WO2008049623A2 - Receiver and transmitter in a telecommunication system - Google Patents

Receiver and transmitter in a telecommunication system Download PDF

Info

Publication number
WO2008049623A2
WO2008049623A2 PCT/EP2007/009286 EP2007009286W WO2008049623A2 WO 2008049623 A2 WO2008049623 A2 WO 2008049623A2 EP 2007009286 W EP2007009286 W EP 2007009286W WO 2008049623 A2 WO2008049623 A2 WO 2008049623A2
Authority
WO
WIPO (PCT)
Prior art keywords
data signal
bit
telecommunication system
reversed
fourier transformer
Prior art date
Application number
PCT/EP2007/009286
Other languages
French (fr)
Other versions
WO2008049623A3 (en
Inventor
Ludwig Schwoerer
Original Assignee
Nokia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/654,572 external-priority patent/US20080101485A1/en
Application filed by Nokia Corporation filed Critical Nokia Corporation
Publication of WO2008049623A2 publication Critical patent/WO2008049623A2/en
Publication of WO2008049623A3 publication Critical patent/WO2008049623A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • G06F17/142Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • the present invention relates to a receiver for receiving data signals in a telecommunication system, in particular in an OFDM telecommunication system, compris- ing a Fourier transformer for transforming a received data signal from time domain to frequency domain, said Fourier transformer having a bit-reversed output, and a method for processing a received data signal in a telecommunication system, in particular in an OFDM telecommunication system, comprising a Fourier transformation process for transforming the received data signal from time domain to fre- quency domain, said Fourier transformation process including the step to generate a bit-reversed output signal.
  • the present invention relates to a transmitter for transmitting a data signal in a telecommunication system, in particular an OFDM telecommunication system, comprising an inverse Fourier transformer for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformer having a bit-reversed intput, and a method for transmitting a data signal in a telecommunication system, in particular an OFDM telecommunication system, comprising an inversed Fourier transformation process for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformation process being carried out in an inverse Fourier transformer having a bit-reversed input, and further including the step to input the data signal to be transmitted into said bit-reversed input.
  • the present invention relates to a telecommunication system including at least such a transmitter and at least such a receiver, and further a method for processing a data signal to be transmitted by such a transmitter and to be received by such a re- DCver.
  • FFT Fast Fourier transformation
  • IFFT inverse Fast Fourier transformation
  • OFDM systems are designed under the assumption that the FFT and IFFT stages operate in an ideal way and therefore a linear output order is generated by the FFT stage.
  • a FFT stage in a real implementation does not produce a linear output order. Therefore, the implementation of a reordering process is required which assures that the data signal outputted by the FFT process is arranged in a linear or- der.
  • a reordering process is a subcarrier-reordering process. So, in the conventional receiver a reordering stage is provided behind the FFT stage and before the deinterleaving stage. Correspondingly, in the conventional transmitter an ordering stage is provided behind the interleaving stage and before the IFFT stage.
  • the FEC stage which is provided to correct errors in the received data signal has a problem to process such a group of consecutive defective or faulty subcarriers.
  • the deinterleaving process is useful which is carried out before the FEC process and causes a change of the order of the subcarriers to a non-linear order in accordance with a predetermined deinterleaving scheme, usually block-wise, so that consecutive subcarriers according to a linear order each are separated with other subcarriers being placed thereinbetween.
  • a receiver for receiving data signals in a telecommunication system comprising a Fourier transformer for transforming a received data signal from time domain to frequency domain, said Fourier transformer having a bit-reversed output, wherein the bit-reversed output of the Fourier transformer is provided to be used as deinterleaver output.
  • a method for processing a received data signal in a telecommunication system comprising a Fourier transformation process for transforming the received data signal from time domain to fre- quency domain, said Fourier transformation process including the step to generate a bit-reversed output data signal, wherein said bit-reversed output data signal is used as deinterleaver output data signal.
  • a transmitter for transmitting a data signal in a telecommunication system, in particu- lar in an OFDM telecommunication system, comprising an inverse Fourier transformer for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformer having a bit-reversed intput, wherein the bit-reversed input of the inverse Fourier transformer is provided to be used as interleaver input.
  • a method for transmitting a data signal in a telecommunication system comprising an inversed Fourier transformation process for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformation process being carried out in an inverse Fourier transformer having a bit-reversed input, and further including the step to input the data signal to be transmitted into said bit-reversed input, wherein said bit-reversed input of the inverse Fourier transformer is used as interleaver input.
  • a telecommunication system including at least one receiver according to the first aspect and at least one transmitter according to the third aspect.
  • a method in a telecommunication system comprising a method according to the second aspect and a method according to the fourth aspect.
  • the present invention proposes to use in the receiver the existing bit- reversed output of the Fourier transformer as deinterleaver output and, thus, to define the bit-reversed order of the data signal outputted by the Fourier transforma- tion at least as part of the result of a deinterleaving process.
  • the present invention renders the im- plementation of both the reordering and deinterleaving in the receiver and of both the interleaving and ordering in the transmitter superfluous.
  • both the reordering and deinterleaving stages can be omitted and therefore memories for these stages are not required anymore.
  • memories for these stages are not required anymore.
  • the deinterleaving can be omitted in the receiver, this will not cause problems in the FEC of the aforementioned kind.
  • the bit-reversed output of the Fourier transformer produces a non-linear order of subcarriers wherein consecutive subcarhers according to a linear order each are separated. So, it has been found that the situation at the bit-reversed output of the Fourier transformer is similar to that at a deinterleaver output and therefore is also useful for a subsequent forward error correction.
  • an advantage of the present invention lies in a reduction of memory requirements and latency, which reduction even might be drastical in some cases and results in an increase of the processing speed. Further, the present invention leads to a simplification of the construction of the receiver and the transmitter. So, the present invention is suitable for existing as well as for new transmission systems, in particular OFDM systems like according to the 3.9G standard.
  • the scheme according to the present invention can be implemented in either hardware or software, depending on the throughput requirements of the rest of the system.
  • Fig. 1 shows a schematic block diagram of the traditional architecture of a receiver used in OFDM systems, and the sequence of subcarriers at differ- ent locations;
  • Fig.2 shows a schematic block diagram of the traditional architecture of a transmitter used in OFDM systems
  • Fig. 3 shows a schematic block diagram of an architecture of a receiver used in OFDM systems which architecture is modified over that shown in fig. 1 in accordance with a preferred embodiment of the present invention, and the sequence of subcarriers at a certain location;
  • Fig. 4 shows a schematic block diagram of an architecture of a transmitter used in OFDM systems which architecture is modified over that shown in fig. 2 in accordance with a preferred embodiment of the present invention.
  • Fig. 1 shows as an example a schematic block diagram of the traditional architecture of a receiver used in an OFDM system with a fast Fourier transformation FFT size of 16. Further shown are the sequences of subcarriers of the received data signal at different locations in the receiver.
  • the receiver comprises a fast Fourier transformation stage FFT wherein the received digital data signal is transformed from time to frequency domain.
  • the output of the FFT stage (at position 1 in fig.1) is a bit-reversed output where the frequency domain signal comprises the following order of subcarriers:
  • This data signal is inputted into a reordering stage which changes the order of the data signal to a linear order so that the data signal at the output of the reordering stage (at position 2 in fig.1) has a format like
  • the data signal processed in the reordering stage is transferred to a deinterleaving stage or deinterleaver. Between the reordering stage and the deinterleaving stage there might be some additional stages for further processing the data signal which however are not of particular interest here.
  • the order of the subcarriers is again changed to a non- linear order in a block-wise manner in accordance with a predetermined deinterleaving scheme so that the order of the data signal at the output of the deinterleaving stage (at position 3 in fig.1) looks like e.g.
  • the data signal processed in the deinterleaving stage is transferred to a for- ward error correction stage FEC wherein errors which might occur in the data signal are eliminated.
  • the FEC stage has a problem to process defective of faulty subcarriers forming a group of consecutive subcarriers according to a linear order like e.g. "0, 1, 2".
  • this problem is avoided by the deinterleaving process where such a group is split by separating its consecutive subcarriers and taking them to different positions within the data signal with other bits being putted thereinbetween.
  • Fig. 2 shows a schematic block diagram of the traditional architecture of a transmit- ter used in OFDM systems which architecture comprises similar stages as the receiver of fig. 1 but with reversed functions and in a reversed order.
  • the frequency domain data signal to be transmitted is inputted into an interleaving stage or interleaver.
  • the data signal processed by the interleaving stage is transferred to an ordering stage so as to get a certain order which is suitable for proc- essing in a subsequent inverse fast Fourier transforming stage IFFT.
  • the data signal is transformed from frequency to time domain, and then the time-domain signal is transmitted.
  • Between the interleaving stage and the ordering stage there might be some additional stages for further processing the data signal which however are not of particular interest here.
  • Fig. 3 shows a schematic block diagram of a new architecture of the receiver to be used in OFDM systems in accordance with a preferred embodiment of the present invention.
  • a FFT size of 16 is used.
  • fig. 3 is the sequence of subcarriers at a certain location in this receiver.
  • bit-reversed output order of the FFT stage is defined as the result of at least a part of a deinterleaving process.
  • the FEC stage considers the bit-reversed output of the FFT stage as deinterleaver output like in the traditional architecture of fig. 1. In other words, the output at position 1 is directly taken to the deinterleaver output at position 3 of fig. 1.
  • bit-reversed output of the FFT stage as deinterleaver output has the same effect as a 'real' deinterleaving process. Namely, in the bit- reversed output signal of the FFT stage consecutive subcarriers according to a linear order each are separated and placed within the data signal at different loca- tions with other subcarriers placed thereinbetween. This becomes clear with reference to the afore-mentioned example of the group of consecutive subcarriers "0, 1 , 2" which are separated from each other in the bit-reversed output signal of the FFT stage.
  • the latency can be drastically reduced in the receiver comprising the new architecture of fig. 3.
  • bit-deinterleaver having a smaller size than the deinterleaving stage of fig. 1 may be provided between the FFT and FEC stages if desired.
  • the bit-reversed input of the IFFT stage is used accordingly, as schematically shown in fig. 4. From a comparison with fig. 2 it is to be noted that the interleaving and ordering stages have been omitted so that the frequency- domain data signal to be inputted into the bit-reversed input of the IFFT stage is considered a signal which is assumed to be already processed by an interleaving process although such a process is not carried out.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Discrete Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

In telecommunication systems, in particular OFDM telecommunication systems, there is a Fourier transformer for transforming the data signal from time to frequency domain. The present invention proposes to define the bit-reversed output of the Fourier transformer at least as a part of a deinterleaving process in a receiver. In a transmitter, the bit-reversed input of the inverse Fourier transformer is used accordingly.

Description

RECEIVER AND TRANSMITTER IN A TELECOMMUNICATION SYSTEM
FIELD OF THE INVENTION
The present invention relates to a receiver for receiving data signals in a telecommunication system, in particular in an OFDM telecommunication system, compris- ing a Fourier transformer for transforming a received data signal from time domain to frequency domain, said Fourier transformer having a bit-reversed output, and a method for processing a received data signal in a telecommunication system, in particular in an OFDM telecommunication system, comprising a Fourier transformation process for transforming the received data signal from time domain to fre- quency domain, said Fourier transformation process including the step to generate a bit-reversed output signal. Further, the present invention relates to a transmitter for transmitting a data signal in a telecommunication system, in particular an OFDM telecommunication system, comprising an inverse Fourier transformer for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformer having a bit-reversed intput, and a method for transmitting a data signal in a telecommunication system, in particular an OFDM telecommunication system, comprising an inversed Fourier transformation process for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformation process being carried out in an inverse Fourier transformer having a bit-reversed input, and further including the step to input the data signal to be transmitted into said bit-reversed input. Moreover, the present invention relates to a telecommunication system including at least such a transmitter and at least such a receiver, and further a method for processing a data signal to be transmitted by such a transmitter and to be received by such a re- ceiver.
BACKGROUND OF THE INVENTION
In particular in orthogonal frequency division multiplexing (OFDM) systems, Fast Fourier transformation (FFT) is used for transforming data signal between frequency and time domain. Concretely, in a receiver a Fast Fourier transformation process is carried out for transforming the received signal from time to frequency domain. In order to exploit frequency diversity, in the receiver typically a deinter- leaver is provided between the FFT stage and an forward error correction (FEC) stage. Correspondingly, in the transmitter an inverse Fast Fourier transformation (IFFT) process is carried out for transforming the signal to be transmitted from fre- quency to time domain. Further, as a counterpart of the deinterleaving process of the receiver, in the transmitter an interleaving process is carried out before the IFFT process.
Typically, OFDM systems are designed under the assumption that the FFT and IFFT stages operate in an ideal way and therefore a linear output order is generated by the FFT stage. However, in practice this is unfortunately not the case; rather, a FFT stage in a real implementation does not produce a linear output order. Therefore, the implementation of a reordering process is required which assures that the data signal outputted by the FFT process is arranged in a linear or- der. Typically, such a reordering process is a subcarrier-reordering process. So, in the conventional receiver a reordering stage is provided behind the FFT stage and before the deinterleaving stage. Correspondingly, in the conventional transmitter an ordering stage is provided behind the interleaving stage and before the IFFT stage.
In the receiver, sometimes it happens that a group of consecutive subcarriers in the linear order of subcarriers outputted by the reordering stage are defective or faulty due to certain reasons like e.g. bad quality of reception. The FEC stage which is provided to correct errors in the received data signal has a problem to process such a group of consecutive defective or faulty subcarriers. In order to avoid this and to enable the FEC stage to process the defective or faulty subcarriers of such a group, the deinterleaving process is useful which is carried out before the FEC process and causes a change of the order of the subcarriers to a non-linear order in accordance with a predetermined deinterleaving scheme, usually block-wise, so that consecutive subcarriers according to a linear order each are separated with other subcarriers being placed thereinbetween.
Both the reordering and deinterleaving processes are implemented in the receiver according to standard.
However, it has been found that the reordering process consumes both memory capacity and time, i.e. latency. The same applies to the deinterleaving process which again consumes additional memory capacity and time, i.e. latency. In par- ticular, latency tends to be a very critical parameter for many new transmission systems since it directly determines and affects power-saving (shut-down) possibilities. SUMMARY OF THE INVENTION
It is an object of the present invention to avoid the aforementioned problems and to simplify the construction of a receiver and a transmitter of the above kind.
In order to achieve the above and further objects, in accordance with a first aspect of the present invention, there is provided a receiver for receiving data signals in a telecommunication system, in particular in an OFDM telecommunication system, comprising a Fourier transformer for transforming a received data signal from time domain to frequency domain, said Fourier transformer having a bit-reversed output, wherein the bit-reversed output of the Fourier transformer is provided to be used as deinterleaver output.
In accordance with a second aspect of the present invention, there is provided a method for processing a received data signal in a telecommunication system, in particular in an OFDM telecommunication system, comprising a Fourier transformation process for transforming the received data signal from time domain to fre- quency domain, said Fourier transformation process including the step to generate a bit-reversed output data signal, wherein said bit-reversed output data signal is used as deinterleaver output data signal.
In accordance with a third aspect of the present invention, there is provided a transmitter for transmitting a data signal in a telecommunication system, in particu- lar in an OFDM telecommunication system, comprising an inverse Fourier transformer for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformer having a bit-reversed intput, wherein the bit-reversed input of the inverse Fourier transformer is provided to be used as interleaver input.
In accordance with a fourth aspect of the present invention, there is provided a method for transmitting a data signal in a telecommunication system, in particular an OFDM telecommunication system, comprising an inversed Fourier transformation process for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformation process being carried out in an inverse Fourier transformer having a bit-reversed input, and further including the step to input the data signal to be transmitted into said bit-reversed input, wherein said bit-reversed input of the inverse Fourier transformer is used as interleaver input. - A -
In accordance with a fifth aspect of the present invention, there is provided a telecommunication system including at least one receiver according to the first aspect and at least one transmitter according to the third aspect.
In accordance with a sixth aspect of the present invention, there is provided a method in a telecommunication system comprising a method according to the second aspect and a method according to the fourth aspect.
Accordingly, the present invention proposes to use in the receiver the existing bit- reversed output of the Fourier transformer as deinterleaver output and, thus, to define the bit-reversed order of the data signal outputted by the Fourier transforma- tion at least as part of the result of a deinterleaving process. The same applies to the transmitter wherein the bit-reversed input of the inverse Fourier transformer is used as an interleaver input so as to define the bit-reversed order of the data signal to be transmitted and inputted into the inverse Fourier transformer at least as part of the result of an interleaving process. So, the present invention renders the im- plementation of both the reordering and deinterleaving in the receiver and of both the interleaving and ordering in the transmitter superfluous.
Accordingly, in the receiver both the reordering and deinterleaving stages can be omitted and therefore memories for these stages are not required anymore. The same applies with regard to the interleaving and ordering stages in the transmitter. This again results in a drastical reduction of latency.
Although according to the present invention the deinterleaving can be omitted in the receiver, this will not cause problems in the FEC of the aforementioned kind. Namely, the bit-reversed output of the Fourier transformer produces a non-linear order of subcarriers wherein consecutive subcarhers according to a linear order each are separated. So, it has been found that the situation at the bit-reversed output of the Fourier transformer is similar to that at a deinterleaver output and therefore is also useful for a subsequent forward error correction.
After all, an advantage of the present invention lies in a reduction of memory requirements and latency, which reduction even might be drastical in some cases and results in an increase of the processing speed. Further, the present invention leads to a simplification of the construction of the receiver and the transmitter. So, the present invention is suitable for existing as well as for new transmission systems, in particular OFDM systems like according to the 3.9G standard. The scheme according to the present invention can be implemented in either hardware or software, depending on the throughput requirements of the rest of the system.
Further advantageous embodiments are defined in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS
In the following, the present invention will be described in greater detail based on a preferred embodiment with reference to the accompanying drawings, in which:
Fig. 1 shows a schematic block diagram of the traditional architecture of a receiver used in OFDM systems, and the sequence of subcarriers at differ- ent locations;
Fig.2 shows a schematic block diagram of the traditional architecture of a transmitter used in OFDM systems;
Fig. 3 shows a schematic block diagram of an architecture of a receiver used in OFDM systems which architecture is modified over that shown in fig. 1 in accordance with a preferred embodiment of the present invention, and the sequence of subcarriers at a certain location; and
Fig. 4 shows a schematic block diagram of an architecture of a transmitter used in OFDM systems which architecture is modified over that shown in fig. 2 in accordance with a preferred embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
For a better understanding of the present invention, at first the traditional architecture is described with reference to figures 1 and 2 before a preferred embodiment of the present invention will be described with reference to figures 3 and 4 in comparison with the figures 1 and 2.
Fig. 1 shows as an example a schematic block diagram of the traditional architecture of a receiver used in an OFDM system with a fast Fourier transformation FFT size of 16. Further shown are the sequences of subcarriers of the received data signal at different locations in the receiver. As shown in fig.1, the receiver comprises a fast Fourier transformation stage FFT wherein the received digital data signal is transformed from time to frequency domain. The output of the FFT stage (at position 1 in fig.1) is a bit-reversed output where the frequency domain signal comprises the following order of subcarriers:
0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15.
This data signal is inputted into a reordering stage which changes the order of the data signal to a linear order so that the data signal at the output of the reordering stage (at position 2 in fig.1) has a format like
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
or in case of swapping the upper and lower half of the spectrum (as in e.g. wireless local area network systems) like
8, 9, 10, 11, 12, 13, 14, 15, 0, 1,2, 3, 4, 5, 6, 7.
Such a reordering is utilized since in real implementation the FFT stage is not able to create a linear output order.
The data signal processed in the reordering stage is transferred to a deinterleaving stage or deinterleaver. Between the reordering stage and the deinterleaving stage there might be some additional stages for further processing the data signal which however are not of particular interest here.
In the deinterleaving stage the order of the subcarriers is again changed to a non- linear order in a block-wise manner in accordance with a predetermined deinterleaving scheme so that the order of the data signal at the output of the deinterleaving stage (at position 3 in fig.1) looks like e.g.
0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15.
Then, the data signal processed in the deinterleaving stage is transferred to a for- ward error correction stage FEC wherein errors which might occur in the data signal are eliminated. Usually, the FEC stage has a problem to process defective of faulty subcarriers forming a group of consecutive subcarriers according to a linear order like e.g. "0, 1, 2". However, this problem is avoided by the deinterleaving process where such a group is split by separating its consecutive subcarriers and taking them to different positions within the data signal with other bits being putted thereinbetween.
Fig. 2 shows a schematic block diagram of the traditional architecture of a transmit- ter used in OFDM systems which architecture comprises similar stages as the receiver of fig. 1 but with reversed functions and in a reversed order. So, the frequency domain data signal to be transmitted is inputted into an interleaving stage or interleaver. Then, the data signal processed by the interleaving stage is transferred to an ordering stage so as to get a certain order which is suitable for proc- essing in a subsequent inverse fast Fourier transforming stage IFFT. In the IFFT stage the data signal is transformed from frequency to time domain, and then the time-domain signal is transmitted. Between the interleaving stage and the ordering stage there might be some additional stages for further processing the data signal which however are not of particular interest here.
Fig. 3 shows a schematic block diagram of a new architecture of the receiver to be used in OFDM systems in accordance with a preferred embodiment of the present invention. Here again as an example a FFT size of 16 is used. Further shown in fig. 3 is the sequence of subcarriers at a certain location in this receiver.
In the new architecture of fig. 3, the bit-reversed output order of the FFT stage is defined as the result of at least a part of a deinterleaving process.
As it is noted by a comparison between figures 1 and 3, in the new architecture of fig. 3 the reordering and deinterleaving stages are omitted so that the bit-reversed output of the FFT stage (at position 1 in fig. 3) is directly coupled to the input of the FEC stage, wherein between the FFT and the FEC stages there might be some additional stages for further processing the data signal which however are not of interest here. So, the FEC stage considers the bit-reversed output of the FFT stage as deinterleaver output like in the traditional architecture of fig. 1. In other words, the output at position 1 is directly taken to the deinterleaver output at position 3 of fig. 1.
Accordingly, the output signal of the FFT stage having the order of subcarriers
0, 8, 4, 12, 2, 10, 6, 14, 1 , 9, 5, 13, 3, 11 , 7, 15 is considered a data signal which is assumed to be already subject to a deinter- leaving process although such a process has not additionally been carried out here.
Considering the afore-mentioned problem of the FEC stage regarding the process- ing of a group of defective or faulty subcarhers which are consecutive according to a linear order, the use of the bit-reversed output of the FFT stage as deinterleaver output has the same effect as a 'real' deinterleaving process. Namely, in the bit- reversed output signal of the FFT stage consecutive subcarriers according to a linear order each are separated and placed within the data signal at different loca- tions with other subcarriers placed thereinbetween. This becomes clear with reference to the afore-mentioned example of the group of consecutive subcarriers "0, 1 , 2" which are separated from each other in the bit-reversed output signal of the FFT stage.
By defining the bit-reversed output of the FFT stage at least as part of a deinter- leaving process, the latency can be drastically reduced in the receiver comprising the new architecture of fig. 3.
Although not basically necessary, in some cases a bit-deinterleaver having a smaller size than the deinterleaving stage of fig. 1 may be provided between the FFT and FEC stages if desired.
In the transmitter, the bit-reversed input of the IFFT stage is used accordingly, as schematically shown in fig. 4. From a comparison with fig. 2 it is to be noted that the interleaving and ordering stages have been omitted so that the frequency- domain data signal to be inputted into the bit-reversed input of the IFFT stage is considered a signal which is assumed to be already processed by an interleaving process although such a process is not carried out.
Finally, it should be noted that the above described preferred embodiment is of a preferred example for implementing the present invention, but the scope of the present invention should not necessarily be limited by the above description. The scope of the present invention is defined by the following claims.

Claims

Claims
1. A receiver for receiving data signals in a telecommunication system, in particular in an OFDM telecommunication system, comprising a Fourier transformer for transforming a received data signal from time domain to frequency domain, said Fourier transformer having a bit-reversed output, wherein the bit-reversed output of the Fourier transformer is provided to be used as deinterleaver output.
2. The receiver according to claim 1 , wherein the Fourier transformer is a Fast Fourier transformer.
3. The receiver according to claim 1 or 2, wherein the bit-reversed output of the Fourier transformer is coupled to a forward error corrector.
4. A method for processing a received data signal in a telecommunication system, in particular in an OFDM telecommunication system, comprising a Fourier transformation process for transforming the received data signal from time domain to frequency domain, said Fourier transformation process including the step to generate a bit-reversed output data signal, wherein said bit-reversed output data signal is used as deinterleaver output data signal.
5. The method according to claim 4, wherein the Fourier transformation process is a Fast Fourier transformation process.
6. The method according to claim 4 or 5, further comprising a forward error correction process which is carried out after the Fourier transformation process.
7. A transmitter for transmitting a data signal in a telecommunication system, in particular in an OFDM telecommunication system, comprising an inverse Fourier transformer for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformer having a bit-reversed intput, wherein the bit-reversed input of the inverse Fourier transformer is provided to be used as interleaver input.
8. The transmitter according to claim 7, wherein the inverse Fourier transformer is an inverse Fast Fourier transformer.
9. A method for transmitting a data signal in a telecommunication system, in particular an OFDM telecommunication system, comprising an inversed Fou- rier transformation process for transforming the data signal to be transmitted from frequency domain to time domain, said inverse Fourier transformation process being carried out in an inverse Fourier transformer having a bit- reversed input, and further including the step to input the data signal to be transmitted into said bit-reversed input, wherein said bit-reversed input of the inverse Fourier transformer is used as interleaver input.
10. The method according to claim 9, wherein the inversed Fourier transformation process is an inverse Fast Fourier transformation process.
11. A telecommunication system, in particular an OFDM telecommunication sys- tern, comprising at least one transmitter according to claim 7 or 8 and further comprising at least one receiver according to at least any one of claims 1 to 3.
12. A method in a telecommunication system, in particular in an OFDM telecommunication system, comprising a method according to at least any one of claims 4 to 6 and further comprising a method according to claim 9 or 10.
PCT/EP2007/009286 2006-10-26 2007-10-25 Receiver and transmitter in a telecommunication system WO2008049623A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP06022392 2006-10-26
EP06022392.2 2006-10-26
US11/654,572 2007-01-18
US11/654,572 US20080101485A1 (en) 2006-10-26 2007-01-18 Receiver and transmitter in a telecommunication system

Publications (2)

Publication Number Publication Date
WO2008049623A2 true WO2008049623A2 (en) 2008-05-02
WO2008049623A3 WO2008049623A3 (en) 2008-06-19

Family

ID=39269335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/009286 WO2008049623A2 (en) 2006-10-26 2007-10-25 Receiver and transmitter in a telecommunication system

Country Status (1)

Country Link
WO (1) WO2008049623A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731284A (en) * 1971-12-27 1973-05-01 Bell Telephone Labor Inc Method and apparatus for reordering data
US5365470A (en) * 1993-02-10 1994-11-15 Trw Inc. Fast fourier transform multiplexed pipeline
US6631167B1 (en) * 1999-06-14 2003-10-07 Stmicroelectronics S.A. Process and device for transforming real data into complex symbols, in particular for the reception of phase-modulated and amplitude-modulated carriers transmitted on a telephone line
US20060072649A1 (en) * 2002-10-26 2006-04-06 Kyung-Hi Chang Frequency hopping ofdma method using symbols of comb pattern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731284A (en) * 1971-12-27 1973-05-01 Bell Telephone Labor Inc Method and apparatus for reordering data
US5365470A (en) * 1993-02-10 1994-11-15 Trw Inc. Fast fourier transform multiplexed pipeline
US6631167B1 (en) * 1999-06-14 2003-10-07 Stmicroelectronics S.A. Process and device for transforming real data into complex symbols, in particular for the reception of phase-modulated and amplitude-modulated carriers transmitted on a telephone line
US20060072649A1 (en) * 2002-10-26 2006-04-06 Kyung-Hi Chang Frequency hopping ofdma method using symbols of comb pattern

Also Published As

Publication number Publication date
WO2008049623A3 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
EP2129067B1 (en) Data processing apparatus and method
US7394754B2 (en) System and method for transmitting data in a multiple-branch transmitter-diversity orthogonal frequency-division multiplexing (OFDM) system
KR101274394B1 (en) Address generator for an interleaver memory and a deinterleaver memory
US9191253B2 (en) Adaptive equalizer
US20090086848A1 (en) Apparatus and method for reducing peak-to-average power ratio in a wireless communication system
US7113559B2 (en) Efficient methods for filtering to avoid inter-symbol interference and processing digital signals having large frequency guard bands
EP2266274A1 (en) Multiple stage fourier transform apparatus, processes, and articles of manufacture
CN1666466A (en) Method and apparatus for adjacent channel interference reduction in an orthogonal frequency division multiplexing (OFDM) receiver
JP2007006219A (en) Adaptive antenna assembly
US8738680B2 (en) Reuse engine with task list for fast fourier transform and method of using the same
JP2010541362A (en) Self-adaptive frequency interpolator for use with multi-carrier receivers.
JP2020096230A (en) Transmission device, transmission method, reception device, and reception method
US20120166507A1 (en) Method and apparatus of performing fast fourier transform
EP3493499A1 (en) Method and apparatus for processing a universal-filtered orthogonal frequency division multiplexing (uf-ofdm) signal
CN101079865B (en) Interweaving method and discrete fourier transform
WO2008049623A2 (en) Receiver and transmitter in a telecommunication system
US20080101485A1 (en) Receiver and transmitter in a telecommunication system
JP6266169B2 (en) Transmitting apparatus, receiving apparatus, and communication system
US8112439B2 (en) Data processing method and system capable of reducing required memory
US20180232306A1 (en) Data processing apparatus, and data processing method
JP2769459B2 (en) OFDM transmitter and OFDM receiver
JP2011119851A (en) Fourier conversion circuit, receiver, and fourier conversion method
JP6214822B2 (en) Transmitting apparatus, receiving apparatus, and communication system
KR101051902B1 (en) Round Robin Schedule for Pipeline Processing of Transmission Stages
KR100984657B1 (en) Ping-pong memory for pipeline processing of transmission stages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07819334

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07819334

Country of ref document: EP

Kind code of ref document: A2