WO2008051486A1 - Nano-yag:ce phosphor compositions and their methods of preparation - Google Patents
Nano-yag:ce phosphor compositions and their methods of preparation Download PDFInfo
- Publication number
- WO2008051486A1 WO2008051486A1 PCT/US2007/022360 US2007022360W WO2008051486A1 WO 2008051486 A1 WO2008051486 A1 WO 2008051486A1 US 2007022360 W US2007022360 W US 2007022360W WO 2008051486 A1 WO2008051486 A1 WO 2008051486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- ranging
- percent
- substitutes
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7767—Chalcogenides
- C09K11/7769—Oxides
- C09K11/777—Oxyhalogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/77744—Aluminosilicates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
- F21K9/64—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
Definitions
- Embodiments of the present invention are directed to cerium-doped, garnet-based phosphors prepared by liquid mixing methods.
- YAG:Ce The yttrium aluminate garnet phosphor known as YAG:Ce (when activated by trivalent cerium) is a well-known phosphor used in the so-called "white LED" commercial market.
- YAG has a relatively high absorption efficiency of blue colored excitation radiation, high quantum efficiency (QE greater than about 90 percent), good stability in a high temperature and high humidity environment, and a broad emission spectrum.
- QE quantum efficiency
- YAG's emission intensity decreases when the wavelength of the excitation radiation is reduced to a level below about 460 nm.
- YAG phosphors are commonly prepared at high temperatures (greater than about 1600 0 C) via a solid-state reaction method. Due to insufficient mixing and the low reactivity of the raw materials, several intermediate phases such as Y 4 Al 2 Og (YAM) and YAlO 3 (YAP) may be easily incorporated into the product compositions. Additionally, the particle size(s) of the resultant phosphor is not uniform, and typically displays a broad distribution ranges from about 1 to more than 10 micrometers when, for example, the average size (D50) in the distribution is located at about 5 micrometers.
- D50 average size
- a co-precipitation method In comparison with the solid-state-reaction method, a co-precipitation method has the advantages of preparing a substantially pure YAG phase at relatively low temperatures with a narrow distribution of the particle size. In the meantime, the luminescent properties of the co-precipitated phosphors are as good as, or perhaps even better, than the properties of those phosphors prepared by a solid-state-reaction technique.
- What is needed is an improvement of YAG's emission intensity when the emission peak is centered at wavelength of from about 540 nm to 560 nm when excited by a blue diode having an emission peak wavelength at about 445 nm to 455 nm. This will produce high brightness white LEDs.
- the scattering loss needs to be further minimized by reducing the phosphor particle size below the emission wavelength, preferably less than 400 nm.
- Embodiments of the present invention are directed to a cerium-doped, garnet- based phosphor having the formula:
- A is selected from the group consisting of Tb, Gd, Sm, La, Sr, Ba, Ca, and where A substitutes for Y from in amounts ranging from about 0.1 to 100 percent;
- B is selected from the group consisting of Si, Ge, B, P, and Ga, and where B substitutes for Al in amounts ranging from about 0.1 to 100 percent;
- C is selected from the group consisting of F, Cl, N, and S, and where C substitutes for O in amounts ranging from about 0.1 to 100 percent.
- cerium-doped, garnet-based phosphors are produced by a co-precipitation method, which provides a number of benefits.
- One benefit is that the method allows for a halogen to be incorporated into the crystal lattice of the phosphor, which leads to enhanced emission intensities, and the ability to control the wavelength of the emission.
- Co-precipitation offers a more homogeneous mixing environment to enhance the distribution of other components as well, such as the Ce 3+ activator in the YAG matrix.
- the instant co-precipitation methods provide for beneficial control over particle size as well.
- the particle size distribution ranges from about 10 nm to about 1 ⁇ m.
- the D50 average particle size ranges from about 200 nm to about 700 nm.
- FIG. 1 is a normalized emission spectra OfCe)Y 3 Al 5 (O 5 F) I2 with concentrations of fluorine (F) ranging from about 1 to about 8 percent substitution for oxygen, this phosphor demonstrating a peak wavelength shift to shorter wavelengths as the concentration of the fluorine is increased;
- FIG. 2 is an emission spectra of Ce:Y 3 Al 5 (O,F)i 2 with fluorine concentrations ranging from about 1 to about 8 percent substitution for oxygen, the figure showing an increase in peak intensity as the F concentration is increased;
- FIG. 3 is an emission spectra of a Ce:Y 3 Al 5 (O,F)i 2 family of compounds, the variable in this experiment being the particular the fluorine-containing compound used as a starting material;
- FIG. 4 is a collection of normalized emission spectra from Ce:Y 3 Al 5 (OCl)i 2 doped with different Cl concentrations, the data showing that emission peak wavelength remains substantially the same at different levels of Cl doping;
- FIG. 5 is a collection of normalized emission spectra from a
- FIG. 6 shows the emission spectra of Ce: Y 3 Al 5 Oi 2 sintered at different temperature in a 5%H 2 atmosphere: the emission peak intensity increased as the sintering temperature was increased;
- FIG 7 shows x-ray diffraction (XRD) patterns of Ce:Y 3 Al 5 0i 2 sintered at different temperature in 5%H 2 atmosphere: crystallinity improves as the sintering temperature is increased;
- FIG. 8 is an emission spectra of Ce)Y 3 AIsOi 2 sintered at the same temperature (1400 0 C), but with varying atmospheres, showing that a 5% concentration of H 2 is the best sintering atmosphere for producing Ce:YAG; and
- FIGS 9A and 9B are scanning electron microscope (SEM) micrographs of a Ce:YAG compound prepared both by a co-precipitation method and by a solid-state- reaction technique; the primary particle size of the as-prepared phosphor using the co- precipitation method is about 200 nm with a narrow distribution.
- cerium doped, garnet phosphors emitting in the yellow region of the spectrum may be described by the general formula (Y,A) 3 (Al,B) 5 (O,C)i 2 :Ce 3+ , where A is Tb, Gd, Sm, La, Sr, Ba, Ca, and/or Mg, and where A substitutes for Y from in amounts ranging from about 0.1 to 100 percent; B is Si, Ge, B, P, and/or Ga, where B substitutes for Al in amounts ranging from about 0.1 to 100 percent; and C is F, Cl, N, and/or S, where C substitutes for O in amounts ranging from about 0.1 to 100 percent.
- the yellow-emitting, cerium-doped garnet phosphor is described by the formula Y 3 (Ali. x Si x ) 5 (Oi -y C y )i 2 :Ce 3+ , where C has the same meaning as above, x ranges from about 0.001 to about 0.2, and y is ranges from about 0.001 to about 0.2.
- the yellow-emitting, cerium-doped garnet phosphor is luminescent when excited by radiation having a peak wavelength ranging from about 445 nm to about 460 nm, the peak wavelength range of the yellow, emitted light ranging from about 540 to 560 nm, and where the elements in the phosphor comprise yttrium, aluminum, silicon, oxygen and fluorine.
- the yellow-emitting, cerium-doped garnet phosphor is luminescent when excited by radiation having a peak wavelength ranging from about 445 nm to about 460 nm, the peak wavelength range of the yellow, emitted light ranging from about 540 to 560 run, and where the particle size distribution ranges from about 10 nm to about 1 ⁇ m.
- the yellow-emitting, cerium-doped garnet phosphor is luminescent when excited by radiation having a peak wavelength ranging from about 445 nm to about 460 nm, the peak wavelength range of the yellow, emitted light ranging from about 540 to 560 nm, and where the D50 average particle size ranges from about
- the yellow-emitting, cerium-doped garnet phosphor is luminescent when excited by radiation having a peak wavelength ranging from about 445 nm to about 460 nm, the peak wavelength range of the yellow, emitted light ranging from about 540 to 560 nm, and where the phosphor comprises a compound represented by the formula Y 3 (AIi. x Si x ) 5 (Oi. y Cy)i 2 :Ce 3+ , where x ranges from about 0.001 to about
- Methods of producing the instant phosphors comprise the following steps:
- step 2) adding the solution from step 1) to an ammonia solution in a dropwise manner; 3) aging the solution of step 2) for about 1 hour, and then filtering and washing the resultant precipitant with distilled water;
- step 4) drying the precipitate of step 3) at about 15O 0 C for 6 about hours;
- step 4 cooling and gently milling the dried precipitate of step 4), transferring this product to an alumina crucible, and sintering the milled product at about HOO 0 C to 1500 0 C in a reducing atmosphere.
- the method further includes a step of adding (CH 3 O) 4 Si to the solution resulting from step 1).
- the A containing starting materials do not have to be the nitrates in the example above, and the A containing starting materials may also be oxides, hydroxides, carbonates, and sulfates, and the like.
- a sol-gel like polymerization step may be included during the liquid step(s) with the addition of a silicon-containing monomer.
- step 1 1) dissolving desired amounts of Ce(NO 3 ) 3 »6H 2 O, Y(NO 3 ) 3 *6H 2 O, Al(NCh) 3 "9H 2 O in de-ionized water; 2) adding (CH 3 O) 4 Si to the solution resulting from step 1);
- step 2) adding the solution from step 2) to an ammonia solution in a dropwise manner;
- step 4) aging the solution of step 3) for about 1 hour, and then filtering and washing the resultant precipitant with distilled water;
- step 4) drying the precipitate of step 4) at about 15O 0 C for 6 about hours; and 6) cooling and gently milling the dried precipitate of step 4), transferring this product to an alumina crucible, and sintering the milled product at about HOO 0 C to 1500 0 C in a reducing atmosphere.
- This latter method may also include a step of adding a halogen containing compound to the solution resulting from step 1.
- the following experiments describe the results of experiments carried out by the present inventors.
- the first set of experiments is directed toward the substitution of a halogen such as F or Cl on oxygen lattice sites in a crystal having the formula Ce: Y 3 Al 5 (O 5 F), including the effect of using different fluorine-containing compounds as starting materials.
- the next set of experiments investigates the effect of replacing Al with Si in these aluminate-based garnets, specifically in the compound
- (Ce x Y i -x ) 3 Al 5 O I 2 were prepared using the co-precipitation method described above.
- the starting materials used in the preparation of this phosphor were powders having a purity greater than about 99.9 percent.
- the starting materials were Ce(NO 3 ) 3 *6H 2 O, Y(NO 3 ) 3 «6H 2 O and A1(NO 3 ) 3 «9H 2 O and NH 4 X, AlX 3 and/orYX 3 , where X is a halogen such as fluorine (F) or chlorine (Cl).
- the first of the two procedures described above was used to produce the (Ce x Y i -x ) 3 Al 5 Oi 2 phosphor.
- the crystal structure and morphology of the Ce 3+ : YAG phosphor particles produced by the above described experiment were investigated by x-ray diffraction with a Rigaku MiniFlex X-ray diffractometer, using using Cu Ka radiation, and a scanning electron microscopy (JEOL JSM-6330F field emission scanning electron microscope).
- the excitation spectra of Ce: YAG phosphor particles were measured using a
- SHEVIADZU RF-1501 spectrofluorophotometer which utilizes a xenon arc lamp as an excitation source.
- the photo luminescent spectra of the Ce 3+ : YAG phosphor particle products were measured using an Ocean Optics USB2000 spectrometer, the phosphors excited by a 450 nm LED.
- fluorine was added to the phosphor precursors in the liquid phase that occurs before calcination.
- FIG. 1 shows a collection of emission spectra from a family of compounds having the formula Ce:Y 3 Al 5 (O,F)i 2 , where the concentrations of the fluorine (F) were 0, 1, 3, 5, and 8 percent. These curves have been normalized, to illustrate the effect the increase in fluorine concentration has on the peak emission wavelength. As the fluorine concentration was increased from about 1 to about 8 percent, the phosphor demonstrated a shift in the peak emission wavelength to shorter wavelengths. This data confirms that fluorine is substituting for oxygen, a concept that will be discussed in more detail shortly.
- FIG. 3 shows the emission spectra of a Ce:Y 3 Al 5 (O,F)i 2 family of compounds, the variable in this experiment being the particular the fluorine-containing compound used as a starting material.
- the type of fluorine-containing starting material did not seem to have an appreciable effect on optical properties, although the starting materials YF 3 did appear to produce a phosphor with slightly reduced intensities relative to the phosphors produced with starting materials AlF 3 and NH 4 F.
- FIGS. 1 and 2 show that the emission peak intensity increases dramatically when the fluorine content is as small as 1 percent. Simultaneously, the emission peak wavelength shifts to short wavelength as the F concentration is increased.
- the effects of sintering temperature are shown in FIG. 6.
- the results show that emission intensity increases substantially with an increase in sintering temperature, from 1200 0 C to 1300 0 C to 140O 0 C, possibly because the higher the sintering temperature, the higher the purity of the YAG crystal that is formed.
- accompanying the higher sintering temperature is a more homogeneous distribution of Ce 3+ within the YAG lattice.
- the improved crystallinity is shown by the x-ray diffraction patterns of FIG. 7, where the homogeneous distribution of Ce + in the YAG lattice is at least one reason for the increase in emission intensity.
- FIG. 8 The effect of sintering atmosphere is shown in FIG. 8.
- the results show a substantial increase in photoluminescent intensity as the sintering atmosphere is changed from air, which is of course nitrogen and oxygen, to argon, which is totally inert, to a 100 percent hydrogen atmosphere, to a reducing atmosphere of about 5 percent hydrogen and 95 percent nitrogen.
- the shape of the air and argon curves are different from those of the reducing atmospheres 100 percent hydrogen and 5 percent hydrogen-95 percent nitrogen, which is attributed to the fact that some of the Ce 3+ is being oxidized to Ce 4+ .
- An exemplary particle size distribution that was observed with the instantly prepared phosphors was about 200 nm to 300 nm. This is a relatively narrow distribution, as the SEM pictures in FIG. 9A (co-precipitation) show compared to FIG. 9B (solid state reaction).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07839717A EP2082430A4 (en) | 2006-10-20 | 2007-10-19 | Nano-yag:ce phosphor compositions and their methods of preparation |
JP2009533393A JP2010507008A (en) | 2006-10-20 | 2007-10-19 | NANO-YAG: Ce phosphor composition and preparation method thereof |
CN2007800420006A CN101536193B (en) | 2006-10-20 | 2007-10-19 | Nano-YAG:Ce phosphor compositions and their methods of preparation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85338206P | 2006-10-20 | 2006-10-20 | |
US60/853,382 | 2006-10-20 | ||
US11/975,356 | 2007-10-18 | ||
US11/975,356 US8133461B2 (en) | 2006-10-20 | 2007-10-18 | Nano-YAG:Ce phosphor compositions and their methods of preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008051486A1 true WO2008051486A1 (en) | 2008-05-02 |
Family
ID=39324901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/022360 WO2008051486A1 (en) | 2006-10-20 | 2007-10-19 | Nano-yag:ce phosphor compositions and their methods of preparation |
Country Status (7)
Country | Link |
---|---|
US (3) | US8133461B2 (en) |
EP (1) | EP2082430A4 (en) |
JP (2) | JP2010507008A (en) |
KR (1) | KR101552709B1 (en) |
CN (3) | CN101536193B (en) |
TW (1) | TWI375325B (en) |
WO (1) | WO2008051486A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008051029A1 (en) | 2008-10-13 | 2010-04-15 | Merck Patent Gmbh | Doped garnet phosphors with redshift for pcLEDs |
CN101712871A (en) * | 2008-10-06 | 2010-05-26 | 罗维鸿 | White light luminous diode and iodide garnet phosphor powder thereof |
CN102382655A (en) * | 2010-08-31 | 2012-03-21 | 北京有色金属研究总院 | Phosphorus-containing LED fluorescent powder, preparation method and prepared light-emitting device thereof |
CN102517017A (en) * | 2011-12-09 | 2012-06-27 | 苏州晶能科技有限公司 | Phosphor and its preparation method and white LED plane light source containing phosphor |
JP2013514655A (en) * | 2009-12-17 | 2013-04-25 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Light emitting diode device comprising a luminescent material |
RU2499329C2 (en) * | 2011-09-02 | 2013-11-20 | Закрытое Акционерное Общество "Научно-Производственная Коммерческая Фирма "Элтан Лтд" | Luminescent polycarbonate film for white light-emitting diodes and detectors |
WO2014173376A1 (en) | 2013-04-22 | 2014-10-30 | Crytur Spol. S R.O. | White light emitting diode with single crystal phosphor and the manner of production |
DE102013109313A1 (en) * | 2013-08-28 | 2015-03-05 | Leuchtstoffwerk Breitungen Gmbh | Improved garnet phosphor and process for its preparation |
EP2938699A4 (en) * | 2012-12-28 | 2016-08-24 | Intematix Corp | Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates |
CN106796976A (en) * | 2014-10-08 | 2017-05-31 | 首尔半导体株式会社 | Light-emitting device |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8133461B2 (en) | 2006-10-20 | 2012-03-13 | Intematix Corporation | Nano-YAG:Ce phosphor compositions and their methods of preparation |
US8529791B2 (en) | 2006-10-20 | 2013-09-10 | Intematix Corporation | Green-emitting, garnet-based phosphors in general and backlighting applications |
US8475683B2 (en) | 2006-10-20 | 2013-07-02 | Intematix Corporation | Yellow-green to yellow-emitting phosphors based on halogenated-aluminates |
US9120975B2 (en) | 2006-10-20 | 2015-09-01 | Intematix Corporation | Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates |
CN101182416B (en) * | 2006-11-13 | 2010-09-22 | 北京有色金属研究总院 | Aluminate phosphor containing divalent metal element as well as manufacturing method and luminescent device |
TW200827425A (en) * | 2006-12-28 | 2008-07-01 | Wang yong qi | Light emitting diode used in short-wave semiconductor and fluorescent powder |
TWI390012B (en) * | 2008-06-20 | 2013-03-21 | White light emitting diodes and their oxyfluoride phosphor powder | |
CN101323785B (en) * | 2008-08-14 | 2012-09-05 | 罗维鸿 | White light luminous diode and fluorine oxide fluorescent powder thereof |
TWI389343B (en) * | 2008-08-22 | 2013-03-11 | Warm white light emitting diodes and their halide fluorescent powder | |
JP5686724B2 (en) * | 2009-02-23 | 2015-03-18 | 株式会社東芝 | Solid scintillator, radiation detector, and X-ray tomography apparatus |
KR101244187B1 (en) * | 2010-06-16 | 2013-03-18 | 관동대학교산학협력단 | Method of fabricating YAG : Ce Phosphor powder |
US20130329448A1 (en) * | 2011-03-01 | 2013-12-12 | Osram Gmbh | Lighting apparatus with phosphor element |
WO2012122401A2 (en) * | 2011-03-08 | 2012-09-13 | Intematix Corporation | Yellow-green to yellow-emitting phosphors based on halogenated-aluminates |
US9006966B2 (en) | 2011-11-08 | 2015-04-14 | Intematix Corporation | Coatings for photoluminescent materials |
TWI437077B (en) * | 2011-12-08 | 2014-05-11 | Univ Nat Cheng Kung | Yttrium aluminum garnet phosphor, method for preparing the same, and light-emitting diode containing the same |
CN103173217B (en) * | 2011-12-23 | 2017-03-01 | 李建立 | Heatproof nitride fluorescent material and the light-emitting device containing it |
CN103242839B (en) * | 2012-02-08 | 2015-06-10 | 威士玻尔光电(苏州)有限公司 | Method for producing blue light-excitated yellow-green aluminate phosphor powder |
KR101340034B1 (en) * | 2012-02-20 | 2013-12-10 | 한국화학연구원 | Green emitting phosphor by vacuum UV excitation, and the preparation method thereof |
US8506104B1 (en) | 2012-03-28 | 2013-08-13 | General Electric Company | Phosphors for LED lamps |
CN102936497B (en) * | 2012-11-08 | 2014-12-31 | 广州有色金属研究院 | Main emission peak changeable and adjustable fluorescent material and preparation method thereof |
EP2733190B1 (en) | 2012-11-16 | 2020-01-01 | LG Innotek Co., Ltd. | Phosphor composition and light emitting device package having the same |
EP2937315B1 (en) | 2012-12-20 | 2018-02-14 | Panasonic Intellectual Property Management Co., Ltd. | Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same |
CN103965906A (en) * | 2013-02-01 | 2014-08-06 | 常州化学研究所 | Yttrium aluminum garnet fluorescent powder material and preparation method thereof |
JP2014224182A (en) * | 2013-05-15 | 2014-12-04 | 株式会社東芝 | Phosphor, light-emitting device, and production method of phosphor |
JP5620562B1 (en) * | 2013-10-23 | 2014-11-05 | 株式会社光波 | Single crystal phosphor and light emitting device |
US9725648B2 (en) | 2013-12-10 | 2017-08-08 | Samsung Electronics Co., Ltd. | Phosphor and light-emitting device including the same |
KR102255213B1 (en) | 2013-12-10 | 2021-05-24 | 삼성전자주식회사 | Phosphor and light emitting device including the phosphor |
TWI592467B (en) * | 2013-12-26 | 2017-07-21 | 奇美實業股份有限公司 | Phosphor and light emitting device |
TWI518170B (en) | 2013-12-26 | 2016-01-21 | 奇美實業股份有限公司 | Phosphor powders and light emitting device |
TWI472596B (en) * | 2014-01-16 | 2015-02-11 | 中原大學 | Phosphors, fabricating method thereof, and light emitting device employing the same |
US9753357B2 (en) | 2014-02-27 | 2017-09-05 | Intematix Corporation | Compact solid-state camera flash |
CN103881722B (en) * | 2014-03-28 | 2016-06-08 | 江苏博睿光电有限公司 | Green fluorescent powder for high-color-rendering white light LED |
CN104119911A (en) * | 2014-06-30 | 2014-10-29 | 彩虹集团电子股份有限公司 | Method for preparing aluminate fluorescent powder for high luminous efficiency light emitting diode (LED) |
US9335011B2 (en) * | 2014-07-02 | 2016-05-10 | General Electric Company | Oxyfluoride phosphor compositions and lighting apparatus thereof |
WO2016006483A1 (en) * | 2014-07-07 | 2016-01-14 | 東レ株式会社 | Scintillator panel, radiation detector, and manufacturing method therefor |
CN105623661A (en) * | 2014-10-29 | 2016-06-01 | 大连利德照明研发中心有限公司 | Fluorescent material and preparation method and composition containing fluorescent material |
US9974138B2 (en) | 2015-04-21 | 2018-05-15 | GE Lighting Solutions, LLC | Multi-channel lamp system and method with mixed spectrum |
US10066160B2 (en) | 2015-05-01 | 2018-09-04 | Intematix Corporation | Solid-state white light generating lighting arrangements including photoluminescence wavelength conversion components |
KR101633421B1 (en) * | 2015-06-08 | 2016-06-24 | 주식회사 포스포 | Garnet-based phosphor cerium doped, manufacturing method thereof and light-emitting diode using the same |
US10253257B2 (en) | 2015-11-25 | 2019-04-09 | Intematix Corporation | Coated narrow band red phosphor |
CN106006704B (en) * | 2016-05-27 | 2017-06-30 | 温州医科大学 | A kind of rare earth material micron tube and preparation method thereof |
CN106047347A (en) * | 2016-06-29 | 2016-10-26 | 东台市天源荧光材料有限公司 | Manganese-ion-activated yttrium calcium phosphate fluorescent powder and preparation method thereof |
CN106635015B (en) * | 2016-12-02 | 2019-10-01 | 浙江工业大学 | A kind of nitric oxide fluorescent powder and its preparation method and application with garnet structure |
CN107880884B (en) * | 2017-11-08 | 2020-11-10 | 中国科学院长春应用化学研究所 | Preparation method of cerium-doped rare earth silicate polycrystalline powder |
US20200161506A1 (en) * | 2018-11-21 | 2020-05-21 | Osram Opto Semiconductors Gmbh | Method for Producing a Ceramic Converter Element, Ceramic Converter Element, and Optoelectronic Component |
JP6989789B2 (en) * | 2019-04-11 | 2022-01-12 | 日亜化学工業株式会社 | Manufacturing method of rare earth aluminate sintered body |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040173807A1 (en) * | 2003-03-04 | 2004-09-09 | Yongchi Tian | Garnet phosphors, method of making the same, and application to semiconductor LED chips for manufacturing lighting devices |
US20050093442A1 (en) * | 2003-10-29 | 2005-05-05 | Setlur Anant A. | Garnet phosphor materials having enhanced spectral characteristics |
US20050092408A1 (en) * | 2003-05-16 | 2005-05-05 | Lauf Robert J. | Inorganic optical taggant and method of making |
US20050142240A1 (en) * | 2001-12-17 | 2005-06-30 | Essilor Internationl (Compagnie Generale D'optique) | Mold for hot-forming a thermoplastic lens |
US20060083694A1 (en) * | 2004-08-07 | 2006-04-20 | Cabot Corporation | Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920010085B1 (en) * | 1988-07-30 | 1992-11-14 | 소니 가부시기가이샤 | Production of fine particle of yttrium-aluminum-granet and fine particle of yttrium-aluminum-garnet phosphor |
JP2770708B2 (en) | 1992-06-30 | 1998-07-02 | 日亜化学工業株式会社 | Red or infrared emitting phosphor and liquid crystal light valve CRT using the same |
JP3425465B2 (en) | 1994-03-03 | 2003-07-14 | 化成オプトニクス株式会社 | Green light emitting phosphor and cathode ray tube using the same |
US6013199A (en) * | 1997-03-04 | 2000-01-11 | Symyx Technologies | Phosphor materials |
DE19638667C2 (en) * | 1996-09-20 | 2001-05-17 | Osram Opto Semiconductors Gmbh | Mixed-color light-emitting semiconductor component with luminescence conversion element |
TW383508B (en) * | 1996-07-29 | 2000-03-01 | Nichia Kagaku Kogyo Kk | Light emitting device and display |
JP2927279B2 (en) * | 1996-07-29 | 1999-07-28 | 日亜化学工業株式会社 | Light emitting diode |
JP3246386B2 (en) | 1997-03-05 | 2002-01-15 | 日亜化学工業株式会社 | Light emitting diode and color conversion mold member for light emitting diode |
US7384680B2 (en) * | 1997-07-21 | 2008-06-10 | Nanogram Corporation | Nanoparticle-based power coatings and corresponding structures |
CN1101442C (en) | 1998-11-23 | 2003-02-12 | 中国科学院长春物理研究所 | Green fluorescent body of rare-earth and garnet and its preparing process |
DE20023590U1 (en) | 1999-07-23 | 2005-02-24 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Phosphor for light sources and associated light source |
DE19934126A1 (en) | 1999-07-23 | 2001-01-25 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Fluorescent oxide for forming white LEDs, includes cerium-activated garnet-based oxide with terbium addition |
US6409938B1 (en) | 2000-03-27 | 2002-06-25 | The General Electric Company | Aluminum fluoride flux synthesis method for producing cerium doped YAG |
US6577073B2 (en) | 2000-05-31 | 2003-06-10 | Matsushita Electric Industrial Co., Ltd. | Led lamp |
TWI287569B (en) * | 2001-06-27 | 2007-10-01 | Nantex Industry Co Ltd | Yttrium aluminium garnet fluorescent powder comprising at least two optical active center, its preparation and uses |
US7008558B2 (en) | 2001-10-11 | 2006-03-07 | General Electric Company | Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage |
JP3983037B2 (en) | 2001-11-22 | 2007-09-26 | 株式会社半導体エネルギー研究所 | Light emitting device and manufacturing method thereof |
US6869544B2 (en) * | 2001-12-14 | 2005-03-22 | National Cheng Kung University | Process for producing nanoscale yttrium aluminum garnet (YAG) fluorescent powders |
US6809471B2 (en) | 2002-06-28 | 2004-10-26 | General Electric Company | Phosphors containing oxides of alkaline-earth and Group-IIIB metals and light sources incorporating the same |
US6809781B2 (en) | 2002-09-24 | 2004-10-26 | General Electric Company | Phosphor blends and backlight sources for liquid crystal displays |
JP2004115633A (en) | 2002-09-25 | 2004-04-15 | Matsushita Electric Ind Co Ltd | Silicate phosphor and light-emitting unit therewith |
JP4263453B2 (en) * | 2002-09-25 | 2009-05-13 | パナソニック株式会社 | Inorganic oxide and light emitting device using the same |
JP4991026B2 (en) | 2003-02-26 | 2012-08-01 | 日亜化学工業株式会社 | Light emitting device |
US7038370B2 (en) | 2003-03-17 | 2006-05-02 | Lumileds Lighting, U.S., Llc | Phosphor converted light emitting device |
CN1227325C (en) | 2003-08-05 | 2005-11-16 | 北京大学 | Violet light excitated bicomponent three basic colour fluorescent powder and its preparation method |
JP4093943B2 (en) * | 2003-09-30 | 2008-06-04 | 三洋電機株式会社 | LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
JP4269880B2 (en) | 2003-10-17 | 2009-05-27 | 日亜化学工業株式会社 | Fluorescent lamp and phosphor for fluorescent lamp |
DE10360546A1 (en) * | 2003-12-22 | 2005-07-14 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Phosphor and light source with such phosphor |
US7573072B2 (en) | 2004-03-10 | 2009-08-11 | Lumination Llc | Phosphor and blends thereof for use in LEDs |
US7462086B2 (en) | 2004-04-21 | 2008-12-09 | Philips Lumileds Lighting Company, Llc | Phosphor for phosphor-converted semiconductor light emitting device |
US7700002B2 (en) | 2004-05-27 | 2010-04-20 | Koninklijke Philips Electronics N.V. | Illumination system comprising a radiation source and fluorescent material |
JP4762892B2 (en) | 2004-06-18 | 2011-08-31 | 独立行政法人物質・材料研究機構 | α-sialon and method for producing the same |
JP4645089B2 (en) | 2004-07-26 | 2011-03-09 | 日亜化学工業株式会社 | Light emitting device and phosphor |
US7311858B2 (en) | 2004-08-04 | 2007-12-25 | Intematix Corporation | Silicate-based yellow-green phosphors |
US7575697B2 (en) | 2004-08-04 | 2009-08-18 | Intematix Corporation | Silicate-based green phosphors |
US7541728B2 (en) | 2005-01-14 | 2009-06-02 | Intematix Corporation | Display device with aluminate-based green phosphors |
US20060164005A1 (en) * | 2005-01-25 | 2006-07-27 | Chuan-Sheng Sun | Illumination apparatus having adjustable color temperature and method for adjusting the color temperature |
JP4325629B2 (en) | 2005-02-28 | 2009-09-02 | 三菱化学株式会社 | Phosphor, manufacturing method thereof, and light emitting device using the same |
WO2006093015A1 (en) | 2005-02-28 | 2006-09-08 | Mitsubishi Chemical Corporation | Phosphor and method for production thereof, and application thereof |
WO2006095284A1 (en) | 2005-03-08 | 2006-09-14 | Philips Intellectual Property & Standards Gmbh | Illumination system comprising a radiation source and a luminescent material |
JP4843990B2 (en) | 2005-04-22 | 2011-12-21 | 日亜化学工業株式会社 | Phosphor and light emitting device using the same |
EP1889892B1 (en) | 2005-05-30 | 2010-11-03 | Nemoto & Co., Ltd. | Green light emitting phosphor |
EP1893719B1 (en) | 2005-06-02 | 2017-05-03 | Philips Intellectual Property & Standards GmbH | Illumination system comprising color deficiency compensating luminescent material |
US8277687B2 (en) | 2005-08-10 | 2012-10-02 | Mitsubishi Chemical Corporation | Phosphor and light-emitting device using same |
US7560046B2 (en) | 2005-12-22 | 2009-07-14 | General Electric Company | Scintillator material and radiation detectors containing same |
JP5049336B2 (en) | 2006-03-21 | 2012-10-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electroluminescent device |
WO2007122531A2 (en) | 2006-04-25 | 2007-11-01 | Philips Intellectual Property & Standards Gmbh | Fluorescent lighting creating white light |
EP2060616A4 (en) | 2006-09-15 | 2010-08-04 | Mitsubishi Chem Corp | Phosphor, method for producing the same, phosphor-containing composition, light-emitting device, image display and illuminating device |
US8133461B2 (en) | 2006-10-20 | 2012-03-13 | Intematix Corporation | Nano-YAG:Ce phosphor compositions and their methods of preparation |
US9120975B2 (en) * | 2006-10-20 | 2015-09-01 | Intematix Corporation | Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates |
US8529791B2 (en) | 2006-10-20 | 2013-09-10 | Intematix Corporation | Green-emitting, garnet-based phosphors in general and backlighting applications |
US8475683B2 (en) * | 2006-10-20 | 2013-07-02 | Intematix Corporation | Yellow-green to yellow-emitting phosphors based on halogenated-aluminates |
US8113675B2 (en) | 2006-11-07 | 2012-02-14 | Koninklijke Philips Electronics N.V. | Arrangement for emitting mixed light |
CN101182416B (en) | 2006-11-13 | 2010-09-22 | 北京有色金属研究总院 | Aluminate phosphor containing divalent metal element as well as manufacturing method and luminescent device |
US7521862B2 (en) | 2006-11-20 | 2009-04-21 | Philips Lumileds Lighting Co., Llc | Light emitting device including luminescent ceramic and light-scattering material |
CN100999662A (en) | 2006-12-29 | 2007-07-18 | 中国科学院长春应用化学研究所 | Preparation process of fluorescent powder for white light LED excited by blue light |
JP5135812B2 (en) | 2007-02-05 | 2013-02-06 | 憲一 町田 | Phosphor based on nitride or oxynitride, method for producing the same, phosphor-containing composition using the same, light emitting device, lighting device, and image display device |
KR101260101B1 (en) | 2007-04-18 | 2013-05-02 | 미쓰비시 가가꾸 가부시키가이샤 | Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, illuminating device, image display device, and nitrogen-containing compound |
US7857994B2 (en) | 2007-05-30 | 2010-12-28 | GE Lighting Solutions, LLC | Green emitting phosphors and blends thereof |
US8384092B2 (en) | 2007-08-30 | 2013-02-26 | Nichia Corporation | Light emitting device |
US8168085B2 (en) | 2008-01-03 | 2012-05-01 | University Of South Carolina | White light phosphors for fluorescent lighting |
US8163203B2 (en) | 2008-02-27 | 2012-04-24 | The Regents Of The University Of California | Yellow emitting phosphors based on Ce3+-doped aluminate and via solid solution for solid-state lighting applications |
US8274215B2 (en) | 2008-12-15 | 2012-09-25 | Intematix Corporation | Nitride-based, red-emitting phosphors |
US8808656B2 (en) | 2008-07-25 | 2014-08-19 | National Institute For Materials Science | Garnet-type single crystal, optics using same and related apparatus thereof |
JP5521412B2 (en) | 2008-07-31 | 2014-06-11 | 日立金属株式会社 | Fluorescent material, scintillator and radiation detector using the same |
DE102008051029A1 (en) | 2008-10-13 | 2010-04-15 | Merck Patent Gmbh | Doped garnet phosphors with redshift for pcLEDs |
WO2010053197A1 (en) | 2008-11-10 | 2010-05-14 | 信越化学工業株式会社 | Porous light-accumulating phosphor ceramic |
JP2010121068A (en) | 2008-11-20 | 2010-06-03 | Niigata Univ | Fluorophor and fluorophor-containing composition, and light-emitting device, illuminating device and image-displaying device each using the composition |
TWI361216B (en) | 2009-09-01 | 2012-04-01 | Ind Tech Res Inst | Phosphors, fabricating method thereof, and light emitting device employing the same |
CN101760196B (en) | 2009-12-29 | 2012-11-21 | 四川大学 | Method for combining yellow fluorescent powder used for white light LED |
CN102687266B (en) | 2009-12-31 | 2015-11-25 | 海洋王照明科技股份有限公司 | Based on the white light emitting device of purple LED |
JP5323131B2 (en) | 2010-06-09 | 2013-10-23 | 信越化学工業株式会社 | Fluorescent particles, light-emitting diodes, illumination device using them, and backlight device for liquid crystal panel |
WO2012122401A2 (en) | 2011-03-08 | 2012-09-13 | Intematix Corporation | Yellow-green to yellow-emitting phosphors based on halogenated-aluminates |
JP5182399B2 (en) | 2011-07-20 | 2013-04-17 | 三菱化学株式会社 | White light emitting device |
CN102723422B (en) | 2011-12-31 | 2015-04-29 | 深圳市光峰光电技术有限公司 | Wavelength conversion apparatus and luminous apparatus |
-
2007
- 2007-10-18 US US11/975,356 patent/US8133461B2/en active Active
- 2007-10-19 CN CN2007800420006A patent/CN101536193B/en active Active
- 2007-10-19 EP EP07839717A patent/EP2082430A4/en not_active Ceased
- 2007-10-19 KR KR1020097010286A patent/KR101552709B1/en active IP Right Grant
- 2007-10-19 WO PCT/US2007/022360 patent/WO2008051486A1/en active Application Filing
- 2007-10-19 JP JP2009533393A patent/JP2010507008A/en active Pending
- 2007-10-19 TW TW096139315A patent/TWI375325B/en not_active IP Right Cessation
- 2007-10-19 CN CN2011100211441A patent/CN102093891B/en active Active
- 2007-10-19 CN CN2013101904742A patent/CN103320129A/en active Pending
-
2012
- 2012-03-12 US US13/417,645 patent/US8414796B2/en active Active
-
2014
- 2014-03-12 JP JP2014049084A patent/JP2014148677A/en active Pending
-
2015
- 2015-08-27 US US14/837,459 patent/US9428690B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050142240A1 (en) * | 2001-12-17 | 2005-06-30 | Essilor Internationl (Compagnie Generale D'optique) | Mold for hot-forming a thermoplastic lens |
US20040173807A1 (en) * | 2003-03-04 | 2004-09-09 | Yongchi Tian | Garnet phosphors, method of making the same, and application to semiconductor LED chips for manufacturing lighting devices |
US20050092408A1 (en) * | 2003-05-16 | 2005-05-05 | Lauf Robert J. | Inorganic optical taggant and method of making |
US20050093442A1 (en) * | 2003-10-29 | 2005-05-05 | Setlur Anant A. | Garnet phosphor materials having enhanced spectral characteristics |
US20060083694A1 (en) * | 2004-08-07 | 2006-04-20 | Cabot Corporation | Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same |
Non-Patent Citations (1)
Title |
---|
See also references of EP2082430A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101712871A (en) * | 2008-10-06 | 2010-05-26 | 罗维鸿 | White light luminous diode and iodide garnet phosphor powder thereof |
DE102008051029A1 (en) | 2008-10-13 | 2010-04-15 | Merck Patent Gmbh | Doped garnet phosphors with redshift for pcLEDs |
US9133390B2 (en) | 2009-12-17 | 2015-09-15 | Koninklijke Philips N.V. | Light emitting diode device with luminescent material |
JP2013514655A (en) * | 2009-12-17 | 2013-04-25 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Light emitting diode device comprising a luminescent material |
US9944849B2 (en) | 2009-12-17 | 2018-04-17 | Koninklijke Philips N.V. | Light emitting diode device with luminescent material |
CN102382655A (en) * | 2010-08-31 | 2012-03-21 | 北京有色金属研究总院 | Phosphorus-containing LED fluorescent powder, preparation method and prepared light-emitting device thereof |
RU2499329C2 (en) * | 2011-09-02 | 2013-11-20 | Закрытое Акционерное Общество "Научно-Производственная Коммерческая Фирма "Элтан Лтд" | Luminescent polycarbonate film for white light-emitting diodes and detectors |
CN102517017A (en) * | 2011-12-09 | 2012-06-27 | 苏州晶能科技有限公司 | Phosphor and its preparation method and white LED plane light source containing phosphor |
CN102517017B (en) * | 2011-12-09 | 2013-12-04 | 苏州晶能科技有限公司 | Phosphor and its preparation method and white LED plane light source containing phosphor |
EP2938699A4 (en) * | 2012-12-28 | 2016-08-24 | Intematix Corp | Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates |
WO2014173376A1 (en) | 2013-04-22 | 2014-10-30 | Crytur Spol. S R.O. | White light emitting diode with single crystal phosphor and the manner of production |
DE102013109313A1 (en) * | 2013-08-28 | 2015-03-05 | Leuchtstoffwerk Breitungen Gmbh | Improved garnet phosphor and process for its preparation |
CN106796976A (en) * | 2014-10-08 | 2017-05-31 | 首尔半导体株式会社 | Light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
TWI375325B (en) | 2012-10-21 |
US9428690B2 (en) | 2016-08-30 |
EP2082430A1 (en) | 2009-07-29 |
JP2014148677A (en) | 2014-08-21 |
US8133461B2 (en) | 2012-03-13 |
US8414796B2 (en) | 2013-04-09 |
TW200834916A (en) | 2008-08-16 |
CN102093891B (en) | 2013-09-25 |
CN101536193A (en) | 2009-09-16 |
US20120175557A1 (en) | 2012-07-12 |
CN103320129A (en) | 2013-09-25 |
KR20090082234A (en) | 2009-07-29 |
EP2082430A4 (en) | 2011-05-25 |
JP2010507008A (en) | 2010-03-04 |
US20160115385A1 (en) | 2016-04-28 |
CN102093891A (en) | 2011-06-15 |
KR101552709B1 (en) | 2015-09-11 |
US20080138268A1 (en) | 2008-06-12 |
CN101536193B (en) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8414796B2 (en) | Nano-YAG:Ce phosphor compositions and their methods of preparation | |
JP5110336B2 (en) | Phosphor particles | |
KR20060123209A (en) | Phosphor and light emission appliance using phosphor | |
KR101854114B1 (en) | Metal fluoride-based red phosphors and light emitting device containing the same | |
JP6985704B2 (en) | Fluorescent material, light emitting device, lighting device and image display device | |
JP6782427B2 (en) | Fluorescent material, light emitting device, lighting device and image display device | |
WO2014021006A1 (en) | Alkaline earth metal silicate phosphor and method for producing same | |
WO2016076380A1 (en) | Phosphor, light-emitting device, illumination device, and image display device | |
JP2015131946A (en) | phosphor | |
JP2017190434A (en) | Fluophor, light-emitting device, luminaire and image display device | |
CN116018388A (en) | Europium-activated beta-sialon phosphor and light-emitting device | |
JP2016088970A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2016079213A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2016056246A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2016124929A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2016191011A (en) | Phosphor, light emitting device, lighting device and image display device | |
JP2016124928A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2016094533A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2017008184A (en) | Fluophor, light-emitting device, lighting system and image display device | |
JP2016199675A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2016056329A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2017043728A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2016191005A (en) | Phosphor, light emitting device, lighting device and image display device | |
JP2017206599A (en) | Phosphor, light emitting device, illumination device and image display device | |
JP2017088791A (en) | Phosphor, light emitting device, illumination device and image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780042000.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07839717 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2009533393 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007839717 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097010286 Country of ref document: KR |