WO2008047445A1 - Transmission device - Google Patents

Transmission device Download PDF

Info

Publication number
WO2008047445A1
WO2008047445A1 PCT/JP2006/320917 JP2006320917W WO2008047445A1 WO 2008047445 A1 WO2008047445 A1 WO 2008047445A1 JP 2006320917 W JP2006320917 W JP 2006320917W WO 2008047445 A1 WO2008047445 A1 WO 2008047445A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
constant envelope
scalar
symbol
signals
Prior art date
Application number
PCT/JP2006/320917
Other languages
French (fr)
Japanese (ja)
Inventor
Shoichi Fujita
Takashi Izumi
Yuta Seki
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to PCT/JP2006/320917 priority Critical patent/WO2008047445A1/en
Publication of WO2008047445A1 publication Critical patent/WO2008047445A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/336A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a transmission apparatus having an output amplifier circuit (PA: Power Amplifier) for digital wireless communication.
  • PA Power Amplifier
  • the transmission signal S (t) is replaced with two constant envelope signals S (t), S (for the problem of achieving both efficiency and linearity in an output amplifier circuit (PA) for digital wireless communication.
  • t) the transmission signal S (t) is replaced with two constant envelope signals S (t), S (for the problem of achieving both efficiency and linearity in an output amplifier circuit (PA) for digital wireless communication.
  • LINC method Linear Amplification with Nonlinear Component
  • each is amplified by a highly efficient nonlinear amplifier and then synthesized (for example, Patent Document 1).
  • FIG. 1 is a diagram for explaining a conventional LINC amplification method.
  • S (t) and S (t) are expressed by the following equations (2) and (3), where the maximum amplitude of S (t) is Vmax.
  • a signal obtained by amplifying s (t) is obtained.
  • the LINC output amplifier circuit (PA) enables highly efficient and linear amplification.
  • Patent Document 1 Japanese Patent No. 1892840 Disclosure of the invention
  • constant envelope signals S (t) and S (t) are wideband signals.
  • the synthesizer must also have a wide bandwidth, and the broadband loss of the lossless synthesizer used in the conventional LINC method is difficult, and the efficiency of the synthesizer decreases and the synthesizer itself It is difficult to reduce the size and cost.
  • the constant envelope signals s (t) and s (t) become wideband signals.
  • phase changes instantaneously discontinuously in S (t + A t).
  • Figure 3 shows the frequency spectrum of the constant envelope signals S and S when the primary modulation is 16QAM with 864 subcarrier OFDM, and the transmission signal bandwidth
  • the signal is very wide.
  • Fig. 4 and Fig. 5 show an example of the output cascading and the reception constellation (demodulation by an ideal receiver) when the bandwidth is limited to the specified bandwidth.
  • FIG. 4 shows the case where 864 subcarrier OFDM and primary modulation is 16QAM.
  • Fig. 5 shows the frequency spectrum of the final output after synthesis of the constant envelope signals S, S and S and S after nonlinear amplification in this case.
  • Figure 4 shows the reception constellation corresponding to Fig. 4.
  • An object of the present invention is to easily reduce the size, reduce the cost, and reduce the power consumption by using the LINC method. Even when the signal band is limited, the linearity of a signal wave having an envelope variation is achieved. It is an object of the present invention to provide a transmission apparatus and a transmission method capable of amplifying a transmission signal while maintaining (out-of-band leakage power, modulation accuracy) and having high power efficiency.
  • a transmitting apparatus of the present invention is an amplifying apparatus using a LINC method that decomposes an IQ complex baseband signal to be transmitted into a plurality of constant envelope signals, and synthesizes each after nonlinear amplification,
  • a scalar signal converting means for converting the IQ complex baseband signal into a scalar signal, and a constant envelope for generating the first and second constant envelope signals by multiplexing the signals on orthogonal components of the converted scalar signal.
  • the signal obtained by the line signal generating means, the first and second nonlinear amplifiers for amplifying the first and second constant envelope signals, respectively, and the signals obtained by the first and second nonlinear amplifiers are synthesized.
  • a configuration having a synthesizer is adopted.
  • the present invention it is easy to reduce the size, reduce the cost, and reduce the power consumption. Even when the signal band is limited, the linearity of the signal wave having the envelope variation (the out-of-band leakage power) , Modulation accuracy) and transmit power with high power efficiency.
  • FIG. 1 Diagram for explaining the conventional LINC method
  • FIG. 6 is a diagram for explaining the principle of the present invention.
  • FIG. 7 is a diagram for explaining the principle of the present invention.
  • FIG. 8 is a diagram for explaining the principle of the present invention.
  • FIG. 9 is a diagram for explaining the principle of the present invention.
  • FIG. 10 is a diagram for explaining the principle of the present invention.
  • FIG. 11 is a block diagram showing the configuration of the transmitting apparatus according to Embodiment 1 of the present invention.
  • FIG. 12 is a circuit diagram showing an example of a specific configuration of a digital quadrature modulation unit
  • FIG. 13 is a block diagram showing the configuration of the transmitting apparatus according to Embodiment 2 of the present invention.
  • FIG. 14 shows an example of subcarriers to which symbols are assigned in the subcarrier arrangement section.
  • FIG. 15 is a block diagram showing the configuration of the transmitting apparatus according to Embodiment 3 of the present invention.
  • FIG.16 Diagram for explaining OFDM signal in which NULL is placed by NULL insertion part
  • FIG. 18 is a diagram for explaining an OFDM signal in which NULL is inserted in the fourth embodiment.
  • FIG. 19 is a diagram for explaining the OFDM signal converted by the IFFT unit in the fourth embodiment.
  • FIG. 20 is a diagram showing a final output OFDM signal when using a sum component without constraint of 2 ⁇ Repetition, which is finally output in the quadrature modulation unit in the fourth embodiment.
  • FIG. 21 is a block diagram showing the configuration of the transmitting apparatus according to Embodiment 5 of the present invention.
  • FIG. 22 is a diagram for explaining the spectrum of a signal that has been LINC amplified in the two amplification systems in the transmitter of the fifth embodiment.
  • FIG. 23 is a diagram for explaining the operation of a constant envelope conversion unit as a modification of the transmitting apparatus according to Embodiment 5.
  • FIG. 24 is a block diagram showing the configuration of the transmitting apparatus according to the sixth embodiment of the present invention.
  • FIG. 25 is a diagram for explaining an IFFT unit in the transmitting apparatus according to the seventh embodiment.
  • the present invention relates to an output amplifier circuit (PA) for digital wireless communication,
  • PA output amplifier circuit
  • LINC amplifier circuit that aims to achieve both formability and high efficiency, the linearity (out-of-band leakage power, modulation accuracy) is improved by applying a new decomposition method to the constant envelope signal.
  • the basic principle of the present invention is to convert an IQ complex baseband signal into a scalar signal, multiplex the signals with the orthogonal components to generate constant envelope signals (S1, S2), and amplify and synthesize these signals. To generate a transmission signal.
  • FIG. 6 is a diagram for explaining the principle of the present invention and shows a method for generating a constant envelope signal according to the present invention.
  • a scalarized modulation signal (hereinafter referred to as “scalar signal”) is S (t), and the scalar signal S (t) is a signal that changes on the I axis.
  • the alternating components A (t), — A (t) are multiplexed to generate a constant envelope signal.
  • These constant envelope signals S1 and S2 are expressed by the following equations (4) and (5).
  • FIG. 7 is a diagram for explaining the principle of the present invention, and is an explanatory diagram when the scalar signal S (t) crosses zero.
  • This change is a continuous change that moves on the circumference, and there is no phase change of 180 degrees, and no phase discontinuity occurs.
  • the spectral broadening of the constant envelope signals SI and S2 is reduced, and the influence of the band limitation is greatly reduced.
  • FIGS. 8 to 10 are diagrams for explaining the principle of the present invention
  • FIG. 8 is a diagram showing the frequency spectrum of the constant envelope signals SI and S2 before nonlinear amplification in the present invention
  • FIG. FIG. 5 is a diagram showing an S1, S2 spectrum after nonlinear amplification and a final output (after synthesis) spectrum when band-limiting in the present invention
  • FIG. 10 is a diagram showing an example of a reception constellation when the band is limited in the present invention.
  • FIG. 8 shows a spectrum without band limitation
  • FIGS. 9 and 10 show an example in which the spectrum is limited to twice the signal band.
  • FIG. 11 is a block diagram showing a configuration of transmitting apparatus 100 according to Embodiment 1 of the present invention.
  • the transmission apparatus 100 shown in FIG. 11 includes a digital quadrature modulation unit (scalar signal conversion unit) 110, a constant envelope conversion unit 120, 07 eight conversion units (“0 eight”) 131, 132, a low-pass filter (“LPF”). 14 and 142, quadrature modulation sections 151 and 152, nonlinear amplifiers 161 and 162, and a synthesizer (lossless synthesizer) 170.
  • the synthesizer 170 is shown as a (lossless) synthesizer in FIG.
  • a digital quadrature modulation (Low-IF) unit 110 performs scalar conversion processing on an input digital baseband (hereinafter “BB” t) signal.
  • Digital quadrature modulation section 110 digitally upconverts the BB signal to generate a Low-IF digital signal, and outputs the low-IF digital signal to constant envelope conversion section 120.
  • the digital BB signal input to the digital quadrature modulation unit 110 may be a power OFDM baseband signal that is a complex baseband signal modulated by QPSK or 16QAM! / !.
  • FIG. 12 is a circuit diagram showing an example of a specific configuration of the digital quadrature modulation unit 110.
  • the digital quadrature modulation unit 110 multiplies the input complex BB signal I signal by cos co t, multiplies the input complex BB signal Q signal by sin co t,
  • the low-IF (low intermediate frequency) signal (Real Part real number) is generated by calorie calculation.
  • the Low-IF digital signal generated by the digital quadrature modulation unit 110 is a scalar signal (real number) Real Part.
  • This scalar signal (real number) Real Part corresponds to the scalar signal S (t) described in the basic principle in the present embodiment.
  • the constant envelope converter 120 is a scalar signal (Low
  • the signal (scalar signal) is multiplexed on the quadrature component of the (IF signal) to generate two constant envelope signals SI and S2, and output them to the DZA converters 131 and 132.
  • These constant envelope signals Sl and S2 correspond to the constant envelope signals S (t) and S (t) described in the basic principle in this embodiment.
  • the DZA conversion units 131 and 132 convert the constant envelope signals S1 and S2 output from the constant envelope conversion unit 120 into analog signals from the digital signal, respectively, and output the analog signals to the LPFs 141 and 142.
  • LPFs 141 and 142 remove sampling frequency components and aliasing components, which are unnecessary components included in the signals input from DZA conversion units 131 and 132, and output them to quadrature modulation units 151 and 152. .
  • the quadrature modulation sections 151 and 152 orthogonally modulate the I and Q components of the analog constant envelope signals SI and S2 with the Lo signal to form an RF band signal and output the RF band signal to the nonlinear amplifiers 161 and 162.
  • the frequency of the Lo signal that orthogonally modulates the constant envelope signals SI and S2 in the orthogonal modulation units 151 and 152 is a frequency that is offset by the Low-IF frequency with respect to the transmission frequency (center). Of the sum or difference frequency components, components different from the transmission frequency are removed.
  • Nonlinear amplifiers 161 and 162 nonlinearly amplify (limiter amplification) the constant envelope signal up-converted to the RF band, and output the nonlinearly amplified signal to synthesizer (lossless synthesizer) 170.
  • synthesizer lossless synthesizer
  • the (lossless) synthesizer 170 is configured to add two non-linearly amplified constant envelope signals SI and S2 Synthesize. By combining, components multiplexed due to the constant envelope ⁇ cancel each other, and only the transmission signal is output. The power of the components that cancel out is not consumed when a lossless synthesizer is used, and high efficiency can be achieved.
  • digital quadrature modulation section 110 as a scalar signal conversion means for converting an IQ complex baseband signal into a scalar signal, and first and second orthogonal signals of the scalar signal.
  • a constant envelope converter (constant envelope signal generator) 120 that generates the first and second constant envelope signals by multiplexing the scalar signal with the component, and the first and second constant envelope signals
  • First and second nonlinear amplifiers 161 and 162 for amplifying, respectively, and a synthesizer (lossless synthesizer) 170 for synthesizing signals obtained by the first and second nonlinear amplifiers 161 and 162 are provided.
  • FIG. 13 is a block diagram showing a configuration of transmitting apparatus 200 according to Embodiment 2 of the present invention.
  • This transmitting apparatus 200 uses the above-described basic principle for OFDM (Orthogonal Frequency Division Multiplexing), and here, double-repetition in which one primary modulation symbol is redundantly transmitted by two subcarriers. Send.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the transmission apparatus 200 shown in FIG. 13 includes a coordinate conversion unit 211, a subcarrier arrangement unit 213, an IFFT (Inverse. Fast Fourier Transform) unit 216, a constant envelope conversion unit 220, 07 eight transform units (“0 eight”). ) 131, 132, Rhonos filters (“1 ⁇ ”) 141, 142, quadrature modulation units 151, 152, nonlinear amplifiers 161, 162, and synthesizer (lossless synthesizer) 170.
  • IFFT Inverse. Fast Fourier Transform
  • this transmitting apparatus 200 has the same basic configuration as that of transmitting apparatus 100 corresponding to Embodiment 1 shown in FIG. 11.
  • digital orthogonal modulation section 110 is used instead.
  • a coordinate conversion unit 211, a subcarrier arrangement unit 213, and an IFFT unit 216 are provided. Therefore, in the transmission apparatus 200, the same components as those of the transmission apparatus 100 are denoted by the same names and reference numerals, and description thereof is omitted.
  • coordinate conversion section 211, subcarrier arrangement section 213, and IFFT section 216 constitute scalar signal conversion section 210.
  • the coordinate conversion unit 211 converts the IQ plane coordinates of the subcarrier symbols to the OFDM baseband signal that is first-order modulated by QPSK, 16QAM, etc.
  • the coordinate conversion unit 211 uses any one of the following four types of conversion methods.
  • the IQ coordinate of modulation symbol n is (In, Qn).
  • Complex conjugate coordinate transformation For example, (In, Q n) ⁇ (ln, —Qn) transformation to I axis symmetry
  • Complex conjugate inversion coordinate transformation (In, Qn) ⁇ (- (In, Qn) is converted to Q axis symmetry
  • IQ permutation inversion coordinate transformation For example, (In, Qn) ⁇ (-Qn, In).
  • the subcarrier arrangement unit 213 uses the coordinate-transformed OFDM baseband signal input from the coordinate transformation unit 211 to convert the coordinate-transformed symbol and its original symbol to DC on the frequency axis. Are assigned to subcarriers at symmetrical positions.
  • FIG. 14 is a diagram showing an example of subcarriers to which symbols are assigned by subcarrier arrangement section 213.
  • FIG. 14 shows a case where the original symbol is converted with a complex conjugate relationship.
  • the post-arrangement OFDM signal shown in Fig. 14 corresponds to double repetition in the subcarrier direction.
  • IFFT section 216 converts the frequency domain OFDM signal input by subcarrier arrangement section 213 into a time domain signal and outputs the time domain signal to constant envelope conversion section 220.
  • IFFT section 216 when a signal in which symbols subjected to coordinate transformations (1) to (4) are arranged on symmetrical subcarriers is IFF, the output is as follows due to the nature of Fourier transformation.
  • real part one imaginary part Therefore, use (1) the real part, (2) the imaginary part, and (3) (4) the real part force imaginary part.
  • the OFDM baseband signal can be converted into a scalar signal.
  • Two constant envelope signals S 1 and S 2 are generated and output to the DZA converters 131 and 132.
  • the OFDM primary modulation symbol is converted to an I-axis symmetric symbol, converted to a Q-axis symmetric symbol, converted to a symbol in which IQ is replaced, or IQ is changed.
  • a sub-array in which the coordinate conversion unit 211 that converts to a reversed and inverted symbol, the symbol converted by the coordinate conversion unit 211, and the symbol before coordinate conversion are arranged on subcarriers at symmetrical positions with the DC component in between
  • FIG. 15 is a block diagram showing a configuration of transmitting apparatus 300 according to Embodiment 3 of the present invention.
  • This transmitting apparatus 300 is used in OFDM (Orthogonal Frequency Division Multiplexing), and transmits twice the repetition.
  • Transmitting apparatus 300 shown in FIG. 15 is a modification of transmitting apparatus 200 according to Embodiment 2, and includes subcarrier arrangement section 313, NULL insertion section 314, IFFT (Inverse. Fast Four Transform) Unit 316, constant envelope conversion unit 320, 07 eight conversion units (“0 eight”) 131, 132, mouth-pass filters (“ ⁇ ”) 141, 142, quadrature modulation units 151, 152, nonlinear amplifier 161, 1 62, and a synthesizer (lossless synthesizer) 170.
  • IFFT Inverse. Fast Four Transform
  • this transmitting apparatus 300 has the same basic configuration as transmitting apparatus 200 corresponding to Embodiment 2 shown in FIG. 13, and in the configuration of transmitting apparatus 200, coordinate conversion section 211 is omitted.
  • a NULL insertion unit 314 is provided between the subcarrier arrangement unit 313 and the IFFT unit 316. Therefore, in the transmission apparatus 300, the same components as those of the transmission apparatus 200 are denoted by the same names and reference numerals, and the description thereof is omitted.
  • subcarrier arrangement section 313, null insertion section 314, and IFFT section 316 constitute scalar signal conversion section 310.
  • Subcarrier arrangement section 313 receives the input OFDM primary modulation signal (primary modulation symbol).
  • the number of primary modulation symbols is arranged on the frequency axis in the order of subcarriers.
  • NULL insertion section 314 inserts NULLs corresponding to the number of input primary modulation symbols.
  • the NULL insertion unit 314 also inserts a DC subcarrier and a guard band NULL as necessary.
  • FIG. 16 is a diagram for explaining an OFDM signal in which NULLs are arranged by the NULL insertion unit 314.
  • the primary modulation symbols are arranged in the positive frequency subcarrier (S1 to S6 in Fig. 16), and NULL (N1 to N6) is assigned to the negative frequency subcarrier. Place.
  • IFFT section 316 converts the frequency domain OFDM signal that has been null-inserted by null insertion section 314 into a time-domain signal, and outputs the time domain signal to constant envelope transform section 320.
  • FIG. 17 is a diagram for explaining an OFDM signal after IFFT by the IFFT unit.
  • IFFT section 316 IFFTs the signal of only the positive frequency subcarrier.
  • a signal with only positive frequency subcarriers has a complex conjugate symbol at a symmetrical position with respect to DC (complex conjugate symmetry) as shown in Fig. 17, and a complex conjugate inversion symbol at a symmetrical position with respect to DC. It can be thought of as a signal obtained by adding a certain signal (complex conjugate antisymmetric).
  • a signal obtained by IFFT of the IFFT is a sum of a signal obtained by IFFT of the complex conjugate symmetric signal and a signal obtained by IFFT of the complex conjugate antisymmetric signal by the addition theorem of Fourier transform.
  • former Is a signal with only real part due to the nature of Fourier transform, and the latter with only imaginary part
  • the real part of the output is a signal with complex conjugate symbols at symmetrical positions around DC.
  • a scalar signal equivalent to that of the second embodiment can be obtained by using either the real part or the imaginary part.
  • Transmitting apparatus 300 transmits complex conjugate symbols (some! / Is an inversion thereof) as it is, corresponding to double repetition transmission, similar to transmitting apparatus 200 according to the second embodiment.
  • the complex conjugate symbol at the symmetric position is transmitted as it is as equivalent to the double Repetition transmission, whereas in the fourth embodiment, the OFDM signal is transmitted as a symmetric position symbol without the restriction of the double Repetition. Is transmitted.
  • the transmission apparatus of the fourth embodiment is used for OFDM, and has the same block configuration as that of the transmission apparatus 300 of the third embodiment shown in FIG. That is, the transmission apparatus of the fourth embodiment is similar to the third embodiment in that the subcarrier arrangement unit 313, the NULL insertion unit 314, the IFFT (Inverse. Fast Fourier Transform) unit 316, the constant envelope conversion units 320, 07 Eight converters (“0 eight”) 131, 132, low-pass filters (“1 ⁇ ”) 141, 142, quadrature modulators 151, 152, nonlinear amplifiers 161, 162, combiner (lossless combiner) 170 Have
  • the processing of the NULL insertion unit and the number of IFFT points in the processing of the IFFT unit are different from those of the transmitting apparatus of the fourth embodiment.
  • the difference between the configuration of transmitting apparatus 300 of Embodiment 3 and the configuration of transmitting apparatus 300 of Embodiment 3 will be described.
  • FIG. 18 is used to explain the OFDM signal in which NULL is inserted in the fourth embodiment.
  • FIG. 18 is used to explain the OFDM signal in which NULL is inserted in the fourth embodiment.
  • NULL insertion section 314 in the transmission apparatus of Embodiment 4 sets NULL so that the primary modulation symbols (S11 to S16) become a part of the positive frequency (Low-IF signal). ⁇ Enter.
  • IFFT section 316 in the transmission apparatus of Embodiment 4 converts the frequency domain OFDM signal into which N ULL has been inserted by the NULL insertion section, into a time domain signal and outputs the time domain signal to constant envelope conversion section 320.
  • the IFFT unit in Embodiment 4 performs IFFT with a sufficiently large number of points with respect to the number of primary modulation symbols.
  • FIG. 19 is a diagram for explaining the OFDM signal converted by IFFT section 316 in the fourth embodiment.
  • the frequency spectrum of the IFFT signal is the same as in Embodiment 3, but the real part is a scan with complex conjugate symbols (S11 * to S16 *) at symmetrical positions around DC.
  • the imaginary part becomes a spectrum with a complex conjugate inversion symbol at the symmetrical position.
  • the complex conjugate inversion symbol at the target position is obtained by inverting the positions of S11 * to S16 * and becomes —S11 * to S16 *, but is omitted in FIG.
  • Img the real part or the imaginary part of the OFDM signal output from the IFFT unit 316, a low-IF signal (scalar signal) ) Can be obtained.
  • the frequency of the Lo signal is set to a frequency that is offset by the Low-IF frequency with respect to the transmission frequency (center).
  • the quadrature modulation unit removes and outputs a component different from the transmission frequency from the sum (Lo + IF) or difference (Lo – IF) frequency components.
  • filtering is performed with an analog filter, so the IF frequency is set high enough for removal.
  • FIG. 20 shows the final output OFDM signal when using the sum component without the constraint of the 2 ⁇ Repetition, which is finally output in the quadrature modulation unit.
  • the fifth embodiment is limited to OFDM, and the transmission apparatus according to the fourth embodiment is modified. Good shape.
  • the IFF T part is used in the fifth embodiment.
  • the real part (Real Part) and imaginary part (Img Part) output from 416 are used.
  • the image envelope configuration is removed by removing the image component when the constant envelope signals Sl and S2 performed in the fourth embodiment are orthogonally modulated and upconverted to the RF band. Is what you do.
  • FIG. 21 is a block diagram showing a configuration of transmitting apparatus 500 according to Embodiment 5 of the present invention.
  • a transmission apparatus 500 shown in FIG. 21 shows a modification of transmission apparatus 200 in Embodiment 2, and includes subcarrier arrangement section 313, NULL insertion section 414, IFFT (Inverse. Fast Fourier Transform) section. 416, constant envelope converter 521, 523, DZA converter (“DZA”) 131 to 134, low-pass filter (“: LPF”) 141 to 144, quadrature modulator 551 to 554, nonlinear amplifier 561 to 564, lossless It has combiners 571 and 575, a combiner 580, and a ⁇ Z2 phase shifter 590. Note that this transmitting apparatus 500 has the same basic configuration as that of transmitting apparatus 300 corresponding to Embodiment 3 shown in FIG. 15, and the same components are given the same names and reference numerals for explanation. Omitted.
  • Transmitting apparatus 500 includes subcarrier arrangement section 313, NULL insertion section 414, IFFT section 416 power S scalar signal conversion section 510.
  • the configuration from subcarrier arrangement section 313 to IFFT section 416 is the same as that in Embodiment 4, and the same processing is performed.
  • subcarrier arrangement section 313 to which an OFDM primary modulation signal is input arranges a primary modulation symbol at a part of the positive frequency of the OFDM primary modulation signal, and a NULL insertion section Output to 414.
  • NULL insertion section 414 inserts NULL so that the primary modulation symbol becomes a part of the positive frequency (Low_IF signal), and outputs the result to IFFT section 416.
  • IFFT section 416 has frequency domain OF in which NULL is inserted by NULL insertion section 414.
  • the DM signal is converted into a time domain signal and output to the constant envelope conversion units 521 and 523, respectively.
  • IFFT section 416 has an IFF with a sufficiently large number of points relative to the number of primary modulation symbols. Doing T.
  • IFFT section 416 generates a Low-IF signal by performing IFF on the input signal.
  • the real part of the IFFT output by IFFT section 416 is a spectrum with a complex conjugate symbol at a symmetric position around DC, and the imaginary part is a spectrum with a complex conjugate inversion symbol at a symmetric position.
  • IFFT section 416 outputs the real part (Real Part) to constant envelope conversion section 521 and the imaginary part (Img Part) to constant envelope conversion section 523.
  • the constant envelope converter 521 is composed of D / A 131-1, 131-2, 132-1, 132-2, LPF1 41-1, 141-2, 142-1, 142-2, quadrature modulator Together with 551 and 552, nonlinear amplifiers 561 and 562, and a combiner (lossless combiner) 571, an amplification system 520A for the real part is configured.
  • the constant envelope converter 523 consists of D / A133-1, 133-2, 134-1, 1, 134-2, LP F143-1, 143-2, 144-1, 1, 144-2, quadrature modulator 553, 554
  • the non-linear amplifiers 563 and 564 and the synthesizer (lossless synthesizer) 575 constitute an amplification system 520B for the imaginary part.
  • the real part (real part) and imaginary part (Img part) of the IFFT output from the IFFT part 416 are used. ) Is generated to generate a constant envelope signal for LINC amplification.
  • the multiplexing unit 580 is arranged at the final stage, synthesizes the LINC-amplified signal using the amplification system 520A for the real part and the amplification system 520B for the imaginary part, and outputs it as a transmission signal.
  • the Lo signal phase used for the quadrature modulation of the constant envelope signal differs between the amplification system 520A for the real part and the amplification system 5 20B for the imaginary part, and the imaginary part side is shifted by ⁇ 2 phase shift.
  • the phase is shifted by + ⁇ Z2 [rad] by the part 590.
  • IFFT output is processed by removing the phase rotation (+ ⁇ 2) of the imaginary part of the amplification part of the imaginary part, which is the real part + j * imaginary part.
  • the quadrature modulation units 553 and 554 in the amplification system 520 ⁇ with respect to the imaginary part use the ⁇ ⁇ 2 phase shift unit 590 for the input signal in the quadrature modulation, and perform the corresponding phase rotation.
  • Figure 22 shows the spectrum of the LINC amplified signal.
  • FIG. 22 shows two amplification systems 520A and 520B in transmitting apparatus 500 of the fifth embodiment. It is a figure where it uses for description of the spectrum of the LINC-amplified signal.
  • the difference frequency component becomes a complex conjugate signal of the sum frequency component, and in the output of the imaginary part side amplification system 520B.
  • the difference frequency component becomes a complex conjugate inversion signal of the sum frequency component.
  • amplification system 520B for the imaginary part operates in the same manner as amplification system 520A for the real part, and ⁇ 2 phase shift unit 590 performs quadrature modulation units 553 and 554.
  • the constant envelope conversion unit 523 for the imaginary part may be configured to add the phase difference to thereby eliminate the ⁇ 2 phase shift unit 590.
  • FIG. 23 shows the operation of constant envelope conversion section 523 for imaginary part with phase difference added (see FIG. 21) when ⁇ ⁇ 2 phase shift section 590 is omitted in transmitting apparatus 500 of Embodiment 5.
  • FIG. 23 shows the operation of constant envelope conversion section 523 for imaginary part with phase difference added (see FIG. 21) when ⁇ ⁇ 2 phase shift section 590 is omitted in transmitting apparatus 500 of Embodiment 5.
  • the IFFT output is set as the I axis, and the signal is multiplexed on the Q axis to be constant envelope
  • the IFFT output is used as the Q-axis signal, and the signal is multiplexed on the I-axis to form a constant envelope. I do.
  • the constant envelope conversion unit 523 on the imaginary part side in this modification example uses the imaginary part signal of the input IFFT part 416 as the Q-axis signal, and sets A on the I-axis side. (t), — A (t) is multiplexed to generate constant envelope signals SI and S2.
  • SI and S2 correspond to the constant envelope signals S (t) and S (t) described in the basic principle in the present embodiment.
  • the phase difference of + ⁇ 2 is increased with respect to the processing on the real part side due to the operation of the constant envelope conversion unit 523 for the imaginary part to which the phase difference is added. Therefore, there is no need to cover the phase rotation by the quadrature modulation units 553 and 554, and the ⁇ 2 phase shift unit 590 is not necessary.
  • the basic idea of the sixth embodiment is that the transmission devices 100, 200, 30 of the above-described embodiments.
  • the local leak of the quadrature modulation unit is reduced.
  • FIG. 24 is a block diagram showing a configuration of transmitting apparatus 600 according to Embodiment 6 of the present invention.
  • coordinate transformation section 611 transforms IQ plane coordinates of subcarrier symbols for an OFDM baseband signal that is first-order modulated by QPSK, 16Q AM, etc., in the same manner as coordinate transformation section 211. Then, the data is output to the subcarrier arrangement unit 613.
  • the subcarrier arrangement unit 613 performs the same processing as the subcarrier arrangement unit 213.
  • subcarrier arrangement section 613 assigns primary modulation symbols to subcarriers using the primary modulated OFDM baseband signal. Further, the subcarrier arrangement unit 613 uses the OFDM baseband signal subjected to coordinate conversion from the coordinate conversion unit 611 to The converted symbol and its original symbol are assigned to subcarriers located symmetrically across DC.
  • IFFT section 616 converts the frequency domain OFDM signal input from subcarrier arrangement section 213 into a time domain signal, and outputs the real part (Real Part) to constant envelope conversion section 620.
  • the coordinate conversion unit 611, the subcarrier arrangement unit 613, and the IFFT unit 616 constitute a scalar signal conversion unit 610.
  • the constant envelope conversion unit 620 generates two constant envelope signals SI and S2 by multiplexing the scalar signal with the orthogonal component of the scalar signal of the real part in the OFDM signal input from the IFFT unit 616, and outputs it. .
  • the phase of the constant envelope signal S2 is inverted by the inversion units 625-1, 625-2 and output to the DZA conversion units 632-1, 632-2.
  • the Lo signal phase is inverted to perform quadrature modulation and output to the nonlinear amplifier 662.
  • the S2 side is inverted, but the S1 side may be inverted.
  • the basic idea of the sixth embodiment can be applied not only to the second embodiment but also to other embodiments.
  • the transmitting apparatus of the seventh embodiment shows a configuration in which the IFFT circuit calculation amount is reduced in each of the second, third, and fourth embodiments described above, and only the configuration of the IFFT unit is different.
  • the OFDM signal is generated using only one of the IFFT outputs. In this case, the calculation amount can be reduced. The case where only the real part is used will be described.
  • FIG. 25 is a diagram for explaining the IFFT unit in the transmission apparatus according to the seventh embodiment.
  • IFFT section 716 using such a calculation method is replaced with IFFT sections 116, 21 of the second, third, and fourth embodiments.
  • the transmission apparatus according to the present invention is not limited to the above embodiments, and can be implemented with various modifications.
  • the present invention can be implemented with software.
  • an algorithm of the output amplification method according to the present invention is described in a program language, and this program is stored in a memory and executed by information processing means, thereby realizing the same function as the apparatus according to the present invention. be able to.
  • the transmission device is easy to reduce in size, cost and power consumption, and retains the linearity of a signal wave having an envelope variation even when the signal band is limited, And, It has the effect of amplifying a transmission signal with high power efficiency and is useful as a device used in an OFDM wireless transmission device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)

Abstract

It is an object to provide a transmission device, which uses a LINC system, is easily miniaturized and manufactured with low price and low power consumption, holds the linearity (leakage power outside a frequency band width and modulation accuracy) of a signal wave with an envelope fluctuation in the case that a signal frequency band width is limited, and amplifies a transmission signal with high power efficiency. This device (100) resolves a transmission IQ complex base band signal into a plurality of fixed envelope signals, and synthesizes them after nonlinear amplification of each of them. A digital orthogonal modulation unit (110) digitally up-converts a BB signal and generates a Low-IF digital signal, which is a scalar signal. A fixed envelope conversion unit (120) multiplexes a signal and an orthogonal component in the Low-IF digital signal, i.e., the converted scalar signal, to generate first and second envelope signals (S1, S2). Non-linear amplifiers (161) and (162) amplify the first and second envelope signals (S1, S2), respectively. A lossless synthesizer (170) synthesizes signals obtained by the non-linear amplifiers (161) and (162).

Description

送信装置  Transmitter
技術分野  Technical field
[0001] 本発明はディジタル無線通信用の出力増幅回路(PA: Power Amplifier)を有する 送信装置に関する。  The present invention relates to a transmission apparatus having an output amplifier circuit (PA: Power Amplifier) for digital wireless communication.
背景技術  Background art
[0002] 従来、ディジタル無線通信用の出力増幅回路 (PA)における効率と線形性の両立 という課題に対して、送信信号 S (t)を、 2つの定包絡線信号 S (t), S (t)に分解  Conventionally, the transmission signal S (t) is replaced with two constant envelope signals S (t), S (for the problem of achieving both efficiency and linearity in an output amplifier circuit (PA) for digital wireless communication. t)
0 01 02  0 01 02
し、各々を効率の高い非線形増幅器で増幅した後合成する LINC方式 (Linear Ampli fication with Nonlinear Component)が知られている(例えば、特許文献 1)。  In addition, a LINC method (Linear Amplification with Nonlinear Component) is known in which each is amplified by a highly efficient nonlinear amplifier and then synthesized (for example, Patent Document 1).
[0003] 図 1は、従来の LINC方式の増幅方法を説明するための図である。 FIG. 1 is a diagram for explaining a conventional LINC amplification method.
[0004] LINC方式では、送信信号 (変調信号)を下記式(1)としたとき、図 1に示す 2つの定 包絡線信号 S (t),S (t)に分解する。 [0004] In the LINC method, when the transmission signal (modulation signal) is expressed by the following equation (1), it is decomposed into two constant envelope signals S (t) and S (t) shown in FIG.
01 02  01 02
[0005] S (t)=V(t) Xcos{o>ct+ φ (t)}'"(l)  [0005] S (t) = V (t) Xcos {o> ct + φ (t)} '"(l)
o  o
S (t),S (t)は、 S (t)の最大振幅を Vmaxとして、次の式(2)、(3)で表わされる S (t) and S (t) are expressed by the following equations (2) and (3), where the maximum amplitude of S (t) is Vmax.
01 02 0 01 02 0
[0006] S (t) = Vmax/ 2 X cos{ oct+ φ (t) }··· (2) [0006] S (t) = Vmax / 2 X cos {oct + φ (t)} (2)
01  01
S (t) = Vmax/2 X cos{ coct+ 0 (t) }··· (3)  S (t) = Vmax / 2 X cos {coct + 0 (t)} (3)
02  02
Φ (t) = φ (t) + a (t)  Φ (t) = φ (t) + a (t)
Θ (t) = (t) a (t)  Θ (t) = (t) a (t)
これら S (t)、S (t)をそれぞれ増幅し、ベクトル合成すると図 1から明らかなように When these S (t) and S (t) are amplified and vector synthesized, as shown in Fig. 1.
01 02 01 02
s (t)を増幅した信号が得られる。  A signal obtained by amplifying s (t) is obtained.
0  0
[0007] ここで、 S (t), S (t)は定包絡線信号なので、効率の高い非線形増幅回路を用  [0007] Here, since S (t) and S (t) are constant envelope signals, a highly efficient nonlinear amplifier circuit is used.
01 02  01 02
いることができる。また、無損失合成器を用いることによって、合成時に打ち消される 成分の電力消費を無くすことができる。以上により、 LINC方式による出力増幅回路( PA)では、高効率かつ線形な増幅が可能になる。  Can be. Also, by using a lossless synthesizer, it is possible to eliminate the power consumption of components that are canceled out during synthesis. As described above, the LINC output amplifier circuit (PA) enables highly efficient and linear amplification.
特許文献 1:特許第 1892840号公報 発明の開示 Patent Document 1: Japanese Patent No. 1892840 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、従来の LINC方式では、定包絡線信号 S (t) , S (t)が広帯域信号  However, in the conventional LINC method, constant envelope signals S (t) and S (t) are wideband signals.
01 02  01 02
となるため、以下の問題が生じる。  Therefore, the following problems arise.
[0009] 1)定包絡線信号 S , S 生成回路の高速動作 (高サンプリングレート動作,演算量  [0009] 1) High speed operation of constant envelope signals S and S generation circuit (high sampling rate operation, computational complexity)
01 02  01 02
大)が必要となり、小型 ·低コスト ·低消費電力化が困難となる。  Large) is required, making it difficult to reduce size, cost, and power consumption.
[0010] 2)合成器も広帯域なものが必要となり、従来の LINC方式で用いられる無損失合 成器の広帯域ィ匕は困難であり、合成器のロスにより効率が低下するとともに、合成器 自体の小型 ·低コスト化が困難である。  [0010] 2) The synthesizer must also have a wide bandwidth, and the broadband loss of the lossless synthesizer used in the conventional LINC method is difficult, and the efficiency of the synthesizer decreases and the synthesizer itself It is difficult to reduce the size and cost.
[0011] 3)定包絡線信号 S ,S 生成回路および合成器によって信号帯域が制限された場  [0011] 3) When the signal band is limited by the constant envelope signal S 1, S generator and synthesizer
01 02  01 02
合の影響が大きくなり、線形性 (帯域外漏洩,変調精度)が大きく劣化する。  The effect of this is increased and the linearity (out-of-band leakage, modulation accuracy) is greatly degraded.
[0012] ここで、従来方式を用いた際に、定包絡線信号 s (t) , s (t)が広帯域信号となる  Here, when the conventional method is used, the constant envelope signals s (t) and s (t) become wideband signals.
01 02  01 02
点について説明する。従来方式では、送信信号 S (t)の零交差時に定包絡線信号 S  The point will be described. In the conventional method, the constant envelope signal S at the zero crossing of the transmission signal S (t)
0  0
, S の位相が不連続になる。  , S phase becomes discontinuous.
01 02  01 02
[0013] これについて図 2を用いて説明する。送信信号 S (t)が零交差し、 S (t+ At)に変  This will be described with reference to FIG. Transmit signal S (t) crosses zero and changes to S (t + At)
0 0  0 0
化すると、 S (t)は S (t+ A t)へ、 S (t)は S (t+ A t)へと位相反転することにな  Therefore, S (t) is phase-inverted to S (t + A t), and S (t) is phase-inverted to S (t + A t).
01 01 02 02  01 01 02 02
り、不連続な位相変化となる。つまり、図 2において、 S (t)が 0を跨いで第 1象限から  As a result, the phase changes discontinuously. In other words, in Fig. 2, S (t) crosses 0 and starts from the first quadrant.
0  0
第 3象限に変化したとすると、 S (t)は第 2象限から、 0を跨いで第 4象限の S (t+  If we change to the 3rd quadrant, S (t) crosses 0 from the 2nd quadrant, and S (t +
01 01 01 01
A t)に瞬間的に不連続に位相変化し、 S (t)は、第 4象限から、 0を跨いで第 2象限 At (t), the phase changes instantaneously discontinuously, and S (t) extends from the 4th quadrant to the 2nd quadrant across 0.
02  02
の S (t+ A t)に瞬間的に不連続に位相変化する。  The phase changes instantaneously discontinuously in S (t + A t).
02  02
[0014] これによつて、 S 、 S は非常に広帯域な信号となる。図 3は、 S ,S の周波数ス  [0014] Accordingly, S and S become very wideband signals. Figure 3 shows S and S frequency scans.
01 02 01 02  01 02 01 02
ベクトルの一例を示す。なお、図 3は、 864サブキャリア OFDMで 1次変調が 16QA Mの場合の定包絡線信号 S , S の周波数スペクトルを示しており、送信信号帯域  An example of a vector is shown. Figure 3 shows the frequency spectrum of the constant envelope signals S and S when the primary modulation is 16QAM with 864 subcarrier OFDM, and the transmission signal bandwidth
01 02  01 02
に比べて非常に広帯域な信号になっている。  Compared to, the signal is very wide.
[0015] 次に、 S 、 S 信号の帯域が制限された場合の影響を示す。送信信号帯域の 2倍  [0015] Next, the influence when the band of the S and S signals is limited will be described. Twice the transmission signal bandwidth
01 02  01 02
の帯域に制限した場合の出カスペ外ルと受信コンスタレーシヨン (理想受信機で復 調)の一例を図 4、図 5に示す。  Fig. 4 and Fig. 5 show an example of the output cascading and the reception constellation (demodulation by an ideal receiver) when the bandwidth is limited to the specified bandwidth.
[0016] なお、図 4は、 864サブキャリア OFDMで 1次変調が 16QAMの場合において、理 想フィルタで帯域制限したものであり、この場合における非線形増幅後の定包絡線 信号 S , S 及び S と S との合成後の最終出力の周波数スペクトルを示し、図 5はNote that FIG. 4 shows the case where 864 subcarrier OFDM and primary modulation is 16QAM. Fig. 5 shows the frequency spectrum of the final output after synthesis of the constant envelope signals S, S and S and S after nonlinear amplification in this case.
01 02 01 02 01 02 01 02
、図 4に対応する受信コンスタレーシヨンを示す。  Figure 4 shows the reception constellation corresponding to Fig. 4.
[0017] 図 4では、帯域外に 20dB程度の大きな漏洩が発生しており、図 5に示すコンスタ レーシヨンも劣化している。なお、図 4において、 S ,S の帯域が広がっているのは In FIG. 4, a large leakage of about 20 dB occurs outside the band, and the constellation shown in FIG. 5 is also deteriorated. In Fig. 4, the bands of S and S are widened.
01 02  01 02
非線形増幅により高周波成分が復活するためである。  This is because high-frequency components are restored by nonlinear amplification.
[0018] 本発明の目的は、 LINC方式を用いて、小型化、低コスト化、低消費電力化が容易 であり、信号帯域が制限された場合でも、包絡線変動を有する信号波の線形性 (帯 域外漏洩電力,変調精度)を保持し、かつ、高い電力効率を有して送信信号を増幅 できる送信装置及び送信方法を提供することである。  [0018] An object of the present invention is to easily reduce the size, reduce the cost, and reduce the power consumption by using the LINC method. Even when the signal band is limited, the linearity of a signal wave having an envelope variation is achieved. It is an object of the present invention to provide a transmission apparatus and a transmission method capable of amplifying a transmission signal while maintaining (out-of-band leakage power, modulation accuracy) and having high power efficiency.
課題を解決するための手段  Means for solving the problem
[0019] 本発明の送信装置は、送信する IQ複素ベースバンド信号を、複数の定包絡線信 号に分解して、各々を非線形増幅した後に合成する LINC方式を用いた増幅装置で あって、前記 IQ複素ベースバンド信号をスカラ信号に変換するスカラ信号変換手段 と、変換されたスカラ信号の直交成分に信号を多重することで、第 1及び第 2の定包 絡線信号を生成する定包絡線信号生成手段と、前記第 1及び第 2の定包絡線信号 をそれぞれ増幅する第 1及び第 2の非線形増幅器と、前記第 1及び第 2の非線形増 幅器によって得られた信号を合成する合成器とを有する構成を採る。 [0019] A transmitting apparatus of the present invention is an amplifying apparatus using a LINC method that decomposes an IQ complex baseband signal to be transmitted into a plurality of constant envelope signals, and synthesizes each after nonlinear amplification, A scalar signal converting means for converting the IQ complex baseband signal into a scalar signal, and a constant envelope for generating the first and second constant envelope signals by multiplexing the signals on orthogonal components of the converted scalar signal. The signal obtained by the line signal generating means, the first and second nonlinear amplifiers for amplifying the first and second constant envelope signals, respectively, and the signals obtained by the first and second nonlinear amplifiers are synthesized. A configuration having a synthesizer is adopted.
発明の効果  The invention's effect
[0020] 本発明によれば、小型化、低コスト化、低消費電力化が容易であり、信号帯域が制 限された場合でも、包絡線変動を有する信号波の線形性 (帯域外漏洩電力,変調精 度)を保持し、かつ、高い電力効率を持って送信信号を送信できる。  [0020] According to the present invention, it is easy to reduce the size, reduce the cost, and reduce the power consumption. Even when the signal band is limited, the linearity of the signal wave having the envelope variation (the out-of-band leakage power) , Modulation accuracy) and transmit power with high power efficiency.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]従来の LINC方式を説明するための図 [0021] [Fig. 1] Diagram for explaining the conventional LINC method
[図 2]従来の LINC方式を説明するための図  [Figure 2] Diagram for explaining the conventional LINC system
[図 3]従来の LINC方式を説明するための図  [Figure 3] Diagram for explaining the conventional LINC system
[図 4]従来の LINC方式を説明するための図  [Figure 4] Diagram for explaining the conventional LINC system
[図 5]従来の LINC方式を説明するための図 [図 6]本発明の原理を説明するための図 [Figure 5] Diagram for explaining the conventional LINC system FIG. 6 is a diagram for explaining the principle of the present invention.
[図 7]本発明の原理を説明するための図  FIG. 7 is a diagram for explaining the principle of the present invention.
[図 8]本発明の原理を説明するための図  FIG. 8 is a diagram for explaining the principle of the present invention.
[図 9]本発明の原理を説明するための図  FIG. 9 is a diagram for explaining the principle of the present invention.
[図 10]本発明の原理を説明するための図  FIG. 10 is a diagram for explaining the principle of the present invention.
[図 11]本発明の実施の形態 1に係る送信装置の構成を示すブロック図  FIG. 11 is a block diagram showing the configuration of the transmitting apparatus according to Embodiment 1 of the present invention.
[図 12]ディジタル直交変調部の具体的な構成の一例を示す回路図  FIG. 12 is a circuit diagram showing an example of a specific configuration of a digital quadrature modulation unit
[図 13]本発明の実施の形態 2に係る送信装置の構成を示すブロック図  FIG. 13 is a block diagram showing the configuration of the transmitting apparatus according to Embodiment 2 of the present invention.
[図 14]サブキャリア配列部にてシンボルが割り当てられたサブキャリアの一例を示す 図  FIG. 14 shows an example of subcarriers to which symbols are assigned in the subcarrier arrangement section.
[図 15]本発明の実施の形態 3に係る送信装置の構成を示すブロック図  FIG. 15 is a block diagram showing the configuration of the transmitting apparatus according to Embodiment 3 of the present invention.
[図 16]NULL挿入部により NULLが配置された OFDM信号の説明に供する図 [Fig.16] Diagram for explaining OFDM signal in which NULL is placed by NULL insertion part
[図 17]IFFT部による IFFT後の OFDM信号の説明に供する図 [Fig.17] Diagram for explaining OFDM signal after IFFT by IFFT section
[図 18]本実施の形態 4において NULLが挿入された OFDM信号の説明に供する図 FIG. 18 is a diagram for explaining an OFDM signal in which NULL is inserted in the fourth embodiment.
[図 19]実施の形態 4において IFFT部により変換された OFDM信号の説明に供する 図 FIG. 19 is a diagram for explaining the OFDM signal converted by the IFFT unit in the fourth embodiment.
[図 20]実施の形態 4において直交変調部において最終出力される、 2倍 Repetitionの 制約無しの和成分を用いた場合の最終出力 OFDM信号を示す図  FIG. 20 is a diagram showing a final output OFDM signal when using a sum component without constraint of 2 × Repetition, which is finally output in the quadrature modulation unit in the fourth embodiment.
[図 21]本発明の実施の形態 5に係る送信装置の構成を示すブロック図  FIG. 21 is a block diagram showing the configuration of the transmitting apparatus according to Embodiment 5 of the present invention.
[図 22]本実施の形態 5の送信装置において 2系統の増幅系にて LINC増幅された信 号のスペクトルの説明に供する図  FIG. 22 is a diagram for explaining the spectrum of a signal that has been LINC amplified in the two amplification systems in the transmitter of the fifth embodiment.
[図 23]本実施の形態 5に係る送信装置の変形例として定包絡変換部の動作の説明 に供する図  FIG. 23 is a diagram for explaining the operation of a constant envelope conversion unit as a modification of the transmitting apparatus according to Embodiment 5.
[図 24]本発明に係る実施の形態 6における送信装置の構成を示すブロック図  FIG. 24 is a block diagram showing the configuration of the transmitting apparatus according to the sixth embodiment of the present invention.
[図 25]本実施の形態 7の送信装置における IFFT部を説明する図  FIG. 25 is a diagram for explaining an IFFT unit in the transmitting apparatus according to the seventh embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0023] 本発明は、ディジタル無線通信用の出力増幅回路 (PA)に関する技術であって、線 形性と高効率化との両立を狙った LINC方式増幅回路において、新たな定包絡線信 号への分解方法を適用し、線形性 (帯域外漏洩電力,変調精度)を改善するものであ る。 [0023] The present invention relates to an output amplifier circuit (PA) for digital wireless communication, In a LINC amplifier circuit that aims to achieve both formability and high efficiency, the linearity (out-of-band leakage power, modulation accuracy) is improved by applying a new decomposition method to the constant envelope signal. The
[0024] (1)本発明の基本原理  [0024] (1) Basic principle of the present invention
本発明の基本原理は、 IQ複素ベースバンド信号をスカラ信号に変換し、その直交 成分に信号を多重して定包絡線信号 (S1,S2)を生成し、これらを増幅して合成するこ とにより送信信号を生成する。  The basic principle of the present invention is to convert an IQ complex baseband signal into a scalar signal, multiplex the signals with the orthogonal components to generate constant envelope signals (S1, S2), and amplify and synthesize these signals. To generate a transmission signal.
[0025] (1 1)定包絡線信号 (S1,S2)生成方法 [1] 1) Constant envelope signal (S1, S2) generation method
図 6は、本発明の原理を説明するためのものであり、本発明に係る定包絡線信号の 生成方法を示す図である。  FIG. 6 is a diagram for explaining the principle of the present invention and shows a method for generating a constant envelope signal according to the present invention.
[0026] 図 6では、スカラ化された変調信号 (以下、「スカラ信号」という)を S (t)としており、ス カラ信号 S (t)は、 I軸上を変化する信号となる。 In FIG. 6, a scalarized modulation signal (hereinafter referred to as “scalar signal”) is S (t), and the scalar signal S (t) is a signal that changes on the I axis.
[0027] 図 6において、スカラ信号 S(t)について、スカラ信号 S(t)の最大振幅あるいはそれ より大きい振幅を半径とする円を考えると、その円周上に S (t), S (t)が乗るように直 [0027] In Fig. 6, for a scalar signal S (t), considering a circle whose radius is the maximum amplitude of the scalar signal S (t) or a larger amplitude, S (t), S ( t)
1 2  1 2
交成分 A(t), — A(t)を多重し、定包絡線信号を生成する。これら定包絡線信号 S1 , S2は下記式 (4)、(5)で表される。  The alternating components A (t), — A (t) are multiplexed to generate a constant envelope signal. These constant envelope signals S1 and S2 are expressed by the following equations (4) and (5).
[0028] つまり、定包絡振幅を Cとする(C≥S(t)最大振幅)と、 [0028] That is, if the constant envelope amplitude is C (C≥S (t) maximum amplitude),
A(t)=sqrt(C2-S2(t)) A (t) = sqrt (C 2 -S 2 (t))
S (t)=S(t)+j*A(t)"-(4)  S (t) = S (t) + j * A (t) "-(4)
S (t)=S(t)—j*A(t)"-(5)  S (t) = S (t) —j * A (t) "-(5)
2  2
となる。  It becomes.
[0029] (1-2)スカラ信号 S (t)が零交差した場合  [0029] (1-2) Scalar signal S (t) crosses zero
図 7は、本発明の原理を説明するためのものであり、スカラ信号 S(t)が零交差した 場合の説明図である。  FIG. 7 is a diagram for explaining the principle of the present invention, and is an explanatory diagram when the scalar signal S (t) crosses zero.
[0030] 図 7に示すように、送信信号 (スカラ信号) S(t)が零交差し S(t+ At)に変化した場 合、 S (t)は S (t+At)へ、 S (t)は S (t+ At)へと変化する。  [0030] As shown in Fig. 7, when the transmission signal (scalar signal) S (t) crosses zero and changes to S (t + At), S (t) changes to S (t + At), S (t t) changes to S (t + At).
1 1 2 2  1 1 2 2
[0031] すなわち、式 (4)、(5)を用いた本発明によれば、スカラ化された送信信号 S(t)が、 0を跨いで S(t+At)に変化すると、 S (t)は第 1象限から第 2象限の S (t+At)に 変化し、 S (t)は第 4象限から第 3象限の S (t+ At)に変化する。 That is, according to the present invention using equations (4) and (5), when the transmission signal S (t) converted to a scalar changes to S (t + At) across 0, S (t t) from the first quadrant to the second quadrant S (t + At) As a result, S (t) changes from the 4th quadrant to the 3rd quadrant S (t + At).
2 2  twenty two
[0032] この変化は円周上を動く連続的な変化であり、 180度の位相変化は生じず、位相 の不連続点は発生しない。これにより、定包絡線信号 SI, S2のスペクトル広がりが小 さくなつて、帯域制限の影響が大幅に緩和される。  [0032] This change is a continuous change that moves on the circumference, and there is no phase change of 180 degrees, and no phase discontinuity occurs. As a result, the spectral broadening of the constant envelope signals SI and S2 is reduced, and the influence of the band limitation is greatly reduced.
[0033] 図 8〜図 10は本発明の原理を説明するための図であり、図 8は本発明における非 線形増幅前の定包絡線信号 SI, S2の周波数スペクトルを示す図、図 9は本発明に おいて帯域制限した際の非線形増幅後 S1,S2スぺ外ルと最終出力 (合成後)スぺク トルを示す図である。また、図 10は、本発明において帯域制限した際の受信コンスタ レーシヨンの一例を示す図である。なお、図 8では、帯域制限無しのスペクトルを示し 、図 9及び図 10では、信号帯域の 2倍に制限した場合を一例として示している。  FIGS. 8 to 10 are diagrams for explaining the principle of the present invention, FIG. 8 is a diagram showing the frequency spectrum of the constant envelope signals SI and S2 before nonlinear amplification in the present invention, and FIG. FIG. 5 is a diagram showing an S1, S2 spectrum after nonlinear amplification and a final output (after synthesis) spectrum when band-limiting in the present invention. FIG. 10 is a diagram showing an example of a reception constellation when the band is limited in the present invention. FIG. 8 shows a spectrum without band limitation, and FIGS. 9 and 10 show an example in which the spectrum is limited to twice the signal band.
[0034] 図 8〜9に示すように、本発明の増幅方法では、帯域制限があっても、帯域外の漏 洩がー 80dB以下と小さくなつており、図 10に示すように、コンスタレーシヨンの劣化も ほとんどみられない。このように、本発明の原理は、従来方式に比べて大幅な改善が 見込める。  [0034] As shown in FIGS. 8 to 9, in the amplification method of the present invention, the leakage outside the band is reduced to −80 dB or less even when the bandwidth is limited. As shown in FIG. There is almost no degradation of Chillon. As described above, the principle of the present invention can be greatly improved as compared with the conventional method.
[0035] このような原理を実現する実施の形態の送信装置を以下で説明する。  A transmission apparatus according to an embodiment that realizes such a principle will be described below.
[0036] (2)実施の形態 1 (2) Embodiment 1
図 11は、本発明の実施の形態 1に係る送信装置 100の構成を示すブロック図であ る。  FIG. 11 is a block diagram showing a configuration of transmitting apparatus 100 according to Embodiment 1 of the present invention.
[0037] 図 11に示す送信装置 100は、ディジタル直交変調部 (スカラ信号変換部) 110、定 包絡変換部 120、 07八変換部(「0 八」)131, 132、ローパスフィルタ(「LPF」) 14 1, 142、直交変調部 151, 152、非線形増幅器 161, 162、合成器 (無損失合成器) 170を有する。合成器 170は、図 11では(無損失)合成器で示す。  [0037] The transmission apparatus 100 shown in FIG. 11 includes a digital quadrature modulation unit (scalar signal conversion unit) 110, a constant envelope conversion unit 120, 07 eight conversion units (“0 eight”) 131, 132, a low-pass filter (“LPF”). 14 and 142, quadrature modulation sections 151 and 152, nonlinear amplifiers 161 and 162, and a synthesizer (lossless synthesizer) 170. The synthesizer 170 is shown as a (lossless) synthesizer in FIG.
[0038] ディジタル直交変調(Low— IF)部 110は、入力されるディジタルベースバンド(以 下「BB」 t 、う)信号に対して、スカラ変換処理を行うものである。  A digital quadrature modulation (Low-IF) unit 110 performs scalar conversion processing on an input digital baseband (hereinafter “BB” t) signal.
[0039] ディジタル直交変調部 110は、 BB信号をディジタルアップコンバートして Low— IF ディジタル信号を生成し、定包絡変換部 120に出力する。なお、ディジタル直交変調 部 110に入力されるディジタル BB信号は、 QPSKや 16QAMなどで変調された複素 ベースバンド信号である力 OFDMのベースバンド信号であってもよ!/ヽ。 [0040] 図 12は、ディジタル直交変調部 110の具体的な構成の一例を示す回路図である。 Digital quadrature modulation section 110 digitally upconverts the BB signal to generate a Low-IF digital signal, and outputs the low-IF digital signal to constant envelope conversion section 120. The digital BB signal input to the digital quadrature modulation unit 110 may be a power OFDM baseband signal that is a complex baseband signal modulated by QPSK or 16QAM! / !. FIG. 12 is a circuit diagram showing an example of a specific configuration of the digital quadrature modulation unit 110.
[0041] 図 12に示すようにディジタル直交変調部 110は、入力される複素 BB信号の I信号 に cos co tを乗算し、入力される複素 BB信号の Q信号に sin co tを乗算し、これらをカロ 算することにより Low— IF (低中間周波数)信号 (Real Part実数)を生成して 、る。  As shown in FIG. 12, the digital quadrature modulation unit 110 multiplies the input complex BB signal I signal by cos co t, multiplies the input complex BB signal Q signal by sin co t, The low-IF (low intermediate frequency) signal (Real Part real number) is generated by calorie calculation.
[0042] ディジタル直交変調部 110により生成される Low— IFディジタル信号は、スカラ信 号 (実数) Real Partとなる。このスカラ信号 (実数) Real Partは、本実施の形態におい て基本原理で説明したスカラ信号 S (t)に相当する。  [0042] The Low-IF digital signal generated by the digital quadrature modulation unit 110 is a scalar signal (real number) Real Part. This scalar signal (real number) Real Part corresponds to the scalar signal S (t) described in the basic principle in the present embodiment.
[0043] 定包絡変換部 120は、ディジタル直交変調部 110から入力されるスカラ信号 (Low  [0043] The constant envelope converter 120 is a scalar signal (Low
IF信号)の直交成分に信号 (スカラ信号)を多重し 2つの定包絡線信号 SI, S2を 生成して、 DZA変換部 131, 132に出力する。なお、これら定包絡線信号 Sl、 S2 は、本実施の形態において基本原理で説明した定包絡線信号 S (t) , S (t)に相当  The signal (scalar signal) is multiplexed on the quadrature component of the (IF signal) to generate two constant envelope signals SI and S2, and output them to the DZA converters 131 and 132. These constant envelope signals Sl and S2 correspond to the constant envelope signals S (t) and S (t) described in the basic principle in this embodiment.
1 2 する。  1 2
[0044] DZA変換部 131, 132は、定包絡変換部 120から出力される定包絡線信号 S1, S2をそれぞれ、ディジタル信号カゝらアナログ信号に変換して、 LPF141, 142に出力 する。  [0044] The DZA conversion units 131 and 132 convert the constant envelope signals S1 and S2 output from the constant envelope conversion unit 120 into analog signals from the digital signal, respectively, and output the analog signals to the LPFs 141 and 142.
[0045] LPF141, 142は、 DZA変換部 131, 132から入力された信号に含まれている不 要成分であるサンプリング周波数成分及び折り返し成分等を除去して直交変調部 15 1, 152へ出力する。  LPFs 141 and 142 remove sampling frequency components and aliasing components, which are unnecessary components included in the signals input from DZA conversion units 131 and 132, and output them to quadrature modulation units 151 and 152. .
[0046] 直交変調部 151, 152は、アナログィ匕した定包絡線信号 SI, S2の I, Q成分を Lo 信号で直交変調して、 RF帯信号にし、非線形増幅器 161, 162に出力する。  [0046] The quadrature modulation sections 151 and 152 orthogonally modulate the I and Q components of the analog constant envelope signals SI and S2 with the Lo signal to form an RF band signal and output the RF band signal to the nonlinear amplifiers 161 and 162.
[0047] 直交変調部 151, 152において定包絡線信号 SI, S2を直交変調する Lo信号の 周波数は、送信周波数 (中心)に対して、 Low— IF周波数の分オフセットした周波数 となる。なお、和または差周波数成分のうち送信周波数と異なる成分は除去する。  [0047] The frequency of the Lo signal that orthogonally modulates the constant envelope signals SI and S2 in the orthogonal modulation units 151 and 152 is a frequency that is offset by the Low-IF frequency with respect to the transmission frequency (center). Of the sum or difference frequency components, components different from the transmission frequency are removed.
[0048] 非線形増幅器 161, 162は、 RF帯にアップコンバートされた定包絡線信号を非線 形増幅 (リミッタ増幅)し、非線形増幅した信号を合成器 (無損失合成器) 170に出力 する。なお、非線形増幅器 161, 162としては、線形性が必要ないため高効率な増 幅器を使用する。  Nonlinear amplifiers 161 and 162 nonlinearly amplify (limiter amplification) the constant envelope signal up-converted to the RF band, and output the nonlinearly amplified signal to synthesizer (lossless synthesizer) 170. As the nonlinear amplifiers 161 and 162, a highly efficient amplifier is used because linearity is not necessary.
[0049] (無損失)合成器 170は、非線形増幅された 2系統の定包絡線信号 SI, S2をべタト ル合成する。合成により、定包絡ィ匕のために多重した成分どうしは打ち消しあい、送 信信号のみが出力される。打ち消しあう成分の電力は、無損失合成器を用いた場合 は消費されず、高効率ィ匕を図ることができる。 [0049] The (lossless) synthesizer 170 is configured to add two non-linearly amplified constant envelope signals SI and S2 Synthesize. By combining, components multiplexed due to the constant envelope 匕 cancel each other, and only the transmission signal is output. The power of the components that cancel out is not consumed when a lossless synthesizer is used, and high efficiency can be achieved.
[0050] このように、本実施の形態によれば、 IQ複素ベースバンド信号をスカラ信号に変換 するスカラ信号変換手段としてのディジタル直交変調部 110と、スカラ信号の第 1及 び第 2の直交成分にスカラ信号を多重することで、第 1及び第 2の定包絡線信号を生 成する定包絡変換部 (定包絡線信号生成部) 120と、第 1及び第 2の定包絡線信号 をそれぞれ増幅する第 1及び第 2の非線形増幅器 161、 162と、第 1及び第 2の非線 形増幅器 161、 162によって得られた信号を合成する合成器 (無損失合成器) 170と を設けたので、小型化、低コスト化、低消費電力化が容易であり、信号帯域が制限さ れた場合でも、包絡線変動を有する信号波の線形性 (帯域外漏洩電力,変調精度) を保持し、かつ、高い電力効率を有して送信信号を増幅できる送信装置 100を実現 できる。  [0050] Thus, according to the present embodiment, digital quadrature modulation section 110 as a scalar signal conversion means for converting an IQ complex baseband signal into a scalar signal, and first and second orthogonal signals of the scalar signal. A constant envelope converter (constant envelope signal generator) 120 that generates the first and second constant envelope signals by multiplexing the scalar signal with the component, and the first and second constant envelope signals First and second nonlinear amplifiers 161 and 162 for amplifying, respectively, and a synthesizer (lossless synthesizer) 170 for synthesizing signals obtained by the first and second nonlinear amplifiers 161 and 162 are provided. Therefore, miniaturization, cost reduction, and low power consumption are easy, and even when the signal band is limited, the linearity (out-of-band leakage power, modulation accuracy) of the signal wave with envelope fluctuation is maintained. Realize transmitter 100 that can amplify transmission signals with high power efficiency it can.
[0051] (3)実施の形態 2  [0051] (3) Embodiment 2
図 13は、本発明の実施の形態 2に係る送信装置 200の構成を示すブロック図であ る。  FIG. 13 is a block diagram showing a configuration of transmitting apparatus 200 according to Embodiment 2 of the present invention.
[0052] この送信装置 200は、上述した基本原理を OFDM (Orthogonal Frequency Divisio n Multiplexing)に用いたものであり、ここでは、 1つの 1次変調シンボルを 2つのサブ キャリアで冗長送信する 2倍 Repetition送信を行う。  [0052] This transmitting apparatus 200 uses the above-described basic principle for OFDM (Orthogonal Frequency Division Multiplexing), and here, double-repetition in which one primary modulation symbol is redundantly transmitted by two subcarriers. Send.
[0053] 図 13に示す送信装置 200は、座標変換部 211、サブキャリア配列部 213、 IFFT(I nverse. Fast Fourier Transform)部 216、定包絡変換部 220、 07八変換部(「0 八 」)131, 132、ローノスフィルタ(「1^」)141, 142、直交変調部 151, 152、非線 形増幅器 161, 162、合成器 (無損失合成器) 170を有する。  The transmission apparatus 200 shown in FIG. 13 includes a coordinate conversion unit 211, a subcarrier arrangement unit 213, an IFFT (Inverse. Fast Fourier Transform) unit 216, a constant envelope conversion unit 220, 07 eight transform units (“0 eight”). ) 131, 132, Rhonos filters (“1 ^”) 141, 142, quadrature modulation units 151, 152, nonlinear amplifiers 161, 162, and synthesizer (lossless synthesizer) 170.
[0054] なお、この送信装置 200は、図 11に示す実施の形態 1に対応する送信装置 100と 同様の基本的構成を有し、送信装置 100の構成において、ディジタル直交変調部 1 10に代えて、座標変換部 211、サブキャリア配列部 213及び IFFT部 216を備えるも のである。よって、送信装置 200において、送信装置 100と同一の構成要素につい ては同名称、同符号を付して説明を省略する。 [0055] 送信装置 200では、座標変換部 211、サブキャリア配列部 213及び IFFT部 216が スカラ信号変換部 210を構成している。 Note that this transmitting apparatus 200 has the same basic configuration as that of transmitting apparatus 100 corresponding to Embodiment 1 shown in FIG. 11. In the configuration of transmitting apparatus 100, digital orthogonal modulation section 110 is used instead. Thus, a coordinate conversion unit 211, a subcarrier arrangement unit 213, and an IFFT unit 216 are provided. Therefore, in the transmission apparatus 200, the same components as those of the transmission apparatus 100 are denoted by the same names and reference numerals, and description thereof is omitted. In transmission apparatus 200, coordinate conversion section 211, subcarrier arrangement section 213, and IFFT section 216 constitute scalar signal conversion section 210.
[0056] 座標変換部 211は、 QPSKや 16QAMなどで 1次変調された OFDMベースバンド 信号に対して、サブキャリアシンボルの IQ平面座標を変換して、サブキャリア配列部[0056] The coordinate conversion unit 211 converts the IQ plane coordinates of the subcarrier symbols to the OFDM baseband signal that is first-order modulated by QPSK, 16QAM, etc.
213に出力する。 Output to 213.
[0057] 座標変換部 211における変換方法は以下の 4種の何れか 1つを用いる。なお、変 調シンボル nの IQ座標を (In, Qn)とする。 (1)複素共役座標変換:例えば、 (In, Q n)→(ln, —Qn)のように I軸対称に変換 (2)複素共役反転座標変換:例えば、 (In , Qn)→(-In, Qn)のように Q軸対称に変換 (3) IQ入換座標変換:例えば、 (In, Qn)→(Qn, In)のように直線 Q=Iに対して対称に変換 (4) IQ入換反転座標変換 :例えば、(In, Qn)→(-Qn, In)のように直線 Q=—1に対して対称に変換 サブキャリア配列部 213は、 1次変調シンボルを各サブキャリアに割り当てる。詳細 には、サブキャリア配列部 213は、座標変換部 211から入力される座標変換された O FDMベースバンド信号を用いて、座標変換されたシンボルとその元のシンボルを、 周波数軸上に、 DCを挟んで対称な位置のサブキャリアに割り当てる。  [0057] The coordinate conversion unit 211 uses any one of the following four types of conversion methods. The IQ coordinate of modulation symbol n is (In, Qn). (1) Complex conjugate coordinate transformation: For example, (In, Q n) → (ln, —Qn) transformation to I axis symmetry (2) Complex conjugate inversion coordinate transformation: (In, Qn) → (- (In, Qn) is converted to Q axis symmetry (3) IQ exchange coordinate conversion: For example, (In, Qn) → (Qn, In) is converted symmetrically to the straight line Q = I (4) IQ permutation inversion coordinate transformation: For example, (In, Qn) → (-Qn, In). Symmetrical transformation with respect to the straight line Q = —1 Assign to. Specifically, the subcarrier arrangement unit 213 uses the coordinate-transformed OFDM baseband signal input from the coordinate transformation unit 211 to convert the coordinate-transformed symbol and its original symbol to DC on the frequency axis. Are assigned to subcarriers at symmetrical positions.
[0058] 図 14は、サブキャリア配列部 213にてシンボルが割り当てられたサブキャリアの一 例を示す図である。なお、この図 14では、元シンボルに対して複素共役の関係を持 たせて変換した場合について示している。図 14に示す配列後の OFDM信号は、サ ブキャリア方向の 2倍 Repetitionに相当する。  FIG. 14 is a diagram showing an example of subcarriers to which symbols are assigned by subcarrier arrangement section 213. FIG. 14 shows a case where the original symbol is converted with a complex conjugate relationship. The post-arrangement OFDM signal shown in Fig. 14 corresponds to double repetition in the subcarrier direction.
[0059] IFFT部 216は、サブキャリア配列部 213により入力される周波数領域 OFDM信号 を時間領域信号に変換して、定包絡変換部 220に出力する。  [0059] IFFT section 216 converts the frequency domain OFDM signal input by subcarrier arrangement section 213 into a time domain signal and outputs the time domain signal to constant envelope conversion section 220.
[0060] IFFT部 216では、対称位置サブキャリアに座標変換(1)〜(4)を行ったシンボルを 配置した信号を IFFすると、フーリエ変換の性質により、出力は、それぞれ以下のよう になる。  In IFFT section 216, when a signal in which symbols subjected to coordinate transformations (1) to (4) are arranged on symmetrical subcarriers is IFF, the output is as follows due to the nature of Fourier transformation.
[0061] 座標変換(1)では実部のみの信号 (虚部 = 0)  [0061] In the coordinate transformation (1), only the real part signal (imaginary part = 0)
座標変換 (2)では虚部のみの信号 (実部 = 0)  In coordinate transformation (2), only the imaginary part signal (real part = 0)
座標変換 (3)では実部 =虚部  Real part = imaginary part in coordinate transformation (3)
座標変換 (4)では実部 =一虚部 したがって、(1)の場合は実部を、(2)の場合は虚部を、 (3) (4)の場合は実部力虚 部の何れか一方を用いればよ!、。 In coordinate transformation (4), real part = one imaginary part Therefore, use (1) the real part, (2) the imaginary part, and (3) (4) the real part force imaginary part.
[0062] これによつて、 OFDMベースバンド信号をスカラ信号に変換できる。  [0062] Thereby, the OFDM baseband signal can be converted into a scalar signal.
[0063] 定包絡変換部 220は、 IFFT部 216から入力される実部のみ、虚部のみ、実部 =虚 部、実部 =一虚部等のスカラ信号の直交成分に信号を多重し 2つの定包絡線信号 S 1, S2を生成して、 DZA変換部 131, 132に出力する。  [0063] The constant envelope conversion unit 220 multiplexes the signal into the orthogonal components of the scalar signal such as only the real part, only the imaginary part, real part = imaginary part, real part = one imaginary part, etc. input from the IFFT part 216. Two constant envelope signals S 1 and S 2 are generated and output to the DZA converters 131 and 132.
[0064] なお、定包絡変換部 220、 DZA変換部 131, 132、 LPF141, 142、直交変調部 151, 152、非線形増幅器 161, 162及び合成器 170の動作は、上述した実施の形 態 1のものと同様であるため説明は省略する。ただし、 Lo信号周波数は送信信号周 波数(中心)と同じにする。また、座標変換したシンボルもそのまま送信する。これによ り、 2倍 Repetition送信に相当するものとなる。  [0064] The operations of constant envelope conversion section 220, DZA conversion sections 131 and 132, LPF 141 and 142, quadrature modulation sections 151 and 152, nonlinear amplifiers 161 and 162, and synthesizer 170 are the same as those in Embodiment 1 described above. Since it is the same as that of a thing, description is abbreviate | omitted. However, the Lo signal frequency should be the same as the transmission signal frequency (center). Also, the coordinate-converted symbol is transmitted as it is. This is equivalent to double Repetition transmission.
[0065] このように、本実施の形態によれば、 OFDM1次変調シンボルを、 I軸対称のシンポ ルに変換、 Q軸対称のシンボルに変換、 IQを入れ換えたシンボルに変換、又は、 IQ を入れ換えかつ反転したシンボルに変換する座標変換部 211と、座標変換部 211に よって変換されたシンボルと、座標変換前のシンボルを、 DC成分を挟んで、互いに 対称な位置のサブキャリアに配列するサブキャリア配列部 213と、サブキャリア配列 部 213によって配列されたシンボルを時間領域の信号に変換する IFFT216とを設 けたことにより、 OFDM信号を送信する場合に、実施の形態 1と同様の効果を得るこ とがでさる。  [0065] Thus, according to the present embodiment, the OFDM primary modulation symbol is converted to an I-axis symmetric symbol, converted to a Q-axis symmetric symbol, converted to a symbol in which IQ is replaced, or IQ is changed. A sub-array in which the coordinate conversion unit 211 that converts to a reversed and inverted symbol, the symbol converted by the coordinate conversion unit 211, and the symbol before coordinate conversion are arranged on subcarriers at symmetrical positions with the DC component in between By providing carrier arrangement section 213 and IFFT 216 for converting the symbols arranged by subcarrier arrangement section 213 into time domain signals, the same effects as in Embodiment 1 can be obtained when transmitting OFDM signals. This comes out.
[0066] (4)実施の形態 3  [0066] (4) Embodiment 3
図 15は、本発明の実施の形態 3に係る送信装置 300の構成を示すブロック図であ る。  FIG. 15 is a block diagram showing a configuration of transmitting apparatus 300 according to Embodiment 3 of the present invention.
[0067] この送信装置 300は、 OFDM (Orthogonal Frequency Division Multiplexing)で用 いられ、 2倍 Repetition送信する。  [0067] This transmitting apparatus 300 is used in OFDM (Orthogonal Frequency Division Multiplexing), and transmits twice the repetition.
[0068] この図 15に示す送信装置 300は、実施の形態 2に係る送信装置 200の変形例を 示しており、サブキャリア配列部 313、 NULL揷入部 314、 IFFT (Inverse. Fast Four ier Transform)部 316、定包絡変換部 320、 07八変換部(「0 八」)131, 132、口 ーパスフィルタ(「 ^」)141, 142、直交変調部 151, 152、非線形増幅器 161, 1 62、合成器 (無損失合成器) 170を有する。 Transmitting apparatus 300 shown in FIG. 15 is a modification of transmitting apparatus 200 according to Embodiment 2, and includes subcarrier arrangement section 313, NULL insertion section 314, IFFT (Inverse. Fast Four Transform) Unit 316, constant envelope conversion unit 320, 07 eight conversion units (“0 eight”) 131, 132, mouth-pass filters (“^”) 141, 142, quadrature modulation units 151, 152, nonlinear amplifier 161, 1 62, and a synthesizer (lossless synthesizer) 170.
[0069] なお、この送信装置 300は、図 13に示す実施の形態 2に対応する送信装置 200と 同様の基本的構成を有し、送信装置 200の構成において、座標変換部 211を省略 して、サブキャリア配列部 313と IFFT部 316との間に NULL挿入部 314を備えるも のである。よって、送信装置 300において、送信装置 200と同一の構成要素につい ては同名称、同符号を付して説明を省略する。 [0069] It should be noted that this transmitting apparatus 300 has the same basic configuration as transmitting apparatus 200 corresponding to Embodiment 2 shown in FIG. 13, and in the configuration of transmitting apparatus 200, coordinate conversion section 211 is omitted. In addition, a NULL insertion unit 314 is provided between the subcarrier arrangement unit 313 and the IFFT unit 316. Therefore, in the transmission apparatus 300, the same components as those of the transmission apparatus 200 are denoted by the same names and reference numerals, and the description thereof is omitted.
[0070] 送信装置 300では、サブキャリア配列部 313、 NULL挿入部 314、 IFFT部 316が スカラ信号変換部 310を構成している。 In transmitting apparatus 300, subcarrier arrangement section 313, null insertion section 314, and IFFT section 316 constitute scalar signal conversion section 310.
[0071] サブキャリア配列部 313は、入力される OFDM1次変調信号(1次変調シンボル)を[0071] Subcarrier arrangement section 313 receives the input OFDM primary modulation signal (primary modulation symbol).
、 1次変調シンボルの数分、周波数軸上に、サブキャリア順に並べて NULL挿入部 3The number of primary modulation symbols is arranged on the frequency axis in the order of subcarriers. NULL insertion part 3
14に出力する。 Output to 14.
[0072] NULL挿入部 314は、入力される 1次変調シンボル数分の NULLを挿入する。な お、 NULL挿入部 314は、 DCサブキャリアとガード帯域用の NULLも必要に応じて 挿入する。  [0072] NULL insertion section 314 inserts NULLs corresponding to the number of input primary modulation symbols. The NULL insertion unit 314 also inserts a DC subcarrier and a guard band NULL as necessary.
[0073] 図 16は NULL挿入部 314により NULLが配置された OFDM信号の説明に供する 図である。  FIG. 16 is a diagram for explaining an OFDM signal in which NULLs are arranged by the NULL insertion unit 314.
[0074] 図 16に示すように NULL揷入部 314では、 1次変調シンボルは正周波数のサブキ ャリアに配置(図 16における S1〜S6)し、負周波数のサブキャリアには NULL (N1 〜N6)を配置する。  [0074] As shown in Fig. 16, in the NULL insertion unit 314, the primary modulation symbols are arranged in the positive frequency subcarrier (S1 to S6 in Fig. 16), and NULL (N1 to N6) is assigned to the negative frequency subcarrier. Place.
[0075] IFFT部 316は、 NULL挿入部 314にて NULL挿入された周波数領域 OFDM信 号を時間領域信号に変換して、定包絡変換部 320に出力する。  IFFT section 316 converts the frequency domain OFDM signal that has been null-inserted by null insertion section 314 into a time-domain signal, and outputs the time domain signal to constant envelope transform section 320.
[0076] 図 17は、 IFFT部による IFFT後の OFDM信号の説明に供する図である。  FIG. 17 is a diagram for explaining an OFDM signal after IFFT by the IFFT unit.
[0077] IFFT部 316では、正周波数サブキャリアのみの信号を IFFTする。正周波数サブ キャリアのみの信号は、図 17に示すような DCを中心として対称な位置に複素共役シ ンボルがある信号 (複素共役対称)と、 DCを中心として対称位置に複素共役反転シ ンボルがある信号 (複素共役反対称)とを加算した信号と考えることができる。  [0077] IFFT section 316 IFFTs the signal of only the positive frequency subcarrier. A signal with only positive frequency subcarriers has a complex conjugate symbol at a symmetrical position with respect to DC (complex conjugate symmetry) as shown in Fig. 17, and a complex conjugate inversion symbol at a symmetrical position with respect to DC. It can be thought of as a signal obtained by adding a certain signal (complex conjugate antisymmetric).
[0078] したがって、それを IFFTした信号は、フーリエ変換の加法定理により、複素共役対 称信号を IFFTした信号と、複素共役反対称信号を IFFTした信号との和となる。前者 は、フーリエ変換の性質により実部のみの信号となり、後者は虚部のみの信号となるTherefore, a signal obtained by IFFT of the IFFT is a sum of a signal obtained by IFFT of the complex conjugate symmetric signal and a signal obtained by IFFT of the complex conjugate antisymmetric signal by the addition theorem of Fourier transform. former Is a signal with only real part due to the nature of Fourier transform, and the latter with only imaginary part
。つまり、出力の実部は DCを中心として対称な位置に複素共役シンボルがある信号. In other words, the real part of the output is a signal with complex conjugate symbols at symmetrical positions around DC.
(複素共役対称)となっており、虚部は対称位置に複素共役反転シンボルがある信号(Complex conjugate symmetric) and the imaginary part has a complex conjugate inversion symbol at the symmetric position
(複素共役反対称)となって ヽる。 It becomes (complex conjugate antisymmetric).
[0079] このように本実施の形態 3の構成によれば、実部あるいは虚部の何れか一方を用い れば、実施形態 2と同等のスカラ信号が得られる。 As described above, according to the configuration of the third embodiment, a scalar signal equivalent to that of the second embodiment can be obtained by using either the real part or the imaginary part.
[0080] したがって、実施形態 2のように対称位置に複素共役シンボルを配置したうえで IF[0080] Therefore, after arranging complex conjugate symbols at symmetrical positions as in the second embodiment, IF
FTをしなくても、振幅は 1Z2になるが同じ信号が生成される。 Even without FT, the amplitude is 1Z2, but the same signal is generated.
[0081] なお、定包絡変換部 320以降は実施の形態 2と全く同一であるため説明は省略す る。 [0081] Since constant envelope conversion section 320 and thereafter are exactly the same as those in the second embodiment, description thereof is omitted.
[0082] 本実施の形態 3の送信装置 300は、実施の形態 2の送信装置 200と同様に、 2倍 R epetition送信相当として、複素共役シンボル (ある!/、はその反転)もそのまま送信する  Transmitting apparatus 300 according to the third embodiment transmits complex conjugate symbols (some! / Is an inversion thereof) as it is, corresponding to double repetition transmission, similar to transmitting apparatus 200 according to the second embodiment.
[0083] (5)実施の形態 4 [0083] (5) Embodiment 4
実施の形態 3では、 2倍 Repetition送信相当として対称位置の複素共役シンボルも そのまま送信していたのに対し、本実施の形態 4は、 OFDM信号を、 2倍 Repetition の制約無しで、対称位置シンボルを除去して送信するものである。  In the third embodiment, the complex conjugate symbol at the symmetric position is transmitted as it is as equivalent to the double Repetition transmission, whereas in the fourth embodiment, the OFDM signal is transmitted as a symmetric position symbol without the restriction of the double Repetition. Is transmitted.
[0084] 本実施の形態 4の送信装置は、 OFDMに用いられ、図 15に示す実施の形態 3の 送信装置 300とブロック構成は同様のものである。すなわち、実施の形態 4の送信装 置は、実施の形態 3と同様に、サブキャリア配列部 313、 NULL挿入部 314、 IFFT(I nverse. Fast Fourier Transform)部 316、定包絡変換部 320、 07八変換部(「0 八 」)131, 132、ローノ スフィルタ(「1^」)141, 142、直交変調部 151, 152、非線 形増幅器 161, 162、合成器 (無損失合成器) 170を有する。  The transmission apparatus of the fourth embodiment is used for OFDM, and has the same block configuration as that of the transmission apparatus 300 of the third embodiment shown in FIG. That is, the transmission apparatus of the fourth embodiment is similar to the third embodiment in that the subcarrier arrangement unit 313, the NULL insertion unit 314, the IFFT (Inverse. Fast Fourier Transform) unit 316, the constant envelope conversion units 320, 07 Eight converters (“0 eight”) 131, 132, low-pass filters (“1 ^”) 141, 142, quadrature modulators 151, 152, nonlinear amplifiers 161, 162, combiner (lossless combiner) 170 Have
[0085] このような実施の形態 3の送信装置 300において、実施の形態 4の送信装置では、 NULL挿入部の処理と、 IFFT部での処理における IFFTのポイント数とが異なる。以 下、実施の形態 4の送信装置について、実施の形態 3における送信装置 300の構成 と異なる点のみ説明する。  In the transmitting apparatus 300 of the third embodiment as described above, the processing of the NULL insertion unit and the number of IFFT points in the processing of the IFFT unit are different from those of the transmitting apparatus of the fourth embodiment. Hereinafter, only the difference between the configuration of transmitting apparatus 300 of Embodiment 3 and the configuration of transmitting apparatus 300 of Embodiment 3 will be described.
[0086] 図 18は、本実施の形態 4において NULLが挿入された OFDM信号の説明に供す る図である。 [0086] FIG. 18 is used to explain the OFDM signal in which NULL is inserted in the fourth embodiment. FIG.
[0087] 実施の形態 4の送信装置における NULL挿入部 314は、図 18に示すように、 1次 変調シンボル(S11〜S16)が正周波数の一部(Low-IF信号)となるよう NULLを揷 入する。  As shown in FIG. 18, NULL insertion section 314 in the transmission apparatus of Embodiment 4 sets NULL so that the primary modulation symbols (S11 to S16) become a part of the positive frequency (Low-IF signal).揷 Enter.
[0088] また、実施の形態 4の送信装置における IFFT部 316は、 NULL挿入部によって N ULLが挿入された周波数領域 OFDM信号を、時間領域信号に変換して定包絡変 換部 320に出力する。この実施の形態 4における IFFT部は、 1次変調シンボル数に 対して十分大きなポイント数の IFFTを行う。  [0088] Also, IFFT section 316 in the transmission apparatus of Embodiment 4 converts the frequency domain OFDM signal into which N ULL has been inserted by the NULL insertion section, into a time domain signal and outputs the time domain signal to constant envelope conversion section 320. . The IFFT unit in Embodiment 4 performs IFFT with a sufficiently large number of points with respect to the number of primary modulation symbols.
[0089] 図 19は、実施の形態 4において IFFT部 316により変換された OFDM信号の説明 に供する図である。  FIG. 19 is a diagram for explaining the OFDM signal converted by IFFT section 316 in the fourth embodiment.
[0090] 図 19に示すように、 IFFTした信号の周波数スペクトルは、実施の形態 3と同様に、 実部は DCを中心として対称な位置に複素共役シンボル(S11 *〜S16*)のあるスぺ タトルとなり、虚部は対称位置に複素共役反転シンボルのあるスペクトルとなる。なお 、対象位置の複素共役反転シンボルは、 S11*〜S16*の位置が反転したものであり 、— S11 *〜― S16*となるが図 19では省略している。このように、 IFFT部 316から 出力された OFDM信号の実部(Real Part)あるいは虚部(Imaginary Part,以下「Img」 ともいう)の何れか一方を用いることによって、 Low— IF信号 (スカラ信号)を得ることが できる。  [0090] As shown in FIG. 19, the frequency spectrum of the IFFT signal is the same as in Embodiment 3, but the real part is a scan with complex conjugate symbols (S11 * to S16 *) at symmetrical positions around DC. The imaginary part becomes a spectrum with a complex conjugate inversion symbol at the symmetrical position. Note that the complex conjugate inversion symbol at the target position is obtained by inverting the positions of S11 * to S16 * and becomes —S11 * to S16 *, but is omitted in FIG. In this way, by using either the real part or the imaginary part (hereinafter also referred to as “Img”) of the OFDM signal output from the IFFT unit 316, a low-IF signal (scalar signal) ) Can be obtained.
[0091] なお、定包絡変換部以降は実施の形態 1から実施の形態 3と全く同一である。  [0091] The constant envelope converter and subsequent parts are exactly the same as in the first to third embodiments.
[0092] なお、本実施の形態 4の送信装置において、 Lo信号の周波数は、送信周波数 (中 心)に対して Low-IF周波数の分オフセットした周波数とする。また、直交変調部は、 和 (Lo + IF)、または、差 (Lo— IF)の周波数成分のうち、送信周波数と異なる成分に ついては除去して出力する。この場合、アナログフィルタによるフィルタリングとなるた め、 IF周波数を十分高くして除去を行う。  Note that, in the transmission apparatus of the fourth embodiment, the frequency of the Lo signal is set to a frequency that is offset by the Low-IF frequency with respect to the transmission frequency (center). In addition, the quadrature modulation unit removes and outputs a component different from the transmission frequency from the sum (Lo + IF) or difference (Lo – IF) frequency components. In this case, filtering is performed with an analog filter, so the IF frequency is set high enough for removal.
[0093] 図 20は、直交変調部において最終出力される、 2倍 Repetitionの制約無しの和成 分を用いた場合の最終出力 OFDM信号を示して 、る。  FIG. 20 shows the final output OFDM signal when using the sum component without the constraint of the 2 × Repetition, which is finally output in the quadrature modulation unit.
[0094] (6)実施の形態 5  [0094] (6) Embodiment 5
本実施の形態 5は、 OFDM限定のものであり、実施の形態 4に係る送信装置の改 良形である。実施の形態 4では IFFT部から出力される実部あるいは虚部の何れか一 方を用いた点(上記では実部(Real Part)を用いた)と異なり、実施の形態 5では、 IFF T部 416から出力される実部(Real Part)及び虚部(Img Part)を用いている。 The fifth embodiment is limited to OFDM, and the transmission apparatus according to the fourth embodiment is modified. Good shape. In the fourth embodiment, unlike the case where either the real part or the imaginary part output from the IFFT part is used (in the above, the real part is used), the IFF T part is used in the fifth embodiment. The real part (Real Part) and imaginary part (Img Part) output from 416 are used.
[0095] この実施の形態 5では、実施の形態 4において行われる定包絡線信号 Sl、 S2を直 交変調し、 RF帯にアップコンバートする際のイメージ成分の除去を、イメージリジエタ シヨン構成を用いて行うものである。  In this fifth embodiment, the image envelope configuration is removed by removing the image component when the constant envelope signals Sl and S2 performed in the fourth embodiment are orthogonally modulated and upconverted to the RF band. Is what you do.
[0096] 図 21は、本発明の実施の形態 5に係る送信装置 500の構成を示すブロック図であ る。  FIG. 21 is a block diagram showing a configuration of transmitting apparatus 500 according to Embodiment 5 of the present invention.
[0097] この図 21に示す送信装置 500は、実施の形態 2における送信装置 200の変形例を 示しており、サブキャリア配列部 313、 NULL揷入部 414、 IFFT (Inverse. Fast Four ier Transform)部 416、定包絡変換部 521, 523、 DZA変換部(「DZA」) 131〜1 34、ローパスフィルタ(「: LPF」) 141〜144、直交変調部 551〜554、非線形増幅器 561〜564、無損失合成器 571、 575、合波部 580、 π Z2位相シフト部 590を有す る。なお、この送信装置 500は、図 15に示す実施の形態 3に対応する送信装置 300 と同様の基本的構成を有し、同一の構成要素については同名称、同符号を付して説 明を省略する。  A transmission apparatus 500 shown in FIG. 21 shows a modification of transmission apparatus 200 in Embodiment 2, and includes subcarrier arrangement section 313, NULL insertion section 414, IFFT (Inverse. Fast Fourier Transform) section. 416, constant envelope converter 521, 523, DZA converter (“DZA”) 131 to 134, low-pass filter (“: LPF”) 141 to 144, quadrature modulator 551 to 554, nonlinear amplifier 561 to 564, lossless It has combiners 571 and 575, a combiner 580, and a π Z2 phase shifter 590. Note that this transmitting apparatus 500 has the same basic configuration as that of transmitting apparatus 300 corresponding to Embodiment 3 shown in FIG. 15, and the same components are given the same names and reference numerals for explanation. Omitted.
[0098] 送信装置 500では、サブキャリア配列部 313、 NULL挿入部 414、 IFFT部 416力 S スカラ信号変換部 510を構成している。  Transmitting apparatus 500 includes subcarrier arrangement section 313, NULL insertion section 414, IFFT section 416 power S scalar signal conversion section 510.
[0099] 送信装置 500では、サブキャリア配列部 313〜IFFT部 416までの構成は実施の 形態 4と同様の構成であり、同様の処理が行われる。 In transmitting apparatus 500, the configuration from subcarrier arrangement section 313 to IFFT section 416 is the same as that in Embodiment 4, and the same processing is performed.
[0100] すなわち、送信装置 500では、 OFDM1次変調信号が入力されるサブキャリア配 列部 313は、 OFDM1次変調信号の正周波数の一部に、 1次変調シンボルを配置し て、 NULL挿入部 414に出力する。 [0100] That is, in transmitting apparatus 500, subcarrier arrangement section 313 to which an OFDM primary modulation signal is input arranges a primary modulation symbol at a part of the positive frequency of the OFDM primary modulation signal, and a NULL insertion section Output to 414.
[0101] NULL挿入部 414では、 1次変調シンボルが正周波数の一部(Low_IF信号)となる よう NULLを挿入して、 IFFT部 416に出力する。 [0101] NULL insertion section 414 inserts NULL so that the primary modulation symbol becomes a part of the positive frequency (Low_IF signal), and outputs the result to IFFT section 416.
[0102] IFFT部 416は、 NULL挿入部 414によって NULLが挿入された周波数領域 OF[0102] IFFT section 416 has frequency domain OF in which NULL is inserted by NULL insertion section 414.
DM信号を、時間領域信号に変換して、定包絡変換部 521、 523にそれぞれ出力す る。なお、 IFFT部 416は、 1次変調シンボル数に対して十分大きなポイント数の IFF Tを行っている。 The DM signal is converted into a time domain signal and output to the constant envelope conversion units 521 and 523, respectively. Note that IFFT section 416 has an IFF with a sufficiently large number of points relative to the number of primary modulation symbols. Doing T.
[0103] 詳細には、 IFFT部 416では、入力される信号に対して、 IFFすることにより Low— I F信号を生成する。 IFFT部 416による IFFT出力の実部は、 DCを中心として対称な 位置に複素共役シンボルがあるスペクトルとなり、虚部は対称位置に複素共役反転 シンボルがあるスペクトルとなる。  More specifically, IFFT section 416 generates a Low-IF signal by performing IFF on the input signal. The real part of the IFFT output by IFFT section 416 is a spectrum with a complex conjugate symbol at a symmetric position around DC, and the imaginary part is a spectrum with a complex conjugate inversion symbol at a symmetric position.
[0104] IFFT部 416は、実部(Real Part)を定包絡変換部 521に、虚部(Img Part)を定包 絡変換部 523に出力する。  IFFT section 416 outputs the real part (Real Part) to constant envelope conversion section 521 and the imaginary part (Img Part) to constant envelope conversion section 523.
[0105] なお、定包絡変換部 521は、 D/A131 - 1, 131— 2、 132—1, 132— 2、 LPF1 41 - 1, 141 - 2, 142- 1, 142— 2、直交変調部 551, 552、非線形増幅器 561, 562及び合成器 (無損失合成器) 571とともに実部に対する増幅系 520Aを構成して いる。また、定包絡変換部 523は、 D/A133 - 1, 133— 2、 134—1, 134— 2、 LP F143- 1, 143- 2, 144—1, 144— 2、直交変調部 553, 554、非線形増幅器 56 3, 564及び合成器 (無損失合成器) 575とともに虚部に対する増幅系 520Bを構成 している。  [0105] The constant envelope converter 521 is composed of D / A 131-1, 131-2, 132-1, 132-2, LPF1 41-1, 141-2, 142-1, 142-2, quadrature modulator Together with 551 and 552, nonlinear amplifiers 561 and 562, and a combiner (lossless combiner) 571, an amplification system 520A for the real part is configured. The constant envelope converter 523 consists of D / A133-1, 133-2, 134-1, 1, 134-2, LP F143-1, 143-2, 144-1, 1, 144-2, quadrature modulator 553, 554 The non-linear amplifiers 563 and 564 and the synthesizer (lossless synthesizer) 575 constitute an amplification system 520B for the imaginary part.
[0106] これら実部に対する増幅系 520A及び虚部に対する増幅系 520Bを用いて、本実 施の形態 5では、 IFFT部 416からの IFFT出力の実部(Real Part)及び虚部(Img Pa rt)の各々に対して定包絡線信号を生成し、 LINC増幅を行うように構成されている。  [0106] Using the amplification system 520A for the real part and the amplification system 520B for the imaginary part, in the fifth embodiment, the real part (real part) and imaginary part (Img part) of the IFFT output from the IFFT part 416 are used. ) Is generated to generate a constant envelope signal for LINC amplification.
[0107] 合波部 580は、最終段に配置され、実部に対する増幅系 520A及び虚部に対する 増幅系 520Bを用いて LINC増幅された信号を合成して、送信信号として出力する。  [0107] The multiplexing unit 580 is arranged at the final stage, synthesizes the LINC-amplified signal using the amplification system 520A for the real part and the amplification system 520B for the imaginary part, and outputs it as a transmission signal.
[0108] ところで、送信装置 500では、実部に対する増幅系 520Aと虚部に対する増幅系 5 20Bとでは、定包絡線信号の直交変調に用いる Lo信号位相が異なり、虚部側は π Ζ2位相シフト部 590により + π Z2[rad]だけ位相をシフトしている。  By the way, in the transmission device 500, the Lo signal phase used for the quadrature modulation of the constant envelope signal differs between the amplification system 520A for the real part and the amplification system 5 20B for the imaginary part, and the imaginary part side is shifted by πΖ2 phase shift. The phase is shifted by + πZ2 [rad] by the part 590.
[0109] すなわち、送信装置 500では、 IFFT出力は、実部 +j*虚部となる力 虚部の増幅 系は jの位相回転(+ π Ζ2)を抜いて処理することになる。  That is, in transmitting apparatus 500, IFFT output is processed by removing the phase rotation (+ π 2) of the imaginary part of the amplification part of the imaginary part, which is the real part + j * imaginary part.
[0110] このため、虚部に対する増幅系 520Βにおける直交変調部 553、 554では、直交変 調において、入力される信号に対して、 π Ζ2位相シフト部 590を用いて、その分の 位相回転をカ卩える。このように LINC増幅された信号のスペクトルを図 22に示す。  [0110] For this reason, the quadrature modulation units 553 and 554 in the amplification system 520Β with respect to the imaginary part use the π Ζ 2 phase shift unit 590 for the input signal in the quadrature modulation, and perform the corresponding phase rotation. I can see you. Figure 22 shows the spectrum of the LINC amplified signal.
[0111] 図 22は、本実施の形態 5の送信装置 500において 2系統の増幅系 520A, 520B にて LINC増幅された信号のスペクトルの説明に供する図である。 FIG. 22 shows two amplification systems 520A and 520B in transmitting apparatus 500 of the fifth embodiment. It is a figure where it uses for description of the spectrum of the LINC-amplified signal.
[0112] 図 22に示すように、送信装置 500において実部側の増幅系 520Aの出力では、差 周波数成分は、和周波数成分の複素共役信号となり、虚部側の増幅系 520Bの出 力では、差周波数成分は、和周波数成分の複素共役反転信号となる。 As shown in FIG. 22, in the output of the real part side amplification system 520A in the transmission device 500, the difference frequency component becomes a complex conjugate signal of the sum frequency component, and in the output of the imaginary part side amplification system 520B. The difference frequency component becomes a complex conjugate inversion signal of the sum frequency component.
[0113] よって、両信号を合波部 580にて合波すると差周波数成分は打ち消され、和成分 のみが出力されるものとなる。 Therefore, when both signals are combined by combining section 580, the difference frequency component is canceled and only the sum component is output.
[0114] 本実施の形態 5によれば、実部側の増幅系 520Aから出力される和周波数成分と その複素共役信号である差周波数成分とを持つ信号と、虚部側の増幅系 520Bから 出力される和周波数成分とその複素共役反転信号である差周波数成分とを持つ信 号とが合波部 580にて合成されるため、差成分は打ち消され、和成分のみが出力さ れる。よって、 OFDM信号を送信する場合に、実施の形態 1と同様の効果を得ること ができる。 [0114] According to the fifth embodiment, the signal having the sum frequency component output from the real part side amplification system 520A and the difference frequency component that is a complex conjugate signal thereof, and the imaginary part side amplification system 520B Since the signal having the sum frequency component to be output and the difference frequency component which is the complex conjugate inversion signal is synthesized by the multiplexing unit 580, the difference component is canceled and only the sum component is output. Therefore, when transmitting an OFDM signal, the same effect as in the first embodiment can be obtained.
[0115] なお、本実施の形態 5の送信装置 500では、虚部に対する増幅系 520Bは実部に 対する増幅系 520Aと同じ動作をし、 π Ζ2位相シフト部 590により直交変調部 553、 554で位相差を合わせて ヽるが、虚部に対する定包絡変換部 523で位相差を加え る動作を行うことで、 π Ζ2位相シフト部 590を無くす構成としてもよい。  [0115] In transmission apparatus 500 of the fifth embodiment, amplification system 520B for the imaginary part operates in the same manner as amplification system 520A for the real part, and πΖ2 phase shift unit 590 performs quadrature modulation units 553 and 554. Although the phase difference is adjusted, the constant envelope conversion unit 523 for the imaginary part may be configured to add the phase difference to thereby eliminate the πΖ2 phase shift unit 590.
[0116] このように本実施の形態 5の送信装置 500の構成において、 π Ζ2位相シフト部 59 0を省いた構成を送信装置 500の変形例として説明する。  In this way, in the configuration of transmitting apparatus 500 of the fifth embodiment, a configuration in which ππ2 phase shift section 590 is omitted will be described as a modified example of transmitting apparatus 500.
<変形例>  <Modification>
図 23は、実施の形態 5の送信装置 500において、 π Ζ2位相シフト部 590を省略し た場合の、位相差を加えた虚部用の定包絡変換部 523 (図 21参照)の動作を示す 図である。  FIG. 23 shows the operation of constant envelope conversion section 523 for imaginary part with phase difference added (see FIG. 21) when π Ζ2 phase shift section 590 is omitted in transmitting apparatus 500 of Embodiment 5. FIG.
[0117] 送信装置 500において、 π Ζ2位相シフト部 590を省いた構成とした送信装置 500 の変形例では、虚数部側の定包絡変換部 523の動作が異なる。  [0117] In the modification of the transmission apparatus 500 in which the π 5002 phase shift unit 590 is omitted in the transmission apparatus 500, the operation of the constant envelope conversion unit 523 on the imaginary part side is different.
[0118] つまり、 π Ζ2位相シフト部 590を有する送信装置 500における定包絡変換部 523 では定包絡変換部 521と同様に、 IFFT出力を I軸とし、 Q軸に信号を多重して定包 絡ィ匕する処理を行っていたのに対し、 π Ζ2位相シフト部 590が無い送信装置 500 の変形例では、 IFFT出力を Q軸信号とし、 I軸に信号を多重して定包絡化する処理 を行う。 [0118] That is, in the constant envelope conversion unit 523 in the transmission device 500 having the π Ζ 2 phase shift unit 590, similarly to the constant envelope conversion unit 521, the IFFT output is set as the I axis, and the signal is multiplexed on the Q axis to be constant envelope In the modified example of the transmitter 500 without the π Ζ2 phase shift unit 590, the IFFT output is used as the Q-axis signal, and the signal is multiplexed on the I-axis to form a constant envelope. I do.
[0119] 具体的には、この変形例における虚部側の定包絡変換部 523 (図 21参照)は、入 力される IFFT部 416の虚部信号を Q軸信号とし、 I軸側に A (t) , — A(t)を多重し、 定包絡線信号 SI, S2を生成する。なお、 SI, S2は、本実施の形態において基本原 理で説明した定包絡線信号 S (t) , S (t)に相当する。  [0119] Specifically, the constant envelope conversion unit 523 on the imaginary part side in this modification example (see Fig. 21) uses the imaginary part signal of the input IFFT part 416 as the Q-axis signal, and sets A on the I-axis side. (t), — A (t) is multiplexed to generate constant envelope signals SI and S2. SI and S2 correspond to the constant envelope signals S (t) and S (t) described in the basic principle in the present embodiment.
1 2  1 2
[0120] 変形例における定包絡変換部 523において生成される S (t) , S (t)は以下の式(  [0120] S (t) and S (t) generated in the constant envelope converter 523 in the modified example are expressed by the following equations (
1 2  1 2
6)、(7)で表わされる。  6) and (7).
[0121] S (t) = A(t) +j * S (t) "' (6) [0121] S (t) = A (t) + j * S (t) "'(6)
S (t) =—A (t) +j * S (t) "- (7)  S (t) = —A (t) + j * S (t) "-(7)
2  2
図 23に示すように、変形例における虚部側の処理では、位相差を加えた虚部用の 定包絡変換部 523の動作によって、実部側の処理に対して + π Ζ2の位相差が加 わっているため、直交変調部 553、 554で位相回転をカ卩える必要は無ぐ π Ζ2位相 シフト部 590は不要となる。  As shown in FIG. 23, in the processing on the imaginary part side in the modification, the phase difference of + ππ2 is increased with respect to the processing on the real part side due to the operation of the constant envelope conversion unit 523 for the imaginary part to which the phase difference is added. Therefore, there is no need to cover the phase rotation by the quadrature modulation units 553 and 554, and the πΖ2 phase shift unit 590 is not necessary.
[0122] (7)実施の形態 6 [0122] (7) Embodiment 6
本実施の形態 6の基本思想は、上述した各実施の形態の送信装置 100, 200, 30 The basic idea of the sixth embodiment is that the transmission devices 100, 200, 30 of the above-described embodiments.
0, 500において、直交変調部のローカルリーク軽減を図るものである。 At 0 and 500, the local leak of the quadrature modulation unit is reduced.
[0123] 各送信装置 100, 200, 300, 500における直交変調部のミキサ回路では、 Lo信 号が出力に漏れるローカルリークが発生する。本実施の形態 6では、実施の形態 2に 対してローカルリーク軽減構成を適用したものとする。 [0123] In the mixer circuit of the quadrature modulation unit in each of the transmission devices 100, 200, 300, and 500, a local leak in which the Lo signal leaks to the output occurs. In the sixth embodiment, it is assumed that the local leak reduction configuration is applied to the second embodiment.
[0124] 図 24は、本発明に係る実施の形態 6における送信装置 600の構成を示すブロック 図である。 [0124] FIG. 24 is a block diagram showing a configuration of transmitting apparatus 600 according to Embodiment 6 of the present invention.
[0125] 送信装置 600では、座標変換部 611は、座標変換部 211と同様に、 QPSKや 16Q AMなどで 1次変調された OFDMベースバンド信号に対して、サブキャリアシンボル の IQ平面座標を変換して、サブキャリア配列部 613に出力する。サブキャリア配列部 613は、サブキャリア配列部 213と同様の処理を行う。  [0125] In transmission apparatus 600, coordinate transformation section 611 transforms IQ plane coordinates of subcarrier symbols for an OFDM baseband signal that is first-order modulated by QPSK, 16Q AM, etc., in the same manner as coordinate transformation section 211. Then, the data is output to the subcarrier arrangement unit 613. The subcarrier arrangement unit 613 performs the same processing as the subcarrier arrangement unit 213.
[0126] つまり、サブキャリア配列部 613は、 1次変調された OFDMベースバンド信号を用 いて、 1次変調シンボルを各サブキャリアに割り当てる。また、サブキャリア配列部 61 3は、座標変換部 611からの座標変換された OFDMベースバンド信号を用いて、座 標変換されたシンボルとその元のシンボルは、 DCを挟んで対称な位置のサブキヤリ ァに割り当てる。 That is, subcarrier arrangement section 613 assigns primary modulation symbols to subcarriers using the primary modulated OFDM baseband signal. Further, the subcarrier arrangement unit 613 uses the OFDM baseband signal subjected to coordinate conversion from the coordinate conversion unit 611 to The converted symbol and its original symbol are assigned to subcarriers located symmetrically across DC.
[0127] IFFT部 616は、サブキャリア配列部 213により入力される周波数領域 OFDM信号 を時間領域信号に変換して、実部(Real Part)を定包絡変換部 620に出力する。  IFFT section 616 converts the frequency domain OFDM signal input from subcarrier arrangement section 213 into a time domain signal, and outputs the real part (Real Part) to constant envelope conversion section 620.
[0128] これら座標変換部 611、サブキャリア配列部 613、 IFFT部 616が、スカラ信号変換 部 610を構成している。  The coordinate conversion unit 611, the subcarrier arrangement unit 613, and the IFFT unit 616 constitute a scalar signal conversion unit 610.
[0129] 定包絡変換部 620は、 IFFT部 616から入力される OFDM信号における実部のス カラ信号の直交成分にスカラ信号を多重し 2つの定包絡線信号 SI, S2を生成して 出力する。このとき、定包絡線信号 S2については、反転部 625— 1, 625— 2で位相 を反転して、 DZA変換部 632— 1, 632— 2に出力する。  [0129] The constant envelope conversion unit 620 generates two constant envelope signals SI and S2 by multiplexing the scalar signal with the orthogonal component of the scalar signal of the real part in the OFDM signal input from the IFFT unit 616, and outputs it. . At this time, the phase of the constant envelope signal S2 is inverted by the inversion units 625-1, 625-2 and output to the DZA conversion units 632-1, 632-2.
[0130] そして、定包絡線信号 S2については、直交変調部 652は、 DZA変換部 632、 LP[0130] Then, for the constant envelope signal S2, the quadrature modulation unit 652, the DZA conversion unit 632, LP
F642を経て入力される信号に対し、 Lo信号位相を反転して直交変調を行い、非線 形増幅器 662に出力している。 For the signal input via F642, the Lo signal phase is inverted to perform quadrature modulation and output to the nonlinear amplifier 662.
[0131] このように送信装置 600では、定包絡線信号 Sl、 S2の一方の位相を反転するとと もに、直交変調の Lo信号位相を反転することによって、定包絡線信号は、元の位相 に戻るが、ローカルリーク信号の位相は、 S1と S2で逆位相となる。したがって、合波 により打ち消しが起こり、リーク量を小さくすることができる。 [0131] As described above, in the transmission device 600, by inverting one phase of the constant envelope signals Sl and S2, and by inverting the Lo signal phase of quadrature modulation, the constant envelope signal is converted into the original phase. However, the phase of the local leak signal is reversed between S1 and S2. Therefore, cancellation occurs due to multiplexing, and the amount of leakage can be reduced.
[0132] なお、図 24に示す送信装置 600では、 S2側を反転する構成としたが、 S1側を反 転する構成としても良い。また、実施の形態 6の基本思想は、実施の形態 2に限らず 他の実施の形態にも適用できることは勿論である。 [0132] In the transmission apparatus 600 shown in Fig. 24, the S2 side is inverted, but the S1 side may be inverted. Of course, the basic idea of the sixth embodiment can be applied not only to the second embodiment but also to other embodiments.
[0133] (8)実施の形態 7 (8) Embodiment 7
本実施の形態 7の送信装置は、上記各実施の形態 2, 3、 4において、 IFFT回路演 算量を削減した構成を示すものであり、 IFFT部の構成のみ異なる。  The transmitting apparatus of the seventh embodiment shows a configuration in which the IFFT circuit calculation amount is reduced in each of the second, third, and fourth embodiments described above, and only the configuration of the IFFT unit is different.
[0134] つまり、実施の形態 2、 3、 4では、 IFFT出力の一方のみを用いて OFDM信号を生 成している。この場合、演算量を削減できる。実部のみを用いる場合について説明す る。 That is, in Embodiments 2, 3, and 4, the OFDM signal is generated using only one of the IFFT outputs. In this case, the calculation amount can be reduced. The case where only the real part is used will be described.
[0135] 図 25は、本実施の形態 7の送信装置における IFFT部を説明する図である。  FIG. 25 is a diagram for explaining the IFFT unit in the transmission apparatus according to the seventh embodiment.
[0136] 図 25に示す IFFT部 716では、以下の処理を行う。 [0137] Nポイント IFFTの入力を、 z (n) =x (n) +jy(n) (但し n= l〜N)とすると、 IFFT出 力 d (k)は下記式 (8)で示される。 [0136] IFFT section 716 shown in Fig. 25 performs the following processing. [0137] If the input of the N-point IFFT is z (n) = x (n) + jy (n) (where n = l to N), the IFFT output d (k) is expressed by the following equation (8). It is.
[0138] [数 1]
Figure imgf000021_0001
[0138] [Equation 1]
Figure imgf000021_0001
χ( ) cos(—2 mk / Nヽ一) n) sini -2mik I N)  χ () cos (—2 mk / N ヽ 一) n) sini -2mik I N)
+ j{x(n) sin( -2mik /N) + y(n) cos(-2 mk /N)}  + j {x (n) sin (-2mik / N) + y (n) cos (-2 mk / N)}
…(8 ) ... (8)
[0139] この式 (8)において、虚数部は使用しないため、演算を省き、下記の式(9)として示 される。これにより、演算量を半減できる。 [0139] In this equation (8), since the imaginary part is not used, the calculation is omitted, and the following equation (9) is obtained. Thereby, the amount of calculation can be halved.
[0140] [数 2]
Figure imgf000021_0002
[0140] [Equation 2]
Figure imgf000021_0002
…(9 )  (9)
[0141] このような演算方法を用いた IFFT部 716を実施の形態 2、 3、 4の IFFT部 116, 21[0141] IFFT section 716 using such a calculation method is replaced with IFFT sections 116, 21 of the second, third, and fourth embodiments.
6, 416に適用することで本実施の形態 7の構成となる。 By applying to 6, 416, the configuration of the seventh embodiment is obtained.
[0142] 以上、本発明の一実施の形態について説明した。 [0142] The embodiment of the present invention has been described above.
[0143] 本発明に係る送信装置は上記各実施の形態に限定されず、種々変更して実施す ることが可能である。  [0143] The transmission apparatus according to the present invention is not limited to the above embodiments, and can be implemented with various modifications.
[0144] なお、ここでは、本発明をノヽードウエアで構成する場合を例にとって説明したが、本 発明をソフトウェアで実現することも可能である。例えば、本発明に係る出力増幅方 法のアルゴリズムをプログラム言語によって記述し、このプログラムをメモリに記憶して おいて情報処理手段によって実行させることにより、本発明に係る装置と同様の機能 を実現することができる。  [0144] Although a case has been described with the above embodiment as an example where the present invention is configured with nodeware, the present invention can be implemented with software. For example, an algorithm of the output amplification method according to the present invention is described in a program language, and this program is stored in a memory and executed by information processing means, thereby realizing the same function as the apparatus according to the present invention. be able to.
産業上の利用可能性  Industrial applicability
[0145] 本発明に係る送信装置は、小型化、低コスト化、低消費電力化が容易であり、信号 帯域が制限された場合でも、包絡線変動を有する信号波の線形性を保持し、かつ、 高 、電力効率を有して送信信号を増幅できる効果を有し、 OFDM方式の無線送信 装置に用いられるものとして有用である。 [0145] The transmission device according to the present invention is easy to reduce in size, cost and power consumption, and retains the linearity of a signal wave having an envelope variation even when the signal band is limited, And, It has the effect of amplifying a transmission signal with high power efficiency and is useful as a device used in an OFDM wireless transmission device.

Claims

請求の範囲 The scope of the claims
[1] 送信する IQ複素ベースバンド信号を、複数の定包絡線信号に分解して、各々を非 線形増幅した後に合成する LINC方式を用いた増幅装置であって、  [1] An LINC method amplifying apparatus that decomposes an IQ complex baseband signal to be transmitted into a plurality of constant envelope signals, and synthesizes each after nonlinear amplification,
前記 IQ複素ベースバンド信号をスカラ信号に変換するスカラ信号変換手段と、 変換されたスカラ信号の直交成分に信号を多重することで、第 1及び第 2の定包絡 線信号を生成する定包絡線信号生成手段と、  A scalar signal converting means for converting the IQ complex baseband signal to a scalar signal, and a constant envelope for generating the first and second constant envelope signals by multiplexing the signals on the orthogonal components of the converted scalar signal Signal generating means;
前記第 1及び第 2の定包絡線信号をそれぞれ増幅する第 1及び第 2の非線形増幅 器と、  First and second nonlinear amplifiers for amplifying the first and second constant envelope signals, respectively;
前記第 1及び第 2の非線形増幅器によって得られた信号を合成する合成器と、 を有する送信装置。  And a synthesizer for synthesizing signals obtained by the first and second nonlinear amplifiers.
[2] 前記スカラ信号変換手段は、前記 IQ複素ベースバンド信号をディジタルアップコン バートして、 Low— IFディジタル信号に変換するディジタル直交変調器である、 請求項 1記載の送信装置。  2. The transmission device according to claim 1, wherein the scalar signal converting means is a digital quadrature modulator that digitally upconverts the IQ complex baseband signal and converts it to a Low-IF digital signal.
[3] 前記 IQ複素ベースバンド信号は、 OFDM1次変調信号であり、 [3] The IQ complex baseband signal is an OFDM primary modulation signal,
前記スカラ信号変換手段は、  The scalar signal conversion means includes
前記 OFDM 1次変調シンボルを、 I軸対称のシンボルに変換、 Q軸対称のシンボル に変換、 IQを入れ換えたシンボルに変換、又は、 IQを入れ換えかつ反転したシンポ ルに変換する座標変換手段と、  Coordinate conversion means for converting the OFDM primary modulation symbol into an I-axis symmetric symbol, a Q-axis symmetric symbol, an IQ interchanged symbol, or an IQ interchanged and inverted symbol.
前記座標変換手段によって変換されたシンボルと、座標変換前のシンボルを、 DC 成分を挟んで、互いに対称な位置のサブキャリアに配列するサブキャリア配列手段と 前記サブキャリア配列手段によって配列されたシンボルを時間領域の信号に変換 する周波数 ·時間変換手段と、  Subcarrier arrangement means for arranging the symbol transformed by the coordinate transformation means and the symbol before coordinate transformation on subcarriers at positions symmetrical to each other across the DC component, and symbols arranged by the subcarrier arrangement means Frequency / time conversion means to convert to time domain signal,
を具備する請求項 1記載の送信装置。  The transmitting device according to claim 1, further comprising:
[4] 前記 IQ複素ベースバンド信号は、 OFDM1次変調信号であり、 [4] The IQ complex baseband signal is an OFDM primary modulation signal,
前記スカラ信号変換手段は、  The scalar signal conversion means includes
前記 OFDM 1次変調シンボルを、 DC成分に対して正又は負のうち!、ずれ力、片方 向のサブキャリアにのみ配列するサブキャリア配列手段と、 前記サブキャリア配列手段によってシンボルが配列されな力つたサブキャリアにヌ ルを配置するヌル挿入手段と、 Subcarrier arrangement means for arranging the OFDM primary modulation symbols only on subcarriers in one direction, positive or negative with respect to the DC component! Null insertion means for arranging nulls on subcarriers that are not arranged with symbols by the subcarrier arrangement means;
前記サブキャリア配列手段及び前記ヌル挿入手段によって得られたシンボルを時 間領域の信号に変換する周波数,時間変換手段と、  A frequency and time conversion means for converting a symbol obtained by the subcarrier arrangement means and the null insertion means into a signal in a time domain;
を具備する請求項 1記載の送信装置。  The transmitting device according to claim 1, further comprising:
送信する IQ複素ベースバンド信号を、複数の定包絡線信号に分解して、各々を非 線形増幅した後に合成して送信する LINC方式を用いた送信方法にお ヽて、 前記 IQ複素ベースバンド信号をスカラ信号に変換し、  The IQ complex baseband signal to be transmitted is decomposed into a plurality of constant envelope signals, each is nonlinearly amplified, and then synthesized and transmitted. Is converted to a scalar signal,
変換されたスカラ信号の直交成分に信号を多重することで、第 1及び第 2の定包絡 線信号を生成し、  By multiplexing the signal to the orthogonal component of the converted scalar signal, the first and second constant envelope signals are generated,
前記第 1及び第 2の定包絡線信号をそれぞれ非線形増幅し、  Nonlinearly amplifying the first and second constant envelope signals,
非線形増幅した前記第 1及び第 2の定包絡線信号を合成して送信する送信方法。  A transmission method for combining and transmitting the first and second constant envelope signals subjected to nonlinear amplification.
PCT/JP2006/320917 2006-10-20 2006-10-20 Transmission device WO2008047445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/320917 WO2008047445A1 (en) 2006-10-20 2006-10-20 Transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/320917 WO2008047445A1 (en) 2006-10-20 2006-10-20 Transmission device

Publications (1)

Publication Number Publication Date
WO2008047445A1 true WO2008047445A1 (en) 2008-04-24

Family

ID=39313704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320917 WO2008047445A1 (en) 2006-10-20 2006-10-20 Transmission device

Country Status (1)

Country Link
WO (1) WO2008047445A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048308A (en) * 2011-08-26 2013-03-07 Fujitsu Ltd Modulator and amplifier using the same
JP2015156602A (en) * 2014-02-21 2015-08-27 株式会社モバイルテクノ Complex digital signal compression device and program, complex digital signal expansion device and program, and communication device
CN108370235A (en) * 2015-12-17 2018-08-03 瑞士优北罗股份有限公司 The method of power amplifier apparatus, envelope-tracking amplifier installation and amplified signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284106A (en) * 1988-05-11 1989-11-15 Nippon Telegr & Teleph Corp <Ntt> Amplifying device
JP2005287017A (en) * 2004-03-05 2005-10-13 Matsushita Electric Ind Co Ltd Transmission circuit, communication equipment, audio equipment, video equipment, and transmission method
JP2006157256A (en) * 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd Transmission circuit, wireless communication circuit, wireless base station apparatus, and wireless terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284106A (en) * 1988-05-11 1989-11-15 Nippon Telegr & Teleph Corp <Ntt> Amplifying device
JP2005287017A (en) * 2004-03-05 2005-10-13 Matsushita Electric Ind Co Ltd Transmission circuit, communication equipment, audio equipment, video equipment, and transmission method
JP2006157256A (en) * 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd Transmission circuit, wireless communication circuit, wireless base station apparatus, and wireless terminal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048308A (en) * 2011-08-26 2013-03-07 Fujitsu Ltd Modulator and amplifier using the same
JP2015156602A (en) * 2014-02-21 2015-08-27 株式会社モバイルテクノ Complex digital signal compression device and program, complex digital signal expansion device and program, and communication device
CN108370235A (en) * 2015-12-17 2018-08-03 瑞士优北罗股份有限公司 The method of power amplifier apparatus, envelope-tracking amplifier installation and amplified signal
CN108370235B (en) * 2015-12-17 2021-09-07 瑞士优北罗股份有限公司 Power amplifier device, envelope tracking amplifier device and method for amplifying signal

Similar Documents

Publication Publication Date Title
US7177372B2 (en) Method and apparatus to remove effects of I-Q imbalances of quadrature modulators and demodulators in a multi-carrier system
US20090052556A1 (en) Frequency interleaving method for wideband signal generation
JPH08163189A (en) Transmission circuit
WO2005031993A1 (en) Amplifier circuit and amplifying method
JP3432156B2 (en) Method and apparatus for generating a modulated single sideband signal
US8693586B2 (en) Method and device for demodulating complex carriers
WO2013105538A1 (en) Method for iq mismatch compensation, and rf transceiver device
WO2008047445A1 (en) Transmission device
JP2002084146A (en) Predistortion type distortion compensated power amplifier
WO2019230382A1 (en) Front-end circuit, test board, test system, computer, and program
JP2002009725A (en) Method for generating orthogonal frequency division multiplexing signal, and orthogonal frequency division multiplexing signal generating device
JP3348676B2 (en) OFDM modulator and digital broadcasting device using the same
US8989310B2 (en) Method, device and system for complex carrier modulation
KR20100023510A (en) Digital if wireless transmitter, rf modulator and modulating method
JP2010028549A (en) Signal transmission apparatus and method
JP2001285249A (en) Method for generating transmission signal, and generator for the transmission signal
JP5589887B2 (en) Amplifier circuit, transmitter, and amplifier circuit control method
KR20070060817A (en) Apparatus and method for compensation of high frequency distortion by digital to analog converter for orthogonal frequency division multiplexing system
JP2008172838A (en) Radio transmitter
JP3642471B2 (en) Transmission signal generation method and transmission signal generation apparatus
JP2009135998A (en) Apparatus and method for generating single carrier signal
JP2009135999A (en) Orthogonal frequency division multiplexing device and orthogonal frequency division multiplexing method
US20050009477A1 (en) System and method for an upconverter for stacked intermediate frequency carriers
JP2921440B2 (en) Linear modulation amplification method
JP2022017741A (en) Modulation mechanism for digital transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06821978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06821978

Country of ref document: EP

Kind code of ref document: A1