WO2008053535A1 - Distortion compensating circuit - Google Patents

Distortion compensating circuit Download PDF

Info

Publication number
WO2008053535A1
WO2008053535A1 PCT/JP2006/321770 JP2006321770W WO2008053535A1 WO 2008053535 A1 WO2008053535 A1 WO 2008053535A1 JP 2006321770 W JP2006321770 W JP 2006321770W WO 2008053535 A1 WO2008053535 A1 WO 2008053535A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
burst
distortion
envelope
memory effect
Prior art date
Application number
PCT/JP2006/321770
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Masumoto
Sinzi Ookawa
Tsutomu Hibino
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to PCT/JP2006/321770 priority Critical patent/WO2008053535A1/en
Publication of WO2008053535A1 publication Critical patent/WO2008053535A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3294Acting on the real and imaginary components of the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/468Indexing scheme relating to amplifiers the temperature being sensed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3224Predistortion being done for compensating memory effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion

Definitions

  • the present invention relates to a distortion compensation circuit that performs distortion compensation of a transmission signal by a predistortion method.
  • the table value of the predistortion coefficient for compensating the distortion component of the envelope signal is corrected by the envelope signal one sample before detected by the delay circuit (that is, hysteresis compensation of the envelope signal is performed).
  • Patent Document 1 JP 2004-336750 A Patent Document 2: JP-A-2005-101908
  • a transmission signal of a mobile phone or the like is output as a burst signal in which the amplitude of the envelope signal changes at a predetermined period in accordance with fluctuations in the amount of data to be transmitted, the number of people accommodated, and the like.
  • the amplitude of this burst signal fluctuates with a period of about 10 ms.
  • the amplitude fluctuates at a fast cycle of about 0.5 ms.
  • the memory effect includes an electrical memory effect (hereinafter referred to as the first memory effect) in which a hysteresis phenomenon occurs in the envelope signal due to fluctuations in the voltage applied to the device of the power amplifying device.
  • the second memory effect a thermal memory effect in which a hysteresis phenomenon occurs in the burst signal due to the temperature time constant of the device.
  • the temperature time constant of the device at this time is about 0.1 ms, which is much larger than the electrical time constant of the device! /.
  • the device temperature time constant of 0.1 ms is considerably smaller than the burst signal period of 10 ms, so the burst signal is temperature saturated at each period. Almost no influence of excessive characteristics due to.
  • the device temperature time constant of 0.1 ms is not negligible for a burst signal period of 0.5 ms. A big influence.
  • burst signals are also included.
  • the second memory effect in which the distortion characteristics of the power amplifier change depending on the signal period, is greatly affected.
  • the conventional distortion compensation circuit performs distortion compensation of the envelope signal in consideration of the first memory effect, but appropriate distortion compensation in consideration of the second memory effect for the burst signal. Is not done.
  • the conventional distortion compensation circuit has a signal period of 0.05.
  • the first memory effect electrical memory effect
  • the second memory effect temperature
  • the optimal distortion compensation cannot be performed when the dynamic memory effect occurs simultaneously, there arises a problem that the distortion compensation accuracy in the power amplifying device is deteriorated.
  • the table of LUT (Look Up Table) is related to at least one of the temperature level or power level of the power amplifying device.
  • the predistortion coefficient is changed according to the temperature, distortion compensation for the second memory effect caused by temperature hysteresis is not performed.
  • the distortion compensation accuracy of the power amplifying device deteriorates because distortion compensation is not performed for two memory effects that occur simultaneously (the first electrical memory effect and the second thermal memory effect).
  • the distortion compensation table can be adaptively changed with respect to temperature fluctuations, but this distortion compensation table compensates only for the first memory effect in the envelope signal, and the second memory effect. Is not compensated for.
  • the object of the present invention has been made in view of such circumstances, and simultaneously reduces the influence of the first memory effect generated in the envelope signal and the influence of the second memory effect generated in the burst signal.
  • it is to provide a predistortion type distortion compensation circuit capable of performing optimum distortion compensation, and a power amplifying apparatus using the distortion compensation circuit.
  • a distortion compensation circuit is a distortion compensation circuit that performs distortion compensation of a transmission signal by a predistortion method, and is configured to reduce distortion caused by an electrical memory effect generated in an envelope signal that is a modulation signal of the transmission signal.
  • An envelope memory predistortion unit for compensation and a burst memory predistortion unit for compensating for distortion caused by the thermal memory effect generated in the burst signal obtained by the envelope of the envelope signal are adopted.
  • the envelope memory PD (Pre-Distortion) unit is provided to compensate for the distortion caused by the first memory effect of the envelope signal
  • the burst memory PD unit is provided. Envelope force of the envelope signal extracted from the input and output of the power amplification device
  • the burst memory PD unit Compensates for signal distortion.
  • the burst memory PD unit performs distortion compensation by the second memory effect of the burst signal. ing.
  • FIG. 1 is a waveform diagram showing a time transition of a general transmission power waveform in a power amplifying apparatus, and a temperature characteristic diagram of a device.
  • FIG. 2 is a block diagram showing a configuration of a distortion compensation circuit according to Embodiment 1 of the present invention.
  • FIG. 3 is a first block diagram showing the function of the burst memory PD section and the configuration of its peripheral elements in the distortion compensation circuit shown in FIG.
  • FIG. 4 is a second block diagram showing the function of the burst memory PD section and the configuration of its peripheral elements in the distortion compensation circuit shown in FIG.
  • FIG. 5 is a block diagram showing a configuration of a distortion compensation circuit according to Embodiment 2 of the present invention.
  • the distortion compensation circuit of the present invention is an envelope signal memory compensation circuit (that is, an envelope memory PD section) that compensates for distortion caused by the first memory effect of the envelope signal, as in the prior art. It has. Furthermore, the input side and output side of the power amplifier Envelope force of the envelope signal extracted from the input burst detector and output burst detector for detecting the burst signal, a temperature sensor for detecting the temperature of the power amplifier device, the input burst detector and the output burst Based on the burst signal detected by the detector and the temperature information of the device detected by the temperature sensor, the burst signal memory compensation circuit (that is, compensation for distortion caused by the second memory effect of the burst signal) And burst memory PD section)!
  • the burst signal memory compensation circuit that is, compensation for distortion caused by the second memory effect of the burst signal
  • the envelope memory PD section compensates for distortion generated due to the first memory effect of the envelope signal. Aside from the second memory effect caused by the burst signal detected by the input burst detector and the output burst detector based on the temperature information of the device detected by the PD memory temperature sensor, To compensate for distortion that occurs. As a result, it is possible to reduce the amount of computation and the computation time of the entire distortion compensation circuit, thereby realizing high-speed distortion correction processing and high efficiency, and further improving the distortion compensation accuracy of the transmission signal. it can.
  • Fig. 1 is a waveform diagram showing the temporal transition of a typical transmission power waveform in a power amplifier and a temperature characteristic diagram of the device.
  • the horizontal axis represents time, the vertical axis represents the device temperature and the burst signal amplitude. Show.
  • the transmission power waveform shows the burst signal S as the peak value of the envelope signal S, which is the modulated wave of the transmission signal, fluctuates in a predetermined cycle.
  • the amplitude of the burst signal S has a predetermined period (0.5 ms in FIG. 1).
  • the device temperature fluctuates each time the burst signal amplitude fluctuates, the device temperature rises when the burst signal amplitude is large, and the device temperature increases when the burst signal amplitude is small. The temperature falls.
  • the temperature time constant of the device at this time is about 0.lms.
  • the temperature of the device is fixed with respect to the period of amplitude fluctuation of burst signal S 0.5ms
  • a burst memory PD section that also has a burst signal memory compensation circuit power is provided to compensate for distortion characteristics degradation due to the second memory effect caused by temperature fluctuations of the device.
  • the burst signal S is a rectangular wave with the memory effect removed as shown in FIG.
  • FIG. 2 is a block diagram showing a configuration of the distortion compensation circuit according to Embodiment 1 of the present invention.
  • this distortion compensation circuit includes an input envelope detector 101, an input burst detector 102, an envelope memoryless PD 103a, an envelope memory PD 103b, a burst memory PD 104, a first LUT105, second LUT106, first adaptive processing unit 107, second adaptive processing unit 108, temperature sensor 109, output side envelope detection unit 110, output side burst detection unit 111, and power amplification unit 112 is provided.
  • the envelope signal and burst signal on the input side of the power amplifier 112 are combined with the envelope signal and burst signal on the input side, and the envelope signal and burst signal on the output side of the power amplifier 112 are converted.
  • the output side envelope signal and the output side burst signal are called.
  • the input-side envelope detection unit 101 detects the envelope of a modulation signal (that is, the input-side envelope signal before being distorted by the power amplification unit 112) input to a mobile phone or the like, thereby To the first detection processing unit 107 and the first detection processing unit The input burst detector 102 detects the input burst signal from the envelope of the input envelope signal detected by the input envelope detector 101 and outputs it to the second adaptive processor 108.
  • a modulation signal that is, the input-side envelope signal before being distorted by the power amplification unit 112
  • the input burst detector 102 detects the input burst signal from the envelope of the input envelope signal detected by the input envelope detector 101 and outputs it to the second adaptive processor 108.
  • the memoryless PD unit 103a for envelope performs distortion compensation when an electrical memory effect (that is, the first memory effect) does not occur in the output-side envelope signal.
  • the envelope memory PD 103b performs distortion compensation when an electrical memory effect (first memory effect) occurs in the output envelope signal.
  • the burst memory PD unit 104 compensates for distortion when a thermal memory effect (that is, the second memory effect) occurs in the output burst signal. Make compensation.
  • the first LUT 105 stores a first distortion compensation coefficient (first inverse function of distortion) for performing optimum distortion compensation corresponding to the first memory effect generated in the output-side envelope signal. This is the first table.
  • the second LUT 106 stores a second distortion compensation coefficient (second inverse function of distortion) for optimal distortion compensation corresponding to the second memory effect generated in the output burst signal. It is a table.
  • the first adaptive processing unit 107 calculates the envelope of the input envelope signal detected by the input envelope detector 101 and the envelope of the output envelope signal detected by the output envelope detector 110. In comparison, a distortion component due to the first memory effect of the output-side envelope signal generated by the power amplifying unit 112 is calculated, and a first distortion compensation coefficient (first distortion inverse) is used to optimally compensate for the distortion component. Function) and output to the first LUT105.
  • first distortion compensation coefficient first distortion inverse
  • the second adaptive processing unit 108 includes an input side burst signal sampled and detected by the input burst detection unit 102 and an output side burst detection unit 111. Compared with the output-side burst signal sampled and detected, the distortion component due to the second memory effect of the output-side burst signal caused by the temperature fluctuation of the power amplifier 112 is calculated, and based on the temperature information from the temperature sensor 109 The second distortion compensation coefficient (second inverse function of distortion) for optimally compensating the distortion component is calculated and output to the second LUT 106.
  • the temperature sensor 109 detects the temperature of a device (not shown) in the power amplification unit 112 and outputs temperature information of the power amplification unit 112 to the second adaptive processing unit 108.
  • the output-side envelope detection unit 110 detects the envelope of a signal that is output in force, such as a mobile phone (that is, the output-side envelope signal distorted by the power amplification unit 112), and the output-side burst detection unit 111 and the first envelope detection unit 110 To the adaptive processing unit 107.
  • the output-side burst detector 111 samples and detects the envelope signal of the envelope signal detected by the output-side envelope detector 110 and outputs the burst signal to the second adaptive processor 108.
  • the power amplifier 112 amplifies the input signal and outputs it.
  • Input-side envelope detector 101 Input-side envelope obtained by detecting the envelope of the modulation signal input to the power amplifier 112 The bellows signal is output to the first adaptive processing unit 107, and the output-side envelope signal obtained by the output-side envelope detection unit 110 detecting the envelope of the modulation signal output from the power amplification unit 112 is output. Output to the first adaptive processing unit 107.
  • the first adaptive processing unit 107 compares the input envelope signal detected by the input envelope detector 101 with the output envelope signal detected by the output envelope detector 110.
  • the distortion component due to the first memory effect of the output side envelope signal generated by the power amplifier 112 is calculated, the first distortion compensation coefficient for optimally compensating the distortion component is calculated, and the first distortion compensation coefficient is calculated.
  • the memoryless PD unit 103a for envelopes is optimal from the first LUT 105 when there is no electrical memory effect (that is, the first memory effect) in the output-side envelope signal.
  • the envelope memory PD 103b is configured so that the first memory generated in the output envelope signal from the first LUT 105 when the electrical memory effect (first memory effect) is generated in the output envelope signal.
  • the first distortion compensation coefficient corresponding to the effect is acquired, and optimal distortion compensation is performed for the output envelope signal.
  • the input burst detector 102 samples and detects the envelope force of the input envelope signal detected by the input envelope detector 101, and outputs it to the second adaptive processor 108.
  • the output-side burst detection unit 111 detects the output-side burst signal from the envelope of the output-side envelope signal detected by the output-side envelope detection unit 110 and outputs it to the second adaptive processing unit 108.
  • the second adaptive processing unit 108 compares the input burst signal sampled and detected by the input burst detector 102 with the output burst signal sampled and detected by the output burst detector 111.
  • a distortion component due to the second memory effect of the output-side burst signal generated by the temperature fluctuation of the amplification unit 112 is calculated, and a second component for optimally compensating the distortion component based on the temperature information from the temperature sensor 109 is calculated.
  • the distortion compensation coefficient is calculated and stored in the second LUT 106.
  • the burst memory PD unit 104 outputs the output from the second LUT 106 when a thermal memory effect (that is, the second memory effect) occurs in the output burst signal.
  • the second distortion compensation coefficient corresponding to the second memory effect generated in the side burst signal is obtained, and optimal distortion compensation is performed for the output burst signal.
  • the distortion compensation circuit of the present invention performs distortion compensation by the first memory effect in the output-side envelope signal and distortion compensation by the second memory effect in the output-side burst signal by using individual PD units ( That is, it is performed by the envelope memory PD section 103b which is an envelope signal memory compensation circuit and the burst memory PD section 104) which is a burst signal memory compensation circuit.
  • the burst memory PD section 104 properly performs distortion compensation by the second memory effect in the output burst signal based on the temperature information of the power amplification section 112 acquired from the temperature sensor 109.
  • FIG. 3 is a first block diagram showing the function of burst memory PD section 104 and the configuration of its peripheral elements in the distortion compensation circuit shown in FIG.
  • the function of the distortion component can be expressed by an orthogonal function of the I signal and the Q signal in the same way as the transmission signal. Therefore, as shown in FIG. 3, the complex arithmetic unit 121 of the burst memory PD unit 104 uses the second distortion compensation coefficient for optimally compensating for the distortion component due to the second memory effect as the I signal.
  • FIG. 4 is a second block diagram showing the function of burst memory PD section 104 and the configuration of its peripheral elements in the distortion compensation circuit shown in FIG. That is, distortion compensation can be performed by correcting the phase and amplitude of the transmission signal. Therefore, as shown in FIG. 4, the burst memory PD unit 104 includes a variable phase unit 122 and a variable attenuation unit 123. The variable phase unit 122 adjusts the phase of the transmission signal, and the variable attenuation unit 123 adjusts the transmission signal. By adjusting the amplitude, the distortion compensation due to the second memory effect can be properly performed.
  • the distortion compensation circuit of the present invention is a new burst signal memory compensation circuit (envelope memory PD unit 103b) in addition to the conventional envelope signal memory compensation circuit (envelope memory PD unit 103b).
  • envelope memory PD unit 103b envelope memory PD unit 103b
  • the first electrical memory effect and the second thermal memory effect which differ greatly in delay time, can be individually adapted. It becomes possible to do.
  • the calculation time of the entire distortion compensation circuit can be shortened, and the table values of the first LUT 105 storing the first distortion compensation coefficient and the second LUT 106 storing the second distortion compensation coefficient can be reduced.
  • the detection circuit for detecting the burst signal is not likely to be complicated.
  • FIG. 5 is a block diagram showing a configuration of a distortion compensation circuit according to Embodiment 2 of the present invention.
  • the distortion compensation circuit of the second embodiment shown in FIG. 5 differs from the distortion compensation circuit of the first embodiment shown in FIG. 2 in that the second adaptive processing unit 108 is deleted and a pattern determination unit 113 is added.
  • the storage unit 114 is newly added.
  • the non-turn determining unit 113 includes the input burst signal detected by the input burst detector 102, the output burst signal sampled by the output burst detector 111, and the temperature information obtained from the temperature sensor 109. Based on the above, the second memory effect pattern generated in the output burst signal is determined, and the memory effect pattern is output to the storage unit 114.
  • the storage unit 114 preliminarily stores the second memory effect generated in the burst signal on the output side, and based on the memory effect pattern information acquired from the pattern determination unit 113, the optimum distortion compensation coefficient V is obtained. And rewrite the table value of the second LUT 106 using this distortion compensation coefficient.
  • the storage unit 114 calls a memory effect pattern stored in advance and optimizes it based on the memory effect pattern information obtained from the pattern determination unit 113.
  • the second distortion compensation coefficient is selected and the table value of the second LUT 106 is rewritten.
  • the burst memory PD unit 104 obtains the second distortion compensation coefficient corresponding to the second memory effect from the second LUT 10 6 and performs optimal distortion compensation on the output burst signal. .
  • the burst memory PD unit 104 uses the second distortion compensation coefficient stored in the pre-arranged storage unit 114, so that the second distortion compensation coefficient adaptive process is performed. Since the calculation can be omitted, the calculation time of the second distortion compensation coefficient can be further shortened compared to the distortion compensation circuit of the first embodiment.
  • the distortion caused by the first memory effect generated in the envelope signal and the distortion caused by the second memory effect generated in the burst signal are individually compensated for at high speed and with high accuracy. Therefore, it can be effectively used for a power amplifying apparatus such as a mobile phone in a next generation communication system.

Abstract

A distortion compensating circuit capable of simultaneously reducing both the affection of a first memory effect occurring in an envelope signal and that of a second memory effect occurring in a burst signal. In this distortion compensating circuit, an envelope memory PD part (103b) refers to a first distortion compensation coefficient stored in a first LUT (105) to compensate the distortion caused by the first memory effect of the envelope signal. A second adapting part (108) compares an input side burst signal detected by an input side burst detecting part (102) with an output side burst signal detected by an output side burst detecting part (111), calculates a distortion component caused by the second memory effect of the output side burst signal occurring due to a temperature variation of a power amplifying part (112), and calculates, based on temperature information from a temperature sensor (109), a second distortion compensation coefficient. A burst memory PD part (104) refers to the second distortion compensation coefficient to compensate the distortion caused by the second memory effect of the burst signal.

Description

明 細 書  Specification
歪補償回路  Distortion compensation circuit
技術分野  Technical field
[0001] 本発明は、プリディストーション方式によって送信信号の歪補償を行う歪補償回路 に関する。  The present invention relates to a distortion compensation circuit that performs distortion compensation of a transmission signal by a predistortion method.
背景技術  Background art
[0002] 従来より、携帯電話機など力 送信される送信信号のスペクトラムに歪が生じた場 合には、その歪成分に対して逆関数の歪 (逆歪)を生成し、送信信号の歪成分を逆 歪によってキャンセルして歪補償を行うプリディストーション方式 (前置歪方式)の歪 補償回路が知られている。また、送信信号を変調して生成されたエンベロープ信号 は、電力増幅装置を構成する回路素子 (デバイス)のヒステリシス現象によって生じる 送信信号の非対称なスペクトラムに起因するメモリ効果によって歪特性が劣化しない ように、そのメモリ効果を考慮した歪補償回路が用いられて 、る。  [0002] Conventionally, when distortion occurs in the spectrum of a transmission signal transmitted by force such as a cellular phone, an inverse function distortion (inverse distortion) is generated for the distortion component, and the distortion component of the transmission signal is generated. A predistortion type (predistortion type) distortion compensation circuit that compensates for distortion by reverse distortion is known. In addition, the envelope signal generated by modulating the transmission signal does not deteriorate its distortion characteristics due to the memory effect caused by the asymmetric spectrum of the transmission signal caused by the hysteresis phenomenon of the circuit elements (devices) constituting the power amplification device. A distortion compensation circuit taking into account the memory effect is used.
[0003] 例えば、電力増幅装置を構成するデバイスの温度を温度センサによって検出し、検 出された温度レベルに応じて予歪回路 (プリディストーション回路)の予歪係数を変え ることにより(つまり、デバイスの温度変化に応じて歪の逆関数を変化させることにより )、歪特性が温度に依存されないようにしてエンベロープ信号の歪補償を行う歪補償 回路が開示されている (例えば、特許文献 1参照)。また、メモリレス ·プリディストーン ヨン回路とメモリプリディストーション回路とを備え、メモリプリディストーション回路によ つてエンベロープ信号のメモリ効果に起因する歪の補償を行う歪補償回路の技術も 開示されている(例えば、特許文献 2参照)。この技術によれば、エンベロープ信号の 歪成分を補償するための予歪係数のテーブル値を、ディレイ回路によって検出した 1 サンプル前のエンベロープ信号によって補正することにより(つまり、エンベロープ信 号のヒステリシス補償を行うことにより)、電力増幅装置を構成するデバイスの電気的 特性に起因するメモリ効果による歪特性の変動を排除して、エンベロープ信号のメモ リ効果による歪補償量の劣化を防止することができる。  [0003] For example, by detecting the temperature of a device constituting the power amplifying device with a temperature sensor, and changing the predistortion coefficient of the predistortion circuit (predistortion circuit) according to the detected temperature level (that is, Distortion compensation circuits have been disclosed that perform distortion compensation of envelope signals so that the distortion characteristics do not depend on temperature (by changing the inverse strain function in response to device temperature changes) (see, for example, Patent Document 1). ). Also disclosed is a technique for a distortion compensation circuit that includes a memory-less pre-distortion circuit and a memory pre-distortion circuit, and compensates for distortion caused by the memory effect of the envelope signal by the memory pre-distortion circuit ( For example, see Patent Document 2). According to this technology, the table value of the predistortion coefficient for compensating the distortion component of the envelope signal is corrected by the envelope signal one sample before detected by the delay circuit (that is, hysteresis compensation of the envelope signal is performed). By doing so, it is possible to eliminate fluctuations in distortion characteristics due to the memory effect due to the electrical characteristics of the devices constituting the power amplifying device, and to prevent deterioration in distortion compensation due to the memory effect of the envelope signal.
特許文献 1:特開 2004— 336750号公報 特許文献 2 :特開 2005— 101908号公報 Patent Document 1: JP 2004-336750 A Patent Document 2: JP-A-2005-101908
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、携帯電話機などの送信信号は、送信するデータ量や収容人数など の変動に応じてエンベロープ信号の振幅が所定の周期で変化するバースト信号とな つて出力される。このバースト信号は、従来の W— CDMA (Wideband Code Division Multiple Access)方式などにおいては約 10ms程度の周期で振幅が変動しているが 、 3GPP― LTE (3rd generation Partnership Project-Long Term Evolution)などの次 世代通信システムにおいては 0. 5ms程度の速い周期で振幅が変動する。  [0004] However, a transmission signal of a mobile phone or the like is output as a burst signal in which the amplitude of the envelope signal changes at a predetermined period in accordance with fluctuations in the amount of data to be transmitted, the number of people accommodated, and the like. In the conventional W-CDMA (Wideband Code Division Multiple Access) method, the amplitude of this burst signal fluctuates with a period of about 10 ms. In next-generation communication systems, the amplitude fluctuates at a fast cycle of about 0.5 ms.
[0005] 一方、メモリ効果には、電力増幅装置のデバイスに印加される電圧の変動などに起 因してエンベロープ信号にヒステリシス現象が生じる電気的メモリ効果 (以下、第 1の メモリ効果という)と、デバイスの温度時定数に起因してバースト信号にヒステリシス現 象が生じる温度的メモリ効果 (以下、第 2のメモリ効果という)とが存在する。なお、この ときのデバイスの温度時定数は約 0. 1ms程度であり、デバイスの電気的な時定数に 比べて極めて時定数が大き!/、。  [0005] On the other hand, the memory effect includes an electrical memory effect (hereinafter referred to as the first memory effect) in which a hysteresis phenomenon occurs in the envelope signal due to fluctuations in the voltage applied to the device of the power amplifying device. There is a thermal memory effect (hereinafter referred to as the second memory effect) in which a hysteresis phenomenon occurs in the burst signal due to the temperature time constant of the device. The temperature time constant of the device at this time is about 0.1 ms, which is much larger than the electrical time constant of the device! /.
[0006] ところが、従来の W— CDMA方式の通信においては、バースト信号の周期 10ms に対してデバイスの温度時定数 0. 1msはかなり小さいので、バースト信号は各周期 ごとに温度飽和するために温度による過度特性の影響は殆んど表われな 、。しかし 、 3GPP— LTEなどの次世代通信システムにおいては、バースト信号の周期 0. 5ms に対してデバイスの温度時定数 0. 1msは無視できない大きさであるので、バースト 信号には温度による過度特性が大きく影響する。つまり、 3GPP—LTEなどの次世 代通信システムにお 、ては、デジタル変調されたエンベロープ信号のシンボルレート に依存して電力増幅装置の歪特性が変化する第 1のメモリ効果に加えて、バースト信 号の周期に依存して電力増幅装置の歪特性が変化する第 2のメモリ効果が大きく影 響する。 [0006] However, in conventional W-CDMA communication, the device temperature time constant of 0.1 ms is considerably smaller than the burst signal period of 10 ms, so the burst signal is temperature saturated at each period. Almost no influence of excessive characteristics due to. However, in next-generation communication systems such as 3GPP-LTE, the device temperature time constant of 0.1 ms is not negligible for a burst signal period of 0.5 ms. A big influence. In other words, in next-generation communication systems such as 3GPP-LTE, in addition to the first memory effect in which the distortion characteristics of the power amplifying device change depending on the symbol rate of the digitally modulated envelope signal, burst signals are also included. The second memory effect, in which the distortion characteristics of the power amplifier change depending on the signal period, is greatly affected.
[0007] つまり、従来の歪補償回路は、第 1のメモリ効果を考慮したエンベロープ信号の歪 補償を行って 、るものの、バースト信号に対しては第 2のメモリ効果を考慮した適正な 歪補償は行われていない。言い換えると、従来の歪補償回路は、信号周期が 0. 05 〜0. 2 sec程度の高速なエンベロープ信号に表われる第 1のメモリ効果 (電気的メ モリ効果)と、信号周期が 0. 5ms程度の低速なバースト信号に表われる第 2のメモリ 効果 (温度的メモリ効果)が同時に生じたときに最適な歪補償を行うことができないの で、電力増幅装置における歪補償精度が劣化するなどの不具合が生じる。 [0007] That is, the conventional distortion compensation circuit performs distortion compensation of the envelope signal in consideration of the first memory effect, but appropriate distortion compensation in consideration of the second memory effect for the burst signal. Is not done. In other words, the conventional distortion compensation circuit has a signal period of 0.05. The first memory effect (electrical memory effect) that appears in a high-speed envelope signal of ~ 0.2 sec and the second memory effect (temperature) that appears in a low-speed burst signal with a signal period of about 0.5 ms Since the optimal distortion compensation cannot be performed when the dynamic memory effect occurs simultaneously, there arises a problem that the distortion compensation accuracy in the power amplifying device is deteriorated.
[0008] また、上記の特許文献 1に記載された技術にぉ 、ては、電力増幅装置の温度レべ ルまたは電力レベルの少なくとも一つに関連付けて LUT (Look Up Table)のテープ ル値を作成し、温度に応じて予歪係数を変化させているが、温度ヒステリシスに起因 する第 2のメモリ効果に対する歪補償は行っていない。つまり、同時に起こる 2つのメ モリ効果 (電気的な第 1のメモリ効果と温度的な第 2のメモリ効果)に対して歪補償を 行っていないので電力増幅装置の歪補償精度が劣化する。言い換えると、温度変動 に対して歪補償テーブルを適応変更して ヽるが、この歪補償テーブルはェンベロー プ信号における第 1のメモリ効果のみを補償しているものであって、第 2のメモリ効果 に対しては補償を行っていない。さらに、上記の特許文献 2に記載された技術におい ては、エンベロープ信号の第 1のメモリ効果に対する補償回路のみであるため、遅延 時間が大きく異なるエンベロープ信号の第 1のメモリ効果とバースト信号の第 2のメモ リ効果の 2つのメモリ効果が同時に発生する送信信号に対しては歪補償量が劣化す る。 [0008] Further, according to the technique described in Patent Document 1 above, the table of LUT (Look Up Table) is related to at least one of the temperature level or power level of the power amplifying device. Although the predistortion coefficient is changed according to the temperature, distortion compensation for the second memory effect caused by temperature hysteresis is not performed. In other words, the distortion compensation accuracy of the power amplifying device deteriorates because distortion compensation is not performed for two memory effects that occur simultaneously (the first electrical memory effect and the second thermal memory effect). In other words, the distortion compensation table can be adaptively changed with respect to temperature fluctuations, but this distortion compensation table compensates only for the first memory effect in the envelope signal, and the second memory effect. Is not compensated for. Furthermore, in the technique described in Patent Document 2 described above, since only the compensation circuit for the first memory effect of the envelope signal is provided, the first memory effect of the envelope signal and the first signal of the burst signal having greatly different delay times are used. The distortion compensation amount deteriorates for a transmission signal in which the two memory effects of memory effect 2 occur simultaneously.
[0009] 本発明の目的は、このような事情に鑑みてなされたもので、エンベロープ信号に生 じる第 1のメモリ効果による影響とバースト信号に生じる第 2のメモリ効果による影響を 同時に低減させて、最適な歪補償を行うことができるプリディストーション方式の歪補 償回路、及びこの歪補償回路を用いた電力増幅装置を提供することである。  The object of the present invention has been made in view of such circumstances, and simultaneously reduces the influence of the first memory effect generated in the envelope signal and the influence of the second memory effect generated in the burst signal. Thus, it is to provide a predistortion type distortion compensation circuit capable of performing optimum distortion compensation, and a power amplifying apparatus using the distortion compensation circuit.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の歪補償回路は、プリディストーション方式によって送信信号の歪補償を行 う歪補償回路であって、送信信号の変調信号であるエンベロープ信号に生じる電気 的メモリ効果に起因する歪を補償するエンベロープ用メモリプリディストーション部と、 エンベロープ信号の包絡線によって得られたバースト信号に生じる温度的メモリ効果 に起因する歪を補償するバースト用メモリプリディストーション部とを備える構成を採る 発明の効果 A distortion compensation circuit according to the present invention is a distortion compensation circuit that performs distortion compensation of a transmission signal by a predistortion method, and is configured to reduce distortion caused by an electrical memory effect generated in an envelope signal that is a modulation signal of the transmission signal. An envelope memory predistortion unit for compensation and a burst memory predistortion unit for compensating for distortion caused by the thermal memory effect generated in the burst signal obtained by the envelope of the envelope signal are adopted. The invention's effect
[0011] 本発明の歪補償回路によれば、エンベロープ用メモリ PD (Pre-Distortion)部を備 えてエンベロープ信号の第 1のメモリ効果に起因する歪補償を行うと共に、バースト 用メモリ PD部を備えて、電力増幅装置の入出力から抽出したエンベロープ信号の包 絡線力 バースト信号を検出し、第 2のメモリ効果に起因してバースト信号に歪成分 が生じたときはバースト用メモリ PD部によってバースト信号の歪補償を行っている。さ らに、温度センサ力 の温度情報によりバースト信号に第 2のメモリ効果が生じたと判 断されたときは、バースト用メモリ PD部によってバースト信号の第 2のメモリ効果によ る歪補償を行っている。  [0011] According to the distortion compensation circuit of the present invention, the envelope memory PD (Pre-Distortion) unit is provided to compensate for the distortion caused by the first memory effect of the envelope signal, and the burst memory PD unit is provided. Envelope force of the envelope signal extracted from the input and output of the power amplification device When a burst signal is detected and a distortion component is generated in the burst signal due to the second memory effect, the burst memory PD unit Compensates for signal distortion. Furthermore, when it is determined that the second memory effect has occurred in the burst signal based on the temperature information of the temperature sensor force, the burst memory PD unit performs distortion compensation by the second memory effect of the burst signal. ing.
[0012] このようにして、遅延時間の大きく異なる 2つのメモリ効果(つまり、エンベロープ信 号の第 1のメモリ効果とバースト信号の第 2のメモリ効果)を個別の PD部によって適応 処理して!/、るので、エンベロープ用メモリ PD部とバースト用メモリ PD部の演算時間を 削減することができる。その結果、電力増幅装置における歪補償回路の高速化と高 効率ィ匕を実現することが可能となると共に、歪補償精度を改善することが可能となる。 図面の簡単な説明 [0012] In this way, two memory effects with greatly different delay times (that is, the first memory effect of the envelope signal and the second memory effect of the burst signal) are adaptively processed by the individual PD units! Therefore, the calculation time of the envelope memory PD section and the burst memory PD section can be reduced. As a result, it is possible to increase the speed and efficiency of the distortion compensation circuit in the power amplifying device and improve the distortion compensation accuracy. Brief Description of Drawings
[0013] [図 1]電力増幅装置における一般的な送信電力波形の時間的推移を示す波形図、 及びデバイスの温度特性図  [0013] FIG. 1 is a waveform diagram showing a time transition of a general transmission power waveform in a power amplifying apparatus, and a temperature characteristic diagram of a device.
[図 2]本発明の実施の形態 1における歪補償回路の構成を示すブロック図  FIG. 2 is a block diagram showing a configuration of a distortion compensation circuit according to Embodiment 1 of the present invention.
[図 3]図 1に示す歪補償回路におけるバースト用メモリ PD部の機能とその周辺要素 の構成を示す第 1のブロック図  FIG. 3 is a first block diagram showing the function of the burst memory PD section and the configuration of its peripheral elements in the distortion compensation circuit shown in FIG.
[図 4]図 1に示す歪補償回路におけるバースト用メモリ PD部の機能とその周辺要素 の構成を示す第 2のブロック図  FIG. 4 is a second block diagram showing the function of the burst memory PD section and the configuration of its peripheral elements in the distortion compensation circuit shown in FIG.
[図 5]本発明の実施の形態 2における歪補償回路の構成を示すブロック図  FIG. 5 is a block diagram showing a configuration of a distortion compensation circuit according to Embodiment 2 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 〈発明の概要〉 <Summary of the invention>
本発明の歪補償回路は、従来技術と同様にエンベロープ信号の第 1のメモリ効果 に起因して発生する歪の補償を行うエンベロープ信号用メモリ補償回路 (つまり、ェ ンべロープ用メモリ PD部)を備えている。さらに、電力増幅部の入力側及び出力側か ら抽出したエンベロープ信号の包絡線力 バースト信号を検出する入力側バースト 検出部及び出力側バースト検出部と、電力増幅部のデバイスの温度を検出する温度 センサと、入力側バースト検出部及び出力側バースト検出部が検出したバースト信号 と温度センサが検出したデバイスの温度情報とに基づいて、バースト信号の第 2のメ モリ効果に起因して発生する歪の補償を行うバースト信号用メモリ補償回路 (つまり、 バースト用メモリ PD部)とを備えて!/、る。 The distortion compensation circuit of the present invention is an envelope signal memory compensation circuit (that is, an envelope memory PD section) that compensates for distortion caused by the first memory effect of the envelope signal, as in the prior art. It has. Furthermore, the input side and output side of the power amplifier Envelope force of the envelope signal extracted from the input burst detector and output burst detector for detecting the burst signal, a temperature sensor for detecting the temperature of the power amplifier device, the input burst detector and the output burst Based on the burst signal detected by the detector and the temperature information of the device detected by the temperature sensor, the burst signal memory compensation circuit (that is, compensation for distortion caused by the second memory effect of the burst signal) And burst memory PD section)!
[0015] このような構成によって、バースト信号に第 2のメモリ効果が生じる状態のときには、 エンベロープ用メモリ PD部がエンベロープ信号の第 1のメモリ効果に起因して発生 する歪の補償を行うのとは別に、バースト用メモリ PD部力 温度センサの検出したデ バイスの温度情報に基づいて、入力側バースト検出部及び出力側バースト検出部が 検出したバースト信号に生じた第 2のメモリ効果に起因して発生する歪の補償を行つ ている。これによつて、歪補償回路全体の演算量や演算時間を削減して歪補正処理 の高速化と高効率ィ匕を実現することができると共に、送信信号の歪補償精度をさらに 向上させることができる。  With such a configuration, when the second memory effect occurs in the burst signal, the envelope memory PD section compensates for distortion generated due to the first memory effect of the envelope signal. Aside from the second memory effect caused by the burst signal detected by the input burst detector and the output burst detector based on the temperature information of the device detected by the PD memory temperature sensor, To compensate for distortion that occurs. As a result, it is possible to reduce the amount of computation and the computation time of the entire distortion compensation circuit, thereby realizing high-speed distortion correction processing and high efficiency, and further improving the distortion compensation accuracy of the transmission signal. it can.
[0016] 次に、本発明における歪補償回路の具体的な実施の形態の幾つかについて詳細 に説明する。なお、以下の各実施の形態で用いる図面において、同一の構成要素は 同一の符号を付し、かつ重複する説明は省略する。  Next, some specific embodiments of the distortion compensation circuit according to the present invention will be described in detail. In the drawings used in the following embodiments, the same components are denoted by the same reference numerals, and redundant description is omitted.
[0017] 〈実施の形態 1〉  <Embodiment 1>
図 1は、電力増幅装置における一般的な送信電力波形の時間的推移を示す波形 図、及びデバイスの温度特性図であり、横軸は時間、縦軸はデバイスの温度及びバ 一スト信号振幅を示している。図 1に示すように、送信電力波形は、送信信号の変調 波であるエンベロープ信号 Sのピーク値が所定の周期で変動してバースト信号 Sを  Fig. 1 is a waveform diagram showing the temporal transition of a typical transmission power waveform in a power amplifier and a temperature characteristic diagram of the device. The horizontal axis represents time, the vertical axis represents the device temperature and the burst signal amplitude. Show. As shown in Fig. 1, the transmission power waveform shows the burst signal S as the peak value of the envelope signal S, which is the modulated wave of the transmission signal, fluctuates in a predetermined cycle.
e b 形成している。したがって、バースト信号 Sの振幅は所定の周期(図 1では 0. 5msの  e b is formed. Therefore, the amplitude of the burst signal S has a predetermined period (0.5 ms in FIG. 1).
b  b
周期)で変動している。  (Period).
[0018] このようにバースト信号の振幅が変動するたびにデバイスの温度は変動し、バース ト信号の振幅が大きいときはデバイスの温度が上昇して、バースト信号の振幅が小さ いときはデバイスの温度が下降する。このときのデバイスの温度時定数は約 0. lms である。 [0019] このとき、バースト信号 Sの振幅変動の周期 0. 5msに対してデバイスの温度時定 [0018] In this way, the device temperature fluctuates each time the burst signal amplitude fluctuates, the device temperature rises when the burst signal amplitude is large, and the device temperature increases when the burst signal amplitude is small. The temperature falls. The temperature time constant of the device at this time is about 0.lms. [0019] At this time, the temperature of the device is fixed with respect to the period of amplitude fluctuation of burst signal S 0.5ms
b  b
数 0. 1msは比較的大きな値であるので、バースト信号 Sの振幅変動はデバイス温  Since the number 0.1 ms is a relatively large value, the amplitude fluctuation of the burst signal S
b  b
度の過度特性に大きく影響する。このようなことから、バースト信号 sの振幅が大きい  Greatly affects the degree of transient characteristics. Because of this, the amplitude of the burst signal s is large
b  b
ほどデバイスの温度変動による第 2のメモリ効果が大きく表われる。そこで、本発明で は、バースト信号用メモリ補償回路力もなるバースト用メモリ PD部を設けて、デバイス の温度変動に起因して生じる第 2のメモリ効果による歪特性の劣化を補償している。 この結果、バースト信号 Sは、図 1に示すようにメモリ効果が除去された矩形波の波  The second memory effect due to device temperature fluctuations appears greatly. Therefore, in the present invention, a burst memory PD section that also has a burst signal memory compensation circuit power is provided to compensate for distortion characteristics degradation due to the second memory effect caused by temperature fluctuations of the device. As a result, the burst signal S is a rectangular wave with the memory effect removed as shown in FIG.
b  b
形となる。  It becomes a shape.
[0020] 図 2は、本発明の実施の形態 1における歪補償回路の構成を示すブロック図である 。図 2において、この歪補償回路は、入力側包絡線検波部 101、入力側バースト検 出部 102、エンベロープ用メモリレス PD部 103a、エンベロープ用メモリ PD部 103b、 バースト用メモリ PD部 104、第 1の LUT105、第 2の LUT106、第 1の適応処理部 1 07、第 2の適応処理部 108、温度センサ 109、出力側包絡線検波部 110、出力側バ 一スト検出部 111、及び電力増幅部 112を備えた構成となっている。なお、以下の説 明では、電力増幅部 112の入力側のエンベロープ信号及びバースト信号を入力側 エンベロープ信号及び入力側バースト信号と ヽ、電力増幅部 112の出力側のェン ベロープ信号及びバースト信号を出力側エンベロープ信号及び出力側バースト信号 ということにする。  FIG. 2 is a block diagram showing a configuration of the distortion compensation circuit according to Embodiment 1 of the present invention. In FIG. 2, this distortion compensation circuit includes an input envelope detector 101, an input burst detector 102, an envelope memoryless PD 103a, an envelope memory PD 103b, a burst memory PD 104, a first LUT105, second LUT106, first adaptive processing unit 107, second adaptive processing unit 108, temperature sensor 109, output side envelope detection unit 110, output side burst detection unit 111, and power amplification unit 112 is provided. In the following description, the envelope signal and burst signal on the input side of the power amplifier 112 are combined with the envelope signal and burst signal on the input side, and the envelope signal and burst signal on the output side of the power amplifier 112 are converted. The output side envelope signal and the output side burst signal are called.
[0021] 入力側包絡線検波部 101は、携帯電話機などに入力される変調信号 (つまり、電 力増幅部 112で歪む前の入力側エンベロープ信号)の包絡線を検波して、入力側バ 一スト検出部 102と第 1の適応処理部 107へ出力する。入力側バースト検出部 102 は、入力側包絡線検波部 101が検波した入力側エンベロープ信号の包絡線から入 力側バースト信号を検出して第 2の適応処理部 108へ出力する。  [0021] The input-side envelope detection unit 101 detects the envelope of a modulation signal (that is, the input-side envelope signal before being distorted by the power amplification unit 112) input to a mobile phone or the like, thereby To the first detection processing unit 107 and the first detection processing unit The input burst detector 102 detects the input burst signal from the envelope of the input envelope signal detected by the input envelope detector 101 and outputs it to the second adaptive processor 108.
[0022] エンベロープ用メモリレス PD部 103aは、出力側エンベロープ信号に電気的メモリ 効果 (すなわち、第 1のメモリ効果)が生じていない場合に歪補償を行う。ェンベロー プ用メモリ PD部 103bは、出力側エンベロープ信号に電気的メモリ効果 (第 1のメモリ 効果)が生じている場合に歪補償を行う。バースト用メモリ PD部 104は、出力側バー スト信号に温度的メモリ効果 (すなわち、第 2のメモリ効果)が生じている場合に歪補 償を行う。 [0022] The memoryless PD unit 103a for envelope performs distortion compensation when an electrical memory effect (that is, the first memory effect) does not occur in the output-side envelope signal. The envelope memory PD 103b performs distortion compensation when an electrical memory effect (first memory effect) occurs in the output envelope signal. The burst memory PD unit 104 compensates for distortion when a thermal memory effect (that is, the second memory effect) occurs in the output burst signal. Make compensation.
[0023] 第 1の LUT105は、出力側エンベロープ信号に生じた第 1のメモリ効果に対応して 最適な歪補償を行うための第 1の歪補償係数 (歪の第 1逆関数)を格納する第 1のテ 一ブルである。第 2の LUT106は、出力側バースト信号に生じた第 2のメモリ効果に 対応して最適な歪補償を行うための第 2の歪補償係数 (歪の第 2逆関数)を格納する 第 2のテーブルである。  [0023] The first LUT 105 stores a first distortion compensation coefficient (first inverse function of distortion) for performing optimum distortion compensation corresponding to the first memory effect generated in the output-side envelope signal. This is the first table. The second LUT 106 stores a second distortion compensation coefficient (second inverse function of distortion) for optimal distortion compensation corresponding to the second memory effect generated in the output burst signal. It is a table.
[0024] 第 1の適応処理部 107は、入力側包絡線検波部 101が検波した入力側ェンベロー プ信号の包絡線と出力側包絡線検波部 110が検波した出力側エンベロープ信号の 包絡線とを比較して、電力増幅部 112によって生じた出力側エンベロープ信号の第 1のメモリ効果による歪成分を算出し、その歪成分を最適に補償するための第 1の歪 補償係数 (歪の第 1逆関数)を演算して第 1の LUT105に出力する。  [0024] The first adaptive processing unit 107 calculates the envelope of the input envelope signal detected by the input envelope detector 101 and the envelope of the output envelope signal detected by the output envelope detector 110. In comparison, a distortion component due to the first memory effect of the output-side envelope signal generated by the power amplifying unit 112 is calculated, and a first distortion compensation coefficient (first distortion inverse) is used to optimally compensate for the distortion component. Function) and output to the first LUT105.
[0025] 第 2の適応処理部 108は、入力側バースト検出部 102が入力側エンベロープ信号 の包絡線力 サンプリング検出した入力側バースト信号と出力側バースト検出部 111 が出力側エンベロープ信号の包絡線力 サンプリング検出した出力側バースト信号 とを比較して、電力増幅部 112の温度変動によって生じた出力側バースト信号の第 2 のメモリ効果による歪成分を算出し、温度センサ 109からの温度情報に基づいてその 歪成分を最適に補償するための第 2の歪補償係数 (歪の第 2逆関数)を演算して第 2 の LUT106に出力する。  [0025] The second adaptive processing unit 108 includes an input side burst signal sampled and detected by the input burst detection unit 102 and an output side burst detection unit 111. Compared with the output-side burst signal sampled and detected, the distortion component due to the second memory effect of the output-side burst signal caused by the temperature fluctuation of the power amplifier 112 is calculated, and based on the temperature information from the temperature sensor 109 The second distortion compensation coefficient (second inverse function of distortion) for optimally compensating the distortion component is calculated and output to the second LUT 106.
[0026] 温度センサ 109は、電力増幅部 112におけるデバイス(図示せず)の温度を検出し て、第 2の適応処理部 108へ電力増幅部 112の温度情報を出力する。出力側包絡 線検波部 110は、携帯電話機など力 出力される信号 (つまり、電力増幅部 112で歪 んだ出力側エンベロープ信号)の包絡線を検波して、出力側バースト検出部 111と 第 1の適応処理部 107へ出力する。出力側バースト検出部 111は、出力側包絡線検 波部 110が検波したエンベロープ信号の包絡線力もバースト信号をサンプリング検 出して第 2の適応処理部 108へ出力する。なお、電力増幅部 112は入力信号を電力 増幅して出力する。 The temperature sensor 109 detects the temperature of a device (not shown) in the power amplification unit 112 and outputs temperature information of the power amplification unit 112 to the second adaptive processing unit 108. The output-side envelope detection unit 110 detects the envelope of a signal that is output in force, such as a mobile phone (that is, the output-side envelope signal distorted by the power amplification unit 112), and the output-side burst detection unit 111 and the first envelope detection unit 110 To the adaptive processing unit 107. The output-side burst detector 111 samples and detects the envelope signal of the envelope signal detected by the output-side envelope detector 110 and outputs the burst signal to the second adaptive processor 108. The power amplifier 112 amplifies the input signal and outputs it.
[0027] 次に、図 2に示す歪補償回路の動作について説明する。入力側包絡線検波部 101 力 電力増幅部 112に入力される変調信号の包絡線を検波して得られた入力側ェン ベロープ信号を第 1の適応処理部 107へ出力すると共に、出力側包絡線検波部 11 0が、電力増幅部 112から出力された変調信号の包絡線を検波して得られた出力側 エンベロープ信号を第 1の適応処理部 107へ出力する。 Next, the operation of the distortion compensation circuit shown in FIG. 2 will be described. Input-side envelope detector 101 Input-side envelope obtained by detecting the envelope of the modulation signal input to the power amplifier 112 The bellows signal is output to the first adaptive processing unit 107, and the output-side envelope signal obtained by the output-side envelope detection unit 110 detecting the envelope of the modulation signal output from the power amplification unit 112 is output. Output to the first adaptive processing unit 107.
[0028] すると、第 1の適応処理部 107は、入力側包絡線検波部 101が検波した入力側ェ ンべロープ信号と出力側包絡線検波部 110が検波した出力側エンベロープ信号とを 比較して、電力増幅部 112によって生じた出力側エンベロープ信号の第 1のメモリ効 果による歪成分を算出し、その歪成分を最適に補償するための第 1の歪補償係数を 演算して第 1の LUT105に格納する。  [0028] Then, the first adaptive processing unit 107 compares the input envelope signal detected by the input envelope detector 101 with the output envelope signal detected by the output envelope detector 110. Thus, the distortion component due to the first memory effect of the output side envelope signal generated by the power amplifier 112 is calculated, the first distortion compensation coefficient for optimally compensating the distortion component is calculated, and the first distortion compensation coefficient is calculated. Store in LUT105.
[0029] これによつて、エンベロープ用メモリレス PD部 103aは、出力側エンベロープ信号 に電気的メモリ効果 (すなわち、第 1のメモリ効果)が生じていない場合には、第 1の L UT105から最適な第 1の歪補償係数を取得して出力側エンベロープ信号の歪補償 を行う。また、エンベロープ用メモリ PD部 103bは、出力側エンベロープ信号に電気 的メモリ効果 (第 1のメモリ効果)が生じている場合には、第 1の LUT105から出力側 エンベロープ信号に生じた第 1のメモリ効果に対応した第 1の歪補償係数を取得し、 その出力側エンベロープ信号に対して最適な歪補償を行う。  [0029] Thus, the memoryless PD unit 103a for envelopes is optimal from the first LUT 105 when there is no electrical memory effect (that is, the first memory effect) in the output-side envelope signal. Obtain the first distortion compensation coefficient and perform distortion compensation on the output envelope signal. In addition, the envelope memory PD 103b is configured so that the first memory generated in the output envelope signal from the first LUT 105 when the electrical memory effect (first memory effect) is generated in the output envelope signal. The first distortion compensation coefficient corresponding to the effect is acquired, and optimal distortion compensation is performed for the output envelope signal.
[0030] さらに、入力側バースト検出部 102が、入力側包絡線検波部 101の検波した入力 側エンベロープ信号の包絡線力 入力側バースト信号をサンプリング検出して第 2の 適応処理部 108へ出力すると共に、出力側バースト検出部 111が、出力側包絡線検 波部 110の検波した出力側エンベロープ信号の包絡線から出力側バースト信号をサ ンプリング検出して第 2の適応処理部 108へ出力する。 [0030] Furthermore, the input burst detector 102 samples and detects the envelope force of the input envelope signal detected by the input envelope detector 101, and outputs it to the second adaptive processor 108. At the same time, the output-side burst detection unit 111 detects the output-side burst signal from the envelope of the output-side envelope signal detected by the output-side envelope detection unit 110 and outputs it to the second adaptive processing unit 108.
[0031] すると、第 2の適応処理部 108は、入力側バースト検出部 102がサンプリング検出 した入力側バースト信号と出力側バースト検出部 111がサンプリング検出した出力側 バースト信号とを比較して、電力増幅部 112の温度変動によって生じた出力側バー スト信号の第 2のメモリ効果による歪成分を算出し、温度センサ 109からの温度情報 に基づいてその歪成分を最適に補償するための第 2の歪補償係数を演算して第 2の LUT106に格納する。 [0031] Then, the second adaptive processing unit 108 compares the input burst signal sampled and detected by the input burst detector 102 with the output burst signal sampled and detected by the output burst detector 111. A distortion component due to the second memory effect of the output-side burst signal generated by the temperature fluctuation of the amplification unit 112 is calculated, and a second component for optimally compensating the distortion component based on the temperature information from the temperature sensor 109 is calculated. The distortion compensation coefficient is calculated and stored in the second LUT 106.
[0032] これによつて、バースト用メモリ PD部 104は、出力側バースト信号に温度的メモリ効 果 (すなわち、第 2のメモリ効果)が生じている場合には、第 2の LUT106から、出力 側バースト信号に生じた第 2のメモリ効果に対応した第 2の歪補償係数を取得し、そ の出力側バースト信号に対して最適な歪補償を行う。 Accordingly, the burst memory PD unit 104 outputs the output from the second LUT 106 when a thermal memory effect (that is, the second memory effect) occurs in the output burst signal. The second distortion compensation coefficient corresponding to the second memory effect generated in the side burst signal is obtained, and optimal distortion compensation is performed for the output burst signal.
[0033] このように、本発明の歪補償回路は、出力側エンベロープ信号における第 1のメモリ 効果による歪補償と出力側バースト信号における第 2のメモリ効果による歪補償とを、 個別の PD部(つまり、エンベロープ信号用メモリ補償回路であるエンベロープ用メモ リ PD部 103bとバースト信号用メモリ補償回路であるバースト用メモリ PD部 104)によ つて行っている。このとき、バースト用メモリ PD部 104は、温度センサ 109から取得し た電力増幅部 112の温度情報に基づいて出力側バースト信号における第 2のメモリ 効果による歪補償を適正に行っている。  As described above, the distortion compensation circuit of the present invention performs distortion compensation by the first memory effect in the output-side envelope signal and distortion compensation by the second memory effect in the output-side burst signal by using individual PD units ( That is, it is performed by the envelope memory PD section 103b which is an envelope signal memory compensation circuit and the burst memory PD section 104) which is a burst signal memory compensation circuit. At this time, the burst memory PD section 104 properly performs distortion compensation by the second memory effect in the output burst signal based on the temperature information of the power amplification section 112 acquired from the temperature sensor 109.
[0034] ここで、本発明に適用されるバースト用メモリ PD部 104の内部構成について説明 する。図 3は、図 1に示す歪補償回路におけるバースト用メモリ PD部 104の機能とそ の周辺要素の構成を示す第 1のブロック図である。すなわち、歪成分の関数は送信 信号と同様に I信号と Q信号の直交関数で表わすことができる。したがって、図 3に示 すように、バースト用メモリ PD部 104の複素演算部 121が、第 2のメモリ効果に起因 する歪成分を最適に補償するための第 2の歪補償係数を、 I信号と Q信号の直交関 数 (A+jB)として第 2の LUT106から取得し、この直交関数 (A+jB)を送信信号の 直交関数 (C+jD)に乗算する。これによつて、第 2のメモリ効果に起因する歪補償を 適正に行うことができる。  Here, the internal configuration of burst memory PD section 104 applied to the present invention will be described. FIG. 3 is a first block diagram showing the function of burst memory PD section 104 and the configuration of its peripheral elements in the distortion compensation circuit shown in FIG. In other words, the function of the distortion component can be expressed by an orthogonal function of the I signal and the Q signal in the same way as the transmission signal. Therefore, as shown in FIG. 3, the complex arithmetic unit 121 of the burst memory PD unit 104 uses the second distortion compensation coefficient for optimally compensating for the distortion component due to the second memory effect as the I signal. Is obtained from the second LUT 106 as the orthogonal function (A + jB) of the Q signal and this orthogonal function (A + jB) is multiplied by the orthogonal function (C + jD) of the transmission signal. This makes it possible to properly compensate for distortion caused by the second memory effect.
[0035] 図 4は、図 1に示す歪補償回路におけるバースト用メモリ PD部 104の機能とその周 辺要素の構成を示す第 2のブロック図である。すなわち、送信信号の位相と振幅を補 正することによって歪補償を行うことができる。したがって、図 4に示すように、バースト 用メモリ PD部 104が可変位相部 122と可変減衰部 123を備え、可変位相部 122〖こ よって送信信号の位相を調整し、可変減衰部 123によって送信信号の振幅を調整す ることにより、第 2のメモリ効果に起因する歪補償を適正に行うことができる。  FIG. 4 is a second block diagram showing the function of burst memory PD section 104 and the configuration of its peripheral elements in the distortion compensation circuit shown in FIG. That is, distortion compensation can be performed by correcting the phase and amplitude of the transmission signal. Therefore, as shown in FIG. 4, the burst memory PD unit 104 includes a variable phase unit 122 and a variable attenuation unit 123. The variable phase unit 122 adjusts the phase of the transmission signal, and the variable attenuation unit 123 adjusts the transmission signal. By adjusting the amplitude, the distortion compensation due to the second memory effect can be properly performed.
[0036] 以上説明したように、本発明の歪補償回路は、従来から存在するエンベロープ信 号用メモリ補償回路 (エンベロープ用メモリ PD部 103b)に加えて、新たにバースト信 号用メモリ補償回路 (バースト用メモリ PD部 104)を設けることにより、遅延時間が大 きく異なる電気的な第 1のメモリ効果と温度的な第 2のメモリ効果を個別に適応処理 することが可能となる。その結果、歪補償回路全体の演算時間を短縮することができ ると共に、第 1の歪補償係数を格納する第 1の LUT105と第 2の歪補償係数を格納 する第 2の LUT106のテーブル値を単純ィ匕することができる。これによつて、歪補償 回路における演算処理の高速化と高効率ィ匕を実現することが可能となる。さらには、 本発明の歪補償回路ではエンベロープ信号の包絡線力 バースト信号を容易に検 出することができるので、バースト信号を検出するための検出回路が複雑になるおそ れはない。 [0036] As described above, the distortion compensation circuit of the present invention is a new burst signal memory compensation circuit (envelope memory PD unit 103b) in addition to the conventional envelope signal memory compensation circuit (envelope memory PD unit 103b). By providing the burst memory PD section 104), the first electrical memory effect and the second thermal memory effect, which differ greatly in delay time, can be individually adapted. It becomes possible to do. As a result, the calculation time of the entire distortion compensation circuit can be shortened, and the table values of the first LUT 105 storing the first distortion compensation coefficient and the second LUT 106 storing the second distortion compensation coefficient can be reduced. Can be simple. As a result, it is possible to realize high-speed arithmetic processing and high efficiency in the distortion compensation circuit. Furthermore, since the envelope compensation force burst signal of the envelope signal can be easily detected in the distortion compensation circuit of the present invention, the detection circuit for detecting the burst signal is not likely to be complicated.
[0037] 〈実施の形態 2〉  <Embodiment 2>
図 5は、本発明の実施の形態 2における歪補償回路の構成を示すブロック図である 。図 5に示す実施の形態 2の歪補償回路が図 2に示す実施の形態 1の歪補償回路と 異なるところは、第 2の適応処理部 108が削除されてパターン判定部 113が追加され た点と、新たに記憶部 114が追加された点である。  FIG. 5 is a block diagram showing a configuration of a distortion compensation circuit according to Embodiment 2 of the present invention. The distortion compensation circuit of the second embodiment shown in FIG. 5 differs from the distortion compensation circuit of the first embodiment shown in FIG. 2 in that the second adaptive processing unit 108 is deleted and a pattern determination unit 113 is added. The storage unit 114 is newly added.
[0038] ノターン判定部 113は、入力側バースト検出部 102がサンプリング検出した入力側 バースト信号と出力側バースト検出部 111がサンプリング検出した出力側バースト信 号と温度センサ 109から得られた温度情報とに基づいて、出力側バースト信号に生じ た第 2のメモリ効果のパターンを判定し、このメモリ効果のパターンを記憶部 114へ出 力する。記憶部 114は、あら力じめ、出力側バースト信号に生じる第 2のメモリ効果を 記憶させておき、パターン判定部 113から取得したメモリ効果のパターン情報に基づ V、て最適な歪補償係数を選択し、この歪補償係数によって第 2の LUT106のテープ ル値を書き換える。  [0038] The non-turn determining unit 113 includes the input burst signal detected by the input burst detector 102, the output burst signal sampled by the output burst detector 111, and the temperature information obtained from the temperature sensor 109. Based on the above, the second memory effect pattern generated in the output burst signal is determined, and the memory effect pattern is output to the storage unit 114. The storage unit 114 preliminarily stores the second memory effect generated in the burst signal on the output side, and based on the memory effect pattern information acquired from the pattern determination unit 113, the optimum distortion compensation coefficient V is obtained. And rewrite the table value of the second LUT 106 using this distortion compensation coefficient.
[0039] 次に、図 5に示す実施の形態 2の歪補償回路の動作について説明するが、実施の 形態 1と重複する内容についてはその説明を省略する。出力側バースト信号の振幅 またはバースト周期が変わるごとに、記憶部 114は、あらかじめ自己に記憶させてお いたメモリ効果のパターンを呼び出し、パターン判定部 113から取得したメモリ効果 のパターン情報に基づいて最適な第 2の歪補償係数を選択して第 2の LUT106のテ 一ブル値を書き換える。これによつて、バースト用メモリ PD部 104は、第 2の LUT10 6から第 2のメモリ効果に対応した第 2の歪補償係数を取得し、出力側バースト信号に 対して最適な歪補償を行う。 [0040] このようにして、バースト用メモリ PD部 104が、あら力じめ記憶部 114に記憶させて おいた第 2の歪補償係数を使用することにより、第 2の歪補償係数の適応処理演算を 省略することができるので、実施の形態 1の歪補償回路に比べて第 2の歪補償係数 の演算時間をさらに短縮ィ匕することが可能となる。 Next, the operation of the distortion compensation circuit according to the second embodiment shown in FIG. 5 will be described, but the description overlapping with that in the first embodiment will be omitted. Each time the amplitude or burst period of the burst signal on the output side changes, the storage unit 114 calls a memory effect pattern stored in advance and optimizes it based on the memory effect pattern information obtained from the pattern determination unit 113. The second distortion compensation coefficient is selected and the table value of the second LUT 106 is rewritten. As a result, the burst memory PD unit 104 obtains the second distortion compensation coefficient corresponding to the second memory effect from the second LUT 10 6 and performs optimal distortion compensation on the output burst signal. . In this way, the burst memory PD unit 104 uses the second distortion compensation coefficient stored in the pre-arranged storage unit 114, so that the second distortion compensation coefficient adaptive process is performed. Since the calculation can be omitted, the calculation time of the second distortion compensation coefficient can be further shortened compared to the distortion compensation circuit of the first embodiment.
産業上の利用可能性  Industrial applicability
[0041] 本発明の歪補償回路によれば、エンベロープ信号に生じる第 1のメモリ効果に起因 する歪とバースト信号に生じる第 2のメモリ効果に起因する歪を個別に補償して高速 かつ高精度に歪補償を行うことができるので、次世代通信システムにおける携帯電 話機などの電力増幅装置に有効に利用することが可能となる。 [0041] According to the distortion compensation circuit of the present invention, the distortion caused by the first memory effect generated in the envelope signal and the distortion caused by the second memory effect generated in the burst signal are individually compensated for at high speed and with high accuracy. Therefore, it can be effectively used for a power amplifying apparatus such as a mobile phone in a next generation communication system.

Claims

請求の範囲 The scope of the claims
[1] プリディストーション方式によって送信信号の歪補償を行う歪補償回路であって、 前記送信信号の変調信号であるエンベロープ信号に生じる電気的メモリ効果に起 因する歪を補償するエンベロープ用メモリプリディストーション部と、  [1] A distortion compensation circuit that performs distortion compensation of a transmission signal by a predistortion method, and that compensates for distortion caused by an electrical memory effect generated in an envelope signal that is a modulation signal of the transmission signal. And
前記エンベロープ信号の包絡線によって得られたバースト信号に生じる温度的メモ リ効果に起因する歪を補償するバースト用メモリプリディストーション部と、を備える歪 補償回路。  A distortion compensation circuit comprising: a burst memory predistortion unit that compensates for distortion caused by a thermal memory effect generated in a burst signal obtained by an envelope of the envelope signal.
[2] 前記エンベロープ用メモリプリディストーション部は、第 1のテーブルに格納された 第 1の歪補償係数を用いて前記エンベロープ信号に生じる電気的メモリ効果に起因 する歪を補償し、  [2] The envelope memory predistortion unit compensates for distortion caused by an electrical memory effect generated in the envelope signal using the first distortion compensation coefficient stored in the first table,
前記バースト用メモリプリディストーション部は、第 2のテーブルに格納された第 2の 歪補償係数を用いて前記バースト信号に生じる温度的メモリ効果に起因する歪を補 償する請求項 1に記載の歪補償回路。  The distortion according to claim 1, wherein the burst memory predistortion unit compensates for distortion caused by a thermal memory effect generated in the burst signal using a second distortion compensation coefficient stored in a second table. Compensation circuit.
[3] さらに、前記送信信号の電力を増幅する電力増幅部の温度を検出する温度センサ を備え、 [3] Furthermore, a temperature sensor for detecting the temperature of the power amplification unit that amplifies the power of the transmission signal is provided,
前記バースト用メモリプリディストーション部力 前記温度センサの検出した温度情 報に基づいて、前記バースト信号に生じる温度的メモリ効果に起因する歪を補償す る請求項 1に記載の歪補償回路。  2. The distortion compensation circuit according to claim 1, wherein distortion due to a thermal memory effect generated in the burst signal is compensated based on temperature information detected by the temperature sensor.
[4] さらに、前記送信信号の電力を増幅する電力増幅部の温度を検出する温度センサ と、 [4] Furthermore, a temperature sensor that detects the temperature of a power amplification unit that amplifies the power of the transmission signal;
前記エンベロープ信号の包絡線によって前記バースト信号を検出するバースト検 出部と、  A burst detection unit for detecting the burst signal by an envelope of the envelope signal;
前記バースト検出部が検出したバースト信号と前記温度センサが検出した温度情 報とに基づいて、前記温度的メモリ効果のパターンを判定するパターン判定部と、 前記パターン判定部が判定した前記温度的メモリ効果のパターンを格納する記憶 部と、を備え、  A pattern determination unit that determines a pattern of the thermal memory effect based on a burst signal detected by the burst detection unit and temperature information detected by the temperature sensor; and the thermal memory determined by the pattern determination unit A storage unit for storing an effect pattern,
前記バースト用メモリプリディストーション部力 前記バースト信号の振幅または周期 が所定量変化するごとに、前記記憶部に格納された前記温度的メモリ効果のパター ンに対応した第 2の歪補償係数を前記第 2のテーブル力 選択し、前記バースト信号 に生じる温度的メモリ効果に起因する歪を補償する請求項 2に記載の歪補償回路。 The memory predistortion force for the burst Each time the amplitude or period of the burst signal changes by a predetermined amount, the pattern of the thermal memory effect stored in the storage unit 3. The distortion compensation circuit according to claim 2, wherein a second distortion compensation coefficient corresponding to a signal is selected as the second table force, and distortion caused by a thermal memory effect occurring in the burst signal is compensated.
PCT/JP2006/321770 2006-10-31 2006-10-31 Distortion compensating circuit WO2008053535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321770 WO2008053535A1 (en) 2006-10-31 2006-10-31 Distortion compensating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321770 WO2008053535A1 (en) 2006-10-31 2006-10-31 Distortion compensating circuit

Publications (1)

Publication Number Publication Date
WO2008053535A1 true WO2008053535A1 (en) 2008-05-08

Family

ID=39343894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321770 WO2008053535A1 (en) 2006-10-31 2006-10-31 Distortion compensating circuit

Country Status (1)

Country Link
WO (1) WO2008053535A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176686A (en) * 2010-02-25 2011-09-08 Nec Corp Predistortion compensation circuit and memory effect distortion compensation method for power amplifier
JP2015061106A (en) * 2013-09-17 2015-03-30 富士通株式会社 Distortion compensation device, transmission device, and distortion compensation method
WO2023117083A1 (en) * 2021-12-22 2023-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Mitigation of memory effects in a power amplifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187218A (en) * 2002-12-06 2004-07-02 Nippon Telegr & Teleph Corp <Ntt> Nonlinear distortion compensation device
JP2006505160A (en) * 2002-10-31 2006-02-09 深▲川▼市中▲興▼通▲訊▼股▲分▼有限公司 Broadband predistortion linearization method and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505160A (en) * 2002-10-31 2006-02-09 深▲川▼市中▲興▼通▲訊▼股▲分▼有限公司 Broadband predistortion linearization method and system
JP2004187218A (en) * 2002-12-06 2004-07-02 Nippon Telegr & Teleph Corp <Ntt> Nonlinear distortion compensation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176686A (en) * 2010-02-25 2011-09-08 Nec Corp Predistortion compensation circuit and memory effect distortion compensation method for power amplifier
JP2015061106A (en) * 2013-09-17 2015-03-30 富士通株式会社 Distortion compensation device, transmission device, and distortion compensation method
WO2023117083A1 (en) * 2021-12-22 2023-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Mitigation of memory effects in a power amplifier

Similar Documents

Publication Publication Date Title
JP4284630B2 (en) Distortion compensation amplifier
US7414470B2 (en) Predistortion amplifier for compensation distortion
JP4845574B2 (en) Polar modulation circuit, integrated circuit, and wireless device
US11082013B2 (en) Method of reducing memory effect of power amplifier
KR20100137000A (en) Method of power amplifier predistortion adaptation using compression detection and circuit thereof
US20080068191A1 (en) Amplifier failure detection apparatus
WO2010011551A2 (en) Method and apparatus for improving digital predistortion correction with amplifier device biasing
KR20100014339A (en) Method and system for baseband predistortion linearization in multi-channel wideband communication systems
JP2002076785A (en) Distortion compensating device
JP2007221245A (en) Distortion compensation device and method
WO2009145283A1 (en) Distortion compensation circuit and distortion compensation method
JP5049562B2 (en) Power amplifier
JP5124655B2 (en) Distortion compensation amplifier
JP2015026968A (en) Distortion compensation device and distortion compensation method
JP2005151119A (en) Distortion compensating apparatus
JP2010278992A (en) Rf amplification apparatus
JP5303809B2 (en) Distortion compensation device
WO2008053535A1 (en) Distortion compensating circuit
JP2004015769A (en) Transmission amplifier
JP4841115B2 (en) Extended predistortion method and apparatus
JP5387445B2 (en) Predistortion compensation circuit and memory effect distortion compensation method for power amplifier
JP2003078360A (en) Distortion compensating equipment
JP2006352635A (en) Predistortion type distortion compensation amplifying device
JPWO2007049474A1 (en) Predistortion type distortion compensation amplifier
JP5016435B2 (en) Distortion compensation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP