WO2008052411A1 - Accélérateur de particules à doublage de fréquence multi-énergies et procédé pour accélérer des particules - Google Patents

Accélérateur de particules à doublage de fréquence multi-énergies et procédé pour accélérer des particules Download PDF

Info

Publication number
WO2008052411A1
WO2008052411A1 PCT/CN2007/002923 CN2007002923W WO2008052411A1 WO 2008052411 A1 WO2008052411 A1 WO 2008052411A1 CN 2007002923 W CN2007002923 W CN 2007002923W WO 2008052411 A1 WO2008052411 A1 WO 2008052411A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwaves
unit
microwave
energy
power
Prior art date
Application number
PCT/CN2007/002923
Other languages
English (en)
French (fr)
Inventor
Yaohong Liu
Chuanxiang Tang
Haifeng Hu
Zhiqiang Chen
Yuanjing Li
Huaibi Chen
Huaping Tang
Jinsheng Liu
Jianjun Gao
Original Assignee
Tsinghua University
Nuctech Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Nuctech Company Limited filed Critical Tsinghua University
Priority to DE112007000070.8T priority Critical patent/DE112007000070B4/de
Priority to US12/088,275 priority patent/US7884559B2/en
Publication of WO2008052411A1 publication Critical patent/WO2008052411A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H15/00Methods or devices for acceleration of charged particles not otherwise provided for, e.g. wakefield accelerators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • H05H2007/027Microwave systems

Definitions

  • the present invention relates to accelerator technology, and more particularly to a pluripotent octave particle accelerator having a simple structure and improved operating speed, and a method therefor. Background technique
  • Electron accelerators are widely used in industrial non-destructive testing, customs container testing, radiology and electron beam irradiation.
  • high-energy CT equipment used to inspect boilers, engines, robotic booms, missiles, etc., has been used to inspect bags, parcels, and containers at airports, customs, and public places, and it can be checked to include Prohibited items such as firearms, knives, explosives, drugs, weapons of mass destruction, and various smuggled goods that are inconsistent with customs declarations.
  • a typical radiation inspection system consists of a source of radiation, a detector, and an imaging device.
  • the object to be inspected passes between the radiation source and the detector, and the radiation generated by the radiation source, such as X-rays, gamma rays, and neutrons, is transmitted and detected by the detector after being transmitted from the article, and the radiation penetrates the article. Its strength is weakened and the degree of weakening is related to the material and density of the item. Therefore, the intensity of the radiation measured by the detector is a function of the material and density of the item being tested.
  • the imaging device analyzes the measurement results of the detector, and finally obtains an image reflecting the shape, size, and density of the object.
  • electron accelerators are also widely used in radiation medicine and irradiation technology, such as tumor treatment, radiation sterilization, irradiation sterilization, radiation quarantine, radiation degradation, irradiation cross-linking, and radiation modification.
  • the main technical indicators for accelerators in the field of irradiation are the irradiation processing capabilities, namely electron beam energy and beam power.
  • the energy of the electron beam determines the depth of the irradiation process. The higher the electron beam energy, the greater the depth of the irradiation process, that is, the higher the electron beam energy, the larger the volume (depth) of the object object.
  • the beam power determines the speed of the irradiation process, that is, the greater the beam power at the same time, the more items that can be irradiated.
  • a dual-energy or multi-energy electron accelerator system is an electron accelerator system that can output a beam of electrons of two or more energies.
  • the dual-energy or multi-energy electron accelerator system is not only a variety of single-machine energy, but the larger technical advantage is that it can be combined with a new generation of detector systems and data image processing systems.
  • Different material materials are distinguished.
  • the single-energy accelerator system can only identify the shape of the material, and the dual-energy or multi-energy accelerator system can identify the shape and material of the material at the same time. This will enable effective inspection of explosives, drugs, weapons, other hazardous materials and smuggled goods entrained in large containers transported across borders. Therefore, dual energy Or multi-energy accelerator systems have broader application prospects.
  • Patent Document 1 (WO 9314419 A2) proposes to adopt such a configuration: two accelerators of different energies work in parallel, respectively perform radiation scanning imaging on the same object, and compare the difference between the two image information to obtain Material information of the object.
  • Patent Document 2 (WO 2005111590 A2) also proposes to use two accelerators to bombard the same target from different directions to realize a dual-energy ray scheme.
  • this configuration requires two accelerators and two independent detector systems, the number of devices is large, the cost is large, and the area is large.
  • Patent Document 3 proposes a pluripotent particle beam accelerator which, when operating in the first mode, generates a particle beam having a first energy, and when operating in the second mode, generates a second energy.
  • Particle beam The shape of the chamber is changed by repeatedly inserting the object into the chamber of the cluster section or by taking the object out of the chamber of the bunching section, that is, changing the resonance frequency and the electromagnetic field distribution in the chamber, so that the output has two types. A beam of energy particles.
  • An object of the present invention is to provide a multi-energy frequency doubling particle accelerator having a simple structure and an improved working speed, and a method therefor.
  • a multi-energy frequency doubling particle accelerator comprising: a pulse power generating unit, configured to generate N pulse signals having different powers, wherein N is greater than or equal to 2; N microwave power generating units, Under the control of the control signal, N microwaves having different energies are respectively generated based on the N pulse signals; the power mixing unit has N inlets and an outlet for respectively inputting from the respective inlets of the N inlets a corresponding microwave of the N microwaves, outputting the N microwaves from the one outlet; a particle beam generating unit for generating N particle beams in synchronization with the N microwaves; and an acceleration unit using the N The microwaves respectively accelerate the N particle beams.
  • the accelerator further includes a single synchronization unit disposed between the power mixing unit and the acceleration unit, configured to synchronize a characteristic frequency of the acceleration unit and the N microwave power generation units The working frequency of each one.
  • the accelerator further includes N synchronization units respectively disposed between the respective microwave power generating units and the power mixing unit, for respectively synchronizing the characteristic frequencies of the acceleration unit and the N The operating frequency of each of the microwave power generating units.
  • the synchronization unit comprises: an incident wave sampling waveguide, each of the N microwaves outputted from the one outlet of the power mixing unit is sampled to obtain an incident wave; a circulator, And sending each of the N microwaves to the acceleration unit, and outputting corresponding microwaves reflected from the acceleration unit; and reflecting the wave sampling waveguide, sampling the reflected corresponding microwave to obtain a reflected wave; a frequency device that compares and analyzes the incident wave and the reflected wave to generate a synchronization signal for respectively synchronizing a characteristic frequency of the acceleration unit and an operating frequency of each of the N microwave power generating units; and absorbing a load , absorbing the reflected wave output by the circulator.
  • the automatic phase-locked frequency stabilization device includes: a variable attenuator for adjusting amplitudes of the incident wave and the reflected wave, outputting an incident signal and a reflected signal; And adjusting a phase of the incident signal and the reflected signal to output a first voltage and a second voltage; a preamplifier for amplifying a difference between the first voltage and the second voltage to output an adjustment signal; a servo amplifier, And used for amplifying the adjustment signal to output a driving signal; and a channel selector that outputs the driving signal to the corresponding microwave power generating unit under the control of the control signal.
  • the pulse power generating unit comprises a single pulse power source that supplies energy to the N microwave power generating units in a time sharing manner under the control of the control signal.
  • the pulse function umbrella generating unit comprises N pulse power sources which respectively supply energy to the N microwave power generating units at different times under the control of the control signal.
  • the particle beam generating unit includes an electron gun that generates an electron beam and a gun power source that supplies the electron gun.
  • the power mixing unit comprises N-1 mixing rings each having two inlets and one outlet, wherein the central arc length difference of the two microwave paths between one inlet and the other inlet Adding a half-guide wavelength to an integer multiple of the wavelength of the guided wave, the central arc length difference between the two microwave paths between the one inlet and the outlet is an integer multiple of the wavelength of the guided wave, and the other inlet and the outlet are The center arc length difference between the two microwave paths is an integer multiple of the wavelength of the guided wave.
  • a multi-energy frequency doubling particle accelerator comprising: a pulse power generating unit for generating N pulse signals having the same power, wherein N is greater than or equal to 2; N microwave power generating units Generating N micros with the same energy based on the N pulse signals under the control of the control signal a power mixing unit having N inlets and an outlet for respectively inputting respective microwaves of the N microwaves from respective inlets of the N inlets, and outputting the N microwaves from the one outlet; a beam generating unit configured to generate N particle beams in synchronization with the N microwaves; and an acceleration unit that accelerates the N particle beams by the N microwaves, respectively.
  • a method for accelerating a particle beam comprising the steps of: generating N pulse signals having different powers, wherein N is greater than or equal to 2; based on the N pulses under control of the control signal The signals respectively generate N microwaves having different energies; mixing the N microwaves by a power mixing unit having N inlets and an outlet, wherein respective ones of the N microwaves are respectively input from respective inlets of the N inlets Microwaves, outputting the N microwaves from the one outlet; generating N particle beams in synchronization with the N microwaves; and accelerating the N particle beams by the N microwaves, respectively.
  • a method for accelerating a particle beam comprising the steps of: generating N pulse signals having the same power, wherein N is greater than or equal to 2; and controlling the N pulses based on the control signal
  • the signals respectively generate N microwaves having the same energy; mixing the N microwaves with power mixing units having N inlets and one outlet, wherein respective ones of the N microwaves are input from respective inlets of the N inlets a microwave, outputting the microwaves from the one outlet; generating N particle beams in synchronization with the N microwaves; and accelerating the N particle beams by the N microwaves, respectively.
  • the pluripotent multi-frequency particle accelerator of the present invention to perform material recognition in the field of radiation scanning imaging, it is possible to realize an object object of different radiant energy in one scanning process using only one accelerator, one detector system and imaging system.
  • the image which quickly realizes the object image and material identification, can effectively detect explosives, products, weapons, other harmful substances and smuggled goods entrained in large containers transported across borders.
  • the scanning imaging speed is fast, and the processing efficiency is greatly improved.
  • the number of devices is greatly reduced, the footprint is small, the cost is low, and the scanning imaging speed is fast and the efficiency is high.
  • the pluripotent frequency doubling particle accelerator of the present invention can also be applied to other irradiation fields, such as irradiation treatment, irradiation sterilization, irradiation sterilization, irradiation quarantine, irradiation degradation, irradiation cross-linking, irradiation modification and the like.
  • irradiation treatment irradiation sterilization, irradiation sterilization, irradiation quarantine, irradiation degradation, irradiation cross-linking, irradiation modification and the like.
  • Different irradiation energies can be selected for different irradiation objects to obtain better irradiation treatment effect.
  • the operating frequency is doubled, the accelerator power is large, and the irradiation processing capability is enhanced.
  • FIG. 1 is a schematic view showing the structure of a dual-energy frequency doubling electron linear accelerator according to a first embodiment of the present invention
  • FIG. 2 is a timing chart showing the operation of each part of the dual-energy frequency doubling electron linac as shown in FIG.
  • Figure 3 shows a cross-sectional view of the hybrid ring as shown in Figure 1;
  • FIG 4 is a block diagram showing the structure of the AFC device shown in Figure 1;
  • Figure 5 shows a variant of a dual energy frequency doubling electron linac according to a first embodiment of the invention, wherein the circulator is mounted between the magnetron and the mixing ring;
  • FIG. 6 is a schematic structural view of a multi-energy double-frequency electron linac according to a second embodiment of the present invention
  • FIG. 7 is a timing chart showing the operation of various components of the multi-energy double-frequency electron linac as shown in FIG. 6
  • Fig. 8 is a timing chart showing the components of the multi-energy double-frequency electron linac shown in Fig. 6 operating in a single-energy multi-frequency state.
  • the dual-energy frequency doubling electron linac according to the first embodiment is mainly composed of a pulse power source 1, microwave power sources 2a and 2b such as a magnetron, a power mixer 3, an incident wave sampling waveguide 4, and a ring.
  • the filter 5 the reflected wave sampling waveguide 6, the absorption load 7, the AFC device 8, the accelerating tube 9, the electron gun 10, the electron gun power supply 11, the control device 12 such as a trigger circuit, and the like.
  • the incident wave sampling waveguide 4, the circulator 5, the reflected wave sampling waveguide 6, the absorption load 7, and the AFC device 8 constitute a synchronizing device 13 for synchronizing the characteristic frequency of the accelerating tube 9 and the operating frequencies of the microwave power sources 2a and 2b. .
  • Fig. 2 is a view showing the operation timing of each main component and the relative intensity of generated voltage, current, microwave power or electron beam energy in the dual-energy double-frequency electron linac shown in Fig. 1.
  • Reference symbol A denotes a trigger pulse sequence generated by the control device 12
  • reference symbol B denotes a set of pulse voltages output from the pulse power source 1
  • reference symbol C denotes another set of pulse voltages output from the pulse power source 1, the amplitude being smaller than the pulse voltage B
  • reference symbol D denotes the microwave power generated by the magnetron 1 under the action of the pulse voltage B
  • reference symbol E denotes the microwave power generated by the magnetron 2 under the action of the pulse voltage C, the amplitude is smaller than the microwave power D
  • reference symbol F represents the output of the microwave powers D and E after being mixed in the power mixer 3
  • reference symbol G represents the amplitude of the electron gun power supply 11
  • the electron gun is not high
  • the reference symbol H indicates the magnitude of the two energies of the accelerating electron
  • the control device 12 triggers and controls the operation of the pulse power source 1 at a certain timing A, and the pulse power source 1 is energized at a first time to operate the magnetron 2a at a large power, so that the magnetic
  • the control 2a produces an output having a large microwave power which enters the accelerating tube 9 via the mixer 3, the incident wave sampling waveguide 4, and the circulator 5.
  • the control unit 12 also triggers the electron gun power supply 11 while triggering the pulse power source 1, and the electron gun power supply 11 produces a lower gun high voltage at the first moment.
  • the electron gun 10 delivers a smaller amount of electrons into the accelerating tube 9 under the action of the high pressure of the gun. These less electrons are accelerated in the accelerating tube 9 by the above-mentioned larger microwave power to obtain higher energy.
  • the pulse power source 1 is excited by a small power at a second time to operate the magnetron 2b, so that the magnetron
  • the control device 12 also triggers the electron gun power supply while triggering the pulse power source 1, and the electron gun power supply 11 generates a large gun high voltage at the second moment, and the electron gun 10 sends a larger amount of electrons into the acceleration under the high pressure of the gun. Tube 9, these larger amounts of electrons are accelerated in the accelerating tube 9 by the smaller microwave power, resulting in lower energy.
  • the accelerator operates at the first time and the second time as one cycle, and repeats the same operation as described above every two subsequent times, thereby obtaining an electron beam with alternating energy levels.
  • the unconsumed microwave power reflected by the accelerating tube 9 enters the absorption load 7 through the circulator 5 and the reflected wave sampling waveguide 6 and is completely absorbed by the absorption load 7.
  • the AFC device 8 acquires the information of the incident wave and the reflected wave from the incident wave sampling waveguide 4 and the reflected wave sampling waveguide 6, respectively, compares and analyzes the information, and respectively adjusts the magnetron 2a and the magnetron under the control of the control device 12.
  • the operating frequency of the tube 2b is matched to the resonant frequency of the accelerating tube 9, thereby ensuring an effective acceleration effect of the electron beam.
  • the magnetron is used as a microwave power source to generate microwaves, but a klystron may also be used.
  • the accelerating tube 9 may be a standing wave accelerating tube or a traveling wave accelerating tube.
  • the pulse power source 1 such as a pulse modulator may be one, or may be two corresponding to the two magnetrons 2a and 2b, respectively.
  • the circulator 5 functions as a power isolation, that is, the microwaves generated by the magnetrons 2a and 2b can The accelerating tube 9 is entered, and the microwave power reflected from the accelerating tube 9 can only enter the absorption load 7 due to the unidirectional isolation of the circulator 5, which can effectively prevent the reflected microwave from affecting the magnetrons 2a and 2b.
  • the circulator 5 may be a three-terminal circulator or a four-terminal circulator. As shown in Fig.
  • the microwave power coming in from the port a is output from the port b, and the microwave power coming in from the port b can only be output from the port c, and does not return to the port a. .
  • Figure 3 is a schematic cross-sectional view of a hybrid ring.
  • the hybrid ring 3 is a power combiner whose main function is to allow microwave power incident from different inlets at different times to be output from the same outlet.
  • the main structure of the hybrid ring 3 is a circular ring having a rectangular cross section, and the side faces are provided with two inlets distributed according to a certain wavelength relationship, that is, an inlet a, an inlet b, and an outlet c. Thus, there are two paths between any two ports for microwaves to pass through.
  • n is an integer, which is the wavelength of the guided wave in the waveguide used by the accelerator.
  • the first equation in the equation (1) indicates two microwaves between the inlet a and the outlet c.
  • the center arc length difference of the path is the whole wavelength
  • the second equation indicates that the center arc length difference between the two microwave paths between the inlet a and the inlet b is a whole wave plus one half wavelength
  • the third equation indicates the inlet b and the exit.
  • the central arc length difference between the two microwave paths between c is the entire wavelength.
  • the microwave power coming in from one inlet is divided into two paths, and at the exit, two microwaves are positively added, and the microwave power that is consistent with the inlet is obtained from the outlet.
  • the microwave power entering the hybrid ring from the inlet a or the inlet b is transmitted as it is from the outlet c.
  • the AFC device 8 includes a variable attenuator 13, a phase detector 14, a preamplifier 15, a servo amplifier 16, and a channel selector 17.
  • Incident wave IW and reflected wave After the RW is amplitude-adjusted by the variable attenuator 13, the output incident signal IS and the reflected signal RS are output to the phase detector 15 for phase adjustment and synthesis, and then two voltage signals VS1 and VS2 are output.
  • the two voltage signals VS1 and VS2 are compared in the preamplifier 15 and their difference is amplified to output an adjustment signal AS1.
  • the AFC device 8 produces another adjustment signal AS2.
  • the adjustment signal AS1 or AS2 is further amplified by the servo amplifier 16 to output the drive signal DS1 or DS2.
  • the channel selector 17 3 ⁇ 4 controls the signal CS1 or DS2 sent to the different magnetron 2a or the magnetron 2b at different times by the control signal CS sent from the control device 12, and frequency-adjusts the magnetron
  • the operating frequencies of 2a and 2b are always consistent with the characteristic frequency of the accelerating tube 9, thereby ensuring the stability of the system operation.
  • the channel selector 17 can have more than two output channels, the number of which is consistent with the number of microwave power sources in the multi-energy multiplier electronic linear accelerator system.
  • the circulator 5 between the power combiner and the accelerating tube as an example.
  • the circulator 5 can be mounted between each of the microwave power sources and the hybrid ring.
  • Fig. 5 shows a modification of the dual energy frequency doubling electron linac according to the first embodiment of the present invention, wherein the circulator 5 is mounted between the magnetron and the hybrid ring.
  • the number of tubes is the same. In this configuration, the system is more complicated than the configuration shown in Fig. 1, although the number of devices is increased, but the key devices such as the circulators 5a and 5b and the absorbing loads 7a and 7b carry less power in the system. It only carries the power generated by a single microwave power source, so they are technically easier to implement, and the low power circulator and absorbing load are also less expensive.
  • the incident wave sampling waveguide 4a, the circulator 5a, the reflected wave sampling waveguide 6a, the absorption load 7a, and the AFC device 8a constitute a synchronizing device 13a for synchronizing the characteristic frequency of the accelerating tube 9 and the operating frequency of the microwave power source 2a.
  • the incident wave sampling waveguide 4b, the circulator 5b, the reflected wave sampling waveguide 6b, the absorption load 7b, and the AFC device 8b constitute a synchronizing device 13b for synchronizing the characteristic frequency of the accelerating tube 9 and the operating frequency of the microwave power source 2b.
  • the working sequence and principle of the system are basically the same as those in FIG. 1, except that: the unconsumed microwave power reflected by the accelerating tube 9 enters through the c port of the mixing ring 3, and is divided into two parts from the a port and the b port. When it comes out, the two circulators 5a and 5b are respectively reached, and then the respective reflected wave sampling waveguides 6a and 6b enter the absorption loads 7a and 7b and are completely absorbed by the absorption loads 7a and 7b.
  • the AFC devices 8a and 8b still sample the waveguides 4a and 4b from the incident wave and the reflected wave sampling waveguide.
  • the information of the incident wave and the reflected wave are obtained in 6a and 6b, compared and analyzed, and operated under the control of the control device 12, but only one output is required to perform frequency adjustment on the corresponding magnetron 2a or 2b.
  • FIG. 6 is a schematic structural view of a multi-energy frequency doubled electron linear accelerator according to a second embodiment of the present invention, wherein the multi-energy frequency doubled electron linear accelerator is extended by the dual energy frequency doubled electron linear accelerator system of the first embodiment. Out.
  • the pulse power source, the microwave power source, and the power synthesizer can all be cascaded in accordance with the target requirements, and the working principle is similar to the dual-energy frequency doubling electron linear accelerator.
  • FIG. 6 shows n pulse power sources 1 a, 1b, ..., 1c, n magnetrons 2a, 2b, ..., 2c, n-1 hybrid rings 3a, 3b, ..., 3c.
  • the control device has outputs T1, ⁇ 2, ..., ⁇ n connected to n pulse power sources, respectively, and n magnetrons output ⁇ 1, ⁇ 2, ..., respectively.
  • the AFC device 8 has n outputs for controlling n magnetrons, respectively.
  • the pulse power source described above may also output pulse power to the n magnetrons in a time sharing manner under the control of the control device using only a single pulse power source 1.
  • Figure 7 is the operational sequence of the main components of the multi-energy multiplier electron linac shown in Figure 6, and the relative intensities of the generated voltage, current, microwave power or electron beam energy. Similar to Figure 2, the number of different energies output by the accelerator is the same as the number of microwave power sources. How many microwave power sources are there, and the operating frequency of the accelerator can be several times that of a single microwave power source accelerator.
  • Fig. 8 is a timing chart showing the case where the multi-energy double-frequency electron linear accelerator shown in Fig. 6 operates in the single-energy mode.
  • the power of each microwave power source is the same
  • the output high voltage of the electron gun power supply is the same at each moment
  • the accelerator outputs a single energy electron beam
  • the electron beam power of the accelerator is n times that of the single microwave power source accelerator.
  • This type of accelerator can be applied to applications that do not require energy expansion and only require power expansion.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Description

多能倍频粒子加速器及其方法 技术领域
本发明涉及加速器技术, 尤其涉及一种结构简单且提高了工作速度的多能倍频粒 子加速器, 及其方法。 背景技术
电子加速器广泛应用于工业无损检测、 海关集装箱检测、 放射医学及电子束辐照 等领域。 例如, 用于检查锅炉、 发动机、 机械臂架、 导弹等有无缺陷的高能 CT设备, 已经被用来对机场、 海关、 公共场所的行李、 包裹、 集装箱进行检査, 它可以査验出 包括枪支、 刀具、 炸药、 毒品、 大规模杀伤性武器等违禁物品, 以及与报关单不符的 各种走私品。 典型的辐射检查系统由射线源、 探测器、 成像设备组成。 待检测物品从 射线源和探测器之间通过, 射线源产生的辐射线, 如 X射线、 γ射线和中子, 从物品 中透射过后被探测器探测和测量, 射线穿透物品的过程中, 其强度受到削弱, 削弱程 度与物品的材料和密度有关。 因此, 探测器测量到的射线强度是所测物品的材料和密 度的函数。 成像设备通过对探测器测量结果进行处理分析, 最后得出反映物品形状、 大小、 密度的图像。
此外, 电子加速器也广泛应用于放射医学和辐照技术领域, 如肿瘤治疗、 辐照消 毒、 辐照杀菌、 辐照检疫、 辐照降解、 辐照交链、 辐照改性等。 辐照领域对加速器的 主要技术指标是辐照处理能力, 即电子束能量和束流功率。 电子束的能量决定了辐照 处理的深度, 电子束能量越高可以辐照处理的深度越大, 也即电子束能量越高可以照 透体积 (深度) 越大的物体对象。 束流功率决定了辐照处理速度的大小, 即同一时间 内, 束流功率越大, 可以辐照处理的物品数量就越多。
双能或多能电子加速器系统是指一台可输出两种或多种能量的电子束流的电子 加速器系统。 双能或多能电子加速器系统与传统的单能电子加速器系统相比, 不只是 单机能量的多样化, 更大的技术优势在于它结合新一代探测器系统和数据图像处理系 统等, 可实现对不同的物质材料进行分辨。在传统的工业无损检测、海关集装箱检测、 高能 CT等领域应用单能加速器系统只能对物质的形状进行识别, 而应用双能或多能 加速器系统则可以同时对物质的形状和材质进行识别, 从而能够有效的査验出夹带在 跨境运输的大型集装箱中的炸药、 毒品、 武器、 其它有害物质和走私品。 因此, 双能 或多能加速器系统具有更加广阔的应用前景。
为达到物质识别的目标,专利文献 1 (WO 9314419 A2)提出采用这样的配置: 两 台不同能量的加速器并列工作, 对同一物体分别进行辐射扫描成像, 对两个图像信息 进行差异比较, 以获得物体的材料信息。 此外, 专利文献 2 (WO 2005111590 A2) 也提出用两个加速器从不同的方向轰击同一个靶, 来实现双能射线的方案。 但是, 因 为这种配置需要两台加速器和两套独立的探测器系统, 所以设备数量多, 费用大, 占 地面积大。
此外, 专利文献 3 (US 2004202272 A1 ) 提出了一种多能粒子束加速器, 它工 作在第一模式时, 产生具有第一能量的粒子束, 工作在第二模式时, 产生具有第二能 量的粒子束。 通过重复地将物体插入聚隶段的腔室中或者从聚束段的腔室中取出物 体, 来改变腔室的形状, 也就是改变了共振频率和腔室内的电磁场分布, 从而输出具 有两种能量的粒子束。
但是, 上述专利文献 3中提出的方案是利用机械装置来完成从第一粒子束到第二 粒子束的切换, 不能满足一些应用中对毫秒级的切换速度的要求。 所以, 需要开发出 一种多能电子加速器, 它既能消除双加速器配置存在的结构过于复杂的问题, 又能满 足对操作性能的需求。 发明内容
鉴于上述问题, 完成了本发明。 本发明的目的是提出一种结构简单且提高了工作 速度的多能倍频粒子加速器, 及其方法。
在本发明的一个方面, 提出了一种多能倍频粒子加速器, 包括: 脉冲功率产生 单元, 用于产生具有不同功率的 N个脉冲信号, 其中 N大于等于 2; N个微波功率产生 单元, 在控制信号的控制下, 基于所述 N个脉冲信号分别产生具有不同能量的 N个微 波; 功率混合单元, 具有 N个入口和一个出口, 用于分别从所述 N个入口的各个入口 输入所述 N个微波中相应的微波, 从所述一个出口输出所述 N个微波; 粒子束产生单 元, 用于与所述 N个微波同步地产生 N个粒子束; 以及加速单元, 利用所述 N个微波分 别加速所述 N个粒子束。
根据本发明的一个实施例, 该加速器还包括设置在所述功率混合单元和所述加 速单元之间的单个同步单元, 用于同步所述加速单元的特征频率和所述 N个微波功率 产生单元的每一个的工作频率。 根据本发明的一个实施例, 该加速器还包括在分别设置在各个微波功率产生单 元和所述功率混合单元之间的 N个同步单元, 用于分别同步所述加速单元的特征频率 和所述 N个微波功率产生单元的每一个的工作频率。
根据本发明的一个实施例, 所述同步单元包括: 入射波取样波导, 对从所述功 率混合单元的所述一个出口输出的 N个微波的每一个进行采样, 以得到入射波; 环形 器, 将所述 N个微波的每一个送入所述加速单元, 并输出从所述加速单元反射的相应 微波; 反射波取样波导, 对反射的相应微波进行采样, 以得到反射波; 自动锁相稳频 装置, 比较和分析所述入射波和所述反射波, 产生用于分别同步所述加速单元的特征 频率和所述 N个微波功率产生单元的每一个的工作频率的同步信号; 以及吸收负载, 吸收所述环形器输出的反射波。
根据本发明的一个实施例, 所述自动锁相稳频装置包括: 可变衰减器, 用于调 整所述入射波和所述反射波的幅度, 输出入射信号和反射信号; 鉴相器, 用于调整所 述入射信号和反射信号的相位, 输出第一电压和第二电压; 前置放大器, 用于将所述 第一电压和第二电压的差值放大, 以输出调整信号; 伺服放大器, 用于放大所述调整 信号, 输出驱动信号; 通道选择器, 在控制信号的控制下, 将所述驱动信号输出到相 应的微波功率产生单元。
根据本发明的一个实施例, 所述脉冲功率产生单元包括单个脉冲功率源, 它在 控制信号的控制下以分时的方式向所述 N个微波功率产生单元提供能量。
根据本发明的一个实施例, 所述脉冲功傘产生单元包括 N个脉冲功率源, 它们在 控制信号的控制下在不同的时刻分别向所述 N个微波功率产生单元提供能量。
根据本发明的一个实施例, 所述粒子束产生单元包括产生电子束的电子枪和为 所述电子枪供电的枪电源。
根据本发明的一个实施例, 所述功率混合单元包括每个均具有两个入口和一个出 口的 N-1个混合环, 其中一个入口与另一入口之间两条微波路径的中心弧长差为导波 波长的整数倍加半个导波波长, 所述一个入口与所述出口之间两条微波路径的中心弧 长差为导波波长的整数倍, 所述另一入口与所述出口之间两条微波路径的中心弧长差 为导波波长的整数倍。
在本发明的另一方面, 提出了一种多能倍频粒子加速器, 包括: 脉冲功率产生 单元, 用于产生具有相同功率的 N个脉冲信号, 其中 N大于等于 2; N个微波功率产生 单元, 在控制信号的控制下, 基于所述 N个脉冲信号分别产生具有相同能量的 N个微 波; 功率混合单元, 具有 N个入口和一个出口, 用于分别从所述 N个入口的各个入口 输入所述 N个微波中相应的微波, 从所述一个出口输出所述 N个微波; 粒子束产生单 元, 用于与所述 N个微波同步地产生 N个粒子束; 以及加速单元, 利用所述 N个微波分 别加速所述 N个粒子束。
在本发明的另一方面, 提出了一种加速粒子束的方法, 包括步骤: 产生具有不 同功率的 N个脉冲信号, 其中 N大于等于 2; 在控制信号的控制下, 基于所述 N个脉冲 信号分别产生具有不同能量的 N个微波; 利用具有 N个入口和一个出口的功率混合单 元混合所述 N个微波,其中分别从所述 N个入口的各个入口输入所述 N个微波中相应的 微波, 从所述一个出口输出所述 N个微波; 与所述 N个微波同步地产生 N个粒子束; 以 及利用所述 N个微波分别加速所述 N个粒子束。
在本发明的又一方面, 提出了一种加速粒子束的方法, 包括步骤: 产生具有相 同功率的 N个脉冲信号, 其中 N大于等于 2; 在控制信号的控制下, 基于所述 N个脉冲 信号分别产生具有相同同能量的 N个微波; 利用具有 N个入口和一个出口的功率混合 单元混合所述 N个微波,其中分别从所述 N个入口的各个入口输入所述 N个微波中相应 的微波, 从所述一个出口输出所述 ^个微波; 与所述 N个微波同步地产生 N个粒子束; 以及利用所述 N个微波分别加速所述 N个粒子束。
使用本发明的多能倍频粒子加速器在辐射扫描成像领域进行物质识别, 可以实现 只用一台加速器, 一套探测器系统与成像系统, 在一次扫描过程中获取不同辐射能量 下的物品对象的图像, 快速地实现物 '品成像和物质识别, 从而能够有效的査验出夹带 在跨境运输的大型集装箱中的炸药、 ^品、 武器、 其它有害物质和走私品。 同时由于 本加速器工作频率高, 扫描成像速度快, 处理效率大大提高。 与现有的采用双加速器 技术比, 设备数量大大减少, 占地面积小, 费用低, 同时扫描成像速度快, 效率高。
本发明的多能倍频粒子加速器还可以应用于其它辐照领域, 如辐照治疗、 辐照消 毒、 辐照杀菌、 辐照检疫、 辐照降解、 辐照交链、 辐照改性等。 可以针对不同的辐照 对象, 选择不同的辐照能量, 从而获得更好的辐照处理效果, 同时由于釆用多个微波 功率源, 工作频率倍增, 加速器功率大, 辐照处理能力增强。 附图说明
本发明的实施例由实例来描述, 并不受附图中的图的限制, 附图中相似的参考数 字表示对应的、 类似的或相似的元件, 附图中: W 图 1示出了根据本发明第一实施方式的双能倍频电子直线加速器的结构示意图; 图 2示出了如图 1所示的双能倍频电子直线加速器的各部分的工作时序图; 图 3示出了如图 1所示的混合环的剖面图;
图 4示出了如图 1所示的 AFC装置的结构图;
图 5示出了根据本发明第一实施方式的双能倍频电子直线加速器的变型, 其中环 行器安装在磁控管与混合环之间;
图 6示出了根据本发明第二实施方式的多能倍频电子直线加速器的结构示意图; 图 7示出了如图 6所示的多能倍频电子直线加速器的各部件的工作时序图; 图 8示出了图 6所示的多能倍频电子直线加速器工作在单能倍频状态时各部件的 时序图。 具体实施方式 · 下面详细描述中给出了许多具体细节, 以确保对本发明实例的透彻理解。 但是, 对于知道本领域基本常识的人, 能够理解没有这些具体细节, 本发明的实施例也能实 现。 另外, 没有详细描述众所周知的方法、 过程、 部件和电路, 以避免使本发明的实 现变得不清楚。
图 1示出了根据本发明第一实施方式的双能倍频电子直线加速器的结构示意图。 如图 1所示, 根据第一实施方式的双能倍频电子直线加速器主要由脉冲功率源 1、 诸 如磁控管的微波功率源 2a和 2b、 功率混合器 3、 入射波取样波导 4、 环行器 5、 反 射波取样波导 6, 吸收负载 7、 AFC装置 8、 加速管 9、 电子枪 10、 电子枪电源 11、 诸如触发电路的控制装置 12等组成。 此外, 入射波取样波导 4、 环行器 5、 反射波 取样波导 6、 吸收负载 7、 AFC装置 8构成了用于同步加速管 9的特征频率和微波功 率源 2a和 2b的工作频率的同步装置 13。
图 2示出了图 1所示的双能倍频电子直线加速器中各主要部件的工作时序和产生 的电压、 电流、 微波功率或电子束能量的相对强度。 参考符号 A表示控制装置 12产 生的触发脉冲序列, 参考符号 B表示脉冲功率源 1输出的一组脉冲电压, 参考符号 C 表示脉冲功率源 1输出的另一组脉冲电压, 幅度较脉冲电压 B小, 参考符号 D表示 磁控管 1在脉冲电压 B的作用下产生的微波功率; 参考符号 E表示磁控管 2在脉冲 电压 C的作用下产生的微波功率,幅度较微波功率 D小;参考符号 F表示微波功率 D 和 E在功率混合器 3中混合之后的输出; 参考符号 G表示电子枪电源 11产生的幅度 不一的电子枪高压; 参考符号 H表示加速管 9中加速电子的两种能量的大小。
如图 1和 2所示,控制装置 12以一定的时序 A触发和控制脉冲功率源 1的动作, 脉冲功率源 1在第一时刻以一个较大的功率激励起磁控管 2a工作,使得磁控管 2a产 生一个具有较大微波功率的输出, 该微波输出经混合器 3、 入射波取样波导 4、 环行 器 5进入加速管 9。
控制装置 12在触发脉冲功率源 1 的同时也触发电子枪电源 11, 电子枪电源 11 在第一时刻产生一个幅度较小的枪高压。 电子枪 10在此枪高压的作用下将较少量的 电子送入加速管 9, 这些较少的电子在加速管 9中被上述较大的微波功率加速, 获得 较高的能量。
脉冲功率源 1在第二时刻以一个较小的功率激励起磁控管 2b工作, 使得磁控管
2b产生一个具有较小微波功率的输出, 输出微波经混合器 3、 入射波取样波导 4、 环 行器 5进入加速管 9。
控制装置 12在触发脉冲功率源 1 的同时也触发电子枪电源 ", 电子枪电源 11 在第二时刻产生一个幅度较大的枪高压, 电子枪 10在此枪高压的作用下将较大量的 电子送入加速管 9, 这些较大量的电子在加速管 9中被较小的微波功率加速, 获得较 低的能量。
加速器以上述第一时刻和第二时刻的工作状态为一个周期, 在后续的每两个时刻 反复进行如上相同的动作, 就获得了能量高低交替的电子束。 加速管 9反射的未消耗 微波功率经环行器 5和反射波取样波导 6进入吸收负载 7并被吸收负载 7完全吸收。 AFC装置 8分别从入射波取样波导 4和反射波取样波导 6中获取入射波和反射波的信 息, 对这些信息进行比较和分析, 在控制装置 12的控制下分别调整磁控管 2a与磁控 管 2b的工作频率, 使其与加速管 9的谐振频率匹配, 从而保证电子束的有效加速效 果。
这样, 在一个加速器系统中, 利用两个微波功率源, 获得了两种不同能量的电子 束, 且加速的工作频率是单微波功率源的 2倍。
在上述根据第一实施方式的双能倍频电子直线加速器系统中, 将磁控管作为微波 功率源来产生微波, 但是也可以使用速调管。 加速管 9可以是驻波加速管, 也可以是 行波加速管。
此外,如脉冲调制器的脉冲功率源 1可以是一个,也可以是分别与两个磁控管 2a 和 2b对应的两个。 环行器 5起功率隔离作用, 即, 磁控管 2a和 2b产生的微波可以 进入加速管 9, 而从加速管 9反射回来的微波功率由于环行器 5的单向隔离作用只能 进入吸收负载 7, 这能有效防止反射回来的微波影响到磁控管 2a和 2b。 环形器 5可 以是三端环行器, 也可以是四端环行器。 如图 1所示, 在三端环行器 5的情况下, 从 a口进来的微波功率会从 b口输出, 从 b口进来的微波功率只能从 c口输出, 而不会 回到 a口。
图 3是混合环的剖面示意图。 混合环 3是一种功率合成器, 其主要作用是让从各 个入口在不同时刻入射的微波功率都从同一个出口输出。混合环 3的主体结构是一个 截面为矩形的圆环, 侧面安装有按照一定的波长关系分布的两个入口, 即入口 a, 入 口 b,和一个出口 c。这样,任意两个口之间就有两条可供微波通过的路径。如果用 , L^ , „分别表示入口 a和入口 b、 入口 b和出口 c, 出口 c和入口 a之间的圆环段 中心弧线的长度, 则它们之间满足如下关系:
Figure imgf000009_0001
1
Lbc + Lca一 Lab ηλ8 + 2 λ^
ab ( 1 )
例如,
Figure imgf000009_0002
上面的等式组 (1 ) 中 n为整数, 为加速器所用微波在波导管中的导波波长, 等式 组 (1 ) 中的第一个等式表明入口 a与出口 c之间两条微波路径的中心弧长差为整波 长,第二个等式表明入口 a与入口 b之间两条微波路径的中心弧长差为整波加一个半 波长, 第三个等式表明入口 b与出口 c之间两条微波路径的中心弧长差为整波长。
这样, 从一个入口进来的微波功率, 分成两路传输, 在出口是两路微波正向相加, 得到与入口一致的微波功率从出口出去。 在另一个入口是两路微波负向相加, 功率和 为零, 这使得微波功率不能从另一个入口出去。 因此, 从入口 a或者入口 b进到混合 环的微波功率都将原样地从出口 c传送出去。
图 4是如图 1所示的 AFC装置的结构示意图。 AFC装置 8包括可变衰减器 13, 鉴相器 14, 前置放大器 15, 伺服放大器 16, 通道选择器 17。 入射波 IW和反射波 RW经可变衰减器 13进行幅度调整后, 输出入射信号 IS和反射信号 RS进入鉴相器 15进行相位调整与合成, 然后输出两路电压信号 VS1和 VS2。 这两路电压信号 VS1 和 VS2在前置放大器 15中进行比较并对它们的差值进行放大输出调整信号 AS1。同 样, 针对另一入射波和另一反射波, AFC装置 8产生另一调整信号 AS2。 调整信号 AS1或 AS2经伺服放大器 16进一步放大输出驱动信号 DS1或 DS2。
通道选择器 17 ¾控制装置 12送过来的控制信号 CS作用下, 将驱动信号 DS1 或 DS2在不同时刻发送给不同的磁控管 2a或磁控管 2b,对其进行频率调整,使得磁 控管 2a和 2b的工作频率总是与加速管 9的特征频率一致,从而保证系统工作的稳定 性。 通道选择器 17 的输出通道可以在两个以上, 具体的数目与多能倍频电子直线加 速器系统中微波功率源的数目一致。
上面以环形器 5安装在功率合成器与加速管之间为例来说明本发明的多能倍频电 子直线加速器的结构和工作过程。 但是, 环行器 5可以安装在在各微波功率源与混合 环之间。
图 5示出了根据本发明第一实施方式的双能倍频电子直线加速器的变型, 其中环 行器 5安装在磁控管与混合环之间。 在这种安装模式中, 入射波取样波导 4a和 4b、 环行器 5a和 5b、 反射波取样波导 6a和 6b、 吸收负载 7a和 7b、 AFC装置 8a和 8b 的数目与作为微波功率源的磁控管的数目相同。 在这种配置下, 相对与如图 1所示的 配置虽然器件的数目增加了, 系统显得较为复杂, 但是关键器件例如环行器 5a和 5b 和吸收负载 7a和 7b在系统中承载的功率较小, 只承载单一微波功率源产生的功率, 因此它们在技术上更容易实现, 且小功率的环行器和吸收负载成本也较低。
同样, 入射波取样波导 4a、环行器 5a、反射波取样波导 6a, 吸收负载 7a、 AFC 装置 8a构成了用于同步加速管 9的特征频率和微波功率源 2a的工作频率的同步装置 13a。 入射波取样波导 4b、 环行器 5b、 反射波取样波导 6b, 吸收负载 7b、 AFC装 置 8b构成了用于同步加速管 9的特征频率和微波功率源 2b的工作频率的同步装置 13b。
这种配置下, 系统的工作时序和原理与图 1的基本相同, 不同之处在于: 加速管 9反射的未消耗微波功率经混合环 3的 c口进入, 从 a口和 b口分成两部分出来, 分 别达到两个环行器 5a和 5b, 再经各自的反射波取样波导 6a和 6b进入吸收负载 7a 和 7b并被吸收负载 7a和 7b完全吸收。
此外, AFC装置 8a和 8b仍然从入射波取样波导 4a和 4b以及反射波取样波导 6a和 6b中获取入射波和反射波的信息, 对其进行比较分析, 同时在控制装置 12的 控制下进行工作,但是只需要一路输出对与其相对应的磁控管 2a或者 2b进行频率调 整。
以上描述的根据本发明的第一实施方式的双能倍频电子直线加速器的结构和工 作过程, 但是本发明也可以釆用在脉冲功率源的数目大于 2的配置。
图 6示出了根据本发明第二实施方式的多能倍频电子直线加速器的结构示意图, 这里的多能倍频电子直线加速器是由第一实施方式的双能倍频电子直线加速器系 扩展得出的。
在根据本发明第二实施方式的电子直线加速器中, 脉冲功率源, 微波功率源, 功 率合成器都可以按目标要求进行级联增加, 工作原理类似于双能倍频电子直线加速 器。例如,图 6中示出了 n个脉冲功率源 1 a、 1b、……、 1c, n个磁控管 2a、 2b、……、 2c, n-1个混合环 3a、 3b、 ……、 3c。 此外, 控制装置具有分别与 n个脉冲功率源连 接的输出 T1、 Τ2、 ……、 Τη, η个磁控管分别输出 Μ1、 Μ2、 ……。 Μη, 而 AFC 装置 8具有用来分别控制 n个磁控管的 n路输出。
替换地, 上述的脉冲功率源也可以仅仅使用单个的脉冲功率源 1, 在控制装置的 控制下以分时的方式向 n个磁控管输出脉冲功率。
图 7是图 6所示多能倍频电子直线加速器各主要部件的工作时序和产生的电压、 电流、 微波功率或电子束能量的相对强度。 同图 2类似, 加速器输出的不同能量数目 与微波功率源的数目相同, 微波功率源有多少个, 加速器的工作频率就可以是单微波 功率源加速器的多少倍。
图 8是图 6所示的多能倍频电子直线加速器工作于单能模式的情况下的时序图。 在这种模式下,各微波功率源的功率一样, 电子枪电源的输出高压在各个时刻也一样, 加速器输出单一能量的电子束, 但是这种加速器的电子束功率是单微波功率源加速器 的 n倍。 这种加速器可应用于不需要能量扩展, 只需要功率扩展的情^。
虽然以上以电子直线加速器为例说明了本发明的实施方式, 但是本领域的普通技 术人员应该认识到本发明也可以用于对其它的粒子的加速。
以上展示和描述了本发明的一些特征, 在所附的权利要求范围内, 具备该领域常 识的人会发现本发明还有很多修改、 替换、 改变和等同之处。

Claims

权利 要 求
1 . 一种多能倍频粒子加速器, 包括:
脉冲功率产生单元, 用于产生具有不同功率的 N个脉冲信号, 其中 N大于等于 2; N个微波功率产生单元, 在控制信号的控制下, 基于所述 N个脉冲信号分别产生 具有不同能量的 N个微波;
功率混合单元, 具有 N个入口和一个出口, 用于分别从所述 N个入口的各个入口 输入所述 N个微波中相应的微波, 从所述一个出口输出所述 N个微波;
粒子束产生单元, 用于与所述 N个微波同步地产生 N个粒子束; 以及
加速单元, 利用所述 N个微波分别加速所述 N个粒子束。
2. 根据权利要求 1所述的多能倍频粒子加速器, 其特征在于, 还包括设置在所 述功率混合单元和所述加速单元之间的单个同步单元, 用于同步所述加速单元的特征 频率和所述 N个微波功率产生单元的每一个的工作频率。
3. 根据权利要求 1所述的多能倍频粒子加速器, 其特征在于, 还包括在分别设 置在各个微波功率产生单元和所述功率混合单元之间的 N个同步单元, 用于分别同步 所述加速单元的特征频率和所述 N个微波功率产生单元的每一个的工作频率。
4. 根据权利要求 2所述的多能倍频粒子加速器, 其特征在于, 所述同步单元包 括:
入射波取样波导,对从所述功率混合单元的所述一个出口输出的 N个微波的每一 个进行釆样, 以得到入射波;
环形器, 将所述 N个微波的每一个送入所述加速单元, 并输出从所述加速单元反 射的相应微波;
反射波取样波导, 对反射的相应微波进行釆样, 以得到反射波;
自动锁相稳频装置, 比较和分析所述入射波和所述反射波, 产生用于分别同步 所述加速单元的特征频率和所述 N个微波功率产生单元的每一个的工作频率的同步信 号; 以及
吸收负载, 吸收所述环形器输出的反射波。
5. 根据权利要求 3所述的多能倍频粒子加速器, 其特征在于, 每个同步单元包 括:
入射波取样波导, 对从相应的微波功率产生单元输出的微波进行釆样, 以得到 入射波; ' 环形器, 将所述微波送入功率混合单元, 并输出经由所述功率混合单元从所述 加速单元反射的微波;
反射波取样波导, 对反射的微波进行采样, 以得到反射波;
自动锁相稳频装置, 比较和分析所述入射波和所述反射波, 产生用于分别同步 所述加速单元的特征频率和相应的微波功率产生单元的工作频率的同步信号;
吸收负载, 吸收所述环形器输出的反射波。
6. 根据权利要求 4或 5所述的多能倍频粒子加速器, 其特征在于, 所述自动锁相 稳频装置包括:
可变衰减器, 用于调整所述入射波和所述反射波的幅度, 输出入射信号和反射 信号;
鉴相器, 用于调整所述入射信号和反射信号的相位, 输出第一电压和第二电压; 前置放大器, 用于将所述第一电压和第二电压的差值放大, 以输出调整信号; 伺服放大器, 用于放大所述调整信号, 输出驱动信号;
通道选择器, 在控制信号的控制下, 将所述驱动信号输出到相应的微波功率产 生单元。
7. 根据权利要求 1〜3之一所述的多能倍频粒子加速器, 其特征在于, 所述脉冲 功率产生单元包括单个脉冲功率源, 它在控制信号的控制下以分时的方式向所述 N个 微波功率产生单元提供能量。
8. 根据权利要求 1〜3之一所述^多能倍频粒子加速器, 其特征在于, 所述脉冲 功率产生单元包括 N个脉冲功率源, 它们在控制信号的控制下在不同的时刻分别向所 述 N个微波功率产生单元提供能量。 '
9. 根据权利要求 1〜3之一所述的多能倍频粒子加速器, 其特征在于, 所述粒子 束产生单元包括产生电子束的电子枪和为所述电子枪供电的枪电源。
10. 根据权利要求 1〜3之一所述的多能倍频粒子加速器, 其特征在于, 所述功 率混合单元包括每个均具有两个入口和一个出口的 N-1个混合环, 其中一个入口与另 一入口之间两条微波路径的中心弧长差为导波波长的整数倍加半个导波波长, 所述一 个入口与所述出口之间两条微波路径的中心弧长差为导波波长的整数倍, 所述另一入 口与所述出口之间两条微波路径的中心弧长差为导波波长的整数倍。
11 . 一种多能倍频粒子加速器, 包括: 脉冲功率产生单元, 用于产生具有相同功率的 N个脉冲信号, 其中 N大于等于 2; N个微波功率产生单元, 在控制信号的控制下, 基于所述 N个脉冲信号分别产生 具有相同能量的 N个微波;
功率混合单元, 具有 N个入口和一个出口, 用于分别从所述 N个入口的各个入口 输入所述 N个微波中相应的微波, 从所述一个出口输出所述 N个微波;
粒子束产生单元, 用于与所述 N个微波同步地产生 N个粒子束; 以及
加速单元, 利用所述 N个微波分别加速所述 N个粒子束。
12. 一种加速粒子束的方法, 包括步骤:
产生具有不同功率的 N个脉冲信号, 其中 N大于等于 2;
在控制信号的控制下, 基于所述 N个脉冲信号分别产生具有不同能量的 N个微 波;
利用具有 N个入口和一个出口的功率混合单元混合所述 N个微波, 其中分别从所 述 N个入口的各个入口输入所述 N个微波中相应的微波,从所述一个出口输出所述 N个 微波;
与所述 N个微波同步地产生 N个粒子束; 以及
利用所述 N个微波分别加速所述 N个粒子束。
13. 一种加速粒子束的方法, 包括步骤:
产生具有相同功率的 N个脉冲信号, 其中 N大于等于 2;
在控制信号的控制下, 基于所述 N个脉冲信号分别产生具有相同同能量的 N个微 波;
利用具有 N个入口和一个出 的功率混合单元混合所述 N个微波, 其中分别从所 述 N个入口的各个入口输入所述 N个微波中相应的微波,从所述一个出口输出所述 N个 微波;
与所述 N个微波同步地产生 N个粒子束; 以及
利用所述 N个微波分别加速所述 N个粒子束。
PCT/CN2007/002923 2006-10-11 2007-10-11 Accélérateur de particules à doublage de fréquence multi-énergies et procédé pour accélérer des particules WO2008052411A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112007000070.8T DE112007000070B4 (de) 2006-10-11 2007-10-11 Frequenzmultiplizierender Partikelbeschleuniger für mehrere Energien und Verfahren dazu
US12/088,275 US7884559B2 (en) 2006-10-11 2007-10-11 Multi-energy frequency-multiplying particle accelerator and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610113645.1 2006-10-11
CN200610113645A CN101163372B (zh) 2006-10-11 2006-10-11 多能倍频粒子加速器及其方法

Publications (1)

Publication Number Publication Date
WO2008052411A1 true WO2008052411A1 (fr) 2008-05-08

Family

ID=39298167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002923 WO2008052411A1 (fr) 2006-10-11 2007-10-11 Accélérateur de particules à doublage de fréquence multi-énergies et procédé pour accélérer des particules

Country Status (5)

Country Link
US (1) US7884559B2 (zh)
CN (1) CN101163372B (zh)
DE (1) DE112007000070B4 (zh)
RU (1) RU2375850C1 (zh)
WO (1) WO2008052411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108392741A (zh) * 2018-04-04 2018-08-14 西安大医数码科技有限公司 微波功率控制装置及放射治疗设备

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5820661B2 (ja) * 2010-09-14 2015-11-24 東京エレクトロン株式会社 マイクロ波照射装置
CN102510271A (zh) * 2011-11-18 2012-06-20 中国工程物理研究院应用电子学研究所 一种微波功率合成方法
CN102612251B (zh) * 2012-03-13 2015-03-04 苏州爱因智能设备有限公司 一种双微波源电子直线加速器
DE102012209185B4 (de) * 2012-05-31 2019-05-29 Siemens Healthcare Gmbh Hochfrequenzquelle für einen Linearbeschleuniger
DE102012212720A1 (de) * 2012-07-19 2014-01-23 Siemens Aktiengesellschaft MeV-Elektronenquelle
CN104470193B (zh) * 2013-09-22 2017-07-25 同方威视技术股份有限公司 控制驻波加速器的方法及其系统
WO2014117636A2 (zh) * 2013-11-14 2014-08-07 清华大学 多能量多剂量加速器、具有该加速器的快检系统及对应的快检方法
CN104749199B (zh) 2013-12-30 2019-02-19 同方威视技术股份有限公司 双能/双视角的高能x射线透视成像系统
US9622333B2 (en) 2014-02-27 2017-04-11 Etm Electromatic, Inc Linear accelerator system with stable interleaved and intermittent pulsing
WO2015131141A1 (en) * 2014-02-27 2015-09-03 ETM Electromatic, Inc. Linear accelerator system with stable interleaved and intermittent pulsing
US10070509B2 (en) * 2015-09-29 2018-09-04 Fermi Research Alliance, Llc Compact SRF based accelerator
CN107153367B (zh) * 2016-09-28 2020-09-18 医科达(北京)医疗器械有限公司 用于控制射频源的输出频率的方法和设备
CN110716182A (zh) 2018-07-11 2020-01-21 同方威视技术股份有限公司 基于数字控制的智能自动频率控制设备
CN110721989A (zh) * 2019-11-21 2020-01-24 康定市和宏房地产开发有限公司 一种抗生素药渣无害化处理设备及方法
CN113038685B (zh) * 2019-12-25 2021-12-31 同方威视技术股份有限公司 用于控制驻波直线加速器的方法、装置和系统
CN112843497B (zh) * 2021-01-05 2022-09-16 中国科学院上海高等研究院 一种基于射频偏转腔技术的质子束流扫描装置及扫描方法
CN113329552A (zh) * 2021-07-09 2021-08-31 清华大学 射线产生设备及其控制方法
GB2613553A (en) * 2021-12-03 2023-06-14 Elekta ltd RF source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451794A (en) * 1992-12-04 1995-09-19 Atomic Energy Of Canada Limited Electron beam current measuring device
WO2004030162A2 (en) * 2002-09-27 2004-04-08 Scantech Holdings, Llc System for alternately pulsing energy of accelerated electrons bombarding a conversion target
CN2917188Y (zh) * 2006-05-19 2007-06-27 清华大学 产生具有不同能量的x射线的设备及材料识别系统
CN1997256A (zh) * 2005-12-31 2007-07-11 清华大学 一种高低能x射线输出装置
CN200987235Y (zh) * 2006-10-11 2007-12-05 清华大学 多能倍频粒子加速器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321712A (en) * 1965-08-16 1967-05-23 Tektronix Inc Phase lock system for spectrum analyzer
GB9200828D0 (en) * 1992-01-15 1992-03-11 Image Research Ltd Improvements in and relating to material identification using x-rays
WO1998018300A2 (en) * 1996-10-18 1998-04-30 Microwave Technologies Inc. Rotating-wave electron beam accelerator
US6441569B1 (en) * 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
US6429608B1 (en) * 2000-02-18 2002-08-06 Mitec Incorporated Direct injection accelerator method and system
US6856105B2 (en) * 2003-03-24 2005-02-15 Siemens Medical Solutions Usa, Inc. Multi-energy particle accelerator
CN1455635A (zh) * 2003-06-06 2003-11-12 南京大学 能量可调电子直线加速器
US6844689B1 (en) * 2003-08-29 2005-01-18 Mevex Corporation Multiple beam linear accelerator system
US7162007B2 (en) 2004-02-06 2007-01-09 Elyan Vladimir V Non-intrusive inspection systems for large container screening and inspection
WO2005111950A1 (en) * 2004-05-17 2005-11-24 Dexrad (Proprietary) Limited Document creation and authentication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451794A (en) * 1992-12-04 1995-09-19 Atomic Energy Of Canada Limited Electron beam current measuring device
WO2004030162A2 (en) * 2002-09-27 2004-04-08 Scantech Holdings, Llc System for alternately pulsing energy of accelerated electrons bombarding a conversion target
CN1997256A (zh) * 2005-12-31 2007-07-11 清华大学 一种高低能x射线输出装置
CN2917188Y (zh) * 2006-05-19 2007-06-27 清华大学 产生具有不同能量的x射线的设备及材料识别系统
CN200987235Y (zh) * 2006-10-11 2007-12-05 清华大学 多能倍频粒子加速器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108392741A (zh) * 2018-04-04 2018-08-14 西安大医数码科技有限公司 微波功率控制装置及放射治疗设备
CN108392741B (zh) * 2018-04-04 2024-03-29 西安大医集团股份有限公司 微波功率控制装置及放射治疗设备

Also Published As

Publication number Publication date
CN101163372A (zh) 2008-04-16
RU2375850C1 (ru) 2009-12-10
US7884559B2 (en) 2011-02-08
US20100219776A1 (en) 2010-09-02
CN101163372B (zh) 2010-05-12
DE112007000070T5 (de) 2008-09-11
DE112007000070B4 (de) 2016-09-15

Similar Documents

Publication Publication Date Title
WO2008052411A1 (fr) Accélérateur de particules à doublage de fréquence multi-énergies et procédé pour accélérer des particules
RU2508617C2 (ru) Источники излучения с множеством чередующихся уровней энергии
US7646851B2 (en) Device and method for generating X-rays having different energy levels and material discrimination system
US7835499B2 (en) Compact, short-pulse X-ray and T-ray fused source
US10368428B2 (en) Source for intra-pulse multi-energy X-ray cargo inspection
US20080211431A1 (en) Pulse-to-Pulse-Switchable Multiple-Energy Linear Accelerators Based on Fast RF Power Switching
Kutsaev et al. Electron accelerators for novel cargo inspection methods
US20060050746A1 (en) System for alternately pulsing energy of accelerated electrons bombarding a conversion target
JP5377969B2 (ja) 電子加速器をベースにしたマルチエネルギー貨物検査システム
US20060140326A1 (en) Portable low energy neutron source for high sensitivity material characterization
CN200987235Y (zh) 多能倍频粒子加速器
RU2452143C2 (ru) Способ генерации тормозного излучения с поимпульсным переключением энергии и источник излучения для его осуществления
Jenkins et al. Prototype 1 MeV X-band linac for aviation cargo inspection
WO2008121820A2 (en) Pulse-to-pulse-switchable multiple-energy linear accelerators based on fast rf power switching
RU2246719C1 (ru) Способ облучения конверсионной мишени импульсами тока ускоренных электронов и устройство для его реализации
Harris et al. Propagation of modulated electron and X-ray beams through matter and interactions with radio-frequency structures
Wronka Interlaced energy linac with smooth energy regulation
Garnett Active interrogation probe technologies
AU2015202281A1 (en) Multi-energy cargo inspection system based on an electron accelerator
Thangaraj Accelerator Research and Technology Developments for Industrial Applications (excluding medicine)[Slides]
RU33230U1 (ru) Устройство для облучения конверсионной мишени импульсами тока ускоренных электронов
Piestrup et al. Detection of coherent X-ray transition radiation and its application to beam diagnostics
Fukuda et al. Status and future plan of the development of a compact x-ray source based on ICS at Laser Undulator Compact Xray (LUCX)
Yoder Design and operation of an inverse free-electron-laser accelerator in the microwave regime
PL218303B1 (pl) Sposób wytwarzania dwuenergetycznych, cyklicznych impulsów promieniowania X oraz liniowy dwuenergetyczny akcelerator elektronów

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12088275

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008112109

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 1120070000708

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816537

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112007000070

Country of ref document: DE

Date of ref document: 20080911

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07816537

Country of ref document: EP

Kind code of ref document: A1