WO2008052578A1 - Fuel cycle of a fuel cell system and method for operating a fuel cell system - Google Patents

Fuel cycle of a fuel cell system and method for operating a fuel cell system Download PDF

Info

Publication number
WO2008052578A1
WO2008052578A1 PCT/EP2006/010451 EP2006010451W WO2008052578A1 WO 2008052578 A1 WO2008052578 A1 WO 2008052578A1 EP 2006010451 W EP2006010451 W EP 2006010451W WO 2008052578 A1 WO2008052578 A1 WO 2008052578A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
anode
fuel
wasserabscheidevorrichtung
exhaust gas
Prior art date
Application number
PCT/EP2006/010451
Other languages
German (de)
French (fr)
Inventor
Uwe Limbeck
Cosimo S. Mazzotta
Original Assignee
Daimler Ag
Ford Global Technologies, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag, Ford Global Technologies, Llc filed Critical Daimler Ag
Priority to PCT/EP2006/010451 priority Critical patent/WO2008052578A1/en
Priority to DE112006004076T priority patent/DE112006004076A5/en
Publication of WO2008052578A1 publication Critical patent/WO2008052578A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel circuit of a fuel cell system and a method for operating a fuel cell system according to the preambles of the independent claims.
  • Fuel cell systems are known to comprise at least one fuel cell unit, also called fuel cell stack, consisting of a plurality of individual fuel cells, each having an anode and a cathode and a membrane disposed therebetween, for example an ion-conducting membrane of a polymer electrolyte (PEM membrane), and in each case between two bipolar plates are arranged.
  • the anode sides of the individual fuel cells have flow fields for a mostly gaseous fuel which is supplied to the fuel cells.
  • the cathode sides of the individual fuel cells have flow fields for a gaseous oxidant which is supplied to the fuel cells, usually air.
  • the fuel and the oxidizer react on a catalyst material inside the fuel cells to generate electrical energy while generating water.
  • So-called PEM fuel cells must be operated with fuel that has a certain humidity in order to achieve high efficiency and to keep damp in existing membranes in the fuel cell and thereby avoid damage that may occur with not sufficiently humidified membranes.
  • the fuel is usually hydrogen gas.
  • the product water produced in the fuel cell reaction is collected, for example, in a water separator and can be used for humidification.
  • a fuel cell system in which a return of the hydrogen is provided. From the return circuit branch off a first and a second purge line, which are provided during the flushing process mainly for the discharge of water from a Wasserabscheidevorraum and nitrogen.
  • a first and a second purge line which are provided during the flushing process mainly for the discharge of water from a Wasserabscheidevorraum and nitrogen.
  • one valve purge valve and drain valve
  • one line including any necessary filters, are required for purging with hydrogen (“purges”) and for removing water (“drains”), liquid water separated off during the removal of water from the return circuit Will get removed.
  • the opening and closing of the purge valve is controlled either via a hydrogen concentration measurement or it is time-controlled opened and closed depending on the load.
  • the purge line ends, depending on the concept, in the cathode output or in the cathode input.
  • the opening and closing of the drain valve is usually via a level sensor, which indicates an upper (opening of the valve) and a lower (closing of the valve) level in the Wasserabscheidevorraum.
  • the drain usually terminates at the cathode output of the system.
  • Fuel line system flow, or in an existing hydrogen monitoring sensor at the cathode output of these responds and there is a system shutdown.
  • This may be caused for example by a faulty display of the level sensor in the Wasserabscheidevorraum.
  • a very accurate level sensor would have to be provided, which is hardly feasible under robust operating conditions, for example in fuel cell vehicles.
  • Another possibility of failure is an unwanted malposition of one of the valves or a larger leakage. To intercept this, would have a Strömungscid. Valve monitoring are provided. If one of the two lines ends at the cathode input, there is one
  • faulty control is not primarily the danger of system shutdown, it can be shortened by additional unwanted hydrogen emissions at the entrance of the fuel cell unit, the life of the same.
  • the object of the invention is to provide a fuel circuit of a fuel cell system with a return of hydrogen, in which components can be saved and faulty circuits or incorrect measurements and resulting unwanted system shutdowns can be avoided.
  • a Wasserabscheidevorraum be provided between the recirculation and the purge line, with the anode-side fuel cell exhaust gas in the same rinse step as liquid water from the Wasserabscheidevorraum is removable.
  • a valve may be arranged downstream of the Wasserabscheidevorraum preferably.
  • the valve is provided for purging with hydrogen and for discharging water from the Wasserabscheidevorraum what can be done in the same process step.
  • the purge line can be guided by the recirculation circuit to a cathode-side input for supplying an oxidant.
  • the purge line can be led from the recirculation circuit to a cathode-side output for discharging a cathode-side fuel cell exhaust gas.
  • a sensor for the fuel Downstream of the water separation device, a sensor for the fuel can be provided in the recirculation circuit.
  • liquid water which is collected in the recirculation circuit is discharged from the recirculation circuit or a water separation device in the same method step as the anode-side fuel cell exhaust gas.
  • the valve may be operated depending on a concentration of the anode-side fuel cell exhaust gas in the recirculation circuit downstream of the water separation device. This is favorable if the Wasserabscheidevorraum can be dimensioned so large that the water collected in a cycle can be completely absorbed.
  • the valve can be actuated depending on a water level in the Wasserabscheidevorraum. This is useful when a small volume Wasserabscheidevortechnisch is used and should be avoided that it overflows unintentionally.
  • the single figure schematically shows a preferred fuel circuit of a preferred fuel cell system.
  • the structure of fuel cell systems is well known, so that the fuel cell system 10 is shown schematically in the figure without further details.
  • the fuel cell system 10 has a fuel cell unit 20 which has an anode-side inlet 34 for supplying a fuel to the fuel cell unit 20 and an anode-side outlet 36 for discharging anode-side fuel cell exhaust gas from the fuel cell unit 20.
  • the anode-side fuel cell exhaust gas is returned to the anode-side input 34.
  • the fuel is preferably hydrogen, but may, for example, be and will also be a hydrogen-rich reformate or the like supplied via a line 38.
  • a cathode-side inlet 24 for supplying an oxidizing agent to the fuel cell unit 20 and an outlet 26 for discharging cathode-side exhaust gas from the fuel cell unit 20 are provided.
  • the oxidizing agent may for example be air and is supplied via a line 28 or a line 30 led away from the cathode-side output 26.
  • a water separator 46 in which liquid water is collected from the fuel cell exhaust gas.
  • a valve 48 is connected to the Wasserabscheidevortechnisch 46 which shuts off or releases a flushing line 42 adjacent to the Wasserabscheidevortechnisch 46. If the valve 48 is opened, anode-side fuel cell exhaust gas in the same rinsing step as liquid water from the recirculation circuit 40 and the Wasserabscheidevortechnisch 46 is removable. First, the water is removed from the Wasserabscheidevortechnisch 46 or pushed out of the anode-side fuel cell exhaust, then the anode-side fuel cell exhaust gas passes through the Wasserabscheidevortechnisch 46 in the purge line 42nd
  • the purge line 42 is guided by the recirculation circuit 40 to the cathode-side input 24. This is a particularly preferred type of connection. With a broken line is indicated that the purge line 42 of the
  • Rezirkulationswan 40 may also be performed to the cathode-side output 26.
  • a possible switch between the two variants is not shown, but could be present.
  • a sensor 50 for the fuel is provided in the recirculation circuit 40, which determines the fuel concentration in the recirculation circuit 40.
  • valve 48 which represents a combined purge-drain valve, is preferably carried out via the sensor 50 as in the known purge valve in the original constellation with separate purge and drain valves. If the fuel concentration at the sensor 50 drops below a certain predetermined value , the valve 48 is opened. If there is water in the water separation device 46 or its water collection container at this time, the water is first discharged. After emptying the
  • Wasserabscheidevortechnischigan 46 then begins the actual purge process, during which the anode side of the fuel cell unit 20 is rinsed with fresh fuel. If the fuel concentration increases again at the sensor 50 above a certain predetermined value, then the valve 48 is closed.
  • the predetermined values for triggering and ending the rinsing process can be the same or different and are selected by the skilled person depending on the system.
  • a level detection for the water separation device 46 can be omitted, since at each purge the Wasserabscheidevoroplasty 46 is necessarily completely emptied. To ensure that the Wasserabscheidevortechnisch 46 is emptied often enough and does not overflow, the Wasserabscheidevortechnisch 46 should be designed to be large. If this is structurally not possible or undesirable for reasons of space, additional time- and / or load-dependent emptying cycles can be inserted.
  • valve 48 it is desirable that it be large enough to allow the accumulated amount of water to pass through in an adequate amount of time, but not too high to allow excessively high fuel concentrations on the cathode side 22 of the fuel cell unit 20 during the purge process , This is particularly useful when the purge line 42 is connected to the cathode-side input 24.
  • valve 48 may be actuated depending on a level of water in the water separation device 46, for which purpose a level sensor 52 may be provided, as indicated in the figure.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a fuel cycle of a fuel cell system (10), with a fuel cell unit (20), which has an anode-side input (34) for supplying a fuel to the fuel cell unit (20) and an anode-side output (36) for discharging anode-side fuel cell exhaust gas from the fuel cell unit (20), with a recirculation circuit (40), in which the anode-side fuel cell exhaust gas can be passed back to the anode-side input (34), and at least one flushing line (42), which branches off from the recirculation circuit (40). The flushing line (42) opens out on the cathode side into the fuel cell unit (20), wherein the flushing line (42) is provided both for removing water and for removing anode-side fuel cell exhaust gas together.

Description

Brennstoffkreis eines Brennstoffzellensystems und Verfahren zum Betreiben eines Brennstoffzellensystems Fuel circuit of a fuel cell system and method of operating a fuel cell system
Die Erfindung betrifft einen Brennstoffkreis eines Brennstoffzellensystems sowie ein Verfahren zum Betreiben eines Brennstoffzellensystems nach den Oberbegriffen der unabhängigen Ansprüche.The invention relates to a fuel circuit of a fuel cell system and a method for operating a fuel cell system according to the preambles of the independent claims.
Brennstoffzellensysteme umfassen bekanntermaßen wenigstens eine Brennstoffzelleneinheit, auch Brennstoffzellenstapel genannt, die aus mehreren einzelnen Brennstoffzellen besteht, die jeweils eine Anode und eine Kathode sowie eine dazwischen angeordnete Membran aufweisen, beispielsweise eine ionenleitende Membran aus einem Polymerelektrolyten (PEM- Membran) , und die jeweils zwischen zwei bipolaren Platten angeordnet sind. Die Anodenseiten der einzelnen Brennstoffzellen weisen Strömungsfelder für einen meist gasförmigen Brennstoff auf, der den Brennstoffzellen zugeführt wird. Die Kathodenseiten der einzelnen Brennstoffzellen weisen Strömungsfelder für ein gasförmiges Oxidationsmittel auf, das den Brennstoffzellen zugeführt wird, üblicherweise Luft. Der Brennstoff und das Oxidationsmittel reagieren an einem Katalysatormaterial im Inneren der Brennstoffzellen zur Erzeugung von elektrischer Energie bei gleichzeitiger Erzeugung von Wasser. So genannte PEM-Brennstoffzellen müssen mit Brennstoff betrieben werden, der eine gewisse Feuchte aufweist, um einen hohen Wirkungsgrad zu erreichen und in den Brennstoffzellen vorhandenen Membranen feucht zu halten und hierdurch Schäden zu vermeiden, die mit nicht ausreichend befeuchteten Membranen auftreten können. Der Brennstoff ist üblicherweise Wasserstoffgas . Das bei der Brennstoffzellenreaktion entstehende Produktwasser wird beispielsweise in einem Wasserabscheider aufgefangen und kann zur Befeuchtung eingesetzt werden.Fuel cell systems are known to comprise at least one fuel cell unit, also called fuel cell stack, consisting of a plurality of individual fuel cells, each having an anode and a cathode and a membrane disposed therebetween, for example an ion-conducting membrane of a polymer electrolyte (PEM membrane), and in each case between two bipolar plates are arranged. The anode sides of the individual fuel cells have flow fields for a mostly gaseous fuel which is supplied to the fuel cells. The cathode sides of the individual fuel cells have flow fields for a gaseous oxidant which is supplied to the fuel cells, usually air. The fuel and the oxidizer react on a catalyst material inside the fuel cells to generate electrical energy while generating water. So-called PEM fuel cells must be operated with fuel that has a certain humidity in order to achieve high efficiency and to keep damp in existing membranes in the fuel cell and thereby avoid damage that may occur with not sufficiently humidified membranes. The fuel is usually hydrogen gas. The product water produced in the fuel cell reaction is collected, for example, in a water separator and can be used for humidification.
Es ist außerdem bekannt, dass bei einer Versorgung der Brennstoffzelleneinheit mit reinem Wasserstoffgas mit Rückführung des unverbrauchten Wasserstoffs im Abgas zum Anodeneingang der Anteil von Stickstoff und Wasser im Anodenkreis allmählich steigt und zu einer Verschlechterung des Wirkungsgrades der Brennstoffzelleneinheit führt. Dies wird verhindert, indem entweder ein Teil der strömenden Gase kontinuierlich abgelassen oder ein Ablassventil diskontinuierlich geöffnet wird, um von Zeit zu Zeit den anodenseitigen Strömungskreis mit frischem Wasserstoff zu spülen und den Wirkungsgrad auf diese Weise auf einem Höhenniveau zu halten, indem die Wasserstoffkonzentration in dem Rückführkreis eingestellt und Inertgase aus dem Rückführkreis entfernt werden. Durch diesen Spülbetrieb („Purge") gelingt es, die Leistung der Brennstoffzelleneinheit deutlich zu stabilisieren.It is also known that supply of the fuel cell unit with pure hydrogen gas with recycling of the unused hydrogen in the exhaust gas to the anode inlet, the proportion of nitrogen and water in the anode circuit gradually increases and leads to a deterioration of the efficiency of the fuel cell unit. This is prevented by either continuously discharging a portion of the flowing gases or discontinuously opening a bleed valve to purge the anode-side flow circuit with fresh hydrogen from time to time and thus maintain the efficiency at a high level by reducing the hydrogen concentration in the water Set return circuit and inert gases are removed from the feedback loop. This flushing operation ("purge") makes it possible to significantly stabilize the performance of the fuel cell unit.
Aus der DE 699 12 918 T2 ist ein Brennstoffzellensystem bekannt, bei dem eine Rückführung des Wasserstoffs vorgesehen ist. Aus dem Rückführkreis zweigen eine erste und eine zweite Spülleitung ab, die beim Spülvorgang überwiegend zum Ableiten von Wasser aus einer Wasserabscheidevorrichtung und von Stickstoff vorgesehen sind. Üblicherweise werden bei bekannten Systemen je ein Ventil (Purgeventil und Drainventil) und eine Leitung, einschließlich eventuell notwendiger Filter, zum Spülen mit Wasserstoff („Purgen") und zum Wasserentfernen („Drainen") benötigt, wobei beim Wasserentfernen abgeschiedenes flüssiges Wasser aus dem Rückführkreis entfernt wird. Dabei wird das Öffnen und Schließen des Purgeventils entweder über eine Wasserstoffkonzentrationsmessung gesteuert oder es wird lastabhängig zeitgesteuert geöffnet und geschlossen. Die Spülleitung endet, je nach Konzept, im Kathodenausgang oder im Kathodeneingang. Das Öffnen und Schließen des Drainventils erfolgt in der Regel über einen Füllstandssensor, der einen oberen (Öffnen des Ventils) und einen unteren (Schließen des Ventils) Füllstand in der Wasserabscheidevorrichtung anzeigt. Die Drainleitung endet in der Regel am Kathodenausgang des Systems.From DE 699 12 918 T2 a fuel cell system is known in which a return of the hydrogen is provided. From the return circuit branch off a first and a second purge line, which are provided during the flushing process mainly for the discharge of water from a Wasserabscheidevorrichtung and nitrogen. Conventionally, in known systems, one valve (purge valve and drain valve) and one line, including any necessary filters, are required for purging with hydrogen ("purges") and for removing water ("drains"), liquid water separated off during the removal of water from the return circuit Will get removed. The opening and closing of the purge valve is controlled either via a hydrogen concentration measurement or it is time-controlled opened and closed depending on the load. The purge line ends, depending on the concept, in the cathode output or in the cathode input. The opening and closing of the drain valve is usually via a level sensor, which indicates an upper (opening of the valve) and a lower (closing of the valve) level in the Wasserabscheidevorrichtung. The drain usually terminates at the cathode output of the system.
Endet eine der beiden Leitungen im Kathodenausgang, besteht bei einer Fahlansteuerung der Ventile die Gefahr, dass kritische Wasserstoffemissionen aus demIf one of the two lines in the cathode output ends, a faulty activation of the valves poses a risk of critical hydrogen emissions being released from the
BrennstoffZeilensystem ausströmen, bzw. bei einem vorhandenen Wasserstoff-Überwachungssensor am Kathodenausgang dieser anspricht und es zu einer Systemabschaltung kommt. Dies kann beispielsweise durch eine fehlerhafte Anzeige des Füllstandssensors in der Wasserabscheidevorrichtung verursacht werden. Um dies zu verhindern, müsste ein sehr genauer Füllstandssensor vorgesehen werden, was bei robusten Einsatzbedingungen, etwa in BrennstoffZellenfahrzeugen, kaum realisierbar ist. Eine andere Fehlermöglichkeit ist kann eine ungewollte Fehlstellung eines der Ventile sein bzw. eine größere Leckage. Um dies abzufangen, müsste eine Strömungsbzw. Ventilüberwachung vorgesehen werden. Endet eine der beiden Leitungen am Kathodeneingang, so besteht bei einer Fehlansteuerung zwar nicht primär die Gefahr der Systemabschaltung, jedoch kann durch zusätzliche ungewollte Wasserstoffemissionen am Eingang der Brennstoffzelleneinheit wird die Lebensdauer derselben verkürzt werden.Fuel line system flow, or in an existing hydrogen monitoring sensor at the cathode output of these responds and there is a system shutdown. This may be caused for example by a faulty display of the level sensor in the Wasserabscheidevorrichtung. To prevent this, a very accurate level sensor would have to be provided, which is hardly feasible under robust operating conditions, for example in fuel cell vehicles. Another possibility of failure is an unwanted malposition of one of the valves or a larger leakage. To intercept this, would have a Strömungsbzw. Valve monitoring are provided. If one of the two lines ends at the cathode input, there is one Although faulty control is not primarily the danger of system shutdown, it can be shortened by additional unwanted hydrogen emissions at the entrance of the fuel cell unit, the life of the same.
Aufgabe der Erfindung ist die Schaffung eines Brennstoffkreises eines Brennstoffzellensystems mit einer Rückführung von Wasserstoff, bei dem Komponenten eingespart werden können und Fehlschaltungen oder Fehlmessungen und daraus resultierende ungewollte Systemabschaltungen vermieden werden können.The object of the invention is to provide a fuel circuit of a fuel cell system with a return of hydrogen, in which components can be saved and faulty circuits or incorrect measurements and resulting unwanted system shutdowns can be avoided.
Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der weiteren Ansprüche.The object is solved by the features of the independent claims. Advantageous embodiments of the invention are the subject of the other claims.
Bei dem erfindungsgemäßen Brennstoffkreis eines Brennstoffzellensystems mündet eine von einemIn the fuel circuit of a fuel cell system according to the invention opens one of a
Rezirkulationskreis abzweigende Spülleitung kathodenseitig in die Brennstoffzelleneinheit, wobei die Spülleitung zum Entfernen von Wasser und zum Entfernen von anodenseitigem Brennstoffzellenabgas gemeinsam vorgesehen ist. Eine getrennte Spülleitung für Wasserstoff und Wasser ist nicht notwendig. Dadurch können Wasserstoffsensoren, Ventile und gegebenenfalls Filter eingespart werden. Es entfällt eine der beiden Leitungen für das Spülen und Wasserentfernen mitsamt deren notwendigen Komponenten, womit Kosten und Bauraum eingespart werden können. Entsprechend reduzieren sich auch die Fehlermöglichkeiten im System.Rezirkulationskreis branching purge line on the cathode side into the fuel cell unit, wherein the purge line is provided for removing water and for removing anode-side fuel cell exhaust gas together. A separate purge line for hydrogen and water is not necessary. As a result, hydrogen sensors, valves and possibly filters can be saved. It eliminates one of the two lines for rinsing and water removal along with their necessary components, which costs and space can be saved. Correspondingly, the possibilities of errors in the system are also reduced.
Bevorzugt kann zwischen dem Rezirkulationskreis und der Spülleitung eine Wasserabscheidevorrichtung vorgesehen sein, mit dem anodenseitiges Brennstoffzellenabgas im gleichen Spülschritt wie Flüssigwasser aus der Wasserabscheidevorrichtung entfernbar ist.Preferably, a Wasserabscheidevorrichtung be provided between the recirculation and the purge line, with the anode-side fuel cell exhaust gas in the same rinse step as liquid water from the Wasserabscheidevorrichtung is removable.
In der Spülleitung kann vorzugsweise ein Ventil stromab der Wasserabscheidevorrichtung angeordnet sein. Das Ventil ist zum Spülen mit Wasserstoff und zum Ablassen von Wasser aus der Wasserabscheidevorrichtung vorgesehen, was im gleichen Verfahrensschritt erfolgen kann.In the purge line, a valve may be arranged downstream of the Wasserabscheidevorrichtung preferably. The valve is provided for purging with hydrogen and for discharging water from the Wasserabscheidevorrichtung what can be done in the same process step.
In einer vorteilhaften Ausgestaltung kann die Spülleitung von dem Rezirkulationskreis zu einem kathodenseitigen Eingang zur Zufuhr eines Oxidationsmittels geführt sein.In an advantageous embodiment, the purge line can be guided by the recirculation circuit to a cathode-side input for supplying an oxidant.
Alternativ oder zusätzlich kann die Spülleitung von dem Rezirkulationskreis zu einem kathodenseitigen Ausgang zur Abfuhr eines kathodenseitigen Brennstoffzellenabgases geführt sein .Alternatively or additionally, the purge line can be led from the recirculation circuit to a cathode-side output for discharging a cathode-side fuel cell exhaust gas.
Stromab der Wasserabscheidevorrichtung kann im Rezirkulationskreis ein Sensor für den Brennstoff vorgesehen sein.Downstream of the water separation device, a sensor for the fuel can be provided in the recirculation circuit.
Bei dem erfindungsgemäßen Verfahren zum Betreiben eines Brennstoffkreises eines Brennstoffzellensystems wird flüssiges Wasser, das im Rezirkulationskreis gesammelt wird, im gleichen Verfahrensschritt wie das anodenseitige Brennstoffzellenabgas aus dem Rezirkulationskreis bzw. einer Wasserabscheidevorrichtung ausgetragen .In the method according to the invention for operating a fuel circuit of a fuel cell system, liquid water which is collected in the recirculation circuit is discharged from the recirculation circuit or a water separation device in the same method step as the anode-side fuel cell exhaust gas.
Es kann vorteilhaft beim Öffnen eines Ventils zwischen einer Wasserabscheidevorrichtung und einer Spülleitung das flüssige Wasser aus der Wasserabscheidevorrichtung und das anodenseitige Brennstoffzellenabgas in die Spülleitung gelangen. Das Ventil kann abhängig von einer Konzentration des anodenseitigen Brennstoffzellenabgases im Rezirkulationskreis stromab der Wasserabscheidevorrichtung betätigt werden. Dies ist dann günstig, wenn die Wasserabscheidevorrichtung so groß bemessen werden kann, dass das in einem Zyklus gesammelte Wasser vollständig aufgenommen werden kann.It can be advantageous when opening a valve between a Wasserabscheidevorrichtung and a purge line, the liquid water from the Wasserabscheidevorrichtung and the anode-side fuel cell exhaust gas into the purge line. The valve may be operated depending on a concentration of the anode-side fuel cell exhaust gas in the recirculation circuit downstream of the water separation device. This is favorable if the Wasserabscheidevorrichtung can be dimensioned so large that the water collected in a cycle can be completely absorbed.
In einer vorteilhaften Weiterbildung kann das Ventil abhängig von einem Wasserstand in der Wasserabscheidevorrichtung betätigt werden. Dies ist dann zweckmäßig, wenn eine kleinvolumige Wasserabscheidevorrichtung eingesetzt wird und vermieden werden soll, dass diese ungewollt überläuft.In an advantageous development, the valve can be actuated depending on a water level in the Wasserabscheidevorrichtung. This is useful when a small volume Wasserabscheidevorrichtung is used and should be avoided that it overflows unintentionally.
Weitere Vorteile und Einzelheiten der Erfindung werden im Folgenden anhand eines in der Zeichnung beschriebenen bevorzugten Ausführungsbeispiels näher erläutert, ohne auf dieses Ausführungsbeispiel beschränkt zu sein.Further advantages and details of the invention are explained in more detail below with reference to a preferred embodiment described in the drawing, without being limited to this embodiment.
Dabei zeigt die einzige Figur schematisch einen bevorzugten Brennstoffkreis eines bevorzugten BrennstoffZeilensystems .The single figure schematically shows a preferred fuel circuit of a preferred fuel cell system.
Der Aufbau von Brennstoffzellensystemen ist allgemein bekannt, so dass das Brennstoffzellensystem 10 in der Figur schematisch ohne weitere Details dargestellt ist. Das Brennstoffzellensystem 10 weist eine Brennstoffzelleneinheit 20 auf, welche einen anodenseitigen Eingang 34 zum Zuführen eines Brennstoffs zur Brennstoffzelleneinheit 20 und einen anodenseitigen Ausgang 36 zum Abführen von anodenseitigem Brennstoffzellenabgas aus der Brennstoffzelleneinheit 20 aufweist. In einem Rezirkulationskreis 40 wird das anodenseitige Brennstoffzellenabgas zu dem anodenseitigen Eingang 34 zurückgeführt. Der Brennstoff ist vorzugsweise Wasserstoff, kann beispielsweise jedoch auch ein Wasserstoffreiches Reformat oder dergleichen sein und wird über eine Leitung 38 zugeführt. Kathodenseitig ist ein kathodenseitiger Eingang 24 zum Zuführen eines Oxidationsmittels zur Brennstoffzelleneinheit 20 und ein Ausgang 26 zum Abführen von kathodenseitigem Abgas aus der Brennstoffzelleneinheit 20 vorgesehen. Das Oxidationsmittel kann beispielsweise Luft sein und wird über eine Leitung 28 zugeführt bzw. eine Leitung 30 vom kathodenseitigen Ausgang 26 weggeführt.The structure of fuel cell systems is well known, so that the fuel cell system 10 is shown schematically in the figure without further details. The fuel cell system 10 has a fuel cell unit 20 which has an anode-side inlet 34 for supplying a fuel to the fuel cell unit 20 and an anode-side outlet 36 for discharging anode-side fuel cell exhaust gas from the fuel cell unit 20. In a recirculation circuit 40, the anode-side fuel cell exhaust gas is returned to the anode-side input 34. The fuel is preferably hydrogen, but may, for example, be and will also be a hydrogen-rich reformate or the like supplied via a line 38. On the cathode side, a cathode-side inlet 24 for supplying an oxidizing agent to the fuel cell unit 20 and an outlet 26 for discharging cathode-side exhaust gas from the fuel cell unit 20 are provided. The oxidizing agent may for example be air and is supplied via a line 28 or a line 30 led away from the cathode-side output 26.
Im Rezirkulationskreis 40 ist eine Wasserabscheidevorrichtung 46 vorgesehen, in der flüssiges Wasser aus dem Brennstoffzellenabgas gesammelt wird. Ausgangseitig ist an die Wasserabscheidevorrichtung 46 ein Ventil 48 angeschlossen, das eine an die Wasserabscheidevorrichtung 46 angrenzende Spülleitung 42 absperrt oder freigibt. Wird das Ventil 48 geöffnet, ist anodenseitiges Brennstoffzellenabgas im gleichen Spülschritt wie Flüssigwasser aus dem Rezirkulationskreis 40 bzw. der Wasserabscheidevorrichtung 46 entfernbar. Zunächst wird das Wasser aus der Wasserabscheidevorrichtung 46 entfernt bzw. vom anodenseitigen Brennstoffzellenabgas herausgedrückt, dann tritt das anodenseitige Brennstoffzellenabgas über den Wasserabscheidevorrichtung 46 in die Spülleitung 42.In the recirculation circuit 40, there is provided a water separator 46 in which liquid water is collected from the fuel cell exhaust gas. On the output side, a valve 48 is connected to the Wasserabscheidevorrichtung 46 which shuts off or releases a flushing line 42 adjacent to the Wasserabscheidevorrichtung 46. If the valve 48 is opened, anode-side fuel cell exhaust gas in the same rinsing step as liquid water from the recirculation circuit 40 and the Wasserabscheidevorrichtung 46 is removable. First, the water is removed from the Wasserabscheidevorrichtung 46 or pushed out of the anode-side fuel cell exhaust, then the anode-side fuel cell exhaust gas passes through the Wasserabscheidevorrichtung 46 in the purge line 42nd
Die Spülleitung 42 ist von dem Rezirkulationskreis 40 zu dem kathodenseitigen Eingang 24 geführt. Dies ist eine besonders bevorzugte Anschlussart. Mit unterbrochener Linie ist angedeutet, dass die Spülleitung 42 von demThe purge line 42 is guided by the recirculation circuit 40 to the cathode-side input 24. This is a particularly preferred type of connection. With a broken line is indicated that the purge line 42 of the
Rezirkulationskreis 40 auch zu dem kathodenseitigen Ausgang 26 geführt sein. Eine mögliche Umschaltung zwischen den beiden Varianten ist nicht dargestellt, könnte jedoch vorhanden sein. Stromab der Wasserabscheidervorrichtung 46 ist im Rezirkulationskreis 40 ein Sensor 50 für den Brennstoff vorgesehen, der die Brennstoffkonzentration in dem Rezirkulationskreis 40 bestimmt.Rezirkulationskreis 40 may also be performed to the cathode-side output 26. A possible switch between the two variants is not shown, but could be present. Downstream of the water separator device 46, a sensor 50 for the fuel is provided in the recirculation circuit 40, which determines the fuel concentration in the recirculation circuit 40.
Die Steuerung des Ventils 48, das sinngemäß ein kombiniertes Purge-Drain-Ventil darstellt, erfolgt vorzugsweise wie beim bekannten Purgeventil in der ursprünglichen Konstellation mit getrennten Purge- und Drainventilen über den Sensor 50. Fällt die Brennstoffkonzentration am Sensor 50 unter einen bestimmten, vorgegebenen Wert, so wird das Ventil 48 geöffnet. Befindet sich zu diesem Zeitpunkt Wasser in der Wasserabscheidevorrichtung 46 bzw. dessen Wassersammelbehälter, so wird zunächst das Wasser ausgetragen. Nach der Entleerung derThe control of the valve 48, which represents a combined purge-drain valve, is preferably carried out via the sensor 50 as in the known purge valve in the original constellation with separate purge and drain valves. If the fuel concentration at the sensor 50 drops below a certain predetermined value , the valve 48 is opened. If there is water in the water separation device 46 or its water collection container at this time, the water is first discharged. After emptying the
Wasserabscheidevorrichtung 46 beginnt dann der eigentliche Purgevorgang, während dem die Anodenseite der Brennstoffzelleneinheit 20 mit frischem Brennstoff gespült wird. Steigt die Brennstoffkonzentration wieder am Sensor 50 über einen bestimmten vorgegebenen Wert an, so wird das Ventil 48 geschlossen. Die vorgegebenen Werte für das Auslösen und Beenden des Spülvorgangs können gleich oder verschieden sein und werden vom Fachmann sinnvollerweise systemabhängig ausgewählt.Wasserabscheidevorrichtung 46 then begins the actual purge process, during which the anode side of the fuel cell unit 20 is rinsed with fresh fuel. If the fuel concentration increases again at the sensor 50 above a certain predetermined value, then the valve 48 is closed. The predetermined values for triggering and ending the rinsing process can be the same or different and are selected by the skilled person depending on the system.
Da die Regelung der Brennstoffkonzentration ein relativ langsamer Vorgang ist, kann in Kauf genommen werden, dass vor jedem Spülen (Purgevorgang) zunächst das in der Wasserabscheidevorrichtung 46 befindliche flüssige Wasser ausgetragen wird (Drainvorgang) , bevor das eigentliche Spülen mit frischem Brennstoff beginnt. Vor jedem Purgevorgang erfolgt also zunächst ein Drainvorgang in die gemeinsame Spülleitung. Insbesondere zum Schließen des Ventils 48 kann eine Überwachung des Füllstands in der Wasserabscheidevorrichtung 46 entfallen, besonders, wenn die Spülleitung 42 in den kathodenseitigen Eingang 24 der Brennstoffzelleneinheit 20 mündet .Since the regulation of the fuel concentration is a relatively slow process, it can be accepted that before each rinsing (purge process), the liquid water contained in the water separation device 46 is first discharged (drainage) before the actual rinsing starts with fresh fuel. Before each purge process, therefore, a first drainage process takes place in the common purge line. In particular, to close the valve 48, a monitoring of the level in the Wasserabscheidevorrichtung 46 can be omitted, especially when the purge line 42 opens into the cathode-side input 24 of the fuel cell unit 20.
Im Prinzip kann auch eine Füllstandserkennung für die Wasserabscheidevorrichtung 46 entfallen, da bei jedem Purgevorgang die Wasserabscheidevorrichtung 46 zwangsläufig vollständig entleert wird. Um sicherzustellen, dass die Wasserabscheidevorrichtung 46 oft genug entleert wird und nicht überläuft, sollte die Wasserabscheidevorrichtung 46 entsprechend groß ausgelegt sein. Ist dies konstruktiv nicht möglich oder aus Bauraumgründen unerwünscht, können zusätzliche zeit- und/oder lastabhängige Entleerungszyklen eingefügt werden.In principle, a level detection for the water separation device 46 can be omitted, since at each purge the Wasserabscheidevorrichtung 46 is necessarily completely emptied. To ensure that the Wasserabscheidevorrichtung 46 is emptied often enough and does not overflow, the Wasserabscheidevorrichtung 46 should be designed to be large. If this is structurally not possible or undesirable for reasons of space, additional time- and / or load-dependent emptying cycles can be inserted.
Bei der Auslegung des Ventils 48 ist es zweckmäßig, das dieses groß genug ist, um die anfallende Menge Wasser in einer adäquaten Zeitspanne passieren zu lassen, aber nicht zu groß, um während des Purgevorgangs nicht übermäßig hohe Brennstoffkonzentrationen auf der Kathodenseite 22 der Brennstoffzelleneinheit 20 zuzulassen. Dies ist besonders dann sinnvoll, wenn die Spülleitung 42 mit dem kathodenseitigen Eingang 24 verbunden ist.In the design of the valve 48, it is desirable that it be large enough to allow the accumulated amount of water to pass through in an adequate amount of time, but not too high to allow excessively high fuel concentrations on the cathode side 22 of the fuel cell unit 20 during the purge process , This is particularly useful when the purge line 42 is connected to the cathode-side input 24.
Gegebenenfalls kann das Ventil 48 abhängig von einem Wasserstand in der Wasserabscheidevorrichtung 46 betätigt werden, wozu dann ein Füllstandssensor 52 vorgesehen sein kann, wie in der Figur angedeutet ist. Optionally, the valve 48 may be actuated depending on a level of water in the water separation device 46, for which purpose a level sensor 52 may be provided, as indicated in the figure.

Claims

Patentansprüche claims
1. Brennstoffkreis eines Brennstoffzellensystems (10), mit einer Brennstoffzelleneinheit (20) , welche einen anodenseitigen Eingang (34) zum Zuführen eines Brennstoffs zur Brennstoffzelleneinheit (20) und einen anodenseitigen Ausgang (36) zum Abführen von anodenseitigem Brennstoffzellenabgas aus der Brennstoffzelleneinheit (20) aufweist, mit einem Rezirkulationskreis (40), in dem das anodenseitige Brennstoffzellenabgas zu dem anodenseitigen Eingang (34) zurückführbar ist, sowie wenigstens einer Spülleitung (42), die vom Rezirkulationskreis (40) abzweigt, dadurch gekennzeichnet, dass die Spülleitung (42) kathodenseitig in die Brennstoffzelleneinheit (20) mündet, wobei die Spülleitung (42) sowohl zum Entfernen von Wasser als auch zum Entfernen von anodenseitigem Brennstoffzellenabgas gemeinsam vorgesehen ist.A fuel cell system (10) having a fuel cell unit (20) having an anode-side inlet (34) for supplying a fuel to the fuel cell unit (20) and an anode-side outlet (36) for discharging anode-side fuel cell exhaust gas from the fuel cell unit (20) comprising, with a Rezirkulationskreis (40), in which the anode-side fuel cell exhaust gas to the anode-side input (34) is traceable, and at least one purge line (42), which branches off from the recirculation circuit (40), characterized in that the purge line (42) on the cathode side in the fuel cell unit (20) opens, wherein the purge line (42) is provided both for removing water and for removing anode-side fuel cell exhaust gas together.
2. Brennstoffkreis nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Rezirkulationskreis (40) und der Spülleitung (42) eine Wasserabscheidevorrichtung (46) vorgesehen ist, mit dem anodenseitiges Brennstoffzellenabgas im gleichen Spülschritt wie Flüssigwasser aus der Wasserabscheidevorrichtung (46) entfernbar ist.2. fuel circuit according to claim 1, characterized in that between the recirculation circuit (40) and the purge line (42) is provided a Wasserabscheidevorrichtung (46), with the anode-side fuel cell exhaust gas in the same rinsing step as liquid water from the Wasserabscheidevorrichtung (46) is removable.
3. Brennstoffkreis nach Anspruch 2, dadurch gekennzeichnet, dass in der Spülleitung (42) stromab der Wasserabscheidevorrichtung (46) ein Ventil (48) angeordnet ist.3. fuel circuit according to claim 2, characterized in that in the purge line (42) downstream of the Wasserabscheidevorrichtung (46) a valve (48) is arranged.
4. Brennstoffkreis nach Anspruch 3, dadurch gekennzeichnet, dass das Ventil (48) zum Spülen mit Wasserstoff und zum Ablassen von Wasser aus dem Wasserabscheidevorrichtung (46) vorgesehen ist.4. The fuel circuit according to claim 3, characterized in that the valve (48) for rinsing with hydrogen and for discharging water from the Wasserabscheidevorrichtung (46) is provided.
5. Brennstoffkreis nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spülleitung (42) von dem Rezirkulationskreis (40) zu einem kathodenseitigen Eingang (24) zur Zufuhr eines Oxidationsmittels geführt ist.5. fuel circuit according to one of the preceding claims, characterized in that the purge line (42) from the recirculation circuit (40) to a cathode-side input (24) is guided for supplying an oxidizing agent.
6. Brennstoffkreis nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spülleitung (42) von dem Rezirkulationskreis (40) zu einem kathodenseitigen Ausgang (26) zur Abfuhr eines kathodenseitigen Brennstoffzellenabgases geführt ist.6. fuel circuit according to one of the preceding claims, characterized in that the purge line (42) from the recirculation circuit (40) to a cathode-side output (26) for discharging a cathode-side fuel cell exhaust gas is performed.
7. Brennstoffkreis nach Anspruch 5 und 6, dadurch gekennzeichnet, dass ein Umschalter vorgesehen ist, der die Spülleitung (42) wahlweise an den kathodenseitigen Eingang (24) oder den kathodenseitigen Ausgang (26) anlegt. 7. fuel circuit according to claim 5 and 6, characterized in that a changeover switch is provided which applies the purge line (42) selectively to the cathode-side input (24) or the cathode-side output (26).
8. Brennstoffkreis nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass stromab der Wasserabscheidevorrichtung (46) im Rezirkulationskreis8. fuel circuit according to one of the preceding claims, characterized in that downstream of the Wasserabscheidevorrichtung (46) in the recirculation circuit
(40) ein Sensor (50) für den Brennstoff vorgesehen ist.(40) a sensor (50) is provided for the fuel.
9. Verfahren zum Betreiben eines Brennstoffkreises eines Brennstoffzellensystems (10), mit einer9. A method for operating a fuel circuit of a fuel cell system (10), with a
Brennstoffzelleneinheit (20) , welcher einen anodenseitig ein Brennstoffs zugeführt wird und der anodenseitigen ein anodenseitiges Brennstoffzellenabgas abgeführt wird, sowie mit einem Rezirkulationskreis (40) , in dem das anodenseitige Brennstoffzellenabgas zu dem anodenseitigen Eingang (34) zurückgeführt wird, sowie wenigstens einer Spülleitung (42), die vom Rezirkulationskreis (40) abzweigt, insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass flüssiges Wasser und anodenseitiges Brennstoffzellenabgas im gleichen Verfahrensschritt ausgetragen werden.Fuel cell unit (20) which is supplied to a fuel on the anode side and an anode-side fuel cell exhaust gas is discharged to the anode side, and with a Rezirkulationskreis (40) in which the anode-side fuel cell exhaust gas is returned to the anode-side input (34), and at least one purge line (42 ), which branches off from the recirculation circuit (40), in particular according to one of the preceding claims, characterized in that liquid water and anode-side fuel cell exhaust are discharged in the same process step.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass beim Öffnen eines Ventils (48) zwischen einer Wasserabscheidevorrichtung (46) und einer Spülleitung (42) das Wasser aus der Wasserabscheidevorrichtung (46) und das anodenseitige Brennstoffzellenabgas in die Spülleitung (42) gelangen. 10. The method according to claim 9, characterized in that when opening a valve (48) between a Wasserabscheidevorrichtung (46) and a purge line (42), the water from the Wasserabscheidevorrichtung (46) and the anode-side fuel cell exhaust gas into the purge line (42).
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Ventil (48) abhängig von einer Konzentration des anodenseitigen11. The method according to claim 10, characterized in that the valve (48) depends on a concentration of the anode side
Brennstoffzellenabgases im Rezirkulationskreis stromab der Wasserabscheidevorrichtung (46) betätigt wird.Fuel cell exhaust gas in the recirculation circuit downstream of the Wasserabscheidevorrichtung (46) is actuated.
12. Verfahren nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass das Ventil (48) abhängig von einem Wasserstand in der Wasserabscheidevorrichtung (46) betätigt wird. 12. The method according to any one of claims 10 or 11, characterized in that the valve (48) is actuated depending on a water level in the Wasserabscheidevorrichtung (46).
PCT/EP2006/010451 2006-10-31 2006-10-31 Fuel cycle of a fuel cell system and method for operating a fuel cell system WO2008052578A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2006/010451 WO2008052578A1 (en) 2006-10-31 2006-10-31 Fuel cycle of a fuel cell system and method for operating a fuel cell system
DE112006004076T DE112006004076A5 (en) 2006-10-31 2006-10-31 Fuel circuit of a fuel cell system and method of operating a fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2006/010451 WO2008052578A1 (en) 2006-10-31 2006-10-31 Fuel cycle of a fuel cell system and method for operating a fuel cell system

Publications (1)

Publication Number Publication Date
WO2008052578A1 true WO2008052578A1 (en) 2008-05-08

Family

ID=37726788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/010451 WO2008052578A1 (en) 2006-10-31 2006-10-31 Fuel cycle of a fuel cell system and method for operating a fuel cell system

Country Status (2)

Country Link
DE (1) DE112006004076A5 (en)
WO (1) WO2008052578A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010108605A2 (en) 2009-03-24 2010-09-30 Daimler Ag Fuel cell system having at least one fuel cell
WO2010108606A1 (en) 2009-03-24 2010-09-30 Daimler Ag Fuel cell system comprising an outlet on the side of the anode
DE102009036197A1 (en) 2009-08-05 2011-02-17 Daimler Ag Method for operating fuel cell system in e.g. motor vehicle, involves measuring input electrical voltage applied to fuel cell, and controlling valve mechanism partially depending on measured electrical voltage
DE102009039445A1 (en) 2009-08-31 2011-03-03 Daimler Ag Method for discharging fluid and/or gas from region through which gas stream flows, into discharge area, involves varying pulse control factor based on difference between two pressure levels
DE102009048247A1 (en) 2009-10-05 2011-04-07 Daimler Ag Method for operating fuel cell system of e.g. ship in water, involves operating valve device in opened condition when pressure within anode area of valve device is larger or equal to pressure in cathode area of valve device
WO2011098279A1 (en) 2010-02-15 2011-08-18 Daimler Ag Fuel cell system comprising at least one fuel cell
DE102010035860A1 (en) 2010-08-30 2012-03-01 Daimler Ag The fuel cell system
WO2012034636A1 (en) 2010-09-18 2012-03-22 Daimler Ag Fuel cell system
DE102011102336A1 (en) 2011-05-25 2012-11-29 Daimler Ag Recirculation device for a fuel cell system
DE102011109644A1 (en) 2011-08-05 2013-02-07 Daimler Ag Fuel cell system with at least one fuel cell
DE102011113014A1 (en) 2011-09-09 2013-03-14 Daimler Ag Level sensor for liquid filled container, has buoyant structure that is fixedly arranged in container and is supported indirectly via piezoelectric force transducer
DE102011113022A1 (en) 2011-09-09 2013-03-14 Daimler Ag Fuel cell circuit of fuel cell system used for driving electric vehicle, has line element having line length twice larger than flow-diameter of recirculation line, provided between metering valve and recirculation line
DE102011114718A1 (en) 2011-10-01 2013-04-04 Daimler Ag Filling level sensor for container filled with liquid in anode water separator in fuel cell system utilized for providing electrical energy to e.g. ship, has vibration sensor arranged at distance from vibration generator
DE102011119664A1 (en) 2011-11-29 2013-05-29 Daimler Ag Level sensor e.g. ultrasonic sensor for detecting liquid level in container, has float that is provided with reflecting surface for reflecting ultrasound, and liquid inlet which is arranged below the float
DE102011119665A1 (en) 2011-11-29 2013-05-29 Daimler Ag Procedure for preparing to restart
DE102011119307A1 (en) 2011-11-24 2013-05-29 Daimler Ag Method for detecting position of drain valve in anode circuit of fuel cell system, involves comparing anode circuit pressure change pattern detected over predetermined period of time, with reference pattern to recognize valve position
DE102011119663A1 (en) 2011-11-29 2013-05-29 Daimler Ag Method for determining filling level in container filled with liquid used in water separator, involves arranging sound transmitter and sound receiver in area of containers above liquid surface
DE102012001154A1 (en) 2012-01-21 2013-07-25 Daimler Ag Fuel cell system for use in vehicle, has exhaust gas and/or water outlet which is divided into two flow branches that are provided with continuous open through-flow cross-section parallel to respective valve devices
WO2013107492A1 (en) 2012-01-21 2013-07-25 Daimler Ag Fuel cell system
DE102013005802A1 (en) 2013-04-04 2013-11-07 Daimler Ag Device for processing supply air flowing to fuel cell system for providing electrical driving power to vehicle, has mixer arranged in air inlet at flow direction between humidifier and opening of bypass pipe
DE102012020280A1 (en) 2012-10-17 2013-11-28 Daimler Ag Water separator for anode circuit of fuel cell system used as electric drive power supply for vehicle, has blow-off line that is opened out with discharge valve which is extended upwards in water reservoir
DE102012021096A1 (en) 2012-10-26 2014-04-30 Daimler Ag Fuel cell system for providing electrical power input to vehicle, has fuel cell comprising anode compartment and cathode compartment, and carbon dioxide storage volume arranged in fluid connection to cathode compartment
DE102013003609A1 (en) 2013-03-01 2014-09-04 Daimler Ag Method for monitoring gas-conveying volume on liquid that is stored in e.g. container, involves opening and closing gas-conveying volume valve at predetermined frequency when pressure variation at pressure sensor is measured
DE102013003599A1 (en) 2013-03-01 2014-09-04 Daimler Ag Fuel cell system used for providing drive power to propelled vehicle, has protection element that is arranged between mouth and water vapor permeable membrane of humidifier by opening line element on downstream side of humidifier
DE102013011373A1 (en) 2013-07-09 2015-01-15 Daimler Ag Device for introducing liquid water into a gas stream
DE102013011979A1 (en) 2013-07-18 2015-01-22 Daimler Ag Method for parking a fuel cell system
DE102013015397A1 (en) 2013-09-17 2015-03-19 Daimler Ag Process for decomposing hydrogen
DE102013019818A1 (en) 2013-11-26 2015-05-28 Daimler Ag Anode circuit
DE102014202217A1 (en) * 2014-02-06 2015-08-06 Volkswagen Ag The fuel cell system
DE102015213913A1 (en) 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Method and system for discharging anode exhaust gas of a fuel cell
DE102015213917A1 (en) 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Method and system for discharging anode exhaust gas of a fuel cell
DE102011011147B4 (en) * 2010-02-23 2021-02-04 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) System for the detection of a phase transition in a valve
US11527767B2 (en) 2017-11-28 2022-12-13 Robert Bosch Gmbh Gas-liquid separator for separating at least one liquid component from a gaseous component
JP2022553685A (en) * 2019-10-29 2022-12-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング METHOD AND CONTROLLER FOR OPERATING FUEL CELL SYSTEM
DE102021209971A1 (en) 2021-09-09 2023-03-09 Robert Bosch Gesellschaft mit beschränkter Haftung Humidity generation device and method for operating a humidity generation device
DE102021209945A1 (en) 2021-09-09 2023-03-09 Robert Bosch Gesellschaft mit beschränkter Haftung Humidity generation device and method for operating a humidity generation device
DE102021211074A1 (en) 2021-10-01 2023-04-06 Robert Bosch Gesellschaft mit beschränkter Haftung Radial pressing device for connecting an impeller to a hub, recirculation pump and method of connecting an impeller to a hub

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69912918T2 (en) * 1999-01-05 2004-11-04 L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Gas purging process of the gas circuit of a fuel cell and device for carrying out the process
US20050129993A1 (en) * 2003-12-16 2005-06-16 Eisler Elwood A. Purging anode channels of a fuel cell stack
WO2006045020A2 (en) * 2004-10-20 2006-04-27 Ballard Power Systems Inc. Fuel cell system method and apparatus
US20060113199A1 (en) * 2004-11-26 2006-06-01 Tahashi Sasaki Gas detection apparatus and method
WO2006056276A1 (en) * 2004-11-25 2006-06-01 Nucellsys Gmbh Fuel cell system with a liquid separator
WO2006061194A1 (en) * 2004-12-08 2006-06-15 Renault S.A.S. Purge management in fuel cell power plants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69912918T2 (en) * 1999-01-05 2004-11-04 L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Gas purging process of the gas circuit of a fuel cell and device for carrying out the process
US20050129993A1 (en) * 2003-12-16 2005-06-16 Eisler Elwood A. Purging anode channels of a fuel cell stack
WO2006045020A2 (en) * 2004-10-20 2006-04-27 Ballard Power Systems Inc. Fuel cell system method and apparatus
WO2006056276A1 (en) * 2004-11-25 2006-06-01 Nucellsys Gmbh Fuel cell system with a liquid separator
US20060113199A1 (en) * 2004-11-26 2006-06-01 Tahashi Sasaki Gas detection apparatus and method
WO2006061194A1 (en) * 2004-12-08 2006-06-15 Renault S.A.S. Purge management in fuel cell power plants

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010108605A2 (en) 2009-03-24 2010-09-30 Daimler Ag Fuel cell system having at least one fuel cell
DE102009014592A1 (en) 2009-03-24 2010-09-30 Daimler Ag Fuel cell system with at least one fuel cell
DE102009014590A1 (en) 2009-03-24 2010-09-30 Daimler Ag Fuel cell system with at least one fuel cell
WO2010108606A1 (en) 2009-03-24 2010-09-30 Daimler Ag Fuel cell system comprising an outlet on the side of the anode
DE102009036197A1 (en) 2009-08-05 2011-02-17 Daimler Ag Method for operating fuel cell system in e.g. motor vehicle, involves measuring input electrical voltage applied to fuel cell, and controlling valve mechanism partially depending on measured electrical voltage
DE102009036197B4 (en) * 2009-08-05 2013-03-07 Daimler Ag Method for operating a fuel cell system
DE102009039445B4 (en) 2009-08-31 2022-07-14 Cellcentric Gmbh & Co. Kg Process for draining liquid and/or gas
DE102009039445A1 (en) 2009-08-31 2011-03-03 Daimler Ag Method for discharging fluid and/or gas from region through which gas stream flows, into discharge area, involves varying pulse control factor based on difference between two pressure levels
DE102009048247A1 (en) 2009-10-05 2011-04-07 Daimler Ag Method for operating fuel cell system of e.g. ship in water, involves operating valve device in opened condition when pressure within anode area of valve device is larger or equal to pressure in cathode area of valve device
DE102010007977A1 (en) 2010-02-15 2011-08-18 Daimler AG, 70327 Fuel cell system with at least one fuel cell
JP2013519969A (en) * 2010-02-15 2013-05-30 ダイムラー・アクチェンゲゼルシャフト Fuel cell system comprising at least one fuel cell
US8993182B2 (en) 2010-02-15 2015-03-31 Daimler Ag Fuel cell system comprising at least one fuel cell
CN102763258A (en) * 2010-02-15 2012-10-31 戴姆勒股份公司 Fuel cell system comprising at least one fuel cell
WO2011098279A1 (en) 2010-02-15 2011-08-18 Daimler Ag Fuel cell system comprising at least one fuel cell
DE102011011147B4 (en) * 2010-02-23 2021-02-04 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) System for the detection of a phase transition in a valve
WO2012031663A1 (en) 2010-08-30 2012-03-15 Daimler Ag Fuel cell system having an integral turbine/compressor unit
US9070912B2 (en) 2010-08-30 2015-06-30 Daimler Ag Fuel cell system having an integral turbine/compressor unit
DE102010035860A1 (en) 2010-08-30 2012-03-01 Daimler Ag The fuel cell system
DE102010046012A1 (en) 2010-09-18 2012-03-22 Daimler Ag The fuel cell system
WO2012034636A1 (en) 2010-09-18 2012-03-22 Daimler Ag Fuel cell system
JP2014523604A (en) * 2011-05-25 2014-09-11 ダイムラー・アクチェンゲゼルシャフト Recirculation device for a fuel cell system
WO2012159705A1 (en) 2011-05-25 2012-11-29 Daimler Ag Recirculation unit for a fuel cell system
DE102011102336A1 (en) 2011-05-25 2012-11-29 Daimler Ag Recirculation device for a fuel cell system
DE102011109644A1 (en) 2011-08-05 2013-02-07 Daimler Ag Fuel cell system with at least one fuel cell
US9252438B2 (en) 2011-08-05 2016-02-02 Daimler Ag Fuel cell system comprising a water separator
WO2013020647A1 (en) 2011-08-05 2013-02-14 Daimler Ag Fuel cell system comprising a water separator
DE102011113022A1 (en) 2011-09-09 2013-03-14 Daimler Ag Fuel cell circuit of fuel cell system used for driving electric vehicle, has line element having line length twice larger than flow-diameter of recirculation line, provided between metering valve and recirculation line
DE102011113014A1 (en) 2011-09-09 2013-03-14 Daimler Ag Level sensor for liquid filled container, has buoyant structure that is fixedly arranged in container and is supported indirectly via piezoelectric force transducer
DE102011114718A1 (en) 2011-10-01 2013-04-04 Daimler Ag Filling level sensor for container filled with liquid in anode water separator in fuel cell system utilized for providing electrical energy to e.g. ship, has vibration sensor arranged at distance from vibration generator
DE102011119307A1 (en) 2011-11-24 2013-05-29 Daimler Ag Method for detecting position of drain valve in anode circuit of fuel cell system, involves comparing anode circuit pressure change pattern detected over predetermined period of time, with reference pattern to recognize valve position
DE102011119663A1 (en) 2011-11-29 2013-05-29 Daimler Ag Method for determining filling level in container filled with liquid used in water separator, involves arranging sound transmitter and sound receiver in area of containers above liquid surface
DE102011119665A1 (en) 2011-11-29 2013-05-29 Daimler Ag Procedure for preparing to restart
WO2013079149A1 (en) 2011-11-29 2013-06-06 Daimler Ag Method for preparing the restart of a fuel cell
DE102011119664A1 (en) 2011-11-29 2013-05-29 Daimler Ag Level sensor e.g. ultrasonic sensor for detecting liquid level in container, has float that is provided with reflecting surface for reflecting ultrasound, and liquid inlet which is arranged below the float
DE102012001154A1 (en) 2012-01-21 2013-07-25 Daimler Ag Fuel cell system for use in vehicle, has exhaust gas and/or water outlet which is divided into two flow branches that are provided with continuous open through-flow cross-section parallel to respective valve devices
DE102012001155A1 (en) 2012-01-21 2013-07-25 Daimler Ag The fuel cell system
WO2013107492A1 (en) 2012-01-21 2013-07-25 Daimler Ag Fuel cell system
DE102012020280A1 (en) 2012-10-17 2013-11-28 Daimler Ag Water separator for anode circuit of fuel cell system used as electric drive power supply for vehicle, has blow-off line that is opened out with discharge valve which is extended upwards in water reservoir
DE102012021096A1 (en) 2012-10-26 2014-04-30 Daimler Ag Fuel cell system for providing electrical power input to vehicle, has fuel cell comprising anode compartment and cathode compartment, and carbon dioxide storage volume arranged in fluid connection to cathode compartment
DE102013003609A1 (en) 2013-03-01 2014-09-04 Daimler Ag Method for monitoring gas-conveying volume on liquid that is stored in e.g. container, involves opening and closing gas-conveying volume valve at predetermined frequency when pressure variation at pressure sensor is measured
DE102013003599A1 (en) 2013-03-01 2014-09-04 Daimler Ag Fuel cell system used for providing drive power to propelled vehicle, has protection element that is arranged between mouth and water vapor permeable membrane of humidifier by opening line element on downstream side of humidifier
DE102013005802A1 (en) 2013-04-04 2013-11-07 Daimler Ag Device for processing supply air flowing to fuel cell system for providing electrical driving power to vehicle, has mixer arranged in air inlet at flow direction between humidifier and opening of bypass pipe
DE102013011373A1 (en) 2013-07-09 2015-01-15 Daimler Ag Device for introducing liquid water into a gas stream
DE102013011979A1 (en) 2013-07-18 2015-01-22 Daimler Ag Method for parking a fuel cell system
DE102013015397A1 (en) 2013-09-17 2015-03-19 Daimler Ag Process for decomposing hydrogen
DE102013019818A1 (en) 2013-11-26 2015-05-28 Daimler Ag Anode circuit
DE102014202217A1 (en) * 2014-02-06 2015-08-06 Volkswagen Ag The fuel cell system
DE102015213913A1 (en) 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Method and system for discharging anode exhaust gas of a fuel cell
DE102015213917A1 (en) 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Method and system for discharging anode exhaust gas of a fuel cell
DE102015213917B4 (en) 2015-07-23 2024-03-14 Bayerische Motoren Werke Aktiengesellschaft Method and system for discharging anode exhaust gas from a fuel cell
US11527767B2 (en) 2017-11-28 2022-12-13 Robert Bosch Gmbh Gas-liquid separator for separating at least one liquid component from a gaseous component
JP2022553685A (en) * 2019-10-29 2022-12-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング METHOD AND CONTROLLER FOR OPERATING FUEL CELL SYSTEM
JP7370462B2 (en) 2019-10-29 2023-10-27 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング How to operate a fuel cell system, controller
DE102021209971A1 (en) 2021-09-09 2023-03-09 Robert Bosch Gesellschaft mit beschränkter Haftung Humidity generation device and method for operating a humidity generation device
DE102021209945A1 (en) 2021-09-09 2023-03-09 Robert Bosch Gesellschaft mit beschränkter Haftung Humidity generation device and method for operating a humidity generation device
WO2023036553A1 (en) 2021-09-09 2023-03-16 Robert Bosch Gmbh Moisture-generating device for a fuel cell, and method for operating a moisture-generating device
WO2023036552A1 (en) 2021-09-09 2023-03-16 Robert Bosch Gmbh Moisture-generating device for a fuel cell, and method for operating a moisture-generating device
DE102021211074A1 (en) 2021-10-01 2023-04-06 Robert Bosch Gesellschaft mit beschränkter Haftung Radial pressing device for connecting an impeller to a hub, recirculation pump and method of connecting an impeller to a hub

Also Published As

Publication number Publication date
DE112006004076A5 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
WO2008052578A1 (en) Fuel cycle of a fuel cell system and method for operating a fuel cell system
DE102010005294B4 (en) A fuel cell system and method for purging water from a fuel cell stack at system shutdown
EP1815549B8 (en) Fuel cell system with a liquid separator
DE112006003136B4 (en) Fuel cell system and method for shutting it down
DE102005013519B4 (en) Non-flammable exhaust gas release for hydrogen powered fuel cells and method for venting anode exhaust gas
DE102008033472B4 (en) Fuel cell system and use and method of operating the system
DE102004060564B4 (en) Stopping method for a fuel cell system and fuel cell system
DE112009005381T5 (en) A method and apparatus for determining humidity conditions of individual cells in a fuel cell, method and apparatus for controlling humidity states of individual cells in a fuel cell, and fuel cell systems
DE102014201558A1 (en) Starting method of a fuel cell system
EP1325531B1 (en) Method for monitoring the discharge of media out of a fuel cell, and a fuel cell system
DE10297398T5 (en) Shutdown procedure for fuel cell fuel treatment system
DE102008047393B4 (en) Method for fast and reliable starting of fuel cell systems
EP3036787B1 (en) Method for operating a fuel cell stack, fuel cell stack and fuel cell system
EP1430561A2 (en) Fuel cell block
DE102014224135B4 (en) Method for shutting down a fuel cell stack and fuel cell system
DE112018006273T5 (en) FUEL CELL SYSTEM AND CONTROL PROCESS FOR FUEL CELL SYSTEM
EP2617089A1 (en) Fuel cell system
DE112007002560B4 (en) Control method for a fuel cell system
DE102008053345B4 (en) The fuel cell system
AT507763B1 (en) METHOD AND DEVICE FOR TRANSFERRING CONSUMPTION AND PARTICULARLY EXPLOSIVE OPERATING MEDIA OF A FUEL CELL
DE102007041870A1 (en) Method and apparatus for operating a fuel cell assembly
EP2122737B1 (en) Fuel cell arrangement
WO2010108606A1 (en) Fuel cell system comprising an outlet on the side of the anode
EP1746678B1 (en) Method for removing water and inert gases from a fuel cell assembly and fuel cell assembly
WO2023169813A1 (en) Fuel cell system with a plurality of inertizable fuel cell stacks, and method for operating such a fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06806625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120060040766

Country of ref document: DE

REF Corresponds to

Ref document number: 112006004076

Country of ref document: DE

Date of ref document: 20090910

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06806625

Country of ref document: EP

Kind code of ref document: A1