WO2008055390A1 - Third harmonic ultraviolet laser of semiconductor double end face pumping - Google Patents

Third harmonic ultraviolet laser of semiconductor double end face pumping Download PDF

Info

Publication number
WO2008055390A1
WO2008055390A1 PCT/CN2006/003334 CN2006003334W WO2008055390A1 WO 2008055390 A1 WO2008055390 A1 WO 2008055390A1 CN 2006003334 W CN2006003334 W CN 2006003334W WO 2008055390 A1 WO2008055390 A1 WO 2008055390A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
harmonic
fundamental
cavity
ultraviolet laser
Prior art date
Application number
PCT/CN2006/003334
Other languages
French (fr)
Chinese (zh)
Inventor
Yunfeng Gao
Fengping Lv
Junhui Zheng
Yao Wu
Shuzhen Ma
Original Assignee
Shenzhen Han's Laser Technology Co., Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Han's Laser Technology Co., Limited filed Critical Shenzhen Han's Laser Technology Co., Limited
Publication of WO2008055390A1 publication Critical patent/WO2008055390A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/0805Transverse or lateral modes by apertures, e.g. pin-holes or knife-edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching

Abstract

A third harmonic ultraviolet laser of semiconductor double end face pumping comprises a semiconductor pumping module (1), an optical coupling system (3), fundamental gain-medium crystals (5,6), a second harmonic nonlinear crystal (10), a third harmonic nonlinear crystal (13), a wave plate (11), a modulation device (7), laser resonant cavity mirrors (4,9,14), and an ultraviolet laser reflecting mirror (12). The pump-light emitted by the semiconductor pumping module is transmitted into the optical coupling system, then collimated and focused by the optical coupling system, and incidents directly on the end faces of the fundamental gain-medium crystals. The light emitted by the excited fundamental gain-medium crystals forms fundamental frequency light beam via mode selection of the laser resonant cavity mirrors, and the modulated laser beam is obtained by the modulation function of the modulation device. The modulated fundamental frequency laser beam is converted to green laser beam via the second harmonic nonlinear crystal and is polarized by the wave plate. The fundamental frequency laser beam and green laser beam which are the same polarization are incident into the third harmonic nonlinear crystal, thereby performing sum-frequency and generating third harmonic ultraviolet laserbeam.

Description

半导体双端面泵浦三次谐波紫外激光器 技术领域  Semiconductor double-end pumped third harmonic ultraviolet laser
本发明属于激光技术领域, 涉及一种半导体激光二极管双端面泵浦三次谐 波紫外激光器。 背景技术  The invention belongs to the field of laser technology and relates to a semiconductor laser diode double-pumped three-harmonic ultraviolet laser. Background technique
三次谐波紫外激光器一直是固体激光器领域的技术难点, 但因其在很多实 际运用中都有非常广泛的应用, 所以'三次谐波紫外激光器已成为人们研究的热 点。 利用三次谐波紫外激光加工材料过程称为 "光蚀" 效应, 高能量的光子直 接破坏材料的化学键属于 "冷"处理过程, 热影响区域微乎其微。 相比之下, 可见光和红外激光利用聚焦到加工部位的热量来熔化材料, 热量经过传导会影 响到周围的材料, 产生有害的热影响区域; 同时, 由于三次谐波紫外激光在聚 焦时, 聚焦点可小到亚微米数量级, 从而对金属和聚合物的微处理更具优越性, 可以进行小部件的加工, 即使在不高的脉冲能量水平下, 也能得到较高的能量 密度, 有效地进行材料加工。 所以, 三次谐波紫外激光器具有良好的 "冷加工" 和 "聚焦"性能, 两者结合在一起, 使其可以加工极其微小的部件; 不仅如此, 由于大多数材料都能够有效地吸收紫外激光, 从而三次谐波紫外激光器有更高 的灵活性和更广泛的应用场合, 可以被用来加工红外和可见激光加工不了的材 料。  The third harmonic ultraviolet laser has always been a technical difficulty in the field of solid-state lasers, but because it has a wide range of applications in many practical applications, the 'third harmonic ultraviolet laser has become a hot spot of research. The process of processing materials using a third-harmonic ultraviolet laser is called the “photo-etching” effect. High-energy photons directly destroy the chemical bond of the material into a “cold” process, and the heat-affected area is minimal. In contrast, visible and infrared lasers use heat that is focused to the processing site to melt the material, which conducts heat to the surrounding material, creating a harmful heat-affected zone. At the same time, because the third harmonic UV laser is focused, focusing The dots can be as small as submicron, which makes the metal and polymer micro-processing more advantageous. It can process small parts and achieve higher energy density even at low pulse energy levels. Material processing. Therefore, the third harmonic UV laser has good "cold processing" and "focusing" properties, which combine to make it possible to process extremely small parts. Moreover, most materials can effectively absorb ultraviolet lasers, thus The third harmonic UV laser has greater flexibility and a wider range of applications and can be used to process materials that cannot be processed by infrared and visible lasers.
与 266nm波长的深紫外激光器相比, 三次谐波紫外激光器其技术更为成熟, 其性能更为稳定, 能输出较高的激光功率和激光峰值功率, 可以在各种加工材 料上获得非常好的加工效果; 其特征尺寸也很小, 任何厚度小于 125个微米的 金属都可以用来进行快速切割, 切口千净, 具有良好的应用前景。  Compared with the deep ultraviolet laser with a wavelength of 266 nm, the third harmonic ultraviolet laser has more mature technology, and its performance is more stable. It can output higher laser power and laser peak power, which can be very good on various processed materials. The processing effect; its characteristic size is also very small, any metal with a thickness less than 125 microns can be used for rapid cutting, and the cutting is small, which has a good application prospect.
在产生三次谐波紫外激光的方法中, 常采用激光谐振腔腔外混频的方法。 这种方法很难得到高功率、 高效率的三倍谐波输出, 为了提高腔外谐波的转换 效率, 通常采用透镜聚焦来增强基波的功率密度, 但聚焦后的光束很容易造成 非线性晶体膜层和晶体本身的破坏, 影响谐波总功率的输出; 同时, 腔外混频 为单程行为, 基波和二次谐波一次性通过三倍频晶体, 转换效率较低。  In the method of generating the third harmonic ultraviolet laser, the method of laser cavity mixing outside the cavity is often used. This method is difficult to obtain a high-power, high-efficiency triple harmonic output. In order to improve the conversion efficiency of the extra-harmonic harmonics, lens focusing is usually used to enhance the power density of the fundamental wave, but the focused beam is easily nonlinear. The destruction of the crystal film layer and the crystal itself affects the output of the total harmonic power; meanwhile, the out-of-cavity mixing is a one-way behavior, and the fundamental wave and the second harmonic pass through the triple frequency crystal at one time, and the conversion efficiency is low.
现在普遍使用的三次谐波紫外激光器可分为气体, 灯泵浦, 侧面泵浦, 端 面泵浦等几个类型。 气体紫外激光器的体积大, 效率低, 设备过于复杂不便于 维护; 灯泵浦的紫外激光器效率比较低, 可靠性较差; 侧面泵浦和端面泵浦的 紫外激光器在体积和操作等方面较为相近, 但是相比之下, 端面泵浦紫外激光 器的光束质量和转换效率是侧面泵浦紫外激光器无法比拟的。 The three-harmonic ultraviolet lasers that are commonly used today can be classified into gas, lamp-pumped, side-pumped, and end-pumped. Gas UV lasers are bulky, inefficient, and equipment is too complex to maintain; lamp-pumped UV lasers are less efficient and less reliable; side-pumped and end-pumped Ultraviolet lasers are similar in size and operation, but in contrast, the beam quality and conversion efficiency of end-pumped UV lasers are unmatched by side-pumped UV lasers.
此外, 传统的半导体泵浦三次谐波紫外激光器在技术设计方面存在一定缺 陷, 使得紫外激光器的稳定性和光束质量成了需要解决的难题。 例如, 在激光 器的谐振腔型设计方面, 为了获得更好的光学质量, 通常需要使用凸镜作为激 光器谐振腔的腔镜如中国专利申请第 200410073574. 8号所示, 但是凸镜所构成 的激光谐振腔较为敏感, 而机械设计的精度又很难达到, 在搬运过程中就有可 能产生因震动或变形而导致激光功率或激光光束质量下降的问题, 所以不适合 产品化。  In addition, the traditional semiconductor-pumped three-harmonic ultraviolet laser has certain defects in technical design, which makes the stability and beam quality of the UV laser a difficult problem to be solved. For example, in the cavity design of the laser, in order to obtain better optical quality, it is usually necessary to use a convex mirror as a cavity mirror of the laser cavity, as shown in Chinese Patent Application No. 200410073574. 8, but the laser formed by the convex mirror The resonant cavity is sensitive, and the precision of the mechanical design is difficult to achieve. There is a possibility that the laser power or the quality of the laser beam is degraded due to vibration or deformation during the handling process, so it is not suitable for productization.
同时, 在双端面泵浦的三次谐波紫外激光器中, 其基频光的产生所采用的 泵浦方式大都选用双端面泵浦单块增益介质晶体的结构,如美国专利第 6587487 号所示, 但因受增益介质晶体中的热效应所产生的热应力不能超过晶体的断裂 应力的限制, 增益介质晶体的单位面积上存在最大泵浦功率及输出功率受到限 制 (《Power scaling of diode-pumped Nd: YV04 Lasers》 , IEEE J Quantum Electronics, 2002, 38 (9) : 129Γ1299), 所以很难得到高的紫外激光输出。 发明内容  At the same time, in the three-harmonic ultraviolet laser with double-end pumping, the pumping method for generating the fundamental light is mostly the structure of the double-pumped monolithic gain medium crystal, as shown in US Pat. No. 6,587,487. However, the thermal stress generated by the thermal effect in the crystal of the gain medium cannot exceed the limitation of the fracture stress of the crystal. The maximum pump power per unit area of the gain medium crystal and the output power are limited ("Power scaling of diode-pumped Nd:" YV04 Lasers, IEEE J Quantum Electronics, 2002, 38 (9): 129Γ1299), so it is difficult to obtain high UV laser output. Summary of the invention
本发明所欲解决的技术问题是提供一种充分利用腔内强基波光, 得到高效 率、 高光束质量的半导体双端面泵浦三次谐波紫外激光器。  The technical problem to be solved by the present invention is to provide a semiconductor double-end pumped third harmonic ultraviolet laser which utilizes the strong fundamental wave light in the cavity to obtain high efficiency and high beam quality.
本发明所采用的技术方案是: 一种半导体双端面泵浦三次谐波紫外激光 器, 包括半导体泵浦模块、 光学耦合系统、 基波增益介质晶体、 二次谐波非线 性晶体、 三次谐波非线性晶体、 波片、 调制器件、 激光谐振腔镜、 紫外激光反 射镜, 半导体泵浦模块输出的泵浦光传输到光学耦合系统中, 经光学耦合系统 准直聚焦后耦合于基波增益介质晶体端面, 基波增益介质晶体的 "C"轴方向竖 直向上放置; 基波增益介质晶体吸收泵浦光能量后产生受激发射, 发射出的光 在激光谐振腔内经激光谐振腔镜的选模作用形成高光束质量的基频光束, 在调 制器件的调制作用下, 得到高峰值功率的调制激光; 调制后的基频激光经二次 谐波非线性晶体后得到绿激光输出后经波片偏振旋转; 相同偏振态的基频激光 和绿激光射入三次谐波非线性晶体内进行混频, 得到三次谐波紫外激光输出; 剩余的绿激光在谐振腔镜的反射作用下再次通过三次谐波非线性晶体; 第一次 转换成的三次谐波紫外激光经谐振腔镜的反射作用与第二次转换成的三次谐波 紫外激光一起经紫外激光反射镜的反射输出激光谐振腔腔外, 得到三次谐波紫 外激光输出。 The technical solution adopted by the invention is: a semiconductor double-end pumped third harmonic ultraviolet laser, comprising a semiconductor pump module, an optical coupling system, a fundamental gain medium crystal, a second harmonic nonlinear crystal, and a third harmonic non- The linear crystal, the wave plate, the modulation device, the laser cavity mirror, the ultraviolet laser mirror, and the pump light output from the semiconductor pump module are transmitted to the optical coupling system, and are collimated by the optical coupling system and coupled to the fundamental gain medium crystal. The end face, the "C" axis direction of the fundamental gain medium crystal is placed vertically upward; the fundamental gain medium crystal absorbs the pump light energy to generate stimulated emission, and the emitted light is selected by the laser cavity mirror in the laser cavity. The fundamental frequency beam that forms a high beam quality is modulated by the modulation device to obtain a modulated laser with high peak power. The modulated fundamental laser passes through the second harmonic nonlinear crystal to obtain the green laser output and is polarized by the wave plate. Rotation; the fundamental polarization laser and the green laser of the same polarization state are injected into the third harmonic nonlinear crystal for mixing, and three are obtained. Harmonic ultraviolet laser output; the remaining green laser passes through the third harmonic nonlinear crystal again under the reflection of the resonant cavity mirror; the third harmonic ultraviolet laser that is converted into the first time is reflected by the resonant cavity mirror and the second conversion The third harmonic ultraviolet laser is outputted together with the ultraviolet laser mirror to output the laser cavity outside the cavity, and the third harmonic violet is obtained. External laser output.
采用两个半导体泵浦模块分别泵浦两块基波增益介质晶体。  Two fundamental gain pump crystals are separately pumped by two semiconductor pump modules.
所述半导体泵浦模块的中心波长为 808nm或 880nm,也可以根据选择的基频 增益介质晶体的不同而选择其它波长的半导体泵浦模块。  The center wavelength of the semiconductor pump module is 808 nm or 880 nm, and the semiconductor pump module of other wavelengths may be selected according to the selected fundamental frequency gain medium crystal.
所述基波增益介质晶体为 Nd :YV04, 或者为 Nd : YLF、 Nd : YAG、 Nd : Glass、 Yb :YAG、 Er :YAG晶体。  The fundamental gain medium crystal is Nd : YV04, or is Nd : YLF, Nd : YAG, Nd : Glass, Yb : YAG, Er : YAG crystal.
所使用的基波增益介质晶体的 "C"轴方向竖直向上放置, 也可以将其 "C" 轴方向旋转 90°即水平方向放置。  The "C" axis direction of the fundamental gain medium crystal used is placed vertically upwards, or it can be rotated 90° in the "C" axis direction, that is, horizontally.
所述二次谐波非线性晶体为 I类 LB0, 也可以为 I类 BB0、 I类 CLB0或 I 类非线性晶体。  The second harmonic nonlinear crystal is a class I LB0, and may also be a class I BB0, a class I CLB0 or a class I nonlinear crystal.
所述三次谐波非线性晶体为 I类 LB0, 也可以是 I类 BB0、 I类 CLB0或 I 类非线性晶体。  The third harmonic nonlinear crystal is a class I LB0, and may also be a class I BB0, a class I CLB0 or a class I nonlinear crystal.
所述基波增益介质晶体的端面镀有对泵浦光的增透膜。  The end face of the fundamental gain medium crystal is plated with an anti-reflection film for pump light.
所述调制器件为声光调制器件, 也可以是电光调制器件或吸收型被动调 Q 开关。  The modulation device is an acousto-optic modulation device, and may also be an electro-optic modulation device or an absorption passive Q-switch.
所述激光谐振腔镜皆为平面镜, 使激光谐振腔构成平平腔, 激光谐振腔也 可以采用双凹腔、 平凹腔或其它镜片所组成的谐振腔结构。  The laser cavity mirrors are all plane mirrors, so that the laser cavity forms a flat cavity, and the laser cavity can also adopt a cavity structure composed of a double cavity, a flat cavity or other lenses.
所述激光器谐振腔结构为 "L"型腔结构, 也可以采用 "V"型角度折叠腔 结构。  The laser cavity structure is an "L" cavity structure, and a "V" angle folding cavity structure may also be used.
所述激光器还包括把半导体激光二极管输出的泵浦光传输到光学耦合系统 中的光纤, 也可以将半导体激光二极管输出的泵浦光不经过光纤而直接传输到 光学耦合系统。  The laser further includes an optical fiber that transmits the pump light output from the semiconductor laser diode to the optical coupling system, and the pump light output from the semiconductor laser diode can also be directly transmitted to the optical coupling system without passing through the optical fiber.
所述激光器还包括位于光路上使三次谐波紫外激光与其他光线相分离而得 到三次谐波紫外激光输出的三棱镜。  The laser further includes a prism positioned on the optical path to separate the third harmonic ultraviolet laser from the other light to obtain a third harmonic ultraviolet laser output.
本发明所达到的有益效果是: 选用两个激光二极管分别泵浦两块基波增益 介质晶体, 减小了每块晶体所承受的泵浦功率, 避免因单块晶体上功率密度过 高而容易损坏的问题; 同时, 在基波增益介质晶体破坏阈值范围内, 还可以适 当增大半导体泵浦模块的泵浦功率, 得到更高的紫外激光输出; 计算和测量了 在不同泵浦功率下基波增益介质晶体和的热透镜效应, 用光学矩阵方法计算了 腔内高斯模传递的空间分布, 设计了激光器腔镜, 从而保证了基频激光在热透 镜大范围变化下仍能保持稳定振荡; 采用腔内倍频和混频的方式, 充分利用了 腔内强基波光特点, 从而得到高转换效率的紫外激光输出; 合理设计二次非线 性晶体的长度, 使未转换的基频光功率和转换后的绿激光功率保持合理的比值, 从而使腔内的激光充分转换成紫外激光, 提高了紫外激光的转换效率; 绿激光 两次作用于三次谐波非线性晶体, 进一步提高了三次谐波的转换效率; 在保证 获得高效率、 高光束质量的紫外激光条件下, 组成激光谐振腔的腔镜设计为平 面镜, 避免了使用凸镜所带来的不稳定性因素, 同时减小了机械设计难度。 附图说明 The beneficial effects achieved by the invention are as follows: Two laser diodes are respectively used to pump two fundamental gain medium crystals, which reduces the pump power of each crystal and avoids the high power density on a single crystal. The problem of damage; At the same time, within the threshold of the fundamental wave gain medium crystal damage threshold, the pump power of the semiconductor pump module can be appropriately increased to obtain a higher ultraviolet laser output; the bases under different pump powers are calculated and measured. The thermal lens effect of the wave gain medium crystal, the spatial distribution of the Gaussian mode transfer in the cavity is calculated by the optical matrix method, and the laser cavity mirror is designed to ensure that the fundamental frequency laser can maintain stable oscillation under the large range of thermal lens. The intracavity frequency doubling and mixing method are utilized to make full use of the characteristics of the strong fundamental wave in the cavity, thereby obtaining the ultraviolet laser output with high conversion efficiency; The length of the crystal makes the unconverted fundamental frequency optical power and the converted green laser power maintain a reasonable ratio, so that the laser in the cavity is fully converted into an ultraviolet laser, which improves the conversion efficiency of the ultraviolet laser; In the third harmonic nonlinear crystal, the conversion efficiency of the third harmonic is further improved; under the condition of ensuring high efficiency and high beam quality of the ultraviolet laser, the cavity mirror constituting the laser cavity is designed as a plane mirror, avoiding the use of the convex mirror The instability factor is brought about, and the mechanical design difficulty is reduced. DRAWINGS
下面参照附图结合实施例对本发明作进一步的描述。  The present invention will be further described below in conjunction with the embodiments with reference to the accompanying drawings.
图 1为本发明的半导体双端面泵浦三次谐波紫外激光器结构示意图。  1 is a schematic view showing the structure of a semiconductor double-end pumped third harmonic ultraviolet laser according to the present invention.
图 2是对本发明的基波增益介质晶体吸收不同泵浦功率时热透镜变化情况 的理论计算结果。  Fig. 2 is a theoretical calculation result of the change of the thermal lens when the fundamental wave gain medium crystal of the present invention absorbs different pump powers.
图 3为本发明的半导体双端面泵浦三次谐波紫外激光器紫外激光功率随电 流的变化曲线。  Fig. 3 is a graph showing the variation of the ultraviolet laser power with current of a semiconductor double-end pumped third harmonic ultraviolet laser of the present invention.
图 4为本发明的半导体双端面泵浦三次谐波紫外激光器功率为 6W、 调 Q频 率为 25KHz时测得的单个激光脉冲波形。  4 is a single laser pulse waveform measured when the semiconductor double-end pumped third harmonic ultraviolet laser has a power of 6 W and a Q-switched frequency of 25 KHz.
图 5为本发明的半导体双端面泵浦三次谐波紫外激光器功率为 6W、 调 Q频 率为 25KHz时测得的多个激光脉冲波形。  Fig. 5 is a view showing a plurality of laser pulse waveforms measured by a semiconductor double-end pumped third harmonic ultraviolet laser having a power of 6 W and a Q-switched frequency of 25 kHz.
图 6为发明的半导体双端面泵浦三次谐波紫外激光器在 5W时激光功率随时 间的变化曲线。 具体实施方式  Fig. 6 is a graph showing the variation of the laser power over time at 5 W of the semiconductor double-end pumped third harmonic ultraviolet laser of the invention. detailed description
如图 1所示, 本发明的半导体激光二极管双端面泵浦三次谐波紫外激光器 包括: 半导体泵浦模块 1 (共 2只)、 光纤 2 (共 2根)、 光学耦合系统 3 (共 2 套)、 激光谐振腔 16 (由腔镜 4、 9和 14组成)、 基波增益介质晶体 5和 6 (共 2 块)、 调制器件 7、 光阑 8、 二次谐波非线性晶体 10、 波片 11 (WP: λ @ 1064nm& A /2i532nm),紫外激光反射镜 12、三次谐波非线性晶体 13、三棱镜 15。  As shown in FIG. 1, the semiconductor laser diode double-end pumped third harmonic ultraviolet laser of the present invention comprises: a semiconductor pumping module 1 (2 in total), an optical fiber 2 (2 in total), and an optical coupling system 3 (2 sets in total) ), laser cavity 16 (composed of mirrors 4, 9 and 14), fundamental gain dielectric crystals 5 and 6 (2 in total), modulation device 7, aperture 8, second harmonic nonlinear crystal 10, wave Sheet 11 (WP: λ @ 1064 nm & A /2 i532 nm), ultraviolet laser mirror 12, third harmonic nonlinear crystal 13, and triangular prism 15.
选用的半导体泵浦模块 1 为半导体激光二极管, 其中心波长为 808ran或 880nm, 也可以是根据所选用的基波增益介质晶体不同而选用的其它中心波长的 半导体泵浦激光二极管。  The selected semiconductor pump module 1 is a semiconductor laser diode with a center wavelength of 808 ran or 880 nm, and may be other center wavelength semiconductor pump laser diodes selected according to the selected fundamental gain medium crystal.
基波激光为 1064nm振荡器, 半导体泵浦模块 1输出的泵浦光由光纤 2传输 到光学耦合系统 3中, 经光学親合系统 3准直聚焦后直接耦合于基波增益介质 晶体 5和 6端面; 基波增益介质晶体 5和 6的 "C"轴垂直放置, 保证其产生 的基频激光的偏振方向为垂直方向; 基波增益介质晶体 5和 6吸收泵浦光能量 后产生受激发射, 发射出的光在激光谐振腔 16的选模作用形成高光束质量的基 频光束, 在调制器件 7 的调制作用下, 得到高峰值功率的调制激光。 为保证该 基频激光在较大范围内能够稳定运行, 详细计算和测量了在不同泵浦功率下基 波增益介质晶体 5和 6的热透镜效应,用光学矩阵方法计算了腔内高斯模传递 的空间分布, 设计了激光器的激光谐振腔的腔镜, 从而保证了基频激光在热透 镜大范围变化下仍能保持稳定振荡。 The fundamental laser is a 1064 nm oscillator, and the pump light output from the semiconductor pump module 1 is transmitted from the optical fiber 2 to the optical coupling system 3, and is directly coupled to the fundamental gain medium crystals 5 and 6 by the optical affinity system 3. End face; the "C" axis of the fundamental gain medium crystals 5 and 6 are placed vertically to ensure their generation The polarization direction of the fundamental laser is vertical; the fundamental gain medium crystals 5 and 6 absorb the pump light energy to generate stimulated emission, and the emitted light in the laser cavity 16 is selected to form a high beam quality fundamental frequency. The beam, under the modulation of the modulation device 7, produces a modulated laser of high peak power. In order to ensure the stable operation of the fundamental laser in a wide range, the thermal lens effect of the fundamental gain medium crystals 5 and 6 under different pump powers is calculated and measured in detail, and the intracavity Gaussian mode transfer is calculated by the optical matrix method. The spatial distribution, the cavity mirror of the laser cavity of the laser is designed to ensure that the fundamental frequency laser can maintain stable oscillation under the wide range of thermal lens.
绿激光的产生: 调制后的基频激光经二次谐波非线性晶体 10的倍频作用后 得到绿激光输出, 其偏振方向为水平方向; 此水平偏振的绿激光经波片 11偏振 旋转 90° 后, 变为垂直偏振光, 与基频光的偏振态在同一方向上; 合理设计二 次非线性晶体 10的长度, 使未转换的基频光功率和转换后的绿激光功率保持合 理的比值, 从而使腔内的激光充分转换为紫外激光, 提高了紫外激光的转换效 率。  Generation of green laser: The modulated fundamental laser is subjected to frequency doubling of the second harmonic nonlinear crystal 10 to obtain a green laser output whose polarization direction is horizontal; the horizontally polarized green laser is rotated 90 by the wave plate 11 After °, it becomes vertically polarized light in the same direction as the polarization state of the fundamental light; Reasonably designing the length of the secondary nonlinear crystal 10, so that the unconverted fundamental frequency optical power and the converted green laser power are kept reasonable. The ratio is such that the laser in the cavity is fully converted into an ultraviolet laser, which improves the conversion efficiency of the ultraviolet laser.
紫外激光的产生: 同为垂直偏振的基频激光和绿激光经三次谐波非线性晶 体 13的混频作用, 得到三次谐波紫外激光; 余下的绿激光在平面腔镜 14的反 射作用下再次通过三次谐波非线性晶体 13, 这样绿激光两次作用于三次谐波非 线性晶体 13, 进一步提高了三次谐波的转换效率; 第一次转换成的三次谐波紫 外激光经平面腔镜 14的反射作用与第二次转换成的三次谐波紫外激光一起经紫 外激光反射镜 12的反射作用输出激光谐振腔 16外,在三棱镜 15的分离作用下, 得到三次谐波紫外激光输出。  Generation of ultraviolet laser: The fundamental frequency laser and the green laser which are vertically polarized are mixed by the third harmonic nonlinear crystal 13 to obtain a third harmonic ultraviolet laser; the remaining green laser is again reflected by the reflection of the plane mirror 14 Through the third harmonic nonlinear crystal 13, the green laser acts twice on the third harmonic nonlinear crystal 13 to further improve the conversion efficiency of the third harmonic; the third harmonic ultraviolet laser that is first converted into the planar cavity mirror 14 The reflection effect is outputted to the laser cavity 16 by the reflection of the ultraviolet laser mirror 12 together with the third harmonic ultraviolet laser converted into the second time. Under the separation of the prism 15, a third harmonic ultraviolet laser output is obtained.
其中, 基波增益介质晶体 5和 6端面均镀有对泵浦光和 1064nm激光增透的 增透膜, 以增加对泵浦光的吸收; 所使用的基波增益介质晶体为 Nd: YV04, 也可 使用 Nd:YLF、 Nd:YAG、 Nd: Glass、 Yb :YAG、 Er:YAG等基波增益介质晶体; 调 制器件 7的两端面镀有 1064ηηι增透膜, 所使用的调制器件为声光调制器件, 也 可以是电光调制器件和吸收型被动调 Q开关;二次谐波非线性晶体 10为 I类 LB0 晶体, 两端镀有 532nm及 1064nm双色增透膜, 也可以是 I类 BB0、 I类 CLB0或 其它 I类非线性晶体, 如 LiNb304晶体; 三次谐波非线性晶体 13为 I类 LB0晶 体, 两端均镀有 355nm, 532nm及 1064nm三色增透膜, 也可以是 I类 BB0、 I类 CLB0或其它 I类非线性晶体; 也可以去掉波片, 使用 II的 LB0等非线性晶体。  Wherein, the fundamental wave gain dielectric crystals 5 and 6 are plated with an antireflection coating for pumping light and 1064 nm laser to increase the absorption of the pump light; the fundamental gain medium used is Nd: YV04, It is also possible to use a fundamental gain medium crystal such as Nd:YLF, Nd:YAG, Nd: Glass, Yb:YAG, Er:YAG; the both ends of the modulation device 7 are plated with a 1064 ηηι antireflection film, and the modulation device used is sound and light. The modulation device may also be an electro-optic modulation device and an absorbing passive Q-switch; the second harmonic nonlinear crystal 10 is a Class I LB0 crystal, and both ends are plated with a 532 nm and 1064 nm two-color anti-reflection film, or may be a Class I BB0, Class I CLB0 or other Class I nonlinear crystals, such as LiNb304 crystals; Third harmonic nonlinear crystals 13 are Class I LB0 crystals, both ends are plated with 355nm, 532nm and 1064nm three-color antireflection coatings, or Class I BB0 , Class I CLB0 or other Class I nonlinear crystals; Wave plates can also be removed, using nonlinear crystals such as LB0 of II.
组成徼光谐振腔 16的腔镜 4和 9镀有对泵浦光高透膜、 对 1064rai激光高 反膜;腔镜 14镀有对 1064nm、 532nm和 355nm三色高反膜;本发明中腔镜 4、 9、 14 皆为平面镜, 故激光谐振腔为平平腔; 也可以釆用双凹腔、 平凹腔等腔型结 构; 本发明所使用激光器谐振腔结构为 型腔结构, 也适用于 "V"型腔或 其它角度折叠腔结构。 The mirrors 4 and 9 constituting the calender resonator 16 are plated with a high-transparent film for pumping light, and a high-reflection film for 1064 rai laser; the mirror 14 is plated with a three-color high-reflection film for 1064 nm, 532 nm, and 355 nm; The mirrors 4, 9, and 14 are all plane mirrors, so the laser cavity is a flat cavity; it is also possible to use a cavity with a double cavity or a flat cavity. The laser cavity structure used in the present invention is a cavity structure, and is also suitable for a "V" cavity or other angle folding cavity structure.
所使用的基波增益介质晶体 Nd:YV04的 "C"轴方向竖直向上放置, 也可以 将其 "C"轴方向旋转 90fl即水平方向放置, 然后将二次谐波非线性晶体和三次 谐波非线性晶体的方向分别旋转 90Q放置。 As used fundamental wave gain medium crystal Nd: "C" axis of YV04 vertically upward, which also "C" axis of rotation may be placed horizontally i.e., 90 fl, and the nonlinear crystal and the second harmonic three The direction of the harmonic nonlinear crystal is rotated by 90 Q.
基波增益介质晶体和谐波非线性晶体 (包括二次谐波和三次谐波非线性晶 体)均用铟箔包裹后放入水冷散热晶体座中。  The fundamental gain medium crystal and the harmonic nonlinear crystal (including the second harmonic and the third harmonic nonlinear crystal) are wrapped in indium foil and placed in a water-cooled heat sink crystal holder.
在不改变激光器内部结构的情况下, 在基波增益介质晶体破坏阈值范围内, 还可以提高激光二极管的泵浦功率, 进一步增加腔内基频激光的功率密度, 从 而得到更高功率的紫外激光输出。  Without changing the internal structure of the laser, the pump power of the laser diode can be increased within the threshold range of the fundamental gain medium crystal damage, and the power density of the fundamental frequency laser in the cavity can be further increased, thereby obtaining a higher power ultraviolet laser. Output.
本发明的半导体双端面泵浦三次谐波紫外激光器所具有的特点有  The semiconductor double-end pumped third harmonic ultraviolet laser of the invention has the characteristics
1.计算和测量了在不同泵浦功率下基波增益介质晶体 5和 6的热透镜效应, 用光学矩阵方法计算了腔内高斯模传递的空间分布, 设计了激光器腔镜, 从而 保证了基频激光在热透镜大范围变化下仍能保持稳定振荡;  The thermal lens effect of fundamental wave gain dielectric crystals 5 and 6 at different pump powers is calculated and measured. The spatial distribution of intracavity Gaussian mode transfer is calculated by optical matrix method. The laser cavity mirror is designed to ensure the basis. The frequency laser can maintain stable oscillation under the wide range of thermal lens;
2. 选用两个激光二极管分别泵浦两块基波增益介质晶体 5和 6, 减小了每 块晶体所承受的泵浦功率, 避免因单块晶体上功率密度过高而容易被损坏的问 题;  2. Two laser diodes are used to pump two fundamental gain medium crystals 5 and 6, respectively, which reduces the pump power of each crystal and avoids the problem of being easily damaged due to excessive power density on a single crystal. ;
3. 在不改变激光器内部结构的情况下, 在基波增益介质晶体破坏阈值范围 内, 还可以提高激光二极管的泵浦功率, 进一步增加腔内基频激光的功率密度, 从而得到更高功率的紫外激光输出;  3. Without changing the internal structure of the laser, the pump power of the laser diode can be increased within the threshold of the fundamental wave gain medium crystal damage threshold, and the power density of the fundamental frequency laser in the cavity can be further increased, thereby obtaining higher power. Ultraviolet laser output;
4. 采用腔内倍频和混频的方式, 充分利用了腔内强基波光特点, 从而得到 高转换效率的紫外激光输出;  4. Using intracavity frequency doubling and mixing, fully utilizing the characteristics of strong fundamental wave in the cavity to obtain high conversion efficiency of ultraviolet laser output;
5. 合理设计二次非线性晶体 10 的长度, 使未转换的基频光功率和转换后 的绿激光功率保持合理的比值, 从而使腔内的激光充分转换成紫外激光, 提高 了紫外激光的转换效率;  5. Reasonably design the length of the secondary nonlinear crystal 10 to maintain a reasonable ratio of the unconverted fundamental frequency optical power and the converted green laser power, thereby fully converting the laser in the cavity into an ultraviolet laser, and improving the ultraviolet laser. Conversion efficiency
6. 绿激光两次作用于三次谐波非线性晶体 13,进一步提高了三次谐波的转 换效率;  6. The green laser acts twice on the third harmonic nonlinear crystal 13, further improving the conversion efficiency of the third harmonic;
7. 在保证获得高效率、高光束质量的紫外激光条件下, 组成激光谐振腔 16 的腔镜 4、 9和 14设计为平面镜, 避免了使用凸镜所带来的不稳定性因素, 同 时减小了机械设计难度。  7. Under the condition of ensuring high efficiency and high beam quality of ultraviolet laser, the mirrors 4, 9 and 14 constituting the laser cavity 16 are designed as plane mirrors, which avoids the instability factor caused by the use of the convex mirror, and simultaneously reduces Small mechanical design difficulty.
根据以上技术方案所得到的实验结果如下:  The experimental results obtained according to the above technical solutions are as follows:
根据上述技术方案所建立的半导体泵浦模块双端面泵浦三次谐波紫外激光 器, 三倍频紫外激光功率大于 6W, 基频激光到二次谐波激光的转换效率为 87%, 二次谐波激光到三次谐波激光的转换效率为 72%, 最小激光脉宽小于 15ns, 光 速发散角<21111^(1, 在不加光阑的情况下 M2<2, 长期稳定性小于 5%, 具有结 构紧凑, 转换效率高, 稳定性好等优点。 图 2是对本发明的基波增益介质晶体 吸收不同泵浦功率时热透镜变化情况的理论计算结果。 图 3为本发明的半导体 双端面泵浦三次谐波紫外激光器紫外激光功率随电流的变化曲线。 图 4为本发 明的半导体双端面泵浦三次谐波紫外激光器功率为 6W、 调 Q频率为 25KHz时测 得的单个激光脉冲波形。 图 5为本发明的半导体双端面泵浦三次谐波紫外激光 器功率为 6W、 调 Q频率为 25KHz时测得的多个激光脉冲波形。 图 6为本发明的 半导体双端面泵浦三次谐波紫外激光器在 5W时激光功率随时间的变化曲线。 Double-end pumped third harmonic ultraviolet laser of semiconductor pump module established according to the above technical solution The triple-frequency ultraviolet laser power is greater than 6W, the conversion efficiency of the fundamental laser to the second harmonic laser is 87%, the conversion efficiency of the second harmonic laser to the third harmonic laser is 72%, and the minimum laser pulse width is less than 15ns. , Light velocity divergence angle <21111^(1, M2<2 without adding light, long-term stability less than 5%, compact structure, high conversion efficiency, good stability, etc. Figure 2 is the basis of the present invention The theoretical calculation results of the thermal lens change when the wave gain medium crystal absorbs different pump powers. Figure 3 is a graph showing the variation of the ultraviolet laser power with current of the semiconductor double-end pumped third harmonic ultraviolet laser according to the present invention. The single-end pumped three-harmonic ultraviolet laser has a power of 6W and a Q-switched frequency of 25KHz. Figure 5 is a semiconductor double-end pumped third harmonic UV laser with a power of 6W and Q-switched. A plurality of laser pulse waveforms measured at a frequency of 25 KHz. Figure 6 is a graph showing the variation of laser power with time at 5 W of a semiconductor double-end pumped third harmonic ultraviolet laser of the present invention.

Claims

1. 一种半导体双端面泵浦三次谐波紫外激光器, 包括半导体泵浦模块、 光 学耦合系统、 基波增益介质晶体、 二次谐波非线性晶体、 三次谐波非线性晶体、 波片、 调制器件、 激光谐振腔镜、 紫外激光反射镜, 其特征在于: 半导体泵浦 模块输出的泵浦光传输到光学耦合系统中, 经光学耦合系统准直聚焦后耦合于 基波增益介质晶体端面, 基波增益介质晶体的 "C"轴方向竖直向上放置; 基波 增益介质晶体吸收泵浦光能量后产生受激发射, 发射出的光在激光谐振腔内经 激光谐振腔镜的选模作用形成高光束质量的基频光束, 在调制器件的调制作用 权 1. A semiconductor double-end pumped third harmonic ultraviolet laser, including a semiconductor pump module, an optical coupling system, a fundamental gain medium crystal, a second harmonic nonlinear crystal, a third harmonic nonlinear crystal, a wave plate, and a modulation The device, the laser cavity mirror, and the ultraviolet laser mirror are characterized in that: the pump light outputted by the semiconductor pumping module is transmitted to the optical coupling system, and is collimated by the optical coupling system and coupled to the end face of the fundamental wave gain medium crystal. The "C" axis direction of the wave gain dielectric crystal is placed vertically upward; the fundamental gain medium crystal absorbs the pump light energy to generate stimulated emission, and the emitted light is formed in the laser cavity by the selection of the laser cavity mirror. The fundamental frequency of the beam quality, the modulation of the modulation device
下, 得到高峰值功率的调制激光; 调制后的基频激光经二次谐波非线性晶体后 得到绿激光输出后经波片偏振旋转; 相禾同偏振态的基频激光和绿激光射入三次 谐波非线性晶体内进行混频, 得到三次谐波紫外激光输出; 剩余的绿激光在谐 振腔镜的反射作用下再次通过三次谐波非线性晶体; 第一次转换成的三次谐波 紫外激光经谐振腔镜的反射作用与第二次转换成的三次谐波紫外激光一起经紫 外激光反射镜的反射输出激光谐振腔腔外, 得到三求次谐波紫外激光输出。 Next, a modulated laser with high peak power is obtained; the modulated fundamental laser passes through the second harmonic nonlinear crystal to obtain a green laser output, and then is rotated by the polarization of the wave plate; the fundamental laser and the green laser are injected in the same polarization state. The third harmonic ultraviolet laser output is obtained by mixing in the third harmonic nonlinear crystal; the remaining green laser passes through the third harmonic nonlinear crystal again under the reflection of the resonant cavity mirror; the third harmonic ultraviolet light is converted into the first time. The reflection of the laser through the cavity mirror is outputted by the ultraviolet laser mirror together with the third harmonic ultraviolet laser converted into the laser cavity, and the three-order harmonic ultraviolet laser output is obtained.
2. 如权利要求 1所述的半导体双端面泵浦三次谐波紫外激光器, 其特征在 于: 采用两个半导体泵浦模块分别泵浦两块基波增益介质晶体。  2. The semiconductor double-end pumped third harmonic ultraviolet laser of claim 1, wherein: the two semiconductor pump modules are used to pump two fundamental gain medium crystals respectively.
3. 如权利要求 2所述的半导体双端面泵浦三次谐波紫外激光器, 其特征在 于: 所述半导体泵浦模块的中心波长为 808nm或 880nm。  3. The semiconductor double-end pumped third harmonic ultraviolet laser of claim 2, wherein: the semiconductor pump module has a center wavelength of 808 nm or 880 nm.
4. 如权利要求 1所述的半导体双端面泵浦三次谐波紫外激光器, 其特征在 于: 所述基波增益介质晶体为 Nd:YV04, 或者为 Nd:YLF、 Nd :YAG、 Nd: Glass、 Yb :YAG、 Er :YAG晶体。  4. The semiconductor double-end pumped third harmonic ultraviolet laser according to claim 1, wherein: said fundamental gain medium crystal is Nd:YV04, or Nd:YLF, Nd:YAG, Nd: Glass, Yb: YAG, Er: YAG crystal.
5. 如权利要求 1所述的半导体双端面泵浦三次谐波紫外激光器, 其特征在 于: 所使用的基波增益介质晶体的 "C"轴方向竖直向上放置, 也可以将其 "C" 轴方向旋转 90°即水平方向放置。  5. The semiconductor double-end pumped third harmonic ultraviolet laser according to claim 1, wherein: the "C" axis direction of the fundamental wave gain medium crystal used is vertically placed upward, and "C" can also be used. The axis direction is rotated by 90°, that is, placed horizontally.
6. 如权利要求 1所述的半导体双端面泵浦三次谐波紫外激光器, 其特征在 于: 所述二次或三次谐波非线性晶体为 I类 LB0, 也可以为 I类 BB0、 I类 CLB0 或 I类非线性晶体。  6. The semiconductor double-end pumped third harmonic ultraviolet laser according to claim 1, wherein: said second or third harmonic nonlinear crystal is a class I LB0, and may also be a class I BB0, a class I CLB0. Or a class I nonlinear crystal.
7. 如权利要求 1所述的半导体双端面泵浦三次 i皆波紫外激光器, 其特征在 于: 所述基波增益介质晶体的端面镀有对泵浦光的增透膜。  7. The semiconductor double-end pumped cubic i-wave ultraviolet laser according to claim 1, wherein: an end surface of said fundamental gain medium crystal is plated with an antireflection film for pump light.
8. 如权利要求 1所述的半导体双端面泵浦三次谐波紫外激光器, 其特征在 于: 所述调制器件为声光调制器件, 也可以是电光调制器件或吸收型被动调 Q 幵关。 8. The semiconductor double-end pumped third harmonic ultraviolet laser according to claim 1, wherein: said modulation device is an acousto-optic modulation device, or an electro-optic modulation device or an absorbing passive Q-switching device. Shaoguan.
9. 如权利要求 2所述的半导体双端面泵浦三次谐波紫外激光器, 其特征在 于: 所述激光谐振腔镜皆为平面镜, 使激光谐振腔构成平平腔, 激光谐振腔也 可以采用双凹腔、 平凹腔或其它镜片所组成的谐振腔结构。  9. The semiconductor double-end pumped third harmonic ultraviolet laser according to claim 2, wherein: the laser cavity mirrors are plane mirrors, so that the laser cavity forms a flat cavity, and the laser cavity can also be double concave. A cavity structure consisting of a cavity, a flat cavity or other lens.
10. 如权利要求 9所述的半导体双端面泵浦三次谐波紫外激光器, 其特征 在于: 所述激光器谐振腔结构为 "L"型腔结构, 也可以采用 "V"型角度折叠 腔结构。  10. The semiconductor double-end pumped third harmonic ultraviolet laser according to claim 9, wherein: the laser cavity structure is an "L" cavity structure, and a "V" angle folding cavity structure can also be used.
PCT/CN2006/003334 2006-11-09 2006-12-08 Third harmonic ultraviolet laser of semiconductor double end face pumping WO2008055390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610063551.8 2006-11-09
CNA2006100635518A CN101179176A (en) 2006-11-09 2006-11-09 Semiconductor dual-end pumped third harmonic ultraviolet laser

Publications (1)

Publication Number Publication Date
WO2008055390A1 true WO2008055390A1 (en) 2008-05-15

Family

ID=39364168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003334 WO2008055390A1 (en) 2006-11-09 2006-12-08 Third harmonic ultraviolet laser of semiconductor double end face pumping

Country Status (2)

Country Link
CN (1) CN101179176A (en)
WO (1) WO2008055390A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208747A (en) * 2011-05-09 2011-10-05 中国电子科技集团公司第十一研究所 Solid laser
CN102214892A (en) * 2011-05-12 2011-10-12 中国科学院理化技术研究所 Laser based on cascade effect of bulk laser self-variable-frequency material
CN106684674A (en) * 2017-02-13 2017-05-17 天津大学 Two-crystal compound gain inner cavity Raman yellow light laser
CN106848821A (en) * 2017-04-13 2017-06-13 中国科学技术大学 A kind of pump laser
CN113629482A (en) * 2021-08-04 2021-11-09 安徽光智科技有限公司 Subnanosecond green laser
CN114389134A (en) * 2021-12-31 2022-04-22 苏州英谷激光有限公司 Common-cavity dual-wavelength continuous laser
CN116780335A (en) * 2023-06-25 2023-09-19 重庆师范大学 Full-semiconductor ultraviolet laser with high beam quality and wide wavelength range

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764348B (en) * 2010-01-07 2012-06-06 武汉华工激光工程有限责任公司 Semiconductor pump ultraviolet laser
CN102088159A (en) * 2010-12-24 2011-06-08 深圳市大族激光科技股有限公司 End-pumped laser
CN102244346B (en) * 2011-06-14 2013-03-13 华北电力大学(保定) End-pumped laser utilizing half-wave plates
US20130313440A1 (en) * 2012-05-22 2013-11-28 Kla-Tencor Corporation Solid-State Laser And Inspection System Using 193nm Laser
CN104158078A (en) * 2013-05-14 2014-11-19 深圳市大族激光科技股份有限公司 Double-end pump laser and working method thereof
CN104267557B (en) * 2014-10-16 2017-02-08 上海交通大学 Non-collinear efficient frequency conversion achievement method
CN104682183A (en) * 2015-02-10 2015-06-03 武汉新特光电技术有限公司 Diode end-pumped all-solid-state laser
CN109617545B (en) * 2018-12-12 2021-03-12 汕头大学 Device and method with two third harmonic enhancement and photoelectric switch functions
CN112397984A (en) * 2020-11-05 2021-02-23 江苏师范大学 All-solid-state tunable blue-green laser based on self-sum frequency effect
CN115425509B (en) * 2022-11-03 2023-03-24 山东省科学院激光研究所 Short pulse laser and laser equipment based on V-shaped dynamic stable cavity design
CN116780336B (en) * 2023-06-25 2024-02-09 重庆师范大学 Ultrafast ultraviolet laser for realizing self-mode locking by utilizing nonlinear effect of semiconductor material
CN117080848B (en) * 2023-10-18 2024-01-16 北京卓镭激光技术有限公司 Laser for thrombus ablation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590911B1 (en) * 2000-06-02 2003-07-08 Coherent, Inc. Passively modelocked harmonic-generating laser
CN2588633Y (en) * 2002-11-28 2003-11-26 中国科学院安徽光学精密机械研究所 Ultraviolet multi-band laser device
US20040146076A1 (en) * 2003-01-24 2004-07-29 Dudley David R. Diode pumped laser with intracavity harmonics
CN1162945C (en) * 2002-08-13 2004-08-18 深圳市大族激光科技股份有限公司 High-efficiency high power third harmonic wave laser generating technique
CN1635670A (en) * 2004-12-31 2005-07-06 西北大学 Laser diode pumping full-solid ultraviolet pulse laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590911B1 (en) * 2000-06-02 2003-07-08 Coherent, Inc. Passively modelocked harmonic-generating laser
CN1162945C (en) * 2002-08-13 2004-08-18 深圳市大族激光科技股份有限公司 High-efficiency high power third harmonic wave laser generating technique
CN2588633Y (en) * 2002-11-28 2003-11-26 中国科学院安徽光学精密机械研究所 Ultraviolet multi-band laser device
US20040146076A1 (en) * 2003-01-24 2004-07-29 Dudley David R. Diode pumped laser with intracavity harmonics
CN1635670A (en) * 2004-12-31 2005-07-06 西北大学 Laser diode pumping full-solid ultraviolet pulse laser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208747A (en) * 2011-05-09 2011-10-05 中国电子科技集团公司第十一研究所 Solid laser
CN102214892A (en) * 2011-05-12 2011-10-12 中国科学院理化技术研究所 Laser based on cascade effect of bulk laser self-variable-frequency material
CN106684674A (en) * 2017-02-13 2017-05-17 天津大学 Two-crystal compound gain inner cavity Raman yellow light laser
CN106848821A (en) * 2017-04-13 2017-06-13 中国科学技术大学 A kind of pump laser
CN106848821B (en) * 2017-04-13 2023-03-10 中国科学技术大学 Pump laser
CN113629482A (en) * 2021-08-04 2021-11-09 安徽光智科技有限公司 Subnanosecond green laser
CN113629482B (en) * 2021-08-04 2023-02-28 安徽光智科技有限公司 Subnanosecond green laser
CN114389134A (en) * 2021-12-31 2022-04-22 苏州英谷激光有限公司 Common-cavity dual-wavelength continuous laser
CN114389134B (en) * 2021-12-31 2024-04-16 苏州英谷激光有限公司 Co-cavity dual-wavelength continuous laser
CN116780335A (en) * 2023-06-25 2023-09-19 重庆师范大学 Full-semiconductor ultraviolet laser with high beam quality and wide wavelength range

Also Published As

Publication number Publication date
CN101179176A (en) 2008-05-14

Similar Documents

Publication Publication Date Title
WO2008055390A1 (en) Third harmonic ultraviolet laser of semiconductor double end face pumping
US6363090B1 (en) Laser system for producing ultra-short light pulses
KR20100135772A (en) Multi-pass optical power amplifier
JP2004503918A (en) Diode pumped cascade laser for deep ultraviolet generation
CN210201151U (en) All-solid-state green laser
WO2021128828A1 (en) End-pump multi-pass slab laser amplifier
CN110086070B (en) Novel thin-chip laser structure with high pumping absorption and high power output
JP2019526924A (en) Method of generating a frequency doubled laser and a harmonic laser
CN101777725A (en) Full solid-state ultraviolet laser with third harmonic in diode pumping cavity
Agnesi et al. High-peak-power diode-pumped passively Q-switched Nd: YVO 4 laser
CN114336254B (en) High-brightness main oscillation power amplification picosecond laser system
JP2002141588A (en) Solid state laser device and solid state laser system
WO2007079661A1 (en) A Nd:LuVO4 LASER HAVING A WAVELENGTH OF 916nm
CN112886371A (en) Laser regeneration amplifier based on disc gain medium
Liu et al. Diode end-pumped Q-switched high-power intracavity frequency-doubled Nd: GdVO4/KTP green laser
CN112636146B (en) High-power mode-locked disc laser
CN112886376A (en) High-power laser
CN110932080B (en) Single longitudinal mode laser
CN110768096A (en) High-power and high-roundness industrial laser
CN215119530U (en) High-power laser
CN2833967Y (en) Single-mode green light laser for semiconductor pump
CN218123954U (en) Single longitudinal mode ultraviolet all-solid-state laser
CN214478412U (en) Laser regeneration amplifier based on disc gain medium
CN212412425U (en) All-solid-state quasi-three-energy-level 228.5nm pulse laser with V-shaped cavity
Musgrave et al. Detailed study of thermal lensing in Nd: YVO/sub 4/under intense diode end-pumping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06817968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06817968

Country of ref document: EP

Kind code of ref document: A1