の最小送り分解能は 10 H mであり、送り速度は 10000 H m/秒であり、プレス 力は 400N (圧力約 4MPa)で、 2秒保持して成形を行った。  [0031] By using the same imprint apparatus as in FIGS. 1 and 2 and combining the disassembly angle of the servo motor and the pitch of the ball screw in the mold release drive unit, the minimum feed resolution of the fine movement mechanism is 0.01 m, The minimum feed rate by the fine movement mechanism was set to 0.2 m / sec. The minimum feed resolution of the press drive device was 10 H m, the feed rate was 10000 H m / sec, the press force was 400 N (pressure about 4 MPa), and molding was carried out for 2 sec.
[0032] 次に、離型工程を下記表 1に示すような条件で行った。すなわち、離型開始温度 Tr  Next, the mold release process was performed under the conditions shown in Table 1 below. That is, mold release temperature Tr
[°C]を、 132(実施例 1), 130(実施例 2), 125(実施例 3), 120(実施例 4), 110( 実施例 5)とし、各離型開始温度 Trについて、成形金型と被成形材とを離間させる相 対離間速度 Vr [mm/秒]を、 2, 1, 0.01, 0.001として離型をそれぞれ実行した。  [° C] is 132 (Example 1), 130 (Example 2), 125 (Example 3), 120 (Example 4), 110 (Example 5), and for each mold release start temperature Tr, The mold release was performed with the relative separation speed Vr [mm / sec] for separating the molding die and the material to be molded set to 2, 1, 0.01 and 0.001.
[0033] 〈比較例;!〜 4〉  [0033] <Comparative Example;! ~ 4>
比較例として下記表 1に示すように、離型開始温度 Tr[°C]を、 135(比較例 1), 13 3 (比較例 2), 100 (比較例 3)とした以外は、実施例と同じ条件で成形 ·離型を行った 。また、上記各離型開始温度 Tr(135, 133, 132, 130, 125, 120, 110, 100°C) について、 10mm/秒の相対離間速度 Vrで離型を行い(比較例 4)、これらの条件 以外は、実施例と同じ条件で成形 ·離型を行った。  As a comparative example, as shown in Table 1 below, the examples are the same except that the release temperature Tr [° C] is 135 (Comparative Example 1), 13 3 (Comparative Example 2), and 100 (Comparative Example 3). Molding and mold release were carried out under the same conditions as in. In addition, for each of the above mold release start temperatures Tr (135, 133, 132, 130, 125, 120, 110, 100 ° C), mold release was performed at a relative separation speed Vr of 10 mm / sec (Comparative Example 4). Except for the above conditions, molding and mold release were performed under the same conditions as in the example.
[0034] [表 1] [0034] [Table 1]
Figure imgf000011_0001
Figure imgf000011_0001
表 1に上記各成形'離型後の被成形材についての観察結果を示す。実施例;!〜 5 の結果から、離型開始温度 Trが転写温度 Tt (135°C)から少なくとも 3°C低ぐかつ、 ガラス転移点温度 Tg (101°C)を超えた温度範囲で、かつ、離間速度 Vrが 2mm/ 秒以下であれば、離型時に被成形材に破断や過度な変形が生じな!/、ことが分かる( 図 5 (c)参照)。 Table 1 shows the observation results for the molding materials after the above-mentioned molding and release. From the results of Examples;! To 5, in the temperature range where the release temperature Tr is at least 3 ° C lower than the transfer temperature Tt (135 ° C) and exceeds the glass transition temperature Tg (101 ° C), And the separation speed Vr is 2mm / If it is less than 2 seconds, it can be seen that the material to be molded does not break or excessively deform when releasing (see Fig. 5 (c)).
[0036] 一方、比較例 1〜4の結果から、離型開始温度 Trが転写温度 Ttから温度差 3°C未 満の 135°C、 133°Cの場合は、転写された凹凸微細構造が大きく変形してしまい(図 5 (d)参照)、また、ガラス転移点温度 Tg以下の 100°Cの場合は、転写された凹凸微 細構造の一部に破断が生じた(図 5 (e)参照)。また、離間速度 Vrが 10mm/秒と速 い場合は、離型開始温度 Trが 132°Cのときは良好であった力 これらの条件以外で は、大きな変形、または、破断が生じた。  [0036] On the other hand, from the results of Comparative Examples 1 to 4, when the mold release start temperature Tr is 135 ° C and 133 ° C where the temperature difference is less than 3 ° C from the transfer temperature Tt, the transferred uneven microstructure is It was greatly deformed (see Fig. 5 (d)), and when it was 100 ° C below the glass transition temperature Tg, a part of the transferred concavo-convex microstructure was broken (Fig. 5 (e) )reference). In addition, when the separation speed Vr was as fast as 10 mm / sec, a force that was good when the mold release start temperature Tr was 132 ° C. Under these conditions, large deformation or fracture occurred.
[0037] 図 5 (a)、(b)に、離型開始温度 Tr[°C]が 132, 100であり、かつ、離間速度 Vrが 1 Omm/秒である場合 (比較例 4)の各被成形材の光学顕微鏡写真を示す(円形部分 の直径が lmmである)。図 5 (c)、(d)、 (e)に、離型開始温度 Tr[°C]が 132、 135、 130であり、かつ、離間速度 Vrが 10mm/秒である場合(比較例 4)の各被成形材の 走査型電子顕微鏡写真を示す。離型時の離間速度 Vrが 10mm/秒と速い場合に、 離型開始温度 Trが 132°Cの場合以外は、変形 '破断が発生し、図 5 (d)のように、離 型開始温度 Trが高すぎると、凹凸微細構造が大きく変形してしまい、図 5 (e)のように 、離型開始温度 Trが低すぎると、凹凸微細構造の一部が破断してしまう。  [0037] FIGS. 5 (a) and 5 (b) show the case where the release temperature Tr [° C] is 132, 100 and the separation speed Vr is 1 Omm / sec (Comparative Example 4). An optical micrograph of the workpiece is shown (the diameter of the circular part is lmm). Figures 5 (c), (d), and (e) show that the mold release temperature Tr [° C] is 132, 135, 130 and the separation speed Vr is 10 mm / sec (Comparative Example 4). Scanning electron micrographs of the molding materials are shown. When the separation speed Vr is as fast as 10 mm / sec when the mold release, the mold release start temperature Tr is 132 ° C, except when the mold release start temperature Tr is 132 ° C, as shown in Fig. 5 (d). If Tr is too high, the concavo-convex microstructure will be greatly deformed. As shown in FIG. 5 (e), if the release temperature Tr is too low, a part of the concavo-convex microstructure will be broken.
[0038] 次に、上記実施例及び比較例において離間速度 Vr [mm/秒]を 0. 01 , 2、 10と した場合の被成形材について転写面積率[%]を測定した。転写面積率は、凹凸微 細構造が転写された面積の転写対象面積に対する百分率で表され、表 1の欠陥率 [ %]に関し、欠陥率[%] = 100—転写面積率[%]である。図 6に、離型開始温度 [°C ]と転写面積率[%]との関係を示す。図 6から分かるように、離間速度 Vrが 0. 01 , 2 mm/秒の場合、離型開始温度が 110°C以上であれば、転写面積率が 90%以上と なり、 120〜132°Cの範囲、すなわち、上記条件式(3)を満たす離型開始温度 Tr ( 転写温度 Ttよりも 15°C低い温度を超えた温度、すなわち、 120°Cを超えた温度)で は、 100%近くになる力 133°C以上では、転写面積率が急激に低下する。  Next, the transfer area ratio [%] was measured for the molding material when the separation speed Vr [mm / sec] was set to 0.01, 2, and 10 in the above examples and comparative examples. The transfer area ratio is expressed as a percentage of the transfer target area of the area where the concavo-convex fine structure is transferred. Regarding the defect ratio [%] in Table 1, the defect ratio [%] = 100—transfer area ratio [%]. . Figure 6 shows the relationship between the release start temperature [° C] and the transfer area ratio [%]. As can be seen from FIG. 6, when the separation speed Vr is 0.01 and 2 mm / second, the transfer area ratio becomes 90% or more when the mold release start temperature is 110 ° C or more, and 120 to 132 ° C. In the range of 1, that is, the mold release start temperature Tr that satisfies the above conditional expression (3) (temperature exceeding 15 ° C lower than the transfer temperature Tt, that is, temperature exceeding 120 ° C), it is close to 100% When the force becomes 133 ° C or more, the transfer area ratio decreases rapidly.
[0039] 図 5 (a)〜(e)の結果から、離型開始温度 Trは、ガラス転移点温度 Tgを超え、転写 温度 Tt未満がよぐ更に、上記表 1及び図 6の結果から、転写温度 Ttから少なくとも 3 °C低ぐかつ、離間速度 Vrが 2mm/秒以下であれば、離型時に被成形材に破断や 過度な変形が生じなレ、ことが分かる。 [0039] From the results of Figs. 5 (a) to (e), the mold release temperature Tr exceeds the glass transition temperature Tg and is less than the transfer temperature Tt. Further, from the results of Table 1 and Fig. 6, If the transfer temperature Tt is at least 3 ° C lower and the separation speed Vr is 2 mm / second or less, the molded material will break or break during mold release. It can be seen that excessive deformation does not occur.
[0040] また、離間速度が 10mm/秒であると、破断や過度な変形が生じな!/、離型開始温 度の範囲力 32°Cの一点のみと狭いのに対し、離間速度 Vrが 2mm/秒以下である と、破断や過度な変形が生じない有効な離型開始温度 Trの範囲が 110〜132°Cと 広くなることが分かる。このように、比較的広い温度範囲において離型を行うことがで きるので、離型時の成形金型温度の制御が容易となる。  [0040] Further, when the separation speed is 10 mm / sec, breakage and excessive deformation do not occur! / The range force of the mold release start temperature is narrow at only one point of 32 ° C, whereas the separation speed Vr is It can be seen that when it is 2 mm / sec or less, the effective mold release temperature Tr range in which breakage or excessive deformation does not occur becomes as wide as 110 to 132 ° C. As described above, since the mold release can be performed in a relatively wide temperature range, the mold temperature during the mold release can be easily controlled.
[0041] 〈実施例 6〉  <Example 6>
次に、転写温度 Ttが凹凸微細構造の充填高さに及ぼす影響を調べた。図 7に示 す構造高さ 980nm、周期 400nm、構造幅 200nmの成形金型を用いて、転写温度 Ttを、 105, 115, 125, 135, 145, 155とした以外は、実施列;!〜 5と同じ条件で成 形 ·離型を行った。なお、離型時の離間速度 Vrは lmm/秒とした。被成形材に転写 された凹凸微細構造の充填構造高さを測定し、その測定した充填構造高さと転写温 度との関係を図 7に示す。図 7から分かるように、転写温度 Ttがガラス転移点温度 Tg (101°C)を超えて高くなるほど充填性がよくなり、 135°Cで最も充填性がよぐまた 13 5°Cを超えても充填性がよい。また、転写温度 Ttが 120°Cであれば、充填構造高さが 400nmとなり、転写後のアスペクト比 2を満足する。すなわち、樹脂材料のガラス転 移点温度 Tg (101°C)に対し少なくとも 20°C高ければ、転写後のアスペクト比が 2以 上となる。  Next, the effect of the transfer temperature Tt on the filling height of the uneven microstructure was investigated. Except for using a molding die with a structural height of 980 nm, a period of 400 nm, and a structural width of 200 nm as shown in FIG. 7, the transfer temperature Tt was set to 105, 115, 125, 135, 145, 155. Molding and mold release were performed under the same conditions as in 5. The separation speed Vr at the time of mold release was set to lmm / second. Fig. 7 shows the relationship between the measured filling structure height and the transfer temperature. The height of the filling structure of the uneven microstructure transferred to the molding material was measured. As can be seen from FIG. 7, the higher the transfer temperature Tt exceeds the glass transition temperature Tg (101 ° C), the better the filling property, and the best filling property is at 135 ° C, and it exceeds 135 ° C. Also has good fillability. If the transfer temperature Tt is 120 ° C, the height of the filling structure is 400 nm, and the aspect ratio after transfer 2 is satisfied. That is, if the resin material is at least 20 ° C higher than the glass transition temperature Tg (101 ° C), the aspect ratio after transfer is 2 or more.
[0042] 以上のように本発明を実施するための最良の形態について説明した力 本発明は これらに限定されるものではなぐ本発明の技術的思想の範囲内で各種の変形が可 能である。例えば、実施例、比較例で用いた樹脂材料は一例であって、他の樹脂材 料を用いてもよいことは勿論であり、材料毎にガラス転移点温度が異なるので、上記 条件式(1)、(3)、(4)に基づいて材料毎に適切な離型開始温度、転写温度が設定 される。  [0042] As described above, the best mode for carrying out the present invention has been described. The present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. . For example, the resin material used in the examples and comparative examples is an example, and other resin materials may be used. Of course, the glass transition temperature differs depending on the material. ), (3), and (4), appropriate release start temperature and transfer temperature are set for each material.
[0043] また、インプリント装置は、図 1 ,図 2に示すものに限定されず、離型時の離間速度 を 2mm/秒以下に制御できるものであればよい。  Further, the imprint apparatus is not limited to the one shown in FIGS. 1 and 2, and any imprint apparatus may be used as long as the separation speed at the time of mold release can be controlled to 2 mm / second or less.

Claims

請求の範囲 The scope of the claims
[1] 加熱した金型を被成形材に圧接した後に離型させることで、前記金型に設けられた 微細構造を前記被成形材に転写するインプリント方法であって、  [1] An imprint method in which a microstructure provided in the mold is transferred to the molding material by releasing the heated mold after being pressed against the molding material,
前記金型を圧接するときの金型の温度を転写温度 Tt[°C]、前記離型を開始すると きの金型の温度を離型開始温度 Tr[°C]、前記被成形材のガラス転移点温度を Tg[ °C]、前記金型と前記被成形材とを離型させるときの両者の相対的な離間速度を Vr[ mm/秒]とすると、次の条件式(1)及び(2)を満足することを特徴とするインプリント 方法。  The mold temperature when pressing the mold is the transfer temperature Tt [° C], the mold temperature when starting the mold release is the mold release start temperature Tr [° C], and the glass of the molding material Assuming that the transition temperature is Tg [° C] and the relative separation speed between the mold and the molding material is Vr [mm / sec], the following conditional expression (1) and An imprint method characterized by satisfying (2).
Tg<Tr≤Tt- 3 (1)  Tg <Tr≤Tt- 3 (1)
0. 001≤Vr≤2 (2)  0. 001≤Vr≤2 (2)
[2] 次の条件式(3)を更に満足する請求の範囲第 1項に記載のインプリント方法。 [2] The imprint method according to claim 1, further satisfying the following conditional expression (3):
Tr>Tt- 15 (3)  Tr> Tt-15 (3)
[3] 次の条件式 (4)を更に満足する請求の範囲第 1項または第 2項に記載のインプリン ト方法。 [3] The imprinting method according to claim 1 or 2, further satisfying the following conditional expression (4):
Tt≥Tg + 20 (4)  Tt≥Tg + 20 (4)
[4] 前記微細構造は、周期 T、構造高さ Η、及び構造幅 Lの周期構造であって、前記周 期 Τが 2 ^ 111以下であり、 [4] The microstructure is a periodic structure having a period T, a structure height Η, and a structure width L, and the period Τ is 2 ^ 111 or less,
前記転写後の周期構造のアスペクト比(H/Uが 2以上である請求の範囲第 1項乃 至第 3項のいずれか 1項に記載のインプリント方法。  The imprint method according to any one of claims 1 to 3, wherein the aspect ratio of the periodic structure after transfer (H / U is 2 or more).
[5] 前記被成形材は樹脂材料からなる請求の範囲第 1項乃至第 4項のいずれ力、 1項に 記載のインプリント方法。 [5] The imprint method according to any one of [1] to [4], wherein the molding material is made of a resin material.
[6] 前記金型は、 Si、 SiO、 Ta、 Ni、 NiP、グラッシ一カーボン(C)、ポリカーボネート、 またはフッ素系樹脂からなる請求の範囲第 1項乃至第 5項のいずれ力、 1項に記載の インプリント方法。 [6] The die according to any one of claims 1 to 5, wherein the mold is made of Si, SiO, Ta, Ni, NiP, glassy carbon (C), polycarbonate, or a fluororesin. The imprint method described.
PCT/JP2007/070998 2006-11-07 2007-10-29 Method of imprinting WO2008056558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008543031A JPWO2008056558A1 (en) 2006-11-07 2007-10-29 Imprint method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-301058 2006-11-07
JP2006301058 2006-11-07

Publications (1)

Publication Number Publication Date
WO2008056558A1 true WO2008056558A1 (en) 2008-05-15

Family

ID=39364378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070998 WO2008056558A1 (en) 2006-11-07 2007-10-29 Method of imprinting

Country Status (2)

Country Link
JP (1) JPWO2008056558A1 (en)
WO (1) WO2008056558A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026052A (en) * 1999-07-13 2001-01-30 Matsushita Electric Ind Co Ltd Transfer of minute shape and manufacture of optical part
WO2004093171A1 (en) * 2003-04-11 2004-10-28 Scivax Corporation Pattern forming apparatus and pattern forming method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026052A (en) * 1999-07-13 2001-01-30 Matsushita Electric Ind Co Ltd Transfer of minute shape and manufacture of optical part
WO2004093171A1 (en) * 2003-04-11 2004-10-28 Scivax Corporation Pattern forming apparatus and pattern forming method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUI S. AND KOMURO M.: "Nanoimprint no Kaihatsu to Oyo", KABUSHIKI KAISHA CMC SHUPPAN, 31 August 2005 (2005-08-31), pages 92 - 93, 114 - 115, XP003022510 *

Also Published As

Publication number Publication date
JPWO2008056558A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP4923924B2 (en) Imprint apparatus and imprint method
TWI322076B (en)
KR101502257B1 (en) Method for manufacturing microscopic structural body
JP2012081618A (en) Demolding device
JP4975675B2 (en) Manufacturing method and manufacturing apparatus of molded body
JP5088369B2 (en) Imprint method
KR20060128886A (en) Pattern-forming process utilizing nanoimprint and apparatus for performing such process
JP2008290330A (en) Device and method for producing nanoimprint sheet
KR101805000B1 (en) Forming Methods
JP4109234B2 (en) Fine transfer method and apparatus
JP4444982B2 (en) Manufacturing method of molded body
WO2008056558A1 (en) Method of imprinting
JP5268139B2 (en) Method for producing shaped resin sheet
WO2007069519A1 (en) Microstructure and method for manufacturing same
WO2006082867A1 (en) Hybrid contacting/detaching system
JP5747670B2 (en) Molded member and manufacturing method thereof
JP2008294009A (en) Method of microfabrication under controlled pressure, and microfabrication apparatus
JP4471099B2 (en) Molding method
JP4983394B2 (en) Imprint device
CN102905875B (en) There is manufacture method and the manufacturing installation of the film of fine surface texture
Lin et al. Assisted-heating for ultrasonic nanoimprint lithography
CN111516251A (en) Pattern forming method and imprint apparatus
JP2007022850A (en) Method and apparatus for molding thermoplastic base material
JP2009160858A (en) Apparatus for processing microstructure
JP2006256917A (en) Glass forming device and glass forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008543031

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830732

Country of ref document: EP

Kind code of ref document: A1