WO2008050581A1 - Rotation angle detector - Google Patents

Rotation angle detector Download PDF

Info

Publication number
WO2008050581A1
WO2008050581A1 PCT/JP2007/069086 JP2007069086W WO2008050581A1 WO 2008050581 A1 WO2008050581 A1 WO 2008050581A1 JP 2007069086 W JP2007069086 W JP 2007069086W WO 2008050581 A1 WO2008050581 A1 WO 2008050581A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotation angle
outer peripheral
detection device
line
Prior art date
Application number
PCT/JP2007/069086
Other languages
French (fr)
Japanese (ja)
Inventor
Fumihiko Abe
Kengo Tanaka
Dongzhi Jin
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to US12/446,447 priority Critical patent/US20100315074A1/en
Priority to EP07828827A priority patent/EP2088397A4/en
Priority to JP2008540929A priority patent/JPWO2008050581A1/en
Publication of WO2008050581A1 publication Critical patent/WO2008050581A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/77Specific profiles
    • G01D2205/775Tapered profiles

Definitions

  • the present invention relates to a rotation angle detection device that detects a rotation angle by arranging a magnetic sensor in a non-contact manner with respect to a rotating body.
  • N-pole and S-pole magnets constituting a magnetic circuit are fixed so as to rotate integrally with the rotating body, and the magnet's magnetic
  • sensors configured to detect the angle at which the rotating body rotates with respect to the magnetic sensor by arranging a magnetic sensor for detecting the strength in the vicinity of the magnet. It is used in various fields such as DC motors. Hall elements are generally known as magnetic sensors used in rotation angle detection devices!
  • FIG. 10 shows a rotation angle detection device disclosed in Patent Document 1.
  • the rotation angle detection device 900 shown in the figure is configured such that a disc-shaped magnet 901 is supported by a rotation shaft 904 and can be rotated around the rotation shaft 904 in the direction indicated by the white arrow. Has been.
  • the magnetic sensors 902 and 903 are both Hall elements having the same temperature characteristics, and an angle formed by a straight line connecting the magnetic sensor 902 and the center O of the disk and a straight line connecting the magnetic sensor 903 and the center O is formed. It is arranged to be approximately 90 degrees. Further, the magnetic sensors 902 and 903 are arranged immediately below the outer periphery of the magnet 900.
  • the rotation angle detection device 900 described in Patent Document 1 configured as described above provides a rotation angle detection device in which the size of the entire sensor can be made smaller than before and the performance is stable. I will be able to do it.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-75108
  • the conventional rotation angle detection device has the following problems. Measurement
  • the target rotating body has an axial backlash in which the rotating shaft moves slightly in the radial direction, and the magnet fixed to the rotating body by the axial backlash slightly changes in the radial direction relative to the magnetic sensor. Resulting in.
  • the magnetic sensor is disposed close to any location around the outer periphery of the magnet, and in Patent Document 1, it is disposed immediately below the outer periphery.
  • the magnetic flux density of the magnet changes sharply at the boundary portion between the outer circumferential surface and the upper and lower surfaces, that is, at the corners. Forming. For this reason, when the magnet shifts in the radial direction with respect to the magnetic sensor, the measured value of the magnetic flux density measured by the magnetic sensor also fluctuates greatly, which increases the measurement error of the rotation angle. there were.
  • an object of the present invention is to provide a rotation angle detection device that can suppress an error in the rotation angle due to the axial backlash of the radial direction.
  • the first aspect of the rotation angle detection device of the present invention has at least an upper surface, a lower surface, and an outer peripheral surface, a magnet fixed to the detected rotating body and rotating integrally, and an upper surface or a lower surface of the magnet.
  • a magnetic detector that is arranged in the vicinity of the outer peripheral corner formed by the outer peripheral surface and detects the magnetic strength of the magnet, and calculates the rotation angle of the detected rotating body from the output of the magnetic detector
  • a rotation angle detection device comprising an arithmetic processing unit
  • a partial force formed by removing a part of the outer peripheral corner portion over the entire circumference forms a communication surface that connects the upper surface or the lower surface and the outer peripheral surface, and the magnetic detector is disposed in proximity to the communication surface. ! /
  • the outer peripheral surface is parallel to the rotation axis of the magnet, the outer peripheral surface is substantially perpendicular to the upper surface and the lower surface, and the rotation shaft of the magnet is Through
  • the outer peripheral line corresponding to the outer peripheral surface and the upper and lower lines corresponding to the upper and lower surfaces are substantially vertical, and the connecting line corresponding to the connecting surface connects the outer peripheral line and the upper or lower surface line. And! /, Characterized by.
  • Another aspect of the rotation angle detection device of the present invention is characterized in that the connecting surface is a flat surface, a curved surface, or a multistage surface.
  • the detection surface faces the communication surface and is arranged perpendicular to the rotation axis, and detects the magnetic strength of the magnet in the rotation axis direction. It is characterized by this.
  • the rotation shaft side end of the detection surface of the magnetic detector is between one end and the other end of the communication surface. It is arranged so that it is located! /.
  • the outer peripheral corner portion is removed with respect to a rectangular area formed by an outer peripheral line, an upper surface line, and a lower surface line of a cross section of the magnet passing through the rotation axis.
  • the ratio of the part of the area is 5% or more and 35% or less.
  • the outer peripheral angle portion is removed with respect to a rectangular area formed by an outer peripheral line, an upper surface line, and a lower surface line of the magnet passing through the rotation axis. Part of the area is 20% or more and 30% or less.
  • the magnet is a magnet whose at least outer periphery is substantially circular, and whose magnetic strength varies along the circumferential direction of the previous magnet. It is characterized by that.
  • the rotation angle detection device of the present invention the chamfered corners close to the magnetic sensor of the magnet that is fixed to the rotation body to be detected and rotates integrally with each other can be rattled in the radial direction of the rotation body. Even if it occurs, the rotation angle can be measured with high accuracy.
  • FIG. 1 is a block diagram showing a configuration of a rotation angle detection device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a magnetic sensor using a Hall element.
  • FIG. 3 A graph showing the change in magnetic flux density formed by the magnet and the magnetic flux density due to the radial movement of the magnet.
  • FIG. 4 is a block diagram showing a configuration of a rotation angle detection device according to a second embodiment of the present invention.
  • FIG. 5 A diagram showing the relationship between the rotation angle of the magnet and the output of the magnetic sensor.
  • FIG. 6 A diagram showing the relationship between the radial movement distance of the magnet and the magnetic flux density for each chamfer size. Show.
  • FIG. 7 is a graph showing the relationship between the size of the removal area of the chamfered portion, the rotation angle error of the magnetic sensor, and the magnetic flux density. 8] The relationship between the size of the removal area and the amplification factor and angle error of the amplifier.
  • FIG. 9 is a block diagram showing a configuration of a rotation angle detection device according to a third embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a conventional rotation angle detection device.
  • a rotation angle detection device according to a preferred embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions are denoted by the same reference numerals for simplification of illustration and explanation.
  • FIG. 1 is a structural diagram showing a rotation angle detection device 100 of the present embodiment, where (a) is a plan view in a direction perpendicular to the rotation axis, and (b) is a cross-sectional view as viewed in a plane passing through the rotation axis. Are shown respectively.
  • the rotation angle detection device 100 includes a columnar magnet 110 fixed to a rotating body (not shown), and a magnetic sensor 120 fixed in a non-contact manner directly under the outer peripheral surface 111 of the magnet 110.
  • the magnet 110 is magnetized in the radial direction, and one of the radial directions is an N pole and the other is an S pole. It is necessary to secure a certain thickness of the magnet so that a magnetic field intensity sufficient to measure the change in magnetic flux density due to the rotation of the magnet 110 can be obtained by the magnetic sensor 120. For example, it can be set to about 3 mm.
  • the force S where the position of the magnetic sensor 120 is directly below the outer peripheral surface 111 of the magnet 110 is not limited to this.
  • the magnetic sensor 120 may be disposed immediately above the outer peripheral surface 111.
  • a Hall element is a magnetic sensor that uses the Hall effect of a semiconductor and can directly convert magnetism into electricity. As shown in FIG. 2, when a magnetic field is applied to the Hall element 121 with a constant current 122 flowing through the Hall element 121, a Hall voltage is generated at the Hall terminal 121. The output of the magnetic sensor 120 is obtained by amplifying this with the amplifier 123.
  • the cylindrical magnet 110 includes an upper surface 112, a lower surface 113, and an outer peripheral surface 111 in a three-dimensional manner, and a part of the outer peripheral corner formed by the upper surface 112 or the lower surface 113 and the outer peripheral surface 111 is the entire periphery.
  • the partial force formed by being removed is formed as a connecting surface 114 that connects the upper surface 112 or the lower surface 113 and the outer peripheral surface 111.
  • the outer peripheral surface 111 is parallel to the rotation axis of the magnet, and the outer peripheral surface 111, the upper surface 112, and the lower surface 113 are substantially perpendicular.
  • the outer peripheral line 111 in the cross section passing through the rotation axis of the magnet, the outer peripheral line 111 corresponding to the outer peripheral surface 111 and the upper surface lines corresponding to the upper surface 112 and the lower surface 113.
  • 112 and the lower surface line 113 are substantially vertical, and a connection line 114 corresponding to the connection surface connects the outer peripheral line 111 and the upper surface line 112 or the lower surface line 113.
  • the outer peripheral surface or outer peripheral line is indicated by 111
  • the upper or upper surface line is indicated by 112
  • the lower or lower surface line is indicated by 113.
  • the rotation angle detection device 100 of the present embodiment has a chamfered portion (a chamfered portion obtained by cutting away the outer peripheral corner portion formed by the outer peripheral surface 111 and the lower surface 113 of the magnet 110). That is, it is characterized in that a communication surface 114 is formed.
  • the chamfered portion 114 is formed at the outer peripheral corner formed by the outer peripheral surface 111 and the lower surface 113.
  • the chamfered portion 114 is formed at the outer peripheral corner formed by the outer peripheral surface 111 and the upper surface 112.
  • the magnetic sensor 120 is arranged to measure the magnetic flux density in the rotation axis direction of the magnet 110. Further, the detection surface 120a of the magnetic sensor 120 is arranged so that a part thereof is directly below the chamfered portion 114 and the remaining part is outside the outer peripheral surface 111.
  • the radial position of the magnetic sensor 120 is such that the end 120b of the detection surface 120a on the rotating shaft side is outside the intersection of the chamfered portion (connecting surface) 114 and the bottom surface 113 and inside the outer peripheral surface 111. It is better to decide. That is, it is preferable to determine the radial position of the magnetic sensor 120 so that at least the end 120b on the rotation axis side of the detection surface 120a is positioned immediately below the chamfered portion 114.
  • the shape of the chamfered portion 114 shown in FIG. 1 is a C-chamfer with a flat cut surface, but is not limited to this.
  • a curved R-chamfer may be used. It is also possible to do this.
  • the size of the chamfered portion 114 can be appropriately selected within a predetermined range as will be described later. In any case, it is preferable that the magnetic sensor 120 is determined so that the magnetic flux density in the rotation axis direction of the magnet 110 can be suitably measured.
  • the radial gradient of the magnetic flux density at the position of the magnetic sensor 120 can be made gentle. That is, even if the magnet 110 moves in the radial direction due to the radial play, the change in the magnetic flux density at the position of the magnetic sensor 120 can be reduced.
  • FIG. 3 (a) is a diagram schematically showing the magnetic flux density formed by the magnet 110.
  • the magnetic lines 131 shown by solid lines indicate those formed by the magnet 110 having the chamfered portion 114 of the present embodiment, and the magnetic lines 132 shown by broken lines do not have a chamfered portion. It is formed with a cylindrical magnet.
  • the spacing force of the magnetic force lines 131 formed by the magnet 110 having the chamfered portion 114 is larger than the spacing of the magnetic force lines 132 formed by the conventional magnet having no chamfered portion. This shows that the formation of the handle 114 makes the change in the radial direction of the magnetic flux density at the position of the magnetic sensor 120 moderate.
  • FIGS. 3B and 3C show how the magnetic flux density force S in the rotation axis direction at the position of the magnetic sensor 120 and the radial play of the magnet 110 change.
  • FIG. 3 (b) shows a case of a magnet 910 having no conventional chamfered portion
  • FIG. 3 (c) shows a case of the magnet 110 of this embodiment.
  • the magnetic flux density at the position of the magnetic sensor 911 rapidly changes when the magnet 910 moves in the radial direction.
  • the change in the magnetic flux density at the position of the magnetic sensor 120 is greatly reduced by forming the chamfered portion 114. This indicates that by forming the chamfered portion 1 14, the magnet 110 can be formed so that the magnetic flux density gradually changes in the radial direction.
  • the force S that makes the magnetic flux density measured by the magnetic sensor 120 change significantly due to the backlash in the radial direction of the magnet 110 is smaller than the conventional force S. It becomes possible. As a result, even when the magnet 110 rotates with radial play, it is possible to reduce the measurement error of the rotation angle and increase the accuracy.
  • FIG. 4 is a structural diagram showing the rotation angle detection device 200 of the present embodiment, where (a) is a plan view in a direction perpendicular to the rotation axis, and (b) is a cross-sectional view as viewed in a plane passing through the rotation axis. Are shown respectively.
  • another magnetic sensor 220 is added in addition to the magnetic sensor 120.
  • the rotation angle detection device 200 of the present embodiment is configured to further increase the measurement accuracy of the rotation angle by using two magnetic sensors 120 and 220 as magnetic sensors.
  • the magnetic sensor 220 is arranged in a direction rotated by 90 ° in the circumferential direction with respect to the magnetic sensor 120.
  • the rotational axis direction and radial direction are the same as those of the magnetic sensor 120. Therefore, the relative positional relationship between the magnetic sensor 220 and the chamfered portion 114 is the same as that of the magnetic sensor 120, and the change in magnetic flux density at the magnetic sensor 220 position due to the backlash in the radial direction of the magnet 110 is also Similar to the magnetic sensor 120, it becomes gentle.
  • a magnet 910 having a rectangular cross section shown in FIG. 3B is used as a conventional magnet for comparison.
  • FIG. 1 The relationship between the output of the magnetic sensor 120 (or 220) and the rotation angle of the magnet 110 is shown in FIG.
  • a solid line 231 shows the relationship between the rotation angle of the magnet 110 and the output of the magnetic sensor 120 when the magnet 110 rotates without backlash in the radial direction. In this case, as the magnet 110 rotates from 0 degree to 180 degrees, the output of the magnetic sensor 120 changes from 0V to 2V.
  • the output of the magnetic sensor 911 when the rotation angle is 0 degrees as shown by the broken line 232 is On the other hand, it becomes smaller than the solid line 231. On the other hand, when it is 180 degrees, it becomes larger and does not become 0V.
  • the output 232 of the magnetic sensor 911 greatly changes because the output of the magnetic sensor 911 changes greatly only by a slight deviation in the radial direction due to the radial play. A relatively large deviation from the solid line 231 without the. For this reason, if the rotation angle is determined with reference to the solid line 231 without backlash, the error of the rotation angle becomes large.
  • the output of the magnetic sensor 120 changes as indicated by a one-dot chain line 233.
  • One-dot chain line 233 almost overlaps the solid line 231 and the effect of radial play is almost eliminated.
  • the change in the output of the magnetic sensor 120 is small even if the magnet 110 is displaced in the radial direction due to the radial play, so that the deviation from the output 231 having no play is sufficient. It can be made smaller.
  • the chamfered portion 114 is provided by chamfering the corner close to the magnetic sensor 120 as in the first embodiment.
  • the influence of the radial play on the relationship between the rotation angle and the output of the magnetic sensor 120 is greatly reduced. Yes.
  • the magnetic sensor 120 has been described. However, even if the magnetic sensor 220 is V, the improvement effect as shown in FIG.
  • Fig. 6 shows the results of evaluating the effect of the size of the chamfered portion 114 by simulation.
  • simulation is performed when the ratio of the chamfered area to the N or S pole cross-sectional area of the magnet 110 (hereinafter, the removal area and the height) is changed. It is carried out.
  • the magnetic sensor 120 (and 220) is installed at a position below lm m in the lower right corner of the magnet 110. The magnetic sensor 120 (and 220) measures the magnetic flux in the vertical direction on the drawing.
  • FIG. 6 (a) chamfering is performed as indicated by a broken line 241 parallel to the diagonal line of the cross-sectional area 240.
  • a broken line 241 parallel to the diagonal line of the cross-sectional area 240.
  • the magnetic flux density is shown in Fig. 6 (b).
  • the horizontal axis indicates the distance that the magnet 110 moves in the radial direction.
  • the cross-sectional area 240 has a long side length of 5 mm and a short side length of 3 mm.
  • the size of the chamfered part is 0.5mm for the long side up to 3.5mm, and 0.3mm for the short side up to 2.1mm. It is shown as ⁇ C3.5.
  • FIG. 7A shows the relationship between the size of the removal area of the chamfered portion 114 and the error of the calculated rotation angle measured using the magnetic sensors 120 and 220 in the above simulation.
  • Fig. 7 (b) shows the relationship between the size of the removal area and the magnetic flux density at the positions of the magnetic sensors 120 and 220. From FIG. 7 (a), it can be seen that the rotation angle error decreases as the removal area of the chamfered portion 114 is increased. However, the size of the removal area in the figure C2. 5 that force s I force error even by increasing the most small tool more removal area error is not reduced when the, Ru.
  • FIG. 8 shows the relationship between the size of the removal area, the amplification magnification of the amplifier 123, and the angle error.
  • the horizontal axis indicates the removal area to be chamfered as a percentage (%) of the total cross-sectional area (area of C00 without chamfered portion).
  • the measurement error of the rotation angle is Like 252.
  • the removal area of the chamfered portion 114 is about 25%, the angular error becomes the smallest.
  • the removal area of the chamfered portion 114 should be 5 to 35% of the cross-sectional area of the N pole (and S pole) before chamfering, more preferably 20 to 30%.
  • the chamfered shape preferably has a substantially rectangular cross section of the magnet.
  • the rotation angle detection of the present embodiment including the magnetic sensors 120 and 220
  • the removal area of the chamfered portion 114 is, for example, 25% in terms of the cross-sectional area ratio
  • the measurement error of the rotation angle of the magnet 110 can be reduced to 0.3 degrees or less.
  • the error was about 1 degree, but it can be seen that the measurement accuracy can be greatly improved by providing the chamfered portion 114.
  • two magnetic sensors are used.
  • the present invention is not limited to this. For example, three or more magnetic sensors can be used.
  • FIG. 9 is a structural diagram showing the rotation angle detection device 300 of the present embodiment, where (a) is a plan view in a direction perpendicular to the rotation axis, and (b) is a cross-sectional view as seen in a plane passing through the rotation axis. It is.
  • the magnet 310 of the present embodiment is formed only on the peripheral portion excluding the central portion including the rotation axis.
  • the size of the chamfered portion 314 is increased at a suitable ratio with respect to the cross-sectional area 315 of the magnet 310 before chamfering shown in Fig. 9 (b). It is good to decide the length.
  • the preferred size of the chamfered portion 314 is 5 to 35% of the cross-sectional area 315, more preferably 20 to 30%.
  • the chamfered portion 314 is provided as described above. By providing it suitably, the rotation angle of the magnet 310 can be measured with high accuracy.
  • the magnet is preferably a magnet having at least a substantially circular outer periphery and a magnetic strength of the magnet that fluctuates along a circumferential direction of the magnet.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A rotation angle detector (100) in which a magnetic sensor (120) is placed so as to measure the magnetic flux density in the direction of the rotation axis of a magnet (110). The magnet (110) is chamfered at its portion near the magnetic sensor (120) and this moderates the radial gradient of the magnetic flux at the position of the magnetic sensor (120). As a result, even if the magnet (110) radially moves due to radial play, a variation in the magnetic flux density at the position of the magnetic sensor (120) is less.

Description

明 細 書  Specification
回転角度検出装置  Rotation angle detector
技術分野  Technical field
[0001] 本発明は、回転体に対し非接触で磁気センサを配置することで回転角度を検出す る回転角度検出装置に関する。  The present invention relates to a rotation angle detection device that detects a rotation angle by arranging a magnetic sensor in a non-contact manner with respect to a rotating body.
背景技術  Background art
[0002] 従来から、回転体の回転角度を検出する回転角度検出装置としては、磁気回路を 構成する N極と S極の磁石を回転体と一体に回転するよう固定し、この磁石の磁気の 強さを検出する磁気センサを磁石の近傍に配置することで、磁気センサに対して回 転体が回転した角度を検出するように構成されたものが数多く知られており、例えば 自動車エンジンや、 DCモータ等の種々の分野で利用されている。回転角度検出装 置に用いられる磁気センサとしては、ホール素子が一般に知られて!/、る。  Conventionally, as a rotation angle detection device for detecting the rotation angle of a rotating body, N-pole and S-pole magnets constituting a magnetic circuit are fixed so as to rotate integrally with the rotating body, and the magnet's magnetic There are many known sensors configured to detect the angle at which the rotating body rotates with respect to the magnetic sensor by arranging a magnetic sensor for detecting the strength in the vicinity of the magnet. It is used in various fields such as DC motors. Hall elements are generally known as magnetic sensors used in rotation angle detection devices!
[0003] 回転角度検出装置の従来例として、例えば特許文献 1に記載のものがある。特許 文献 1に開示されている回転角度検出装置を図 10に示す。同図に示す回転角度検 出装置 900は、円板状に形成された磁石 901が回転軸 904に支持されており、この 回転軸 904を中心として、白抜き矢印で示す方向に回転可能に構成されている。  [0003] As a conventional example of a rotation angle detection device, for example, there is one described in Patent Document 1. FIG. 10 shows a rotation angle detection device disclosed in Patent Document 1. In FIG. The rotation angle detection device 900 shown in the figure is configured such that a disc-shaped magnet 901 is supported by a rotation shaft 904 and can be rotated around the rotation shaft 904 in the direction indicated by the white arrow. Has been.
[0004] 磁気センサ 902および 903は、共に等しい温度特性を有するホール素子であり、磁 気センサ 902と円板の中心 Oを結ぶ直線と、磁気センサ 903と中心 Oを結ぶ直線と がなす角度が概ね 90度になるように配置されている。また、磁気センサ 902および 9 03は、磁石 900の外周の直下に配置されている。  [0004] The magnetic sensors 902 and 903 are both Hall elements having the same temperature characteristics, and an angle formed by a straight line connecting the magnetic sensor 902 and the center O of the disk and a straight line connecting the magnetic sensor 903 and the center O is formed. It is arranged to be approximately 90 degrees. Further, the magnetic sensors 902 and 903 are arranged immediately below the outer periphery of the magnet 900.
[0005] 上記のように構成された特許文献 1に記載の回転角度検出装置 900では、センサ 全体のサイズを従来に比べてより小さくでき、かつ性能の安定性が良い回転角度検 出装置を提供すること力できるとしてレヽる。  [0005] The rotation angle detection device 900 described in Patent Document 1 configured as described above provides a rotation angle detection device in which the size of the entire sensor can be made smaller than before and the performance is stable. I will be able to do it.
特許文献 1 :特開 2003— 75108号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-75108
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、上記従来の回転角度検出装置では以下のような問題があった。測定 対象である回転体は、回転軸が径方向に微小に移動する軸ガタを有しているため、 この軸ガタにより回転体に固定された磁石が磁気センサに対して径方向に微小に変 動してしまう。磁気センサは、磁石の外周部の周囲いずれかの場所に近接して配置 されており、特許文献 1では外周部の直下に配置されている。 [0006] However, the conventional rotation angle detection device has the following problems. Measurement The target rotating body has an axial backlash in which the rotating shaft moves slightly in the radial direction, and the magnet fixed to the rotating body by the axial backlash slightly changes in the radial direction relative to the magnetic sensor. Resulting in. The magnetic sensor is disposed close to any location around the outer periphery of the magnet, and in Patent Document 1, it is disposed immediately below the outer periphery.
[0007] 磁石の外周面は、回転体の上面及び下面とそれぞれ直角に形成されているため、 外周面と上面及び下面との境界部分、すなわち角部で磁石の磁束密度が急峻な変 化を形成している。そのため、磁石が回転に伴って磁気センサに対し径方向にずれ ると、磁気センサで測定される磁束密度の測定値も大きく変動してしまい、回転角度 の測定誤差を大きくしてしまうといった問題があった。  [0007] Since the outer circumferential surface of the magnet is formed at right angles to the upper and lower surfaces of the rotating body, the magnetic flux density of the magnet changes sharply at the boundary portion between the outer circumferential surface and the upper and lower surfaces, that is, at the corners. Forming. For this reason, when the magnet shifts in the radial direction with respect to the magnetic sensor, the measured value of the magnetic flux density measured by the magnetic sensor also fluctuates greatly, which increases the measurement error of the rotation angle. there were.
[0008] 上記のような回転角度の測定誤差をできるだけ小さくするために、従来から回転軸 のガタをできるだけ抑えるような方策がとられてきた力 S、回転軸の径方向のガタを完 全に無くすことはできない。上記のように、磁石の角部で磁束密度が急峻に変化して いるため、径方向のガタを小さくしても磁束密度への影響は大きぐ回転角度の測定 誤差を十分小さくすることはできなかった。  [0008] In order to minimize the measurement error of the rotation angle as described above, the force S, which has been conventionally taken to suppress the backlash of the rotary shaft as much as possible, is completely reduced in the radial play of the rotary shaft. It cannot be lost. As described above, since the magnetic flux density changes sharply at the corners of the magnet, even if the radial play is reduced, the influence on the magnetic flux density is large, and the measurement error of the rotation angle can be sufficiently reduced. There wasn't.
[0009] そこで、本発明はこれらの問題を解決するためになされたものであり、径方向の軸 ガタによる回転角度の誤差を抑制できる回転角度検出装置を提供することを目的と する。  [0009] Therefore, the present invention has been made to solve these problems, and an object of the present invention is to provide a rotation angle detection device that can suppress an error in the rotation angle due to the axial backlash of the radial direction.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の回転角度検出装置の第 1の態様は、少なくとも上面、下面および外周面 を有し、被検出回転体に固定されて一体に回転する磁石と、前記磁石の上面または 下面と外周面とによって形成される外周角部に近接して配置されて前記磁石の磁気 の強さを検出する磁気検出器と、前記磁気検出器の出力から前記被検出回転体の 回転角度を算出する演算処理部とを備えた回転角度検出装置であって、 [0010] The first aspect of the rotation angle detection device of the present invention has at least an upper surface, a lower surface, and an outer peripheral surface, a magnet fixed to the detected rotating body and rotating integrally, and an upper surface or a lower surface of the magnet. A magnetic detector that is arranged in the vicinity of the outer peripheral corner formed by the outer peripheral surface and detects the magnetic strength of the magnet, and calculates the rotation angle of the detected rotating body from the output of the magnetic detector A rotation angle detection device comprising an arithmetic processing unit,
前記外周角部の一部が全周にわたって除去されて形成される部分力 上面または 下面と外周面とを連絡する連絡面を形成し、前記磁気検出器が前記連絡面に近接 して配置されて!/、ることを特徴とする。  A partial force formed by removing a part of the outer peripheral corner portion over the entire circumference forms a communication surface that connects the upper surface or the lower surface and the outer peripheral surface, and the magnetic detector is disposed in proximity to the communication surface. ! /
[0011] 本発明の回転角度検出装置の他の態様は、前記外周面が前記磁石の回転軸と平 行であり、前記外周面と上面および下面とが略垂直であり、前記磁石の回転軸を通 る断面において、外周面に対応する外周線と、上面および下面に対応する上面線お よび下面線とが略垂直で、連絡面に対応する連絡線が外周線と上面線または下面 線とを連絡して!/、ることを特徴とする。 [0011] In another aspect of the rotation angle detection device of the present invention, the outer peripheral surface is parallel to the rotation axis of the magnet, the outer peripheral surface is substantially perpendicular to the upper surface and the lower surface, and the rotation shaft of the magnet is Through In the cross section, the outer peripheral line corresponding to the outer peripheral surface and the upper and lower lines corresponding to the upper and lower surfaces are substantially vertical, and the connecting line corresponding to the connecting surface connects the outer peripheral line and the upper or lower surface line. And! /, Characterized by.
[0012] 本発明の回転角度検出装置の他の態様は、前記連絡面が平面、曲面または多段 面からなってレ、ることを特徴とする [0012] Another aspect of the rotation angle detection device of the present invention is characterized in that the connecting surface is a flat surface, a curved surface, or a multistage surface.
[0013] 本発明の回転角度検出装置の他の態様は、検出面が前記連絡面に面し、前記回 転軸と垂直に配置され、前記磁石の回転軸方向の磁気の強さを検出することを特徴 とする。 [0013] In another aspect of the rotation angle detection device of the present invention, the detection surface faces the communication surface and is arranged perpendicular to the rotation axis, and detects the magnetic strength of the magnet in the rotation axis direction. It is characterized by this.
[0014] 本発明の回転角度検出装置の他の態様は、前記磁気検出器の検出面の前記回 転軸側の端部は、前記連絡面の一方の端部と他方の端部の間に位置するように配 置されて!/、ることを特徴とする。  [0014] In another aspect of the rotation angle detection device of the present invention, the rotation shaft side end of the detection surface of the magnetic detector is between one end and the other end of the communication surface. It is arranged so that it is located! /.
[0015] 本発明の回転角度検出装置の他の態様は、前記回転軸を通る前記磁石の断面の 外周線、上面線および下面線によって形成される矩形の面積に対する、除去された 前記外周角部の一部の面積の割合が、 5%以上 35%以下であることを特徴とする。  In another aspect of the rotation angle detection device of the present invention, the outer peripheral corner portion is removed with respect to a rectangular area formed by an outer peripheral line, an upper surface line, and a lower surface line of a cross section of the magnet passing through the rotation axis. The ratio of the part of the area is 5% or more and 35% or less.
[0016] 本発明の回転角度検出装置の他の態様は、前記回転軸を通る前記磁石の外周線 、上面線および下面線によって形成される矩形の面積に対する、除去された前記外 周角部の一部の面積の割合が、 20%以上 30%以下であることを特徴とする。  In another aspect of the rotation angle detection device of the present invention, the outer peripheral angle portion is removed with respect to a rectangular area formed by an outer peripheral line, an upper surface line, and a lower surface line of the magnet passing through the rotation axis. Part of the area is 20% or more and 30% or less.
[0017] 本発明の回転角度検出装置の他の態様は、前記磁石は、少なくとも外周が略円形 であり、前記磁石の磁気の強さが前期磁石の円周方向に沿って変動する磁石である ことを特徴とする。  [0017] In another aspect of the rotation angle detection device of the present invention, the magnet is a magnet whose at least outer periphery is substantially circular, and whose magnetic strength varies along the circumferential direction of the previous magnet. It is characterized by that.
発明の効果  The invention's effect
[0018] 本発明の回転角度検出装置によれば、被検出回転体に固定されて一体に回転す る磁石の磁気センサに近接する角部を面取りすることにより、回転体の径方向にガタ が発生しても回転角度を高精度に測定することが可能となる。  [0018] According to the rotation angle detection device of the present invention, the chamfered corners close to the magnetic sensor of the magnet that is fixed to the rotation body to be detected and rotates integrally with each other can be rattled in the radial direction of the rotation body. Even if it occurs, the rotation angle can be measured with high accuracy.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の第 1の実施形態に係る回転角度検出装置の構成を示すブロック図で ある。  FIG. 1 is a block diagram showing a configuration of a rotation angle detection device according to a first embodiment of the present invention.
[図 2]ホール素子を用いた磁気センサの構成を示すブロック図である。 園 3]磁石によって形成される磁束密度、及び磁石の径方向移動による磁束密度の 変化を示す図である。 FIG. 2 is a block diagram showing a configuration of a magnetic sensor using a Hall element. FIG. 3] A graph showing the change in magnetic flux density formed by the magnet and the magnetic flux density due to the radial movement of the magnet.
[図 4]本発明の第 2の実施形態に係る回転角度検出装置の構成を示すブロック図で ある。  FIG. 4 is a block diagram showing a configuration of a rotation angle detection device according to a second embodiment of the present invention.
園 5]磁石の回転角度と磁気センサ出力との関係を示す図である。 FIG. 5] A diagram showing the relationship between the rotation angle of the magnet and the output of the magnetic sensor.
[図 6]磁石の径方向移動距離と磁束密度との関係を面取り部の大きさ毎に示したダラ フである。示す。  [Fig. 6] A diagram showing the relationship between the radial movement distance of the magnet and the magnetic flux density for each chamfer size. Show.
園 7]面取り部の除去面積の大きさと磁気センサの回転角度誤差及び磁束密度との 園 8]除去面積の大きさと増幅器の増幅倍率及び角度誤差との関係を示すグラフで ある。 FIG. 7 is a graph showing the relationship between the size of the removal area of the chamfered portion, the rotation angle error of the magnetic sensor, and the magnetic flux density. 8] The relationship between the size of the removal area and the amplification factor and angle error of the amplifier.
[図 9]本発明の第 3の実施形態に係る回転角度検出装置の構成を示すブロック図で ある。  FIG. 9 is a block diagram showing a configuration of a rotation angle detection device according to a third embodiment of the present invention.
園 10]従来の回転角度検出装置の構成を示すブロック図である。 [10] FIG. 10 is a block diagram showing a configuration of a conventional rotation angle detection device.
符号の説明 Explanation of symbols
100、 200、 300, 900 回転角度検出装置  100, 200, 300, 900 Rotation angle detector
110、 310、 901、 910 磁石  110, 310, 901, 910 magnets
111、 311 外周面  111, 311 Outer surface
112 上面  112 Top view
113 下面  113 Bottom
114, 314 面取り部(連絡面)  114, 314 Chamfer (contact surface)
120、 220、 902、 903、 911 磁気センサ  120, 220, 902, 903, 911 Magnetic sensor
121 ホール素子  121 Hall element
122  122
123 増幅器  123 amplifier
131、 132 磁力線  131, 132 magnetic field lines
240, 315 断面積  240, 315 Cross section
904 回転軸 発明を実施するための最良の形態 904 Rotation axis BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の好ましい実施の形態における回転角度検出装置について、図面を参照し て詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡 略化のため、同一符号を付して示す。  [0021] A rotation angle detection device according to a preferred embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions are denoted by the same reference numerals for simplification of illustration and explanation.
[0022] 本発明の第 1の実施形態である回転角度検出装置を、図 1を用いて説明する。図 1 は、本実施形態の回転角度検出装置 100を示す構造図であり、(a)は回転軸に垂直 な方向の平面図を、また (b)は回転軸を通る平面で見た断面図を、それぞれ示す。 回転角度検出装置 100は、回転体(図示せず)に固定された円柱形状の磁石 110と 、磁石 110の外周面 111の直下に非接触で固定された磁気センサ 120とを備えてい  [0022] A rotation angle detection apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a structural diagram showing a rotation angle detection device 100 of the present embodiment, where (a) is a plan view in a direction perpendicular to the rotation axis, and (b) is a cross-sectional view as viewed in a plane passing through the rotation axis. Are shown respectively. The rotation angle detection device 100 includes a columnar magnet 110 fixed to a rotating body (not shown), and a magnetic sensor 120 fixed in a non-contact manner directly under the outer peripheral surface 111 of the magnet 110.
[0023] 磁石 110は径方向に着磁されており、径方向の一方を N極、他方を S極としている 。磁石 110の回転による磁束密度の変化を磁気センサ 120で測定できるだけの磁界 の強さが得られるよう、磁石の厚さをある程度確保する必要があり、例えば 3mm程度 とすること力できる。なお、図 1では、磁気センサ 120の位置を磁石 110の外周面 111 の直下としている力 S、これに限られるものではなく例えば外周面 111の真上に配置し てもよい。 The magnet 110 is magnetized in the radial direction, and one of the radial directions is an N pole and the other is an S pole. It is necessary to secure a certain thickness of the magnet so that a magnetic field intensity sufficient to measure the change in magnetic flux density due to the rotation of the magnet 110 can be obtained by the magnetic sensor 120. For example, it can be set to about 3 mm. In FIG. 1, the force S where the position of the magnetic sensor 120 is directly below the outer peripheral surface 111 of the magnet 110 is not limited to this. For example, the magnetic sensor 120 may be disposed immediately above the outer peripheral surface 111.
[0024] 磁気センサ 120として、例えばホール素子を用いることができる。ホール素子は、半 導体のホール効果を利用した磁気センサであって、磁気を電気に直接変換すること 力できる。図 2に示すように、ホール素子 121に一定の電流 122を流した状態でホー ル素子 121に磁界が加わると、ホール端子 121にホール電圧が発生する。これを増 幅器 123で増幅したものを磁気センサ 120の出力としている。  As the magnetic sensor 120, for example, a Hall element can be used. A Hall element is a magnetic sensor that uses the Hall effect of a semiconductor and can directly convert magnetism into electricity. As shown in FIG. 2, when a magnetic field is applied to the Hall element 121 with a constant current 122 flowing through the Hall element 121, a Hall voltage is generated at the Hall terminal 121. The output of the magnetic sensor 120 is obtained by amplifying this with the amplifier 123.
[0025] 円柱形状の磁石 110は、立体的に、上面 1 12、下面 113および外周面 111を備え 、上面 112または下面 113と外周面 111とによって形成される外周角部の一部が全 周にわたつて除去されて形成される部分力 上面 112または下面 113と外周面 111 とを連絡する連絡面 114を形成する。  The cylindrical magnet 110 includes an upper surface 112, a lower surface 113, and an outer peripheral surface 111 in a three-dimensional manner, and a part of the outer peripheral corner formed by the upper surface 112 or the lower surface 113 and the outer peripheral surface 111 is the entire periphery. The partial force formed by being removed is formed as a connecting surface 114 that connects the upper surface 112 or the lower surface 113 and the outer peripheral surface 111.
外周面 11 1が磁石の回転軸と平行であり、外周面 111と上面 112および下面 113と が略垂直である。平面的には、図 1 (b)に示すように、磁石の回転軸を通る断面にお いて、外周面 111に対応する外周線 111と、上面 112、下面 113に対応する上面線 112および下面線 113とが略垂直で、連絡面に対応する連絡線 114が外周線 11 1と 上面線 112または下面線 1 13とを連絡している。以下、外周面または外周線を 111、 上面または上面線を 112、下面または下面線を 113で示す。 The outer peripheral surface 111 is parallel to the rotation axis of the magnet, and the outer peripheral surface 111, the upper surface 112, and the lower surface 113 are substantially perpendicular. In plan view, as shown in FIG. 1 (b), in the cross section passing through the rotation axis of the magnet, the outer peripheral line 111 corresponding to the outer peripheral surface 111 and the upper surface lines corresponding to the upper surface 112 and the lower surface 113. 112 and the lower surface line 113 are substantially vertical, and a connection line 114 corresponding to the connection surface connects the outer peripheral line 111 and the upper surface line 112 or the lower surface line 113. In the following, the outer peripheral surface or outer peripheral line is indicated by 111, the upper or upper surface line is indicated by 112, and the lower or lower surface line is indicated by 113.
[0026] 即ち、本実施形態の回転角度検出装置 100は、図 1 (b)に示すように、磁石 110の 外周面 11 1と下面 113とで形成された外周角部を切除した面取り部(即ち、連絡面) 114を形成しているのを特徴としている。 本実施形態では、磁気センサ 120を下面 113側に配置していることから、面取り部 114を外周面 111と下面 113とで形成され た外周角部に形成するようにしている。磁気センサ 120が上面 112側に配置されて いる場合には、外周面 111と上面 112とで形成された外周角部に面取り部 114を形 成する。 That is, as shown in FIG. 1 (b), the rotation angle detection device 100 of the present embodiment has a chamfered portion (a chamfered portion obtained by cutting away the outer peripheral corner portion formed by the outer peripheral surface 111 and the lower surface 113 of the magnet 110). That is, it is characterized in that a communication surface 114 is formed. In this embodiment, since the magnetic sensor 120 is arranged on the lower surface 113 side, the chamfered portion 114 is formed at the outer peripheral corner formed by the outer peripheral surface 111 and the lower surface 113. When the magnetic sensor 120 is disposed on the upper surface 112 side, the chamfered portion 114 is formed at the outer peripheral corner formed by the outer peripheral surface 111 and the upper surface 112.
[0027] 本実施形態では、磁気センサ 120は、磁石 110の回転軸方向の磁束密度を測定 するよう配置されている。また、磁気センサ 120の検出面 120aは、一部が面取り部 1 14の直下にあり、残りの部分が外周面 111より外側になるように配置されている。磁 気センサ 120の径方向の配置位置は、検出面 120aの回転軸側の端部 120bが面取 り部(連絡面) 114と下面 113との交点より外側でかつ外周面 111より内側となるよう 決定するのがよい。すなわち、少なくとも検出面 120aの回転軸側の端部 120bが面 取り部 114の直下に位置するように、磁気センサ 120の径方向位置を決定するのが よい。  In the present embodiment, the magnetic sensor 120 is arranged to measure the magnetic flux density in the rotation axis direction of the magnet 110. Further, the detection surface 120a of the magnetic sensor 120 is arranged so that a part thereof is directly below the chamfered portion 114 and the remaining part is outside the outer peripheral surface 111. The radial position of the magnetic sensor 120 is such that the end 120b of the detection surface 120a on the rotating shaft side is outside the intersection of the chamfered portion (connecting surface) 114 and the bottom surface 113 and inside the outer peripheral surface 111. It is better to decide. That is, it is preferable to determine the radial position of the magnetic sensor 120 so that at least the end 120b on the rotation axis side of the detection surface 120a is positioned immediately below the chamfered portion 114.
[0028] 図 1に示す面取り部 114の形状は、切断面が平面状の C面取りとしているが、これ に限られるものではなく例えば曲面状の R面取りとすることも、多段面状の面取りとす ることも可能である。また面取り部 114の大きさについては、後述するように所定の範 囲内で適宜選択することが可能である。いずれも、磁気センサ 120で磁石 110の回 転軸方向の磁束密度が好適に測定できるよう決定するのがよい。  The shape of the chamfered portion 114 shown in FIG. 1 is a C-chamfer with a flat cut surface, but is not limited to this. For example, a curved R-chamfer may be used. It is also possible to do this. The size of the chamfered portion 114 can be appropriately selected within a predetermined range as will be described later. In any case, it is preferable that the magnetic sensor 120 is determined so that the magnetic flux density in the rotation axis direction of the magnet 110 can be suitably measured.
[0029] 上記のように、磁気センサ 120に近接する位置の磁石 110の角部を面取りすること により、磁気センサ 120の位置における磁束密度の径方向の勾配を緩やかにするこ とができる。すなわち、磁石 110が径方向のガタによって径方向に移動しても、磁気 センサ 120の位置における磁束密度の変化が小さくなるようにすることができる。  As described above, by chamfering the corner of the magnet 110 at a position close to the magnetic sensor 120, the radial gradient of the magnetic flux density at the position of the magnetic sensor 120 can be made gentle. That is, even if the magnet 110 moves in the radial direction due to the radial play, the change in the magnetic flux density at the position of the magnetic sensor 120 can be reduced.
[0030] 図 3 (a)は、磁石 110によって形成される磁束密度を模式的に示した図である。図 3 (a)において、実線で示した磁力線 131は、本実施形態の面取り部 114を有する磁 石 110で形成されるものを示しており、破線で示した磁力線 132は、面取り部を有し ない従来の円柱形状の磁石で形成されるものである。磁気センサ 120の位置では、 面取り部 114を有する磁石 110で形成される磁力線 131の間隔力 面取り部を有し ない従来の磁石で形成される磁力線 132の間隔よりも大きくなつており、これは面取 り部 114を形成することで磁気センサ 120の位置における磁束密度の半径方向の変 化が緩やかになることを示して!/、る。 FIG. 3 (a) is a diagram schematically showing the magnetic flux density formed by the magnet 110. Fig 3 In (a), the magnetic lines 131 shown by solid lines indicate those formed by the magnet 110 having the chamfered portion 114 of the present embodiment, and the magnetic lines 132 shown by broken lines do not have a chamfered portion. It is formed with a cylindrical magnet. At the position of the magnetic sensor 120, the spacing force of the magnetic force lines 131 formed by the magnet 110 having the chamfered portion 114 is larger than the spacing of the magnetic force lines 132 formed by the conventional magnet having no chamfered portion. This shows that the formation of the handle 114 makes the change in the radial direction of the magnetic flux density at the position of the magnetic sensor 120 moderate.
[0031] 磁気センサ 120の位置での回転軸方向の磁束密度力 S、磁石 110の径方向のガタ によりどのように変化するかを図 3 (b)、(c)に示した。図 3 (b)は従来の面取り部を有 しない磁石 910の場合を示しており、図 3 (c)は本実施形態の磁石 110の場合を示し ている。 [0031] FIGS. 3B and 3C show how the magnetic flux density force S in the rotation axis direction at the position of the magnetic sensor 120 and the radial play of the magnet 110 change. FIG. 3 (b) shows a case of a magnet 910 having no conventional chamfered portion, and FIG. 3 (c) shows a case of the magnet 110 of this embodiment.
[0032] 図 3 (b)に示す従来の磁石 910の場合には、磁石 910が径方向に移動すると磁気 センサ 911の位置における磁束密度が急激に変化する。これに対し本実施形態の 磁石 110の場合には、面取り部 114を形成ことにより磁気センサ 120の位置における 磁束密度の変化が大幅に小さくなつている。これは、面取り部 1 14を形成することで 磁束密度が径方向に緩やかに変化するように磁石 110を形成できることを示している In the case of the conventional magnet 910 shown in FIG. 3B, the magnetic flux density at the position of the magnetic sensor 911 rapidly changes when the magnet 910 moves in the radial direction. On the other hand, in the case of the magnet 110 of the present embodiment, the change in the magnetic flux density at the position of the magnetic sensor 120 is greatly reduced by forming the chamfered portion 114. This indicates that by forming the chamfered portion 1 14, the magnet 110 can be formed so that the magnetic flux density gradually changes in the radial direction.
Yes
[0033] 上記の通り、本実施形態の回転角度検出装置 100では、磁気センサ 120で測定さ れる磁束密度が磁石 110の径方向のガタによって変化するのを従来より大幅に小さ くすること力 S可能となる。これにより、磁石 110が径方向ガタを伴って回転した場合で も、回転角度の測定誤差を小さくして精度を高めることが可能となる。  [0033] As described above, in the rotation angle detection device 100 of the present embodiment, the force S that makes the magnetic flux density measured by the magnetic sensor 120 change significantly due to the backlash in the radial direction of the magnet 110 is smaller than the conventional force S. It becomes possible. As a result, even when the magnet 110 rotates with radial play, it is possible to reduce the measurement error of the rotation angle and increase the accuracy.
[0034] 本発明の第 2の実施形態である回転角度検出装置を、図 4を用いて説明する。図 4 は、本実施形態の回転角度検出装置 200を示す構造図であり、(a)は回転軸に垂直 な方向の平面図を、また (b)は回転軸を通る平面で見た断面図を、それぞれ示す。 本実施形態では、磁気センサ 120に加えて別の磁気センサ 220を追加している。  [0034] A rotation angle detection apparatus according to a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a structural diagram showing the rotation angle detection device 200 of the present embodiment, where (a) is a plan view in a direction perpendicular to the rotation axis, and (b) is a cross-sectional view as viewed in a plane passing through the rotation axis. Are shown respectively. In the present embodiment, another magnetic sensor 220 is added in addition to the magnetic sensor 120.
[0035] 本実施形態の回転角度検出装置 200は、磁気センサとして 120と 220の 2つを用 いることにより、回転角度の測定精度をさらに高めるよう構成されたものである。磁気 センサ 220は、磁気センサ 120に対し円周方向に 90° 回転させた向きに配置されて おり、回転軸方向及び径方向については磁気センサ 120と同じ配置としている。従つ て、磁気センサ 220と面取り部 114との相対的な位置関係も、磁気センサ 120の場合 と同じになり、磁石 110の径方向のガタによる磁気センサ 220位置での磁束密度の 変化も、磁気センサ 120と同様に緩やかなものになる。 [0035] The rotation angle detection device 200 of the present embodiment is configured to further increase the measurement accuracy of the rotation angle by using two magnetic sensors 120 and 220 as magnetic sensors. The magnetic sensor 220 is arranged in a direction rotated by 90 ° in the circumferential direction with respect to the magnetic sensor 120. The rotational axis direction and radial direction are the same as those of the magnetic sensor 120. Therefore, the relative positional relationship between the magnetic sensor 220 and the chamfered portion 114 is the same as that of the magnetic sensor 120, and the change in magnetic flux density at the magnetic sensor 220 position due to the backlash in the radial direction of the magnet 110 is also Similar to the magnetic sensor 120, it becomes gentle.
[0036] 磁石 110は径方向に着磁され、円周方向の磁束密度の分布は凡そ正弦波になる ように構成している。また、磁気センサ 220と磁気センサ 120の配置は円周方向上、 9 0°ずれているため、磁気センサ 220の出力 = sin Θ、磁気センサ 120の出力 = cos Θ ( Θ:回転角度)とおおよそみることができる。  The magnet 110 is magnetized in the radial direction, and the distribution of the magnetic flux density in the circumferential direction is configured to be approximately a sine wave. Also, since the arrangement of the magnetic sensor 220 and the magnetic sensor 120 is shifted by 90 ° in the circumferential direction, the output of the magnetic sensor 220 = sin Θ and the output of the magnetic sensor 120 = cos Θ (Θ: rotation angle) You can see.
[0037] したがって、回転角度検出装置 200では、 2つの磁気センサ 120及び 220を用いる ことでさらに高精度に 360度の回転角度範囲を角度 = arctan (磁気センサ 220の出 力/磁気センサ 120の出力)で算出できるように構成しており、以下ではその測定結 果の 1例について説明する。なお下記では、比較対象の従来の磁石として、図 3 (b) に示した矩形状の断面を有する磁石 910を用いるものとする。  [0037] Therefore, in the rotation angle detection device 200, by using the two magnetic sensors 120 and 220, the rotation angle range of 360 degrees can be further accurately determined by using the angle = arctan (output of the magnetic sensor 220 / output of the magnetic sensor 120. ), And an example of the measurement results will be described below. In the following, a magnet 910 having a rectangular cross section shown in FIG. 3B is used as a conventional magnet for comparison.
[0038] 磁気センサ 120 (又は 220)の出力と、磁石 110の回転角度との関係を図 5に示す 。同図において、実線 231は磁石 110が径方向にガタを伴わないで回転した場合の 磁石 110の回転角度と磁気センサ 120の出力との関係を示している。この場合には、 磁石 110が 0度から 180度まで回転するのに伴って、磁気センサ 120の出力が 0Vか ら 2Vまで変化している。  The relationship between the output of the magnetic sensor 120 (or 220) and the rotation angle of the magnet 110 is shown in FIG. In the figure, a solid line 231 shows the relationship between the rotation angle of the magnet 110 and the output of the magnetic sensor 120 when the magnet 110 rotates without backlash in the radial direction. In this case, as the magnet 110 rotates from 0 degree to 180 degrees, the output of the magnetic sensor 120 changes from 0V to 2V.
[0039] これに対し面取り部を有しない従来の磁石 910が径方向にガタを伴って回転した 場合には、破線 232に示すように、回転角度が 0度のときの磁気センサ 911の出力が 実線 231より小さくなる一方、 180度の時には逆に大きくなつて 0Vにはならない。こ のように、面取り部を有しない従来の磁石 910では、径方向のガタにより径方向に少 しずれただけで磁気センサ 911の出力が大きく変化するため、磁気センサ 911の出 力 232がガタを伴わない実線 231から比較的大きくずれしまう。そのため、ガタを伴 わない実線 231を基準に回転角度を判断してしまうと、回転角度の誤差が大きくなつ てしまう。  [0039] On the other hand, when the conventional magnet 910 having no chamfered portion rotates with backlash in the radial direction, the output of the magnetic sensor 911 when the rotation angle is 0 degrees as shown by the broken line 232 is On the other hand, it becomes smaller than the solid line 231. On the other hand, when it is 180 degrees, it becomes larger and does not become 0V. As described above, in the conventional magnet 910 having no chamfered portion, the output 232 of the magnetic sensor 911 greatly changes because the output of the magnetic sensor 911 changes greatly only by a slight deviation in the radial direction due to the radial play. A relatively large deviation from the solid line 231 without the. For this reason, if the rotation angle is determined with reference to the solid line 231 without backlash, the error of the rotation angle becomes large.
[0040] さらに、面取り部 114を有する本実施形態の磁石 110が径方向にガタを伴って回 転する場合には、磁気センサ 120の出力が 1点鎖線 233のように変化する。 1点鎖線 233は実線 231とほとんど重なっており、径方向のガタの影響がほとんど解消されて いること力 Sわ力、る。これは、本実施形態では磁石 110が面取り部 114を有することから 、径方向のガタにより径方向にずれても磁気センサ 120の出力の変化が小さいため 、ガタのない出力 231からのずれを十分小さくすることができている。 Furthermore, when the magnet 110 of the present embodiment having the chamfered portion 114 rotates with backlash in the radial direction, the output of the magnetic sensor 120 changes as indicated by a one-dot chain line 233. One-dot chain line 233 almost overlaps the solid line 231 and the effect of radial play is almost eliminated. In this embodiment, since the magnet 110 has the chamfered portion 114, the change in the output of the magnetic sensor 120 is small even if the magnet 110 is displaced in the radial direction due to the radial play, so that the deviation from the output 231 having no play is sufficient. It can be made smaller.
[0041] このように、本実施形態の磁石 110では、第 1の実施形態と同様に磁気センサ 120 に近接する角を面取りして面取り部 114を設けていることから、磁気センサ 120の位 置での磁束密度の径方向の変化が小さくなつており、その結果、図 5に示すように、 回転角度と磁気センサ 120の出力との関係に与える径方向ガタの影響が大幅に低 減されている。上記では磁気センサ 120について説明したが、磁気センサ 220につ Vヽても磁気センサ 120と同様、図 5に示すような改善効果を有して!/、る。  As described above, in the magnet 110 according to the present embodiment, the chamfered portion 114 is provided by chamfering the corner close to the magnetic sensor 120 as in the first embodiment. As a result, as shown in Fig. 5, the influence of the radial play on the relationship between the rotation angle and the output of the magnetic sensor 120 is greatly reduced. Yes. In the above description, the magnetic sensor 120 has been described. However, even if the magnetic sensor 220 is V, the improvement effect as shown in FIG.
[0042] 次に、面取り部 114の大きさと回転角度の誤差との関係について以下に説明する。  Next, the relationship between the size of the chamfered portion 114 and the rotation angle error will be described below.
1例として、面取り部 114の大きさが与える影響をシミュレーションで評価した結果を 図 6に示す。ここでは、図 6 (a)に示すように磁石 110の N極または S極の断面積に対 する面取りされる面積(以下では除去面積とレ、う)の割合を変えたときのシミュレーショ ンを行っている。また、磁気センサ 120 (及び 220)は、磁石 110の右下角の下方 lm mの所に設置されている。磁気センサ 120 (及び 220)は、図面上上下方向の磁束を 測定することになる。  As an example, Fig. 6 shows the results of evaluating the effect of the size of the chamfered portion 114 by simulation. Here, as shown in Fig. 6 (a), simulation is performed when the ratio of the chamfered area to the N or S pole cross-sectional area of the magnet 110 (hereinafter, the removal area and the height) is changed. It is carried out. In addition, the magnetic sensor 120 (and 220) is installed at a position below lm m in the lower right corner of the magnet 110. The magnetic sensor 120 (and 220) measures the magnetic flux in the vertical direction on the drawing.
[0043] 図 6 (a)では、断面積 240の対角線に平行に破線 241のように面取りを行うものとし ている。断面積 240の磁気センサ 120 (及び 220)に近い 2辺に対し、各辺の長さの 1 /10ずつ除去面積を増加していったときの、磁気センサ 120 (及び 220)の位置に おける磁束密度を図 6 (b)に示す。横軸は、磁石 1 10が径方向に移動する距離を示 している。  In FIG. 6 (a), chamfering is performed as indicated by a broken line 241 parallel to the diagonal line of the cross-sectional area 240. At the position of magnetic sensor 120 (and 220) when the removal area is increased by 1/10 of the length of each side for two sides close to magnetic sensor 120 (and 220) with a cross-sectional area of 240 The magnetic flux density is shown in Fig. 6 (b). The horizontal axis indicates the distance that the magnet 110 moves in the radial direction.
[0044] 図 6において、断面積 240の大きさを長辺の長さが 5mm、短辺の長さが 3mmとし ている。そして、面取り部分の大きさとして、長辺に対し 0. 5mmずつ 3. 5mmまで、 短辺に対し 0. 3mmずつ 2· 1mmまで、それぞれを大きくしていったときのシミュレ一 シヨンケースを C00〜C3. 5と表記して示している。  [0044] In Fig. 6, the cross-sectional area 240 has a long side length of 5 mm and a short side length of 3 mm. The size of the chamfered part is 0.5mm for the long side up to 3.5mm, and 0.3mm for the short side up to 2.1mm. It is shown as ~ C3.5.
[0045] 図 6 (b)より、面取り部のない C00から面取り部分を大きくしていくにつれて、磁束密 度のピーク部分がなだらかになっていくことがわかる。すなわち、面取り部 114の除去 面積を大きくするほど、磁石 110の径方向の移動に対する変化が小さくなることを示 している。なお、磁束密度のピーク部分がなだらかになるにつれてピーク値が低下し ていくことから、増幅器 123の増幅倍率を大きくしていく必要がある。 [0045] From FIG. 6 (b), it can be seen that the peak portion of the magnetic flux density becomes gentle as the chamfered portion is increased from C00 having no chamfered portion. That is, removal of the chamfered portion 114 It is shown that the change with respect to the radial movement of the magnet 110 decreases as the area increases. Since the peak value decreases as the peak portion of the magnetic flux density becomes gentle, the amplification factor of the amplifier 123 needs to be increased.
[0046] 上記のシミュレーションにおいて、面取り部 114の除去面積の大きさと磁気センサ 1 20及び 220を用いて測定し、計算した回転角度の誤差との関係を図 7 (a)に示す。 また、除去面積の大きさと磁気センサ 120及び 220の位置における磁束密度との関 係を図 7 (b)に示す。図 7 (a)より、面取り部 114の除去面積を大きくしていくにつれて 回転角度の誤差が小さくなることがわかる。但し、同図では除去面積の大きさが C2. 5のときに誤差が最も小さぐそれ以上除去面積を大きくしても誤差が低減しないこと 力 sわ力、る。 [0046] FIG. 7A shows the relationship between the size of the removal area of the chamfered portion 114 and the error of the calculated rotation angle measured using the magnetic sensors 120 and 220 in the above simulation. Fig. 7 (b) shows the relationship between the size of the removal area and the magnetic flux density at the positions of the magnetic sensors 120 and 220. From FIG. 7 (a), it can be seen that the rotation angle error decreases as the removal area of the chamfered portion 114 is increased. However, the size of the removal area in the figure C2. 5 that force s I force error even by increasing the most small tool more removal area error is not reduced when the, Ru.
[0047] 図 7 (b)に示す面取り部 114の除去面積の大きさと磁束密度との関係では、除去面 積を大きくしてレ、くにつれて磁束密度が低下して!/、くことが示されて!/、る。同図では、 径方向ガタによる移動距離を変えたときの最大磁束密度と平均磁束密度を示してい るが、除去面積を大きくしていくにつれて最大磁束密度も平均磁束密度に近づいて いる。これは、図 6 (b)に示したように、磁束密度のピークが低下していくことによるも のである。  [0047] The relationship between the size of the removal area of the chamfer 114 shown in FIG. 7 (b) and the magnetic flux density indicates that the magnetic flux density decreases with increasing removal area! Being! / This figure shows the maximum magnetic flux density and the average magnetic flux density when the moving distance due to radial play is changed. The maximum magnetic flux density approaches the average magnetic flux density as the removal area is increased. This is because the peak of the magnetic flux density decreases as shown in Fig. 6 (b).
[0048] 上記のように、面取り部 114の除去面積を大きくしていくにつれて磁束密度が低下 していくことから、これにあわせて増幅器 123の増幅倍率を大きくしていく必要がある 。除去面積の大きさと増幅器 123の増幅倍率及び角度誤差との関係を図 8に示す。 同図では、横軸を面取りされる除去面積の全断面積(面取り部のない C00の面積)に 対する割合(%)で示している。面取りされる除去面積を大きくしていくにつれて、増 幅器 123の増幅倍率をグラフ 251のように大きくしていく必要があり、増幅倍率をこの ように設定したとき、回転角度の測定誤差はグラフ 252のようになる。  [0048] As described above, since the magnetic flux density decreases as the removal area of the chamfered portion 114 is increased, it is necessary to increase the amplification magnification of the amplifier 123 accordingly. FIG. 8 shows the relationship between the size of the removal area, the amplification magnification of the amplifier 123, and the angle error. In the figure, the horizontal axis indicates the removal area to be chamfered as a percentage (%) of the total cross-sectional area (area of C00 without chamfered portion). As the removal area to be chamfered increases, it is necessary to increase the amplification factor of the amplifier 123 as shown in graph 251, and when the amplification factor is set in this way, the measurement error of the rotation angle is Like 252.
[0049] 図 8より、面取り部 114の除去面積を 25%程度としたときに、角度誤差が最も小さく なること力わ力、る。面取り部 114の除去面積は、面取りを行う前の N極(及び S極)の 断面積の 5〜35%とするのがよぐより好ましくは 20〜30%を面取りするのがよい。ま た、前記面取り形状は、磁石の断面が略矩形となるのが好ましい。  From FIG. 8, it can be seen that when the removal area of the chamfered portion 114 is about 25%, the angular error becomes the smallest. The removal area of the chamfered portion 114 should be 5 to 35% of the cross-sectional area of the N pole (and S pole) before chamfering, more preferably 20 to 30%. The chamfered shape preferably has a substantially rectangular cross section of the magnet.
[0050] 図 8に示すように、磁気センサ 120及び 220を備えた本実施形態の回転角度検出 装置 200では、断面積比で面取り部 114の除去面積を例えば 25%としたとき、磁石 110の回転角度の測定誤差を 0. 3度以下にすることが可能となる。面取り部がない 場合には誤差が 1度程度あったのに対し、面取り部 114を設けることで測定精度を大 幅に改善できることがわかる。なお、本実施形態では、磁気センサを 2つ用いるものと したが、これに限定されるものではなぐ例えば 3つ以上用いることも可能である。 As shown in FIG. 8, the rotation angle detection of the present embodiment including the magnetic sensors 120 and 220 In the apparatus 200, when the removal area of the chamfered portion 114 is, for example, 25% in terms of the cross-sectional area ratio, the measurement error of the rotation angle of the magnet 110 can be reduced to 0.3 degrees or less. When there is no chamfered portion, the error was about 1 degree, but it can be seen that the measurement accuracy can be greatly improved by providing the chamfered portion 114. In this embodiment, two magnetic sensors are used. However, the present invention is not limited to this. For example, three or more magnetic sensors can be used.
[0051] 本発明の第 3の実施形態である回転角度検出装置を、図 9を用いて説明する。図 9 は、本実施形態の回転角度検出装置 300を示す構造図であり、(a)は回転軸に垂直 な方向の平面図であり、(b)は回転軸を通る平面で見た断面図である。本実施形態 の磁石 310は、回転軸を含む中心部分を除いた周縁部のみに形成されている。  [0051] A rotation angle detection apparatus according to a third embodiment of the present invention will be described with reference to FIG. FIG. 9 is a structural diagram showing the rotation angle detection device 300 of the present embodiment, where (a) is a plan view in a direction perpendicular to the rotation axis, and (b) is a cross-sectional view as seen in a plane passing through the rotation axis. It is. The magnet 310 of the present embodiment is formed only on the peripheral portion excluding the central portion including the rotation axis.
[0052] 上記のように、磁石 310が周縁部のみに形成される場合には、図 9 (b)に示す面取 り前の磁石 310の断面積 315に対する好適な割合で面取り部 314の大きさを決定す るのがよい。面取り部 314の好適な大きさは、第 2の実施形態と同様に、断面積 315 の 5〜35%とするのがよぐより好ましくは 20〜30%とするのがよい。  [0052] As described above, when the magnet 310 is formed only on the peripheral portion, the size of the chamfered portion 314 is increased at a suitable ratio with respect to the cross-sectional area 315 of the magnet 310 before chamfering shown in Fig. 9 (b). It is good to decide the length. As in the second embodiment, the preferred size of the chamfered portion 314 is 5 to 35% of the cross-sectional area 315, more preferably 20 to 30%.
[0053] 本実施形態の回転角度検出装置 300のように、回転体に固定される磁石 310を周 縁部のみに設けて磁石の大きさを小さくした場合でも、上記のように面取り部 314を 好適に設けることで、磁石 310の回転角度を高精度に測定することが可能となる。  [0053] As in the case of the rotation angle detection device 300 of the present embodiment, even when the magnet 310 fixed to the rotating body is provided only at the peripheral portion to reduce the size of the magnet, the chamfered portion 314 is provided as described above. By providing it suitably, the rotation angle of the magnet 310 can be measured with high accuracy.
[0054] 本発明において磁石は、少なくとも外周が略円形であり、前記磁石の磁気の強さが 前記磁石の円周方向に沿って変動する磁石であることが好ましい。  [0054] In the present invention, the magnet is preferably a magnet having at least a substantially circular outer periphery and a magnetic strength of the magnet that fluctuates along a circumferential direction of the magnet.
[0055] なお、本実施の形態における記述は、本発明に係る回転角度検出装置の一例を 示すものであり、これに限定されるものではない。本実施の形態における回転角度検 出装置の細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲 で適宜変更可能である。  It should be noted that the description in the present embodiment shows an example of the rotation angle detection device according to the present invention, and is not limited to this. The detailed configuration and detailed operation of the rotation angle detection device in the present embodiment can be appropriately changed without departing from the spirit of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも上面、下面および外周面を有し、被検出回転体に固定されて一体に回転 する磁石と、前記磁石の上面または下面と外周面とによって形成される外周角部に 近接して配置されて前記磁石の磁気の強さを検出する磁気検出器と、前記磁気検 出器の出力から前記被検出回転体の回転角度を算出する演算処理部とを備えた回 転角度検出装置であって、  [1] A magnet having at least an upper surface, a lower surface, and an outer peripheral surface, fixed to the detected rotating body and rotating integrally, and an outer peripheral corner formed by the upper or lower surface of the magnet and the outer peripheral surface. A rotation angle detection device comprising: a magnetic detector that is arranged to detect the magnetic strength of the magnet; and an arithmetic processing unit that calculates a rotation angle of the detected rotating body from an output of the magnetic detector. There,
前記外周角部の一部が全周にわたって除去されて形成される部分力 上面または 下面と外周面とを連絡する連絡面を形成し、前記磁気検出器が前記連絡面に近接 して配置されていることを特徴とする回転角度検出装置。  A partial force formed by removing a part of the outer peripheral corner portion over the entire circumference forms a communication surface that connects the upper surface or the lower surface and the outer peripheral surface, and the magnetic detector is disposed in proximity to the communication surface. An apparatus for detecting a rotation angle.
[2] 前記外周面が前記磁石の回転軸と平行であり、前記外周面と上面および下面とが 略垂直であり、前記磁石の回転軸を通る断面において、外周面対応する外周線と、 上面および下面に対応する上面線および下面線とが略垂直で、連絡面に対応する 連絡線が外周線と上面線または下面線とを連絡して!/、ることを特徴とする請求項 1に 記載の回転角度検出装置。  [2] The outer peripheral surface is parallel to the rotation axis of the magnet, the outer peripheral surface is substantially perpendicular to the upper surface and the lower surface, and in the cross section passing through the rotation axis of the magnet, The upper surface line and the lower surface line corresponding to the lower surface and the lower surface line are substantially vertical, and the communication line corresponding to the communication surface communicates the outer peripheral line and the upper surface line or the lower surface line! / The rotation angle detection device described.
[3] 前記連絡面が平面、曲面または多段面からなっていることを特徴とする請求項 1また は 2に記載の回転角度検出装置。  [3] The rotation angle detection device according to [1] or [2], wherein the connecting surface is a flat surface, a curved surface, or a multistage surface.
[4] 前記磁気検出器は、検出面が前記連絡面に面し、前記回転軸と垂直に配置され、 前記磁石の回転軸方向の磁気の強さを検出することを特徴とする請求項 1から 3の何 れか 1項に記載の回転角度検出装置。  4. The magnetic detector according to claim 1, wherein a detection surface faces the communication surface and is arranged perpendicular to the rotation axis, and detects the magnetic strength in the rotation axis direction of the magnet. Any one of 3 to 3. The rotation angle detection device according to 1 above.
[5] 前記磁気検出器の検出面の前記回転軸側の端部は、前記連絡面の一方の端部と 他方の端部の間に位置するように配置されていることを特徴とする請求項 1から 4の 何れか 1項に記載の回転角度検出装置。  [5] The rotating shaft side end of the detection surface of the magnetic detector is disposed so as to be positioned between one end and the other end of the connecting surface. Item 5. The rotation angle detection device according to any one of Items 1 to 4.
[6] 前記回転軸を通る前記磁石の断面の外周線、上面線および下面線によって形成さ れる矩形の面積に対する、除去された前記外周角部の一部の面積の割合が、 5%以 上 35%以下であることを特徴とする請求項 1から 5の何れ力、 1項に記載の回転角度 検出装置。  [6] The ratio of the area of a part of the removed outer peripheral corner portion to the rectangular area formed by the outer peripheral line, the upper surface line, and the lower surface line of the cross section of the magnet passing through the rotating shaft is 5% or more. 6. The rotational angle detection device according to claim 1, wherein the force is 35% or less.
[7] 前記回転軸を通る前記磁石の外周線、上面線および下面線によって形成される矩 形の面積に対する、除去された前記外周角部の一部の面積の割合が、 20%以上 30 %以下であることを特徴とする請求項 6に記載の回転角度検出装置。 [7] The ratio of the area of a part of the removed outer peripheral corner portion to the rectangular area formed by the outer peripheral line, the upper surface line, and the lower surface line of the magnet passing through the rotation axis is 20% or more 30 The rotation angle detection device according to claim 6, wherein the rotation angle detection device is equal to or less than%.
前記磁石は、少なくとも外周が略円形であり、前記磁石の磁気の強さが前記磁石の 円周方向に沿って変動する磁石であることを特徴とする請求項 1から 7の何れ力、 1項 に記載の回転角度検出装置。  The force according to any one of claims 1 to 7, wherein the magnet has at least an outer periphery that is substantially circular, and the magnet has a magnetic strength that varies along a circumferential direction of the magnet. A rotation angle detection device according to claim 1.
PCT/JP2007/069086 2006-10-26 2007-09-28 Rotation angle detector WO2008050581A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/446,447 US20100315074A1 (en) 2006-10-26 2007-09-28 Rotation angle detector
EP07828827A EP2088397A4 (en) 2006-10-26 2007-09-28 Rotation angle detector
JP2008540929A JPWO2008050581A1 (en) 2006-10-26 2007-09-28 Rotation angle detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-290733 2006-10-26
JP2006290733 2006-10-26

Publications (1)

Publication Number Publication Date
WO2008050581A1 true WO2008050581A1 (en) 2008-05-02

Family

ID=39324387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069086 WO2008050581A1 (en) 2006-10-26 2007-09-28 Rotation angle detector

Country Status (4)

Country Link
US (1) US20100315074A1 (en)
EP (1) EP2088397A4 (en)
JP (1) JPWO2008050581A1 (en)
WO (1) WO2008050581A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017104512A1 (en) 2016-03-11 2017-09-14 Tdk Corporation Rotationswinkelabfühlvorrichtung
DE102017105148A1 (en) 2016-03-11 2017-09-14 Tdk Corporation Rotation angle detection device and lathe device
US20210243946A1 (en) * 2018-03-28 2021-08-12 Nanjing Chervon Industry Co., Ltd. Riding lawn mower and operating apparatus for the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145296A1 (en) * 2006-06-14 2007-12-21 The Furukawa Electric Co., Ltd. Rotation angle detector
US8779760B2 (en) 2011-06-09 2014-07-15 Infineon Technologies Ag Angle measurement system including magnet with substantially square face for through-shaft applications
JP6503802B2 (en) * 2015-03-12 2019-04-24 Tdk株式会社 Magnetic sensor
US11874140B2 (en) * 2016-02-17 2024-01-16 Infineon Technologies Ag Tapered magnet
JP6278051B2 (en) * 2016-03-11 2018-02-14 Tdk株式会社 Rotation angle detector
DE102018219979A1 (en) * 2018-11-22 2020-05-28 Robert Bosch Gmbh Electromotive drive device, brake actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054414U (en) * 1991-06-28 1993-01-22 日本精機株式会社 Anti-scattering device for magnets
JP2003075108A (en) 2001-09-04 2003-03-12 Asahi Kasei Corp Rotation angle sensor
JP2004037441A (en) * 2003-01-08 2004-02-05 Ntn Corp Magnetic encoder and wheel bearing using it

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451423B2 (en) * 1998-02-25 2003-09-29 内山工業株式会社 How to magnetize the tone wheel
US6288534B1 (en) * 1999-02-10 2001-09-11 Cts Corporation Non-contacting throttle valve position sensor
JP3597733B2 (en) * 1999-08-09 2004-12-08 アルプス電気株式会社 Magnetic displacement detector
US6639399B2 (en) * 2001-02-06 2003-10-28 Delphi Technologies, Inc. Target wheel sensor assembly for determining position and direction of motion of a rotating target wheel
US6964209B2 (en) * 2001-05-22 2005-11-15 4B Elevator Components, Ltd. Sensor mount attachment device
US6650110B2 (en) * 2001-06-04 2003-11-18 Delphi Technologies, Inc. Target wheel sensor assembly for producing an asymmetric signal and for determining the direction of motion of the target wheel based on the signal shape
JP4169536B2 (en) * 2002-06-26 2008-10-22 株式会社日本自動車部品総合研究所 Actuator
JP2004053410A (en) * 2002-07-19 2004-02-19 Uchiyama Mfg Corp Magnetic encoder
US20040085061A1 (en) * 2002-11-04 2004-05-06 Busch Nicholas F. Geartooth sensor with angled faced magnet
JP2006518043A (en) * 2003-02-14 2006-08-03 ビーイーアイ センサーズ アンド システムズ カンパニー インコーポレイテッド Position sensor using linear Hall effect sensor
JP2005291942A (en) * 2004-03-31 2005-10-20 Asahi Kasei Electronics Co Ltd Rotation angle sensor
JP2005345153A (en) * 2004-05-31 2005-12-15 Denso Corp Rotation angle detector
JP4906253B2 (en) * 2004-08-27 2012-03-28 株式会社ジェイテクト Torque detection device
JP4977378B2 (en) * 2006-02-23 2012-07-18 山梨日本電気株式会社 Magnetic sensor, rotation detection device, and position detection device
JP4607049B2 (en) * 2006-02-23 2011-01-05 株式会社デンソー Rotation angle detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054414U (en) * 1991-06-28 1993-01-22 日本精機株式会社 Anti-scattering device for magnets
JP2003075108A (en) 2001-09-04 2003-03-12 Asahi Kasei Corp Rotation angle sensor
JP2004037441A (en) * 2003-01-08 2004-02-05 Ntn Corp Magnetic encoder and wheel bearing using it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2088397A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017104512A1 (en) 2016-03-11 2017-09-14 Tdk Corporation Rotationswinkelabfühlvorrichtung
DE102017105148A1 (en) 2016-03-11 2017-09-14 Tdk Corporation Rotation angle detection device and lathe device
JP2017161471A (en) * 2016-03-11 2017-09-14 Tdk株式会社 Rotation angle detection device and rotation machine device
CN107179094A (en) * 2016-03-11 2017-09-19 Tdk株式会社 Rotation angle detection apparatus
CN107179094B (en) * 2016-03-11 2019-12-17 Tdk株式会社 Rotation angle detecting device
US10697801B2 (en) 2016-03-11 2020-06-30 Tdk Corporation Rotational angle detection apparatus and rotating machine apparatus
US10775195B2 (en) 2016-03-11 2020-09-15 Tdk Corporation Rotation angle sensing device
US11371863B2 (en) 2016-03-11 2022-06-28 Tdk Corporation Rotational angle detection apparatus and rotating machine apparatus
US11598653B2 (en) 2016-03-11 2023-03-07 Tdk Corporation Rotational angle detection apparatus and rotating machine apparatus
US20210243946A1 (en) * 2018-03-28 2021-08-12 Nanjing Chervon Industry Co., Ltd. Riding lawn mower and operating apparatus for the same
US11812688B2 (en) * 2018-03-28 2023-11-14 Nanjing Chervon Industry Co., Ltd. Riding lawn mower and operating apparatus with position detection for the same

Also Published As

Publication number Publication date
EP2088397A4 (en) 2011-06-08
JPWO2008050581A1 (en) 2010-02-25
EP2088397A1 (en) 2009-08-12
US20100315074A1 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
WO2008050581A1 (en) Rotation angle detector
JP5120384B2 (en) Rotation angle detection device, rotator, and rotation angle detection method
US10690515B2 (en) Dual Z-axis magnetoresistive angle sensor
KR101716731B1 (en) Magnetic position sensor with field direction measurement and flux collector
JP5801566B2 (en) Rotation angle detector
JP4900835B2 (en) Angle detection device, valve device and non-contact volume
US11371863B2 (en) Rotational angle detection apparatus and rotating machine apparatus
US10502588B2 (en) Magnetic position sensor
JP5131537B2 (en) Angle detector
CN106959072B (en) Angle sensor
US10969252B2 (en) System for determining at least one rotation parameter of a rotating member
JP2008151774A (en) Rotation angle detector and rotating machine
JP2006208048A (en) Rotation angle detection apparatus
JP7242352B2 (en) A system for determining at least one rotational parameter of a rotating member
JP5151958B2 (en) POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME
JP2004264222A (en) Magnetic marker for rotation angle sensor
CN111693910A (en) System for determining at least one rotation parameter of a rotating member
JP2009300143A (en) Magnetic position detecting apparatus
CN109931863B (en) Sickle-shaped magnet device for angle detection
JP2003524171A (en) Measuring device to detect rotation angle without contact
JP4001849B2 (en) Magnetic rotary position sensor
JP2008039673A (en) Magnetic encoder system
JP4373157B2 (en) Angle detector
JPH11142183A (en) Rotational angle detection sensor
WO2016190040A1 (en) Rotation detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008540929

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12446447

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007828827

Country of ref document: EP