WO2008050440A1 - Power amplifier - Google Patents

Power amplifier Download PDF

Info

Publication number
WO2008050440A1
WO2008050440A1 PCT/JP2006/321425 JP2006321425W WO2008050440A1 WO 2008050440 A1 WO2008050440 A1 WO 2008050440A1 JP 2006321425 W JP2006321425 W JP 2006321425W WO 2008050440 A1 WO2008050440 A1 WO 2008050440A1
Authority
WO
WIPO (PCT)
Prior art keywords
vswr
power
current
amplifier
reflection coefficient
Prior art date
Application number
PCT/JP2006/321425
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiro Sakai
Shinji Ueda
Takashi Enoki
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to PCT/JP2006/321425 priority Critical patent/WO2008050440A1/en
Publication of WO2008050440A1 publication Critical patent/WO2008050440A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/393A measuring circuit being coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0433Circuits with power amplifiers with linearisation using feedback

Definitions

  • the present invention relates to a power amplifier used for a portable wireless device and the like, and more particularly to a power amplifier that supplies stable power when a load changes.
  • a power amplifier that is mounted on a portable radio device and amplifies a transmission signal is known.
  • the impedance of the antenna always varies depending on the surrounding environment.
  • This type of power amplifier is typically impedance matched to provide the maximum gain or output power level for a particular load value.
  • impedance of the antenna which is the load of this type of power amplifier, fluctuates, impedance mismatch may occur at the output stage of the power amplifier, and the desired power may not be transmitted for the antenna force. Furthermore, there is a risk that power efficiency and distortion will deteriorate.
  • a method is known in which an isolator is provided at the output stage of a power amplifier and the load is not varied.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-83403 Disclosure of the invention
  • the impedance of the different impedance is reduced. Since it is necessary to provide multiple matching circuits, the entire matching circuit may become large. In addition, even if the impedance is matched and the output power level is relatively improved by switching the matching circuit, there is no means for preventing distortion degradation. Therefore, there is a possibility that the power amplifier cannot be used.
  • the power amplifier described in Patent Document 1 describes a configuration in which the matching circuit is selected so that the reflected power is minimized, but in this configuration, all the matching circuits are compared. As a result, if the minimum value of the reflected power itself is large, there is a problem that the effect of improving the output power level cannot be obtained.
  • An object of the present invention is to provide a power amplifier such as a single amplifier or a Doherty amplifier that can prevent deterioration of output power level and distortion against load fluctuations with a simple circuit configuration.
  • the power amplifier according to the present invention has an amplifying element for amplifying power, and a degree of reflection by a standing wave generated by interference between a traveling wave output from the amplifying element and a reflected wave input to the amplifying element.
  • VSWR detection means for detecting the VSWR value, and a current flowing through the amplifying element based on the VSWR value detected by the VSWR detection means so that the power level exceeds the first threshold value and the distortion level becomes the second threshold value or less.
  • a current control means for controlling.
  • a power amplifier includes a reflection element that detects a reflection coefficient that is a ratio of an amplification element that multiplies power and a traveling wave output from the amplification element and a reflected wave input to the amplification element. And current control for controlling the current flowing through the amplifying element so that the power level exceeds the first threshold and the distortion level is equal to or lower than the second threshold based on the reflection coefficient detected by the reflection coefficient detecting means. Means.
  • the VSWR value or reflection coefficient indicating the degree of signal reflection is monitored, and the current value of the power amplifier is always controlled to an appropriate value or range according to these values. Therefore, it is possible to prevent the output power level and distortion from being deteriorated even when the load of the power amplifier fluctuates.
  • it since it becomes possible to prevent deterioration of distortion, it can also be applied to portable radio devices that are used under ambient environment conditions where antenna impedance is severe, which has been impossible until now.
  • the power supply voltage of the power amplifier drops, distortion can be prevented from being deteriorated, so that it can be used even when the battery voltage of the portable radio device is reduced. The time can be extended.
  • FIG. 2 Diagram showing measurement points measured to obtain the approximate characteristics of output power level and distortion shown in Fig. 1.
  • FIG. 7 A first block diagram in which the single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage non-configuration.
  • FIG. 9 A third block diagram in which the single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage non-configuration.
  • FIG. 10 is a block diagram showing the first configuration of the VSWR detection means in Embodiment 3 of the present invention.
  • FIG. 11 is a block diagram showing the second configuration of the VSWR detection means in the third embodiment of the present invention.
  • FIG. 12 is a block diagram showing the third configuration of the VSWR detection means in the third embodiment of the present invention.
  • Block diagram showing the configuration of the current control means for controlling the bias voltage of the amplifying element in the fourth embodiment of the present invention.
  • FIG. 16 is a block diagram showing a configuration of current control means for controlling the matching circuit of the output stage of the amplifier element in the fourth embodiment of the present invention.
  • FIG. 17 is a block diagram showing a configuration of current control means for performing variable phase control in Embodiment 4 of the present invention.
  • FIG. 18 is a block diagram showing a configuration of current control means for controlling the distribution ratio of the current of the amplifying element in the fourth embodiment of the present invention.
  • the power amplifier of the present invention includes a VSWR detection means for detecting a VSWR value of a standing wave generated by interference between a traveling wave output from the power amplifier camera and a reflected wave reflected at the antenna end, and a VSWR detection means And a current control means for controlling the current flowing through the power amplifier based on the detected value (that is, the VSWR value) detected.
  • a configuration including a reflection coefficient detection means for detecting a reflection coefficient that is a ratio of a traveling wave and a reflected wave may be adopted.
  • the VSWR value (voltage standing wave ratio) is the degree to which a part of the signal is reflected on the circuit when a high-frequency signal passes through the device (that is, the degree of signal reflection). It is widely used as an indicator of high frequency characteristics.
  • this VSWR value is 1, it is an ideal state where there is no reflection at all. The larger the reflection, the larger the VSWR value, and the larger the signal loss.
  • a standing wave is a wave in which the reflected wave interferes with the original traveling wave and does not change the node or belly of the wave, but only the amplitude changes. The state of reflection depends on the magnitude of this amplitude.
  • the impedance of the antenna can be known.
  • the degree of impedance matching between the cable and antenna is indicated by the V SWR value.
  • the current control means flows to the power amplifier based on the VSWR value detected by the VSWR detection means or the reflection coefficient detected by the reflection coefficient detection means.
  • the current By appropriately controlling the current, it is possible to prevent deterioration of the output power level and distortion of the power amplifier.
  • FIG. 1 is a schematic characteristic diagram showing characteristics of output power level and distortion level in a Doherty amplifier in order to introduce the present invention.
  • the horizontal axis represents the current ratio (IcZlp) between the carrier current Ic of the carrier amplifier and the peak current Ip of the peak amplifier (IcZlp), and the left vertical axis represents the distortion level ACLR (Adjacent Channel Leakage power Ratio) [dBc]
  • the right vertical axis represents Pout [dBm] indicating the output power level.
  • the horizontal axis shows the current ratio threshold A, the left vertical axis shows the ACLR threshold (ie, distortion threshold) B, and the right vertical axis shows the Pout threshold (ie, power threshold).
  • the characteristic diagram of the lower solid line in Fig. 1 shows the ACLR characteristics (that is, the distortion level characteristics) when the reflection coefficient ⁇ is varied.
  • the characteristic diagram of the upper dashed line in Fig. 1 shows the Pout characteristic (that is, the output power level characteristic) when the reflection coefficient ⁇ is changed.
  • FIG. 2 is a diagram showing measurement points measured to obtain the approximate characteristics of output power level and distortion shown in FIG.
  • the points 0.1, 0.3, 0.6, 0.7, and 1.0 of the circles are concentric circles indicating the reflection coefficients ⁇ .
  • Re ( ⁇ ) on the horizontal axis represents the real axis of the reflection coefficient
  • ⁇ ( ⁇ ) on the vertical axis represents the imaginary axis of the reflection coefficient.
  • 1 to 12 on the circumference show the measurement points when the load phase (that is, the impedance of the antenna) is changed 360 ° at 30 ° intervals. That is, this figure shows each measurement point when the phase of the reflection coefficient ⁇ is changed by 30 ° by 0.1, 0.3, 0.6, 0.7, and 1.0.
  • FIG. 1 The schematic characteristic diagram of FIG. 1 will be described with reference to the measurement points in FIG. 2.
  • the reflection coefficient ⁇ is small.
  • the measurement points on the circumference of Fig. 2 are phased at 90 ° intervals of 1, 4, 7, and 10.
  • the measurement data when measuring 4 points at is shown.
  • the output power level In the characteristic of the output power level indicated by the broken line on the upper side of FIG. 1, when the reflection coefficient ⁇ is small, the output power level is above the power threshold C, and therefore the output power level characteristic is good. However, as the reflection coefficient ⁇ increases, the output power level decreases, and when the reflection coefficient 0 becomes very large, the output power level falls below the power threshold C (allowable value) and can be tolerated as power deterioration increases. Disappear. In other words, when the reflection coefficient ⁇ increases, the power reflection increases, so the output power decreases.
  • the output power level is improved, and if the current ratio (IcZlp) is greater than the current ratio threshold A, the output power is increased even if the reflection coefficient ⁇ is very large.
  • the power level exceeds the power threshold C and the power degradation falls within the allowable range.
  • the distortion level (ACLR) increases, and when the distortion level (ACLR) exceeds the distortion threshold value ⁇ (allowable value), the deterioration of the distortion increases and becomes unacceptable.
  • the current ratio (IcZlp) on the horizontal axis is increased, the distortion level (ACLR) decreases, and if the current ratio (IcZlp) is greater than the current ratio threshold A, the reflection coefficient ⁇ becomes very large.
  • the distortion level (ACLR) is below the distortion threshold B, and the distortion degradation falls within the allowable range.
  • the current ratio (IcZlp) contributes to the performance improvement of the Dono and Tee amplifiers, and is considered to be a large ratio. Since the peak amplifier is biased with class C bias, the peak current Ip of the peak amplifier This means that when the ratio is large, the ratio of contribution to the performance improvement of the Doherty amplifier becomes smaller and the distortion characteristics worsen. However, if the peak current Ip is small, the distortion characteristics can be improved by taking the optimum value of the peak current Ip when the load is 50 ⁇ .
  • Non-Patent Document 1 W.H.Doherty, "A New High Efficiency Power Amplifier For Modular ed Wave", Proceeding of the Institude of Radio Engineers, Vol. 24, No. 9, September 193 6, ppl l63-1182
  • FIG. 3 is a basic configuration diagram of a general Doherty amplifier.
  • the Doherty amplifier includes two amplifiers called a carrier amplifier 101 and a peak amplifier 102 and three ⁇ 4 lines A, B, and C forces. Only the carrier amplifier 101 operates in the low power region, and the carrier amplifier 101 and the peak amplifier 102 are biased to operate together in the high power region.
  • FIG. 4 is an equivalent circuit showing the impedance at each node when the peak amplifier 102 is OFF in the low power region in the Dono / Tee amplifier shown in FIG.
  • this figure is an equivalent circuit diagram showing the impedance seen from the load 103 side from each node when the Dono and Tee amplifiers shown in FIG. 3 operate in the low power region, and the impedance Z is connected to the load 103.
  • the impedance when the load 103 side is viewed from each node when the peak amplifier 102 is OFF is expressed.
  • FIG. 5 shows an equivalent circuit showing the impedance at each node when the peak amplifier 102 is ON in the high power region in the Dono / Tee amplifier shown in FIG.
  • this figure is an equivalent circuit diagram showing the impedance as seen from the load 103 side from each node when the Dono / Ty amplifier shown in FIG. 3 operates in the high power region. When connected, the negative from each node when the peak amplifier 102 is turned on.
  • ⁇ ⁇ 4 line C directly connected to load 103 causes impedance Z of load 103 to be ⁇ /
  • impedance Z Z2 is converted in impedance by ⁇ Z4 line A, and the load is loaded from carrier amplifier 101.
  • the impedance of the 03 side is 2Z.
  • the peak amplifier 102 is turned on, and the peak amplifier 102 supplies power to the load 103.
  • both the impedance of the ⁇ ⁇ 4 line A force viewed from the load 103 side and the impedance viewed from the peak amplifier 102 toward the load 103 side are Z.
  • the impedance seen in 03 is 2Z at low power operation and at high power operation.
  • This design makes it possible to achieve high-efficiency operation over a high dynamic range.
  • Fig. 1 shows that the carrier amplifier 101 and the peak amplifier 102 are operating in the high power region as shown in Fig. 5. Is. At this time, the impedance Z seen from the output stage of the carrier amplifier 101 becomes equal to the impedance Z of the load 103. Thus, carrier amplifier 1
  • the characteristics of 01 are considered to be similar to those of Doherty amplifier. Therefore, the output power level and distortion characteristics of the Doherty amplifier obtained in Fig. 1 can be extended to a single amplifier.
  • a single amplifier having a single power amplifier is taken as an example, and deterioration and distortion of the output power level are taken as an example.
  • a method for preventing the deterioration of the material will be described in detail. Note that in the drawings used in the following embodiments, the same constituent elements are denoted by the same reference numerals, and redundant description is omitted as much as possible.
  • the embodiment will be described in the case of using the VSWR detection means for detecting the VSWR value indicating the reflection degree of the signal, but the reflection coefficient for detecting the reflection coefficient instead of the VSWR detection means. Detection means may be used. When the reflection coefficient detection means is used, the VSWR detection means should be read as the reflection coefficient detection means.
  • FIG. 6 is a block diagram showing a basic configuration of a single-configuration power amplifier according to Embodiment 1 of the present invention.
  • This power amplifier includes an amplifying element 111, a VSWR detection means 112, and a current control means 113, and an antenna 114 is connected to the output of the VSWR detection means 112.
  • the VSWR detection means 112 has a function of detecting the VSWR value of the amplification element 111, and the current control means 113 controls the current value of the amplification element 111 based on the VSWR value detected by the VSWR detection means 112. .
  • the antenna 114 Reflection coefficient detection means for detecting a reflection coefficient, which is the ratio of the traveling wave and the reflected wave from the antenna 114, may be provided.
  • the VSWR detection means 112 is provided, and the reflection coefficient detection means is provided.
  • the VSWR detection means 112 is replaced with the reflection coefficient detection means 112.
  • the VSWR detection means 112 at the output stage of the amplifying element 111 detects the load fluctuation. That is, if the value of VSWR detected by the VSWR detection means 112 has changed, it is determined that the impedance of the antenna 114 has changed.
  • the reflection coefficient detecting means 112 is provided at the output stage of the amplifying element 111, if the reflection coefficient detected by the reflection coefficient detecting means 112 changes, the impedance of the antenna 114 changes.
  • the current control of the amplification element 111 performed by the current control unit 113 will be described. If the VSWR value detected by the VS WR detection means 112 is small, the matching impedance is considered to be close to 50 ⁇ , so it is determined that the distortion is satisfied at the same time as the stability of the output power level. The control means 113 does not control the current of the amplification element 111. In addition, when the VSWR value detected by the VSWR detection means 112 is large, it is considered that the output power level and distortion are degraded when the current value of the amplification element 111 is small. Current control is performed so that the current increases.
  • the current control means 113 determines the current of the amplifying element 111 when the reflection coefficient detected by the reflection coefficient detecting means 112 is small. Control is not performed, but when the reflection coefficient is large, it is considered that the output power level and distortion have deteriorated when the current value of the amplifying element 101 is small. Therefore, the current control means 113 has a large current in the amplifying element 111. Current control is performed so that
  • FIG. 7 is a first block diagram in which a single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage balance configuration.
  • the configuration of the power amplifier in Fig. 7 is shown in Fig. 6.
  • the configuration is basically the same as that of the power amplifier, but the amplification device 11 la and the amplification device 11 lb having the same capacity are balanced in two stages.
  • the two-stage configuration of the amplifying elements ll la and 11 lb may be a Dono and tee amplifier, but the circuit in that case may be configured as shown in FIG.
  • the present invention can be realized even if a single-configuration power amplifier has a balanced configuration of three or more stages.
  • the VSWR detection means 112 of the second embodiment shown in FIG. 7 is provided after the output of the amplification element 11 la and the output of the amplification element 111b are combined. Since the VSWR detecting means 112 performs the same method as in FIG. The reflection coefficient detection means 112 may be used instead of the VSWR detection means 112.
  • the amplifying element 11 la is regarded as a carrier amplifier
  • the amplifying element 11 lb is regarded as a peak amplifier
  • Ic the carrier current of the carrier amplifier
  • Ip the peak current of the peak amplifier
  • Ic + the current control unit 113 performs the following current control.
  • the current ratio (IcZlc) between the carrier current Ic and the peak current Ip is small! Therefore, the current control means 113 controls the current of the carrier amplifier (amplifying element 11 la) and the peak amplifier (amplifying element 11 lb) and sets the current ratio (IcZlc) to a desired value or more to prevent distortion deterioration. . Further, since the distortion is degraded when the carrier current Ic is small, the current control means 113 controls the current of the carrier amplifier (amplifying element 11 la), and the carrier current Ic is set to a desired value or more to distort the carrier current Ic. Prevent deterioration. If the peak current Ip is large, the distortion deteriorates. Therefore, the current control means 113 controls the current of the peak amplifier (amplifier element 1 ib) so that the current value of the peak current Ip is not more than a desired value. To prevent distortion degradation.
  • the current control means 113 causes the carrier amplifier (amplifying element 11 la) to And control the current of the peak amplifier (amplifier element 11 lb) to prevent distortion degradation by setting Ids to a desired value or more.
  • the current control means 113 controls the current of the carrier amplifier (amplifying element 11 la). By increasing the carrier current Ic, Ids is set to a desired value or more to prevent distortion degradation.
  • FIG. 8 is a second block diagram in which the single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage balance configuration.
  • the configuration of the power amplifier in FIG. 8 is basically the same as that of the power amplifier in FIG. 6, but the amplification element 111a and the amplification element 111b have a two-stage non-lance configuration.
  • the second configuration of the second embodiment shown in FIG. 8 is different from the first configuration of the second embodiment shown in FIG. 7, and the VSWR detecting means 112 is provided on the output side of the amplifying element 111a. It has been.
  • the VSWR detection means 112 detects the VSWR value due to load fluctuation on the output side of the amplification element 11 la and transmits the VSWR value to the current control means 113.
  • the current control means 113 performs current control of the amplifying element 11 la and the amplifying element 11 lb based on the VSW R value in which the output side force of the amplifying element 11 la is also detected.
  • the currents flowing through the amplifying element 11 la and the amplifying element 11 lb are almost the same, based on the VSWR value detected from the output side of the amplifying element 11 la! /,
  • the two amplifying elements 11 la Even if the current control of 111b is performed, the current of amplifier 11 la and the current of amplifier 11 lb are balanced. I can do it.
  • the reflection coefficient detecting means 112 may be used instead of the VSWR detecting means 112.
  • the current control method by the current control means 113 is the same as that in FIG.
  • the two-stage single configuration shown in FIG. 8 may be a Dono and Tee amplifier, but the circuit in that case may be configured as shown in FIG.
  • the present invention can be realized even if a single-configuration power amplifier has a balanced configuration of three or more stages.
  • FIG. 9 is a third block diagram in which the single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage balance configuration.
  • the difference between the third configuration of the second embodiment shown in FIG. 9 and the second configuration of the second embodiment shown in FIG. 8 is that the VSWR detection means 112 force amplifying element is not connected to the output side of the amplifying element 111a. It is only a point provided on the output side of 111b. Therefore, the detection operation of the VSWR value due to the load change is performed by the VSWR detection means 112 by the same method as in FIG.
  • the current control method by the current control means 113 is also the same as that described in the second part of the second embodiment in FIG.
  • FIG. 10 is a block diagram showing a first configuration of the VSWR detection means 112 according to Embodiment 3 of the present invention.
  • the VSWR detection means 112 may be replaced with the reflection coefficient detection means 112, but in the following description, the configuration of the VSWR detection means 112 will be described.
  • the input / output terminals r, s, t of the VSWR detection means 112 in the third embodiment correspond to the input / output terminals r, s, t of the VSWR detection means 112 in the power amplifier shown in FIG.
  • the TPC setting level terminal u shown in FIG. 10 may or may not be provided, it is indicated by the VSWR detection means 112 in FIG.
  • the VSWR detection means 112 includes an output level detection unit 121, and the output level detection unit 121 is an amplifying element output side terminal! : Connected to load side terminal s, VSWR detection terminal t, and TPC setting level terminal u.
  • the TPC setting level terminal u is TPC (Transmit Power Control) information indicating the power information that is actually desired to be output. This terminal is used to input the information setting level.
  • the detection of the output power level of the amplifier element output side terminal r can be performed by, for example, a combination of a directional coupler and a detector. That is, a minute power (for example, lZioo power) out of the power output from the amplifying element by the directional coupler is extracted.
  • a minute power for example, lZioo power
  • the micro power signal is received by the detector and the output power level is measured.
  • FIG. 11 is a block diagram showing the second configuration of the VSWR detection means 112 according to Embodiment 3 of the present invention.
  • the VSWR detection means 112 includes a reflection level detection unit 122.
  • the reflection level detection unit 122 is amplifying element output side terminal!:, Load side terminal s, VSWR detection terminal t, and TPC setting level. Connected to terminal u.
  • the reflection level can be predicted from the TPC setting level input from the TPC setting level terminal u to the reflection level detection unit 122 and the reflected power level input to the load side terminal s. Then, the VSWR detection terminal beam VSWR value is detected based on the TPC setting level of the TPC setting level terminal u and the reflected power level of the load side terminal s.
  • the reflected power level of the load side terminal s can be detected by a combination of a directional coupler and a detector, for example.
  • FIG. 12 is a block diagram showing a third configuration of the VSWR detection means 112 according to Embodiment 3 of the present invention.
  • the VSWR detection means 112 includes an incident / reflection level detection unit 123.
  • the incident / reflection level detection unit 123 is connected to the output terminal of the amplification element!:, The load side terminal s, and the VSWR detection terminal t. It is connected.
  • the amplification element By detecting the output power level of the child output side terminal r (that is, equivalent to the incident wave power level) and the reflected wave power level of the load side terminal s and calculating the detection result (that is, incident wave power level force reflection) By dividing the wave power level), the VS WR value is detected from the VSWR detection pin t.
  • the TPC setting level is not required.
  • the detection of the output power level at the amplifier output terminal r (corresponding to the incident wave power level) and the reflected wave power level at the load terminal s is performed by a combination of a directional coupler and a detector. be able to.
  • FIG. 13 is a block diagram showing a configuration of current control means for controlling the power supply of the amplifying element in the fourth embodiment of the present invention.
  • the current control unit 113 includes a current value detection unit 131 and a power supply setting unit 132.
  • the current value detector 131 detects the output current of the amplifying element 111.
  • the power setting unit 132 determines the voltage of the power supply E 101 of the amplifier 111. To control.
  • power supply setting section 132 controls the voltage of power supply E101 based on current detection information from current value detection section 131 and a VSWR value from a VSWR detection means (not shown). By doing so, the output current of the amplifying element 111 is substantially controlled. Instead of the VSWR value, a reflection coefficient having a reflection coefficient detecting means (not shown) may be used. Also, the amplification element controlled by the current control means 113 may be two or more stages in a single configuration! / Or a Doherty amplifier.
  • FIG. 14 is a block diagram showing a configuration of current control means for performing bias voltage control of the amplification element in the fourth embodiment of the present invention.
  • the current control unit 113 includes a current value detection unit 131 and a bias setting unit 133.
  • the noise setting unit 133 is based on the output current of the amplifying element 111 detected by the current value detecting unit 131 and the VSWR value of the VSWR detecting means (not shown)! Controls the voltage of lb.
  • the current control means 113 In such a configuration of the current control means 113, current detection from the current value detection unit 131 is performed. By controlling the bias setting unit 133 based on the information and the VSWR value from the VSWR detection means (not shown), the bias setting unit 133 changes the voltage of the bias power supply E 101b of the amplifying element 111. Thereby, the output current of the amplifying element 111 is substantially controlled. Note that a reflection coefficient from a reflection coefficient detecting means (not shown) may be used instead of the VSWR value.
  • the amplification element controlled by the current control means 113 may be a single configuration of two or more stages! /, And a Dono or Tee amplifier! /.
  • FIG. 15 is a block diagram showing a configuration of current control means for controlling the current source of the amplifying element in the fourth embodiment of the present invention.
  • the current control unit 113 includes a current value detection unit 131 and a current source setting unit 134.
  • the current source setting unit 134 is based on the output current of the amplifying element 111 detected by the current value detecting unit 131 and the VSWR value input from the VSWR detecting means (not shown)! /, And from the current source A101 to the amplifying element 111.
  • the current source setting unit 134 uses the current source V based on the current detection information from the current value detection unit 131 and the VSWR value from the VSWR detection unit (not shown). By controlling the current flowing from A101 to the amplifying element 111, the current of the amplifying element 111 is substantially controlled. In place of the VSWR value, a reflection coefficient from a reflection coefficient detection means (not shown) may be used. In addition, the amplification element controlled by the current control means 113 may be a single configuration of two or more stages, or a Dono or Tee amplifier! /.
  • FIG. 16 is a block diagram showing a configuration of current control means 113 that controls the matching circuit of the output stage of the amplification element in the fourth embodiment of the present invention.
  • the current control unit 113 includes a current value detection unit 131 and a matching network control unit 135. Based on the current detection information from the current value detection unit 131 and the VSWR value input from the VSWR detection means (not shown), the matching network control unit 135 matches a matching circuit (not shown) at the output stage of the amplification element 111. Change the matching network.
  • the matching network control unit 135 is not illustrated based on the current detection information from the current value detection unit 131 and the VSWR value input by the VSWR detection unit force (not illustrated).
  • the current of the amplifying element 111 is substantially controlled by changing the matching network of the matching circuit. That is, the matching network control unit 135 sets the impedance of the antenna (not shown) on the output side of the amplification element 111. For example, a matching circuit (not shown) is switched so as to match. In place of the VSWR value, a reflection coefficient having a reflection coefficient detecting means power (not shown) may be used.
  • the amplifying element can be two or more stages in a single configuration, or it can be a dono or tee amplifier! /.
  • FIG. 17 is a block diagram showing a configuration of current control means for performing variable phase control in Embodiment 4 of the present invention.
  • the current control unit 113 includes a current value detection unit 131 and a variable phase shifter control unit 136. Based on the current detection information from the current value detection unit 131 and the VSWR value that is also input with the VSWR detection means force (not shown), the variable phase shifter control unit 136 sets the amplification element 111 so that the reflection coefficient is minimized. Shift the output phase.
  • variable phase shifter control unit 136 is provided at the output stage of the amplifying element 111, and the variable phase shifter control unit 136 includes a current from the current value detection unit 131.
  • the current of the amplifying element 111 is substantially controlled by changing the phase based on the detection information and the VSWR value (not shown) based on the input VSWR value.
  • a reflection coefficient having a reflection coefficient detecting means power may be used.
  • the amplifier element can be a single stage with two or more stages, or it can be a dono or tee amplifier! /.
  • FIG. 18 is a block diagram showing a configuration of current control means for controlling the distribution ratio of the current of the amplifying element in the fourth embodiment of the present invention.
  • the current control means 113 is configured to include current value detection units 131 a and 13 lb and a distribution ratio control unit 137.
  • the distribution ratio control unit 137 is based on the current detection information from the current value detection units 131a and 131b and the VSWR value that is also input with the VSWR detection means force (not shown)! Distribute the current value of element 11 lb appropriately.
  • the current value detection unit 131a detects the current value of the amplification element 11la
  • the current value detection unit 131b detects the current value of the amplification element 11lb.
  • the distribution ratio control unit 137 calculates the distribution ratio between the current value of the amplification element 11 la and the current value of the amplification element 11 lb.
  • the current of each amplifying element 111a, 111b can be appropriately controlled by changing the current distribution ratio (or absolute distribution amount) of the input stage. it can.
  • the reflection coefficient (not shown) is used instead of the VSWR value.
  • the reflection coefficient from the detection means may be used.
  • the amplification element may be a Doherty amplifier Industrial applicability
  • the power amplifier according to the present invention can prevent deterioration of output power level and distortion caused by load fluctuations with a simple circuit configuration, so that it can be effectively used for mobile phones having severe antenna directivity conditions. It becomes possible to do.

Abstract

A power amplifier wherein a simple circuit arrangement is used to prevent the output power level and distortion from degrading due to the variation of a load. In this power amplifier, if the impedance of an antenna (114) varies, a VSWR determining means (112) determines a VSWR value of the output stage of an amplifying element (111). When the VSWR value determined by the VSWR determining means (112) is small, it can be estimated that the matched impedance is in the vicinity of 50 ohms, so that it can be determined that the output power level is stable and the distortion level satisfies a permissible value, with the result that a current control means (113) performs no current control of the amplifying element (111). When the VSWR value determined by the VSWR determining means (112) is large, it can be estimated that the output power level and distortion degrade for a small current value of the amplifying element (111), so that the current control means (113) performs a current control such that the current of the amplifying element (111) becomes large.

Description

明 細 書  Specification
電力増幅器  Power amplifier
技術分野  Technical field
[0001] 本発明は、携帯無線機などに用いられる電力増幅器に関し、特に、負荷の変動時 において安定した電力を供給する電力増幅器に関する。  TECHNICAL FIELD [0001] The present invention relates to a power amplifier used for a portable wireless device and the like, and more particularly to a power amplifier that supplies stable power when a load changes.
背景技術  Background art
[0002] 従来より、負荷が変動する可能性のある電力増幅器の一例として、携帯無線機に 搭載されて送信信号の増幅を行う電力増幅器が知られている。携帯無線機において は周囲の環境などによってアンテナのインピーダンスは常に変動する。  Conventionally, as an example of a power amplifier whose load may fluctuate, a power amplifier that is mounted on a portable radio device and amplifies a transmission signal is known. In portable radios, the impedance of the antenna always varies depending on the surrounding environment.
[0003] この種の電力増幅器は、一般的に、特定の負荷の値に対して最大の利得または出 力電力レベルが得られるようにインピーダンスが整合される。ところが、この種の電力 増幅器の負荷であるアンテナのインピーダンスに変動が生じた場合には、電力増幅 器の出力段においてインピーダンスに不整合が生じてアンテナ力も所望の電力が送 信されないことがある。さらに、それに付随して、電力効率や歪が劣化するおそれが ある。このような不具合を解決する従来技術として、電力増幅器の出力段にアイソレ ータを設けて負荷を変動させな 、方法が知られて 、る。  [0003] This type of power amplifier is typically impedance matched to provide the maximum gain or output power level for a particular load value. However, when the impedance of the antenna, which is the load of this type of power amplifier, fluctuates, impedance mismatch may occur at the output stage of the power amplifier, and the desired power may not be transmitted for the antenna force. Furthermore, there is a risk that power efficiency and distortion will deteriorate. As a conventional technique for solving such a problem, a method is known in which an isolator is provided at the output stage of a power amplifier and the load is not varied.
[0004] また、負荷の変動が起きた場合に生じる出力電力レベルの劣化を抑える別の方法 として、電力増幅器カゝら出力される電力レベルの劣化を検出した場合にはそれを負 荷の変動と判断し、電力増幅器の出力段の整合回路を異なるインピーダンスの整合 回路に切り替えることにより、常に最適な出力電力レベルが得られるようにインピーダ ンス調整を行う技術も開示されている (例えば、特許文献 1参照)。この技術によれば 、電力増幅器の出力電力レベルの劣化を常時検出し、出力電力レベルが劣化した 場合は負荷が変動したものと判断し、電力増幅器における出力段の整合回路のイン ピーダンスを切り替えて、より最適な出力電力レベルが得られるようにするものである 。また、この技術によれば、出力電力レベルの劣化を検出する手段として、負荷から の反射電力レベルを検出する構成も開示して!/ヽる。 [0004] As another method for suppressing the degradation of the output power level that occurs when the load fluctuates, if the degradation of the power level output from the power amplifier is detected, the load fluctuation is detected. A technique is also disclosed in which impedance adjustment is performed so that an optimum output power level is always obtained by switching the matching circuit of the output stage of the power amplifier to a matching circuit of a different impedance (for example, Patent Documents). 1). According to this technology, deterioration of the output power level of the power amplifier is always detected, and when the output power level deteriorates, it is determined that the load has changed, and the impedance of the matching circuit of the output stage in the power amplifier is switched. In order to obtain a more optimal output power level. In addition, according to this technique, a configuration for detecting the level of reflected power from a load is disclosed as means for detecting deterioration of the output power level.
特許文献 1:特開平 9— 83403号公報 発明の開示 Patent Document 1: Japanese Patent Laid-Open No. 9-83403 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記従来の電力増幅器において、アイソレータを使用して負荷を変 動させな!/、ようにして出力電力レベル及び歪を劣化させな 、ようにする方法では、ァ イソレータの形状が他の構成部品に比べて大きくなるため、携帯無線機などを小型 · 軽量ィ匕することができなくなるなどの不具合が生じる。  [0005] However, in the conventional power amplifier, the load is not changed by using the isolator! /, And the output power level and the distortion are not degraded. Since the shape of the device becomes larger than that of other components, problems such as the inability to make a portable wireless device small and light can occur.
[0006] また、上記の特許文献 1に記載された電力増幅器のように、負荷の変動時にぉ 、て 電力増幅器の出力段の整合回路を異なるインピーダンスの整合回路に切り替える方 法では、異なるインピーダンスの整合回路を複数備える必要があるため整合回路全 体が大きくなつてしまうおそれがある。さらに、整合回路を切り替えることによってイン ピーダンスがマッチングして出力電力レベルが比較的改善されたとしても、歪の劣化 を防止するための手段を備えていないので、実質的には、歪劣化の面から電力増幅 器が使用できない状況が発生するおそれがある。また、特許文献 1に記載された電 力増幅器では、整合回路は反射電力が最小となるように選択されるという構成は記 載されているものの、この構成においては、全ての整合回路について比較を行った 結果、反射電力の最小値自体が大きい場合には、出力電力レベルの改善効果があ まり得られな 、などの不具合も生じる。  [0006] Further, in the method of switching the matching circuit of the output stage of the power amplifier to a matching circuit having a different impedance when the load fluctuates, as in the power amplifier described in Patent Document 1 described above, the impedance of the different impedance is reduced. Since it is necessary to provide multiple matching circuits, the entire matching circuit may become large. In addition, even if the impedance is matched and the output power level is relatively improved by switching the matching circuit, there is no means for preventing distortion degradation. Therefore, there is a possibility that the power amplifier cannot be used. In addition, the power amplifier described in Patent Document 1 describes a configuration in which the matching circuit is selected so that the reflected power is minimized, but in this configuration, all the matching circuits are compared. As a result, if the minimum value of the reflected power itself is large, there is a problem that the effect of improving the output power level cannot be obtained.
[0007] また、上記の特許文献 1に記載された電力増幅器では、切り替えるべき整合回路の 組合せが幾通りも存在するため、全てのインピーダンスマッチングに対応する整合回 路を備えることによって電力増幅器自体が大型化するなどの不具合も生じる。さらに は、負荷の変動に応じて切り替えるべき整合回路の比較処理を行うため、最適な整 合回路を選択する処理を行うために時間が力かってしまうなどの不具合も生じる。な お、整合回路として可変整合回路を使用する構成も記載されているが、インピーダン スを可変できる範囲によっては、前述と同様に、全ての整合回路についての比較を 行った結果、反射電力の最小値自体が大きい場合には、出力電力レベルの改善効 果があまり得られないこともある。また、可変整合回路の可変素子の値を選択する組 み合わせについても、前述と同様に、幾通りもの可変素子の組み合わせが存在する ため、整合回路を比較して最適な整合回路を選択するために処理時間が長くなつて しまうおそれもある。 [0007] Further, in the power amplifier described in Patent Document 1 above, since there are many combinations of matching circuits to be switched, the power amplifier itself is provided with a matching circuit corresponding to all impedance matching. Problems such as enlargement also occur. Furthermore, since the matching process of the matching circuit to be switched according to the load variation is performed, there is a problem that it takes time to perform the process of selecting the optimum matching circuit. Although a configuration using a variable matching circuit as a matching circuit is also described, depending on the range in which the impedance can be varied, as a result of comparison for all matching circuits, the minimum reflected power is the same as described above. If the value itself is large, the output power level may not be improved much. As for the combinations for selecting the values of the variable elements of the variable matching circuit, there are various combinations of variable elements as described above, so that the matching circuit is compared to select the optimum matching circuit. Long processing time There is also a risk.
[0008] 本発明の目的は、簡単な回路構成で負荷の変動に対して出力電力レベルや歪の 劣化を防ぐことができるシングル増幅器やドハティ増幅器などの電力増幅器を提供 することである。  [0008] An object of the present invention is to provide a power amplifier such as a single amplifier or a Doherty amplifier that can prevent deterioration of output power level and distortion against load fluctuations with a simple circuit configuration.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の電力増幅器は、電力を増幅する増幅素子と、前記増幅素子から出力され る進行波と該増幅素子へ入力される反射波との干渉によって発生する定在波による 反射度合を示す VSWR値を検出する VSWR検出手段と、前記 VSWR検出手段が 検出した VSWR値に基づいて電力レベルが第 1閾値を越えて歪レベルが第 2閾値 以下となるように前記増幅素子に流れる電流を制御する電流制御手段と、を備える 構成を採る。 [0009] The power amplifier according to the present invention has an amplifying element for amplifying power, and a degree of reflection by a standing wave generated by interference between a traveling wave output from the amplifying element and a reflected wave input to the amplifying element. VSWR detection means for detecting the VSWR value, and a current flowing through the amplifying element based on the VSWR value detected by the VSWR detection means so that the power level exceeds the first threshold value and the distortion level becomes the second threshold value or less. And a current control means for controlling.
[0010] 本発明の電力増幅器は、電力を増複する増幅素子と、前記増幅素子から出力され る進行波と該増幅素子へ入力される反射波との比である反射係数を検出する反射係 数検出手段と、前記反射係数検出手段が検出した反射係数に基づいて電力レベル が第 1閾値を越えて歪レベルが第 2閾値以下となるように前記増幅素子に流れる電 流を制御する電流制御手段と、を備える構成を採る。  [0010] A power amplifier according to the present invention includes a reflection element that detects a reflection coefficient that is a ratio of an amplification element that multiplies power and a traveling wave output from the amplification element and a reflected wave input to the amplification element. And current control for controlling the current flowing through the amplifying element so that the power level exceeds the first threshold and the distortion level is equal to or lower than the second threshold based on the reflection coefficient detected by the reflection coefficient detecting means. Means.
発明の効果  The invention's effect
[0011] 本発明の電力増幅器によれば、信号の反射度合を示す VSWR値または反射係数 をモニタリングして、それらの値に応じて電力増幅器の電流値を常に適切な値または 範囲に制御することにより、電力増幅器の負荷が変動しても出力電力レベル及び歪 の劣化を防ぐことができる。また、歪の劣化を防ぐことが可能になることにより、これま で使用が不可能であったアンテナインピーダンスの厳しい周囲環境条件下で使用さ れる携帯無線機などにも対応することができる。さらに、電力増幅器の電源電圧が降 下した場合でも歪の劣化を防ぐことができるので、実質的に、携帯無線機の電池電 圧が力なり低下した状態でも使用できるため、携帯無線機の通信時間の長時間化を 図ることが可能となる。  [0011] According to the power amplifier of the present invention, the VSWR value or reflection coefficient indicating the degree of signal reflection is monitored, and the current value of the power amplifier is always controlled to an appropriate value or range according to these values. Therefore, it is possible to prevent the output power level and distortion from being deteriorated even when the load of the power amplifier fluctuates. In addition, since it becomes possible to prevent deterioration of distortion, it can also be applied to portable radio devices that are used under ambient environment conditions where antenna impedance is severe, which has been impossible until now. Furthermore, even when the power supply voltage of the power amplifier drops, distortion can be prevented from being deteriorated, so that it can be used even when the battery voltage of the portable radio device is reduced. The time can be extended.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明を導入するためにドハティ増幅器における出力電力レベル及び歪レべ ルの特性を示す概略特性図 [0012] [FIG. 1] In order to introduce the present invention, the output power level and distortion level in the Doherty amplifier Schematic characteristic diagram showing the characteristics of the
[図 2]図 1に示す出力電力レベル及び歪の概略特性を得るために測定した測定ボイ ントを示す図  [Fig. 2] Diagram showing measurement points measured to obtain the approximate characteristics of output power level and distortion shown in Fig. 1.
圆 3]—般的なドハティ増幅器の基本構成図 [3] Basic configuration diagram of a typical Doherty amplifier
[図 4]図 3に示すドハティ増幅器において、低電力領域でピーク増幅器が OFFのとき の各ノードにおけるインピーダンスを示す等価回路  [Fig.4] Equivalent circuit showing the impedance at each node when the peak amplifier is OFF in the low power region in the Doherty amplifier shown in Fig.3
[図 5]図 3に示すドハティ増幅器において、高電力領域でピーク増幅器が ONのとき の各ノードにおけるインピーダンスを示す等価回路  [Fig.5] Equivalent circuit showing the impedance at each node when the peak amplifier is ON in the high power region in the Doherty amplifier shown in Fig.3
圆 6]本発明の実施の形態 1におけるシングル構成の電力増幅器の基本構成を示す ブロック図 6] Block diagram showing the basic configuration of the single-configuration power amplifier according to Embodiment 1 of the present invention.
圆 7]本発明の実施の形態 2におけるシングル構成の電力増幅器を 2段のノ ンス構 成で使用した其の 1のブロック図 [7] A first block diagram in which the single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage non-configuration.
圆 8]本発明の実施の形態 2におけるシングル構成の電力増幅器を 2段のノ ンス構 成で使用した其の 2のブロック図 8] A second block diagram in which the single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage non-configuration.
圆 9]本発明の実施の形態 2におけるシングル構成の電力増幅器を 2段のノ ンス構 成で使用した其の 3のブロック図 [9] A third block diagram in which the single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage non-configuration.
[図 10]本発明の実施の形態 3における VSWR検出手段の其の 1の構成を示すブロッ ク図  FIG. 10 is a block diagram showing the first configuration of the VSWR detection means in Embodiment 3 of the present invention.
[図 11]本発明の実施の形態 3における VSWR検出手段の其の 2の構成を示すブロッ ク図  FIG. 11 is a block diagram showing the second configuration of the VSWR detection means in the third embodiment of the present invention.
[図 12]本発明の実施の形態 3における VSWR検出手段の其の 3の構成を示すブロッ ク図  FIG. 12 is a block diagram showing the third configuration of the VSWR detection means in the third embodiment of the present invention.
圆 13]本発明の実施の形態 4において増幅素子の電源制御を行う電流制御手段の 構成を示すブロック図 [13] Block diagram showing the configuration of the current control means for controlling the power supply of the amplifying element in the fourth embodiment of the present invention
圆 14]本発明の実施の形態 4において増幅素子のバイアス電圧制御を行う電流制御 手段の構成を示すブロック図 14] Block diagram showing the configuration of the current control means for controlling the bias voltage of the amplifying element in the fourth embodiment of the present invention.
圆 15]本発明の実施の形態 4において増幅素子の電流源制御を行う電流制御手段 の構成を示すブロック図 [図 16]本発明の実施の形態 4において増幅素子の出力段の整合回路の制御を行う 電流制御手段の構成を示すブロック図 15] Block diagram showing the configuration of the current control means for controlling the current source of the amplifying element in the fourth embodiment of the present invention. FIG. 16 is a block diagram showing a configuration of current control means for controlling the matching circuit of the output stage of the amplifier element in the fourth embodiment of the present invention.
[図 17]本発明の実施の形態 4において可変位相制御を行う電流制御手段の構成を 示すブロック図  FIG. 17 is a block diagram showing a configuration of current control means for performing variable phase control in Embodiment 4 of the present invention.
[図 18]本発明の実施の形態 4において増幅素子の電流を分配比制御する電流制御 手段の構成を示すブロック図  FIG. 18 is a block diagram showing a configuration of current control means for controlling the distribution ratio of the current of the amplifying element in the fourth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 〈発明の概要〉  <Summary of the invention>
本発明の電力増幅器は、その電力増幅器カゝら出力される進行波とアンテナ端で反 射する反射波との干渉によって発生する定在波の VSWR値を検出する VSWR検出 手段と、 VSWR検出手段が検出した検出値 (つまり、 VSWR値)に基づいて電力増 幅器に流れる電流を制御する電流制御手段とを備える構成を採っている。なお、 VS WR検出手段の代わりに、進行波と反射波の比である反射係数を検出する反射係数 検出手段を備える構成を採ってもよい。  The power amplifier of the present invention includes a VSWR detection means for detecting a VSWR value of a standing wave generated by interference between a traveling wave output from the power amplifier camera and a reflected wave reflected at the antenna end, and a VSWR detection means And a current control means for controlling the current flowing through the power amplifier based on the detected value (that is, the VSWR value) detected. Instead of the VS WR detection means, a configuration including a reflection coefficient detection means for detecting a reflection coefficient that is a ratio of a traveling wave and a reflected wave may be adopted.
[0014] VSWR値 (電圧定在波比)は、機器内を高周波信号が通過するときに信号の一部 が回路上で反射される度合 (つまり、信号の反射度合)として、回路やケーブルの高 周波特性を示す指標として広く用 、られて 、る。この VSWR値が 1のときは全く反射 されない理想的な状態であり、反射が大きいほど VSWRの値 1より大きくなつて信号 ロスが大きいことを示している。また、定在波とは、反射波と元の進行波とが干渉して 、波の節や腹は変わらないが振幅のみが変化する波のことであり、この振幅の大きさ によって反射の状態 (例えば、アンテナのインピーダンス)を知ることができる。このよ うなこと力ら、例えば、ケーブルとアンテナとのインピーダンスのマッチングの度合が V SWR値で示される。  [0014] The VSWR value (voltage standing wave ratio) is the degree to which a part of the signal is reflected on the circuit when a high-frequency signal passes through the device (that is, the degree of signal reflection). It is widely used as an indicator of high frequency characteristics. When this VSWR value is 1, it is an ideal state where there is no reflection at all. The larger the reflection, the larger the VSWR value, and the larger the signal loss. A standing wave is a wave in which the reflected wave interferes with the original traveling wave and does not change the node or belly of the wave, but only the amplitude changes. The state of reflection depends on the magnitude of this amplitude. (For example, the impedance of the antenna) can be known. For example, the degree of impedance matching between the cable and antenna is indicated by the V SWR value.
[0015] 上述のような電力増幅器の構成により、電流制御手段が、 VSWR検出手段によつ て検出された VSWR値、または反射係数検出手段によって検出された反射係数に 基づいて、電力増幅器に流れる電流を適切に制御することにより、電力増幅器の出 力電力レベルの劣化及び歪の劣化を防止することができる。  [0015] With the configuration of the power amplifier as described above, the current control means flows to the power amplifier based on the VSWR value detected by the VSWR detection means or the reflection coefficient detected by the reflection coefficient detection means. By appropriately controlling the current, it is possible to prevent deterioration of the output power level and distortion of the power amplifier.
[0016] 〈本発明の導入経過〉 本発明者等は、本発明に至る経過として、ドノ、ティ増幅器を用いた実験において、 キャリア増幅器のキャリア電流 Icとピーク増幅器のピーク電流 Ipの電流比 (IcZlp)及 び電力の反射係数 γの大きさが、電力増幅器の出力電力レベルの劣化及び歪の劣 化に関係することを見出した。その結果、 VSWR値または反射係数をモニタリングし て電力増幅器の電流値を適切に制御することによって、電力増幅器に負荷変動が生 じても出力電力レベルの劣化及び歪の劣化を生じさせないようにすることが可能であ るという結論に達した。以下、このような経過を迪つた発明の導入経過について説明 する。 <Introduction process of the present invention> As a result of the present invention, the inventors of the present invention conducted an experiment using a Dono and Tee amplifier in a current ratio (IcZlp) of the carrier current Ic to the peak current Ip of the peak amplifier and the reflection coefficient γ of the power. Was found to be related to the deterioration of the output power level and distortion of the power amplifier. As a result, by monitoring the VSWR value or reflection coefficient and appropriately controlling the current value of the power amplifier, it will not cause degradation of output power level and distortion even if load fluctuation occurs in the power amplifier. The conclusion was reached that this is possible. The introduction process of the invention having such a process will be described below.
[0017] 図 1は、本発明を導入するためにドハティ増幅器における出力電力レベル及び歪レ ベルの特性を示す概略特性図である。横軸にはキャリア増幅器のキャリア電流 Icとピ ーク増幅器のピーク電流 Ipの電流比(IcZlp)を表わし、左縦軸には歪のレベルを示 す ACLR (Adjacent Channel Leakage power Ratio) [dBc]を表わし、右縦軸には出力 電力レベルを示す Pout[dBm]を表わしている。また、横軸には電流比閾値 A、左縦軸 には ACLR閾値 (つまり、歪閾値) B、右縦軸には Pout閾値 (つまり、電力閾値)じが それぞれ示してある。なお、図 1における下部側の実線の特性図力 反射係数 γを 変化させたときの ACLR特性(つまり、歪レベルの特性)を示している。また、図 1にお ける上部側の破線の特性図が、反射係数 γを変化させたときの Pout特性 (つまり、出 力電力レベルの特性)を示して 、る。  FIG. 1 is a schematic characteristic diagram showing characteristics of output power level and distortion level in a Doherty amplifier in order to introduce the present invention. The horizontal axis represents the current ratio (IcZlp) between the carrier current Ic of the carrier amplifier and the peak current Ip of the peak amplifier (IcZlp), and the left vertical axis represents the distortion level ACLR (Adjacent Channel Leakage power Ratio) [dBc] The right vertical axis represents Pout [dBm] indicating the output power level. The horizontal axis shows the current ratio threshold A, the left vertical axis shows the ACLR threshold (ie, distortion threshold) B, and the right vertical axis shows the Pout threshold (ie, power threshold). In addition, the characteristic diagram of the lower solid line in Fig. 1 shows the ACLR characteristics (that is, the distortion level characteristics) when the reflection coefficient γ is varied. In addition, the characteristic diagram of the upper dashed line in Fig. 1 shows the Pout characteristic (that is, the output power level characteristic) when the reflection coefficient γ is changed.
[0018] 図 2は、図 1に示す出力電力レベル及び歪の概略特性を得るために測定した測定 ポイントを示す図である。図 2における各同'、円の 0. 1、 0. 3、 0. 6、 0. 7、 1. 0の点 は各反射係数 Ίを示す同心円である。なお、横軸の Re ( γ )は反射係数の実数軸を 表わし、縦軸の Ιπι( γ )は反射係数の虚数軸を表わしている。また、円周上の 1〜12 は、負荷の位相(つまり、アンテナのインピーダンス)を 30° 間隔で 360° 変化させた ときの測定ポイントを示している。つまり、この図は、反射係数 γが 0. 1、 0. 3、 0. 6、 0. 7、及び 1. 0の点を 30° ずつ位相を変えたときの各測定ポイントを示している。  FIG. 2 is a diagram showing measurement points measured to obtain the approximate characteristics of output power level and distortion shown in FIG. In Fig. 2, the points 0.1, 0.3, 0.6, 0.7, and 1.0 of the circles are concentric circles indicating the reflection coefficients Ί. Note that Re (γ) on the horizontal axis represents the real axis of the reflection coefficient, and ιπι (γ) on the vertical axis represents the imaginary axis of the reflection coefficient. In addition, 1 to 12 on the circumference show the measurement points when the load phase (that is, the impedance of the antenna) is changed 360 ° at 30 ° intervals. That is, this figure shows each measurement point when the phase of the reflection coefficient γ is changed by 30 ° by 0.1, 0.3, 0.6, 0.7, and 1.0.
[0019] 図 2の測定ポイントを示す図を参照しながら図 1の概略特性図を説明すると、図 1の 出力電力レベル (Pout)及び歪レベル (ACLR)の測定においては、反射係数 γが小 さいとき(例えば、 γ =0. 3のとき)、反射係数 γがやや大きいとき(例えば、 γ =0. 6 のとき)、及び反射係数 γが大きいとき(例えば、 γ =0. 7のとき)の 3通りについて、 図 2の円周上の測定ポイントを 1、 4、 7、 10の 90° 間隔の位相で 4点測定した場合の 測定データを示している。 [0019] The schematic characteristic diagram of FIG. 1 will be described with reference to the measurement points in FIG. 2. In the measurement of the output power level (Pout) and distortion level (ACLR) in FIG. 1, the reflection coefficient γ is small. When the reflection coefficient γ is slightly large (for example, γ = 0. 6) ) And when the reflection coefficient γ is large (for example, when γ = 0.7), the measurement points on the circumference of Fig. 2 are phased at 90 ° intervals of 1, 4, 7, and 10. The measurement data when measuring 4 points at is shown.
[0020] 図 1において、右縦軸の Pout (出力電力レベル)が電力閾値 Cより高い場合は出力 電力レベルが良好であることを示し、左縦軸の ACLR (歪のレベル)が歪閾値 Bより低 V、場合は歪レベルが良好であることを示して!/、る。  [0020] In FIG. 1, when Pout (output power level) on the right vertical axis is higher than the power threshold C, the output power level is good, and ACLR (distortion level) on the left vertical axis is the distortion threshold B. A lower V indicates that the distortion level is good!
[0021] 図 1の上部側における破線の出力電力レベルの特性において、反射係数 γが小さ いときは、出力電力レベルは電力閾値 Cより上にあるので、出力電力レベルの特性は 良好である。しかし、反射係数 γが大きくなるにしたがって出力電力レベルは低下し 、反射係数 0が非常に大きくなると出力電力レベルは電力閾値 C (許容値)を下回つ てパワーの劣化が大きくなつて許容できなくなる。つまり、反射係数 γが大きくなると 電力の反射が大きくなるので出力電力のパワーは小さくなつてしまう。ところが、横軸 の電流比 (IcZlp)を大きくして行けば出力電力レベルは改善され、電流比 (IcZlp) が電流比閾値 Aより大きくなれば、反射係数 γが非常に大きくなつても出力電カレべ ルは電力閾値 Cを上回ってパワーの劣化が許容範囲内に収まる。  In the characteristic of the output power level indicated by the broken line on the upper side of FIG. 1, when the reflection coefficient γ is small, the output power level is above the power threshold C, and therefore the output power level characteristic is good. However, as the reflection coefficient γ increases, the output power level decreases, and when the reflection coefficient 0 becomes very large, the output power level falls below the power threshold C (allowable value) and can be tolerated as power deterioration increases. Disappear. In other words, when the reflection coefficient γ increases, the power reflection increases, so the output power decreases. However, if the current ratio (IcZlp) on the horizontal axis is increased, the output power level is improved, and if the current ratio (IcZlp) is greater than the current ratio threshold A, the output power is increased even if the reflection coefficient γ is very large. The power level exceeds the power threshold C and the power degradation falls within the allowable range.
[0022] また、図 1の下部側における実線の歪の特性において、反射係数 γが小さいときは 、歪のレベルは歪閾値 Βより下にあるので歪の特性は良好である。しかし、反射係数 yが大きくなるにしたがって歪のレベル (ACLR)は上昇し、歪のレベル (ACLR)が 歪閾値 Β (許容値)を上回ると歪の劣化が大きくなつて許容できなくなる。しかし、横軸 の電流比(IcZlp)を大きくして行けば歪のレベル (ACLR)は低下し、電流比(IcZl p)が電流比閾値 Aより大きくなれば、反射係数 γが非常に大きくなつても歪のレベル (ACLR)は歪閾値 Bを下回って歪の劣化が許容範囲内に収まる。  [0022] Further, in the distortion characteristic of the solid line on the lower side of Fig. 1, when the reflection coefficient γ is small, the distortion level is lower than the distortion threshold value で, so the distortion characteristic is good. However, as the reflection coefficient y increases, the distortion level (ACLR) increases, and when the distortion level (ACLR) exceeds the distortion threshold value Β (allowable value), the deterioration of the distortion increases and becomes unacceptable. However, if the current ratio (IcZlp) on the horizontal axis is increased, the distortion level (ACLR) decreases, and if the current ratio (IcZlp) is greater than the current ratio threshold A, the reflection coefficient γ becomes very large. However, the distortion level (ACLR) is below the distortion threshold B, and the distortion degradation falls within the allowable range.
[0023] 以上のことから、反射係数 γ大きいとき(例えば、 γ =0. 6、または γ =0. 7のとき) は、電流比 (IcZlp)が大きくなれば出力電力レベルと歪は共に良好になることがわ かる。これは、キャリア電流 Icが大きくなることによって、キャリア増幅器の線形性が良 くなつて歪が良好になったことを意味している。または、ピーク電流 Ipが小さくなること によって、ピーク増幅器の歪の影響力 、さくなつたために歪が良好になったことを意 味している。あるいは、キャリア電流 Icとピーク電流 Ipの和 Ids ( = Ic + Ip)が大きくな れば出力電力レベルと歪の特性は共に良好になることがわかる。これは、ドハティ増 幅器の場合はキャリア増幅器の特性が主として見えているため、キャリア電流 Icが大 きくなればドノ、ティ増幅器の線形性が良くなつて歪の特性が良好になったことを意味 している。 [0023] From the above, when the reflection coefficient γ is large (for example, when γ = 0.6 or γ = 0.7), both the output power level and distortion are good when the current ratio (IcZlp) is large. I can see that This means that as the carrier current Ic increases, the linearity of the carrier amplifier becomes better and the distortion becomes better. Or, by reducing the peak current Ip, the influence of distortion of the peak amplifier means that the distortion has improved due to the short period. Alternatively, the sum Ids (= Ic + Ip) of the carrier current Ic and peak current Ip is large. It can be seen that both the output power level and the distortion characteristics are good. This is because the characteristics of the carrier amplifier are mainly seen in the case of the Doherty amplifier. Therefore, if the carrier current Ic is increased, the linearity of the Dono and Tee amplifiers is improved and the distortion characteristics are improved. Means.
[0024] つまり、電流比 (IcZlp)はドノ、ティ増幅器の性能改善へ寄与して 、る割合であると 考えると、ピーク増幅器は C級バイアスされているために、ピーク増幅器のピーク電流 Ipが大きいときにドハティ増幅器の性能改善へ寄与している割合が小さくなつて歪の 特性が悪くなつていることを意味している。但し、ピーク電流 Ipが小さければ良いとい うものではなぐ 50 Ω負荷時にピーク電流 Ipの最適値をとることによって歪の特性を 良好にすることができる。  [0024] In other words, the current ratio (IcZlp) contributes to the performance improvement of the Dono and Tee amplifiers, and is considered to be a large ratio. Since the peak amplifier is biased with class C bias, the peak current Ip of the peak amplifier This means that when the ratio is large, the ratio of contribution to the performance improvement of the Doherty amplifier becomes smaller and the distortion characteristics worsen. However, if the peak current Ip is small, the distortion characteristics can be improved by taking the optimum value of the peak current Ip when the load is 50 Ω.
[0025] 次に、上記のデータでは、キャリア増幅器とピーク増幅器が共に動作しているドハテ ィ増幅器において出力電力レベル及び歪の特性を改善する糸口を見出したが、シン ダル増幅器においても反射係数 γを小さくし、かつ電流値を大きくすることによって、 出力電力レベル及び歪の特性を改善することが可能である力否かについて考察して みる。そのために、ドハティ増幅器に関して本発明に関連する事項について若干説 明する。  [0025] Next, in the above data, we found a clue to improve the output power level and distortion characteristics in a Doherty amplifier in which both a carrier amplifier and a peak amplifier are operating. Let us consider whether it is possible to improve the output power level and distortion characteristics by decreasing the current and increasing the current value. For this reason, some matters related to the present invention regarding the Doherty amplifier will be described.
[0026] 近年、高効率に送信信号を増幅する電力増幅器としてドノ、ティ増幅器が注目され ている。携帯無線機などの電力増幅器に好んで用いられるドハティ増幅器は、 1936 年に W.H.Doherty氏によって最初に考案されたものであり、例えば下記の非特許文 献 1などに紹介されている。  In recent years, Dono and Tee amplifiers have attracted attention as power amplifiers that amplify transmission signals with high efficiency. The Doherty amplifier, which is favorably used for power amplifiers such as portable radios, was first devised by W.H. Doherty in 1936, and is introduced, for example, in Non-Patent Document 1 below.
[0027] 非特許文献 1: W.H.Doherty, "A New High Efficiency Power Amplifier For Modular ed Wave",Proceedingof the Institude of Radio Engineers, Vol.24, No.9, September 193 6, ppl l63- 1182  [0027] Non-Patent Document 1: W.H.Doherty, "A New High Efficiency Power Amplifier For Modular ed Wave", Proceeding of the Institude of Radio Engineers, Vol. 24, No. 9, September 193 6, ppl l63-1182
[0028] 図 3は、一般的なドハティ増幅器の基本構成図である。ドハティ増幅器は、キャリア 増幅器 101とピーク増幅器 102と呼ばれる 2個の増幅器及び 3個の λ Ζ4線路 A, B , C力も構成されている。低電力領域ではキャリア増幅器 101のみが動作し、高電力 領域ではキャリア増幅器 101とピーク増幅器 102が共に動作するようにバイアスされ ている。 [0029] 次に、ドハティ増幅器が高効率な動作を行う原理について概略的に説明する。図 4 は、図 3に示すドノ、ティ増幅器において、低電力領域でピーク増幅器 102が OFFの ときの各ノードにおけるインピーダンスを示す等価回路である。つまり、この図は、図 3 に示すドノ、ティ増幅器が低電力領域で動作するときの各ノードから負荷 103側を見 たインピーダンスを表わす等価回路図であり、負荷 103にインピーダンス Zを接続し FIG. 3 is a basic configuration diagram of a general Doherty amplifier. The Doherty amplifier includes two amplifiers called a carrier amplifier 101 and a peak amplifier 102 and three λλ4 lines A, B, and C forces. Only the carrier amplifier 101 operates in the low power region, and the carrier amplifier 101 and the peak amplifier 102 are biased to operate together in the high power region. Next, the principle of how the Doherty amplifier operates with high efficiency will be schematically described. FIG. 4 is an equivalent circuit showing the impedance at each node when the peak amplifier 102 is OFF in the low power region in the Dono / Tee amplifier shown in FIG. In other words, this figure is an equivalent circuit diagram showing the impedance seen from the load 103 side from each node when the Dono and Tee amplifiers shown in FIG. 3 operate in the low power region, and the impedance Z is connected to the load 103.
0  0
た場合にぉ 、て、ピーク増幅器 102が OFFしたときの各ノードから負荷 103側を見た ときのインピーダンスを表わして ヽる。  In this case, the impedance when the load 103 side is viewed from each node when the peak amplifier 102 is OFF is expressed.
[0030] また、図 5は、図 3に示すドノ、ティ増幅器において、高電力領域でピーク増幅器 10 2が ONのときの各ノードにおけるインピーダンスを示す等価回路を示して!/、る。つま り、この図は、図 3に示すドノ、ティ増幅器が高電力領域で動作するときの各ノードから 負荷 103側を見たインピーダンスを表わす等価回路図であり、負荷 103にインピーダ ンス Zを接続した場合において、ピーク増幅器 102が ONしたときの各ノードから負FIG. 5 shows an equivalent circuit showing the impedance at each node when the peak amplifier 102 is ON in the high power region in the Dono / Tee amplifier shown in FIG. In other words, this figure is an equivalent circuit diagram showing the impedance as seen from the load 103 side from each node when the Dono / Ty amplifier shown in FIG. 3 operates in the high power region. When connected, the negative from each node when the peak amplifier 102 is turned on.
0 0
荷 103側を見たときのインピーダンスを表わしている。  It represents the impedance when looking at the load 103 side.
[0031] 負荷 103に直接接続された λ Ζ4線路 Cにより負荷 103のインピーダンス Zは Ζ / [0031] λ Ζ4 line C directly connected to load 103 causes impedance Z of load 103 to be Ζ /
0 0 0 0
2に変換される。低電力時にはピーク増幅器 102が OFFになるために、図 4に示すよ うに、ピーク増幅器 102の出力インピーダンスは開放となる。したがって、 λ Ζ4線路 Α力も負荷 103側を見たインピーダンスはそのまま Ζ Converted to 2. Since the peak amplifier 102 is turned off at low power, the output impedance of the peak amplifier 102 is opened as shown in FIG. Therefore, λ Ζ 4 lines Α Force is the same impedance as seen from the load 103 side Ζ
0 Z2となる。さらに、インピーダン ス Z Z2が λ Z4線路 Aでインピーダンスが変換され、キャリア増幅器 101から負荷 0 Z2. Furthermore, impedance Z Z2 is converted in impedance by λ Z4 line A, and the load is loaded from carrier amplifier 101.
0 10 1
03側を見たインピーダンスは 2Zになる。 The impedance of the 03 side is 2Z.
0  0
[0032] 一方、高電力時においては、図 5に示すように、ピーク増幅器 102が ONとなってそ のピーク増幅器 102が負荷 103に電力を供給するようになる。このとき、 λ Ζ4線路 A 力も負荷 103側を見たインピーダンスとピーク増幅器 102から負荷 103側をみたイン ピーダンスは共に Zとなる。また、 λ Ζ4線路 Αから負荷 103側を見たインピーダンス  On the other hand, at the time of high power, as shown in FIG. 5, the peak amplifier 102 is turned on, and the peak amplifier 102 supplies power to the load 103. At this time, both the impedance of the λ 力 4 line A force viewed from the load 103 side and the impedance viewed from the peak amplifier 102 toward the load 103 side are Z. Also, the impedance when looking at the load 103 side from λ Ζ4 line Α
0  0
と λ Ζ4線路 Αの特性インピーダンスは等しいため、キャリア増幅器 101から負荷 10 3側を見たインピーダンスも Zとなる。以上のことから、キャリア増幅器 101から負荷 1  And λ Ζ4 line Α have the same characteristic impedance, the impedance of the carrier amplifier 101 viewed from the load 103 side is also Z. From the above, load 1 from carrier amplifier 101
0  0
03を見たインピーダンスは、低電力動作時においては 2Z、高電力動作時において  The impedance seen in 03 is 2Z at low power operation and at high power operation.
0  0
は Zとなることがわ力る。  Is powerful to become Z.
0  0
[0033] そこで、キャリア増幅器 101を、負荷インピーダンスが 2Zのときは飽和電力は低下 するが高効率になるように設計し、負荷インピーダンスが Zのときは飽和電力が高く [0033] Therefore, when the load impedance of the carrier amplifier 101 is 2Z, the saturation power is reduced. However, when the load impedance is Z, the saturation power is high.
0  0
なるように設計すると、高ダイナミックレンジにわたり高効率動作を実現することが可 能となる。  This design makes it possible to achieve high-efficiency operation over a high dynamic range.
[0034] 以上のようなドハティ増幅器の動作モードにおいて、上記図 1の結果は、図 5に示 すように、高電力領域においてキャリア増幅器 101とピーク増幅器 102が共に動作し ているモードの場合のものである。このとき、キャリア増幅器 101の出力段から見たィ ンピーダンス Zは負荷 103のインピーダンス Zと等しくなる。よって、キャリア増幅器 1  [0034] In the operation mode of the Doherty amplifier as described above, the result of Fig. 1 shows that the carrier amplifier 101 and the peak amplifier 102 are operating in the high power region as shown in Fig. 5. Is. At this time, the impedance Z seen from the output stage of the carrier amplifier 101 becomes equal to the impedance Z of the load 103. Thus, carrier amplifier 1
0 0  0 0
01単体の特性はドハティ増幅器の特性と相似になると考えられる。したがって、図 1 で得られたドハティ増幅器の出力電力レベル及び歪の特性はシングル増幅器に拡 張することができる。  The characteristics of 01 are considered to be similar to those of Doherty amplifier. Therefore, the output power level and distortion characteristics of the Doherty amplifier obtained in Fig. 1 can be extended to a single amplifier.
[0035] したがって、本発明における電力増幅器の具体的な実施の形態については、説明 を容易にするために、電力増幅器をシングル構成としたシングル増幅器を例に挙げ て、出力電力レベルの劣化及び歪の劣化を防止する方法について詳細に説明する 。なお、以下の各実施の形態で用いる図面において、同一の構成要素は同一の符 号を付し、かつ重複する説明は可能な限り省略する。なお、以下の説明では、信号 の反射度合を示す VSWR値を検出する VSWR検出手段を用いた場合における実 施の形態にっ 、て述べるが、 VSWR検出手段の代わりに反射係数を検出する反射 係数検出手段を用いてもよい。反射係数検出手段を用いた場合は、 VSWR検出手 段を反射係数検出手段と読み替えればよい。  Therefore, in order to facilitate the explanation of a specific embodiment of the power amplifier according to the present invention, a single amplifier having a single power amplifier is taken as an example, and deterioration and distortion of the output power level are taken as an example. A method for preventing the deterioration of the material will be described in detail. Note that in the drawings used in the following embodiments, the same constituent elements are denoted by the same reference numerals, and redundant description is omitted as much as possible. In the following explanation, the embodiment will be described in the case of using the VSWR detection means for detecting the VSWR value indicating the reflection degree of the signal, but the reflection coefficient for detecting the reflection coefficient instead of the VSWR detection means. Detection means may be used. When the reflection coefficient detection means is used, the VSWR detection means should be read as the reflection coefficient detection means.
[0036] 〈実施の形態 1〉  <Embodiment 1>
実施の形態 1では、シングル構成の電力増幅器を使用した場合において、出力電 カレベルの劣化及び歪の劣化を防止する方法について説明する。図 6は、本発明の 実施の形態 1におけるシングル構成の電力増幅器の基本構成を示すブロック図であ る。この電力増幅器は、増幅素子 111と VSWR検出手段 112と電流制御手段 113と を備え、 VSWR検出手段 112の出力にアンテナ 114が接続された構成となって 、る 。 VSWR検出手段 112は、増幅素子 111の VSWR値を検出する機能を有し、電流 制御手段 113は、 VSWR検出手段 112が検出した VSWR値に基づ 、て増幅素子 1 11の電流値を制御する。なお、 VSWR検出手段 112の代わりに、アンテナ 114への 進行波とアンテナ 114からの反射波の比である反射係数を検出する反射係数検出 手段を備えてもよいが、以下、各実施の形態では VSWR検出手段 112を備えるもの とし、反射係数検出手段を備える場合は、 VSWR検出手段 112を反射係数検出手 段 112と読み替えるものとする。 In the first embodiment, a method for preventing deterioration of output power level and distortion when a single configuration power amplifier is used will be described. FIG. 6 is a block diagram showing a basic configuration of a single-configuration power amplifier according to Embodiment 1 of the present invention. This power amplifier includes an amplifying element 111, a VSWR detection means 112, and a current control means 113, and an antenna 114 is connected to the output of the VSWR detection means 112. The VSWR detection means 112 has a function of detecting the VSWR value of the amplification element 111, and the current control means 113 controls the current value of the amplification element 111 based on the VSWR value detected by the VSWR detection means 112. . Instead of the VSWR detection means 112, the antenna 114 Reflection coefficient detection means for detecting a reflection coefficient, which is the ratio of the traveling wave and the reflected wave from the antenna 114, may be provided.Hereinafter, in each embodiment, the VSWR detection means 112 is provided, and the reflection coefficient detection means is provided. When equipped, the VSWR detection means 112 is replaced with the reflection coefficient detection means 112.
[0037] まず、 VSWR検出手段 112が行う負荷変動の検出について説明する。負荷変動に ついては増幅素子 111の出力段にある VSWR検出手段 112が検出を行う。すなわ ち、 VSWR検出手段 112が検出した VSWRの値が変化していれば、アンテナ 114 のインピーダンスが変動したものと判断する。当然のことながら、増幅素子 111の出 力段に反射係数検出手段 112を設けた場合は、反射係数検出手段 112が検出した 反射係数が変化して 、れば、アンテナ 114のインピーダンスが変動したものと判断す る。 First, detection of load fluctuation performed by the VSWR detection unit 112 will be described. The VSWR detection means 112 at the output stage of the amplifying element 111 detects the load fluctuation. That is, if the value of VSWR detected by the VSWR detection means 112 has changed, it is determined that the impedance of the antenna 114 has changed. Of course, when the reflection coefficient detecting means 112 is provided at the output stage of the amplifying element 111, if the reflection coefficient detected by the reflection coefficient detecting means 112 changes, the impedance of the antenna 114 changes. Judge.
[0038] 次に、電流制御手段 113が行う増幅素子 111の電流制御について説明する。 VS WR検出手段 112の検出した VSWR値が小さい場合は、整合インピーダンスが 50 Ω に近いところにあると考えられるので、出力電力レベルの安定ィ匕と同時に歪も満たし ていると判断して、電流制御手段 113は増幅素子 111の電流制御を行わない。また 、 VSWR検出手段 112の検出した VSWR値が大きい場合は、増幅素子 111の電流 値が小さいところで出力電力レベル及び歪が劣化していると考えられるので、電流制 御手段 113は増幅素子 111の電流が大きくなるように電流制御を行う。なお、当然の ことながら、増幅素子 111の出力段に反射係数検出手段 112を設けたときは、反射 係数検出手段 112が検出した反射係数が小さい場合は、電流制御手段 113は増幅 素子 111の電流制御を行わないが、反射係数が大きい場合は、増幅素子 101の電 流値が小さいところで出力電力レベル及び歪が劣化していると考えられるので、電流 制御手段 113は増幅素子 111の電流が大きくなるように電流制御を行う。  Next, the current control of the amplification element 111 performed by the current control unit 113 will be described. If the VSWR value detected by the VS WR detection means 112 is small, the matching impedance is considered to be close to 50 Ω, so it is determined that the distortion is satisfied at the same time as the stability of the output power level. The control means 113 does not control the current of the amplification element 111. In addition, when the VSWR value detected by the VSWR detection means 112 is large, it is considered that the output power level and distortion are degraded when the current value of the amplification element 111 is small. Current control is performed so that the current increases. Of course, when the reflection coefficient detecting means 112 is provided at the output stage of the amplifying element 111, the current control means 113 determines the current of the amplifying element 111 when the reflection coefficient detected by the reflection coefficient detecting means 112 is small. Control is not performed, but when the reflection coefficient is large, it is considered that the output power level and distortion have deteriorated when the current value of the amplifying element 101 is small. Therefore, the current control means 113 has a large current in the amplifying element 111. Current control is performed so that
[0039] 〈実施の形態 2〉  <Embodiment 2>
実施の形態 2では、シングル構成の電力増幅器を 2段のバランス構成で使用した場 合において、出力電力レベルの劣化及び歪の劣化を防止する方法について説明す る。図 7は、本発明の実施の形態 2におけるシングル構成の電力増幅器を 2段のバラ ンス構成で使用した其の 1のブロック図である。図 7の電力増幅器の構成は、図 6の 電力増幅器と基本的には同じ構成であるが、同じ容量の増幅素子 11 laと増幅素子 11 lbが 2段でバランス構成されたものである。なお、増幅素子 l l la、 11 lbの 2段構 成はドノ、ティ増幅器であってもよいが、その場合の回路は図 3に示すような構成にす ればよい。また、シングル構成の電力増幅器を 3段以上のバランス構成にしても本発 明を実現することができる。 In the second embodiment, a method for preventing deterioration of output power level and distortion when a single-configuration power amplifier is used in a two-stage balanced configuration will be described. FIG. 7 is a first block diagram in which a single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage balance configuration. The configuration of the power amplifier in Fig. 7 is shown in Fig. 6. The configuration is basically the same as that of the power amplifier, but the amplification device 11 la and the amplification device 11 lb having the same capacity are balanced in two stages. Note that the two-stage configuration of the amplifying elements ll la and 11 lb may be a Dono and tee amplifier, but the circuit in that case may be configured as shown in FIG. In addition, the present invention can be realized even if a single-configuration power amplifier has a balanced configuration of three or more stages.
[0040] 図 7に示す実施の形態 2の VSWR検出手段 112は、増幅素子 11 laの出力と増幅 素子 111bの出力が合成された後に設けられているが、負荷変動検出の検出動作は 図 6と同様の方法によって VSWR検出手段 112が行うのでその説明は省略する。な お、 VSWR検出手段 112の代わりに反射係数検出手段 112としてもよ 、。  The VSWR detection means 112 of the second embodiment shown in FIG. 7 is provided after the output of the amplification element 11 la and the output of the amplification element 111b are combined. Since the VSWR detecting means 112 performs the same method as in FIG. The reflection coefficient detection means 112 may be used instead of the VSWR detection means 112.
[0041] 電流制御手段 113が行う増幅素子 11 la及び増幅素子 11 lbの電流制御につ 、て は、 VSWR検出手段 112が検出した VSWR値が小さい場合は、シングル構成の 2段 以上のバランス構成及びドハティ構成共に整合インピーダンスが 50 Ωに近 ヽところ にあると考えられるので歪レベルも同時に許容値を満たしていると判断して電流制御 を行わない。  [0041] For the current control of the amplifying element 11 la and the amplifying element 11 lb performed by the current control means 113, if the VSWR value detected by the VSWR detection means 112 is small, a balanced configuration of two or more stages in a single configuration In addition, since the matching impedance is considered to be close to 50 Ω in both the Doherty configuration, it is judged that the distortion level also satisfies the allowable value at the same time, and current control is not performed.
[0042] 一方、電流制御手段 113が行う増幅素子 11 la及び増幅素子 11 lbの電流制御に ついて、 VSWR値が大きい場合は、シングル構成の 2段以上のバランス構成とドノヽテ ィ構成とでは電流制御の方法が異なる。すなわち、シングル構成の 2段以上のバラン ス構成では、 VSWR値が大きい場合は、各増幅素子 l l la、 111bの電流値が小さ いところで出力電力レベル及び歪が劣化していると考えられるので、電流制御手段 1 13によって各増幅素子 11 la、 11 lbの電流値を大きくするように電流制御を行う。  [0042] On the other hand, regarding the current control of the amplifying element 11 la and the amplifying element 11 lb performed by the current control means 113, when the VSWR value is large, the balance configuration of two or more stages in the single configuration and the donut configuration The current control method is different. In other words, in a balance configuration with two or more stages in a single configuration, when the VSWR value is large, it is considered that the output power level and distortion are degraded when the current value of each amplifier element llla, 111b is small. Current control is performed by the current control means 1 13 so as to increase the current value of each amplification element 11 la, 11 lb.
[0043] また、ドハティ構成では、 VSWR値が大きい場合は、各増幅素子 l l la、 11 lbの電 流値によって出力電力レベル及び歪が劣化しているところがあると考えられるので、 電流制御手段 113によって各増幅素子 11 la, 11 lbの電流値を適切に制御する。  [0043] In the Doherty configuration, when the VSWR value is large, it is considered that the output power level and distortion are degraded due to the current value of each of the amplifying elements ll la and 11 lb. Thus, the current value of each amplification element 11 la, 11 lb is appropriately controlled.
[0044] すなわち、図 7において、増幅素子 11 laをキャリア増幅器、増幅素子 11 lbをピー ク増幅器と見なし、 Icをキャリア増幅器のキャリア電流、 Ipをピーク増幅器のピーク電 流とし、かつ、 Ic+Ip=Idsとしたときは、電流制御手段 113によって次のような電流 制御を行う。  That is, in FIG. 7, the amplifying element 11 la is regarded as a carrier amplifier, the amplifying element 11 lb is regarded as a peak amplifier, Ic is the carrier current of the carrier amplifier, Ip is the peak current of the peak amplifier, and Ic + When Ip = Ids, the current control unit 113 performs the following current control.
[0045] キャリア電流 Icとピーク電流 Ipの電流比 (IcZlc)が小さ!/、場合は歪が劣化して 、る ので、電流制御手段 113によってキャリア増幅器 (増幅素子 11 la)及びピーク増幅 器 (増幅素子 11 lb)の電流制御を行 、、電流比 (IcZlc)を所望の値以上にして歪 劣化の防止を図る。また、キャリア電流 Icが小さい場合は歪が劣化しているので、電 流制御手段 113によってキャリア増幅器 (増幅素子 11 la)の電流制御を行 、、キヤリ ァ電流 Icを所望の値以上にして歪劣化の防止を図る。また、ピーク電流 Ipが大きい 場合は歪が劣化して 、るので、電流制御手段 113によってピーク増幅器 (増幅素子 1 l ib)の電流制御を行い、ピーク電流 Ipの電流値を所望の値以下にして歪劣化の防 止を図る。 [0045] The current ratio (IcZlc) between the carrier current Ic and the peak current Ip is small! Therefore, the current control means 113 controls the current of the carrier amplifier (amplifying element 11 la) and the peak amplifier (amplifying element 11 lb) and sets the current ratio (IcZlc) to a desired value or more to prevent distortion deterioration. . Further, since the distortion is degraded when the carrier current Ic is small, the current control means 113 controls the current of the carrier amplifier (amplifying element 11 la), and the carrier current Ic is set to a desired value or more to distort the carrier current Ic. Prevent deterioration. If the peak current Ip is large, the distortion deteriorates. Therefore, the current control means 113 controls the current of the peak amplifier (amplifier element 1 ib) so that the current value of the peak current Ip is not more than a desired value. To prevent distortion degradation.
[0046] また、キャリア電流 Icとピーク電流 Ipを加算した Ids (=Ic+Ip)が小さい場合は歪が 劣化して!/、るので、電流制御手段 113によってキャリア増幅器 (増幅素子 11 la)及び ピーク増幅器 (増幅素子 11 lb)の電流制御を行 、、 Idsを所望の値以上にして歪劣 化の防止を図る。なお、ドノ、ティ増幅器の場合は、通常はキャリア増幅器 (増幅素子 1 11a)に大部分の電流が流れているので、電流制御手段 113によってキャリア増幅器 (増幅素子 11 la)の電流制御を行い、キャリア電流 Icを増加させることによって Idsを 所望の値以上にして歪の劣化を防止する。  [0046] When Ids (= Ic + Ip) obtained by adding the carrier current Ic and the peak current Ip is small, the distortion deteriorates! /, So the current control means 113 causes the carrier amplifier (amplifying element 11 la) to And control the current of the peak amplifier (amplifier element 11 lb) to prevent distortion degradation by setting Ids to a desired value or more. In the case of the Dono and Tee amplifiers, since most of the current normally flows through the carrier amplifier (amplifying element 1 11a), the current control means 113 controls the current of the carrier amplifier (amplifying element 11 la). By increasing the carrier current Ic, Ids is set to a desired value or more to prevent distortion degradation.
[0047] 図 8は、本発明の実施の形態 2におけるシングル構成の電力増幅器を 2段のバラン ス構成で使用した其の 2のブロック図である。図 8の電力増幅器の構成は、図 6の電 力増幅器と基本的には同じ構成であるが、増幅素子 111aと増幅素子 111bが 2段の ノ《ランス構成となっている。また、図 8に示す実施の形態 2の其の 2の構成は、図 7に 示した実施の形態 2の其の 1の構成と異なり、 VSWR検出手段 112が増幅素子 111 aの出力側に設けられている。  FIG. 8 is a second block diagram in which the single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage balance configuration. The configuration of the power amplifier in FIG. 8 is basically the same as that of the power amplifier in FIG. 6, but the amplification element 111a and the amplification element 111b have a two-stage non-lance configuration. Further, the second configuration of the second embodiment shown in FIG. 8 is different from the first configuration of the second embodiment shown in FIG. 7, and the VSWR detecting means 112 is provided on the output side of the amplifying element 111a. It has been.
[0048] したがって、この場合は、 VSWR検出手段 112が、増幅素子 11 laの出力側の負 荷変動による VSWR値を検出して、その VSWR値を電流制御手段 113へ送信して いる。そして、電流制御手段 113は、増幅素子 11 laの出力側力も検出された VSW R値に基づいて、増幅素子 11 la及び増幅素子 11 lbの電流制御を行っている。この とき、増幅素子 11 laと増幅素子 11 lbに流れる電流はほぼ同じであるので、増幅素 子 11 laの出力側から検出された VSWR値に基づ!/、て 2つの増幅素子 11 la、 111b の電流制御を行っても、増幅素子 11 laの電流と増幅素子 11 lbの電流をバランス制 御することができる。 Therefore, in this case, the VSWR detection means 112 detects the VSWR value due to load fluctuation on the output side of the amplification element 11 la and transmits the VSWR value to the current control means 113. The current control means 113 performs current control of the amplifying element 11 la and the amplifying element 11 lb based on the VSW R value in which the output side force of the amplifying element 11 la is also detected. At this time, since the currents flowing through the amplifying element 11 la and the amplifying element 11 lb are almost the same, based on the VSWR value detected from the output side of the amplifying element 11 la! /, The two amplifying elements 11 la, Even if the current control of 111b is performed, the current of amplifier 11 la and the current of amplifier 11 lb are balanced. I can do it.
[0049] なお、 VSWR検出手段 112の代わりに反射係数検出手段 112を用いてもよい。ま た、電流制御手段 113による電流制御の方法は、実施の形態 2の其の 1で述べた図 7の場合と同じであるのでその説明も省略する。さらに、図 8に示す 2段のシングル構 成はドノ、ティ増幅器であってもよいが、その場合の回路は図 3に示したような構成に すればよい。また、シングル構成の電力増幅器を 3段以上のバランス構成にしても本 発明を実現することができる。  Note that the reflection coefficient detecting means 112 may be used instead of the VSWR detecting means 112. In addition, the current control method by the current control means 113 is the same as that in FIG. Further, the two-stage single configuration shown in FIG. 8 may be a Dono and Tee amplifier, but the circuit in that case may be configured as shown in FIG. In addition, the present invention can be realized even if a single-configuration power amplifier has a balanced configuration of three or more stages.
[0050] 図 9は、本発明の実施の形態 2におけるシングル構成の電力増幅器を 2段のバラン ス構成で使用した其の 3のブロック図である。図 9に示す実施の形態 2の其の 3の構 成が図 8に示す実施の形態 2の其の 2の構成と異なるところは、 VSWR検出手段 112 力 増幅素子 111aの出力側ではなぐ増幅素子 111bの出力側に設けられている点 のみである。したがって、負荷変動による VSWR値の検出動作は図 8と同様の方法 によって VSWR検出手段 112が行うので、その説明は省略する。また、電流制御手 段 113による電流制御の方法も、図 8の実施の形態 2の其の 2で述べた場合と同じで あるので、その説明も省略する。  FIG. 9 is a third block diagram in which the single-configuration power amplifier according to Embodiment 2 of the present invention is used in a two-stage balance configuration. The difference between the third configuration of the second embodiment shown in FIG. 9 and the second configuration of the second embodiment shown in FIG. 8 is that the VSWR detection means 112 force amplifying element is not connected to the output side of the amplifying element 111a. It is only a point provided on the output side of 111b. Therefore, the detection operation of the VSWR value due to the load change is performed by the VSWR detection means 112 by the same method as in FIG. The current control method by the current control means 113 is also the same as that described in the second part of the second embodiment in FIG.
[0051] 〈実施の形態 3〉  <Embodiment 3>
実施の形態 3では、 VSWR検出手段 112の具体的な構成例の幾つかについて説 明する。図 10は、本発明の実施の形態 3における VSWR検出手段 112の其の 1の 構成を示すブロック図である。なお、 VSWR検出手段 112を反射係数検出手段 112 と置き換えてもよいが、以下の説明では全て VSWR検出手段 112の構成について説 明する。なお、実施の形態 3における VSWR検出手段 112の各入出力端子 r, s, tは 、図 6に示す電力増幅器における VSWR検出手段 112の各入出力端子 r, s, tに対 応する。但し、図 10に示す TPC設定レベル端子 uは、設ける場合と設けない場合が あるので図 6の VSWR検出手段 112では示されて!/ヽな!、。  In the third embodiment, some specific configuration examples of the VSWR detection unit 112 will be described. FIG. 10 is a block diagram showing a first configuration of the VSWR detection means 112 according to Embodiment 3 of the present invention. Note that the VSWR detection means 112 may be replaced with the reflection coefficient detection means 112, but in the following description, the configuration of the VSWR detection means 112 will be described. Note that the input / output terminals r, s, t of the VSWR detection means 112 in the third embodiment correspond to the input / output terminals r, s, t of the VSWR detection means 112 in the power amplifier shown in FIG. However, since the TPC setting level terminal u shown in FIG. 10 may or may not be provided, it is indicated by the VSWR detection means 112 in FIG.
[0052] 図 10に示すように、 VSWR検出手段 112は出力レベル検出部 121を備え、この出 カレベル検出部 121は、増幅素子出力側端子!:、負荷側端子 s、 VSWR検出端子 t、 及び TPC設定レベル端子 uに接続されている。なお、 TPC設定レベル端子 uは、実 際に出力したい電力情報を示す TPC (Transmit Power Control:送信電力制御)情 報の設定レベルを入力する端子である。 [0052] As shown in FIG. 10, the VSWR detection means 112 includes an output level detection unit 121, and the output level detection unit 121 is an amplifying element output side terminal! : Connected to load side terminal s, VSWR detection terminal t, and TPC setting level terminal u. The TPC setting level terminal u is TPC (Transmit Power Control) information indicating the power information that is actually desired to be output. This terminal is used to input the information setting level.
[0053] このような構成において、 TPC設定レベル端子 uから出力レベル検出部 121へ入 力される TPC設定レベルと増幅素子出力側端子!:の出力電力レベルとによって反射 電力レベルを予測できることを利用して、 TPC設定レベル端子 uの TPC設定レベル と増幅素子出力側端子 rの出力電力レベルとによって VSWR検出端子 tから VSWR 値を検出する。例えば、 TPC設定レベル端子 uで設定した実際に送信したい電力が 23dBm (200mW)であり、増幅素子出力側端子 rの出力電力レベルが 20dBm (10 OmW)であるときは、 3dB減衰しているので、反射電力も同様に 20dBm (100mW) である。よって、反射係数は 100Z200 = 0. 5となり、 VSWR検出端子 tから(1 + 0. 5) / (1 -0. 5) = 3の VSWR値が検出される。  [0053] In such a configuration, the reflected power level can be predicted based on the TPC setting level input from the TPC setting level terminal u to the output level detection unit 121 and the output power level of the amplification element output terminal! Then, the VSWR value is detected from the VSWR detection terminal t based on the TPC setting level of the TPC setting level terminal u and the output power level of the amplifying element output side terminal r. For example, if the power to be actually transmitted set at the TPC setting level terminal u is 23 dBm (200 mW) and the output power level at the amplifier output terminal r is 20 dBm (10 OmW), it is attenuated by 3 dB. The reflected power is also 20dBm (100mW). Therefore, the reflection coefficient is 100Z200 = 0.5, and the VSWR value of (1 + 0.5) / (1-0.5) = 3 is detected from the VSWR detection terminal t.
[0054] なお、増幅素子出力側端子 rの出力電力レベルの検出は、例えば、方向性結合器 と検波器の組み合わせによって行うことができる。すなわち、方向性結合器によって 増幅素子から出力された電力のうちの微小電力(例えば、 lZiooの電力)を抽出し Note that the detection of the output power level of the amplifier element output side terminal r can be performed by, for example, a combination of a directional coupler and a detector. That is, a minute power (for example, lZioo power) out of the power output from the amplifying element by the directional coupler is extracted.
、検波器によって微小電力の信号を受信して出力電力レベルを計測する。 The micro power signal is received by the detector and the output power level is measured.
[0055] 図 11は、本発明の実施の形態 3における VSWR検出手段 112の其の 2の構成を 示すブロック図である。図 11に示すように、 VSWR検出手段 112は反射レベル検出 部 122を備え、この反射レベル検出部 122は、増幅素子出力側端子!:、負荷側端子 s 、 VSWR検出端子 t、及び TPC設定レベル端子 uに接続されている。  FIG. 11 is a block diagram showing the second configuration of the VSWR detection means 112 according to Embodiment 3 of the present invention. As shown in FIG. 11, the VSWR detection means 112 includes a reflection level detection unit 122. The reflection level detection unit 122 is amplifying element output side terminal!:, Load side terminal s, VSWR detection terminal t, and TPC setting level. Connected to terminal u.
[0056] このような構成において、 TPC設定レベル端子 uから反射レベル検出部 122へ入 力される TPC設定レベルと負荷側端子 sへ入力される反射電力レベルとによって反 射レベルを予測できることを利用して、 TPC設定レベル端子 uの TPC設定レベルと 負荷側端子 sの反射電力レベルとによって VSWR検出端子はり VSWR値を検出す る。なお、負荷側端子 sの反射電力レベルの検出は、例えば、方向性結合器と検波 器との組み合わせによって行うことができる。  [0056] In such a configuration, the reflection level can be predicted from the TPC setting level input from the TPC setting level terminal u to the reflection level detection unit 122 and the reflected power level input to the load side terminal s. Then, the VSWR detection terminal beam VSWR value is detected based on the TPC setting level of the TPC setting level terminal u and the reflected power level of the load side terminal s. The reflected power level of the load side terminal s can be detected by a combination of a directional coupler and a detector, for example.
[0057] 図 12は、本発明の実施の形態 3における VSWR検出手段 112の其の 3の構成を 示すブロック図である。図 12に示すように、 VSWR検出手段 112は入反射レベル検 出部 123を備え、この入反射レベル検出部 123は、増幅素子出力側端子!:、負荷側 端子 s、及び VSWR検出端子 tに接続されている。このような構成において、増幅素 子出力側端子 rの出力電力レベル (つまり、入射波電力レベルに相当)と負荷側端子 s の反射波電力レベルを検出し、その検出結果を演算することにより(つまり、入射波 電力レベル力 反射波電力レベルを除算することにより)、 VSWR検出端子 tから VS WR値を検出する。このような構成によって検出を行う場合は TPC設定レベルは不要 となる。なお、増幅素子出力側端子 rの出力電力レベル (入射波電力レベルに相当)と 負荷側端子 sの反射波電力レベルの検出は、いずれも方向性結合器と検波器との組 み合わせによって行うことができる。 FIG. 12 is a block diagram showing a third configuration of the VSWR detection means 112 according to Embodiment 3 of the present invention. As shown in FIG. 12, the VSWR detection means 112 includes an incident / reflection level detection unit 123. The incident / reflection level detection unit 123 is connected to the output terminal of the amplification element!:, The load side terminal s, and the VSWR detection terminal t. It is connected. In such a configuration, the amplification element By detecting the output power level of the child output side terminal r (that is, equivalent to the incident wave power level) and the reflected wave power level of the load side terminal s and calculating the detection result (that is, incident wave power level force reflection) By dividing the wave power level), the VS WR value is detected from the VSWR detection pin t. When performing detection with such a configuration, the TPC setting level is not required. The detection of the output power level at the amplifier output terminal r (corresponding to the incident wave power level) and the reflected wave power level at the load terminal s is performed by a combination of a directional coupler and a detector. be able to.
[0058] 〈実施の形態 4〉  <Embodiment 4>
実施の形態 4では、電流制御手段 113の具体的な構成例の幾つかにっ 、て説明 する。図 13は、本発明の実施の形態 4において増幅素子の電源制御を行う電流制 御手段の構成を示すブロック図である。電流制御手段 113は、電流値検出部 131と 電源設定部 132を備えた構成となっている。電流値検出部 131は、増幅素子 111の 出力電流を検出する。電源設定部 132は、電流値検出部 131の検出した増幅素子 1 11の出力電流と図示しな 、VSWR検出手段力も入力した VSWR値とに基づ 、て増 幅素子 111の電源 E 101の電圧を制御する。  In the fourth embodiment, some specific configuration examples of the current control means 113 will be described. FIG. 13 is a block diagram showing a configuration of current control means for controlling the power supply of the amplifying element in the fourth embodiment of the present invention. The current control unit 113 includes a current value detection unit 131 and a power supply setting unit 132. The current value detector 131 detects the output current of the amplifying element 111. Based on the output current of the amplifying element 111 detected by the current value detecting unit 131 and the VSWR value to which the VSWR detecting means force is also input, the power setting unit 132 determines the voltage of the power supply E 101 of the amplifier 111. To control.
[0059] このような電流制御手段 113の構成において、電源設定部 132が、電流値検出部 131からの電流検出情報と図示しない VSWR検出手段からの VSWR値とに基づい て電源 E101の電圧を制御することにより、実質的に増幅素子 111の出力電流を制 御する。なお、 VSWR値の代わりに図示しない反射係数検出手段力もの反射係数を 用いてもよい。また、電流制御手段 113が制御する増幅素子はシングル構成の 2段 以上でもよ!/、しドハティ増幅器でもよ 、。  [0059] In such a configuration of current control means 113, power supply setting section 132 controls the voltage of power supply E101 based on current detection information from current value detection section 131 and a VSWR value from a VSWR detection means (not shown). By doing so, the output current of the amplifying element 111 is substantially controlled. Instead of the VSWR value, a reflection coefficient having a reflection coefficient detecting means (not shown) may be used. Also, the amplification element controlled by the current control means 113 may be two or more stages in a single configuration! / Or a Doherty amplifier.
[0060] 図 14は、本発明の実施の形態 4において増幅素子のバイアス電圧制御を行う電流 制御手段の構成を示すブロック図である。電流制御手段 113は、電流値検出部 131 とバイアス設定部 133を備えた構成となっている。ノ ィァス設定部 133は、電流値検 出部 131の検出した増幅素子 111の出力電流と図示しない VSWR検出手段力も入 力した VSWR値とに基づ!/、て増幅素子 111のバイアス電源 E 10 lbの電圧を制御す る。  FIG. 14 is a block diagram showing a configuration of current control means for performing bias voltage control of the amplification element in the fourth embodiment of the present invention. The current control unit 113 includes a current value detection unit 131 and a bias setting unit 133. The noise setting unit 133 is based on the output current of the amplifying element 111 detected by the current value detecting unit 131 and the VSWR value of the VSWR detecting means (not shown)! Controls the voltage of lb.
[0061] このような電流制御手段 113の構成において、電流値検出部 131からの電流検出 情報と図示しない VSWR検出手段からの VSWR値とに基づいてバイアス設定部 13 3を制御することにより、バイアス設定部 133は増幅素子 111のバイアス電源 E 101b の電圧を変化させる。これによつて、実質的に増幅素子 111の出力電流を制御する 。なお、 VSWR値の代わりに図示しない反射係数検出手段からの反射係数を用いて もよい。また、電流制御手段 113が制御する増幅素子はシングル構成の 2段以上で もよ!/、しドノ、ティ増幅器でもよ!/、。 In such a configuration of the current control means 113, current detection from the current value detection unit 131 is performed. By controlling the bias setting unit 133 based on the information and the VSWR value from the VSWR detection means (not shown), the bias setting unit 133 changes the voltage of the bias power supply E 101b of the amplifying element 111. Thereby, the output current of the amplifying element 111 is substantially controlled. Note that a reflection coefficient from a reflection coefficient detecting means (not shown) may be used instead of the VSWR value. In addition, the amplification element controlled by the current control means 113 may be a single configuration of two or more stages! /, And a Dono or Tee amplifier! /.
[0062] 図 15は、本発明の実施の形態 4において増幅素子の電流源制御を行う電流制御 手段の構成を示すブロック図である。電流制御手段 113は、電流値検出部 131と電 流源設定部 134を備えた構成となっている。電流源設定部 134は、電流値検出部 1 31の検出した増幅素子 111の出力電流と図示しな 、 VSWR検出手段から入力した VSWR値とに基づ!/、て電流源 A101から増幅素子 111へ流れる電流を制御する。  FIG. 15 is a block diagram showing a configuration of current control means for controlling the current source of the amplifying element in the fourth embodiment of the present invention. The current control unit 113 includes a current value detection unit 131 and a current source setting unit 134. The current source setting unit 134 is based on the output current of the amplifying element 111 detected by the current value detecting unit 131 and the VSWR value input from the VSWR detecting means (not shown)! /, And from the current source A101 to the amplifying element 111. To control the current flowing to
[0063] このような電流制御手段 113の構成において、電流源設定部 134が、電流値検出 部 131からの電流検出情報と図示しない VSWR検出手段からの VSWR値とに基づ V、て電流源 A101から増幅素子 111へ流れる電流を制御することにより、実質的に 増幅素子 111の電流を制御する。なお、 VSWR値の代わりに図示しない反射係数 検出手段からの反射係数を用いてもよい。また、電流制御手段 113が制御する増幅 素子はシングル構成の 2段以上でもよ 、しドノ、ティ増幅器でもよ!/、。  [0063] In such a configuration of the current control means 113, the current source setting unit 134 uses the current source V based on the current detection information from the current value detection unit 131 and the VSWR value from the VSWR detection unit (not shown). By controlling the current flowing from A101 to the amplifying element 111, the current of the amplifying element 111 is substantially controlled. In place of the VSWR value, a reflection coefficient from a reflection coefficient detection means (not shown) may be used. In addition, the amplification element controlled by the current control means 113 may be a single configuration of two or more stages, or a Dono or Tee amplifier! /.
[0064] 図 16は、本発明の実施の形態 4において増幅素子の出力段の整合回路の制御を 行う電流制御手段 113の構成を示すブロック図である。電流制御手段 113は、電流 値検出部 131とマッチングネットワーク制御部 135を備えた構成となって 、る。マッチ ングネットワーク制御部 135は、電流値検出部 131からの電流検出情報と図示しない VSWR検出手段から入力した VSWR値とに基づ 、て、増幅素子 111の出力段にお ける整合回路(図示せず)のマッチングネットワークを変化させる。  FIG. 16 is a block diagram showing a configuration of current control means 113 that controls the matching circuit of the output stage of the amplification element in the fourth embodiment of the present invention. The current control unit 113 includes a current value detection unit 131 and a matching network control unit 135. Based on the current detection information from the current value detection unit 131 and the VSWR value input from the VSWR detection means (not shown), the matching network control unit 135 matches a matching circuit (not shown) at the output stage of the amplification element 111. Change the matching network.
[0065] このような電流制御手段 113の構成において、マッチングネットワーク制御部 135は 、電流値検出部 131からの電流検出情報と図示しない VSWR検出手段力 入力し た VSWR値とに基づいて、図示しない整合回路のマッチングネットワークを変化させ ることにより、実質的に増幅素子 111の電流を制御する。つまり、マッチングネットヮー ク制御部 135は、増幅素子 111の出力側のアンテナ (図示せず)のインピーダンスを マッチングさせるように例えば整合回路(図示せず)を切り替える。なお、 VSWR値の 代わりに図示しない反射係数検出手段力もの反射係数を用いてもよい。また、増幅 素子はシングル構成の 2段以上でもよ 、しドノ、ティ増幅器でもよ!/、。 In such a configuration of the current control unit 113, the matching network control unit 135 is not illustrated based on the current detection information from the current value detection unit 131 and the VSWR value input by the VSWR detection unit force (not illustrated). The current of the amplifying element 111 is substantially controlled by changing the matching network of the matching circuit. That is, the matching network control unit 135 sets the impedance of the antenna (not shown) on the output side of the amplification element 111. For example, a matching circuit (not shown) is switched so as to match. In place of the VSWR value, a reflection coefficient having a reflection coefficient detecting means power (not shown) may be used. Also, the amplifying element can be two or more stages in a single configuration, or it can be a dono or tee amplifier! /.
[0066] 図 17は、本発明の実施の形態 4において可変位相制御を行う電流制御手段の構 成を示すブロック図である。電流制御手段 113は、電流値検出部 131と可変移相器 制御部 136を備えた構成となっている。可変移相器制御部 136は、電流値検出部 1 31からの電流検出情報と図示しない VSWR検出手段力も入力した VSWR値とに基 づ 、て、反射係数が最も小さくなるように増幅素子 111の出力位相をシフトする。  FIG. 17 is a block diagram showing a configuration of current control means for performing variable phase control in Embodiment 4 of the present invention. The current control unit 113 includes a current value detection unit 131 and a variable phase shifter control unit 136. Based on the current detection information from the current value detection unit 131 and the VSWR value that is also input with the VSWR detection means force (not shown), the variable phase shifter control unit 136 sets the amplification element 111 so that the reflection coefficient is minimized. Shift the output phase.
[0067] このような電流制御手段 113の構成において、増幅素子 111の出力段に可変移相 器制御部 136を設け、この可変移相器制御部 136が、電流値検出部 131からの電 流検出情報と図示しな 、VSWR検出手段力も入力した VSWR値とに基づ 、て位相 を変化させることにより、実質的に増幅素子 111の電流を制御する。なお、 VSWR値 の代わりに図示しない反射係数検出手段力もの反射係数を用いてもよい。また、増 幅素子はシングル構成の 2段以上でもよ 、しドノ、ティ増幅器でもよ!/、。  In such a configuration of the current control unit 113, a variable phase shifter control unit 136 is provided at the output stage of the amplifying element 111, and the variable phase shifter control unit 136 includes a current from the current value detection unit 131. The current of the amplifying element 111 is substantially controlled by changing the phase based on the detection information and the VSWR value (not shown) based on the input VSWR value. Instead of the VSWR value, a reflection coefficient having a reflection coefficient detecting means power (not shown) may be used. Also, the amplifier element can be a single stage with two or more stages, or it can be a dono or tee amplifier! /.
[0068] 図 18は、本発明の実施の形態 4において増幅素子の電流を分配比制御する電流 制御手段の構成を示すブロック図である。電流制御手段 113は、電流値検出部 131 a、 13 lbと分配比制御部 137を備えた構成となっている。分配比制御部 137は、電 流値検出部 131a、 131bからの電流検出情報と図示しない VSWR検出手段力も入 力した VSWR値とに基づ!/、て、増幅素子 11 laの電流値と増幅素子 11 lbの電流値 を適正に分配する。  FIG. 18 is a block diagram showing a configuration of current control means for controlling the distribution ratio of the current of the amplifying element in the fourth embodiment of the present invention. The current control means 113 is configured to include current value detection units 131 a and 13 lb and a distribution ratio control unit 137. The distribution ratio control unit 137 is based on the current detection information from the current value detection units 131a and 131b and the VSWR value that is also input with the VSWR detection means force (not shown)! Distribute the current value of element 11 lb appropriately.
[0069] このような電流制御手段 113の構成において、電流値検出部 131aが増幅素子 11 laの電流値を検出し、電流値検出部 131bが増幅素子 11 lbの電流値を検出する。 そして、分配比制御部 137が、電流値検出部 131aと電流値検出部 131bの電流検 出情報に基づ 、て、増幅素子 11 laの電流値と増幅素子 11 lbの電流値の分配比を 適正に制御することにより、実質的に増幅素子 11 la及び増幅素子 11 lbの電流を制 御する。つまり、 2段バランス構成以上の増幅素子において、入力段の電流の分配比 (または絶対分配量)を変化させることにより、実質的に各増幅素子 111a, 111bの電 流を適正に制御することができる。なお、 VSWR値の代わりに図示しない反射係数 検出手段からの反射係数を用いてもよい。また、増幅素子はドハティ増幅器でもよい 産業上の利用可能性 [0069] In such a configuration of the current control means 113, the current value detection unit 131a detects the current value of the amplification element 11la, and the current value detection unit 131b detects the current value of the amplification element 11lb. Then, based on the current detection information of the current value detection unit 131a and the current value detection unit 131b, the distribution ratio control unit 137 calculates the distribution ratio between the current value of the amplification element 11 la and the current value of the amplification element 11 lb. By controlling appropriately, the current of the amplifying element 11 la and the amplifying element 11 lb is substantially controlled. In other words, in an amplifying element having a two-stage balanced configuration or more, the current of each amplifying element 111a, 111b can be appropriately controlled by changing the current distribution ratio (or absolute distribution amount) of the input stage. it can. Note that the reflection coefficient (not shown) is used instead of the VSWR value. The reflection coefficient from the detection means may be used. The amplification element may be a Doherty amplifier Industrial applicability
本発明の電力増幅器は、負荷の変動によって生じる出力電力レベルの劣化及び 歪の劣化を簡単な回路構成で防止することができるので、アンテナ指向性の環境条 件が厳しい携帯電話機などに有効に利用することが可能となる。  The power amplifier according to the present invention can prevent deterioration of output power level and distortion caused by load fluctuations with a simple circuit configuration, so that it can be effectively used for mobile phones having severe antenna directivity conditions. It becomes possible to do.

Claims

請求の範囲 The scope of the claims
[1] 電力を増幅する増幅素子と、  [1] an amplifying element for amplifying power;
前記増幅素子力 出力される進行波と該増幅素子へ入力される反射波との干渉に よって発生する定在波による反射度合を示す VSWR値を検出する VSWR検出手段 と、  VSWR detection means for detecting a VSWR value indicating a degree of reflection by a standing wave generated by interference between the traveling wave output to the amplification element and the reflected wave input to the amplification element;
前記 VSWR検出手段が検出した VSWR値に基づ 、て電力レベルが第 1閾値を越 えて歪レベルが第 2閾値以下となるように前記増幅素子に流れる電流を制御する電 流制御手段と、を備える電力増幅器。  Current control means for controlling the current flowing through the amplifying element based on the VSWR value detected by the VSWR detection means so that the power level exceeds the first threshold and the distortion level is equal to or less than the second threshold; Power amplifier provided.
[2] 前記 VSWR検出手段は、前記増幅素子から出力される進行波の電力と送信電力 目標値を示す TPC設定値とに基づ ヽて前記 VSWR値を検出する請求項 1に記載の 電力増幅器。 [2] The power amplifier according to [1], wherein the VSWR detection means detects the VSWR value based on a traveling wave power output from the amplifying element and a TPC set value indicating a transmission power target value. .
[3] 前記 VSWR検出手段は、前記増幅素子へ入力される反射波の電力と送信電力目 標値を示す TPC設定値とに基づ ヽて前記 VSWR値を検出する請求項 1に記載の電 力増幅器。  [3] The electric power according to claim 1, wherein the VSWR detection unit detects the VSWR value based on a reflected wave power input to the amplifying element and a TPC setting value indicating a transmission power target value. Power amplifier.
[4] 前記 VSWR検出手段は、前記増幅素子から出力される進行波の電力と前記増幅 素子へ入力される反射波の電力とに基づいて前記 VSWR値を検出する請求項 1に 記載の電力増幅器。  4. The power amplifier according to claim 1, wherein the VSWR detection means detects the VSWR value based on a traveling wave power output from the amplification element and a reflected wave power input to the amplification element. .
[5] 電力を増複する増幅素子と、 [5] an amplifying element for increasing power;
前記増幅素子から出力される進行波と該増幅素子へ入力される反射波との比であ る反射係数を検出する反射係数検出手段と、  Reflection coefficient detection means for detecting a reflection coefficient that is a ratio of a traveling wave output from the amplification element and a reflected wave input to the amplification element;
前記反射係数検出手段が検出した反射係数に基づいて電力レベルが第 1閾値を 越えて歪レベルが第 2閾値以下となるように前記増幅素子に流れる電流を制御する 電流制御手段と、を備える電力増幅器。  Current control means for controlling the current flowing through the amplifying element so that the power level exceeds the first threshold and the distortion level is equal to or lower than the second threshold based on the reflection coefficient detected by the reflection coefficient detection means. amplifier.
[6] 前記反射係数検出手段は、前記増幅素子から出力される進行波の電力と送信電 力目標値を示す TPC設定値とに基づいて前記反射係数を検出する請求項 5に記載 の電力増幅器。 6. The power amplifier according to claim 5, wherein the reflection coefficient detection means detects the reflection coefficient based on a traveling wave power output from the amplification element and a TPC set value indicating a transmission power target value. .
[7] 前記反射係数検出手段は、前記増幅素子へ入力される反射波の電力と送信電力 目標値を示す TPC設定値とに基づいて前記反射係数を検出する請求項 5に記載の 電力増幅器。 7. The reflection coefficient detection unit according to claim 5, wherein the reflection coefficient detection means detects the reflection coefficient based on a reflected wave power input to the amplifying element and a TPC set value indicating a transmission power target value. Power amplifier.
前記反射係数検出手段は、前記増幅素子から出力される進行波の電力と前記増 幅素子へ入力される反射波の電力とに基づいて前記反射係数を検出する請求項 5 に記載の電力増幅器。  6. The power amplifier according to claim 5, wherein the reflection coefficient detection means detects the reflection coefficient based on traveling wave power output from the amplification element and reflected wave power input to the amplification element.
PCT/JP2006/321425 2006-10-26 2006-10-26 Power amplifier WO2008050440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321425 WO2008050440A1 (en) 2006-10-26 2006-10-26 Power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321425 WO2008050440A1 (en) 2006-10-26 2006-10-26 Power amplifier

Publications (1)

Publication Number Publication Date
WO2008050440A1 true WO2008050440A1 (en) 2008-05-02

Family

ID=39324254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321425 WO2008050440A1 (en) 2006-10-26 2006-10-26 Power amplifier

Country Status (1)

Country Link
WO (1) WO2008050440A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093701A (en) * 2011-10-25 2013-05-16 Japan Radio Co Ltd Power control apparatus
JP2016213603A (en) * 2015-05-01 2016-12-15 富士通株式会社 Wireless communication device
US20200044612A1 (en) * 2018-07-31 2020-02-06 Advanced Micro Devices, Inc. Transmitter dynamic rf power control via vswr detection for wireless radios
JP2021037158A (en) * 2019-09-04 2021-03-11 キヤノンメディカルシステムズ株式会社 High-frequency amplification device and magnetic resonance imaging device
WO2023199883A1 (en) * 2022-04-12 2023-10-19 株式会社村田製作所 Power amplification module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338714A (en) * 2002-05-21 2003-11-28 Mitsubishi Electric Corp Amplifying device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338714A (en) * 2002-05-21 2003-11-28 Mitsubishi Electric Corp Amplifying device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093701A (en) * 2011-10-25 2013-05-16 Japan Radio Co Ltd Power control apparatus
JP2016213603A (en) * 2015-05-01 2016-12-15 富士通株式会社 Wireless communication device
US20200044612A1 (en) * 2018-07-31 2020-02-06 Advanced Micro Devices, Inc. Transmitter dynamic rf power control via vswr detection for wireless radios
JP2021037158A (en) * 2019-09-04 2021-03-11 キヤノンメディカルシステムズ株式会社 High-frequency amplification device and magnetic resonance imaging device
JP7237779B2 (en) 2019-09-04 2023-03-13 キヤノンメディカルシステムズ株式会社 High frequency amplification device and magnetic resonance imaging device
WO2023199883A1 (en) * 2022-04-12 2023-10-19 株式会社村田製作所 Power amplification module

Similar Documents

Publication Publication Date Title
US20110175681A1 (en) Radio frequency power amplifier and wireless communication device including the same
CA2330395C (en) Power amplifier using upstream signal information
US8013674B2 (en) Amplifier compression adjustment circuit
US7352239B2 (en) Power amplification apparatus using switching structure in a wireless communication system and method for controlling the same
JP4283294B2 (en) Doherty amplifier
JP4849571B2 (en) Power amplifier controller circuit
CN100559719C (en) The power amplifier device of portable terminal
JP5193027B2 (en) Dynamic gain and phase compensation for power amplifier load switching
US20100007414A1 (en) Gain Control for Linear Radio Freqency Power Amplifiers
JP2004007405A (en) Efficient power amplifier
JP2002314345A (en) High frequency amplifier circuit and radio communication equipment using the same
JP2009525695A (en) RF power amplifier controller circuit with compensation for output impedance mismatch
JP2004173231A (en) Signal amplifier using doherty amplifier
KR20140053090A (en) Amplifier linearization using non-standard feedback
WO2008050440A1 (en) Power amplifier
JP2006339981A (en) Doherty amplifier
EP1573906B1 (en) Preserving linearity of an isolator-free power amplifier by dynamically adjusting gain and phase
JP2009260472A (en) Power amplifier
US7541865B2 (en) EER high frequency amplifier
US20220271716A1 (en) Power amplifier combiner apparatus and power amplifier circuit
KR101066639B1 (en) Power amplifier mixing bias
US7148746B2 (en) High efficiency amplifier
US7944294B2 (en) Signal amplification
JP2013247501A (en) Power amplification device
JP2019068225A (en) Amplifier, wireless communication device, and amplification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP