WO2008050721A1 - Tubular electricity source and electricity source body - Google Patents

Tubular electricity source and electricity source body Download PDF

Info

Publication number
WO2008050721A1
WO2008050721A1 PCT/JP2007/070556 JP2007070556W WO2008050721A1 WO 2008050721 A1 WO2008050721 A1 WO 2008050721A1 JP 2007070556 W JP2007070556 W JP 2007070556W WO 2008050721 A1 WO2008050721 A1 WO 2008050721A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw shaft
cylindrical
battery
cylindrical power
power source
Prior art date
Application number
PCT/JP2007/070556
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Murata
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008050721A1 publication Critical patent/WO2008050721A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cylindrical power source attached to a mounting member and a power source body in which the cylindrical power sources are connected in series.
  • a power storage device having a small size, light weight, high output, and long device life is desired as a driving or auxiliary power source, and an assembled battery in which batteries are connected in series or in parallel is used.
  • Patent Document 1 discloses a cylindrical battery in which an internal thread is formed on a pole column passing through the center of the cylindrical battery.
  • FIG. 8A is a perspective view of a conventional cylindrical battery
  • FIG. 8B is a cross-sectional view of the conventional cylindrical battery.
  • Convex positive electrode screw shaft portion 210 and negative electrode screw shaft portion 211 are provided at both ends of cylindrical battery 200. Screw grooves are formed in the outer peripheral surfaces of the positive and negative screw shaft portions 210 and 211.
  • the screw shaft Y of the positive electrode screw shaft portion 210 and the screw shaft Y of the negative electrode screw shaft portion 211 are cylindrical batteries 2
  • a large number of insertion hole portions are formed in a matrix in a pair of opposed battery folders (not shown), and positive and negative screw shaft portions 210 and 211 are inserted into these insertion hole portions.
  • the cylindrical battery 200 is supported by being inserted between the battery folders.
  • Each cylindrical battery 200 is fixed to the battery folder by fastening the fastening nut 230 from above the nose 300 to the positive and negative screw shaft portions 210 and 211 protruding from the battery folder.
  • Patent Document 1 Patent No. 3650659 Specification
  • Patent Document 2 JP 2000-106164 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-353547
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-260605
  • the cylindrical battery 200 may rotate in accordance with the rotation operation of the nut 230. For this reason, there is a possibility that the negative electrode portion 210 that is rotated contacts the hole portion of the battery folder or the bus bar, and an excessive load force is applied.
  • the battery element may
  • the area of the gas release valve and the electrolyte inlet for ejecting the gas generated from the battery to the outside of the battery is reduced.
  • a first object of the present invention is to suppress the rotation of the cylindrical power source in accordance with the rotation operation of the fastening member.
  • a second object of the present invention is to make the space for forming the gas release valve wider than that of the prior art.
  • a third object of the present invention is to make the space for forming the electrolyte solution inlet wider than that of the prior art.
  • the cylindrical power source of the present invention is attached to the attachment member via first and second screw shaft portions provided at both ends of the cylindrical power source body.
  • the first and / or second screw shaft portions are eccentric with respect to a longitudinal central axis of the cylindrical power supply main body.
  • the cylindrical power source can be attached to the attachment member by fastening the fastening member to the first and second screw shaft portions.
  • the cylindrical power source body is sealed, a holding part for holding the first screw shaft part is provided, and a gas release valve is provided in the holding part.
  • the first screw shaft portion and the gas release valve may be provided at different positions in a direction perpendicular to the central axis in the longitudinal direction.
  • the cylindrical power source body is sealed, and a holding part for holding the first screw shaft part is provided, and an electrolytic solution injection is provided in the holding part.
  • the first screw shaft portion and the electrolyte injection port may be provided at different positions in a direction perpendicular to the central axis in the longitudinal direction.
  • the first and second screw shaft portions are arranged coaxially or at positions corresponding to point symmetry with respect to the longitudinal central axis.
  • This cylindrical power source can be applied to a power source body in which a plurality of cylindrical power sources are arranged in parallel and electrodes of adjacent cylindrical power sources are connected in series via a conductive plate. In this case, the distance between the electrodes connected by the electrode plate can be made equal by making the first and second electrodes also serve as the electrodes.
  • FIG. 1 is a perspective view of an assembled battery.
  • FIG. 2A is a perspective view of a cylindrical battery.
  • FIG. 2B is a cross-sectional view of a cylindrical battery.
  • FIG. 3 is a plan view of the assembled battery.
  • FIG. 4 is a longitudinal step view of a cylindrical battery.
  • FIG. 5 is a longitudinal step view of a cylindrical battery of Example 2.
  • FIG. 6A is a perspective view of a screw shaft portion.
  • FIG. 6B is a perspective view of a screw shaft portion (modified example).
  • FIG. 7A is a perspective view of a screw shaft part of Example 3.
  • FIG. 7B is a perspective view of a screw shaft portion (modified example) of Example 3.
  • FIG. 8A is a perspective view of a conventional cylindrical battery.
  • FIG. 8B is a cross-sectional view of a conventional cylindrical battery. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a perspective view of the assembled battery.
  • FIG. 2 is a schematic view of a cylindrical battery
  • FIG. 2A is a perspective view
  • FIG. 2B is a cross-sectional view
  • a negative electrode screw shaft portion 22 is projected by hatching.
  • FIG. 3 is a plan view of the assembled battery, and the fastening nut is omitted for ease of explanation.
  • the cylindrical battery is a lithium ion battery.
  • the assembled battery A includes a pair of battery folders la and lb (mounting members) arranged to face each other, and 32 battery packs arranged so as to pass between the battery folders la and lb. (8 (X-axis direction) X 4 (Y-axis direction)) cylindrical batteries 2 to 2. Cylindrical type
  • the batteries 2 to 2, 2 to 2, and 2 to 2 are not shown.
  • a positive electrode screw shaft portion 21 (first screw shaft portion) is provided at one end of each cylindrical battery 2, and a screw groove portion 21a is formed on the outer peripheral surface of the positive electrode screw shaft portion 21.
  • a negative electrode screw shaft portion 22 (second screw shaft portion) is provided at the other end of each cylindrical battery 2, and a screw groove portion 22 a is formed on the outer peripheral surface of the negative electrode screw shaft portion 22. Yes.
  • the positive and negative screw shafts Y and Y of the positive and negative screw shaft portions 21 and 22 are connected to each other as shown in FIG.
  • the distance between the longitudinal center axis Y and the positive screw shaft Y is L, and the longitudinal center axis
  • a plurality of insertion holes l la and l ib for inserting the positive and negative screw shafts 21 and 22 of each cylindrical battery 2 are formed in a matrix.
  • the positive and negative screw shaft portions 21 and 22 protrude from the insertion holes l la and l ib to the outside of the battery folder 1 ( See Fig. 1 Akira)
  • the positive electrode screw shaft portion 21 of the cylindrical battery 2 is inserted into the insertion hole portion a of the battery folder la, and the negative electrode screw shaft portion 22 is inserted into the insertion hole of the battery folder lb.
  • Part l ib is purchased.
  • the cylindrical battery 2 adjacent to the cylindrical battery 2 in the direction of the arrow X is a cylindrical battery.
  • the cylindrical battery 2 2 2 has the same arrangement as the cylindrical battery 2, and the cylindrical battery 2
  • cylindrical batteries 2 2 2 2 are arranged side by side in the upper middle row.
  • the cylindrical battery 2 2 2 2 has a positive screw shaft 21 on the battery folder la side.
  • cylindrical batteries 2 2 2 arranged side by side in the lower middle row, the cylindrical batteries 2 2 2
  • cylindrical batteries 2 2 arranged side by side in the bottom row, the cylindrical batteries 2 2 2
  • the negative electrode screw shaft 22 of 2 is arranged on the battery folder la side (that is, the cylindrical battery 2
  • bus bar openings 3a are formed in the bus bar (conductive plate) 3 side by side in the direction of the arrow X, and the positive and negative screws of the adjacent cylindrical battery 2 are formed in these openings 3a.
  • Shaft portion 21 22 is inserted.
  • each cylindrical battery 2 can be connected in series.
  • copper can be used as the material of the bus bar 3.
  • the screw shafts Y and Y of the positive and negative screw shaft portions 21 and 22 are arranged in the longitudinal direction.
  • the screw shafts Y and Y are arranged coaxially with respect to the longitudinal central axis Y.
  • Fastening nuts (fastening members) 23 are fastened to the positive and negative screw shaft portions 21 and 22 inserted into the bus bar opening 3a.
  • the fastening nuts 23 are connected to the positive and negative screw screw shaft portions 21. , 22 can be used to fix the cylindrical battery 2 to the battery folder 1.
  • the positive screw shaft Y is eccentric with respect to the longitudinal central axis Y of the cylindrical battery 2.
  • the negative electrode screw shaft portion 22 can be kept in contact with the bus bar opening portion 3a and the insertion hole portion l ib by rotating, and an excessive load can be suppressed.
  • the same effect can be obtained when the fastening nut 23 is fastened to the negative electrode screw shaft portion 22.
  • a battery body 25 is incorporated inside the cylindrical battery canister 24.
  • a strip-like positive electrode body 25b with a positive active material applied on both sides and a strip-like negative electrode body 25c with a negative active material applied on both sides are spirally formed via a separator 25a. Constructed by winding!
  • An electrolytic solution is injected inside the battery jacket 24, and a battery body is contained in the electrolytic solution.
  • lithium transition element composite oxides LiCoO, LiNiO, LiFeO, LiCuO, LiMnO, LiMO (M is at least two kinds selected from the group consisting of Co, Ni, Fe, Cu, and Mn) Transition element), LiMn 2 O 3.
  • LiMn 2 O 3 LiMn 2 O 3.
  • a negative active material LiCoO, LiNiO, LiFeO, LiCuO, LiMnO, LiMO (M is at least two kinds selected from the group consisting of Co, Ni, Fe, Cu, and Mn) Transition element
  • muon can be occluded and released electrochemically.
  • Specific examples include natural graphite, artificial graphite, coatas, organic fired bodies, and metal chalcogenides.
  • Lithium salts used as electrolyte solutes include LiCIO, LiCFSO, LiPF, L
  • Organic solvents used to dissolve um salt include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, and the like.
  • a mixed solvent with a chain carbonate such as dimethylolene carbonate, jetinole carbonate, methinoreethino carbonate and the like.
  • Disc shaped current collecting plates 26 are welded to both ends of the battery body 25 in the battery longitudinal direction (Y direction).
  • Examples of the material for the current collector plate 26 include aluminum foil, stainless steel foil, and copper foil.
  • the current collector plate 26 is electrically and mechanically connected to the positive and negative screw shaft portions 21 and 22 via the conductive wires 27.
  • the positive electrode screw shaft portion 21 is formed on a cylindrical screw pedestal portion 28, and this screw pedestal portion
  • the positive electrode screw shaft portion 21, the screw base portion 28, and the flat plate portion 29 are integrally formed.
  • the screw shaft Y of the positive electrode screw shaft portion 21 is eccentric with respect to the longitudinal central axis Y of the cylindrical battery 2.
  • the diameter of the screw base portion 28 is set larger than that of the positive electrode screw shaft portion 21.
  • the outer diameter of the flat plate portion 29 is set to be slightly larger than the inner diameter of the battery outer can 24, and the flat plate portion 29 is press-fitted into the battery outer can 24. In this manner, the battery body 25 can be reliably sealed by press-fitting the flat plate portion 29 into the battery mantle can 24.
  • a gas release valve 29 ′ that is recessed toward the inner side of the cylindrical battery 2 is provided on the outer surface of the cylindrical battery 2 in the flat plate portion 29.
  • the gas release valve 29 or the flat plate portion 29 can be formed by punching.
  • the positive screw shaft Y of the positive electrode screw shaft portion 21 is the longitudinal length of the cylindrical battery 2.
  • the gas discharge valve 29 ' can be used more than the conventional technology (in the conventional technology, the screw shaft and the longitudinal axis of the cylindrical battery are arranged coaxially).
  • the formation area area in the direction perpendicular to the longitudinal central axis Y) can be increased. Thereby, the safety of the cylindrical battery 2 can be enhanced.
  • the gas release valve 29 ′ is also formed on the flat plate portion 29 of the negative electrode screw shaft portion 22.
  • a gas release valve 29 'composed of a spring type automatic return valve may be provided on the flat plate portion 29! /.
  • This spring-type automatic return valve can be configured by providing a movable valve in an opening formed in the flat plate portion 29 so as to be movable in the thickness direction, and attaching the spring to this movable valve.
  • FIG. 6A is a perspective view of the positive electrode (negative electrode) screw shaft portion 21 (22).
  • the positive electrode (negative electrode) screw shaft portion 21 (22) is formed in a cylindrical shape, and a thread groove portion (female screw) is cut on the inner peripheral surface.
  • the positive electrode (negative electrode) screw shaft portion 21 (22) is held by a flat plate portion 29, and the positive electrode (negative electrode) screw shaft portion 21 (22) and the flat plate portion 29 are integrally formed.
  • Each cylindrical battery 2 can be fixed to the battery folder 1 by fastening a bolt (fastening member) (not shown) to the positive electrode (negative electrode) screw shaft portion 21 (22).
  • FIG. 5 is a cross-sectional view of the cylindrical battery 2 ′ of the present embodiment.
  • the same constituent elements as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the conductive wire 27 drawn from the current collector plate 26 is welded to the sealing portion 24 '.
  • Positive and negative electrode screw shaft portions 21, 22 are welded to the outer surface of the sealing portion 24 ', and the screw shafts of the positive and negative electrode screw shaft portions 21, 22 are the same as in the first embodiment.
  • Y and Y are longitudinal centers
  • FIG. 6B is a perspective view of the positive electrode (negative electrode) screw shaft portion 21 (22).
  • Positive (negative electrode) screw shaft formed in a cylindrical shape
  • a thread groove (female thread) is cut in the inner peripheral surface of 21 (22).
  • the positive electrode (negative electrode) screw shaft portion 21 (22) is welded to the sealing portion 24 ′.
  • Each cylindrical battery 2 ′ can be fixed to the battery folder 1 by fastening a bolt (fastening member) (not shown) to the positive electrode (negative electrode) screw shaft portion 21 (22).
  • FIG. 7 is a perspective view of the positive electrode screw shaft portion 21.
  • an electrolyte inlet 41 having a circular cross section is formed at a position corresponding to the gas release valve 29 ′ of the cylindrical battery 2 of the first embodiment. Since other configurations are the same as those in the first embodiment, the description thereof is omitted.
  • the positive screw shaft Y of the positive electrode screw shaft portion 21 is eccentric with respect to the longitudinal central axis Y of the cylindrical battery 2, thereby widening the liquid injection area of the electrolyte injection port 41.
  • the shape of the electrolyte solution injection port 41 may be a long hole shape as shown in Fig. 8B.
  • the electrolyte solution injection port 41 can also be formed in the flat plate portion 29 of the negative electrode screw shaft portion 22. According to the present embodiment, the same effect as in the first embodiment can be obtained.
  • the screw shafts Y and Y of the positive and negative screw shafts 21 and 22 are longitudinally neither symmetrical nor coaxial.
  • the central axis Y may be eccentric, or both axes may be eccentric with respect to the longitudinal central axis Y.
  • the cylindrical battery 2 (2 can be prevented from rotating according to the rotation operation of the fastening member (fastening nut 23, fastening bolt). Thereby, the bus bar opening 3a is inserted.
  • the positive electrode (negative electrode) screw shaft portion 21 (22) screw shaft portion on the opposite side of the fastening side) abuts on the hole portion 11a (l ib), and an excessive load can be suppressed.
  • the present invention uses a bipolar electrode in which a positive electrode layer is formed on one surface of a current collector and a negative electrode layer is formed on the other surface via an electrolyte. It can be applied to cylindrical bipolar batteries (cylindrical power supply), cylindrical electric double layer capacitors (cylindrical power supply), and cylindrical fuel cells (cylindrical power supply).
  • the present invention can be applied not only to a cylindrical power source but also to a square cylindrical power source.
  • the above-described cylindrical power source can be used as a power source for driving a motor in, for example, an electric vehicle (EV), a hybrid vehicle (HEV), and a fuel cell vehicle (FCV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • FCV fuel cell vehicle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

[PROBLEMS] A tubular electricity source installed on an installation member is prevented from rotating with rotation of a fastening member. [MEANS FOR SOLVING PROBLEMS] The tubular electricity source (2) is installed on the installation member (1) via first and second screw shafts (21, 22) provided on both sides of a tubular electricity source body. The first and/or the second screw shaft is eccentric with respect to the longitudinal center axis (Y1) of the tubular electricity source body.

Description

明 細 書  Specification
筒型電源及び電源体  Cylindrical power supply and power supply
技術分野  Technical field
[0001] 本発明は、取り付け部材に取付けられる筒型電源及びこの筒型電源を直列に接続 した電源体に関する。  [0001] The present invention relates to a cylindrical power source attached to a mounting member and a power source body in which the cylindrical power sources are connected in series.
背景技術  Background art
[0002] 近年、環境意識の高まりを受けて、自動車の動力源を、化石燃料を利用するェンジ ンから電気エネルギーを利用するモータに移行する動きがある。このため、モータの 電力源となる電池の技術も急速に発展しつつある。  [0002] In recent years, in response to growing environmental awareness, there is a movement to shift the power source of automobiles from engines that use fossil fuels to motors that use electrical energy. For this reason, the technology of batteries that serve as power sources for motors is also rapidly developing.
[0003] 例えば、ハイブリッド自動車では、小型軽量、高出力で、かつ、装置寿命の長い蓄 電装置が駆動用又は補助電源として望まれており、電池を直列又は並列接続した組 電池が用いられる。 [0003] For example, in a hybrid vehicle, a power storage device having a small size, light weight, high output, and long device life is desired as a driving or auxiliary power source, and an assembled battery in which batteries are connected in series or in parallel is used.
[0004] 特許第 3650659号明細書(特許文献 1)には、円筒型電池の中心を通る極柱に雌 ネジを形成した円筒型電池が開示されている。  [0004] Japanese Patent No. 3650659 (Patent Document 1) discloses a cylindrical battery in which an internal thread is formed on a pole column passing through the center of the cylindrical battery.
[0005] 図 8を参照して、従来の円筒型電池を用いた組電池の組立方法を説明する。ここでWith reference to FIG. 8, a conventional assembled battery assembly method using a cylindrical battery will be described. here
、図 8Aは、従来の円筒型電池の斜視図であり、図 8Bは従来の円筒型電池の断面図 である。 FIG. 8A is a perspective view of a conventional cylindrical battery, and FIG. 8B is a cross-sectional view of the conventional cylindrical battery.
[0006] 円筒型電池 200の両端には凸状の正極ネジ軸部 210及び負極ネジ軸部 211が設 けられている。正及び負極ネジ軸部 210、 211の外周面にはネジ溝が切られており、 正極ネジ軸部 210のネジ軸 Y及び負極ネジ軸部 211のネジ軸 Yは、円筒型電池 2  [0006] Convex positive electrode screw shaft portion 210 and negative electrode screw shaft portion 211 are provided at both ends of cylindrical battery 200. Screw grooves are formed in the outer peripheral surfaces of the positive and negative screw shaft portions 210 and 211. The screw shaft Y of the positive electrode screw shaft portion 210 and the screw shaft Y of the negative electrode screw shaft portion 211 are cylindrical batteries 2
2 3  twenty three
00の長手方向中心軸 Yと同軸上に配置されている。  It is arranged coaxially with the longitudinal central axis Y of 00.
[0007] 対向する一対の電池フォルダ(不図示)には、マトリクス状に多数の揷入穴部が形 成されており、これらの揷入穴部に正及び負極ネジ軸部 210、 211を揷入することに より、電池フォルダ間に差し渡すようにして円筒型電池 200は支持される。 [0007] A large number of insertion hole portions are formed in a matrix in a pair of opposed battery folders (not shown), and positive and negative screw shaft portions 210 and 211 are inserted into these insertion hole portions. The cylindrical battery 200 is supported by being inserted between the battery folders.
[0008] 電池フォルダから突出した正及び負極ネジ軸部 210、 211に対してノ スノ ー 300 の上から締結ナット 230を締結することにより、電池フォルダに各円筒型電池 200が 固定される。 特許文献 1:特許第 3650659号明細書 [0008] Each cylindrical battery 200 is fixed to the battery folder by fastening the fastening nut 230 from above the nose 300 to the positive and negative screw shaft portions 210 and 211 protruding from the battery folder. Patent Document 1: Patent No. 3650659 Specification
特許文献 2 :特開 2000— 106164号公報  Patent Document 2: JP 2000-106164 A
特許文献 3:特開 2005— 353547号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-353547
特許文献 4 :特開 2002— 260605号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-260605
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しかしながら、上述の構成では、ネジ軸 Y、 Y及び中心軸 Yが同軸上に配置され [0009] However, in the above-described configuration, the screw shafts Y and Y and the central shaft Y are arranged coaxially.
2 3 1  2 3 1
ているため、ナット 230の回転動作に応じて、円筒型電池 200が回転するおそれがあ る。このため、電池フォルダの穴部やバスバーに回転した負電極部 210が当接して、 過剰な負荷力かかるおそれがある。  Therefore, the cylindrical battery 200 may rotate in accordance with the rotation operation of the nut 230. For this reason, there is a possibility that the negative electrode portion 210 that is rotated contacts the hole portion of the battery folder or the bus bar, and an excessive load force is applied.
[0010] また、ネジ軸 Y、 Yを中心軸 Yと同軸に配置した場合には、高温時に電池要素か [0010] In addition, when the screw shafts Y and Y are arranged coaxially with the central shaft Y, the battery element may
2 3 1  2 3 1
ら発生するガスを電池の外側に噴出させるためのガス放出弁や電解液注入口の面 積が狭くなる。  The area of the gas release valve and the electrolyte inlet for ejecting the gas generated from the battery to the outside of the battery is reduced.
[0011] そこで、本願発明は、締結部材の回転動作に応じて筒型電源が回転するのを抑制 することを第 1の目的とする。  Accordingly, a first object of the present invention is to suppress the rotation of the cylindrical power source in accordance with the rotation operation of the fastening member.
[0012] また、本願発明は、ガス放出弁の形成スペースを従来技術よりも広くすることを第 2 の目的とする。 [0012] A second object of the present invention is to make the space for forming the gas release valve wider than that of the prior art.
[0013] また、本願発明は、電解液注入口の形成スペースを従来技術よりも広くすることを 第 3の目的とする。  [0013] A third object of the present invention is to make the space for forming the electrolyte solution inlet wider than that of the prior art.
課題を解決するための手段  Means for solving the problem
[0014] 上記第 1の目的を達成するために、本願発明の円筒型電源は、筒型電源本体の両 端に設けられた第 1及び第 2のネジ軸部を介して取り付け部材に取り付けられる筒型 電源であって、前記第 1及び/又は第 2のネジ軸部は、前記筒型電源本体の長手方 向中心軸に対して偏芯していることを特徴とする。 [0014] In order to achieve the first object, the cylindrical power source of the present invention is attached to the attachment member via first and second screw shaft portions provided at both ends of the cylindrical power source body. In the cylindrical power supply, the first and / or second screw shaft portions are eccentric with respect to a longitudinal central axis of the cylindrical power supply main body.
[0015] ここで、前記第 1及び第 2のネジ軸部に締結部材を締結することにより、取り付け部 材に円筒型電源を取付けることができる。 Here, the cylindrical power source can be attached to the attachment member by fastening the fastening member to the first and second screw shaft portions.
[0016] また、上記第 2の目的を達成するために、前記筒型電源本体を封止し、前記第 1の ネジ軸部を保持する保持部を設けるとともに、前記保持部にガス放出弁を設け、前記 第 1のネジ軸部及び前記ガス放出弁を、前記長手方向中心軸に直交する方向にお V、て異なる位置に設けるとよレ、。 [0016] In order to achieve the second object, the cylindrical power source body is sealed, a holding part for holding the first screw shaft part is provided, and a gas release valve is provided in the holding part. Provided The first screw shaft portion and the gas release valve may be provided at different positions in a direction perpendicular to the central axis in the longitudinal direction.
[0017] また、上記第 3の目的を達成するために、前記筒型電源本体を封止し、前記第 1の ネジ軸部を保持する保持部を設けるとともに、前記保持部には電解液注入口が設け 、前記第 1のネジ軸部及び前記電解液注入口を、前記長手方向中心軸に直交する 方向にぉレ、て異なる位置に設けるとよ!/、。  [0017] In order to achieve the third object, the cylindrical power source body is sealed, and a holding part for holding the first screw shaft part is provided, and an electrolytic solution injection is provided in the holding part. Provided with an inlet, the first screw shaft portion and the electrolyte injection port may be provided at different positions in a direction perpendicular to the central axis in the longitudinal direction.
[0018] さらに、前記長手方向中心軸の方向から視たときに、前記第 1及び第 2のネジ軸部 を、同軸上又は前記長手方向中心軸に対して点対称に対応する位置に配置すると よい。この円筒型電源は、円筒型電源が複数並設され、隣接する円筒型電源の電極 を導電板を介して直列に接続した電源体に適用することができる。この場合、前記第 1及び前記第 2の電極に前記電極を兼ねさせることにより、前記電極板によって接続 される電極間の間隔を等しくすることができる。  [0018] Further, when viewed from the direction of the longitudinal central axis, the first and second screw shaft portions are arranged coaxially or at positions corresponding to point symmetry with respect to the longitudinal central axis. Good. This cylindrical power source can be applied to a power source body in which a plurality of cylindrical power sources are arranged in parallel and electrodes of adjacent cylindrical power sources are connected in series via a conductive plate. In this case, the distance between the electrodes connected by the electrode plate can be made equal by making the first and second electrodes also serve as the electrodes.
発明の効果  The invention's effect
[0019] 本願発明によれば、前記第 1及び第 2のネジ軸部に締結部材を締結する際に、締 結部材の回転動作に応じて筒型電源が回転するのを抑制できる。  [0019] According to the present invention, when the fastening member is fastened to the first and second screw shaft portions, it is possible to prevent the cylindrical power source from rotating according to the rotational operation of the fastening member.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]組電池の斜視図である。  FIG. 1 is a perspective view of an assembled battery.
[図 2A]円筒型電池の斜視図である。  FIG. 2A is a perspective view of a cylindrical battery.
[図 2B]円筒型電池の断面図である。  FIG. 2B is a cross-sectional view of a cylindrical battery.
[図 3]組電池の平面図である。  FIG. 3 is a plan view of the assembled battery.
[図 4]円筒型電池の長手方向段面図である。  FIG. 4 is a longitudinal step view of a cylindrical battery.
[図 5]実施例 2の円筒型電池の長手方向段面図である。  FIG. 5 is a longitudinal step view of a cylindrical battery of Example 2.
[図 6A]ネジ軸部の斜視図である。  FIG. 6A is a perspective view of a screw shaft portion.
[図 6B]ネジ軸部(変形例)の斜視図である  FIG. 6B is a perspective view of a screw shaft portion (modified example).
[図 7A]実施例 3のネジ軸部の斜視図である。  FIG. 7A is a perspective view of a screw shaft part of Example 3.
[図 7B]実施例 3のネジ軸部(変形例)の斜視図である。  FIG. 7B is a perspective view of a screw shaft portion (modified example) of Example 3.
[図 8A]従来の円筒型電池の斜視図である。  FIG. 8A is a perspective view of a conventional cylindrical battery.
[図 8B]従来の円筒型電池の断面図である。 発明を実施するための最良の形態 FIG. 8B is a cross-sectional view of a conventional cylindrical battery. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施例について説明する。  [0021] Examples of the present invention will be described below.
[0022] (実施例 1)  [0022] (Example 1)
(組電池の概略構成)  (Schematic configuration of assembled battery)
図 1、図 2及び図 3を参照して、本実施例の組電池(電源体)の構成について説明 する。この組電池は、本実施例の円筒形電池 (筒型電源)を複数並設することにより 構成されており、隣接する円筒形電池の電極をバスバーを介して直列に接続してい る。図 1は組電池の斜視図である。図 2は円筒型電池の概略図であり、図 2Aが斜視 図、図 2Bが断面図であり、負極ネジ軸部 22をハッチングにより投影して図示している 。また、図 3は組電池の平面図であり、説明を容易にするために締結ナットを省略して 図示している。円筒型電池は、リチウムイオン電池である。  With reference to FIG. 1, FIG. 2 and FIG. 3, the structure of the assembled battery (power supply body) of the present embodiment will be described. This assembled battery is configured by arranging a plurality of cylindrical batteries (cylindrical power sources) of this embodiment side by side, and the electrodes of adjacent cylindrical batteries are connected in series via a bus bar. FIG. 1 is a perspective view of the assembled battery. FIG. 2 is a schematic view of a cylindrical battery, FIG. 2A is a perspective view, FIG. 2B is a cross-sectional view, and a negative electrode screw shaft portion 22 is projected by hatching. FIG. 3 is a plan view of the assembled battery, and the fastening nut is omitted for ease of explanation. The cylindrical battery is a lithium ion battery.
[0023] これらの図において、組電池 Aは、対向配置される一対の電池フォルダ la、 lb (取 り付け部材)と、これらの電池フォルダ la、 lb間に差し渡すように配置された 32個(8 (X軸方向) X 4 (Y軸方向))の円筒型電池 2〜2 とから構成される。なお、円筒型  [0023] In these drawings, the assembled battery A includes a pair of battery folders la and lb (mounting members) arranged to face each other, and 32 battery packs arranged so as to pass between the battery folders la and lb. (8 (X-axis direction) X 4 (Y-axis direction)) cylindrical batteries 2 to 2. Cylindrical type
1 32  1 32
電池 2 〜2 、2 〜2 、2 〜2 は、不図示としている。  The batteries 2 to 2, 2 to 2, and 2 to 2 are not shown.
10 16 18 24 26 32  10 16 18 24 26 32
[0024] 各円筒型電池 2の一端には、正極ネジ軸部 21 (第 1のネジ軸部)が設けられており 、この正極ネジ軸部 21の外周面には、ネジ溝部 21aが形成されている。各円筒型電 池 2の他端には、負極ネジ軸部 22 (第 2のネジ軸部)が設けられており、この負極ネジ 軸部 22の外周面には、ネジ溝部 22aが形成されている。これらの正及び負極ネジ軸 部 21、 22の正及び負ネジ軸 Y、 Yは互いに、図 2に図示するように、円筒型電池 2  [0024] A positive electrode screw shaft portion 21 (first screw shaft portion) is provided at one end of each cylindrical battery 2, and a screw groove portion 21a is formed on the outer peripheral surface of the positive electrode screw shaft portion 21. ing. A negative electrode screw shaft portion 22 (second screw shaft portion) is provided at the other end of each cylindrical battery 2, and a screw groove portion 22 a is formed on the outer peripheral surface of the negative electrode screw shaft portion 22. Yes. The positive and negative screw shafts Y and Y of the positive and negative screw shaft portions 21 and 22 are connected to each other as shown in FIG.
2 3  twenty three
の長手方向中心軸 Yに対して偏芯した点対称の位置に配置されている。  Are arranged at point-symmetrical positions eccentric with respect to the central axis Y in the longitudinal direction.
[0025] すなわち、長手方向中心軸 Y及び正ネジ軸 Yの軸間距離を L、長手方向中心軸 [0025] That is, the distance between the longitudinal center axis Y and the positive screw shaft Y is L, and the longitudinal center axis
1 2 1  1 2 1
Y及び負ネジ軸 Yの軸間距離を Lとしたときに、 L =Lであり、これらの軸 Y、 Y When the distance between the Y and negative screw shaft Y is L, L = L. These axes Y, Y
1 3 2 1 2 1 2 及び Yは同一面内に位置している。 1 3 2 1 2 1 2 and Y are in the same plane.
3  Three
[0026] 電池フォルダ la、 lbには、各円筒型電池 2の正及び負極ネジ軸部 21、 22を揷入 するための揷入穴部 l la、 l ibがマトリクス状に複数形成されており、これらの円筒型 電池 2を電池フォルダ la、 lbに取り付けた状態において、正及び負極ネジ軸部 21、 22はそれぞれ揷入穴部 l la、 l ibから電池フォルダ 1の外側に突出している(図 1参 昭) [0026] In the battery folders la and lb, a plurality of insertion holes l la and l ib for inserting the positive and negative screw shafts 21 and 22 of each cylindrical battery 2 are formed in a matrix. When these cylindrical batteries 2 are attached to the battery folders la and lb, the positive and negative screw shaft portions 21 and 22 protrude from the insertion holes l la and l ib to the outside of the battery folder 1 ( See Fig. 1 Akira)
[0027] 最上列に配置される円筒型電池 2 2は、図 3に図示するように、正極及び負極  [0027] Cylindrical batteries 2 2 arranged in the uppermost row, as shown in FIG.
1 8  1 8
の向きが交互に反対向きとなるように、矢印 X方向に並設されている。  They are arranged side by side in the direction of arrow X so that the directions of are opposite to each other.
[0028] 具体的には、円筒型電池 2の正極ネジ軸部 21は、電池フォルダ laの揷入穴部 a に揷入されており、負極ネジ軸部 22は、電池フォルダ lbの揷入穴部 l ibに揷入され ている。 [0028] Specifically, the positive electrode screw shaft portion 21 of the cylindrical battery 2 is inserted into the insertion hole portion a of the battery folder la, and the negative electrode screw shaft portion 22 is inserted into the insertion hole of the battery folder lb. Part l ib is purchased.
[0029] そして、この円筒型電池 2の矢印 X方向に隣接する円筒型電池 2は、円筒型電池  [0029] The cylindrical battery 2 adjacent to the cylindrical battery 2 in the direction of the arrow X is a cylindrical battery.
1 2  1 2
2を YZ面内において 180° 反転させ、かつ、長手方向中心軸 Y周りに 180° 回転 させた向きに配置されており、円筒型電池 2の正及び負極ネジ軸部 21 22はそれ  2 is rotated 180 ° in the YZ plane and rotated 180 ° around the longitudinal central axis Y. The positive and negative screw shafts 21 22 of the cylindrical battery 2
2  2
ぞれ、揷入穴部 l ib及び 11aに揷入されている。  Respectively, they are inserted into the insertion holes l ib and 11a.
[0030] 円筒型電池 2 2 2は、円筒型電池 2と同じ配置になっており、円筒型電池 2 [0030] The cylindrical battery 2 2 2 has the same arrangement as the cylindrical battery 2, and the cylindrical battery 2
3 5 7 1 4 3 5 7 1 4
2 2は、円筒型電池 2と同じ配置になっている。 2 2 has the same arrangement as the cylindrical battery 2.
6 8 2  6 8 2
[0031] なお、上中列に並設される円筒型電池 2 2 のうち、円筒型電池 2 2 2 2  [0031] Of the cylindrical batteries 2 2 arranged side by side in the upper middle row, cylindrical batteries 2 2 2 2
9 16 9 11 13 1 は、電池フォルダ la側に負極ネジ軸部 22が配置されており(つまり、円筒型電池 2 9 16 9 11 13 1 has a negative screw shaft 22 arranged on the battery folder la side (that is, the cylindrical battery 2
5 2 と同じ)、円筒型電池 2 2 2 2 は、電池フォルダ la側に正極ネジ軸部 21が 5 2), the cylindrical battery 2 2 2 2 has a positive screw shaft 21 on the battery folder la side.
10 12 14 16  10 12 14 16
配置されている(つまり、円筒型電池 2と同じ)。  Placed (that is, the same as cylindrical battery 2).
[0032] また、下中列に並設される円筒型電池 2 2 において、円筒型電池 2 2 2 [0032] Further, in the cylindrical batteries 2 2 arranged side by side in the lower middle row, the cylindrical batteries 2 2 2
17 24 17 19 2 2 の正極ネジ軸部 21は電池フォルダ la側に配置されており(つまり、円筒型電池 17 24 17 19 2 2 positive screw shaft 21 is arranged on the battery folder la side (that is, cylindrical battery
1 23 one two Three
2と同じ)、円筒型電池 2 2 2 2 の負極ネジ軸部 22は、電池フォルダ la側 2), the negative screw shaft 22 of the cylindrical battery 2 2 2 2 is the battery folder la side
1 18 20 22 24 1 18 20 22 24
に配置されている(つまり、円筒型電池 2と同じ)。  (That is, the same as the cylindrical battery 2).
2  2
[0033] また、最下列に並設される円筒型電池 2 2 のうち、円筒型電池 2 2 2  [0033] Of the cylindrical batteries 2 2 arranged side by side in the bottom row, the cylindrical batteries 2 2 2
25 32 25 27 29 25 32 25 27 29
2 の負極ネジ軸部 22は電池フォルダ la側に配置されており(つまり、円筒型電池 2The negative electrode screw shaft 22 of 2 is arranged on the battery folder la side (that is, the cylindrical battery 2
31 2 と同じ)、円筒型電池 2 2 2 2 の正極ネジ軸部 21は、電池フォルダ la側に 31 2), the positive screw shaft 21 of the cylindrical battery 2 2 2 2
26 28 30 32  26 28 30 32
配置されている(つまり、円筒型電池 2と同じ)。  Placed (that is, the same as cylindrical battery 2).
[0034] バスバー(導電板) 3には、二つのバスバー開口部 3aが矢印 X方向に並んで形成さ れており、これらの開口部 3aには、隣接する円筒型電池 2の正及び負極ネジ軸部 21 22が揷入されている。これにより、各円筒型電池 2を直列に接続することができる。 なお、バスバー 3の材料には、例えば銅を用いることができる。 [0035] ここで、上述したように、正及び負極ネジ軸部 21 , 22のネジ軸 Y、 Yを、長手方向 [0034] Two bus bar openings 3a are formed in the bus bar (conductive plate) 3 side by side in the direction of the arrow X, and the positive and negative screws of the adjacent cylindrical battery 2 are formed in these openings 3a. Shaft portion 21 22 is inserted. Thereby, each cylindrical battery 2 can be connected in series. For example, copper can be used as the material of the bus bar 3. Here, as described above, the screw shafts Y and Y of the positive and negative screw shaft portions 21 and 22 are arranged in the longitudinal direction.
2 3  twenty three
中心軸 Yに対して偏芯した点対称の位置に配置している。これにより、バスバー 3を 介して接続される正及び負極ネジ軸部 21、 22間の間隔を全て等しくすることができ る。その結果、同じサイズのバスバー 3を使用することが可能となり、コストを削減する こと力 Sでさる。  It is arranged at a point-symmetrical position eccentric with respect to the central axis Y. Thereby, all the intervals between the positive and negative screw shaft portions 21 and 22 connected via the bus bar 3 can be made equal. As a result, the same size bus bar 3 can be used, and the cost S can be reduced.
[0036] なお、ネジ軸 Y、 Yは、長手方向中心軸 Yに対して偏芯した同軸上に配置するこ  [0036] The screw shafts Y and Y are arranged coaxially with respect to the longitudinal central axis Y.
2 3 1  2 3 1
ともできる。同軸上に配置した場合も、ノ^バー 3を介して接続される正及び負極ネ ジ軸部 21、 22間の間隔を全て等しくすることができる。  You can also. Even when arranged on the same axis, the intervals between the positive and negative screw shafts 21 and 22 connected via the node 3 can all be made equal.
[0037] バスバー開口部 3aに揷入された正及び負極ネジ軸部 21、 22には、締結ナット(締 結部材) 23が締結されており、この締結ナット 23を正及び負極ネジ軸部 21、 22に締 結することにより、円筒型電池 2を電池フォルダ 1に固定することができる。 [0037] Fastening nuts (fastening members) 23 are fastened to the positive and negative screw shaft portions 21 and 22 inserted into the bus bar opening 3a. The fastening nuts 23 are connected to the positive and negative screw screw shaft portions 21. , 22 can be used to fix the cylindrical battery 2 to the battery folder 1.
[0038] ここで、正極ネジ軸部 21に締結ナット 23を締結する際に、正ネジ軸 Y周りの回転 [0038] Here, when the fastening nut 23 is fastened to the positive electrode screw shaft 21, rotation about the positive screw shaft Y is performed.
2 力が円筒型電池 2に加わる。  2 Force is applied to the cylindrical battery 2.
[0039] しかしながら、正ネジ軸 Yは、円筒型電池 2の長手方向中心軸 Yに対して偏芯し [0039] However, the positive screw shaft Y is eccentric with respect to the longitudinal central axis Y of the cylindrical battery 2.
2 1  twenty one
ているため、モーメントにより締結ナット 23の回転動作に応じて円筒型電池 2が回転 するのを抑制できる。  Therefore, it is possible to prevent the cylindrical battery 2 from rotating according to the rotating operation of the fastening nut 23 due to the moment.
[0040] これにより、負極ネジ軸部 22が、回転することによりバスバー開口部 3aや揷入穴部 l ibに当接して、過剰に負荷がかかるのを抑制できる。なお、負極ネジ軸部 22に締 結ナット 23を締結する場合にも同様の効果を得ることができる。  [0040] Thereby, the negative electrode screw shaft portion 22 can be kept in contact with the bus bar opening portion 3a and the insertion hole portion l ib by rotating, and an excessive load can be suppressed. The same effect can be obtained when the fastening nut 23 is fastened to the negative electrode screw shaft portion 22.
(円筒型電池 2の詳細な構成)  (Detailed configuration of cylindrical battery 2)
次に、図 4を参照しながら、各円筒型電池 2の構成を詳細に説明する。筒状の電池 外套缶 24の内側には電池体 25が組み込まれている。  Next, the configuration of each cylindrical battery 2 will be described in detail with reference to FIG. A battery body 25 is incorporated inside the cylindrical battery canister 24.
[0041] この電池体 25は、両面に正活物質が塗布された帯状の正電極体 25bと両面に負 活物質が塗布された帯状の負電極体 25cとをセパレータ 25aを介して渦巻状に巻き 回すことにより構成されて!/、る。 [0041] In this battery body 25, a strip-like positive electrode body 25b with a positive active material applied on both sides and a strip-like negative electrode body 25c with a negative active material applied on both sides are spirally formed via a separator 25a. Constructed by winding!
[0042] 電池外套缶 24の内側には、電解液が注入されており、この電解液の中には電池体[0042] An electrolytic solution is injected inside the battery jacket 24, and a battery body is contained in the electrolytic solution.
25が浸された状態となっている。なお、電解液は、セパレータ 25aの中に含浸させて あよい。 [0043] 正活物質として、リチウム 遷移元素複合酸化物である LiCoO , LiNiO , LiFeO 、 LiCuO 、 LiMnO 、 LiMO (Mは Co、 Ni、 Fe、 Cu及び Mnよりなる群から選ば れた少なくとも 2種の遷移元素)、 LiMn O が例示される。負活物質としては、リチウ 25 is immersed. The electrolytic solution may be impregnated in the separator 25a. [0043] As the positive active material, lithium transition element composite oxides LiCoO, LiNiO, LiFeO, LiCuO, LiMnO, LiMO (M is at least two kinds selected from the group consisting of Co, Ni, Fe, Cu, and Mn) Transition element), LiMn 2 O 3. As a negative active material,
2 4  twenty four
ムイオンを電気化学的に吸蔵及び放出することが可能なものであれば特に限定され ない。具体例としては、天然黒鉛、人造黒鉛、コータス、有機物焼成体、金属カルコ ゲン化物が挙げられる。  There is no particular limitation as long as muon can be occluded and released electrochemically. Specific examples include natural graphite, artificial graphite, coatas, organic fired bodies, and metal chalcogenides.
[0044] 電解液の溶質として使用するリチウム塩としては、 LiCIO 、 LiCF SO 、 LiPF 、 L [0044] Lithium salts used as electrolyte solutes include LiCIO, LiCFSO, LiPF, L
4 3 3 6 iN (CF SO ) , LiN (C F SO ) , LiBF , LiSbF及び LiAsF が例示され、リチ 4 3 3 6 iN (CF SO), LiN (C F SO), LiBF, LiSbF and LiAsF
3 2 2 2 5 2 2 4 6 6 ゥム塩を溶かすために使用する有機溶媒としては、エチレンカーボネート、プロピレン カーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状炭酸エステルと3 2 2 2 5 2 2 4 6 6 Organic solvents used to dissolve um salt include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate, and the like.
、ジメチノレカーボネート、ジェチノレカーボネート、メチノレエチノレカーボネート等の鎖状 炭酸エステルとの混合溶媒が例示される。 And a mixed solvent with a chain carbonate such as dimethylolene carbonate, jetinole carbonate, methinoreethino carbonate and the like.
[0045] 電池体 25の電池長手方向(Y方向)の両端には、円板状の集電板 26が溶接されて いる。集電板 26の資材としては、アルミニウム箔、ステンレス箔、銅箔を例示できる。  [0045] Disc shaped current collecting plates 26 are welded to both ends of the battery body 25 in the battery longitudinal direction (Y direction). Examples of the material for the current collector plate 26 include aluminum foil, stainless steel foil, and copper foil.
[0046] 集電板 26は、導電線 27を介して、正及び負極ネジ軸部 21、 22に対して電気的及 び機械的に接続されて!/、る。  The current collector plate 26 is electrically and mechanically connected to the positive and negative screw shaft portions 21 and 22 via the conductive wires 27.
[0047] 正極ネジ軸部 21は、円柱状のネジ台座部 28上に形成されており、このネジ台座部  The positive electrode screw shaft portion 21 is formed on a cylindrical screw pedestal portion 28, and this screw pedestal portion
28は、円盤状の平板部(保持部) 29に保持されている。なお、これらの正極ネジ軸部 21、ネジ台座部 28及び平板部 29は一体的に形成されている。  28 is held by a disk-shaped flat plate portion (holding portion) 29. The positive electrode screw shaft portion 21, the screw base portion 28, and the flat plate portion 29 are integrally formed.
[0048] 正極ネジ軸部 21のネジ軸 Yは、円筒型電池 2の長手方向中心軸 Yに対して偏芯  [0048] The screw shaft Y of the positive electrode screw shaft portion 21 is eccentric with respect to the longitudinal central axis Y of the cylindrical battery 2.
2 1  twenty one
しており、ネジ台座部 28は、正極ネジ軸部 21よりも径が大きく設定されている。  The diameter of the screw base portion 28 is set larger than that of the positive electrode screw shaft portion 21.
[0049] また、平板部 29の外径寸法は、電池外套缶 24の内径寸法よりも若干大きく設定さ れており、平板部 29は電池外套缶 24の内部に圧入されている。このように、平板部 2 9を電池外套缶 24の内部に圧入することにより、電池体 25を確実に封止することが できる。 In addition, the outer diameter of the flat plate portion 29 is set to be slightly larger than the inner diameter of the battery outer can 24, and the flat plate portion 29 is press-fitted into the battery outer can 24. In this manner, the battery body 25 can be reliably sealed by press-fitting the flat plate portion 29 into the battery mantle can 24.
[0050] また、平板部 29における円筒型電池 2外側の面には、円筒型電池 2の内側方向に 窪んだガス放出弁 29'が設けられている。このガス放出弁 29Ίま、平板部 29にパン チ加工を施すことにより形成することができる。 [0051] 電池体 25の温度上昇によって発生したガスにより円筒型電池 2内の内圧が過剰に 上昇した場合には、ガス放出弁 29'が破壊され、円筒型電池 2の外側にガスを放出 させること力 Sでさる。 In addition, a gas release valve 29 ′ that is recessed toward the inner side of the cylindrical battery 2 is provided on the outer surface of the cylindrical battery 2 in the flat plate portion 29. The gas release valve 29 or the flat plate portion 29 can be formed by punching. [0051] When the internal pressure in the cylindrical battery 2 rises excessively due to the gas generated by the temperature rise of the battery body 25, the gas release valve 29 'is destroyed and the gas is released to the outside of the cylindrical battery 2. That's the power S.
[0052] このように、本実施例では、正極ネジ軸部 21の正ネジ軸 Yを円筒型電池 2の長手  Thus, in the present embodiment, the positive screw shaft Y of the positive electrode screw shaft portion 21 is the longitudinal length of the cylindrical battery 2.
2  2
方向中心軸 Yに対して偏芯させることにより、従来技術 (従来技術では、ネジ軸と円 筒型電池の長手方向軸とを同軸上に配置している)よりも、ガス放出弁 29'の形成面 積 (長手方向中心軸 Yに直交する方向の面積)を広くすることができる。これにより、 円筒型電池 2の安全性を高めることができる。なお、ガス放出弁 29'は、負極ネジ軸 部 22の平板部 29にも形成されている。  By decentering with respect to the direction center axis Y, the gas discharge valve 29 'can be used more than the conventional technology (in the conventional technology, the screw shaft and the longitudinal axis of the cylindrical battery are arranged coaxially). The formation area (area in the direction perpendicular to the longitudinal central axis Y) can be increased. Thereby, the safety of the cylindrical battery 2 can be enhanced. The gas release valve 29 ′ is also formed on the flat plate portion 29 of the negative electrode screw shaft portion 22.
[0053] 円筒型電池 2として、ニッケル水素電池を使用する場合には、平板部 29にスプリン グ式の自動復帰弁からなるガス放出弁 29'を設けるとよ!/、。このスプリング式の自動 復帰弁は、平板部 29内に形成された開口部内に板厚方向に移動可能に可動弁を 設け、この可動弁にスプリングを取り付けることにより構成することができる。  [0053] When a nickel metal hydride battery is used as the cylindrical battery 2, a gas release valve 29 'composed of a spring type automatic return valve may be provided on the flat plate portion 29! /. This spring-type automatic return valve can be configured by providing a movable valve in an opening formed in the flat plate portion 29 so as to be movable in the thickness direction, and attaching the spring to this movable valve.
[0054] 円筒型電池 2内の内圧が上昇すると、可動弁は、スプリングのパネ力に杭して開口 部内から退避し、開口部を介して円筒型電池 2の外側にガスが放出される。ガス放出 により内圧が低下すると、スプリングのパネ力により可動弁は開口部内に復帰する。  [0054] When the internal pressure in the cylindrical battery 2 rises, the movable valve is piled up in the panel force of the spring and retreated from the inside of the opening, and gas is released to the outside of the cylindrical battery 2 through the opening. When the internal pressure decreases due to gas release, the movable valve returns to the opening due to the panel force of the spring.
[0055] 正及び負極ネジ軸部 21、 22は、図 6Aの構成とすることもできる。ここで、図 6Aは 正極 (負極)ネジ軸部 21 (22)の斜視図である。正極 (負極)ネジ軸部 21 (22)は、筒 状に形成されており、内周面にネジ溝部(雌ネジ)が切られている。この正極 (負極) ネジ軸部 21 (22)は、平板部 29により保持されており、正極 (負極)ネジ軸部 21 (22) 及び平板部 29は一体的に形成されている。  [0055] The positive and negative screw shaft portions 21 and 22 may be configured as shown in FIG. 6A. Here, FIG. 6A is a perspective view of the positive electrode (negative electrode) screw shaft portion 21 (22). The positive electrode (negative electrode) screw shaft portion 21 (22) is formed in a cylindrical shape, and a thread groove portion (female screw) is cut on the inner peripheral surface. The positive electrode (negative electrode) screw shaft portion 21 (22) is held by a flat plate portion 29, and the positive electrode (negative electrode) screw shaft portion 21 (22) and the flat plate portion 29 are integrally formed.
[0056] 正極 (負極)ネジ軸部 21 (22)に不図示のボルト(締結部材)を締結することにより、 各円筒型電池 2を電池フォルダ 1に固定することができる。  Each cylindrical battery 2 can be fixed to the battery folder 1 by fastening a bolt (fastening member) (not shown) to the positive electrode (negative electrode) screw shaft portion 21 (22).
(実施例 2)  (Example 2)
図 5を参照しながら、本実施例の円筒型電池 2Ίこついて説明する。ここで、図 5は 本実施例の円筒型電池 2'の断面図である。ただし、実施例 1と同一の構成要素は、 同一符号を付して説明を省略する。  With reference to FIG. 5, two cylindrical batteries according to this embodiment will be described. Here, FIG. 5 is a cross-sectional view of the cylindrical battery 2 ′ of the present embodiment. However, the same constituent elements as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
[0057] 円筒型電池 2'の両端は、電池外套缶 24の一部を構成する封止部 24'によって封 止されており、この封止部 24'に対して集電板 26から引き出された導電線 27が溶接 されている。 [0057] Both ends of the cylindrical battery 2 'are sealed by a sealing portion 24' constituting a part of the battery jacket 24. The conductive wire 27 drawn from the current collector plate 26 is welded to the sealing portion 24 '.
[0058] 封止部 24'の電池外側の面には正及び負電極ネジ軸部 21、 22が溶接されており 、実施例 1と同様に、正及び負極ネジ軸部 21、 22のネジ軸 Y、 Yは、長手方向中心  [0058] Positive and negative electrode screw shaft portions 21, 22 are welded to the outer surface of the sealing portion 24 ', and the screw shafts of the positive and negative electrode screw shaft portions 21, 22 are the same as in the first embodiment. Y and Y are longitudinal centers
2 3  twenty three
軸 Yに対して偏芯した点対称の位置に配置されている。なお、長手方向中心軸 Y に対して偏芯した同軸上に配置することもできる。上述の構成によれば、実施例 1と 同様の効果を得ること力できる。さらに、正及び負極ネジ軸部 21、 22は、封止部 24' に溶接されているため、正及び負極ネジ軸部 21、 22の交換作業において電池の封 止状態を保つことができる。  It is arranged at a point-symmetrical position eccentric with respect to the axis Y. It is also possible to arrange them coaxially with respect to the central axis Y in the longitudinal direction. According to the configuration described above, it is possible to obtain the same effect as in the first embodiment. Furthermore, since the positive and negative electrode screw shaft portions 21 and 22 are welded to the sealing portion 24 ′, the battery can be kept sealed in the replacement operation of the positive and negative electrode screw shaft portions 21 and 22.
[0059] 正及び負極ネジ軸部 21、 22は、図 6Bの構成とすることもできる。ここで、図 6Bは正 極 (負極)ネジ軸部 21 (22)の斜視図である。筒状に形成された正極 (負極)ネジ軸部[0059] The positive and negative screw shaft portions 21 and 22 may be configured as shown in FIG. 6B. Here, FIG. 6B is a perspective view of the positive electrode (negative electrode) screw shaft portion 21 (22). Positive (negative electrode) screw shaft formed in a cylindrical shape
21 (22)の内周面には、ネジ溝部(雌ネジ)が切られている。この正極 (負極)ネジ軸 部 21 (22)は、封止部 24'に溶接されている。 A thread groove (female thread) is cut in the inner peripheral surface of 21 (22). The positive electrode (negative electrode) screw shaft portion 21 (22) is welded to the sealing portion 24 ′.
[0060] 正極(負極)ネジ軸部 21 (22)に対して不図示のボルト(締結部材)を締結すること により、各円筒型電池 2'を電池フォルダ 1に固定することができる。 Each cylindrical battery 2 ′ can be fixed to the battery folder 1 by fastening a bolt (fastening member) (not shown) to the positive electrode (negative electrode) screw shaft portion 21 (22).
[0061] (実施例 3) [Example 3]
次に、図 7を参照しながら、本実施例の筒型電源としての円筒型電池について説明 する。ここで、図 7は、正極ネジ軸部 21の斜視図である。  Next, a cylindrical battery as a cylindrical power source of the present embodiment will be described with reference to FIG. Here, FIG. 7 is a perspective view of the positive electrode screw shaft portion 21.
[0062] 図 7Aでは、実施例 1の円筒型電池 2のガス放出弁 29'に相当する位置に断面形 状が円形の電解液注入口 41を形成している。なお、その他の構成は、実施例 1と同 様であるため、説明を省略する。 In FIG. 7A, an electrolyte inlet 41 having a circular cross section is formed at a position corresponding to the gas release valve 29 ′ of the cylindrical battery 2 of the first embodiment. Since other configurations are the same as those in the first embodiment, the description thereof is omitted.
[0063] このように、円筒型電池 2の長手方向中心軸 Yに対して正極ネジ軸部 21の正ネジ 軸 Yを偏芯させることにより、電解液注入口 41の液注入面積を広くすることができるAs described above, the positive screw shaft Y of the positive electrode screw shaft portion 21 is eccentric with respect to the longitudinal central axis Y of the cylindrical battery 2, thereby widening the liquid injection area of the electrolyte injection port 41. Can
2 2
。これにより電解液の注入作業を容易化することができる。  . Thereby, the injection | pouring operation | work of electrolyte solution can be facilitated.
[0064] 電解液注入口 41の形状は、図 8Bに図示するように、長穴形状とすることもできる。 [0064] The shape of the electrolyte solution injection port 41 may be a long hole shape as shown in Fig. 8B.
さらに、電解液注入口 41は、負極ネジ軸部 22の平板部 29にも形成することができる 。本実施例によれば、実施例 1と同様の効果を得ることができる。  Further, the electrolyte solution injection port 41 can also be formed in the flat plate portion 29 of the negative electrode screw shaft portion 22. According to the present embodiment, the same effect as in the first embodiment can be obtained.
(変形例) 正及び負極ネジ軸部 21、 22のネジ軸 Y、 Yは、点対称でも同軸上でもない長手 (Modification) The screw shafts Y and Y of the positive and negative screw shafts 21 and 22 are longitudinally neither symmetrical nor coaxial.
2 3  twenty three
方向中心軸 Yに対して偏芯した位置に配置することもできる。この場合、ネジ軸 Y及  It can also be arranged at a position eccentric with respect to the direction center axis Y. In this case, the screw shaft Y and
1 2 ひ Ύのうち一方の軸を長手方向中心軸 Yの同軸上に配置して、他方の軸を長手方 1 2 Place one of the rods on the same axis as the longitudinal central axis Y and the other in the longitudinal direction.
3 1 3 1
向中心軸 Yに対して偏芯させてもよいし、両方の軸を長手方向中心軸 Yに対して偏 芯させてもよい。  The central axis Y may be eccentric, or both axes may be eccentric with respect to the longitudinal central axis Y.
[0065] 上述の構成によれば、締結部材(締結ナット 23、締結ボルト)の回転動作に応じて 円筒型電池 2 (2 が回転するのを抑制できる。これにより、バスバー開口部 3aゃ揷 入穴部 11a (l ib)に回転した正極 (負極)ネジ軸部 21 (22) (締結側とは反対側のネ ジ軸部)が当接して、過剰に負荷がかかるのを抑制できる。  [0065] According to the above-described configuration, the cylindrical battery 2 (2 can be prevented from rotating according to the rotation operation of the fastening member (fastening nut 23, fastening bolt). Thereby, the bus bar opening 3a is inserted. The positive electrode (negative electrode) screw shaft portion 21 (22) (screw shaft portion on the opposite side of the fastening side) abuts on the hole portion 11a (l ib), and an excessive load can be suppressed.
[0066] また、円筒型電池 2をリチウムイオン電池とした力 本願発明は、例えば、集電体の 一方の面に正極層、他方の面に負極層が形成されたバイポーラ電極を電解質を介 して積層した円筒型のバイポーラ電池 (筒型電源)、円筒型の電気二重層キャパシタ (筒型電源)、円筒型の燃料電池 (筒型電源)にも適用すること力 Sできる。  [0066] In addition, the present invention uses a bipolar electrode in which a positive electrode layer is formed on one surface of a current collector and a negative electrode layer is formed on the other surface via an electrolyte. It can be applied to cylindrical bipolar batteries (cylindrical power supply), cylindrical electric double layer capacitors (cylindrical power supply), and cylindrical fuel cells (cylindrical power supply).
[0067] さらに、本願発明は、円筒型の電源のみならず角型の筒型電源にも適用することが できる。なお、上述の筒型電源は、例えば、電気自動車 (EV)、ハイブリッド自動車( HEV)、燃料電池車 (FCV)におけるモータ駆動用の電源として用いることができる。  Furthermore, the present invention can be applied not only to a cylindrical power source but also to a square cylindrical power source. The above-described cylindrical power source can be used as a power source for driving a motor in, for example, an electric vehicle (EV), a hybrid vehicle (HEV), and a fuel cell vehicle (FCV).

Claims

請求の範囲 The scope of the claims
[1] 筒型電源本体の両端に設けられた第 1及び第 2のネジ軸部を介して取り付け部材 に取り付けられる筒型電源であって、  [1] A cylindrical power source that is attached to an attachment member via first and second screw shaft portions provided at both ends of a cylindrical power source body,
前記第 1及び/又は第 2のネジ軸部は、前記筒型電源本体の長手方向中心軸に 対して偏芯して!/、ることを特徴とする筒型電源。  The cylindrical power source characterized in that the first and / or second screw shaft portions are eccentric with respect to a longitudinal central axis of the cylindrical power source body.
[2] 前記第 1及び第 2のネジ軸部には、締結部材が締結されることを特徴とする請求項[2] The fastening member is fastened to the first and second screw shafts.
1に記載の筒型電源。 The cylindrical power source according to 1.
[3] 前記筒型電源本体を封止するとともに、前記第 1のネジ軸部を保持する保持部を 有し、  [3] The cylindrical power source body is sealed, and a holding portion that holds the first screw shaft portion is provided.
前記保持部にはガス放出弁が設けられており、前記第 1のネジ軸部及び前記ガス 放出弁は、前記長手方向中心軸に直交する方向において異なる位置に設けられて いることを特徴とする請求項 1又は 2に記載の筒型電源。  The holding portion is provided with a gas release valve, and the first screw shaft portion and the gas release valve are provided at different positions in a direction orthogonal to the longitudinal central axis. The cylindrical power supply according to claim 1 or 2.
[4] 前記筒型電源本体を封止するとともに、前記第 1のネジ軸部を保持する保持部を 有し、 [4] The cylindrical power source body is sealed, and a holding portion that holds the first screw shaft portion is provided.
前記保持部には電解液注入口が設けられており、前記第 1のネジ軸部及び前記電 解液注入口は、前記長手方向中心軸に直交する方向において異なる位置に設けら れていることを特徴とする請求項 1又は 2に記載の筒型電源。  The holding portion is provided with an electrolyte injection port, and the first screw shaft portion and the electrolyte solution injection port are provided at different positions in a direction orthogonal to the longitudinal central axis. The cylindrical power supply according to claim 1 or 2, wherein
[5] 前記長手方向中心軸の方向から視たときに、前記第 1及び第 2のネジ軸部は、同 軸上又は前記長手方向中心軸に対して点対称に対応した位置に配置されることを 特徴とする請求項 1乃至 4のうちいずれか一つに記載の筒型電源。 [5] When viewed from the direction of the longitudinal central axis, the first and second screw shaft portions are arranged on the same axis or at positions corresponding to point symmetry with respect to the longitudinal central axis. The cylindrical power supply according to any one of claims 1 to 4, characterized in that:
[6] 筒型電源が複数並設され、隣接する筒型電源の電極を導電板を介して直列に接 続した電源体であって、 [6] A power source body in which a plurality of cylindrical power sources are arranged in parallel and electrodes of adjacent cylindrical power sources are connected in series via a conductive plate,
前記筒型電源は請求項 5に記載の筒型電源であり、前記第 1及び前記第 2のネジ 軸部は前記電極を兼ねており、前記導電板によって接続される電極間の間隔が等し いことを特徴とする電源体。  The cylindrical power source is the cylindrical power source according to claim 5, wherein the first and second screw shaft portions also serve as the electrode, and the distance between the electrodes connected by the conductive plate is equal. A power supply unit characterized by
PCT/JP2007/070556 2006-10-25 2007-10-22 Tubular electricity source and electricity source body WO2008050721A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006289344 2006-10-25
JP2006-289344 2006-10-25
JP2007090154A JP2008135357A (en) 2006-10-25 2007-03-30 Tubular electric power source, and electric power source body
JP2007-090154 2007-03-30

Publications (1)

Publication Number Publication Date
WO2008050721A1 true WO2008050721A1 (en) 2008-05-02

Family

ID=39324518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070556 WO2008050721A1 (en) 2006-10-25 2007-10-22 Tubular electricity source and electricity source body

Country Status (2)

Country Link
JP (1) JP2008135357A (en)
WO (1) WO2008050721A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160931A (en) * 2009-01-07 2010-07-22 Mitsubishi Motors Corp Retention structure of secondary battery
JP2011086634A (en) * 2010-12-24 2011-04-28 Mitsubishi Motors Corp Holding structure of secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847705B (en) * 2010-05-31 2012-11-07 重庆长安汽车股份有限公司 Storage battery anode pile head

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097564A (en) * 1995-04-18 1997-01-10 Japan Storage Battery Co Ltd Battery holder
JPH11162475A (en) * 1997-11-28 1999-06-18 Mitsumi Electric Co Ltd Dry battery
JP2001210287A (en) * 1999-12-13 2001-08-03 Alcatel Module structure
JP2002141114A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Assembled battery
JP2002170546A (en) * 2000-12-01 2002-06-14 Sanyo Electric Co Ltd Cylindrical nonaqueous electrolytic solution secondary battery
JP2003297413A (en) * 2002-03-29 2003-10-17 Matsushita Electric Ind Co Ltd Battery
JP2006313794A (en) * 2005-05-06 2006-11-16 Asahi Glass Co Ltd Storage element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097564A (en) * 1995-04-18 1997-01-10 Japan Storage Battery Co Ltd Battery holder
JPH11162475A (en) * 1997-11-28 1999-06-18 Mitsumi Electric Co Ltd Dry battery
JP2001210287A (en) * 1999-12-13 2001-08-03 Alcatel Module structure
JP2002141114A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Assembled battery
JP2002170546A (en) * 2000-12-01 2002-06-14 Sanyo Electric Co Ltd Cylindrical nonaqueous electrolytic solution secondary battery
JP2003297413A (en) * 2002-03-29 2003-10-17 Matsushita Electric Ind Co Ltd Battery
JP2006313794A (en) * 2005-05-06 2006-11-16 Asahi Glass Co Ltd Storage element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160931A (en) * 2009-01-07 2010-07-22 Mitsubishi Motors Corp Retention structure of secondary battery
US8377584B2 (en) 2009-01-07 2013-02-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Secondary battery module
JP2011086634A (en) * 2010-12-24 2011-04-28 Mitsubishi Motors Corp Holding structure of secondary battery

Also Published As

Publication number Publication date
JP2008135357A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
KR101123059B1 (en) Hybrid-typed Stack and Folding Electrode Assembly and Secondary Battery Containing the Same
US8663832B2 (en) Cell for reducing short circuit and battery incorporating the cell
JP5774752B2 (en) Battery and battery pack
JP4815016B2 (en) Battery connecting member and battery module using the same
RU2342743C1 (en) Bank of accumulator cells with alternating orientation configuration
JP5540588B2 (en) Bipolar secondary battery, assembled battery and vehicle equipped with these batteries
EP0962995B1 (en) Lithium secondary battery
US20100173190A1 (en) Battery cell and power supply
JP5702541B2 (en) Lithium ion battery and manufacturing method thereof
JPH11238528A (en) Lithium secondary battery
EP2041826A1 (en) Battery assembly
JP2010021067A (en) Wound secondary battery
KR101036052B1 (en) Battery pack
US11031650B2 (en) Battery module and battery pack comprising same
US6258487B1 (en) Lithium secondary battery including a divided electrode base layer
WO2009047893A2 (en) Sealed battery
JP2000090976A (en) Lithium secondary battery module
JP2009129917A (en) Power storage device
WO2008050721A1 (en) Tubular electricity source and electricity source body
WO2014068740A1 (en) Cell unit
CN111886717A (en) Secondary battery
KR100599733B1 (en) Electrode and secondary battery thereof
JP2012212534A (en) Position control device of battery and position control device of battery pack
JP2010211954A (en) Laminated battery, battery pack having the same, and vehicle with those mounted
JP2000077057A (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830290

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830290

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)