WO2008047629A1 - Method for protecting base - Google Patents

Method for protecting base Download PDF

Info

Publication number
WO2008047629A1
WO2008047629A1 PCT/JP2007/069668 JP2007069668W WO2008047629A1 WO 2008047629 A1 WO2008047629 A1 WO 2008047629A1 JP 2007069668 W JP2007069668 W JP 2007069668W WO 2008047629 A1 WO2008047629 A1 WO 2008047629A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
substrate
substrate surface
positively charged
repellent
Prior art date
Application number
PCT/JP2007/069668
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Ogata
Original Assignee
Sustainable Titania Technology Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sustainable Titania Technology Inc. filed Critical Sustainable Titania Technology Inc.
Priority to JP2008539752A priority Critical patent/JPWO2008047629A1/en
Publication of WO2008047629A1 publication Critical patent/WO2008047629A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present invention provides a substrate surface with water repellency, in particular, water repellency that can be controlled to be hydrophilic, and positive charge, thereby achieving contamination prevention or reduction and protection of the surface. Regarding the law.
  • a method for forming a film having an antifouling function or a self-cleaning function on the substrate surface has been developed in order to prevent and remove contaminants from the substrate surface.
  • this method for example, there is a method of forming a photocatalyst layer using anatase-type titanium oxide described in JP-A-9-262481.
  • Patent Document 1 JP-A-9 262481
  • the ultraviolet absorber when an ultraviolet absorber is mixed in the substrate, the ultraviolet absorber may be decomposed due to the action of components or the like in the substrate and may not exhibit a sufficient ultraviolet absorption effect.
  • the substrate When the photocatalytic function is imparted to the substrate surface, the substrate itself may be decomposed and deteriorated by the photocatalytic action depending on the type of the substrate. In addition, since it has a negative charge, there is a problem of electrostatically adsorbing contaminants having a positive charge.
  • An object of the present invention is to provide a new technique for preventing or reducing fading or discoloration of a substrate over time and at the same time preventing or reducing the adhesion of contaminants.
  • An object of the present invention is to provide a water repellent or a water absorption inhibitor in the substrate surface or substrate surface layer, and
  • the water repellent or water absorption inhibitor is preferably a silane, siliconate, silicone, silicone and silane composite, fluorine water repellent or water absorption inhibitor, or a mixture of at least two of these.
  • a fluorine-based water repellent or water absorption inhibitor is preferred.
  • the water repellent or water absorption inhibitor and the positively charged substance are disposed as a mixture on the substrate surface or the substrate surface layer.
  • the mixture is composed of a noionic dispersant, an anionic dispersant, an amphoteric dispersant, a water-soluble resinous dispersant having an acid value of 50 to 250, and an emulsion resinous dispersant having an acid value of 50 to 250.
  • One or more dispersants selected from the above, a pigment, and a pigment dispersion composed of a liquid can be contained.
  • an intermediate layer may be formed between the surface of the substrate and the layer.
  • a coating layer may be formed on the substrate.
  • Contaminants suspended in the atmosphere and / or contaminants attached to the substrate are photooxidized by the action of sunlight or the like and are positively charged.
  • the contaminants on the surface of the substrate to which the method of the present invention has been applied are positively charged.
  • the pollutant is repelled electrostatically and naturally leaves the substrate surface. Therefore, it becomes possible to self-clean the substrate surface.
  • the substrate treated by the method of the present invention has high resistance to the action itself of sunlight and the like, and can well protect the substrate from light deterioration caused by sunlight or the like.
  • the present invention is able to prevent or reduce the fading or discoloration of the substrate over a long period of time with a force S.
  • FIG. 1 is a conceptual diagram showing an example of a positive charge imparting mechanism in the present invention.
  • FIG. 2 A diagram showing an outline of one embodiment of the method for producing a specific metal-doped titanium oxide of the present invention. [FIG. Conceptual diagram showing
  • FIG. 4 Conceptual diagram showing another mode of arrangement of a water repellent or water absorption inhibitor and a positively charged substance on a substrate surface.
  • FIG. 5 is a conceptual diagram showing a mechanism for removing contaminants from a positively charged substrate surface.
  • the pollutant that is one of the causes of fading or discoloration of the substrate surface is that inorganic substances such as carbon and / or organic substances such as oil that are floating in the atmosphere gradually accumulate on the substrate surface. To adhere to the substrate surface.
  • the present invention removes these contaminants from the substrate by electrostatic repulsion, or
  • the present invention is characterized in that adhesion of these contaminants to the substrate is avoided or reduced.
  • pollutants especially oil, which are mainly suspended in the outdoor air, are in an "oxidized” state due to the so-called photooxidation reaction caused by various electromagnetic waves including sunlight. .
  • the photo-oxidation reaction is caused by the action of electromagnetic waves such as sunlight, and moisture (H ⁇ ) and oxygen (O) on the surface of organic or inorganic substances to hydroxyl radicals ( ⁇ ⁇ ) and singlet oxygen ⁇ ).
  • Electron (e) is extracted from the organic or inorganic matter when it is formed, and it is oxidized. This oxidation changes the molecular structure of the organic matter, causing discoloration or degradation called degradation. An embrittlement phenomenon is observed, and soot is generated in inorganic materials, particularly metals. These “oxidized” organic or inorganic surfaces are positively charged by extracting electrons (e ⁇ ).
  • the organic or inorganic material is naturally separated from the surface of the substrate using electrostatic repulsion.
  • a method for imparting a positive charge to the substrate surface in the present invention, a cation; a conductor or dielectric having a positive charge; a composite of a conductor and a dielectric or semiconductor; or a mixture thereof is used. To do.
  • the cation is not particularly limited, but alkali metal ions such as sodium and potassium; alkaline earth metal ions such as calcium, aluminum, tin, cesium, indium, cerium, Ions of metal elements such as selenium, chromium, nickel, antimony, iron, copper, manganese, tungsten, zirconium and zinc are preferred, and copper ions are particularly preferred. Furthermore, cationic molecules such as methylene violet, bismarck brown, methylene blue, and malachite green, and organic molecules having cationic groups such as silicone modified with a quaternary nitrogen atom-containing group can be used.
  • the valence of ions is not particularly limited. For example, !! to tetravalent cations can be used.
  • a metal salt may be used as a source of the metal ions.
  • various metal salts such as selenium tetrachloride, cupric chloride, manganese chloride, tungsten tetrachloride, tungsten dichloride, potassium tungstate, zirconium oxychloride, and zinc chloride.
  • hydroxides such as indium hydroxide and key tungstic acid, or oxides such as fat oxides can also be used.
  • Examples of positively charged conductors or dielectrics include conductors or dielectrics that generate positive charges other than the above-mentioned cations.
  • a battery made of various conductors described later.
  • positive dielectrics such as wool and nylon that are positively charged by friction.
  • FIG. 1 is a conceptual diagram in which a combination of a conductor, a dielectric, or a semiconductor conductor is arranged on the surface of a substrate (not shown) or in a surface layer. Conductor moves freely inside The presence of a high concentration of free electrons that can be generated can have a positive charge state on the surface. It is also possible to use a conductive material containing cations as the conductor.
  • the dielectric or semiconductor adjacent to the conductor is dielectrically polarized due to the influence of the surface charge state of the conductor.
  • negative charges are generated in the dielectric or semiconductor on the side adjacent to the conductor and positive charges are generated on the non-adjacent side.
  • the surface of the combination of the conductor dielectric or the semiconductor conductor is positively charged, and a positive charge is imparted to the substrate surface.
  • the size of the complex (which refers to the length of the longest axis passing through the complex) is lnm force, et al. 100 ⁇ m, preferably lnm to 10 ⁇ m, more preferably lnm to 1 m, more preferably lnm. It can be in the lOOnm range.
  • the conductor constituting the composite used in the present invention is preferably a metal from the viewpoint of durability.
  • Aluminum, tin, cesium, indium, cerium, selenium, chromium, nickel, antimony, iron, silver examples include metals such as copper, gold, manganese, platinum, tungsten, zirconium, and zinc.
  • the shape of the conductor is not particularly limited, and can be any shape such as a particulate shape, a flake shape, or a fiber shape.
  • metal salts of some metals can also be used. Specifically, aluminum chloride, 1st and 2nd tin chloride, chromium chloride, nickel chloride, 1st and 2nd antichloride, 1st and 2nd ferrous chloride, silver nitrate, cesium chloride, indium trichloride , Cerium chloride, selenium tetrachloride, cupric chloride, manganese chloride, platinum chloride, tungsten tetrachloride, tungsten oxychloride, potassium tungstate, gallium chloride, zirconium oxychloride, zinc chloride, etc.
  • Various metal salts can be exemplified.
  • indium hydroxide, key tungstic acid, and the like hydroxides or oxides of the above metals, and the like can be used.
  • Conductors include polyaniline, polypyrrole, polythiophene, polythiophene vinylon, polyisothianaphthene, polyacetylene, polyalkylpyrrole, polyalkylthiophene, poly pphenylene, polyphenylene vinylone, polymethoxyphenol.
  • Conductive polymers such as diylene, polyphenylene sulfide, polyphenylene oxide, polyanthracene, polynaphthalene, polypyrene, and polyazulene can also be used.
  • Examples of the semiconductor include C, Si, Ge, Sn, GaAs, Inp, GeN, ZnSe, and PbSnTe.
  • Semiconductor metal oxide, photo semiconductor metal, and photo semiconductor metal oxide can also be used.
  • MoS, InSb, RuO, CeO, etc. are used.
  • Dielectrics include ferroelectric barium titanate (PZT), so-called SBT, BLT, and PZT, PLZT— (Pb, La) (Zr, Ti) 0, SBT, SBTN— SrBi (Ta , Nb)
  • Composite metals such as O 2 and BSO—Bi 2 SiO can be used. Also water repellency or water absorption prevention
  • organic modified silica compounds organic polymer insulating films, arylene ether polymers, benzocyclobutenes, fluorine polymers
  • Various low dielectric materials such as N or F, fluorinated amorphous carbon, and a fluorine-based water repellent or water absorption inhibitor described later can be used.
  • any combination of a conductor and a dielectric or semiconductor can be used as long as it can impart a positive charge to the surface of the base. From the viewpoint of self-cleaning of the surface, it is preferable to use metal-doped titanium oxide.
  • the metal at least one metal element selected from the group consisting of copper, manganese, nickel, cobalt, iron and zinc is preferable.
  • oxides and peroxides such as TiO, TiO, and TiO 2 / nH 2 O can be used.
  • oxides and peroxides such as TiO, TiO, and TiO 2 / nH 2 O can be used.
  • Titanium peroxide having a peroxo group is preferred.
  • the titanium oxide may be any of amorphous type, anatase type, brookite type and rutile type, and these may be mixed, but amorphous type titanium oxide is preferred.
  • Amorphous titanium oxide does not have a photocatalytic function!
  • anatase, wurtzite, and rutile titanium oxides lose their photocatalytic function when they are combined with copper, manganese, nickel, nickel, cobalt, iron, or zinc, which have a photocatalytic function, at a certain concentration or more. Therefore, the metal-doped titanium oxide does not have a photocatalytic function.
  • Amorphous titanium oxide can be converted to anatase titanium oxide over time by heating with sunlight, etc. When combined with copper, manganese, nickel, cobalt, iron, or zinc, anatase titanium oxide loses its photocatalytic function. However, the metal-doped titanium oxide does not exhibit a photocatalytic function over time.
  • the method for producing the metal-doped titanium oxide a production method based on a hydrochloric acid method or a sulfuric acid method, which is a common method for producing titanium dioxide powder, may be employed, and various types of liquid dispersion may be employed. You may employ
  • specific methods for producing the metal-doped titanium oxide include the following first to third production methods and conventionally known sol-gel methods.
  • a titanium hydroxide is formed by reacting a tetravalent titanium compound such as titanium tetrachloride with a base such as ammonia.
  • this titanium hydroxide is peroxoated with an oxidizing agent to form ultrafine particles of amorphous titanium peroxide.
  • This reaction is preferably carried out in an aqueous medium.
  • it is possible to transfer to anatase-type titanium peroxide by arbitrary heat treatment.
  • at least one of copper, manganese, nickel, cobalt, iron, zinc, or a compound thereof is mixed.
  • the peroxidation oxidizing agent is not particularly limited, and is preferably a peroxygenated titanium, that is, a hydrogen peroxide capable of using various materials as long as it can form titanium peroxide.
  • a peroxygenated titanium that is, a hydrogen peroxide capable of using various materials as long as it can form titanium peroxide.
  • the concentration of hydrogen peroxide is not particularly limited, but 30 to 40% is preferable. It is preferable to cool the titanium hydroxide before peroxolation.
  • the cooling temperature is preferably 1-5 ° C.
  • FIG. 2 shows an example of the first manufacturing method.
  • an aqueous solution of titanium tetrachloride and aqueous ammonia are mixed in the presence of at least one compound of copper, manganese, nickel, cobalt, iron, and zinc, and the hydroxide of the metal and titanium are mixed.
  • the concentration and temperature of the reaction mixture at that time are not particularly limited. However, it is preferable that the temperature is dilute and at room temperature. This reaction is a neutralization reaction, and it is preferable that the pH of the reaction mixture is finally adjusted to around 7.
  • the metal and titanium hydroxides thus obtained are washed with pure water, cooled to around 5 ° C, and then peroxolated with hydrogen peroxide. This makes it possible to produce an aqueous dispersion containing fine titanium oxide particles having amorphous peroxo groups doped with metal, that is, an aqueous dispersion containing metal-doped titanium oxide.
  • a tetravalent titanium compound such as titanium tetrachloride is peroxolated with an oxidizing agent and reacted with a base such as ammonia to form ultrafine particles of amorphous titanium peroxide.
  • This reaction is preferably carried out in an aqueous medium. Further, it can be transferred to anatase-type titanium peroxide by optionally heat-embedding. At least one of copper, manganese, nickel, cobalt, iron, zinc, or a compound thereof is mixed in each step.
  • a tetravalent titanium compound such as titanium tetrachloride is reacted simultaneously with an oxidizing agent and a base to simultaneously form titanium hydroxide and peroxotate to form amorphous titanium peroxide with ultrafine particles.
  • This reaction is preferably carried out in an aqueous medium. Further, it can be transferred to anatase-type titanium peroxide by optionally heat-treating.
  • at least one of copper, manganese, nickel, cobalt, iron, zinc, or a compound thereof is mixed.
  • the titanium alkoxide is mixed and stirred with a solvent such as water or alcohol, an acid or a base catalyst, and the titanium alkoxide is hydrolyzed to form a sol solution of ultrafine titanium oxide. Copper, manganese, nickel, cobalt, iron, zinc, either before or after this hydrolysis Or at least any one of these compounds is mixed.
  • the titanium oxide thus obtained is an amorphous type having a peroxo group.
  • the titanium alkoxide has a general formula: Ti (OR ′) (where R ′ is an alkyl group)
  • a compound represented by the above formula a compound in which one or two alkoxide groups (OR ′) in the above general formula are substituted with a carboxyl group or a / 3-dicarbonyl group, or a mixture thereof is preferable.
  • titanium alkoxide examples include Ti ( ⁇ —isoC H), Ti ( ⁇ —nC H),
  • the tetravalent titanium compound used in the production of metal-doped titanium oxide can form titanium hydroxide, also called orthotitanic acid (H TiO), when reacted with a base.
  • H TiO orthotitanic acid
  • titanium compounds can be used, for example, water-soluble inorganic acid salts of titanium such as titanium tetrachloride, titanium sulfate, titanium nitrate, and titanium phosphate.
  • water-soluble organic acid salts of titanium such as titanium oxalate can be used.
  • titanium tetrachloride is preferred because it is particularly excellent in water-solubility and no components other than titanium remain in the dispersion of metal-doped titanium oxide.
  • the concentration of the solution is not particularly limited as long as a titanium hydroxide gel can be formed, but it is relatively dilute.
  • a solution is preferred.
  • the solution concentration of the tetravalent titanium compound is preferably 5 to 0. Olw t%, more preferably 0.9 to 0.3 wt%.
  • the base to be reacted with the tetravalent titanium compound various bases can be used as long as they can react with the tetravalent titanium compound to form titanium hydroxide, such as ammonia, caustic soda, sodium carbonate. , Power that can be exemplified by caustic potash, etc. S, ammonia is preferred [0049]
  • the concentration of the solution is not particularly limited as long as a titanium hydroxide gel can be formed, but a relatively dilute solution is preferable. .
  • the concentration of the base solution is preferably 10-0.01 wt%, more preferably 1.0 to 0.1 wt%.
  • ammonia water is used as the base solution
  • the ammonia concentration is preferably 10-0.01 wt%, more preferably 1.0 to 0.1 wt%.
  • Examples of the compound of copper, manganese, nickel, cobalt, iron or zinc are as follows.
  • Ni compounds Ni (OH), NiCl
  • Co compounds Co (OH) NO, Co (OH), CoSO, CoCl
  • Cu compounds Cu (OH), Cu (NO), CuSO, CuCl,
  • Mn compounds MnNO, MnSO, MnCl
  • Fe compounds Fe (OH), Fe (OH), FeCl
  • Zn compounds Zn (NO), ZnSO, ZnCl
  • the concentration of titanium peroxide in the aqueous dispersion obtained by the first to third production methods is 0.05 to 15 wt%. Is preferred 0.;! ⁇ 5wt% is more preferred.
  • 1: 1 is preferable from the present invention in terms of the molar ratio of titanium to the metal component, but it is 1 from the stability of the aqueous dispersion. : 0. 01 ⁇ ; 1: 0. 5 is preferable, 1: 0. 03 ⁇ ; 1: 0. 1 is more preferable.
  • the substrate to which the present invention is applied is not particularly limited, and various inorganic substrates and organic substrates, or combinations thereof can be used.
  • Examples of the inorganic substrate include a substrate made of a material such as transparent or opaque glass, metal, metal oxide, ceramics, concrete, mortar, and stone.
  • Examples of the organic base include a base made of a substance such as an organic resin, wood, and paper. More specific examples of the organic resin include, for example, polyethylene, polypropylene, polycarbonate, polyacrylate, polyesterolate, polyamide, polyurethane, ABS tree, and polysalt. Examples include bur, silicone, melamine resin, urea resin, silicone resin, fluororesin, cellulose, and epoxy-modified resin.
  • the shape of the substrate is not particularly limited, and may be any shape such as a cube, a rectangular parallelepiped, a sphere, a sheet, and a fiber.
  • the substrate may be porous.
  • a water-absorbing construction / civil engineering substrate, a device, a device transport body, and a display screen are suitable.
  • the coating material on which the surface of the substrate may be painted is alkyd resin, acrylic resin, amino resin, polyurethane resin, epoxy resin, silicone resin, fluororesin, acrylic silicon resin, unsaturated polyester resin, ultraviolet ray It contains a synthetic resin such as a curable resin, phenol resin, vinyl chloride resin, component resin emulsion, and coloring agent.
  • the thickness of the coating film is preferably from 0.01 to 100 m force S, more preferably from 0 to 50 m force S, and particularly preferably from 0.5 m to 10 m.
  • the painting means for example, a spray coating method, a dip coating method, a flow coating method, a spin coating method, a roll coating method, a brush coating, a sponge coating or the like can be applied.
  • a spray coating method for example, a dip coating method, a flow coating method, a spin coating method, a roll coating method, a brush coating, a sponge coating or the like can be applied.
  • one or more positively charged substances selected from the group consisting of the cation; a positively charged conductor or dielectric; a conductor dielectric or semiconductor composite, It is disposed on the surface of the substrate together with a water repellent or water absorption preventing agent that is a dielectric.
  • Examples of the water repellent or water absorption inhibitor used in the present invention include silane-based, siliconate-based, silicone-based, silicone and silane composite-based, fluorine-based water repellent or water-absorbing inhibitor, or at least of these. A mixture of the two is preferred, and a fluorine-based water repellent or water absorption inhibitor is particularly preferred.
  • a material is called a water repellent when applied to the surface of a non-porous substrate, and when applied to the surface of a porous substrate, it can prevent water absorption to the substrate. It is called an inhibitor.
  • the silane-based, siliconate-based, silicone-based, and silicone-silane-based water-repellent agent or water-absorbing agent used in the present invention is a water-repellent agent or water-absorbing agent after being applied to the substrate surface.
  • Such a material is advantageous because it quickly develops water repellency or water absorption resistance, maintains water repellency or water absorption resistance to the substrate for a long period of time, and is excellent in weather resistance.
  • the water repellent or water absorption inhibitor has the above-described cation in its chemical structure.
  • silane-based, silicone and silane composite-based, siliconate-based, silicone-based, and fluorine-based water repellents or water absorption inhibitors are known, and any one is used in the present invention. Two or more types can be used in combination. Of the silane, siliconate, silicone, and silicone and silane composite water repellents or water absorption inhibitors, they are preferred as the water repellents or water absorption inhibitors used in the present invention.
  • a silane-based water repellent or water-absorbing agent composed of degradable silane, water, and a surfactant, and further selected from hydrolyzate and / or partial hydrolyzate of hydrolyzable silane and various organopolysiloxanes. Silicone-containing silane-based water repellent or water absorption inhibitor, and siliconate-based water repellent or water absorption inhibitor composed of an aqueous solution of an alkali metal salt of an organosiliconate.
  • Various known hydrolyzable silanes used in the silane-based water repellent or water absorption inhibitor include, for example, tetraalkoxysilane, alkyltrialkoxysilane, dialkyldialkoxysilane, and trialkyl. One or two or more selected from these forces can be used.
  • the surfactant is not particularly limited, and any of a cationic surfactant, a cationic surfactant, a nonionic surfactant, and a mixture thereof can be used.
  • the silicone and silane composite water repellent or water absorption inhibitor includes the hydrolyzable silane, a surfactant, and a hydrolyzate and / or partial hydrolyzate of the hydrolyzable silane. And those comprising a compound selected from hydrolyzable silanes, surfactants, and various organopolysiloxanes.
  • organopolysiloxanes organopolysiloxanes having hydrolyzable groups selected from alkoxy groups, alkenoxy groups, amino groups, amide groups, acetoxy groups, ketoxime groups, and the like bonded to a silicon atom may be used. it can.
  • Silico Specific examples of water and silane composite water repellents or water absorption inhibitors include, for example, Dry Seal S (trade name, manufactured by Toray “Dow Cowing” Silicone Co., Ltd.).
  • the siliconate-based water repellent or water absorption inhibitor known ones can be used.
  • Strength Sodium methyl siliconate aqueous solution, sodium probil siliconate aqueous solution, strength sodium methylsilicone aqueous solution, and potassium propyl Examples include aqueous solutions of alkali metal salts of alkyl siliconates such as aqueous siliconate solutions; and aqueous alkali metal aminoorganofunctional siliconates described in JP-A-5-214251.
  • Examples of such commercially available silicone-based water repellents or water absorption inhibitors include Dry Seal C and Dry Seal E (V, trade name: Toray Dow Co., Ltd.).
  • silicone-based water repellent or water absorption inhibitor examples include silicone resins having hydrolyzable groups such as hydroxyl groups or alkoxy groups, such as silicone aqueous emulsion resin compositions, and hydroxysilyl group-containing diorganopolyesters.
  • silicone resins having hydrolyzable groups such as hydroxyl groups or alkoxy groups
  • silicone aqueous emulsion resin compositions such as silicone aqueous emulsion resin compositions, and hydroxysilyl group-containing diorganopolyesters.
  • room temperature curable silicone resin water repellents or water absorption inhibitors made of siloxane and hydrolyzable group-containing silane or hydrolyzable group (excluding hydroxyl group) -containing organopolysiloxane examples include room temperature curable silicone resin water repellents or water absorption inhibitors made of siloxane and hydrolyzable group-containing silane or hydrolyzable group (excluding hydroxyl group) -containing organopolysiloxane.
  • the fluorine-based water repellent or water absorption inhibitor used in the present invention is a fluorine-containing compound or a fluorine-containing compound-containing composition such as a perfluoroalkyl group-containing compound.
  • a fluorine-containing compound having high adsorptivity to the substrate surface is selected, after being applied to the substrate surface, the chemical component of the water repellent or water absorption inhibitor reacts with the substrate to form a chemical bond, or It is not always necessary for the chemical components to be cross-linked.
  • the fluorine-containing compound that can be used as such a fluorine-based water repellent or water absorption inhibitor preferably has a molecular weight of 1,000 to 20,000 containing a perfluoroalkyl group in the molecule.
  • perfluorosulfonic acid salt, perfluorosulfonic acid ammonium salt, perfluorocarboxylic acid salt, perfluoroalkyl betaine, perfluoroalkyl ethylene oxide adduct, perfluoro Examples include cycloalkylamine oxides, perfluoroalkyl phosphate esters, and perfluoroalkyltrimethylammonium salts.
  • perfluoroalkyl phosphate ester and perfluoroalkyltrimethyl ammonium salt are preferred because of their excellent adsorptivity to the substrate surface!
  • Such materials include Surflon S-112 and Surflon S-121 (both trade names, Seimi Chemical Co., Ltd.) is commercially available!
  • fluorine-based water repellents or water absorption inhibitors include copolymers of two or more kinds of olefins containing fluorine atoms, copolymers of olefins containing fluorine atoms and hydrocarbon monomers.
  • fluorine resin emulsion composed of at least one fluorine resin selected from the group consisting of a mixture of two or more kinds of olefins containing fluorine atoms and a thermoplastic acrylic resin, and a surfactant, and Examples include a curing agent (see JP-A-5-124880, JP-A-5-117578, JP-A-5-179191) and / or a silane-based water repellent or water absorption inhibitor.
  • a fluorine-based water repellent or water absorption inhibitor when used, by controlling the irradiation of electromagnetic waves such as ultraviolet rays and sunlight (particularly ultraviolet rays) onto the substrate surface, the surface of the substrate surface is characterized.
  • the property can be changed from water repellency to hydrophilicity.
  • the protection mode can be freely changed according to the characteristics required of the substrate, so that both the contact angle characteristics of water and oil and the surface positive charge characteristics are used as vitality.
  • fluorine-based water repellents or water absorption inhibitors Is particularly preferred to use fluorine-based water repellents or water absorption inhibitors.
  • the positively charged substance that is a combination is mixed and disposed on the substrate surface as a mixture.
  • the mixture can be obtained by mixing the water repellent or water absorption inhibitor and the positively charged substance in an appropriate medium such as water, an aqueous medium such as alcohol, or an organic solvent such as acetone.
  • an appropriate medium such as water, an aqueous medium such as alcohol, or an organic solvent such as acetone.
  • the mixture is preferably applied and placed on the substrate surface. How to apply to substrate As a method, it is possible to use a known method such as brush coating, roller coating, and spray coating. After the mixture is applied to the substrate surface, it is preferably dried. On the other hand, for example, during casting of the substrate, a predetermined amount of the mixture having a higher or lower specific gravity than the liquid is mixed into an uncured liquid of the substance constituting the substrate, and the liquid is cured after being left for a predetermined time. In this way, the water repellent or water absorption inhibitor and the positively charged substance can be arranged in the surface layer of the substrate.
  • a layer excellent in water repellency or water absorption resistance and antifouling property can be formed on the substrate surface and / or in the substrate surface layer, thereby reducing contamination of the substrate surface and making it porous.
  • water can be prevented from entering the substrate.
  • the water repellent or water absorption inhibitor and the positively charged substance may be included in the paint.
  • FIG. 3 is a conceptual diagram showing one embodiment of the arrangement of the water repellent or water absorption inhibitor and the positively charged substance on the surface of the substrate, and a layer made of a mixture of the water repellent or water absorption inhibitor and the positively charged substance.
  • An embodiment formed on the surface of the substrate is shown.
  • the thickness of the membrane is preferably from 0 ⁇ 01 to; lOO ⁇ m force S, more preferably from 0.;! To 5 C ⁇ m force S, and particularly preferably from 0.5 m to 10 m.
  • Any positively charged material may be present in the membrane, not necessarily exposed on the surface of the membrane. Further, the layer need not be a continuous layer but may be a discontinuous layer.
  • the layer due to dielectric polarization, a negative charge is generated on the side of the water repellent or water absorption inhibitor that is in contact with the positively charged substance, and the layer on the side separated from the positively charged substance. A positive charge is generated on the surface. This positive charge can prevent contamination of the substrate surface as will be described later. Moreover, since the water repellent can be imparted to the layer itself by the action of the water repellent or the water absorption preventive agent, it is possible to further improve the prevention of contamination by the characteristics.
  • a pigment dispersion for enhancing the design of the substrate surface can be added to the mixture.
  • the pigment used in the present invention is not particularly limited, and inorganic pigments and organic pigments can be used. One of these can be used, or both can be used in combination.
  • the pigment dispersion is not particularly limited as long as the pigment is uniformly and stably dispersed.
  • a dispersion in which a pigment is dispersed in a liquid such as water using a dispersing agent can be used according to a known method.
  • inorganic pigments include metal oxide, composite oxide, chromate, sulfide, phosphate, and metal complex pigments, carbon black, metal powder, Indicating pigments, luminous pigments, pearl pigments, basic pigments, lead white and the like.
  • Organic pigments include azo, phthalocyanine, anthraquinone, quinacridone, indigo, dioxazine, perylene, perinone, isoindolinone, isoindoline, metal complex, quinophthalone, and Examples thereof include diketopyrrolopyrrole pigments, anole strength ribanol, aniline black, and fluorescent pigments. These pigments can be used alone or in combination of two or more.
  • a dispersant used when an aqueous pigment dispersion is obtained by dispersing a pigment in water a nooionic dispersant, an ayuonic dispersant, an amphoteric dispersant, a water-soluble resin having an acid value of 50 to 250 And an emulsion resinous dispersant having an acid value of 50 to 250.
  • a nooionic dispersant an ayuonic dispersant, an amphoteric dispersant, a water-soluble resin having an acid value of 50 to 250
  • an emulsion resinous dispersant having an acid value of 50 to 250.
  • nonionic dispersant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene polyoxypropylene block polymer, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester Glycerin fatty acid ester, and polyoxyethylene fatty acid ester.
  • anionic dispersant examples include fatty acid salt, alkyl sulfate ester salt, alkyl aryl sulfonate, alkyl naphthalene sulfonate, dialkyl sulfosuccinate, alkyl dialyl ether disulfonate, alkyl phosphate, polyoxy Ethylene alkyl ether sulfate, polyoxyethylene alkyl aryl ether sulfate, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl phosphate ester salt, polyoxyethylene glycerol fatty acid ester salt, glycerol pore fatty acid ester salt, and Examples include sodium tripolyphosphate. Among them, it is possible to stabilize the aqueous pigment dispersion by blending a mixture of the sodium tripolyphosphate and the other cation dispersant. This is preferable because it is effective in improving the properties.
  • amphoteric dispersant examples include alkylbetaines, alkylamine oxides, and lecithin.
  • Examples of the water-soluble resinous dispersant having an acid value of 50 to 250 include an acrylic resin, an acrylic styrene resin, and a styrene maleic acid resin, and an emulsion resinous dispersant having an acid value of 50 to 250.
  • Examples thereof include acrylic emulsion resins and acrylic styrene emulsion resins.
  • the dispersant is preferably used in the range of 0 .;! To 100 parts by weight with respect to 100 parts by weight of the pigment, and preferably used in the range of 0 .;! To 60 parts by weight.
  • the pigment dispersion includes, in addition to the pigment and the dispersant, water and various organic solvents, and if necessary, a water-soluble solvent, a wetting agent, a thickener, an antifoaming agent, and an antiseptic.
  • a water-soluble solvent e.g., a sulfate, a sulfate, a sulfate, a sulfate, a sulfate, and water-soluble solvent, a wetting agent, a thickener, an antifoaming agent, and an antiseptic.
  • a binder resin for facilitating formation of a layer on the surface of the substrate may be further added to the mixture as desired.
  • the binder resin may be blended directly into the mixture or may be blended in advance with the aqueous pigment dispersion.
  • binder resins include natural resins and various synthetic resin emulsions.
  • natural resin binder resins include rosin, shellac, casein, cellulose derivatives, and starch.
  • Synthetic resin emulsions include poly (ethylene acetate); ethylene 'vinyl acetate copolymer; acetate acetate' acrylate ester copolymer; acetate acetate ⁇ acrylic acid copolymer; ethylene ⁇ acrylic acid copolymer; Alcohol; Acrylic resin; Methyl acrylate, Ethyl acrylate, Butyl acrylate, Acrylate ester resin consisting of acrylate such as 2-ethylhexyl acrylate; Styrene.
  • Acrylate ester copolymer; Methacrylate Examples thereof include an emulsion made of a resin; an acrylic acid / methacrylic acid copolymer; a silicone-modified talyl resin; an epoxy resin; a fluororesin; a polyurethane resin, and a mixture or copolymer thereof.
  • an emulsion of an acrylate ester is preferred because the resulting coating film has excellent durability.
  • the acid value of the binder resin is preferably less than 50, more preferably less than 30, and particularly preferably less than 10.
  • the mixture may further contain an additive such as a leveling agent or a silane coupling agent.
  • silicone oil various types can be used. Of these, polyether-modified silicone oil is preferable. Specifically, at the molecular chain end or side chain, polyethylene oxide, polypropylene oxide, polybutylene oxide, polyethylene oxide, polypropylene oxide copolymer block, polyethylene oxide-polybutylene oxide copolymer block, polypropylene oxide-polybutylene oxide copolymer. An organopolysiloxane having a structure such as a block may be mentioned.
  • an organopolysiloxane in which a polyethylene oxide, polypropylene oxide, or polyethylene oxide polypropylene oxide copolymer block is bonded to a silicon atom via an alkylene group is preferable.
  • a polyether-modified silicone oil can be produced by a known method, for example, by the method described in JP-A-9 165 318.
  • Such polyether-modified silicone oils include TSF4445 and TSF4446 (both trade names) (named GE Toshiba Silicone Co., Ltd.), KF 352, KF-353 (both trade names) (named Shin-Etsu Chemical Co., Ltd.) And SH3746 (trade name, manufactured by Toray 'Dowcoung' Silicone Co., Ltd.).
  • a silane compound having an amino group, an epoxy group, or a methacryloxy group that is, a so-called silane coupling agent may be blended.
  • This coupling agent makes it possible to improve the hardness of the layer containing the water repellent or water absorption inhibitor and the positively charged substance and the adhesion between adjacent layers.
  • a material selected from silicone rubber, silicone powder, silicone resin, and the like may be added to the mixture.
  • the water repellent or water absorption inhibitor and the positively charged substance may be arranged on the substrate in other modes.
  • FIG. 4 shows a mode in which a positively charged substance is arranged on the surface of a substrate, and a water repellent material or a water absorption inhibitor is arranged on the surface of the positively charged substance in a non-film form. Due to dielectric polarization in the insulating water repellent or water absorption inhibitor film, negative charges are generated on the side in contact with the positively charged substance, and positive charges are generated on the surface of the film on the side separated from the positively charged substance. Occurs.
  • a method of arranging the water repellent or the water absorption inhibitor in a non-film form for example, chemical modification is performed by grafting organic or inorganic substance atoms or atomic groups onto the surface of the positively charged substance.
  • the method of decorating is mentioned.
  • the atom or atomic group to be chemically modified those containing a fluorine atom are preferable.
  • the fluorine compound for chemical modification for example, a fluoroalkyl acrylate copolymer is preferred.
  • FT-tone GM 101 and GM-105 are commercially available from Daikin Industries, Ltd.
  • the chemical modification described above can be produced by performing at least one step of drying after applying the solution of the fluorinated compound to the substrate surface.
  • the coating method methods such as brush coating, roller coating, and spray coating can be used.
  • a cover layer may be further formed on the layer containing the water repellent or water absorption inhibitor and the positively charged substance.
  • the thickness of the coating layer (from 0 ⁇ 01 to 100 ⁇ m force ⁇ preferably, more preferably from 0 ⁇ 05 to 50 ⁇ m, particularly preferably from 0 ⁇ ; to 10 to 10 m.
  • the material of the coating layer is not particularly limited, and any organic or inorganic substance can be used.
  • water-repellent or hydrophilic polymer material is preferred.
  • water-repellent polymer materials include polyolefins such as polyethylene, polypropylene and polystyrene; acrylic resins such as polyacrylate, acrylonitrile 'styrene copolymer (AS), and acrylonitrile' butadiene 'styrene copolymer (ABS); Rononitrile; Polyhalogenated vinylols such as poly (vinyl chloride) and poly (vinylidene chloride); Polytetrafluoroethylene, Fluorethylene (propylene) copolymer, Polychlorinated trifluoroethylene (PCTFE), Polyvinylidene fluoride (PVDF) Fluorine resin such as vinylidene fluoride 'trifluoroethylene copolymer; Polyester such as polyethylene terephthalate and polycarbonate; Phenolic resin; Urea resin; Melamine resin; Polyimide
  • Fluororesin is preferred as the water-repellent polymer material, in particular, vinylidene fluoride 'trifluoroethylene copolymer having ferroelectricity and water repellency, ⁇ -type crystals of polyvinylidene fluoride and Those that contain it are preferred.
  • Commercially available products can be used as the fluororesin, and examples of commercially available products include HIREC1550 manufactured by NTT-AT Corporation.
  • a copolymer comprising two or more olefins containing fluorine atoms, fluorine atoms At least one selected from the group consisting of a copolymer of a olefin containing hydrocarbon monomer and a mixture of two or more of a fluorine atom-containing copolymer and a thermoplastic acrylic resin.
  • Fluororesin emulsion composed of a fluororesin and a surfactant, and a curing agent (see JP-A-5-124880, JP-A-5-117578, JP-A-5-179191) and / or the silicone resin water repellent It is also possible to use a composition comprising these (see JP 2000-121543 A and JP 2003-26461 A).
  • this fluororesin emulsion commercially available products can be used, which can be purchased from Daikin Industries, Ltd. as the Zeffle series, and from Asahi Glass Co., Ltd., as the Lumiflon series.
  • the curing agent a melamine curing agent, an amine curing agent, a polyvalent isocyanate curing agent, and a block polyvalent isocyanate curing agent are preferably used.
  • hydrophilic polymer material examples include polyethylene glycol, polypropylene glycol, polyethylene glycol such as a polypropylene glycol block copolymer; polybulu alcohol; polyacrylic acid (including salts such as alkali metal salts and ammonium salts) ), Polymethacrylic acid (including salts such as alkali metal salts and ammonium salts), polyacrylic acid-polymethacrylic acid (including salts such as alkali metal salts and ammonium salts) copolymers; polyacrylamide; polybutyropyrrolidone; carboxy Examples include hydrophilic celluloses such as methyl cellulose (CMC) and methyl cellulose (MC); natural hydrophilic polymer compounds such as polysaccharides.
  • CMC methyl cellulose
  • MC methyl cellulose
  • polymer materials may be combined with an inorganic dielectric such as glass fiber, carbon fiber, silica, and the like, and combined. It is also possible to use a paint as the polymer material.
  • an inorganic dielectric such as glass fiber, carbon fiber, silica, and the like
  • the inorganic substance is preferably made of a water-repellent or hydrophilic inorganic compound.
  • Examples of the water repellent inorganic material include silane water repellents, fluorine water repellents, and the like.
  • Particularly preferred examples of fluorine-based water repellents include fluorine-containing compounds or fluorine-containing compound-containing compositions such as perfluoroalkyl group-containing compounds.
  • the fluorine-containing compound that can be used as such a fluorine-based water repellent is preferably one having a molecular weight of 1,000 to 20,000 containing a perfluoroalkyl group in the molecule.
  • perfluoroalkyl phosphate ester and perfluoroalkyltrimethylammonium salt are preferred because of their excellent adsorptivity to the substrate surface.
  • Surflon S-112 and Surflon S-121 are commercially available!
  • hydrophilic inorganic material examples include SiO, a silicon compound, and a photocatalytic function.
  • the photocatalytic substance contains a specific metal compound and has a function of oxidizing and decomposing organic and / or inorganic compounds on the surface of the layer by photoexcitation.
  • the principle of photocatalysis is that certain metal compounds generate radical species such as OH— and O— from water or oxygen in the air by photoexcitation.
  • this radical species is a redox degradation of organic and / or inorganic compounds.
  • metal compound in addition to typical titanium oxide (TiO 2), ZnO, SrTiOP, Cd
  • a film made of a photocatalytic substance is prepared by converting an aqueous dispersion containing fine particles (about 2 nm to 20 nm) of these metal compounds together with various additives as required, into the water repellent or water absorbing inhibitor. And it can form by apply
  • the thickness of the membrane is preferably from 0.01 ⁇ m to 2. O ⁇ m, more preferably from 0.1 ⁇ m to ⁇ ⁇ ⁇ .
  • An aqueous dispersion is preferably used for forming the photocatalytic substance film, but alcohol can also be used as a solvent.
  • the aqueous dispersion for forming a photocatalytic substance film can be produced, for example, by the following method. it can. Titanium peroxide in the aqueous dispersion can be changed to titanium oxide in the dry film-forming state.
  • Titanium hydroxide is formed by reacting the tetravalent titanium compound described above with a base such as ammonia. Next, this titanium hydroxide is peroxoated with an oxidizing agent such as hydrogen peroxide to form amorphous fine titanium peroxide particles. Further, it is transferred to anatase-type titanium peroxide by heat treatment.
  • the tetravalent titanium compound described above is peroxoated with an oxidizing agent such as hydrogen peroxide, and then reacted with a base such as ammonia to form ultrafine particles of amorphous titanium peroxide.
  • the tetravalent titanium compound described above is reacted with an oxidizing agent such as hydrogen peroxide and a base such as ammonia to form titanium hydroxide and peroxo at the same time to form ultrafine particles of amorphous titanium peroxide. To do. Further, it is transferred to anatase-type titanium peroxide by heat treatment.
  • an oxidizing agent such as hydrogen peroxide and a base such as ammonia
  • a base such as ammonia
  • Metals (Ag, Pt) that improve the photocatalytic performance may be added to the photocatalytic material film.
  • various substances such as metal salts can be added to the extent that they do not deactivate the photocatalytic function.
  • the metal salt include metal salts such as aluminum, tin, chromium, nickel, antimony, iron, silver, cesium, indium, cerium, selenium, copper, manganese, calcium, platinum, tandastene, zirconium, and zinc.
  • hydroxides or oxides can be used for some metals or non-metals.
  • Various metal salts such as zinc can be exemplified.
  • Other compounds than metal salts include indium hydroxide, key tungstic acid, silica sol, hydroxide Examples include calcium.
  • Amorphous titanium peroxide can be added to improve the adhesion of the photocatalytic material film.
  • the contaminant on the substrate surface is decomposed by the action of the photocatalytic substance film, contamination of the substrate surface can be prevented and the cosmetic properties of the substrate can be maintained over time. If the photocatalytic material film is formed directly on the substrate, the photocatalytic material film may be peeled off from the substrate over time. However, the ability to integrate the photocatalytic material film with the substrate satisfactorily by interposing a positively charged material. Touch with S.
  • the side in contact with the layer containing the positively charged substance is caused by dielectric polarization in the insulating organic or inorganic substance film.
  • a negative charge is generated, and a positive charge is generated on the surface of the film on the side separated from the layer containing the positively charged substance.
  • This positive charge can be used to prevent contamination of the substrate surface as will be described later.
  • the water repellency or hydrophilicity and the chemical properties of the insulating organic or inorganic film itself are maintained, so that the prevention of contamination by the chemical properties can be further improved.
  • an intermediate layer may exist between the surface of the substrate and the layer.
  • the layer containing the water repellent or water absorption inhibitor and the positive charge substance further contains an organic silicon compound
  • the intermediate layer also has a function of preventing moisture from entering the substrate.
  • Examples of the silane compounds include hydrolyzable silanes, hydrolysates thereof, and mixtures thereof.
  • hydrolyzable silane various alkoxysilanes can be used. Specific examples include tetraalkoxysilane, alkyltrialkoxysilane, dialkyldianoloxysilane, and trialkylalkoxysilane. Of these, one type of hydrolyzable silane may be used alone, or two or more types of hydrolyzable silanes may be mixed and used as necessary.
  • Various organopolysiloxanes may be blended with these silane compounds.
  • an intermediate layer forming agent containing such a silane compound there is Dry Seal S (manufactured by Toray 'Dowcoung' Silicone Co., Ltd.).
  • a room temperature curable silicone resin such as methyl silicone resin and methyl phenyl silicone resin may be used.
  • room-temperature-curing silicone trees include AY42-170, SR2510, SR2406, SR2410, SR2405, and SR2411 (manufactured by Toray 'Dowcoung' Silicone Co., Ltd.).
  • the intermediate layer may be colorless and transparent, or may be colored transparent, translucent or opaque. Coloring here includes not only red, blue, green, etc. but also white. In order to obtain a colored intermediate layer, it is preferable to mix various colorants such as inorganic or organic pigments or dyes in the intermediate layer.
  • inorganic pigments include carbon black, graphite, yellow lead, iron oxide yellow, red lead, red rose, ultramarine, chromium oxide green, iron oxide and the like.
  • organic pigments azo organic pigments, phthalocyanine organic pigments, selenium organic pigments, quinotalidone organic pigments, dioxazine organic pigments, isoindolinone organic pigments, diketopyrrolopyrrole and various metal complexes are used. Although it is possible, it should have excellent light resistance.
  • light-resistant organic pigments include, for example, Hansa Yellow, toluidine red, which is an insoluble azo organic pigment, phthalocyanine blue B, which is a phthalocyanine organic pigment, quinacridone red, which is a quinacridone organic pigment, and the like. Is mentioned.
  • Examples of the dye include basic dyes, direct dyes, acid dyes, vegetable dyes, etc., but those having excellent light resistance are preferred.
  • red direct scarlet, loxelin, azolbin, orange , Direct Orange R Conch, Acid Orange, and Yellow are particularly preferably Chrysophenine NS, Methanil Yellow, Brown is Direct Brown KGG, Acid Brown R, Blue is Direct Blue B, Black is Direct Black GX, and Nigguchi Shin BHL.
  • the mixing ratio (weight ratio) of these silane compound or silicone resin and pigment is preferably in the range of 1: 2 to 1: 0.05.
  • the range of 1: 1 to; 1: 0 ⁇ 1 is more preferable.
  • the intermediate layer may further contain additives such as a dispersant, a stabilizer, and a leveling agent. These additives have an effect of facilitating the formation of the intermediate layer. Furthermore, when blending a colorant such as a pigment 'dye, a binder for fixing the colorant may be added. Is possible. As the binder in this case, various paint binders mainly composed of an acrylic ester or an acrylic ester copolymer resin having excellent weather resistance can be used. For example, Polysol AP-3720 (Showa Polymer Co., Ltd.) And Polysol AP-609 (manufactured by Showa Polymer Co., Ltd.).
  • the intermediate layer can be formed, for example, as follows.
  • An intermediate layer forming agent composed of a silane compound or a silicone resin in a volatile solvent, and a solution containing the colorant, the additive and the binder, if necessary, having a thickness of about 2 to 5 mm on the surface of the substrate. Apply so that If necessary, the intermediate layer is formed on the substrate by heating and evaporating the volatile solvent.
  • the colored intermediate layer can be imparted with a colored cosmetic by being integrated with the substrate.
  • the thickness of the intermediate layer formed as described above is not particularly limited, but is preferably 0.01 to 1.0 111 force ⁇ preferably, more preferably 0.05 to 0.33 force.
  • 1.0 to 111 to 100 to 111 is preferable, and 10 to 111 to 50 to 111 is more preferable.
  • any known method can be used.
  • a spray coating method, a dip coating method, a flow coating method, a spin coating method, a roll coating method, Brush painting, sponge painting, etc. are possible.
  • FIG. 5 shows a mechanism for removing contaminants from a positively charged substrate surface.
  • Contaminants accumulate on the substrate surface and are photooxidized by the action of electromagnetic waves such as sunlight. In this way, a positive charge is also given to the pollutant (Fig. 5 (2)).
  • Contaminants are easily removed from the substrate by physical action such as wind and rain (Fig. 5 (4)).
  • the substrate is self-cleaned.
  • the water repellency by the water repellent or the water absorption inhibitor is utilized, and at the same time, the positive charge imparted to the surface of the substrate is utilized to exhibit a continuous "antifouling / antifogging function". This makes it possible to obtain products that will This technology can be applied to any substrate, but in particular, it can maintain the function for a long time by applying a positive charge to the surface of the substrate having excellent water repellency. Is preferred. This makes “dirty V, plastic” possible.
  • the positive charge on the substrate surface can reduce the oxidative degradation of the substrate due to electromagnetic waves. That is, oxidative degradation of the substrate is caused by generation of radicals such as' ⁇ , ⁇ , etc. due to electromagnetic waves such as ultraviolet rays on the surface of the substrate or in the substrate to cause an oxidative decomposition reaction.
  • the positively charged surface of the substrate makes these radicals stable molecules. Therefore, it is considered that the oxidative deterioration of the substrate is prevented or reduced.
  • the substrate is made of metal, it is possible to reduce the generation of soot from the same process.
  • the present invention can be used in various fields where various design properties and high waterproof / antifouling performance are required. Glass, metal, ceramics, concrete, wood, stone, polymer resin cover, polymer Resin sheets, textiles (clothing, curtains, etc.), sealants, etc., or a combination of these materials; building materials; air conditioning outdoor units; kitchen equipment; sanitary equipment; lighting equipment; automobiles; bicycles; It is preferably used for articles used indoors and outdoors such as, and face panels of various machines, electronic devices, televisions and the like.
  • a building such as a house, building, road, or tunnel constructed using the building material preferred for a building material having high water absorption can exhibit a high waterproof / antifouling effect over time.
  • the combination of the water repellent or the water absorption inhibitor and the positively charged substance is used alone as a contamination preventing or reducing agent for the substrate surface including the combination, or as a protective agent. Can be distributed in the market.
  • a water-repellent dispersion (100 g) was prepared by mixing a water-repellent agent (Dry Seal S: manufactured by Toray Industries, Inc.) and pure water at a weight ratio of 20:80.
  • a water-repellent agent (Dry Seal S: manufactured by Toray Industries, Inc.)
  • pure water at a weight ratio of 20:80.
  • a water repellent (dry seal S: manufactured by Toray Dow Coung Co., Ltd.) and pure water were mixed at a weight ratio of 40:60 to prepare 100 g of a water repellent dispersion.
  • the solution prepared in Production Example 2 and the dispersion prepared in Production Example 3 were mixed at a weight ratio of 1: 1 to prepare 100 g of a positively charged metal-containing water-repellent dispersion.
  • the solution prepared in Production Example 2 and the dispersion prepared in Production Example 4 were mixed at a weight ratio of 1: 1 to prepare 100 g of a positively charged metal-containing water-repellent dispersion.
  • Example 2 Spray the positively charged water-repellent white dispersion prepared in Production Example 7 on the back of a ceramic tile (97mm X 97mm) at a coating weight of 2.0g / 100cm 2 and heat at 70 ° C for 1 hour for evaluation. A substrate was obtained.
  • Red ink containing Indico dye which is a negatively charged dye (manufactured by Pilot Co., Ltd.) is diluted with ethanol to give a 10-fold diluted solution, with an application amount of 0.007 g / 100 cm 2 , Examples 1 and 2 and Spot coating was performed on the surface of each evaluation substrate of Comparative Examples 1 and 2.
  • Each substrate;! ⁇ 4 was arranged on a straight line, 20W black light (manufactured by Toshiba Lighting & Technology Co., Ltd.) was placed on each substrate, and the surface of each substrate was irradiated with ultraviolet rays at a rate of 1100 W / cm 2 .
  • a color difference meter manufactured by Minolta Co., Ltd., CR 200 was used to measure the fading rate of the red ink on each evaluation substrate surface over time.
  • the fading rate (%) of the red ink was obtained by calculation using the following equation.
  • Comparative Example 2 From the results shown in Table 1, it can be seen that in Comparative Example 2, the red ink disappears rapidly due to oxidative decomposition and negative charge generation on the substrate surface due to photocatalysis. Comparative Example 1 also has a high final decoloration rate due to oxidative decomposition of black light by ultraviolet rays. On the other hand, in Examples 1 and 2, it can be seen that the release of red ink is suppressed by the positive charge on the substrate surface, and the oxidative decomposition due to ultraviolet rays is reduced. As a result, it can be seen that the anti-fouling property against environmental pollutants having a positive charge is excellent as in the case of Examples 1 and 2 having a positive charge on the surface.
  • Example 3 90 g of the water-repellent dispersion prepared in Production Example 3 is mixed with 10 g of a white pigment (Polx White PC—CRH (manufactured by Sumika Color Co., Ltd.)), and Polysol AP—609L (Showa Polymer Co., Ltd.) as a binder. 5 g) was mixed to prepare 105 g of a water-repellent white dispersion.
  • a white pigment Polyx White PC—CRH (manufactured by Sumika Color Co., Ltd.)
  • Polysol AP—609L Showa Polymer Co., Ltd.
  • the evaluation substrate was obtained by spray-coating the water-repellent white dispersion of Production Example 10 at a coating amount of 20 g / 100 cm 2 on the back of a paving concrete block (300 mm X 300 mm X 30 mm) and drying at room temperature.
  • Porcelain tile (97mm x 97mm) surface with fluorine water repellent (GM-105: Daikin Kogyo Co., Ltd.) and the positively charged metal solution of Production Example 2 were mixed at a weight ratio of 1: 1, and the resulting mixture was brushed at a coating weight of 5 g / 100 cm 2 and then 130 ° C for 30 minutes.
  • the substrate for evaluation was obtained by heating.
  • Example 3 An exposure test was performed on each evaluation substrate in Example 3 and Comparative Example 4 in Tesaga Prefecture, and the contamination state on the surface of each substrate was visually observed. Specifically, each evaluation board was exposed to sunlight outside a wholesaler on the 18th, and then left for 2 days in a certain place. The results are shown in Table 3.
  • strong water repellency means that the contact angle with water is 100 ° or less
  • water repellency means that the contact angle with water is around 95 °.
  • “Hydrophilic” means that the contact angle with water is 20 ° or less. The contact angle was visually measured with a manual goniometer.
  • Comparative Example 4 is water repellent regardless of exposure conditions.
  • Example 5 becomes hydrophilic when exposed to sunlight, while it becomes water repellent when not exposed to sunlight. Therefore, the results shown in Table 3 indicate that the water repellency and hydrophilicity of the substrate surface can be controlled by arranging a positively charged substance on the substrate surface together with the water repellent. Evaluation 3 was performed twice, but the results were the same for both.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a novel method for preventing or reducing adhesion of contaminant to a base, while preventing or reducing color degradation or color change of the base over time. This method is characterized in that a water repellent agent or a water absorption-preventing agent and one or more positively charged substances selected from the group consisting of (1) cations, (2) positively charged conductive or dielectric bodies and (3) composite bodies of a conductive body and a dielectric or semiconductor body are arranged on the surface of the base or in the surface layer of the base.

Description

明 細 書  Specification
基体の保護方法  Substrate protection method
技術分野  Technical field
[0001] 本発明は、基体表面に、撥水性、特に親水性に制御可能な撥水性、並びに、正電 荷を付与することにより、当該表面の汚染防止乃至低減、及び、保護を達成する方 法に関する。  [0001] The present invention provides a substrate surface with water repellency, in particular, water repellency that can be controlled to be hydrophilic, and positive charge, thereby achieving contamination prevention or reduction and protection of the surface. Regarding the law.
背景技術  Background art
[0002] 従来から、着色された種々の基体 (例えば、印刷物、建材、繊維、有機高分子樹脂 製品等)が経時的に退色乃至変色することは知られている。これらの退色乃至変色 の要因としては、光による劣化、基体表面への汚染物質の付着等が挙げられており、 その対策として種々の方法が考えられてレ、る。  Conventionally, it is known that various colored substrates (for example, printed materials, building materials, fibers, organic polymer resin products, etc.) fade or discolor over time. These factors of fading or discoloration include deterioration by light, adhesion of contaminants to the substrate surface, and various methods are considered as countermeasures.
[0003] 例えば、光による劣化を防止するには、基体中に紫外線吸収剤を混入する等の方 法が採られている。  [0003] For example, in order to prevent deterioration due to light, a method of mixing an ultraviolet absorber in the substrate has been adopted.
[0004] 一方、基体表面からの汚染物質の付着防止及び除去のために、防汚機能又はセ ルフクリーニング機能を有する皮膜を基体表面に形成する方法も開発されている。こ の方法としては、例えば、特開平 9— 262481号公報記載のアナターゼ型酸化チタ ンを使用して光触媒層を形成する方法等がある。  [0004] On the other hand, a method for forming a film having an antifouling function or a self-cleaning function on the substrate surface has been developed in order to prevent and remove contaminants from the substrate surface. As this method, for example, there is a method of forming a photocatalyst layer using anatase-type titanium oxide described in JP-A-9-262481.
特許文献 1 :特開平 9 262481号公報  Patent Document 1: JP-A-9 262481
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、基体中に紫外線吸収剤を混入する場合、基体中の成分等の作用に より紫外線吸収剤が分解して十分な紫外線吸収効果を発揮しない場合がある。 However, when an ultraviolet absorber is mixed in the substrate, the ultraviolet absorber may be decomposed due to the action of components or the like in the substrate and may not exhibit a sufficient ultraviolet absorption effect.
[0006] また、光触媒機能を基体表面に付与する場合は、基体の種類によっては、光触媒 作用により基体そのものが分解劣化するおそれがある。また、負電荷を帯びているた めに、正電荷を有する汚染物を静電的に吸着する問題がある。 [0006] When the photocatalytic function is imparted to the substrate surface, the substrate itself may be decomposed and deteriorated by the photocatalytic action depending on the type of the substrate. In addition, since it has a negative charge, there is a problem of electrostatically adsorbing contaminants having a positive charge.
[0007] 本発明は、基体の経時的な退色乃至変色を防止乃至低減すると同時に、汚染物の 付着を防止乃至低減する新たな手法を提供することをその目的とする。 課題を解決するための手段 [0007] An object of the present invention is to provide a new technique for preventing or reducing fading or discoloration of a substrate over time and at the same time preventing or reducing the adhesion of contaminants. Means for solving the problem
[0008] 本発明の目的は、基体表面又は基体表面層中に、撥水剤又は吸水防止剤、並び に、 [0008] An object of the present invention is to provide a water repellent or a water absorption inhibitor in the substrate surface or substrate surface layer, and
(1)陽イオン  (1) Cation
(2)正電荷を有する導電体又は誘電体  (2) Positively charged conductor or dielectric
(3)導電体、及び、誘電体又は半導体の複合体  (3) Conductor and dielectric or semiconductor composite
力、らなる群から選択される 1種又は 2種以上の正電荷物質を配置することによって達 成される。  This is achieved by placing one or more positively charged substances selected from the group consisting of forces.
[0009] 前記撥水剤又は吸水防止剤はシラン系、シリコネート系、シリコーン系、シリコーン 及びシラン複合系、フッ素系の撥水剤又は吸水防止剤、或いは、これらの少なくとも 2種の混合物が好ましぐ特に、フッ素系の撥水剤又は吸水防止剤が好ましい。  [0009] The water repellent or water absorption inhibitor is preferably a silane, siliconate, silicone, silicone and silane composite, fluorine water repellent or water absorption inhibitor, or a mixture of at least two of these. In particular, a fluorine-based water repellent or water absorption inhibitor is preferred.
[0010] 前記撥水剤又は吸水防止剤、及び、正電荷物質は、混合物として基体表面又は基 体表面層中に配置されることが好ましい。前記混合物は、ノユオン性分散剤、ァニォ ン性分散剤、両性分散剤、酸価が 50〜250の水溶性樹脂性分散剤、及び、酸価が 50〜250のェマルジヨン樹脂性分散剤からなる群から選択される 1種以上の分散剤 、顔料、並びに、液体からなる顔料分散体を含有することができる。更に、前記混合 物は基体表面上で層を形成することが好ましぐその場合には、前記基体表面と前 記層との間に中間層を形成してもよぐまた、前記混合物層上に被覆層を形成しても よい。  [0010] It is preferable that the water repellent or water absorption inhibitor and the positively charged substance are disposed as a mixture on the substrate surface or the substrate surface layer. The mixture is composed of a noionic dispersant, an anionic dispersant, an amphoteric dispersant, a water-soluble resinous dispersant having an acid value of 50 to 250, and an emulsion resinous dispersant having an acid value of 50 to 250. One or more dispersants selected from the above, a pigment, and a pigment dispersion composed of a liquid can be contained. Furthermore, in the case where the mixture preferably forms a layer on the surface of the substrate, an intermediate layer may be formed between the surface of the substrate and the layer. A coating layer may be formed on the substrate.
発明の効果  The invention's effect
[0011] 大気中に浮遊している汚染物質及び/又は基体に付着した汚染物質は太陽光等 の作用により光酸化され、正電荷を帯びるが、本発明の方法が施された基体の表面 にも正電荷が発生するので、前記汚染物質は静電的に反発して、基体表面から自 然と離脱する。したがって、基体表面をセルフクリーニングすることが可能となる。  [0011] Contaminants suspended in the atmosphere and / or contaminants attached to the substrate are photooxidized by the action of sunlight or the like and are positively charged. However, the contaminants on the surface of the substrate to which the method of the present invention has been applied. However, since a positive charge is generated, the pollutant is repelled electrostatically and naturally leaves the substrate surface. Therefore, it becomes possible to self-clean the substrate surface.
[0012] また、基体表面には正電荷のみならず撥水剤又は吸水防止剤が存在するので、前 記セルフクリーニング作用に撥水性による汚染防止効果を基体に追加することがで きる。したがって、長期間に亘つて、基体表面への汚染物質の付着を防止乃至低減 すること力 Sできる。特に、フッ素系の撥水剤又は吸水防止剤を使用する場合は、基体 表面への電磁波の照射を制御することで、基体表面の特性を撥水性から親水性まで 変化させることができるので、基体の保護態様を自在にコントロールすることができる [0012] Further, since not only positive charges but also water repellents or water absorption inhibitors exist on the surface of the substrate, a contamination preventing effect due to water repellency can be added to the substrate in the self-cleaning action. Therefore, it is possible to prevent or reduce the adhesion of contaminants to the substrate surface over a long period of time. In particular, when using a fluorine-based water repellent or water absorption inhibitor, By controlling the irradiation of electromagnetic waves to the surface, the characteristics of the substrate surface can be changed from water-repellent to hydrophilic, so that the protection mode of the substrate can be freely controlled.
[0013] 更に、本発明の方法により処理された基体は太陽光等の作用自体にも高い抵抗性 を有し、太陽光等による光劣化から基体を良好に保護することができる。 [0013] Furthermore, the substrate treated by the method of the present invention has high resistance to the action itself of sunlight and the like, and can well protect the substrate from light deterioration caused by sunlight or the like.
[0014] これらの作用により、本発明は、基体の退色乃至変色を長期に亘つて防止乃至低減 すること力 Sでさる。  [0014] By these actions, the present invention is able to prevent or reduce the fading or discoloration of the substrate over a long period of time with a force S.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明における正電荷付与機構の一例を示す概念図  FIG. 1 is a conceptual diagram showing an example of a positive charge imparting mechanism in the present invention.
[図 2]本発明の特定金属ドープチタン酸化物の製造方法の一態様の概略を示した図 [図 3]撥水剤又は吸水防止剤と正電荷物質の基体表面上における配置の一態様を 示す概念図  [FIG. 2] A diagram showing an outline of one embodiment of the method for producing a specific metal-doped titanium oxide of the present invention. [FIG. Conceptual diagram showing
[図 4]撥水剤又は吸水防止剤と正電荷物質の基体表面上における配置の他の態様 を示す概念図  [Fig. 4] Conceptual diagram showing another mode of arrangement of a water repellent or water absorption inhibitor and a positively charged substance on a substrate surface.
[図 5]正電荷を帯びる基体表面から汚染物質が除去される機構を示す概念図 発明を実施するための最良の形態  FIG. 5 is a conceptual diagram showing a mechanism for removing contaminants from a positively charged substrate surface. BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 基体表面の退色乃至変色の原因の一つである汚染物質は、大気中に浮遊している カーボン等の無機物質及び/又は油等の有機物質が基体表面に徐々に堆積するこ とによって基体表面に付着していく。 [0016] The pollutant that is one of the causes of fading or discoloration of the substrate surface is that inorganic substances such as carbon and / or organic substances such as oil that are floating in the atmosphere gradually accumulate on the substrate surface. To adhere to the substrate surface.
[0017] 本発明は、静電的な反発作用によって、これらの汚染物質を基体から除去し、又は[0017] The present invention removes these contaminants from the substrate by electrostatic repulsion, or
、これらの汚染物質の基体への付着を回避乃至低減することを特徴とする。 Further, the present invention is characterized in that adhesion of these contaminants to the substrate is avoided or reduced.
[0018] 主に屋外の大気中に浮遊している汚染物質、特に油分は、太陽光をはじめとして 各種の電磁波により、いわゆる光酸化反応を受け、「酸化」された状態にあるといわれ ている。 [0018] It is said that pollutants, especially oil, which are mainly suspended in the outdoor air, are in an "oxidized" state due to the so-called photooxidation reaction caused by various electromagnetic waves including sunlight. .
[0019] 光酸化反応とは、太陽光をはじめとした電磁波の作用により、有機物又は無機物表 面の水分 (H〇)、酸素(O )からヒドロキシルラジカル(· ΟΗ)や一重項酸素 〇)が  [0019] The photo-oxidation reaction is caused by the action of electromagnetic waves such as sunlight, and moisture (H ○) and oxygen (O) on the surface of organic or inorganic substances to hydroxyl radicals (· ΟΗ) and singlet oxygen ○).
2 2 2 生成される際に当該有機物又は無機物から電子(e が引き抜かれて酸化される現 象をいう。この酸化により、有機物では分子構造が変化し、劣化と称される変色又は 脆化現象がみられ、無機物、特に金属では鯖が発生する。これら「酸化」された有機 物又は無機物の表面は、電子(e—)の引き抜きにより、正に帯電する。 2 2 2 Electron (e is extracted from the organic or inorganic matter when it is formed, and it is oxidized. This oxidation changes the molecular structure of the organic matter, causing discoloration or degradation called degradation. An embrittlement phenomenon is observed, and soot is generated in inorganic materials, particularly metals. These “oxidized” organic or inorganic surfaces are positively charged by extracting electrons (e−).
[0020] 本発明では、基体表面に正電荷を付与することにより、前記有機物又は無機物を、 静電反発力を利用して基体表面から自然に離脱させる。基体表面に正電荷を付与 する方法として、本発明では、陽イオン;正電荷を有する導電体又は誘電体;導電体 と誘電体又は半導体との複合体;或レ、は、これらの混合物を使用する。  In the present invention, by applying a positive charge to the surface of the substrate, the organic or inorganic material is naturally separated from the surface of the substrate using electrostatic repulsion. As a method for imparting a positive charge to the substrate surface, in the present invention, a cation; a conductor or dielectric having a positive charge; a composite of a conductor and a dielectric or semiconductor; or a mixture thereof is used. To do.
[0021] 前記陽イオンとしては、特に限定されるものではないが、ナトリウム、カリウム等のァ ルカリ金属のイオン;カルシウム等のアルカリ土類金属のイオン、アルミニウム、錫、セ シゥム、インジウム、セリウム、セレン、クロム、ニッケル、アンチモン、鉄、銅、マンガン 、タングステン、ジルコニウム、亜鉛等の金属元素のイオンが好ましぐ特に銅イオン が好ましい。更にメチレンバイオレット、ビスマルクブラウン、メチレンブルー、マラカイ トグリーン等のカチオン性染料、第 4級窒素原子含有基により変性されたシリコーン 等のカチオン基を備えた有機分子も使用可能である。イオンの価数も特に限定され るものではなぐ例えば、;!〜 4価の陽イオンが使用可能である。  [0021] The cation is not particularly limited, but alkali metal ions such as sodium and potassium; alkaline earth metal ions such as calcium, aluminum, tin, cesium, indium, cerium, Ions of metal elements such as selenium, chromium, nickel, antimony, iron, copper, manganese, tungsten, zirconium and zinc are preferred, and copper ions are particularly preferred. Furthermore, cationic molecules such as methylene violet, bismarck brown, methylene blue, and malachite green, and organic molecules having cationic groups such as silicone modified with a quaternary nitrogen atom-containing group can be used. The valence of ions is not particularly limited. For example, !! to tetravalent cations can be used.
[0022] 前記金属イオンの供給源として、金属塩を使用することも可能である。具体的には、 塩化アルミニウム、塩化第 1及び第 2錫、塩化クロム、塩化ニッケル、塩化第 1及び第 2アンチモン、塩化第 1及び第 2鉄、塩化セシウム、三塩化インジウム、塩化第 1セリウ ム、四塩化セレン、塩化第 2銅、塩化マンガン、四塩化タングステン、ォキシ二塩化タ ングステン、タングステン酸カリウム、ォキシ塩化ジルコニウム、塩化亜鉛等の各種の 金属塩が挙げられる。また、水酸化インジウム、ケィタングステン酸等の水酸化物又 は酸化物、油脂酸化物等の酸化物も使用可能である。  [0022] A metal salt may be used as a source of the metal ions. Specifically, aluminum chloride, 1st and 2nd tin chloride, chromium chloride, nickel chloride, 1st and 2nd antimony chloride, 1st and 2nd iron chloride, cesium chloride, indium trichloride, 1st cerium chloride And various metal salts such as selenium tetrachloride, cupric chloride, manganese chloride, tungsten tetrachloride, tungsten dichloride, potassium tungstate, zirconium oxychloride, and zinc chloride. In addition, hydroxides such as indium hydroxide and key tungstic acid, or oxides such as fat oxides can also be used.
[0023] 正電荷を有する導電体又は誘電体としては、上記の陽イオン以外の、正電荷が発 生した導電体又は誘電体を挙げることができ、例えば、後述する各種の導電体から なる電池の正電極、並びに、摩擦により正に帯電した羊毛、ナイロン等の誘電体が挙 げられる。  [0023] Examples of positively charged conductors or dielectrics include conductors or dielectrics that generate positive charges other than the above-mentioned cations. For example, a battery made of various conductors described later. And positive dielectrics such as wool and nylon that are positively charged by friction.
[0024] 次に、前記複合体によって正電荷を付与する原理を図 1に示す。  Next, the principle of imparting a positive charge by the composite is shown in FIG.
[0025] 図 1は図示を省略する基体の表面上又は表面層中に、導電体 誘電体又は半導 体 導電体の組み合わせを配列した概念図である。導電体は、内部に自由に移動 できる自由電子が高い濃度で存在することによって、表面に正電荷状態を有すること 力できる。なお、導電体として陽イオンを含む導電性物質を使用することも可能であ FIG. 1 is a conceptual diagram in which a combination of a conductor, a dielectric, or a semiconductor conductor is arranged on the surface of a substrate (not shown) or in a surface layer. Conductor moves freely inside The presence of a high concentration of free electrons that can be generated can have a positive charge state on the surface. It is also possible to use a conductive material containing cations as the conductor.
[0026] 一方、導電体に隣接する誘電体又は半導体は、導電体の表面電荷状態の影響に より誘電分極される。この結果、導電体に隣接する側には負電荷が、また、非隣接側 には正電荷が誘電体又は半導体に発生する。これらの作用により導電体 誘電体 又は半導体 導電体の組み合わせの表面は正電荷を帯びることとなり、基体表面に 正電荷が付与される。前記複合体のサイズ (複合体を通過する最長軸の長さをいう) は lnm力、ら 100 μ m、好ましくは lnmから 10 μ m、より好ましくは lnmから 1 m、よ り好ましくは lnmから lOOnmの範囲とすることができる。 On the other hand, the dielectric or semiconductor adjacent to the conductor is dielectrically polarized due to the influence of the surface charge state of the conductor. As a result, negative charges are generated in the dielectric or semiconductor on the side adjacent to the conductor and positive charges are generated on the non-adjacent side. By these actions, the surface of the combination of the conductor dielectric or the semiconductor conductor is positively charged, and a positive charge is imparted to the substrate surface. The size of the complex (which refers to the length of the longest axis passing through the complex) is lnm force, et al. 100 μm, preferably lnm to 10 μm, more preferably lnm to 1 m, more preferably lnm. It can be in the lOOnm range.
[0027] 本発明において使用される複合体を構成する導電体は耐久性の点から金属が望 ましぐアルミニウム、錫、セシウム、インジウム、セリウム、セレン、クロム、ニッケル、ァ ンチモン、鉄、銀、銅、金、マンガン、白金、タングステン、ジルコニウム、亜鉛等の金 属が挙げられる。導電体の形状は特に限定されるものではなぐ粒子状、薄片状、繊 維状等の任意の形状をとることができる。  [0027] The conductor constituting the composite used in the present invention is preferably a metal from the viewpoint of durability. Aluminum, tin, cesium, indium, cerium, selenium, chromium, nickel, antimony, iron, silver, Examples include metals such as copper, gold, manganese, platinum, tungsten, zirconium, and zinc. The shape of the conductor is not particularly limited, and can be any shape such as a particulate shape, a flake shape, or a fiber shape.
[0028] 導電体としては、一部の金属の金属塩も使用可能である。具体的には、塩化アルミ 二ゥム、塩化第 1及び第 2錫、塩化クロム、塩化ニッケル、塩化第 1及び第 2アンチモ ン、塩化第 1及び第 2鉄、硝酸銀、塩化セシウム、三塩化インジウム、塩化第 1セリウム 、四塩化セレン、塩化第 2銅、塩化マンガン、塩化第 2白金、四塩化タングステン、ォ キシニ塩化タングステン、タングステン酸カリウム、塩化第 2金、ォキシ塩化ジルコユウ ム、塩化亜鉛等の各種の金属塩が例示できる。また、導電体としては、水酸化インジ ゥム、ケィタングステン酸等をはじめ、上記の金属の水酸化物又は酸化物等も使用可 能である。  [0028] As the conductor, metal salts of some metals can also be used. Specifically, aluminum chloride, 1st and 2nd tin chloride, chromium chloride, nickel chloride, 1st and 2nd antichloride, 1st and 2nd ferrous chloride, silver nitrate, cesium chloride, indium trichloride , Cerium chloride, selenium tetrachloride, cupric chloride, manganese chloride, platinum chloride, tungsten tetrachloride, tungsten oxychloride, potassium tungstate, gallium chloride, zirconium oxychloride, zinc chloride, etc. Various metal salts can be exemplified. In addition, as the conductor, indium hydroxide, key tungstic acid, and the like, hydroxides or oxides of the above metals, and the like can be used.
[0029] 導電体としては、ポリア二リン、ポリピロール、ポリチォフェン、ポリチォフェンビニロン 、ポリイソチアナフテン、ポリアセチレン、ポリアルキルピロール、ポリアルキルチオフエ ン、ポリ p フエ二レン、ポリフエ二レンビニロン、ポリメトキシフエ二レン、ポリフエユレ ンスルファイド、ポリフエ二レンォキシド、ポリアントラセン、ポリナフタレン、ポリピレン、 ポリアズレン等の導電性高分子も使用可能である。 [0030] 半導体としては、例えば、 C、 Si、 Ge、 Sn、 GaAs、 Inp、 GeN、 ZnSe、 PbSnTe等 があり、半導体酸化金属や光半導体金属、光半導体酸化金属も使用可能である。好 ましくは、酸化チタン(TiO )の他に、 ZnO、 SrTiOP、 CdS、 CdO、 CaP、 InP、 In [0029] Conductors include polyaniline, polypyrrole, polythiophene, polythiophene vinylon, polyisothianaphthene, polyacetylene, polyalkylpyrrole, polyalkylthiophene, poly pphenylene, polyphenylene vinylone, polymethoxyphenol. Conductive polymers such as diylene, polyphenylene sulfide, polyphenylene oxide, polyanthracene, polynaphthalene, polypyrene, and polyazulene can also be used. [0030] Examples of the semiconductor include C, Si, Ge, Sn, GaAs, Inp, GeN, ZnSe, and PbSnTe. Semiconductor metal oxide, photo semiconductor metal, and photo semiconductor metal oxide can also be used. Preferably, besides titanium oxide (TiO 2), ZnO, SrTiOP, CdS, CdO, CaP, InP, In
2 3 2 2 3 2
O、 CaAs、 BaTiO、 K NbO、 Fe O、 Ta O、 WO、 NiO、 Cu2〇、 SiC、 SiO、O, CaAs, BaTiO, K NbO, Fe O, Ta O, WO, NiO, Cu 2 0, SiC, SiO,
3 3 2 3 2 3 2 3 3 23 3 2 3 2 3 2 3 3 2
MoS、 InSb、 RuO、 CeO等が使用されるが、 Na等で光触媒能を不活性化したもMoS, InSb, RuO, CeO, etc. are used.
3 2 2 3 2 2
のが望ましい。  Is desirable.
[0031] 誘電体としては、強誘電体であるチタン酸バリウム(PZT)いわゆる SBT、 BLTや次 に挙げる PZT、 PLZT— (Pb、 La) (Zr、 Ti) 0、 SBT、 SBTN— SrBi (Ta、 Nb)  [0031] Dielectrics include ferroelectric barium titanate (PZT), so-called SBT, BLT, and PZT, PLZT— (Pb, La) (Zr, Ti) 0, SBT, SBTN— SrBi (Ta , Nb)
3 2 2 3 2 2
O、 BST—(Ba、 Sr)TiO、 LSCO—(La、 Sr) CoO、 BLT, BIT—(Bi、 La) TiO, BST— (Ba, Sr) TiO, LSCO— (La, Sr) CoO, BLT, BIT— (Bi, La) Ti
9 3 3 4 39 3 3 4 3
O 、 BSO— Bi SiO等の複合金属が使用可能である。また、撥水性または吸水防Composite metals such as O 2 and BSO—Bi 2 SiO can be used. Also water repellency or water absorption prevention
12 2 5 12 2 5
止性を有する有機ケィ素化合物であるシラン化合物、シリコネート化合物、シリコーン 化合物、シリコーン及びシラン複合物、いわゆる有機変性シリカ化合物、また、有機 ポリマー絶縁膜ァリレンエーテル系ポリマー、ベンゾシクロブテン、フッ素系ポリマー ノ リレン N又は F、フッ素化アモルファス炭素、並びに、後述するフッ素系撥水剤又は 吸水防止剤等の各種低誘電材料が使用可能である。  Silane compounds, siliconate compounds, silicone compounds, silicone and silane composites, so-called organic modified silica compounds, organic polymer insulating films, arylene ether polymers, benzocyclobutenes, fluorine polymers Various low dielectric materials such as N or F, fluorinated amorphous carbon, and a fluorine-based water repellent or water absorption inhibitor described later can be used.
[0032] 導電体と誘電体又は半導体との複合体としては、基体表面に正電荷を付与可能な ものであれば、任意の導電体と誘電体又は半導体との組み合わせを使用可能である 力 基体表面のセルフクリーニング化の点では、金属ドープ酸化チタンを使用するこ とが好ましい。前記金属としては、銅、マンガン、ニッケル、コバルト、鉄及び亜鉛から なる群から選択された金属元素の少なくとも 1つが好ましぐ酸化チタンとしては TiO [0032] As a composite of a conductor and a dielectric or semiconductor, any combination of a conductor and a dielectric or semiconductor can be used as long as it can impart a positive charge to the surface of the base. From the viewpoint of self-cleaning of the surface, it is preferable to use metal-doped titanium oxide. As the metal, at least one metal element selected from the group consisting of copper, manganese, nickel, cobalt, iron and zinc is preferable.
2 2
、 TiO、 TiO、 TiO /nH O等の各種の酸化物、過酸化物が使用可能である。特にVarious oxides and peroxides such as TiO, TiO, and TiO 2 / nH 2 O can be used. In particular
3 3 2 3 3 2
、ペルォキソ基を有する過酸化チタンが好ましい。酸化チタンはアモルファス型、ァ ナターゼ型、ブルッカイト型、ルチル型のいずれでもよぐこれらが混在していてもよ いが、アモルファス型酸化チタンが好ましい。  Titanium peroxide having a peroxo group is preferred. The titanium oxide may be any of amorphous type, anatase type, brookite type and rutile type, and these may be mixed, but amorphous type titanium oxide is preferred.
[0033] アモルファス型酸化チタンは光触媒機能を有さな!/、。一方、アナターゼ型、ブルツ カイト型及びルチル型の酸化チタンは光触媒機能を有する力 銅、マンガン、ニッケ ノレ、コバルト、鉄又は亜鉛を一定濃度以上に複合させると光触媒機能を喪失する。し たがって、前記金属ドープチタン酸化物は光触媒機能を有さないものである。なお、 アモルファス型酸化チタンは太陽光による加熱等により経時的にアナターゼ型酸化 チタンに変換される力 銅、マンガン、ニッケル、コバルト、鉄又は亜鉛と複合させると アナターゼ型酸化チタンは光触媒機能を失うので、結局のところ、前記金属ドープチ タン酸化物は経時的に光触媒機能を示さないものである。 [0033] Amorphous titanium oxide does not have a photocatalytic function! On the other hand, anatase, wurtzite, and rutile titanium oxides lose their photocatalytic function when they are combined with copper, manganese, nickel, nickel, cobalt, iron, or zinc, which have a photocatalytic function, at a certain concentration or more. Therefore, the metal-doped titanium oxide does not have a photocatalytic function. In addition, Amorphous titanium oxide can be converted to anatase titanium oxide over time by heating with sunlight, etc. When combined with copper, manganese, nickel, cobalt, iron, or zinc, anatase titanium oxide loses its photocatalytic function. However, the metal-doped titanium oxide does not exhibit a photocatalytic function over time.
[0034] 前記金属ドープチタン酸化物の製造方法としては、一般的な二酸化チタン粉末の 製造方法である塩酸法又は硫酸法をベースとする製造方法を採用してもよいし、各 種の液体分散チタユア溶液の製造方法を採用してもよい。そして、前記金属は、製 造段階の如何を問わずチタン酸化物と複合化することができる。  [0034] As the method for producing the metal-doped titanium oxide, a production method based on a hydrochloric acid method or a sulfuric acid method, which is a common method for producing titanium dioxide powder, may be employed, and various types of liquid dispersion may be employed. You may employ | adopt the manufacturing method of a titaure solution. The metal can be complexed with titanium oxide regardless of the production stage.
[0035] 例えば、前記金属ドープチタン酸化物の具体的な製造方法としては、以下の第;!〜 第 3の製造方法、並びに、従来から知られているゾルーゲル法が挙げられる。  [0035] For example, specific methods for producing the metal-doped titanium oxide include the following first to third production methods and conventionally known sol-gel methods.
[0036] 第 1の製造方法  [0036] First manufacturing method
まず、四塩化チタン等の四価チタンの化合物とアンモニア等の塩基とを反応させて 、水酸化チタンを形成する。次に、この水酸化チタンを酸化剤でペルォキソ化し、超 微細粒子のアモルファス型過酸化チタンを形成する。この反応は好ましくは水性媒 体中で行なわれる。さらに、任意に加熱処理することによりアナターゼ型過酸化チタ ンに転移させることも可能である。前記の各工程のいずれかにおいて銅、マンガン、 ニッケル、コバルト、鉄、亜鉛又はそれらの化合物の少なくともいずれ力、 1つが混合さ れる。  First, a titanium hydroxide is formed by reacting a tetravalent titanium compound such as titanium tetrachloride with a base such as ammonia. Next, this titanium hydroxide is peroxoated with an oxidizing agent to form ultrafine particles of amorphous titanium peroxide. This reaction is preferably carried out in an aqueous medium. Furthermore, it is possible to transfer to anatase-type titanium peroxide by arbitrary heat treatment. In any of the above steps, at least one of copper, manganese, nickel, cobalt, iron, zinc, or a compound thereof is mixed.
[0037] ペルォキソ化用酸化剤は特に限定されるものではなぐチタンのペルォキソ化物、 すなわち過酸化チタンが形成できるものであれば各種のものが使用できる力 過酸 化水素が好ましい。酸化剤として過酸化水素水を使用する場合は、過酸化水素の濃 度は特に制限されることはないが、 30〜40%のものが好適である。ペルォキソ化前 には水酸化チタンを冷却することが好ましい。その際の冷却温度は 1〜5°Cが好まし い。  [0037] The peroxidation oxidizing agent is not particularly limited, and is preferably a peroxygenated titanium, that is, a hydrogen peroxide capable of using various materials as long as it can form titanium peroxide. When hydrogen peroxide is used as the oxidizing agent, the concentration of hydrogen peroxide is not particularly limited, but 30 to 40% is preferable. It is preferable to cool the titanium hydroxide before peroxolation. The cooling temperature is preferably 1-5 ° C.
[0038] 図 2に前記第 1の製造方法の一例を示す。図示される製造方法では、四塩化チタ ン水溶液とアンモニア水とを、銅、マンガン、ニッケル、コバルト、鉄、亜鉛の化合物の 少なくとも 1つの存在下で混合し、当該金属の水酸化物及びチタンの水酸化物の混 合物を生成させる。その際の反応混合液の濃度及び温度については、特に限定され るわけではないが、希薄且つ常温とすることが好ましい。この反応は中和反応であり、 反応混合液の pHは最終的に 7前後に調整されることが好ましい。 FIG. 2 shows an example of the first manufacturing method. In the illustrated production method, an aqueous solution of titanium tetrachloride and aqueous ammonia are mixed in the presence of at least one compound of copper, manganese, nickel, cobalt, iron, and zinc, and the hydroxide of the metal and titanium are mixed. This produces a mixture of hydroxides. The concentration and temperature of the reaction mixture at that time are not particularly limited. However, it is preferable that the temperature is dilute and at room temperature. This reaction is a neutralization reaction, and it is preferable that the pH of the reaction mixture is finally adjusted to around 7.
[0039] このようにして得られた金属及びチタンの水酸化物は純水で洗浄した後、 5°C前後 に冷却され、次に、過酸化水素水でペルォキソ化される。これにより、金属がドープさ れた、アモルファス型のペルォキソ基を有するチタン酸化物微細粒子を含有する水 性分散液、すなわち金属ドープチタン酸化物を含有する水性分散液を製造すること ができる。  [0039] The metal and titanium hydroxides thus obtained are washed with pure water, cooled to around 5 ° C, and then peroxolated with hydrogen peroxide. This makes it possible to produce an aqueous dispersion containing fine titanium oxide particles having amorphous peroxo groups doped with metal, that is, an aqueous dispersion containing metal-doped titanium oxide.
[0040] 第 2の製造方法  [0040] Second manufacturing method
四塩化チタン等の四価チタンの化合物を酸化剤でペルォキソ化し、これとアンモニ ァ等の塩基とを反応させて超微細粒子のアモルファス型過酸化チタンを形成する。こ の反応は好ましくは水性媒体中で行なわれる。さらに、任意に加熱処埋することによ りアナターゼ型過酸化チタンに転移させることも可能である。前記の各工程のレ、ずれ かにおいて銅、マンガン、ニッケル、コバルト、鉄、亜鉛又はそれらの化合物の少なく ともいずれか 1つが混合される。  A tetravalent titanium compound such as titanium tetrachloride is peroxolated with an oxidizing agent and reacted with a base such as ammonia to form ultrafine particles of amorphous titanium peroxide. This reaction is preferably carried out in an aqueous medium. Further, it can be transferred to anatase-type titanium peroxide by optionally heat-embedding. At least one of copper, manganese, nickel, cobalt, iron, zinc, or a compound thereof is mixed in each step.
[0041] 第 3の製造方法  [0041] Third manufacturing method
四塩化チタン等の四価チタンの化合物を、酸化剤及び塩基と同時に反応させて、 水酸化チタン形成とそのペルォキソ化とを同時に行い、超微細粒子のアモルファス 型過酸化チタンを形成する。この反応は好ましくは水性媒体中で行なわれる。さらに 、任意に加熱処埋することによりアナターゼ型過酸化チタンに転移させることも可能 である。前記の各工程のいずれかにおいて銅、マンガン、ニッケル、コバルト、鉄、亜 鉛又はそれらの化合物の少なくともいずれか 1つが混合される。  A tetravalent titanium compound such as titanium tetrachloride is reacted simultaneously with an oxidizing agent and a base to simultaneously form titanium hydroxide and peroxotate to form amorphous titanium peroxide with ultrafine particles. This reaction is preferably carried out in an aqueous medium. Further, it can be transferred to anatase-type titanium peroxide by optionally heat-treating. In any of the above steps, at least one of copper, manganese, nickel, cobalt, iron, zinc, or a compound thereof is mixed.
[0042] なお、第 1乃至第 3の製造方法において、アモルファス型過酸化チタンと、これを加 熱して得られるアナターゼ型過酸化チタンとの混合物を金属ドープチタン酸化物とし て使用できることは言うまでもない。  [0042] In the first to third manufacturing methods, it goes without saying that a mixture of amorphous titanium peroxide and anatase titanium peroxide obtained by heating the same can be used as the metal-doped titanium oxide. .
[0043] ゾルーゲル法による製造方法  [0043] Manufacturing method by sol-gel method
チタンアルコキシドに、水、アルコール等の溶媒、酸又は塩基触媒を混合撹拌し、 チタンアルコキシドを加水分解させ、超微粒子のチタン酸化物のゾル溶液を生成す る。この加水分解の前後のいずれかに、銅、マンガン、ニッケル、コバルト、鉄、亜鉛 又はそれらの化合物の少なくともいずれ力、 1つが混合される。なお、このようにして得 られるチタン酸化物は、ペルォキソ基を有するアモルファス型である。 The titanium alkoxide is mixed and stirred with a solvent such as water or alcohol, an acid or a base catalyst, and the titanium alkoxide is hydrolyzed to form a sol solution of ultrafine titanium oxide. Copper, manganese, nickel, cobalt, iron, zinc, either before or after this hydrolysis Or at least any one of these compounds is mixed. The titanium oxide thus obtained is an amorphous type having a peroxo group.
[0044] 前記チタンアルコキシドとしては、一般式: Ti(OR') (ただし、 R'はアルキル基)で  The titanium alkoxide has a general formula: Ti (OR ′) (where R ′ is an alkyl group)
4  Four
表示される化合物、又は前記一般式中の 1つ或いは 2つのアルコキシド基(OR')が カルボキシル基或いは /3—ジカルボニル基で置換された化合物、或いは、それらの 混合物が好ましい。  A compound represented by the above formula, a compound in which one or two alkoxide groups (OR ′) in the above general formula are substituted with a carboxyl group or a / 3-dicarbonyl group, or a mixture thereof is preferable.
[0045] 前記チタンアルコキシドの具体例としては、 Ti(〇— isoC H ) 、Ti(〇— nC H ) 、  [0045] Specific examples of the titanium alkoxide include Ti (〇—isoC H), Ti (〇—nC H),
3 7 4 4 9 4 3 7 4 4 9 4
Ti(〇一 CH CH(C H )C H ) 、Ti(〇一 C H ) 、Ti(〇一 isoC H ) [CO(CH Ti (〇1 CH CH (C H) C H), Ti (〇1 C H), Ti (〇1 isoC H) [CO (CH
2 2 5 4 9 4 17 35 4 3 7 2 3 2 2 5 4 9 4 17 35 4 3 7 2 3
)CHCOCH ] 、Ti(〇— nC H ) [OC H N(C H OH) ] 、Ti(OH) [OCH(CH ) CHCOCH], Ti (○ — nC H) [OC H N (C H OH)], Ti (OH) [OCH (CH
3 2 4 9 2 2 4 2 4 2 2 2  3 2 4 9 2 2 4 2 4 2 2 2
)COOH] 、Ti(OCH CH(C H )CH(OH)C H ) 、Ti(OiC H ) (OCOC ) COOH], Ti (OCH CH (C H) CH (OH) C H), Ti (OiC H) (OCOC
3 2 2 2 5 3 7 4 4 9 2 173 2 2 2 5 3 7 4 4 9 2 17
H )等が挙げられる。 H) and the like.
35  35
[0046] 四価チタンの化合物  [0046] Tetravalent titanium compound
金属ドープチタン酸化物の製造に使用する四価チタンの化合物としては、塩基と反 応させた際に、オルトチタン酸 (H TiO )とも呼称される水酸化チタンを形成できるも  The tetravalent titanium compound used in the production of metal-doped titanium oxide can form titanium hydroxide, also called orthotitanic acid (H TiO), when reacted with a base.
4 4  4 4
のであれば各種のチタン化合物が使用でき、例えば四塩化チタン、硫酸チタン、硝 酸チタン、燐酸チタン等のチタンの水溶性無機酸塩がある。それ以外にも蓚酸チタン 等のチタンの水溶性有機酸塩も使用できる。なお、これらの各種チタン化合物の中 では、水溶性に特に優れ、かつ金属ドープチタン酸化物の分散液中にチタン以外の 成分が残留しなレ、点で、四塩化チタンが好ましレ、。  In this case, various titanium compounds can be used, for example, water-soluble inorganic acid salts of titanium such as titanium tetrachloride, titanium sulfate, titanium nitrate, and titanium phosphate. In addition, water-soluble organic acid salts of titanium such as titanium oxalate can be used. Of these various titanium compounds, titanium tetrachloride is preferred because it is particularly excellent in water-solubility and no components other than titanium remain in the dispersion of metal-doped titanium oxide.
[0047] また、四価チタンの化合物の溶液を使用する場合は、当該溶液の濃度は、水酸化 チタンのゲルが形成できる範囲であれば特に制限されるものではないが、比較的希 薄な溶液が好ましい。具体的には、四価チタンの化合物の溶液濃度は、 5〜0. Olw t%が好ましぐ 0.9〜0.3wt%がより好ましい。  [0047] When a tetravalent titanium compound solution is used, the concentration of the solution is not particularly limited as long as a titanium hydroxide gel can be formed, but it is relatively dilute. A solution is preferred. Specifically, the solution concentration of the tetravalent titanium compound is preferably 5 to 0. Olw t%, more preferably 0.9 to 0.3 wt%.
[0048] 塩基  [0048] base
前記四価チタンの化合物と反応させる塩基は、四価チタンの化合物と反応して水 酸化チタンを形成できるものであれば、各種のものが使用可能であり、それにはアン モユア、苛性ソーダ、炭酸ソーダ、苛性カリ等が例示できる力 S、アンモニアが好ましい [0049] また、前記の塩基の溶液を使用する場合は、当該溶液の濃度は、水酸化チタンの ゲルが形成できる範囲であれば特に制限されるものではないが、比較的希薄な溶液 が好ましい。具体的には、塩基溶液の濃度は、 10-0. 01wt%が好ましぐ 1. 0〜0 . lwt%がより好ましい。特に、塩基溶液としてアンモニア水を使用した場合のアンモ ユアの濃度は、 10-0. 01wt%が好ましぐ 1. 0〜0· lwt%がより好ましい。 As the base to be reacted with the tetravalent titanium compound, various bases can be used as long as they can react with the tetravalent titanium compound to form titanium hydroxide, such as ammonia, caustic soda, sodium carbonate. , Power that can be exemplified by caustic potash, etc. S, ammonia is preferred [0049] Further, when the above-mentioned base solution is used, the concentration of the solution is not particularly limited as long as a titanium hydroxide gel can be formed, but a relatively dilute solution is preferable. . Specifically, the concentration of the base solution is preferably 10-0.01 wt%, more preferably 1.0 to 0.1 wt%. In particular, when ammonia water is used as the base solution, the ammonia concentration is preferably 10-0.01 wt%, more preferably 1.0 to 0.1 wt%.
[0050] 金属化合物  [0050] Metal compounds
銅、マンガン、ニッケル、コバルト、鉄又は亜鉛の化合物としては、それぞれ以下の ものが例示できる。  Examples of the compound of copper, manganese, nickel, cobalt, iron or zinc are as follows.
Ni化合物: Ni (OH) 、NiCl  Ni compounds: Ni (OH), NiCl
2 2  twenty two
Co化合物: Co (OH) NO、 Co (OH) 、 CoSO、 CoCl  Co compounds: Co (OH) NO, Co (OH), CoSO, CoCl
3 2 4 2  3 2 4 2
Cu化合物: Cu (OH) 、 Cu (NO ) 、 CuSO、 CuCl、  Cu compounds: Cu (OH), Cu (NO), CuSO, CuCl,
2 3 2 4 2  2 3 2 4 2
Cu (CH COO)  Cu (CH COO)
3 2  3 2
Mn化合物: MnNO、 MnSO、 MnCl  Mn compounds: MnNO, MnSO, MnCl
3 4 2  3 4 2
Fe化合物: Fe (OH) 、Fe (OH) 、 FeCl  Fe compounds: Fe (OH), Fe (OH), FeCl
2 3 3  2 3 3
Zn化合物: Zn (NO ) 、 ZnSO、 ZnCl  Zn compounds: Zn (NO), ZnSO, ZnCl
3 2 4 2  3 2 4 2
[0051] 第 1乃至第 3の製造方法で得られる水性分散液中の過酸化チタン濃度(共存する 銅、マンガン、ニッケル、コバルト、鉄又は亜鉛を含む合計量)は、 0. 05〜15wt%が 好ましぐ 0. ;!〜 5wt%がより好ましい。また、銅、マンガン、ニッケル、コバルト、鉄、 亜鉛の配合量については、チタンと金属成分とのモル比で、本発明からは 1: 1が望 ましいが、水性分散液の安定性から 1 : 0. 01〜; 1 : 0. 5が好ましく、 1 : 0. 03〜; 1 : 0. 1がより好ましい。  [0051] The concentration of titanium peroxide in the aqueous dispersion obtained by the first to third production methods (total amount including coexisting copper, manganese, nickel, cobalt, iron, or zinc) is 0.05 to 15 wt%. Is preferred 0.;! ~ 5wt% is more preferred. In addition, regarding the blending amount of copper, manganese, nickel, cobalt, iron, and zinc, 1: 1 is preferable from the present invention in terms of the molar ratio of titanium to the metal component, but it is 1 from the stability of the aqueous dispersion. : 0. 01 ~; 1: 0. 5 is preferable, 1: 0. 03 ~; 1: 0. 1 is more preferable.
[0052] 本発明の対象となる基体は特に限定されるものではなぐ各種の無機系基体及び 有機系基体、或いは、それらの組み合わせを使用することができる。  [0052] The substrate to which the present invention is applied is not particularly limited, and various inorganic substrates and organic substrates, or combinations thereof can be used.
[0053] 無機系基体としては、例えば、透明又は不透明ガラス、金属、金属酸化物、セラミツ タス、コンクリート、モルタル、石材等の物質からなる基体が挙げられる。また、有機系 基体としては、例えば、有機樹脂、木材、紙等の物質からなる基体が挙げられる。有 機樹脂をより具体的に例示すると、例えば、ポリエチレン、ポリプロピレン、ボリカーボ ネート、ポリアタリレート、ポリエステノレ、ポリアミド、ポリウレタン、 ABS樹月旨、ポリ塩ィ匕 ビュル、シリコーン、メラミン樹脂、尿素樹脂、シリコーン樹脂、フッ素樹脂、セルロー ス、エポキシ変性樹脂等が挙げられる。基体の形状も特に限定されるものではなぐ 立方体、直方体、球形、シート形、繊維状等の任意の形状をとることができる。なお、 基体は多孔質であってもよい。基体としては、吸水性を有する建築 ·土木用基板や、 機器、装置搬送用ボディ、表示画面が好適である。 [0053] Examples of the inorganic substrate include a substrate made of a material such as transparent or opaque glass, metal, metal oxide, ceramics, concrete, mortar, and stone. Examples of the organic base include a base made of a substance such as an organic resin, wood, and paper. More specific examples of the organic resin include, for example, polyethylene, polypropylene, polycarbonate, polyacrylate, polyesterolate, polyamide, polyurethane, ABS tree, and polysalt. Examples include bur, silicone, melamine resin, urea resin, silicone resin, fluororesin, cellulose, and epoxy-modified resin. The shape of the substrate is not particularly limited, and may be any shape such as a cube, a rectangular parallelepiped, a sphere, a sheet, and a fiber. The substrate may be porous. As the substrate, a water-absorbing construction / civil engineering substrate, a device, a device transport body, and a display screen are suitable.
[0054] 基体の表面は塗装されていてもよぐ塗装材としては、アルキド樹脂、アクリル樹脂、 ァミノ樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、アクリルシ リコン樹脂、不飽和ポリエステル樹脂、紫外線硬化樹脂、フエノール樹脂、塩化ビニ ル樹脂、含成樹脂ェマルジヨン等の合成樹脂と着色剤とを含有する!、わゆるペンキ 塗料を好適に使用することができる。  [0054] The coating material on which the surface of the substrate may be painted is alkyd resin, acrylic resin, amino resin, polyurethane resin, epoxy resin, silicone resin, fluororesin, acrylic silicon resin, unsaturated polyester resin, ultraviolet ray It contains a synthetic resin such as a curable resin, phenol resin, vinyl chloride resin, component resin emulsion, and coloring agent.
[0055] 前記塗装膜の厚みは 0· 01〜; 100 m力 S好ましく、 0· ;!〜 50 m力 Sより好ましく、 特に、 0. 5 m〜; 10 mが好ましい。  [0055] The thickness of the coating film is preferably from 0.01 to 100 m force S, more preferably from 0 to 50 m force S, and particularly preferably from 0.5 m to 10 m.
[0056] また、塗装手段としては、例えば、スプレーコーティング法、ディップコーティング法 、フローコーティング法、スピンコーティング法、ロールコーティング法、刷毛塗り、スポ ンジ塗り等が適用できる。なお、塗装膜の硬度、基体との密着性等の物理的性能を 向上させるために、基体及び塗装膜の許容範囲内で加熱することが望ましい。  [0056] Further, as the painting means, for example, a spray coating method, a dip coating method, a flow coating method, a spin coating method, a roll coating method, a brush coating, a sponge coating or the like can be applied. In order to improve physical properties such as the hardness of the coating film and adhesion to the substrate, it is desirable to heat within the allowable range of the substrate and the coating film.
[0057] 本発明では、前記の陽イオン;正電荷を有する導電体又は誘電体;導電体 誘電 体又は半導体の複合体からなる群から選択される 1種又は 2種以上の正電荷物質が 、誘電体である撥水剤又は吸水防止剤と共に基体表面に配置される。  [0057] In the present invention, one or more positively charged substances selected from the group consisting of the cation; a positively charged conductor or dielectric; a conductor dielectric or semiconductor composite, It is disposed on the surface of the substrate together with a water repellent or water absorption preventing agent that is a dielectric.
[0058] 本発明に用いる撥水剤又は吸水防止剤としては、シラン系、シリコネート系、シリコ ーン系、シリコーン及びシラン複合系、フッ素系の撥水剤又は吸水防止剤、或いは、 これらの少なくとも 2種の混合物が好ましぐ特にフッ素系の撥水剤又は吸水防止剤 が好ましい。このような材料は、非多孔質の基体表面に適用される場合には撥水剤と よばれ、また、多孔質の基体表面に適用される場合には基体への吸水を防止できる ことから吸水防止剤とよばれる。  [0058] Examples of the water repellent or water absorption inhibitor used in the present invention include silane-based, siliconate-based, silicone-based, silicone and silane composite-based, fluorine-based water repellent or water-absorbing inhibitor, or at least of these. A mixture of the two is preferred, and a fluorine-based water repellent or water absorption inhibitor is particularly preferred. Such a material is called a water repellent when applied to the surface of a non-porous substrate, and when applied to the surface of a porous substrate, it can prevent water absorption to the substrate. It is called an inhibitor.
[0059] 本発明に用いるシラン系、シリコネート系、シリコーン系、並びに、シリコーン及びシ ラン複合系の撥水剤又は吸水防止剤とは、基体表面に適用した後、撥水剤又は吸 水防止剤の化学成分が基体と反応して化学結合を生じることができるか、又は化学 成分どうしが架橋することによって、ある程度耐久性に優れた膜を形成できる材料を いう。このような材料は撥水性又は吸水防止性を速やかに発現し、基体に対する撥 水性又は吸水防止性が長期にわたり維持され、且つ耐候性に優れるので有利であ る。なお、前記撥水剤又は吸水防止剤は既述した陽イオンをその化学構造中に有す るあのであよレヽ。 [0059] The silane-based, siliconate-based, silicone-based, and silicone-silane-based water-repellent agent or water-absorbing agent used in the present invention is a water-repellent agent or water-absorbing agent after being applied to the substrate surface. Can react with the substrate to form a chemical bond or chemical A material that can form a film with a certain degree of durability by cross-linking components. Such a material is advantageous because it quickly develops water repellency or water absorption resistance, maintains water repellency or water absorption resistance to the substrate for a long period of time, and is excellent in weather resistance. The water repellent or water absorption inhibitor has the above-described cation in its chemical structure.
[0060] シラン系、シリコーン及びシラン複合系、シリコネート系、シリコーン系、並びに、フッ 素系の撥水剤又は吸水防止剤は種々のものが知られており、本発明においてはい ずれのものを用いることもでき、さらに 2種以上を併用することもできる。シラン系、シリ コネート系、シリコーン系、並びに、シリコーン及びシラン複合系の撥水剤又は吸水 防止剤のなかで、本発明に用いる撥水剤又は吸水防止剤として好ましレ、ものとして は、加水分解性シラン、水、及び界面活性剤からなるシラン系撥水剤又は吸水防止 剤、さらにこれに加水分解性シランの加水分解物及び/又は部分加水分解物並び に各種のオルガノポリシロキサンから選択される化合物を含むシリコーン及びシラン 複合系撥水剤又は吸水防止剤、並びに、オルガノシリコネートのアルカリ金属塩の水 溶液からなるシリコネート系撥水剤又は吸水防止剤が挙げられる。  [0060] Various silane-based, silicone and silane composite-based, siliconate-based, silicone-based, and fluorine-based water repellents or water absorption inhibitors are known, and any one is used in the present invention. Two or more types can be used in combination. Of the silane, siliconate, silicone, and silicone and silane composite water repellents or water absorption inhibitors, they are preferred as the water repellents or water absorption inhibitors used in the present invention. A silane-based water repellent or water-absorbing agent composed of degradable silane, water, and a surfactant, and further selected from hydrolyzate and / or partial hydrolyzate of hydrolyzable silane and various organopolysiloxanes. Silicone-containing silane-based water repellent or water absorption inhibitor, and siliconate-based water repellent or water absorption inhibitor composed of an aqueous solution of an alkali metal salt of an organosiliconate.
[0061] 前記シラン系撥水剤又は吸水防止剤に用いる加水分解性シランとしては各種のも のが知られている力 例えば、テトラアルコキシシラン、アルキルトリアルコキシシラン、 ジアルキルジアルコキシシラン、及びトリアルキルアルコキシシランが挙げられ、これら 力、ら選択される 1種又は 2種以上を用いることができる。前記界面活性剤は特に限定 されず、ァユオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、 及びこれらの混合物を用いることができる。  [0061] Various known hydrolyzable silanes used in the silane-based water repellent or water absorption inhibitor include, for example, tetraalkoxysilane, alkyltrialkoxysilane, dialkyldialkoxysilane, and trialkyl. One or two or more selected from these forces can be used. The surfactant is not particularly limited, and any of a cationic surfactant, a cationic surfactant, a nonionic surfactant, and a mixture thereof can be used.
[0062] 前記シリコーン及びシラン複合系撥水剤又は吸水防止剤としては、前記加水分解 性シラン、界面活性剤、及び、前記加水分解性シランの加水分解物及び/又は部 分加水分解物を含んでなるもの、並びに、前記加水分解性シラン、界面活性剤、及 び、各種のオルガノポリシロキサンから選択される化合物を含んでなるもの、が挙げら れる。前記各種のオルガノポリシロキサンとしては、ケィ素原子に結合したアルコキシ 基、アルケノキシ基、アミノ基、アミド基、ァセトキシ基、及びケトォキシム基等から選ば れる加水分解性基を有するオルガノポリシロキサンを用いることができる。前記シリコ ーン及びシラン複合系撥水剤又は吸水防止剤の具体例としては、例えば、ドライシ ール S (商品名、東レ 'ダウコーユング 'シリコーン株式会社製)が挙げられる。 [0062] The silicone and silane composite water repellent or water absorption inhibitor includes the hydrolyzable silane, a surfactant, and a hydrolyzate and / or partial hydrolyzate of the hydrolyzable silane. And those comprising a compound selected from hydrolyzable silanes, surfactants, and various organopolysiloxanes. As the various organopolysiloxanes, organopolysiloxanes having hydrolyzable groups selected from alkoxy groups, alkenoxy groups, amino groups, amide groups, acetoxy groups, ketoxime groups, and the like bonded to a silicon atom may be used. it can. Silico Specific examples of water and silane composite water repellents or water absorption inhibitors include, for example, Dry Seal S (trade name, manufactured by Toray “Dow Cowing” Silicone Co., Ltd.).
[0063] 前記シリコネート系撥水剤又は吸水防止剤としては、公知のものが使用可能である 力 ナトリウムメチルシリコネート水溶液、ナトリウムプロビルシリコネート水溶液、力リウ ムメチルシリコネ一ト水溶液、及びカリゥムプロピルシリコネ一ト水溶液等のアルキル シリコネートのアルカリ金属塩の水溶液;並びに特開平 5— 214251号公報に記載さ れたアルカリ金属アミノオルガノ官能性シリコネート水溶液が挙げられる。このようなシ リコネート系撥水剤又は吸水防止剤として市販されているものには、ドライシール C、 及びドライシール E (V、ずれも商品名:東レ 'ダウコーユング社製)がある。 [0063] As the siliconate-based water repellent or water absorption inhibitor, known ones can be used. Strength Sodium methyl siliconate aqueous solution, sodium probil siliconate aqueous solution, strength sodium methylsilicone aqueous solution, and potassium propyl Examples include aqueous solutions of alkali metal salts of alkyl siliconates such as aqueous siliconate solutions; and aqueous alkali metal aminoorganofunctional siliconates described in JP-A-5-214251. Examples of such commercially available silicone-based water repellents or water absorption inhibitors include Dry Seal C and Dry Seal E (V, trade name: Toray Dow Co., Ltd.).
[0064] また、シリコーン系撥水剤又は吸水防止剤としては、シリコーン水性ェマルジヨン樹 脂組成物等の、水酸基又はアルコキシ基等の加水分解性基を有するシリコーンレジ ン、ヒドロキシシリル基含有ジオルガノポリシロキサン及び加水分解性基含有シラン又 は加水分解性基 (但し水酸基を除く)含有オルガノポリシロキサンからなる室温硬化 型シリコーンレジン系撥水剤又は吸水防止剤が挙げられる。 [0064] Examples of the silicone-based water repellent or water absorption inhibitor include silicone resins having hydrolyzable groups such as hydroxyl groups or alkoxy groups, such as silicone aqueous emulsion resin compositions, and hydroxysilyl group-containing diorganopolyesters. Examples thereof include room temperature curable silicone resin water repellents or water absorption inhibitors made of siloxane and hydrolyzable group-containing silane or hydrolyzable group (excluding hydroxyl group) -containing organopolysiloxane.
[0065] また、本発明に用いるフッ素系撥水剤又は吸水防止剤とは、パーフルロロアルキル 基含有化合物等の含フッ素化合物又は含フッ素化合物含有組成物である。なお、基 体表面への吸着性が高い含フッ素化合物を選択した場合は、基体表面に適用した 後、撥水剤又は吸水防止剤の化学成分が基体と反応して化学結合を生じたり、又は 化学成分どうしが架橋したりする必要はかならずしもない。 [0065] The fluorine-based water repellent or water absorption inhibitor used in the present invention is a fluorine-containing compound or a fluorine-containing compound-containing composition such as a perfluoroalkyl group-containing compound. When a fluorine-containing compound having high adsorptivity to the substrate surface is selected, after being applied to the substrate surface, the chemical component of the water repellent or water absorption inhibitor reacts with the substrate to form a chemical bond, or It is not always necessary for the chemical components to be cross-linked.
[0066] このようなフッ素系撥水剤又は吸水防止剤として用いることができる含フッ素化合物 は、分子中にパーフルォロアルキル基を含有する分子量 1 , 000—20, 000のもの が好ましぐ具体的には、パーフルォロスルホン酸塩、パーフルォロスルホン酸アンモ ユウム塩、パーフルォロカルボン酸塩、パーフルォロアルキルべタイン、パーフルォロ アルキルエチレンオキサイド付加物、パーフルォロアルキルアミンォキシド、パーフル ォロアルキルリン酸エステル、及びパーフルォロアルキルトリメチルアンモニゥム塩等 力 S挙げられる。中でも、基体表面への吸着性に優れることから、パーフルォロアルキ ルリン酸エステル、及びパーフルォロアルキルトリメチルアンモニゥム塩が好まし!/、。 このような材料としては、サーフロン S— 112、及びサーフロン S - 121 (共に商品名、 セイミケミカル株式会社製)等が市販されて!/、る。 [0066] The fluorine-containing compound that can be used as such a fluorine-based water repellent or water absorption inhibitor preferably has a molecular weight of 1,000 to 20,000 containing a perfluoroalkyl group in the molecule. Specifically, perfluorosulfonic acid salt, perfluorosulfonic acid ammonium salt, perfluorocarboxylic acid salt, perfluoroalkyl betaine, perfluoroalkyl ethylene oxide adduct, perfluoro Examples include cycloalkylamine oxides, perfluoroalkyl phosphate esters, and perfluoroalkyltrimethylammonium salts. Of these, perfluoroalkyl phosphate ester and perfluoroalkyltrimethyl ammonium salt are preferred because of their excellent adsorptivity to the substrate surface! Such materials include Surflon S-112 and Surflon S-121 (both trade names, Seimi Chemical Co., Ltd.) is commercially available!
[0067] その他のフッ素系撥水剤又は吸水防止剤としては、フッ素原子を含有するォレフィ ンの 2種以上からなる共重合体、フッ素原子を含有するォレフインと炭化水素モノマ 一との共重合体、及びフッ素原子を含有するォレフインの 2種以上からなる共重合体 と熱可塑性アクリル樹脂との混合物からなる群より選ばれた少なくとも 1種のフッ素樹 脂と界面活性剤からなるフッ素樹脂ェマルジヨン、並びに硬化剤(特開平 5— 12488 0号公報、特開平 5— 117578号公報、特開平 5— 179191号公報参照)及び/又 は前記シラン系撥水剤又は吸水防止剤からなる組成物が挙げられる(特開 2000— 1 21543号公報、特開 2003— 26461号公報参照)。このフッ素樹脂ェマルジヨンとし ては、市販されているものを使用することができ、ダイキン工業 (株)よりゼッフルシリー ズとして、旭硝子 (株)よりルミフロンシリーズとして購入可能である。前記硬化剤として は、メラミン系硬化剤、アミン系硬化剤、多価イソシァネート系硬化剤、及びブロック多 価イソシァネート系硬化剤が好ましく使用される。中でも、常温硬化し現場施工が可 能となる点から多価イソシァネート系硬化剤が好ましい。  [0067] Other fluorine-based water repellents or water absorption inhibitors include copolymers of two or more kinds of olefins containing fluorine atoms, copolymers of olefins containing fluorine atoms and hydrocarbon monomers. And fluorine resin emulsion composed of at least one fluorine resin selected from the group consisting of a mixture of two or more kinds of olefins containing fluorine atoms and a thermoplastic acrylic resin, and a surfactant, and Examples include a curing agent (see JP-A-5-124880, JP-A-5-117578, JP-A-5-179191) and / or a silane-based water repellent or water absorption inhibitor. (Refer to Unexamined-Japanese-Patent No. 2000-1 21543, Unexamined-Japanese-Patent No. 2003-26461). As this fluororesin emulsion, commercially available products can be used, which can be purchased from Daikin Industries Co., Ltd. as a jeffle series and from Asahi Glass Co., Ltd. as a Lumiflon series. As the curing agent, a melamine curing agent, an amine curing agent, a polyvalent isocyanate curing agent, and a block polyvalent isocyanate curing agent are preferably used. Of these, polyisocyanate-based curing agents are preferred because they can be cured at room temperature and can be applied on site.
[0068] 特に、フッ素系の撥水剤又は吸水防止剤を使用する場合は、基体表面への紫外 線照射や太陽光(特に紫外線)等の電磁波の照射を制御することで、基体表面の特 性を撥水性から親水性まで変化させることができる。これにより、基体に求められる特 性に応じてその保護態様を自在に変更することができるので、水と油の接触角度特 性並びに表面正電荷特性の双方を生力、して使用する場合にはフッ素系撥水剤又は 吸水防止剤の使用が特に好ましレ、。  [0068] In particular, when a fluorine-based water repellent or water absorption inhibitor is used, by controlling the irradiation of electromagnetic waves such as ultraviolet rays and sunlight (particularly ultraviolet rays) onto the substrate surface, the surface of the substrate surface is characterized. The property can be changed from water repellency to hydrophilicity. As a result, the protection mode can be freely changed according to the characteristics required of the substrate, so that both the contact angle characteristics of water and oil and the surface positive charge characteristics are used as vitality. Is particularly preferred to use fluorine-based water repellents or water absorption inhibitors.
[0069] 本発明の好ましい態様では、前記撥水剤又は吸水防止剤と、陽イオン;正電荷を 有する導電体又は誘電体;導電体 誘電体又は半導体の複合体;又はこれらの 2種 以上の組み合わせである前記正電荷物質とが混合されて、混合物として基体表面上 に配置される。前記混合物は、水、アルコール等の水性媒体、アセトン等の有機溶媒 といった適切な媒体に、前記撥水剤又は吸水防止剤と、前記正電荷物質とを混合す ることによって得ることができ、好ましくは、溶液、懸濁液若しくはェマルジヨンの形態 をとること力 Sできる。  [0069] In a preferred embodiment of the present invention, the water repellent or water absorption inhibitor and a cation; a positively charged conductor or dielectric; a conductor dielectric or semiconductor composite; or two or more of these The positively charged substance that is a combination is mixed and disposed on the substrate surface as a mixture. The mixture can be obtained by mixing the water repellent or water absorption inhibitor and the positively charged substance in an appropriate medium such as water, an aqueous medium such as alcohol, or an organic solvent such as acetone. Can take the form of solutions, suspensions or emulsions.
[0070] 前記混合物は、好ましくは塗布されて基体表面上に配置される。基体への塗布方 法としては、刷毛塗り、ローラーコート、及びスプレーコート等の公知の方法を用いる こと力 Sできる。基体表面に前記混合物を塗布した後は、乾燥させることが好ましい。一 方、例えば、基体の注型成形中に、基体を構成する物質の未硬化液に、当該液より 高又は低比重の前記混合物の所定量を混入し、所定時間放置後に当該液を硬化さ せることによって基体の表層中に前記撥水剤又は吸水防止剤と前記正電荷物質を 配置することもできる。これにより、基体表面上及び/又は基体表層中に撥水性又は 吸水防止性、並びに、防汚性に優れた層を形成することができ、これによつて基体表 面の汚染を低減でき、多孔質基体の場合は基体内部への水の侵入を防止すること 力できる。なお、基体が塗装される場合には、塗料中に前記撥水剤又は吸水防止剤 と前記正電荷物質を含ませてもよレ、。 [0070] The mixture is preferably applied and placed on the substrate surface. How to apply to substrate As a method, it is possible to use a known method such as brush coating, roller coating, and spray coating. After the mixture is applied to the substrate surface, it is preferably dried. On the other hand, for example, during casting of the substrate, a predetermined amount of the mixture having a higher or lower specific gravity than the liquid is mixed into an uncured liquid of the substance constituting the substrate, and the liquid is cured after being left for a predetermined time. In this way, the water repellent or water absorption inhibitor and the positively charged substance can be arranged in the surface layer of the substrate. As a result, a layer excellent in water repellency or water absorption resistance and antifouling property can be formed on the substrate surface and / or in the substrate surface layer, thereby reducing contamination of the substrate surface and making it porous. In the case of a porous substrate, water can be prevented from entering the substrate. When the substrate is coated, the water repellent or water absorption inhibitor and the positively charged substance may be included in the paint.
[0071] 図 3は撥水剤又は吸水防止剤と正電荷物質の基体表面上における配置の一態様 を示す概念図であり、撥水剤又は吸水防止剤と正電荷物質の混合物からなる層が基 体表面に形成される態様を示す。膜の厚みは 0· 01〜; l OO ^ m力 S好ましく、 0. ;!〜 5 C^ m力 Sより好ましく、特に、 0. 5 m〜 10 mが好ましい。正電荷物質は膜の表面 に露出する必要はなぐ全て膜内に存在してよい。また、前記層は連続層である必要 はなぐ不連続層であってもよい。図示を省略するが、前記層内では、誘電分極によ り、撥水剤又は吸水防止剤の正電荷物質に接する側には負電荷が発生し、また、正 電荷物質から離隔した側の層の表面には正電荷が発生する。この正電荷によって、 後述するように基体表面の汚染防止を図ることができる。しかも、撥水剤又は吸水防 止剤の作用により層自体に撥水性を付与できるので、当該特性による汚染防止の更 なる向上をも図ることができる。  FIG. 3 is a conceptual diagram showing one embodiment of the arrangement of the water repellent or water absorption inhibitor and the positively charged substance on the surface of the substrate, and a layer made of a mixture of the water repellent or water absorption inhibitor and the positively charged substance. An embodiment formed on the surface of the substrate is shown. The thickness of the membrane is preferably from 0 · 01 to; lOO ^ m force S, more preferably from 0.;! To 5 C ^ m force S, and particularly preferably from 0.5 m to 10 m. Any positively charged material may be present in the membrane, not necessarily exposed on the surface of the membrane. Further, the layer need not be a continuous layer but may be a discontinuous layer. Although illustration is omitted, in the layer, due to dielectric polarization, a negative charge is generated on the side of the water repellent or water absorption inhibitor that is in contact with the positively charged substance, and the layer on the side separated from the positively charged substance. A positive charge is generated on the surface. This positive charge can prevent contamination of the substrate surface as will be described later. Moreover, since the water repellent can be imparted to the layer itself by the action of the water repellent or the water absorption preventive agent, it is possible to further improve the prevention of contamination by the characteristics.
[0072] 前記混合物には、さらに所望により基体表面の意匠性を高めるための顔料分散体 を添加することができる。本発明に用いる顔料は特に限定されず、無機系顔料及び 有機系顔料を用いることができ、これらの片方を用いることも又は両者を併用すること もできる。  [0072] If desired, a pigment dispersion for enhancing the design of the substrate surface can be added to the mixture. The pigment used in the present invention is not particularly limited, and inorganic pigments and organic pigments can be used. One of these can be used, or both can be used in combination.
顔料及び/又は染料として有機系顔料及び/又は染料を用いた場合であっても、 驚くべきことに、本発明の方法では、該有機系顔料及び/又は染料の褪色は抑制さ れる。特に負電荷を有するものには有効である。 [0073] 前記顔料分散体は、顔料を均一かつ安定に分散したものであればよぐそれ以外 に特に制限はない。顔料分散体は、公知の方法に従って、分散機を使用し、分散剤 を用いて顔料を水等の液体中に分散したものを用いることができる。 Even when organic pigments and / or dyes are used as the pigments and / or dyes, surprisingly, in the method of the present invention, the fading of the organic pigments and / or dyes is suppressed. This is particularly effective for those having a negative charge. [0073] The pigment dispersion is not particularly limited as long as the pigment is uniformly and stably dispersed. As the pigment dispersion, a dispersion in which a pigment is dispersed in a liquid such as water using a dispersing agent can be used according to a known method.
[0074] 前記顔料のうち、無機顔料としては、金属酸化物系、複合酸化物系、クロム酸塩系 、硫化物系、リン酸塩系、及び金属錯塩系の顔料、カーボンブラック、金属粉、示温 顔料、蓄光顔料、真珠顔料、塩基性顔料、鉛白等が挙げられる。また有機顔料として は、ァゾ系、フタロシアニン系、アンスラキノン系、キナクリドン系、インジゴ系、ジォキ サジン系、ペリレン系、ペリノン系、イソインドリノン系、イソインドリン系、金属錯塩系、 キノフタロン系、及びジケトピロロピロール系顔料、ァノレ力リブノレー、ァニリンブラック、 蛍光顔料等が挙げられる。これらの顔料は単独であるいは二種類以上を併用して用 いること力 Sでさる。  [0074] Among the pigments, inorganic pigments include metal oxide, composite oxide, chromate, sulfide, phosphate, and metal complex pigments, carbon black, metal powder, Indicating pigments, luminous pigments, pearl pigments, basic pigments, lead white and the like. Organic pigments include azo, phthalocyanine, anthraquinone, quinacridone, indigo, dioxazine, perylene, perinone, isoindolinone, isoindoline, metal complex, quinophthalone, and Examples thereof include diketopyrrolopyrrole pigments, anole strength ribanol, aniline black, and fluorescent pigments. These pigments can be used alone or in combination of two or more.
[0075] 例えば、顔料を水中に分散して水性顔料分散体を得る場合に用いる分散剤として は、ノユオン性分散剤、ァユオン性分散剤、両性分散剤、酸価が 50〜250の水溶性 樹脂性分散剤、及び、酸価が 50〜250のェマルジヨン樹脂性分散剤が挙げられる。 これらの分散剤は単独で、あるいは二種類以上を併用して用いることができる。  [0075] For example, as a dispersant used when an aqueous pigment dispersion is obtained by dispersing a pigment in water, a nooionic dispersant, an ayuonic dispersant, an amphoteric dispersant, a water-soluble resin having an acid value of 50 to 250 And an emulsion resinous dispersant having an acid value of 50 to 250. These dispersants can be used alone or in combination of two or more.
[0076] 前記ノニオン性分散剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシ エチレンアルキルァリールエーテル、ポリオキシエチレンポリオキシプロピレンブロック ポリマー、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル 、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、及び ポリオキシエチレン脂肪酸エステル等が挙げられる。  [0076] Examples of the nonionic dispersant include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene polyoxypropylene block polymer, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester Glycerin fatty acid ester, and polyoxyethylene fatty acid ester.
[0077] 前記ァニオン分散剤としては、脂肪酸塩、アルキル硫酸エステル塩、アルキルァリ 一ルスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、 アルキルジァリールエーテルジスルホン酸塩、アルキル燐酸塩、ポリオキシエチレン アルキルエーテル硫酸塩、ポリオキシエチレンアルキルァリールエーテル硫酸塩、ナ フタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル燐酸エステル塩、 ポリオキシエチレングリセロール脂肪酸エステル塩、グリセロールポレイド脂肪酸エス テル塩、及びトリポリリン酸ソーダ等が挙げられる。中でも、前記トリポリリン酸ソーダと 前記その他のァユオン分散剤との混合物を配合することが、水性顔料分散体の安定 性向上に有効であるので好ましい。 [0077] Examples of the anionic dispersant include fatty acid salt, alkyl sulfate ester salt, alkyl aryl sulfonate, alkyl naphthalene sulfonate, dialkyl sulfosuccinate, alkyl dialyl ether disulfonate, alkyl phosphate, polyoxy Ethylene alkyl ether sulfate, polyoxyethylene alkyl aryl ether sulfate, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl phosphate ester salt, polyoxyethylene glycerol fatty acid ester salt, glycerol pore fatty acid ester salt, and Examples include sodium tripolyphosphate. Among them, it is possible to stabilize the aqueous pigment dispersion by blending a mixture of the sodium tripolyphosphate and the other cation dispersant. This is preferable because it is effective in improving the properties.
[0078] 前記両性分散剤としては、アルキルべタイン、アルキルアミンオキサイド、及びレシ チン等が挙げられる。 [0078] Examples of the amphoteric dispersant include alkylbetaines, alkylamine oxides, and lecithin.
[0079] 前記酸価が 50〜250の水溶性樹脂性分散剤としては、アクリル樹脂、アクリルスチ レン樹脂、及びスチレンマレイン酸樹脂等が挙げられ、酸価が 50〜250のェマルジョ ン樹脂性分散剤としては、アクリルェマルジヨン樹脂、及びアクリルスチレンェマルジ ヨン樹脂等が挙げられる。  [0079] Examples of the water-soluble resinous dispersant having an acid value of 50 to 250 include an acrylic resin, an acrylic styrene resin, and a styrene maleic acid resin, and an emulsion resinous dispersant having an acid value of 50 to 250. Examples thereof include acrylic emulsion resins and acrylic styrene emulsion resins.
[0080] 前記分散剤は、顔料 100質量部に対して 0.;!〜 100質量部の範囲で用いることが 好ましぐ 0.;!〜 60質量部の範囲で用いることが好ましい。  [0080] The dispersant is preferably used in the range of 0 .;! To 100 parts by weight with respect to 100 parts by weight of the pigment, and preferably used in the range of 0 .;! To 60 parts by weight.
[0081] 前記顔料分散体には、前記顔料、前記分散剤のほか、水や各種有機溶剤、さらに 必要に応じて水溶性溶剤、湿潤剤、増粘剤、消泡剤、及び防腐剤等から選択される 材料を一種又は二種以上含有させることができる。  [0081] The pigment dispersion includes, in addition to the pigment and the dispersant, water and various organic solvents, and if necessary, a water-soluble solvent, a wetting agent, a thickener, an antifoaming agent, and an antiseptic. One or two or more selected materials can be contained.
[0082] 更に、前記混合物には、所望により基体表面に層を形成しやすくするためのバイン ダー樹脂をさらに添加することもできる。バインダー樹脂は前記混合物に直接配合し てもよく、前記水性顔料分散体に予め配合してもよい。このようなバインダー樹脂とし ては、天然樹脂や各種の合成樹脂系のェマルジヨンが例示される。天然樹脂系のバ インダー樹脂としては、ロジン、セラック、カゼイン、セルロース誘導体、及び澱粉が例 示される。合成樹脂系のェマルジヨンとしては、ポリ酢酸ビュル;エチレン '酢酸ビニ ル共重合体;酢酸ビュル'アクリル酸エステル共重合体;酢酸ビュル ·アクリル酸共重 合体;エチレン ·アクリル酸共重合体;ポリビュルアルコール;アクリル樹脂;アクリル酸 メチル、アクリル酸ェチル、アクリル酸ブチル、アクリル酸 2—ェチルへキシル等のァク リル酸エステルからなるアクリル酸エステル樹脂;スチレン .アクリル酸エステル共重合 体;メタクリル酸エステル樹脂;アクリル酸メタクリル酸共重合体;シリコーン変性アタリ ル樹脂;エポキシ樹脂;フッ素樹脂;ポリウレタン樹脂、及びこれらの混合物又は共重 合体等からなるェマルジヨンが例示される。特に得られる塗膜の耐久性が優れること から、アクリル酸エステルのェマルジヨンが好ましい。さらにバインダー樹脂の酸価は 50未満であることが好ましぐさらに好ましくは 30未満であり、特に好ましくは 10未満 である。 [0083] 前記混合物には、さらに所望により、レべリング剤、シランカップリング剤等の添カロ 剤を加えることができる。 [0082] Further, a binder resin for facilitating formation of a layer on the surface of the substrate may be further added to the mixture as desired. The binder resin may be blended directly into the mixture or may be blended in advance with the aqueous pigment dispersion. Examples of such binder resins include natural resins and various synthetic resin emulsions. Examples of natural resin binder resins include rosin, shellac, casein, cellulose derivatives, and starch. Synthetic resin emulsions include poly (ethylene acetate); ethylene 'vinyl acetate copolymer; acetate acetate' acrylate ester copolymer; acetate acetate · acrylic acid copolymer; ethylene · acrylic acid copolymer; Alcohol; Acrylic resin; Methyl acrylate, Ethyl acrylate, Butyl acrylate, Acrylate ester resin consisting of acrylate such as 2-ethylhexyl acrylate; Styrene. Acrylate ester copolymer; Methacrylate Examples thereof include an emulsion made of a resin; an acrylic acid / methacrylic acid copolymer; a silicone-modified talyl resin; an epoxy resin; a fluororesin; a polyurethane resin, and a mixture or copolymer thereof. In particular, an emulsion of an acrylate ester is preferred because the resulting coating film has excellent durability. Further, the acid value of the binder resin is preferably less than 50, more preferably less than 30, and particularly preferably less than 10. [0083] If desired, the mixture may further contain an additive such as a leveling agent or a silane coupling agent.
[0084] レべリング剤としてはシリコーンオイルが好ましぐ各種のものを使用することができ る。なかでも、ポリエーテル変性シリコーンオイルが好ましい。具体的には、分子鎖末 端あるいは側鎖に、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブチレン オキサイド、ポリエチレンオキサイド ポリプロピレンオキサイド共重合ブロック、ポリエ チレンオキサイドーポリブチレンオキサイド共重合ブロック、ポリプロピレンオキサイド ーポリブチレンオキサイド共重合ブロック等の構造を有するオルガノポリシロキサンが 挙げられる。その中でも、ポリエチレンオキサイド、ポリプロピレンオキサイド又はポリ エチレンオキサイド ポリプロピレンオキサイド共重合ブロックがアルキレン基を介し てケィ素原子に結合したオルガノポリシロキサンが好ましい。このようなポリエーテル 変性シリコーンオイルは公知の方法で製造することができ、例えば、特開平 9 165 318号公報に記載の方法により製造することができる。このようなポリエーテル変性シ リコーンオイルとしては、 TSF4445、TSF4446 (いずれも商品名)(以上、 GE東芝 シリコーン株式会社製)、 KF 352, KF— 353 (いずれも商品名) (以上、信越化学 工業製)、 SH3746 (商品名、東レ 'ダウコーユング'シリコーン株式会社製)がある。 [0084] As the leveling agent, various types of silicone oil can be used. Of these, polyether-modified silicone oil is preferable. Specifically, at the molecular chain end or side chain, polyethylene oxide, polypropylene oxide, polybutylene oxide, polyethylene oxide, polypropylene oxide copolymer block, polyethylene oxide-polybutylene oxide copolymer block, polypropylene oxide-polybutylene oxide copolymer. An organopolysiloxane having a structure such as a block may be mentioned. Of these, an organopolysiloxane in which a polyethylene oxide, polypropylene oxide, or polyethylene oxide polypropylene oxide copolymer block is bonded to a silicon atom via an alkylene group is preferable. Such a polyether-modified silicone oil can be produced by a known method, for example, by the method described in JP-A-9 165 318. Such polyether-modified silicone oils include TSF4445 and TSF4446 (both trade names) (named GE Toshiba Silicone Co., Ltd.), KF 352, KF-353 (both trade names) (named Shin-Etsu Chemical Co., Ltd.) And SH3746 (trade name, manufactured by Toray 'Dowcoung' Silicone Co., Ltd.).
[0085] また、アミノ基、エポキシ基、又はメタクリロキシ基を有するシラン化合物、いわゆる シランカップリング剤を配合することも可能である。このカップリング剤は、前記撥水剤 又は吸水防止剤と前記正電荷物質とを含む層の硬度や隣接する層との密着性を向 上させることを可能とする。他にも、シリコーンゴム、シリコーンパウダー、及びシリコー ンレジン等から選択される材料を前記混合物に配合してもよい。  [0085] A silane compound having an amino group, an epoxy group, or a methacryloxy group, that is, a so-called silane coupling agent may be blended. This coupling agent makes it possible to improve the hardness of the layer containing the water repellent or water absorption inhibitor and the positively charged substance and the adhesion between adjacent layers. In addition, a material selected from silicone rubber, silicone powder, silicone resin, and the like may be added to the mixture.
[0086] 撥水剤又は吸水防止剤と正電荷物質は他の態様で基体上に配置することもできる 。図 4は、正電荷物質を基体表面に配置し、正電荷物質の表面に撥水材又は吸水 防止剤を非膜形状で配置する態様を示す。絶縁性の撥水剤又は吸水防止剤の膜 内で誘電分極により、正電荷物質に接する側には負電荷が発生し、また、正電荷物 質から離隔した側の膜の表面には正電荷が発生する。  [0086] The water repellent or water absorption inhibitor and the positively charged substance may be arranged on the substrate in other modes. FIG. 4 shows a mode in which a positively charged substance is arranged on the surface of a substrate, and a water repellent material or a water absorption inhibitor is arranged on the surface of the positively charged substance in a non-film form. Due to dielectric polarization in the insulating water repellent or water absorption inhibitor film, negative charges are generated on the side in contact with the positively charged substance, and positive charges are generated on the surface of the film on the side separated from the positively charged substance. Occurs.
[0087] 撥水剤又は吸水防止剤を非膜形状で配置する方法としては、例えば、前記正電荷 物質の表面に有機又は無機物質の原子又は原子団をグラフト化等によって化学修 飾する方法が挙げられる。前記化学修飾される原子又は原子団としてはフッ素原子 を含むものが好ましい。化学修飾用のフッ素化合物としては、例えば、フルォロアル キルアタリレートコポリマーが好ましぐ例えば、ダイキン工業 (株)よりエフトーン GM 101及び GM— 105として市販されている。上記の化学修飾は、前記フッ素化合 物の溶液を基体表面に塗布後、乾燥する工程を少なくとも 1回行うことによって製造 すること力 Sできる。前記塗布方法としては、刷毛塗り、ローラーコート、スプレーコート 等の方法が使用できる。 [0087] As a method of arranging the water repellent or the water absorption inhibitor in a non-film form, for example, chemical modification is performed by grafting organic or inorganic substance atoms or atomic groups onto the surface of the positively charged substance. The method of decorating is mentioned. As the atom or atomic group to be chemically modified, those containing a fluorine atom are preferable. As the fluorine compound for chemical modification, for example, a fluoroalkyl acrylate copolymer is preferred. For example, FT-tone GM 101 and GM-105 are commercially available from Daikin Industries, Ltd. The chemical modification described above can be produced by performing at least one step of drying after applying the solution of the fluorinated compound to the substrate surface. As the coating method, methods such as brush coating, roller coating, and spray coating can be used.
[0088] 本発明では、前記撥水剤又は吸水防止剤と前記正電荷物質を含む層上に更に被 覆層を形成してもよレヽ。被覆層の厚み (ま 0· 01〜; 100〃 m力《好ましく、 0· 05〜50〃 mがより好ましぐ特に、 0· ;!〜 10 mが好ましい。  In the present invention, a cover layer may be further formed on the layer containing the water repellent or water absorption inhibitor and the positively charged substance. The thickness of the coating layer (from 0 · 01 to 100 μm force << preferably, more preferably from 0 · 05 to 50 µm, particularly preferably from 0 ·; to 10 to 10 m.
[0089] 被覆層の材質は特に限定されるものではなぐ任意の有機又は無機物質を使用す ること力 Sでさる。  [0089] The material of the coating layer is not particularly limited, and any organic or inorganic substance can be used.
[0090] 有機物質としては、撥水性又は親水性の高分子材料が好まし!/、。撥水性の高分子 材料としては、ポリエチレン、ポリプロピレン、ポリスチレン等のポリオレフイン;ポリアク リレート、アクリロニトリル 'スチレン共重合体(AS)、アクリロニトリル 'ブタジエン'スチ レン共重合体 (ABS)等のアクリル樹脂;ポリアタリロニトリル;ポリ塩化ビュル、ポリ塩 化ビニリデン等のポリハロゲン化ビニノレ;ポリテトラフルォロエチレン、フルォロェチレ ン 'プロピレン共重合体、ポリクロ口トリフルォロエチレン(PCTFE)、ポリビニリデンフ ルォライド(PVDF)、フッ化ビニリデン 'トリフルォロエチレン共重合体等のフッ素樹 脂;ポリエチレンテレフタラート、ポリカーボネート等のポリエステル;フエノール樹脂; ユリア樹脂;メラミン樹脂;ポリイミド樹脂;ナイロン等のポリアミド樹脂;エポキシ樹脂; ポリウレタン等が挙げられる。  [0090] As the organic substance, a water-repellent or hydrophilic polymer material is preferred! Examples of water-repellent polymer materials include polyolefins such as polyethylene, polypropylene and polystyrene; acrylic resins such as polyacrylate, acrylonitrile 'styrene copolymer (AS), and acrylonitrile' butadiene 'styrene copolymer (ABS); Rononitrile; Polyhalogenated vinylols such as poly (vinyl chloride) and poly (vinylidene chloride); Polytetrafluoroethylene, Fluorethylene (propylene) copolymer, Polychlorinated trifluoroethylene (PCTFE), Polyvinylidene fluoride (PVDF) Fluorine resin such as vinylidene fluoride 'trifluoroethylene copolymer; Polyester such as polyethylene terephthalate and polycarbonate; Phenolic resin; Urea resin; Melamine resin; Polyimide resin; Polyamide resin such as nylon; Epoxy resin; Urethane, and the like.
[0091] 撥水性の高分子材料としてはフッ素樹脂が好ましぐ特に、強誘電性と撥水性を有 するフッ化ビニリデン 'トリフルォロエチレン共重合体、ポリビニリデンフルオライドの β 型結晶体及びそれを含有するものが好ましレ、。フッ素樹脂としては市販のものを使用 することが可能であり、市販品としては、例えば、 NTT— AT株式会社製の HIREC15 50等が挙げられる。 [0091] Fluororesin is preferred as the water-repellent polymer material, in particular, vinylidene fluoride 'trifluoroethylene copolymer having ferroelectricity and water repellency, β-type crystals of polyvinylidene fluoride and Those that contain it are preferred. Commercially available products can be used as the fluororesin, and examples of commercially available products include HIREC1550 manufactured by NTT-AT Corporation.
[0092] 更に、フッ素原子を含有するォレフインの 2種以上からなる共重合体、フッ素原子を 含有するォレフインと炭化水素モノマーとの共重合体、及びフッ素原子を含有するォ レフインの 2種以上からなる共重合体と熱可塑性アクリル樹脂との混合物からなる群よ り選ばれた少なくとも 1種のフッ素樹脂と界面活性剤からなるフッ素樹脂ェマルジヨン 、並びに硬化剤(特開平 5— 124880号公報、特開平 5— 117578号公報、特開平 5 179191号公報参照)及び/又は前記シリコーン樹脂系撥水剤からなる組成物( 特開 2000— 121543号公報、特開 2003— 26461号公報参照)も使用することがで きる。このフッ素樹脂ェマルジヨンとしては、市販されているものを使用することができ 、ダイキン工業(株)よりゼッフルシリーズとして、旭硝子(株)よりルミフロンシリーズとし て購入可能である。前記硬化剤としては、メラミン系硬化剤、アミン系硬化剤、多価ィ ソシァネート系硬化剤、及びブロック多価イソシァネート系硬化剤が好ましく使用され [0092] Further, a copolymer comprising two or more olefins containing fluorine atoms, fluorine atoms At least one selected from the group consisting of a copolymer of a olefin containing hydrocarbon monomer and a mixture of two or more of a fluorine atom-containing copolymer and a thermoplastic acrylic resin. Fluororesin emulsion composed of a fluororesin and a surfactant, and a curing agent (see JP-A-5-124880, JP-A-5-117578, JP-A-5-179191) and / or the silicone resin water repellent It is also possible to use a composition comprising these (see JP 2000-121543 A and JP 2003-26461 A). As this fluororesin emulsion, commercially available products can be used, which can be purchased from Daikin Industries, Ltd. as the Zeffle series, and from Asahi Glass Co., Ltd., as the Lumiflon series. As the curing agent, a melamine curing agent, an amine curing agent, a polyvalent isocyanate curing agent, and a block polyvalent isocyanate curing agent are preferably used.
[0093] 親水性の高分子材料としては、ポリエチレングリコール、ポリプロピレングリコール、 ポリエチレングリコール ポリプロピレングリコールブロック共重合体等のポリエーテ ル;ポリビュルアルコール;ポリアクリル酸(アルカリ金属塩、アンモニゥム塩等の塩を 含む)、ポリメタクリル酸(アルカリ金属塩、アンモニゥム塩等の塩を含む)、ポリアタリ ル酸ーポリメタクリル酸(アルカリ金属塩、アンモニゥム塩等の塩を含む)共重合体;ポ リアクリルアミド;ポリビュルピロリドン;カルボキシメチルセルロース(CMC)、メチルセ ルロース(MC)等の親水性セルロース類;多糖類等の天然親水性高分子化合物等 が挙げられる。 [0093] Examples of the hydrophilic polymer material include polyethylene glycol, polypropylene glycol, polyethylene glycol such as a polypropylene glycol block copolymer; polybulu alcohol; polyacrylic acid (including salts such as alkali metal salts and ammonium salts) ), Polymethacrylic acid (including salts such as alkali metal salts and ammonium salts), polyacrylic acid-polymethacrylic acid (including salts such as alkali metal salts and ammonium salts) copolymers; polyacrylamide; polybutyropyrrolidone; carboxy Examples include hydrophilic celluloses such as methyl cellulose (CMC) and methyl cellulose (MC); natural hydrophilic polymer compounds such as polysaccharides.
[0094] これらの高分子材料にガラス繊維、炭素繊維、シリカ等の無機系誘電体を配合して 複合化したものも使用可能である。また、前記の高分子材料として塗料を使用するこ とも可能である。  [0094] These polymer materials may be combined with an inorganic dielectric such as glass fiber, carbon fiber, silica, and the like, and combined. It is also possible to use a paint as the polymer material.
[0095] 前記無機物質としては、撥水性又は親水性の無機化合物からなることが好ましい。  [0095] The inorganic substance is preferably made of a water-repellent or hydrophilic inorganic compound.
[0096] 撥水性の無機材料としては、例えば、シラン系撥水剤、フッ素系撥水剤等が挙げら れる。特に、フッ素系撥水剤が好ましぐ例としては、パーフルロロアルキル基含有化 合物等の含フッ素化合物又は含フッ素化合物含有組成物が挙げられる。なお、基体 表面への吸着性が高い含フッ素化合物を選択した場合は、基体表面に適用した後、 撥水剤又は吸水防止剤の化学成分が基体と反応して化学結合を生じたり、又は化 学成分どうしが架橋したりする必要はかならずしもない。 [0096] Examples of the water repellent inorganic material include silane water repellents, fluorine water repellents, and the like. Particularly preferred examples of fluorine-based water repellents include fluorine-containing compounds or fluorine-containing compound-containing compositions such as perfluoroalkyl group-containing compounds. When a fluorine-containing compound with high adsorptivity to the substrate surface is selected, after application to the substrate surface, the chemical component of the water repellent or water absorption inhibitor reacts with the substrate to form a chemical bond or It is not always necessary to cross-link academic components.
[0097] このようなフッ素系撥水剤として用いることができる含フッ素化合物は、分子中にパ 一フルォロアルキル基を含有する分子量 1 , 000—20, 000のものが好ましぐ具体 的には、パーフルォロスルホン酸塩、パーフルォロスルホン酸アンモニゥム塩、パー フルォロカルボン酸塩、パーフルォロアルキルべタイン、パーフルォロアルキルェチ レンオキサイド付加物、パーフルォロアルキルアミンォキシド、パーフルォロアルキル リン酸エステル、及びパーフルォロアルキルトリメチルアンモニゥム塩等が挙げられる 。中でも、基体表面への吸着性に優れることから、パーフルォロアルキルリン酸エステ ル、及びパーフルォロアルキルトリメチルアンモニゥム塩が好ましい。このような材料と しては、サーフロン S— 112、及びサーフロン S— 121 (共に商品名、セイミケミカル株 式会社製)等が市販されて!/ヽる。  [0097] The fluorine-containing compound that can be used as such a fluorine-based water repellent is preferably one having a molecular weight of 1,000 to 20,000 containing a perfluoroalkyl group in the molecule. Perfluorosulfonic acid salt, perfluorosulfonic acid ammonium salt, perfluorocarboxylic acid salt, perfluoroalkyl betaine, perfluoroalkylethylene oxide adduct, perfluoroalkylamine oxide Perfluoroalkyl phosphate ester, perfluoroalkyltrimethylammonium salt, and the like. Of these, perfluoroalkyl phosphate ester and perfluoroalkyltrimethylammonium salt are preferred because of their excellent adsorptivity to the substrate surface. As such materials, Surflon S-112 and Surflon S-121 (both trade names, manufactured by Seimi Chemical Co., Ltd.) are commercially available!
[0098] 親水性の無機材料としては、例えば、 SiOや、ケィ素化合物や、光触媒機能を有  [0098] Examples of the hydrophilic inorganic material include SiO, a silicon compound, and a photocatalytic function.
2  2
する酸化チタン等の物質が挙げられる。  And materials such as titanium oxide.
[0099] 光触媒物質は、特定の金属化合物を含んでおり、光励起により当該層表面の有機 及び/又は無機化合物を酸化分解する機能を有する。光触媒の原理は、特定の金 属化合物が光励起により、空気中の水又は酸素から OH—や O—のラジカル種を発 [0099] The photocatalytic substance contains a specific metal compound and has a function of oxidizing and decomposing organic and / or inorganic compounds on the surface of the layer by photoexcitation. The principle of photocatalysis is that certain metal compounds generate radical species such as OH— and O— from water or oxygen in the air by photoexcitation.
2  2
生させ、このラジカル種が有機及び/又は無機化合物を酸化還元分解することであ ると一般的に理解されている。  It is generally understood that this radical species is a redox degradation of organic and / or inorganic compounds.
[0100] 前記金属化合物としては、代表的な酸化チタン (TiO )の他、 ZnO、 SrTiOP、 Cd [0100] As the metal compound, in addition to typical titanium oxide (TiO 2), ZnO, SrTiOP, Cd
2 3 twenty three
S、 CdO、 CaP、 InP、 In O、 CaAs、 BaTiO、 K NbO、 Fe O、 Ta O、 WO、 N S, CdO, CaP, InP, In O, CaAs, BaTiO, K NbO, Fe O, Ta O, WO, N
2 3 3 2 3 2 3 2 5 3 iO、 Cu 0、 SiC、 SiO、 MoS、 InSb、 RuO、 CeO等が知られている。  2 3 3 2 3 2 3 2 5 3 iO, Cu 0, SiC, SiO, MoS, InSb, RuO, CeO, etc. are known.
2 2 3 2 2  2 2 3 2 2
[0101] 光触媒物質からなる膜は、必要に応じて各種の添加剤と共に、これらの金属化合 物の微粒子(2nm〜20nm程度)を含有する水性分散液を、前記撥水剤又は吸水防 止剤及び前記正電荷物質を含む層上に塗布、乾燥することによって形成することが できる。膜の厚みは、好ましくは 0. 01 μ m〜2. O ^ m,より好ましくは 0· 1 μ m〜; ί · Ο πιである。光触媒物質膜形成用としては水性分散液の使用が好ましいが、アルコ ールを溶媒とすることも可能である。  [0101] A film made of a photocatalytic substance is prepared by converting an aqueous dispersion containing fine particles (about 2 nm to 20 nm) of these metal compounds together with various additives as required, into the water repellent or water absorbing inhibitor. And it can form by apply | coating and drying on the layer containing the said positively charged substance. The thickness of the membrane is preferably from 0.01 μm to 2. O ^ m, more preferably from 0.1 μm to ί · Οπι. An aqueous dispersion is preferably used for forming the photocatalytic substance film, but alcohol can also be used as a solvent.
[0102] 光触媒物質膜形成用水性分散液は、例えば、以下の方法によって製造することが できる。なお、水性分散液中の過酸化チタンは乾燥造膜状態では酸化チタンに変化 しうる。 [0102] The aqueous dispersion for forming a photocatalytic substance film can be produced, for example, by the following method. it can. Titanium peroxide in the aqueous dispersion can be changed to titanium oxide in the dry film-forming state.
[0103] 第 1の製造方法  [0103] First manufacturing method
既述した四価チタン化合物とアンモニア等の塩基とを反応させて、水酸化チタンを 形成する。次に、この水酸化チタンを過酸化水素等の酸化剤でペルォキソ化し、超 微細粒子のアモルファス型過酸化チタンを形成する。更に加熱処理することによりァ ナターゼ型過酸化チタンに転移させる。  Titanium hydroxide is formed by reacting the tetravalent titanium compound described above with a base such as ammonia. Next, this titanium hydroxide is peroxoated with an oxidizing agent such as hydrogen peroxide to form amorphous fine titanium peroxide particles. Further, it is transferred to anatase-type titanium peroxide by heat treatment.
[0104] 第 2の製造方法 [0104] Second manufacturing method
既述した四価チタン化合物を過酸化水素等の酸化剤でペルォキソ化し、次にアン モニァ等の塩基と反応させて超微細粒子のアモルファス型過酸化チタンを形成する The tetravalent titanium compound described above is peroxoated with an oxidizing agent such as hydrogen peroxide, and then reacted with a base such as ammonia to form ultrafine particles of amorphous titanium peroxide.
。更に加熱処理することによりアナターゼ型過酸化チタンに転移させる。 . Further, it is transferred to anatase type titanium peroxide by heat treatment.
[0105] 第 3の製造方法 [0105] Third manufacturing method
既述した四価チタン化合物と過酸化水素等の酸化剤及びアンモニア等の塩基とを 反応させ、水酸化チタン形成及びペルォキソ化とを同時に行い、超微細粒子のァモ ルファス型過酸化チタンを形成する。更に加熱処理することによりアナターゼ型過酸 化チタンに転移させる。  The tetravalent titanium compound described above is reacted with an oxidizing agent such as hydrogen peroxide and a base such as ammonia to form titanium hydroxide and peroxo at the same time to form ultrafine particles of amorphous titanium peroxide. To do. Further, it is transferred to anatase-type titanium peroxide by heat treatment.
[0106] 光触媒物質膜には光触媒性能が向上する金属 (Ag、 Pt)を添加してもよい。また、 金属塩等の各種物質を、光触媒機能を失活させなレ、程度の範囲で添加することもで きる。前記金属塩としては、例えば、アルミニウム、錫、クロム、ニッケル、アンチモン、 鉄、銀、セシウム、インジウム、セリウム、セレン、銅、マンガン、カルシウム、白金、タン ダステン、ジルコニウム、亜鉛等の金属塩があり、それ以外にも一部の金属或いは非 金属等については水酸化物又は酸化物も使用可能である。具体的には、塩化アルミ 二ゥム、塩化第一及び第二錫、塩化クロム、塩化ニッケル、塩化第一及び第二アンチ モン、塩化第一及び第二鉄、硝酸銀、塩化セシウム、三塩化インジウム、塩化第一セ リウム、四塩化セレン、塩化第二銅、塩化マンガン、塩化カルシウム、塩化第二白金、 四塩化タングステン、ォキシ二塩化タングステン、タングステン酸カリウム、塩化第二 金、ォキシ塩化ジルコニウム、塩化亜鉛等の各種金属塩が例示できる。また、金属塩 以外の化合物としては、水酸化インジウム、ケィタングステン酸、シリカゾル、水酸化 カルシウム等が例示できる。なお、光触媒物質膜の固着性を向上させるためにァモ ルファス型過酸化チタンを配合することも可能である。 [0106] Metals (Ag, Pt) that improve the photocatalytic performance may be added to the photocatalytic material film. In addition, various substances such as metal salts can be added to the extent that they do not deactivate the photocatalytic function. Examples of the metal salt include metal salts such as aluminum, tin, chromium, nickel, antimony, iron, silver, cesium, indium, cerium, selenium, copper, manganese, calcium, platinum, tandastene, zirconium, and zinc. In addition, hydroxides or oxides can be used for some metals or non-metals. Specifically, aluminum chloride, stannous chloride and stannic chloride, chromium chloride, nickel chloride, primary and secondary antimony chloride, ferrous and ferric chloride, silver nitrate, cesium chloride, indium trichloride , Cerium chloride, selenium tetrachloride, cupric chloride, manganese chloride, calcium chloride, platinum chloride, tungsten tetrachloride, tungsten oxytungsten chloride, potassium tungstate, gold chloride, zirconium oxychloride, chloride Various metal salts such as zinc can be exemplified. Other compounds than metal salts include indium hydroxide, key tungstic acid, silica sol, hydroxide Examples include calcium. Amorphous titanium peroxide can be added to improve the adhesion of the photocatalytic material film.
[0107] 光触媒物質膜の作用により、基体表面の汚染物質が分解されるので、基体表面の 汚染を防止し、基体の化粧性を経時的に維持することができる。なお、光触媒物質 膜を直接基体に形成すると、経時的に基体から光触媒物質膜が剥離するおそれが あるが、正電荷物質を介在させることにより、光触媒物質膜を基体と良好に一体化す ること力 Sでさる。 [0107] Since the contaminant on the substrate surface is decomposed by the action of the photocatalytic substance film, contamination of the substrate surface can be prevented and the cosmetic properties of the substrate can be maintained over time. If the photocatalytic material film is formed directly on the substrate, the photocatalytic material film may be peeled off from the substrate over time. However, the ability to integrate the photocatalytic material film with the substrate satisfactorily by interposing a positively charged material. Touch with S.
[0108] このように正電荷物質が絶縁性有機又は無機物質の膜によって被覆されると、絶 縁性有機又は無機物質の膜内で誘電分極により、正電荷物質を含む層に接する側 には負電荷が発生し、また、正電荷物質を含む層から離隔した側の膜の表面には正 電荷が発生する。この正電荷によって、後述するように基体表面の汚染防止を図るこ と力 Sできる。 しかも、絶縁性有機又は無機物質の膜自体の撥水性又は親水性と!/、 つた化学的特性は維持されるので、当該化学的特性による汚染防止の更なる向上を も図ることができる。  [0108] When the positively charged substance is coated with the insulating organic or inorganic substance film in this manner, the side in contact with the layer containing the positively charged substance is caused by dielectric polarization in the insulating organic or inorganic substance film. A negative charge is generated, and a positive charge is generated on the surface of the film on the side separated from the layer containing the positively charged substance. This positive charge can be used to prevent contamination of the substrate surface as will be described later. In addition, the water repellency or hydrophilicity and the chemical properties of the insulating organic or inorganic film itself are maintained, so that the prevention of contamination by the chemical properties can be further improved.
[0109] 本発明では、撥水剤又は吸水防止剤と正電荷物質とが層を形成する場合に、基体 表面と該層との間に中間層が存在してもよい。特に、撥水剤又は吸水防止剤と正電 荷物質を含む層が更に有機ケィ素化合物を含有する場合、シラン化合物を含む中 間層を予め基体上に形成することが好ましい。この中間層は、 Si— O結合を大量に 含有する為、前記層の強度や基体との密着性を向上することが可能になる。また、前 記中間層は、基体への水分の浸入を防止する機能をも有している。  In the present invention, when the water repellent or water absorption inhibitor and the positively charged substance form a layer, an intermediate layer may exist between the surface of the substrate and the layer. In particular, when the layer containing the water repellent or water absorption inhibitor and the positive charge substance further contains an organic silicon compound, it is preferable to form an intermediate layer containing a silane compound on the substrate in advance. Since this intermediate layer contains a large amount of Si—O bonds, the strength of the layer and the adhesion to the substrate can be improved. The intermediate layer also has a function of preventing moisture from entering the substrate.
[0110] 前記シラン化合物としては、加水分解性シラン、その加水分解物及びこれらの混合 物が挙げられる。加水分解性シランとしては各種のアルコキシシランが使用でき、具 体的には、テトラアルコキシシラン、アルキルトリアルコキシシラン、ジアルキルジァノレ コキシシラン、トリアルキルアルコキシシランが挙げられる。これらの内、 1種類の加水 分解性シランを単独で使用してもよぐ必要に応じて 2種類以上の加水分解性シラン を混合して使用してもよい。またこれらのシラン化合物に、各種のオルガノポリシロキ サンを配合してもよい。このようなシラン化合物を含有する中間層形成剤としては、ド ライシール S (東レ 'ダウコーユング'シリコーン株式会社製)がある。 [0111] また、中間層形成剤として、メチルシリコーン樹脂及びメチルフエニルシリコーン樹 脂等の室温硬化型シリコーン樹脂を使用してもよい。このような室温硬化型シリコー ン樹月旨としては、 AY42— 170、 SR2510, SR2406, SR2410, SR2405、 SR241 1 (東レ 'ダウコーユング'シリコーン株式会社製)がある。 [0110] Examples of the silane compounds include hydrolyzable silanes, hydrolysates thereof, and mixtures thereof. As the hydrolyzable silane, various alkoxysilanes can be used. Specific examples include tetraalkoxysilane, alkyltrialkoxysilane, dialkyldianoloxysilane, and trialkylalkoxysilane. Of these, one type of hydrolyzable silane may be used alone, or two or more types of hydrolyzable silanes may be mixed and used as necessary. Various organopolysiloxanes may be blended with these silane compounds. As an intermediate layer forming agent containing such a silane compound, there is Dry Seal S (manufactured by Toray 'Dowcoung' Silicone Co., Ltd.). [0111] Further, as the intermediate layer forming agent, a room temperature curable silicone resin such as methyl silicone resin and methyl phenyl silicone resin may be used. Examples of such room-temperature-curing silicone trees include AY42-170, SR2510, SR2406, SR2410, SR2405, and SR2411 (manufactured by Toray 'Dowcoung' Silicone Co., Ltd.).
[0112] 中間層は無色透明でもよぐ或いは、着色された透明、半透明又は不透明でもよい 。ここでの着色とは赤、青、緑等の色のみならず白色によるものを含む。着色された 中間層を得るには、中間層に無機又は有機顔料或いは染料等の各種の着色剤を配 合することが好ましい。 [0112] The intermediate layer may be colorless and transparent, or may be colored transparent, translucent or opaque. Coloring here includes not only red, blue, green, etc. but also white. In order to obtain a colored intermediate layer, it is preferable to mix various colorants such as inorganic or organic pigments or dyes in the intermediate layer.
[0113] 無機顔料としては、カーボンブラック、黒鉛、黄鉛、酸化鉄黄、鉛丹、ベンガラ、群 青、酸化クロム緑、酸化鉄等が挙げられる。有機顔料としては、ァゾ系有機顔料、フタ ロシアン系有機顔料、スレン系有機顔料、キノタリドン系有機顔料、ジォキサジン系有 機顔料、イソインドリノン系有機顔料、ジケトピロロピロールや各種金属錯体が使用で きるが耐光性に優れているものが望ましい。耐光性のある有機顔料としては、例えば 、不溶性ァゾ系有機顔料であるハンザエロー、トルイジンレッド、フタロシアン系有機 顔料であるフタロシアンブルー B、フタロシアングリーン、キナクリドン系有機顔料であ るキナクリドン赤等が挙げられる。  [0113] Examples of inorganic pigments include carbon black, graphite, yellow lead, iron oxide yellow, red lead, red rose, ultramarine, chromium oxide green, iron oxide and the like. As organic pigments, azo organic pigments, phthalocyanine organic pigments, selenium organic pigments, quinotalidone organic pigments, dioxazine organic pigments, isoindolinone organic pigments, diketopyrrolopyrrole and various metal complexes are used. Although it is possible, it should have excellent light resistance. Examples of light-resistant organic pigments include, for example, Hansa Yellow, toluidine red, which is an insoluble azo organic pigment, phthalocyanine blue B, which is a phthalocyanine organic pigment, quinacridone red, which is a quinacridone organic pigment, and the like. Is mentioned.
[0114] 染料としては、塩基性染料、直接染料、酸性染料、植物性染料等が挙げられるが、 耐光性に優れたものが好ましぐ例えば、赤色では、ダイレクトスカーレット、ロクセリン 、ァゾルビン、橙色では、ダイレクトオレンジ Rコンク、ァシドオレンジ、黄色では、クリソ フェニン NS、メタニールエロー、茶色では、ダイレクトブラウン KGG、ァシドブラウン R 、青色ではダイレクトブルー B、黒色ではダイレクトブラック GX、ニグ口シン BHL等が 特に好ましい。  [0114] Examples of the dye include basic dyes, direct dyes, acid dyes, vegetable dyes, etc., but those having excellent light resistance are preferred. For example, in red, direct scarlet, loxelin, azolbin, orange , Direct Orange R Conch, Acid Orange, and Yellow are particularly preferably Chrysophenine NS, Methanil Yellow, Brown is Direct Brown KGG, Acid Brown R, Blue is Direct Blue B, Black is Direct Black GX, and Nigguchi Shin BHL.
[0115] 中間層がシラン化合物又はシリコーン樹脂からなる場合は、これらのシラン化合物 又はシリコーン樹脂と顔料との混合比 (重量比)は、 1 : 2〜; 1 : 0. 05の範囲が好ましぐ 1 : 1〜; 1 : 0· 1の範囲がより好ましい。  [0115] When the intermediate layer is composed of a silane compound or silicone resin, the mixing ratio (weight ratio) of these silane compound or silicone resin and pigment is preferably in the range of 1: 2 to 1: 0.05. The range of 1: 1 to; 1: 0 · 1 is more preferable.
[0116] なお、中間層には更に分散剤、安定剤、レべリング剤等の添加剤が配合されてもよ い。これらの添加剤は中間層の形成を容易とする作用を有する。更に、顔料'染料等 の着色剤を配合する場合は、当該着色剤の固着補助用バインダーを添加することも 可能である。この場合のバインダーとしては、耐候性に優れたアクリル酸エステルや アクリル酸エステル共重合樹脂を主成分とする各種塗料用バインダーが使用すること ができ、例えば、ポリゾール AP— 3720 (昭和高分子株式会社製)、ポリゾール AP— 609 (昭和高分子株式会社製)等が挙げられる。 [0116] The intermediate layer may further contain additives such as a dispersant, a stabilizer, and a leveling agent. These additives have an effect of facilitating the formation of the intermediate layer. Furthermore, when blending a colorant such as a pigment 'dye, a binder for fixing the colorant may be added. Is possible. As the binder in this case, various paint binders mainly composed of an acrylic ester or an acrylic ester copolymer resin having excellent weather resistance can be used. For example, Polysol AP-3720 (Showa Polymer Co., Ltd.) And Polysol AP-609 (manufactured by Showa Polymer Co., Ltd.).
[0117] 中間層は例えば以下のようにして形成することができる。揮発性溶媒中にシラン化 合物又はシリコーン樹脂からなる中間層形成剤、並びに、必要に応じて前記着色剤 、前記添加剤及び前記バインダーを含む溶液を、前記基体表面に 2〜 5mm程度の 厚みとなるように塗布する。必要に応じて加熱し、揮発性溶媒を蒸発させて中間層を 基体上に形成する。着色した中間層は基体と一体化することによって着色化粧性を 基体に付与することができる。  [0117] The intermediate layer can be formed, for example, as follows. An intermediate layer forming agent composed of a silane compound or a silicone resin in a volatile solvent, and a solution containing the colorant, the additive and the binder, if necessary, having a thickness of about 2 to 5 mm on the surface of the substrate. Apply so that If necessary, the intermediate layer is formed on the substrate by heating and evaporating the volatile solvent. The colored intermediate layer can be imparted with a colored cosmetic by being integrated with the substrate.
[0118] 前記のようにして形成された中間層の厚みは特に限定されるものではないが、 0. 0 1 ~ 1. 0 111力《好ましく、 0· 05〜0· 3 111力より好ましい。また、着色斉 IJ、添カロ斉 IJ、ノ インダ一力 S添カロされた場合は、 1. 0〃111〜100〃111カ好ましく、 10〃111〜50〃111力 より好ましい。  [0118] The thickness of the intermediate layer formed as described above is not particularly limited, but is preferably 0.01 to 1.0 111 force << preferably, more preferably 0.05 to 0.33 force. In addition, when coloring is added IJ, added calorie IJ, and the strength of the cylinder is added, 1.0 to 111 to 100 to 111 is preferable, and 10 to 111 to 50 to 111 is more preferable.
[0119] 基体上での中間層の形成方法としては、公知の任意の方法が使用可能であり、例 えば、スプレーコーティング法、ディップコーティング法、フローコーティング法、スピ ンコーティング法、ロールコーティング法、刷毛塗り、スポンジ塗り等が可能である。な お、中間層の硬度、基体との密着性等の物理的性能を向上させる為には、基体上で の中間層の形成後に、これらを許容範囲内の温度で加熱することが好ましレ、。  [0119] As the method for forming the intermediate layer on the substrate, any known method can be used. For example, a spray coating method, a dip coating method, a flow coating method, a spin coating method, a roll coating method, Brush painting, sponge painting, etc. are possible. In order to improve the physical performance such as the hardness of the intermediate layer and the adhesion to the substrate, it is preferable to heat them at a temperature within an allowable range after the formation of the intermediate layer on the substrate. ,.
[0120] 次に、正電荷を帯びる基体表面から汚染物質が除去される機構を図 5に示す。  Next, FIG. 5 shows a mechanism for removing contaminants from a positively charged substrate surface.
[0121] まず、基体表面に正電荷を付与する(図 5 (1) )。  First, a positive charge is applied to the substrate surface (FIG. 5 (1)).
[0122] 基体表面に汚染物質が堆積し、太陽光等の電磁波の作用により光酸化される。こう して汚染物質にも正電荷が付与される(図 5 (2) )。  [0122] Contaminants accumulate on the substrate surface and are photooxidized by the action of electromagnetic waves such as sunlight. In this way, a positive charge is also given to the pollutant (Fig. 5 (2)).
[0123] 基体表面と汚染物質との間に正電荷同士の静電反発が発生し、反発離脱力が汚 染物質に発生する。これにより、基体表面への汚染物質の固着力が低減される(図 5[0123] An electrostatic repulsion of positive charges occurs between the substrate surface and the contaminant, and a repulsion and separation force is generated in the contaminant. This reduces the adherence of contaminants to the substrate surface (Figure 5).
(3) )。 (3)).
[0124] 風雨等の物理的な作用により、汚染物質は基体から容易に除去される(図 5 (4) )。  [0124] Contaminants are easily removed from the substrate by physical action such as wind and rain (Fig. 5 (4)).
これにより、基体はセルフクリーニングされる。 [0125] したがって、本発明では、撥水剤又は吸水防止剤による撥水性を生かすと同時に、 基体表面に付与される正電荷を利用して、継続的な「防汚 ·防曇機能」を発揮する製 品を得ることが可能となる。この技術は、あらゆる基体に応用できるが、特に、優れた 撥水性を有する基体の表面に正電荷を付与することで長期的にその機能を維持す ること力 Sできるので、プラスチック製の基体への応用が好ましい。これにより、「汚れな V、プラスチック」が可能となる。 Thereby, the substrate is self-cleaned. [0125] Therefore, in the present invention, the water repellency by the water repellent or the water absorption inhibitor is utilized, and at the same time, the positive charge imparted to the surface of the substrate is utilized to exhibit a continuous "antifouling / antifogging function". This makes it possible to obtain products that will This technology can be applied to any substrate, but in particular, it can maintain the function for a long time by applying a positive charge to the surface of the substrate having excellent water repellency. Is preferred. This makes “dirty V, plastic” possible.
[0126] また、基体表面の正電荷は、電磁波による基体の酸化劣化を低減することができる 。すなわち、基体の酸化劣化とは、基体表面又は基体中において紫外線等の電磁 波により、 'θ 、 · ΟΗ、等のラジカルが生成され、酸化分解反応を生じさせることが原  [0126] Further, the positive charge on the substrate surface can reduce the oxidative degradation of the substrate due to electromagnetic waves. That is, oxidative degradation of the substrate is caused by generation of radicals such as' θ, ···, etc. due to electromagnetic waves such as ultraviolet rays on the surface of the substrate or in the substrate to cause an oxidative decomposition reaction.
2  2
因であるが、基体の正電荷表面は、これらのラジカルを安定した分子とする。したが つて、基体の酸化劣化が防止又は低減されると考えられる。なお、基体が金属製の 場合には、同様のプロセスから鯖の発生を低減することが可能となる。  Of course, the positively charged surface of the substrate makes these radicals stable molecules. Therefore, it is considered that the oxidative deterioration of the substrate is prevented or reduced. When the substrate is made of metal, it is possible to reduce the generation of soot from the same process.
[0127] 本発明は各種のデザイン性並びに高い防水 ·防汚性能が求められる任意の分野に おいて利用可能であり、ガラス、金属、セラミックス、コンクリート、木材、石材、高分子 樹脂カバー、高分子樹脂シート、繊維 (衣類、カーテン等)、シーリング剤等又はこれ らの組み合わせ力もなる、建材;空調屋外機;厨房機器;衛生機器;照明器具;自動 車;自転車;自動二輪車;航空機;列車;船舶等の屋内外で利用される物品、また、 各種機械、電子機器、テレビ等のフェイスパネルに好適に使用される。特に、本発明 は吸水性の大きい建材に好ましぐ当該建材を使用して建造された家屋、ビルデイン グ、道路、トンネル等の建築物は経時的に高い防水 ·防汚効果を発揮することができ [0127] The present invention can be used in various fields where various design properties and high waterproof / antifouling performance are required. Glass, metal, ceramics, concrete, wood, stone, polymer resin cover, polymer Resin sheets, textiles (clothing, curtains, etc.), sealants, etc., or a combination of these materials; building materials; air conditioning outdoor units; kitchen equipment; sanitary equipment; lighting equipment; automobiles; bicycles; It is preferably used for articles used indoors and outdoors such as, and face panels of various machines, electronic devices, televisions and the like. In particular, according to the present invention, a building such as a house, building, road, or tunnel constructed using the building material preferred for a building material having high water absorption can exhibit a high waterproof / antifouling effect over time. Can
[0128] なお、本発明における、撥水剤又は吸水防止剤、及び、正電荷物質の組み合わせ は、その組み合わせを含む、基体表面用の汚染防止乃至低減剤として、或いは、保 護剤として、単独で市場に流通することができる。 [0128] In the present invention, the combination of the water repellent or the water absorption inhibitor and the positively charged substance is used alone as a contamination preventing or reducing agent for the substrate surface including the combination, or as a protective agent. Can be distributed in the market.
実施例  Example
[0129] 以下具体例に基づき本発明を説明する。  [0129] Hereinafter, the present invention will be described based on specific examples.
[0130] (製造例 1) [0130] (Production Example 1)
97%CuCl · 2Η 0 (塩化第二銅)(日本化学産業 (株)製) 0. 4gを 2. 5%アンモニ ァ水 99. 6gに完全に溶解させて銅濃度約 800ppmの濃青色の正電荷金属溶液 10 Ogを調製した。 97% CuCl · 2Η 0 (cupric chloride) (manufactured by Nippon Chemical Industry Co., Ltd.) 0.4 g 2.5% Ammoni A solution of 10 Og of a deep blue positively charged metal solution having a copper concentration of about 800 ppm was completely dissolved in 99.6 g of water.
[0131] (製造例 2) [0131] (Production Example 2)
97%CuCl · 2Η 0 (塩化第二銅)(日本化学産業 (株)製) 0. 8gを純水 199. 2gに  97% CuCl · 2Η 0 (cupric chloride) (manufactured by Nippon Chemical Industry Co., Ltd.) 0.8g to pure water 199.2g
2 2  twenty two
完全に溶解させて銅濃度約 800ppmの淡青色の正電荷金属溶液 200gを調製した  Dissolve completely to prepare 200 g of light blue positively charged metal solution with a copper concentration of about 800 ppm.
[0132] (製造例 3) [0132] (Production Example 3)
撥水剤(ドライシール S:東レ 'ダウコーユング (株)製)と純水とを 20: 80の重量比で 混合して撥水性分散液 100gを調製した。  A water-repellent dispersion (100 g) was prepared by mixing a water-repellent agent (Dry Seal S: manufactured by Toray Industries, Inc.) and pure water at a weight ratio of 20:80.
[0133] (製造例 4) [0133] (Production Example 4)
撥水剤(ドライシール S:東レ 'ダウコーユング (株)製)と純水とを 40: 60の重量比で 混合して撥水性分散液 100gを調製した。  A water repellent (dry seal S: manufactured by Toray Dow Coung Co., Ltd.) and pure water were mixed at a weight ratio of 40:60 to prepare 100 g of a water repellent dispersion.
[0134] (製造例 5) [0134] (Production Example 5)
製造例 2で調製した溶液と製造例 3で調製した分散液とを 1: 1の重量比で混合して 正電荷金属含有撥水性分散液 100gを調製した。  The solution prepared in Production Example 2 and the dispersion prepared in Production Example 3 were mixed at a weight ratio of 1: 1 to prepare 100 g of a positively charged metal-containing water-repellent dispersion.
[0135] (製造例 6) [0135] (Production Example 6)
製造例 2で調製した溶液と製造例 4で準備した分散液とを 1: 1の重量比で混合して 正電荷金属含有撥水性分散液 100gを調製した。  The solution prepared in Production Example 2 and the dispersion prepared in Production Example 4 were mixed at a weight ratio of 1: 1 to prepare 100 g of a positively charged metal-containing water-repellent dispersion.
[0136] (製造例 7) [0136] (Production Example 7)
製造例 5で調製した正電荷金属含有撥水性分散液 90gに白色顔料 (ポルックスホ ワイト PC— CRH (住化カラー(株)製)) 10gを混合し、更に、バインダーとしてポリゾ ール AP— 609L (昭和高分子 (株)製) 5gを混合して、正電荷含有撥水性白色分散 液 105gを調製した。  90 g of the positively charged metal-containing water-repellent dispersion prepared in Production Example 5 is mixed with 10 g of a white pigment (Polx White PC—CRH (manufactured by Sumika Color Co., Ltd.)), and Polysol AP—609L (as a binder) Showa Polymer Co., Ltd. (5 g) was mixed to prepare 105 g of a positively charged water-repellent white dispersion.
[0137] (実施例 1) [Example 1]
陶器質タイル(97mm X 97mm)の表面に製造例 5で調製した正電荷金属含有撥 水性分散液を 2. 0g/100cm2の塗布量でスプレー塗布し、 70°Cで 1時間加熱して 評価用基板を得た。 Spray the positively-charged metal-containing water-repellent dispersion prepared in Production Example 5 onto the surface of a ceramic tile (97mm x 97mm) at a coating weight of 2.0g / 100cm 2 and heat it at 70 ° C for 1 hour. A substrate was obtained.
[0138] (実施例 2) 陶器質タイル(97mm X 97mm)の裏面に製造例 7で調製した正電荷含有撥水性 白色分散液を 2.0g/100cm2の塗布量でスプレー塗布し、 70°Cで 1時間加熱して 評価用基板を得た。 [0138] (Example 2) Spray the positively charged water-repellent white dispersion prepared in Production Example 7 on the back of a ceramic tile (97mm X 97mm) at a coating weight of 2.0g / 100cm 2 and heat at 70 ° C for 1 hour for evaluation. A substrate was obtained.
[0139] (比較例 1) [0139] (Comparative Example 1)
陶器質タイル(97mm X 97mm)の裏面に光触媒液(B56:サスティナブル'テクノロ ジー(株)製)を 2. Og/1 OOcm2の塗布量でスプレー塗布し、 70°Cで 1時間加熱して 評価用基板を得た。 Spray the photocatalyst solution (B56: Sustainable Technology Co., Ltd.) on the back of the ceramic tile (97mm X 97mm) with a coating amount of 2. Og / 1 OOcm 2 and heat at 70 ° C for 1 hour. An evaluation substrate was obtained.
[0140] (比較例 2) [0140] (Comparative Example 2)
陶器質タイル(97mm X 97mm)の表面に撥水剤(ドライシール S:東レ 'ダウコ一二 ング(株)製)の純水 10倍希釈液を 2· 0g/100cm2の塗布量でスプレー塗布し、 70 °Cで 1時間加熱して評価用基板を得た。 Spray the surface of porcelain tile (97mm x 97mm) with a water repellent (Dry Seal S: manufactured by Toray 'Dauco Ninging Co., Ltd.) 10 times diluted with pure water at a coating amount of 2.0g / 100cm 2 Then, the substrate for evaluation was obtained by heating at 70 ° C. for 1 hour.
[0141] (評価 1) [0141] (Evaluation 1)
負電荷を有する染料であるインジコ染料を含む赤インク (パイロット (株)製)をェタノ ールで希釈して 10倍希釈液とし、 0.007g/100cm2の塗布量で、実施例 1及び 2 並びに比較例 1及び 2の各評価用基板表面にスポット塗布した。各基板;!〜 4を直線 上に並べ、 20Wのブラックライト (東芝ライテック (株)製)を各基板上に配置し各基板 表面に 1100 W/cm2の割合で紫外線を照射した。色差計 (ミノルタ(株)製、 CR 200)を使用して、各評価基板表面上の赤インクの褪色率を経時的に測定した。 Red ink containing Indico dye, which is a negatively charged dye (manufactured by Pilot Co., Ltd.) is diluted with ethanol to give a 10-fold diluted solution, with an application amount of 0.007 g / 100 cm 2 , Examples 1 and 2 and Spot coating was performed on the surface of each evaluation substrate of Comparative Examples 1 and 2. Each substrate;! ~ 4 was arranged on a straight line, 20W black light (manufactured by Toshiba Lighting & Technology Co., Ltd.) was placed on each substrate, and the surface of each substrate was irradiated with ultraviolet rays at a rate of 1100 W / cm 2 . A color difference meter (manufactured by Minolta Co., Ltd., CR 200) was used to measure the fading rate of the red ink on each evaluation substrate surface over time.
[0142] 赤インクの褪色率(%)は以下の式を用いて計算により求めた。 [0142] The fading rate (%) of the red ink was obtained by calculation using the following equation.
消色率 =100—  Decoloration rate = 100—
— L )2+(a -a )2+(b — b )2))/^((L — L )2+(a a )2+(b — b )2 — L) 2 + (a -a) 2 + (b — b) 2 )) / ^ ((L — L) 2 + (aa) 2 + (b — b) 2
2 0 2 0 2 0 1 0 1 0 1 02 0 2 0 2 0 1 0 1 0 1 0
)) xioo )) xioo
L、 a、 b :赤インク塗布前の基板表面の色データ  L, a, b: Color data of substrate surface before applying red ink
0 0 0  0 0 0
L、 a、 b :赤インク塗布直後の基板表面の色データ  L, a, b: Color data of substrate surface immediately after application of red ink
L、 a、 b :紫外線照射後の基板表面の色データ  L, a, b: Color data of substrate surface after UV irradiation
2 2 2  2 2 2
[0143] 得られた褪色率の結果を表 1に示す。表 1中の褪色率の数値が大きいほど赤インク の褪色が顕著であることを示す。  [0143] The results of the obtained fading rate are shown in Table 1. The higher the fading rate in Table 1, the more pronounced the red ink fading.
[0144] [表 1] 表 1 [0144] [Table 1] table 1
Figure imgf000031_0001
Figure imgf000031_0001
[0145] 表 1に示した結果から、比較例 2は、光触媒作用による基板表面での酸化分解と負 電荷発生により赤インクが急速に消失することが分かる。また、比較例 1もブラックライ トの紫外線による酸化分解による最終的な消色率が大きい。一方、実施例 1及び 2で は、基板表面の正電荷により赤インクの離脱が抑制され、また、紫外線による酸化分 解が低減されることが分かる。これにより、表面に正電荷を有する実施例 1及び 2の方 力 同様に正電荷を有する環境中の汚染物質に対しての防汚性に優れることが分か  [0145] From the results shown in Table 1, it can be seen that in Comparative Example 2, the red ink disappears rapidly due to oxidative decomposition and negative charge generation on the substrate surface due to photocatalysis. Comparative Example 1 also has a high final decoloration rate due to oxidative decomposition of black light by ultraviolet rays. On the other hand, in Examples 1 and 2, it can be seen that the release of red ink is suppressed by the positive charge on the substrate surface, and the oxidative decomposition due to ultraviolet rays is reduced. As a result, it can be seen that the anti-fouling property against environmental pollutants having a positive charge is excellent as in the case of Examples 1 and 2 having a positive charge on the surface.
[0146] (製造例 8) [0146] (Production Example 8)
製造例 3で調製した撥水性分散液 90gに白色顔料 (ポルックスホワイト PC— CRH ( 住化カラー(株)製)) 10gを混合し、更に、バインダーとしてポリゾール AP— 609L ( 昭和高分子 (株)製) 5gを混合して、撥水性白色分散液 105gを調製した。この撥水 性白色分散液 50gと、製造例 1の正電荷金属溶液 50gを 1: 1の重量比で混合して正 電荷金属含有撥水性白色分散液 100gを調製した。  90 g of the water-repellent dispersion prepared in Production Example 3 is mixed with 10 g of a white pigment (Polx White PC—CRH (manufactured by Sumika Color Co., Ltd.)), and Polysol AP—609L (Showa Polymer Co., Ltd.) as a binder. 5 g) was mixed to prepare 105 g of a water-repellent white dispersion. 50 g of this water-repellent white dispersion and 50 g of the positively charged metal solution of Production Example 1 were mixed at a weight ratio of 1: 1 to prepare 100 g of a positively charged metal-containing water-repellent white dispersion.
[0147] (製造例 9) [0147] (Production Example 9)
製造例 3で調製した撥水性分散液 90gに白色顔料 (ポルックスホワイト PC— CRH ( 住化カラー(株)製)) 10gを混合し、更に、バインダーとしてポリゾール AP— 609L ( 昭和高分子 (株)製) 5gを混合して、撥水性白色分散液 105gを調製した。この撥水 性白色分散液 50gと、製造例 2の正電荷金属溶液 50gを 1: 1の重量比で混合して正 電荷金属含有撥水性白色分散液 100gを調製した。  90 g of the water-repellent dispersion prepared in Production Example 3 is mixed with 10 g of a white pigment (Polx White PC—CRH (manufactured by Sumika Color Co., Ltd.)), and Polysol AP—609L (Showa Polymer Co., Ltd.) as a binder. 5 g) was mixed to prepare 105 g of a water-repellent white dispersion. 50 g of this water-repellent white dispersion and 50 g of the positively charged metal solution of Production Example 2 were mixed at a weight ratio of 1: 1 to prepare 100 g of a positively charged metal-containing water-repellent white dispersion.
[0148] (製造例 10) [0148] (Production Example 10)
製造例 3で調製した撥水性分散液 90gに白色顔料 (ポルックスホワイト PC— CRH ( 住化カラー(株)製)) 10gを混合し、更に、バインダーとしてポリゾール AP— 609L ( 昭和高分子 (株)製) 5gを混合して、撥水性白色分散液 105gを調製した。 [0149] (実施例 3) 90 g of the water-repellent dispersion prepared in Production Example 3 is mixed with 10 g of a white pigment (Polx White PC—CRH (manufactured by Sumika Color Co., Ltd.)), and Polysol AP—609L (Showa Polymer Co., Ltd.) as a binder. 5 g) was mixed to prepare 105 g of a water-repellent white dispersion. [Example 3]
舗石コンクリートブロック(300mm X 300mm X 30mm)の裏面に製造例 8で準備し た正電荷撥水性白色分散液を 20g/l 00cm2の塗布量でスプレー塗布し、常温で 乾燥させて、評価用基板を得た。 Spray the positively charged water-repellent white dispersion prepared in Production Example 8 on the back of a paving concrete block (300mm X 300mm X 30mm) at a coating amount of 20g / l 00cm 2 and dry it at room temperature. Got.
[0150] (実施例 4) [0150] (Example 4)
舗石コンクリートブロック(300mm X 300mm X 30mm)の裏面に製造例 9で準備し た正電荷撥水性白色分散液を 20gZ 100cm2の塗布量でスプレー塗布し、常温で 乾燥させて、評価用基板を得た。 Spray the positively charged water-repellent white dispersion prepared in Production Example 9 on the back of a paving concrete block (300mm X 300mm X 30mm) at a coating amount of 20gZ 100cm 2 and dry at room temperature to obtain a substrate for evaluation It was.
[0151] (比較例 3) [0151] (Comparative Example 3)
舗石コンクリートブロック(300mm X 300mm X 30mm)の裏面に製造例 10の撥水 性白色分散液を 20g/100cm2の塗布量でスプレー塗布し、常温で乾燥させて、評 価用基板を得た。 The evaluation substrate was obtained by spray-coating the water-repellent white dispersion of Production Example 10 at a coating amount of 20 g / 100 cm 2 on the back of a paving concrete block (300 mm X 300 mm X 30 mm) and drying at room temperature.
[0152] (評価 2) [0152] (Evaluation 2)
実施例 3及び 4並びに比較例 3の各評価用基板について佐賀県において 5ヶ月間 の曝露試験を行い、各基板の表面の汚染状態を目視観察した。結果を表 2に示す。 なお、表 2中の「撥水性」とは水との接触角が 95° であることを示す。  Each of the evaluation substrates of Examples 3 and 4 and Comparative Example 3 was subjected to an exposure test for 5 months in Saga Prefecture, and the surface contamination of each substrate was visually observed. The results are shown in Table 2. “Water repellency” in Table 2 indicates that the contact angle with water is 95 °.
[0153] [表 2] [0153] [Table 2]
表 2  Table 2
Figure imgf000032_0001
Figure imgf000032_0001
[0154] 表 2に示した結果から、撥水剤を塗布した基板に比較して、撥水剤のみならず正電 荷物質をも塗布した基板の方が表面汚染の程度が相対的に小さい。したがって、撥 水剤と共に正電荷物質を表面に備える基板が防汚性能に優れることが分かる。  [0154] From the results shown in Table 2, the degree of surface contamination is relatively small in the substrate coated with not only the water repellent but also the positively charged substance as compared with the substrate coated with the water repellent. . Therefore, it can be seen that a substrate provided with a positively charged substance on the surface together with a water repellent is excellent in antifouling performance.
[0155] (実施例 5)  [Example 5]
陶器質タイル(97mm X 97mm)の表面に、フッ素系撥水剤(GM— 105:ダイキン 工業 (株)製)と製造例 2の正電荷金属溶液を 1: 1の重量比で混合して得られた混合 液を 5g/100cm2の塗布量で刷毛塗りし、 130°Cで 30分加熱して、評価用基板を得 た。 Porcelain tile (97mm x 97mm) surface with fluorine water repellent (GM-105: Daikin Kogyo Co., Ltd.) and the positively charged metal solution of Production Example 2 were mixed at a weight ratio of 1: 1, and the resulting mixture was brushed at a coating weight of 5 g / 100 cm 2 and then 130 ° C for 30 minutes. The substrate for evaluation was obtained by heating.
[0156] (比較例 4)  [0156] (Comparative Example 4)
陶器質タイル(97mm X 97mm)の裏面にフッ素系撥水剤(GM— 105:ダイキンェ 業 (株)製)を 5g/100cm2の塗布量で刷毛塗りし、 130°Cで 30分加熱して、評価用 基板を得た。 Brush the porcelain tile (97mm x 97mm) with a fluorine-based water repellent (GM-105: manufactured by Daikin Industries Co., Ltd.) at a coating weight of 5g / 100cm 2 and heat at 130 ° C for 30 minutes. A substrate for evaluation was obtained.
[0157] (評価 3) [0157] (Evaluation 3)
実施例 3及び比較例 4の各評価用基板につ!/、て佐賀県にお!/、て曝露試験を行い、 各基板の表面の汚染状態を目視観察した。具体的には、各評価用基板を 18日問屋 外にて太陽光に曝露し、その後、喑所内で 2日間放置した。結果を表 3に示す。なお 、表 3中の「強撥水性」とは水との接触角が 100° 以下であることを示し、「撥水性」と は水との接触角が 95° 前後であることを示し、「親水性」とは水との接触角が 20° 以 下であることを示す。なお、接触角は手動角度計にて目視計測した。  An exposure test was performed on each evaluation substrate in Example 3 and Comparative Example 4 in Tesaga Prefecture, and the contamination state on the surface of each substrate was visually observed. Specifically, each evaluation board was exposed to sunlight outside a wholesaler on the 18th, and then left for 2 days in a certain place. The results are shown in Table 3. In Table 3, “strong water repellency” means that the contact angle with water is 100 ° or less, and “water repellency” means that the contact angle with water is around 95 °. “Hydrophilic” means that the contact angle with water is 20 ° or less. The contact angle was visually measured with a manual goniometer.
[0158] [表 3] [0158] [Table 3]
表 3
Figure imgf000033_0001
Table 3
Figure imgf000033_0001
表 3に示すように、比較例 4は曝露条件にかかわらず撥水性である力 実施例 5は 太陽光曝露により親水性となり、一方、太陽光非曝露時には撥水性となる。したがつ て、表 3に示した結果から、撥水剤と共に正電荷物質を基板表面に配置することによ り、基板表面の撥水性 ·親水性を制御可能であることが分かる。なお、評価 3は 2回行 われたが、 2回とも同様の結果であった。  As shown in Table 3, Comparative Example 4 is water repellent regardless of exposure conditions. Example 5 becomes hydrophilic when exposed to sunlight, while it becomes water repellent when not exposed to sunlight. Therefore, the results shown in Table 3 indicate that the water repellency and hydrophilicity of the substrate surface can be controlled by arranging a positively charged substance on the substrate surface together with the water repellent. Evaluation 3 was performed twice, but the results were the same for both.

Claims

請求の範囲 [1] 基体表面又は基体表面層中に 撥水剤又は吸水防止剤、並びに、 (1)陽イオン (2)正電荷を有する導電体又は誘電体 (3)導電体、及び、誘電体又は半導体の複合体 力、らなる群から選択される 1種又は 2種以上の正電荷物質を配置することを特徴とす る、基体表面における正電荷発生方法。 [2] 基体表面又は基体表面層中に 撥水剤又は吸水防止剤、並びに、 (1)陽イオン (2)正電荷を有する導電体又は誘電体 (3)導電体、及び、誘電体又は半導体の複合体 力、らなる群から選択される 1種又は 2種以上の正電荷物質を配置することを特徴とす る、基体表面の汚染防止乃至低減方法。 [3] 基体表面又は基体表面層中に 撥水剤又は吸水防止剤、並びに、 Claims [1] A water-repellent agent or a water absorption inhibitor in the substrate surface or substrate surface layer, and (1) a cation (2) a conductor or dielectric having a positive charge (3) a conductor and dielectric A method for generating a positive charge on the surface of a substrate, comprising arranging one or more positively charged substances selected from the group consisting of: [2] A water-repellent agent or a water-absorption inhibitor in the substrate surface or substrate surface layer, and (1) a cation (2) a conductor or dielectric having a positive charge (3) a conductor and a dielectric or semiconductor A method for preventing or reducing contamination of a substrate surface, characterized in that one or more positively charged substances selected from the group consisting of: [3] In the substrate surface or substrate surface layer, a water repellent or water absorption inhibitor, and
(1)陽イオン  (1) Cation
(2)正電荷を有する導電体又は誘電体  (2) Positively charged conductor or dielectric
(3)導電体、及び、誘電体又は半導体の複合体  (3) Conductor and dielectric or semiconductor composite
からなる群から選択される 1種又は 2種以上の正電荷物質を、配置することを特徴と する、基体表面の保護方法。  A method for protecting a substrate surface, comprising arranging one or more positively charged substances selected from the group consisting of:
[4] 前記撥水剤又は吸水防止剤が、シラン系、シリコネート系、シリコーン系、シリコーン 及びシラン複合系、フッ素系の撥水剤又は吸水防止剤、或いは、これらの少なくとも[4] The water repellent or water absorption inhibitor is a silane, siliconate, silicone, silicone and silane composite, fluorine-based water repellent or water absorption inhibitor, or at least one of these
2種の混合物である、請求項 1乃至 3のいずれかに記載の方法。 The method according to claim 1, which is a mixture of two kinds.
[5] 前記撥水剤又は吸水防止剤、及び、前記正電荷物質の混合物が基体表面又は基 体表面層中に配置される、請求項 1乃至 4の!/、ずれかに記載の方法。 5. The method according to any one of claims 1 to 4, wherein the mixture of the water repellent or the water absorption inhibitor and the positively charged substance is disposed in a substrate surface or a substrate surface layer.
[6] 前記混合物が、更に、 ノユオン性分散剤、ァユオン性分散剤、両性分散剤、酸価が 50〜250の水溶性樹 脂性分散剤、及び、酸価が 50〜250のェマルジヨン樹脂性分散剤からなる群から選 択される 1種以上の分散剤;顔料;並びに液体からなる顔料分散体を含有することを 特徴とする、請求項 5記載の方法。 [6] The mixture further comprises: Selected from the group consisting of noon dispersants, ayuon dispersants, amphoteric dispersants, water-soluble resinous dispersants having an acid value of 50 to 250, and emulsion resinous dispersants having an acid value of 50 to 250. 6. A process according to claim 5, characterized in that it comprises a pigment dispersion consisting of one or more dispersants; a pigment; and a liquid.
[7] 前記混合物が層を形成することを特徴とする、請求項 5又は 6記載の方法。 7. The method according to claim 5 or 6, wherein the mixture forms a layer.
[8] 前記基体表面と前記混合物層との間に中間層を形成することを特徴とする、請求項 7記載の方法。 8. The method according to claim 7, wherein an intermediate layer is formed between the substrate surface and the mixture layer.
[9] 前記混合物層上に更に被覆層を形成することを特徴とする、請求項 7又は 8記載の 方法。  [9] The method according to claim 7 or 8, wherein a coating layer is further formed on the mixture layer.
[10] 請求項 1乃至 9のいずれかに記載の方法により、空気中又は水中における表面の汚 染が防止乃至低減され、又は、表面が保護された前記基体を備えた物品。  [10] An article provided with the substrate, the surface of which is prevented or reduced in the air or water by the method according to any one of claims 1 to 9, or the surface is protected.
[11] 撥水剤又は吸水防止剤、及び、正電荷物質を含む基体表面用汚染防止乃至低減 剤。 [11] A contamination preventing or reducing agent for a substrate surface, comprising a water repellent or a water absorption inhibitor and a positively charged substance.
[12] 撥水剤又は吸水防止剤、及び、正電荷物質を含む基体表面用保護剤。  [12] A substrate surface protective agent comprising a water repellent or water absorption inhibitor and a positively charged substance.
PCT/JP2007/069668 2006-10-13 2007-10-09 Method for protecting base WO2008047629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008539752A JPWO2008047629A1 (en) 2006-10-13 2007-10-09 Substrate protection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-280318 2006-10-13
JP2006280318 2006-10-13

Publications (1)

Publication Number Publication Date
WO2008047629A1 true WO2008047629A1 (en) 2008-04-24

Family

ID=39313868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069668 WO2008047629A1 (en) 2006-10-13 2007-10-09 Method for protecting base

Country Status (3)

Country Link
JP (1) JPWO2008047629A1 (en)
TW (1) TW200909569A (en)
WO (1) WO2008047629A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245724A (en) * 2011-05-30 2012-12-13 Toppan Printing Co Ltd Card having water-repellent function, and method of manufacturing the same
JP2014172933A (en) * 2013-03-06 2014-09-22 Mitsubishi Electric Corp Method for forming water-repellent film and object on which water-repellent film is formed
JP2021080325A (en) * 2019-11-15 2021-05-27 株式会社リンレイ Floor detergent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342526A (en) * 2002-05-30 2003-12-03 Japan Hydrotect Coatings Kk Self-cleaning aqueous coating composition and self- cleaning member
WO2005108056A1 (en) * 2004-05-06 2005-11-17 Sustainable Titania Technology Inc. Base protection method
JP2005319601A (en) * 2004-05-06 2005-11-17 Sustainable Titania Technology Inc Hydrophilizing stainproof method of water repellent substrate and its use in artificial article
JP2006005004A (en) * 2004-06-15 2006-01-05 Sustainable Titania Technology Inc Surface treating method of electronic device or in its manufacturing means
JP2006321993A (en) * 2005-04-22 2006-11-30 Sustainable Titania Technology Inc Solution or dispersion for treating surface of base material, containing titanium oxide doped with metal element, method for treating surface of base material by using the liquid, and surface-treated material obtained by using the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342526A (en) * 2002-05-30 2003-12-03 Japan Hydrotect Coatings Kk Self-cleaning aqueous coating composition and self- cleaning member
WO2005108056A1 (en) * 2004-05-06 2005-11-17 Sustainable Titania Technology Inc. Base protection method
JP2005319601A (en) * 2004-05-06 2005-11-17 Sustainable Titania Technology Inc Hydrophilizing stainproof method of water repellent substrate and its use in artificial article
JP2006005004A (en) * 2004-06-15 2006-01-05 Sustainable Titania Technology Inc Surface treating method of electronic device or in its manufacturing means
JP2006321993A (en) * 2005-04-22 2006-11-30 Sustainable Titania Technology Inc Solution or dispersion for treating surface of base material, containing titanium oxide doped with metal element, method for treating surface of base material by using the liquid, and surface-treated material obtained by using the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245724A (en) * 2011-05-30 2012-12-13 Toppan Printing Co Ltd Card having water-repellent function, and method of manufacturing the same
JP2014172933A (en) * 2013-03-06 2014-09-22 Mitsubishi Electric Corp Method for forming water-repellent film and object on which water-repellent film is formed
JP2021080325A (en) * 2019-11-15 2021-05-27 株式会社リンレイ Floor detergent

Also Published As

Publication number Publication date
JPWO2008047629A1 (en) 2010-02-25
TW200909569A (en) 2009-03-01

Similar Documents

Publication Publication Date Title
JP4398869B2 (en) Titania-metal composite, method for producing the same, and film forming method using the composite dispersion
JP4926176B2 (en) Substrate protection method
KR100849150B1 (en) Base protection method
MXPA06013795A (en) Multi-layer coatings and related methods.
JP4995738B2 (en) Substrate protection method
WO2006115209A1 (en) Solution or dispersion for base surface treatment containing titanium oxide doped with metal element, method of treating base surface with the liquid, and surface-treated material obtained by the method
JP5624458B2 (en) Substrate protection method
JP2006321993A (en) Solution or dispersion for treating surface of base material, containing titanium oxide doped with metal element, method for treating surface of base material by using the liquid, and surface-treated material obtained by using the method
JPWO2007091479A1 (en) Substrate protection method
WO2008047629A1 (en) Method for protecting base
JP5936132B2 (en) Method for protecting substrate surface
JP4508717B2 (en) Hydrophobic antifouling method for water repellent substrate and its use in artifacts
JP6124276B2 (en) Method for maintaining hydrophilicity of substrate surface
JPWO2005090067A1 (en) Laminated body and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008539752

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829406

Country of ref document: EP

Kind code of ref document: A1