WO2008046356A1 - Système de transfert intercellulaire d'un système de communication sans fil, dispositif et procédé associé - Google Patents
Système de transfert intercellulaire d'un système de communication sans fil, dispositif et procédé associé Download PDFInfo
- Publication number
- WO2008046356A1 WO2008046356A1 PCT/CN2007/070916 CN2007070916W WO2008046356A1 WO 2008046356 A1 WO2008046356 A1 WO 2008046356A1 CN 2007070916 W CN2007070916 W CN 2007070916W WO 2008046356 A1 WO2008046356 A1 WO 2008046356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- cell identity
- neighboring
- identity flag
- flag
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/26—Reselection being triggered by specific parameters by agreed or negotiated communication parameters
Definitions
- the present invention relates to the field of wireless communication technologies, and more particularly to a cell switching system, apparatus and method for a wireless communication system. Background of the invention
- the general macro cell is used to solve large-area coverage
- the small cell is used to meet the requirements of deep coverage and hotspot high-speed data services.
- 3GPP Third Generation Partnership Project
- 3GPP2 Third Generation Partnership Project2
- mobile broadband is one of its most important target services.
- the macro cell and the small cell are geographically overlapped, and there are both a traditional macro layer and a new small cell layer in the network.
- Hundreds of small cells may be deployed within a single macrocell coverage. For example, when a macro cell covers several residential areas, and in these several residential areas, if the mini-wireless access point is deployed in units of home, hundreds of them will be deployed.
- FIG. 1 is a schematic diagram of deployment of a macro cell and a small cell layer in the prior art.
- the deployment of such a hierarchical network will lead to a sharp increase in the number of neighbors of the macro cell, and hundreds of neighbors will simply be adjacent to the macro cell.
- the number of neighbors currently supported by Global System for Mobile Communications (GSM) and Third Generation Partnership Project (3GPP)/Universal Mobile Telecommunications System (UMTS) is 32; Code Division Multiple Access (CDMA) 2000 supported neighbors The number is 40. Display
- the current number of neighboring areas and the related neighboring area measurement methods and measurement report reporting modes are far from meeting the above networking requirements, that is, normal two-way switching cannot be achieved.
- each AP In the networking environment shown in Figure 1, the coverage of each AP is small, and the neighboring environment of each AP is not much different from that of the original single-layer network.
- the original neighboring area can meet the requirements of the AP. Switching outside.
- the neighboring environment of each macrocell is quite different from that of the original single-layer network, so that the switching from the macrocell cannot be realized.
- cells are distinguished by frequency points and scrambling codes.
- the system sends a measurement control command message to the terminal, where the measurement control command message carries the frequency point and the scrambling code of the desired measurement cell.
- the number of neighboring scrambling codes corresponding to each frequency point is less than 32.
- the neighboring cells are identified and distinguished only by the frequency point and the scrambling code, assuming that there are 100 neighboring APs of the macro cell, firstly, when the scrambling codes of the 100 AP cells are different, in the inter-frequency measurement target cell list. It is impossible to carry the complete 100 scrambling codes, which makes it impossible to implement the macro-cell to AP handover.
- 100 AP cells adopt the scrambling code multiplexing mode, and only 32 scrambling codes are used, and some AP cells multiplex the scrambling codes. In this way, only the 32 scrambling codes are sent in the target cell list of the inter-frequency measurement, and the terminal only needs to measure the 32 scrambling codes.
- the cell measurement result table only contains cell identification information such as scrambling code and frequency point, and the system cannot identify the AP cell corresponding to the scrambling code in the measurement report result, the handover cannot be completed.
- the 3GPP/3GPP2-based wireless access point AP when deployed on a scale and forms a stereo layered network structure with the traditional macro cell, the neighboring cell capability of the cellular network cannot support the normal switching of the macro cell to the AP, thereby resulting in The AP cannot be commercialized on a large scale, and it also directly delays the promotion and popularization of the mobile broadband service targeted by the 3GPP/3GPP2 air interface capability evolution.
- a cell handover system of a wireless communication system is proposed to solve a problem that a cell cannot be switched due to a limitation of the number of neighboring cells.
- Another aspect of the embodiments of the present invention provides a cell handover method for a wireless communication system to solve a problem that a cell cannot be switched due to a limitation of the number of neighboring cells.
- Another aspect of the embodiments of the present invention provides a base station of a wireless communication system to solve the problem that a cell cannot be switched due to the limitation of the number of neighboring cells.
- Another aspect of the embodiments of the present invention provides a terminal of a wireless communication system to solve the problem that a cell cannot be switched due to the limitation of the number of neighboring cells.
- a cell switching system of a wireless communication system includes a macro base station, and at least two wireless access point APs within the coverage of the macro base station And the terminal, the macro base station and the AP broadcast their own cell identity flag;
- the macro base station or the AP sends a neighbor cell scrambling code and a neighbor cell identity flag parsing instruction of the current cell to the terminal, where the neighbor cell cell identity flag parsing instruction indicates a neighboring area scrambling code that needs to be parsed into the cell identity flag;
- the terminal measures a signal quality of a neighboring cell of the current cell
- a base station comprising:
- a unit for broadcasting its own cell identity flag a unit for transmitting a neighboring cell scrambling code of the current cell and a neighboring cell identity flag parsing instruction;
- a terminal comprising:
- a unit for measuring signal quality of a neighboring cell of the current cell a unit for measuring signal quality of a neighboring cell of the current cell
- a cell handover method for a wireless communication system comprising: receiving respective cell identity flags broadcast by a macro base station and an AP;
- each cell broadcasts an identity flag of the local cell; and sends a neighbor cell identity flag parsing instruction to the terminal, where the neighboring area scrambling code indicating that the cell identity flag needs to be parsed is indicated;
- the terminal resolves the finger according to the identity of the neighboring cell And causing, at least one cell identity flag is selectively parsed from the neighboring area scrambling code that needs to perform parsing; and then switching from the current cell to the target cell according to the signal quality measurement result and the parsed cell identity flag.
- the target cell for scrambling code multiplexing includes both the scrambling code and the signal quality, and also includes the cell identity flag of the signal, so the present invention can determine the target cell.
- the handover is performed, so that the problem that the cell cannot be switched due to the limitation of the number of neighboring cells is solved.
- FIG. 1 is a schematic diagram of deployment of a macro cell and a small cell layer in the prior art.
- FIG. 2 is an exemplary flow chart of a cell handover method of a wireless communication system according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of mapping from BCH to PCCPCH according to an embodiment of the present invention.
- FIG. 4 is an exemplary structural diagram of a cell handover system of a wireless communication system according to an embodiment of the present invention. Mode for carrying out the invention
- FIG. 2 is an exemplary flow chart of a cell handover method of a wireless communication system according to an embodiment of the present invention.
- the method includes:
- Step 201 Each cell broadcasts a cell identity of the cell.
- each cell preferably periodically broadcasts an identity flag of the cell, so that the terminal can receive the identity flag of each cell.
- the frequency is not particularly limited as long as the immediacy of the entire system can be guaranteed.
- each cell may broadcast a system message through a broadcast channel BCH, which should include a cell identity flag.
- each cell may broadcast a system message through a broadcast channel BCH and/or a synchronization channel SCH, which should include a cell identity flag.
- Step 202 Send a neighbor cell scrambling code and a neighbor cell identity indicator decoding instruction of the current cell to the terminal, and indicate, in the neighbor cell identity flag parsing instruction, a neighboring area scrambling code that needs to parse the cell identity flag.
- the neighbor cell identity flag parsing instruction is preferably extended in the cell information table of each neighboring area scrambling code. After receiving the cell identity flag parsing command, the terminal can learn the neighbor cell that needs to parse the cell identity flag.
- Step 203 The terminal measures the signal quality of the neighboring area scrambling code of the current cell, and selectively parses at least one cell from the neighboring area scrambling code that needs to be parsed according to the neighboring cell identity flag parsing instruction. Identity mark.
- the terminal determines a predetermined number of neighboring cell cells in descending order of the neighboring area scrambling code signal strength, and parses the predetermined number.
- the cell identity flag of the neighboring cell is not particularly limited in terms of the predetermined number, and is preferably any one of 1 to 6, and may even be 1. When it is 1, the terminal parses the cell identity flag of the scramble code with the strongest signal strength.
- Step 204 Switch from the current cell to the target cell according to the signal quality measurement result and the parsed cell identity flag.
- the present invention can be applied to various scenarios in which a cell cannot be switched due to the limitation of the number of neighboring cells.
- a cell cannot be switched due to the limitation of the number of neighboring cells.
- the system cannot determine the target cell corresponding to the scrambling code.
- the AP scrambling code of a macro cell is not multiplexed, the system needs to send all the scrambling codes of the APs in the measurement target cell list, so that it is obviously not operability to increase the measurement target cell list space without limitation. .
- the cell identity flag of the scrambling code signal should be selectively parsed according to the measurement control indication.
- the target cell is multiplexed for such scrambling code, and includes both the scrambling code and the signal quality, and the cell identity flag of the signal, so that the system can prepare to judge the target cell and decide to switch.
- the present invention is applied to a 3GPP/UMTS scheme.
- the cell identity flag is only sent in system messages 3 and 4.
- the system frame number (SFN) is broadcast in the broadcast channel (BCH).
- BCH broadcast channel
- the channel coding mode of the BCH is as shown in FIG. 3.
- the BCH transport channel ⁇ is 20ms and requires two PCCPCH physical frames.
- the corresponding transmission channel BCH 20ms TTI bearer system message body is shown in Table 1 (partially shown).
- the system message body contains SFN and other system message blocks (main system message blocks, scheduling blocks, information blocks, etc.).
- a cell is added after the SFN information, that is, a cell identity, as shown in Table 2 below.
- Table 2 is a UMTS system message body table (partially shown) in accordance with an embodiment of the present invention.
- the number of bits in the Cell identity field can be shortened to 16 bits, and 65536 cells can be marked at this time, which is consistent with the number of CI parts in the global cell identifier CGI.
- the number of bits in the Cell identity field can also be defined as 28 bits.
- the principle of digit definition is to ensure that a macro cell coverage AP cell can be uniquely identified. According to the actual networking scenario analysis, the number of bits can be constrained to represent at least 10,000 cells.
- the cell identity is separate in the message body and is not placed in a specific message block.
- the cell identity can be carried by 28 bits after the SFN of the libit.
- the cell identity cell is deleted to save air interface resources.
- a cell Read cell identity indicator is added. When the read cell identity indication is true (true), the terminal parses the cell identity flag (Cell identity) in the BCH of the scrambling code.
- Table 3 is a UMTS cell information table (partially shown) in accordance with an embodiment of the present invention.
- the cell identity of the scrambling signal may be reported according to a Cell Identity reporting indicator in the cell measurement report category table.
- the Cell Identity reporting indicator in the cell measurement report category table may also be deleted, and the measurement and reporting of the cell identity may be determined directly according to the measurement indication in the cell information table.
- Table 4 is a UMTS Cell Measurement Report Category Table (partially shown) in accordance with an embodiment of the present invention.
- the terminal in order to read the BCH information, the terminal needs to synchronize the SCH first, which takes a long time.
- the terminal preferably parses the cell identity code in the BCH of the cell scrambling code of the top 6 of the dominant frequency scrambling code signal quality measured in the frequency point. Even, the terminal only needs to read the cell identity flag of the strongest scrambling code of the 6 most strong scrambling codes that needs to read the cell identity flag.
- a "cell identity” field is added to the UMTS system message body in advance; a "Read cell identity indicator” field is added to the UMTS cell information table; The “Cell Identity reporting indicator” field is deleted from the cell measurement report category table.
- the system first sends the neighboring cell scrambling code of the current cell and the neighboring area scrambling code cell flag analysis indication to the terminal; the terminal tests the signal strength of the given scrambling code, and according to the neighboring area scrambling code cell flag resolution indication sent by the system, Selectively parsing the identity flag in the BCH cell channel in the scrambling code signal; then the terminal reports the measurement result, and includes the signal quality and the cell identity flag in the measurement result, and finally the base station switches from the current cell according to the signal quality and the cell identity flag. Go to the target cell.
- the present invention is applied to a 3GPP/LTE scheme.
- both the synchronization channel SCH and the broadcast channel BCH can broadcast the cell related message. Due to the special status of the SCH channel, that is, the terminal needs to synchronize and parse the SCH channel before parsing the BCH channel of the cell, so the cell identity flag is placed on the SCH channel.
- Medium is a preferred method.
- the cell identity flag can be placed on the second synchronization channel secondary SCH.
- Table 5 is a schematic table of carrying a cell identity flag in an LTE secondary SCH according to an embodiment of the present invention.
- the selection principle of the specific number of bits of the Cell identity is similar to the foregoing 3GPP/LTE.
- the number of cell identity flag bits is replaced by M, which is fixed in the protocol.
- the cell identity flag bits can be placed in the system message body and sent on each BCH transport block.
- the definition can be the same as in the 3GPP/UMTS scheme of the first embodiment described above, and the cell identity flag is placed at a fixed position of each BCH TTI, such as the first M bits.
- Table 6 is a schematic representation (partially shown) of a BCH block in accordance with an implementation of the present invention.
- the wireless subframe is 0.5 ms. Subframe.
- the cell identity flag of the M bit may be placed in n SCH or BCH transport blocks, and n may be divisible by the bit number M of the cell identity flag.
- the cell identity flag is repeated every 2n radio subframes; assuming that the wireless subframe number is numbered from zero, then the cell identity flag total bit number A part (a total of n parts) is in a transport block starting with a wireless subframe number of 2n natural multiples (an integer greater than or equal to zero).
- n can be fixed in the protocol or delivered as a global system message parameter (such as a service area).
- the M bit cell identity flag is carried on the transport block starting with a wireless sub-frame with a natural multiple of 8 such as 0, 8, 16, 24, 32, ..., etc. A part of M/n bits.
- the cell identity flag can mark 65536 cells at this time, and each transport block only needs to transmit 4 bit cell identity information. After transmitting the 16 bit information, 4 transport blocks, that is, 4 ms are needed.
- Table 7 is an example table of partial cell identity flag bits carried by each SCH/BCH transport block when the cell identity flag is transmitted in a block manner.
- the M/n bit can be placed in the first M/n bits of the SCH/BCH message body.
- Table 8 shows an example of the number of blocks n as a global system number when the cell identity flag is transmitted in a block mode.
- the cell identity flag of the measured cell can be obtained by combining.
- the cell information table in the measurement control message sent by the LTE system carries a cell read cell identity indicator to indicate whether the terminal needs to parse and report the cell identity flag of the scrambling code signal.
- Table 9 is a cell information table (partially shown) for measuring control messages in 3GPP/LTE, in accordance with an embodiment of the present invention.
- the terminal takes a long time to read the SCH/BCH information.
- the terminal only needs to parse the cell identity flag in the SCH/BCH of the cell in the top 6 of the dominant frequency scrambling code signal quality measured in the frequency point; or even read only Among the 6 most strong scrambling codes, it is necessary to read the cell identity flag of the strongest scrambling code of the cell identity flag.
- the terminal measures the dominant frequency 4 y code of 1, 2, 3, ... 32 in the measurement control message, and sorts according to the signal field strength, among the strongest 6 dominant frequencies, such as 1, 2, 3, 4, 5, 6, wherein the scrambling codes 1 and 2 indicate that the cell identity flag needs to be parsed.
- the terminal only needs to read the cell identity flag for the scrambling codes 1 and 2; it is also possible to define that the terminal only needs to read 1 and 2 The cell identity flag of the strongest scrambling code in the scrambling code.
- the encoding process of the cell identity flag generally includes: first defining a cell identity flag number of bits M, and then spreading the defined M bits into n BCH or SCH transport blocks or DL-SCH transport blocks for transmission, and n
- the first part of the n part information is placed in a BCH or SCH transport block or a DL-SCH transport block starting from a natural multiple of 2n, and the other n-1 part bits are specified.
- the terminal arbitrarily receives n BCH or SCH transport blocks or DL-SCH transport blocks, and parses the bits of the agreed position, and combines to obtain the cell identity of the measured cell.
- a "New Cell identity” field is first added in the LTE secondary SCH, wherein if the SCH channel cannot carry "New Cell identity", the field is in the BCH transport block. And sending; in the cell information table in the measurement control message sent by the LTE system, carrying a "Read cell identity indicator” field.
- the system first sends the neighbor cell scrambling code of the current cell and the neighboring cell scrambling code cell identity analysis indication to the terminal; the terminal tests the signal strength of the given scrambling code, and selectively parses the scrambling code signal according to the parsing indication sent by the system.
- the cell identity identifier cell identity in the BCH channel the terminal then reports the measurement result, where the measurement result includes the signal quality and the cell identity flag cell identity; finally, the base station then switches from the current cell to the target cell according to the signal quality and the cell identity flag.
- the cell identity flag can also be transmitted in the downlink shared channel DL-SCH in the same manner; or the new channel is used to specifically transmit the cell identity flag, and the terminal in the active state can conveniently read the channels.
- the cell identity mark in the middle.
- the macro cell After adopting the technical solution of the first embodiment (for 3GPP/UMTS), for the network scenario of FIG. 1, when the AP cells perform scrambling code multiplexing, and the total number of APs using the scrambling code does not exceed 32, the macro cell passes the measurement.
- the target cell information table is used to control whether the terminal parses the dominant frequency scrambling code signal in the table and reports its cell identity flag cell identity.
- the current terminal capability can measure the cell identity flag in the neighboring cell BCH in the same frequency state; when the dual receiver is used, the cell in the inter-frequency neighboring cell BCH can also be measured. Identity mark.
- the scrambling code multiplexing is performed between the AP cells, and the total number of used scrambling codes of the AP does not exceed the number of restrictions issued by the LTE neighboring cell (for example, The UMTS is 32 or extended to 64.
- the macro cell controls the target cell information table to control whether the terminal parses the dominant frequency scrambling code signal in the table and reports its cell identity symbol cell identity.
- the basic ⁇ is only 1 ms
- the compression mode is cancelled
- the scheduling method is used to measure the inter-frequency (different system)
- the terminal capability is enhanced
- the terminal measures and resolves the neighbor.
- the cell identity flag in the zone SCH, or the cell identity flag in the BCH, does not become a problem.
- the system side does not need to maintain the fixed neighbor relationship of the macro cell targeting the AP cell, and the system can use the pilot frequency used by the AP cell in the measurement target cell list.
- the scrambling code information is all sent. According to the AP primary frequency information, signal quality and cell identity flag reported by the terminal, the target cell is determined, and finally the handover from the macro cell to the AP cell is achieved.
- the invention also proposes a cell handover system for a wireless communication system.
- 4 is an exemplary structural diagram of a cell handover system of a wireless communication system according to an embodiment of the present invention.
- the system includes:
- the base station 401 is configured to broadcast an identity flag of each cell, and send, to the terminal 402, a neighbor cell scrambling code of the current cell and a neighbor cell identity flag parsing instruction, where the neighbor cell cell identity flag parsing instruction indicates that the cell identity flag needs to be parsed
- the neighboring cell scrambling code the base station 401 is further configured to switch from the current cell to the target cell according to the signal quality measurement result reported by the terminal 402 and the parsed cell identity flag;
- the terminal 402 is configured to measure a signal quality of the neighboring area scrambling code of the current cell, and selectively parse the at least one cell identity from the neighboring area scrambling code that needs to be parsed according to the neighboring cell identity flag parsing instruction. And signing the signal quality measurement result and the parsed cell identity flag to the base station 401.
- the base station 401 is configured to periodically broadcast an identity flag of each cell.
- the terminal 402 may be configured to determine, according to the neighboring area scrambling code indicating that the cell identity flag needs to be parsed in the cell identity indicator parsing instruction, determine a predetermined number of neighboring cell cells in descending order of the neighboring area scrambling code signal strength, and parse the A cell identity flag of a predetermined number of neighbor cell scrambling codes.
- the predetermined number is not particularly limited, and is preferably any one of 1 to 6, and may even be 1, and at this time, the cell identity flag of the scramble code having the strongest signal strength is read.
- the base station 401 is configured to broadcast a system message through the broadcast channel BCH, where the system message includes a cell identity flag.
- the base station 401 is configured to broadcast a system message by using a broadcast channel BCH or a synchronization channel SCH or a DL-SCH channel, where the system message includes a cell identity flag.
- the present invention can be applied to a scenario in which a macro cell handovers to a small cell, where the small cell can be a variety of wireless access points. Moreover, the present invention can also be applied to 3GPP2 or other subsequent mobile communication systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
一种无线通信系统的小区切换系统、 装置及方法
技术领域
本发明涉及无线通信技术领域, 更具体地说, 本发明涉及一种无线 通信系统的小区切换系统、 装置及方法。 发明背景
随着移动通信的发展, 需要立体化的覆盖来满足日益增长的覆盖和 容量需求。一般宏蜂窝( Macro Cell )用来解决大面积覆盖,小蜂窝( Micro Cell )用来满足深度覆盖和热点高速数据业务需求。 在第三代合作伙伴 计划 (Third Generation Partnership Project, 3GPP )和 3GPP2后续演进 中, 移动宽带是其最为重要的目标业务之一。
为了实现基于 3GPP/3GPP2体制的移动宽带普及, 基站形态和部署 方式必须在性能成本上满足用户的需求。 借鉴 802.11 无线接入点 ( Access Point , ΑΡ ) 解决无线游牧宽带数据的成功经验, 基于 3GPP/3GPP2体制的无线接入点 ΑΡ是达到这一目标的关键性产品。
宏蜂窝和小蜂窝在地理上是重叠部署的, 网络中同时存在传统宏蜂 窝层和新的小蜂窝层。 可能会在一个宏蜂窝覆盖范围内, 部署了上百个 小蜂窝。 比如, 当一个宏蜂窝覆盖数个居民小区时, 而这数个居民小区 中, 如果以家庭为单位进行微型无线接入点 ΑΡ部署, 会达到数百个。
图 1为现有技术中宏蜂窝和小蜂窝层的部署示意图。 这种分层网的 部署方式, 会导致宏蜂窝的邻区数目急剧增长, 单纯与宏蜂窝有相邻关 系的 ΑΡ就会达到数百个。 然而, 目前全球移动通信系统(GSM )和第 三代合作伙伴计划( 3GPP ) /通用移动通信系统( UMTS )可以支持的邻 区数量是 32个; 码分多址( CDMA ) 2000支持的邻区数量是 40个。 显
然, 目前的邻区支持数目以及与此相关的邻区测量方式、 测量报告上报 模式, 都远远不能满足上述组网需求, 即无法实现正常的双向切换。
下面更加具体地描述目前 3GPP/UMTS支持的邻区能力缺陷。
在如图 1所示组网环境中, 由于每个 AP覆盖范围很小, 每个 AP 的邻区环境和原有单层网络环境下相差不大, 原有邻区支持能力可以满 足从 AP向外的切换。 反之, 每个宏蜂窝的邻区环境和原单层网相比, 相差甚大, 因而无法实现从宏蜂窝向外的切换。
具体地, 在 3GPP/UMTS中, 以频点和扰码来区分小区。 当需要终 端对邻近小区的场强进行测量时, 系统会下发测量控制命令消息给终 端, 在该测量控制命令消息中携带有期望测量小区的频点和扰码。 对应 每个频点的邻区扰码数量在 32个以内。
由于仅仅通过频点和扰码来识别和区分邻区,假设宏蜂窝的邻近 AP 有 100个, 那么首先, 当这 100个 AP小区的扰码各不相同时, 在异频 测量目标小区列表中无法携带完整的 100个扰码, 导致无法实现宏蜂窝 到 AP的切换; 另外, 假设 100个 AP小区采取扰码复用方式, 仅用 32 个扰码, 部分 AP小区复用扰码。 这样异频测量目标小区列表中只下发 这 32个扰码, 终端也只需要测量这 32个扰码。 但是, 由于小区测量结 果表中仅含有扰码和频点等小区识别信息, 而系统无法识别测量报告结 果中的扰码所对应的 AP小区, 依然无法完成切换。
由此可见, 当基于 3GPP/3GPP2的无线接入点 AP规模部署, 并和 传统宏蜂窝形成立体分层网结构时, 目前蜂窝网的邻区能力无法支持宏 蜂窝向 AP的正常切换, 从而导致 AP无法大规模商用, 也直接延误了 3GPP/3GPP2空口能力演进所针对的移动宽带业务的推广和普及。
以上详细说明了目前 3GPP/UMTS中所存在的邻区能力问题。不过, 上述问题并不仅出现在 3GPP/UMTS中。 一般意义而言, 无线通信系统
的邻区数量能力限制普遍性地造成无法执行小区切换。 发明内容
本发明实施例一方面提出一种无线通信系统的小区切换系统, 以解 决由邻区数量能力限制所造成的小区无法切换问题。
本发明实施例的另一方面提出一种无线通信系统的小区切换方法, 以解决由邻区数量能力限制所造成的小区无法切换问题。
本发明实施例的另一方面提出一种无线通信系统的基站, 以解决由 邻区数量能力限制所造成的小区无法切换问题。
本发明实施例的另一方面提出一种无线通信系统的终端, 以解决由 邻区数量能力限制所造成的小区无法切换问题。
为达到上述目的, 本发明实施例的技术方案是这样实现的: 一种无线通信系统的小区切换系统, 该系统包括一个宏基站, 在该 宏基站覆盖范围内的至少两个无线接入点 AP, 以及终端, 所述宏基站 和 AP广播自身的小区身份标志;
所述宏基站或 AP向所述终端发送当前小区的邻区扰码和邻区小区 身份标志解析指令, 所述邻区小区身份标志解析指令指示需要解析小区 身份标志的邻区扰码;
所述终端测量所述当前小区的邻区 4尤码的信号质量;
所述终端根据所述邻区小区身份标志解析指令, 选择性地从需要执 行解析的邻区扰码中解析出所述宏基站或 AP广播的小区身份标志; 根据信号质量测量结果和解析出的小区身份标志, 从所述当前小区 切换到目标小区。
一种基站, 该基站包括:
用于广播自身的小区身份标志的单元;
用于发送当前小区的邻区扰码和邻区小区身份标志解析指令的单 元;
用于根据终端发送的信号质量测量结果和解析出的小区身份标志, 从所述当前小区切换到目标小区的单元。
一种终端, 该终端包括:
用于接收基站发送的小区身份标志, 以及当前小区的邻区扰码和邻 区小区身份标志解析指令的单元;
用于测量所述当前小区的邻区 4尤码的信号质量的单元;
用于根据所述邻区小区身份标志解析指令, 选择性地从需要执行解 析的邻区扰码中解析出所述宏基站或 AP广播的小区身份标志的单元; 用于根据信号质量测量结果和解析出的小区身份标志, 从所述当前 小区切换到目标小区的单元。
一种无线通信系统的小区切换方法, 包括: 接收宏基站和 AP广播 的各自的小区身份标志;
接收宏基站或 AP发送的当前小区的邻区扰码和邻区小区身份标志 解析指令, 所述邻区小区身份标志解析指令指示需要解析小区身份标志 的邻区扰码;
测量所述当前小区的邻区 4尤码的信号质量;
根据所述邻区小区身份标志解析指令, 选择性地从需要执行解析的 邻区扰码中解析出所述宏基站或 AP广播的小区身份标志;
根据信号质量测量结果和解析出的小区身份标志, 从所述当前小区 切换到目标小区。
从上述技术方案中可以看出, 在本发明中, 各小区广播本小区的身 份标志; 向终端发送有邻区小区身份标志解析指令, 并且其中指示有需 要解析小区身份标志的邻区扰码; 终端根据邻区小区身份标志解析指
令, 从需要执行解析的邻区扰码中选择性地解析出至少一个小区身份标 志; 然后根据所述信号质量测量结果和解析出的小区身份标志, 从当前 小区切换到目标小区。 由此可见, 应用本发明以后, 在终端上报的测量 报告中, 针对扰码复用的目标小区, 既包含扰码和信号质量, 也包含该 信号的小区身份标志, 因此本发明可以判断目标小区而执行切换, 所以 解决了由邻区数量能力限制所造成的小区无法切换问题。 附图简要说明
图 1为现有技术中宏蜂窝和小蜂窝层的部署示意图。
图 2为根据本发明实施例的无线通信系统的小区切换方法示范性流 程图。
图 3为根据本发明实施例的 BCH到 PCCPCH的映射示意图。
图 4为根据本发明实施例的无线通信系统的小区切换系统的示范性 结构图。 实施本发明的方式
为使本发明的目的、 技术方案和优点表达得更加清楚明白, 下面结 合附图及具体实施例对本发明再作进一步详细的说明。
图 2为根据本发明实施例的无线通信系统的小区切换方法示范性流 程图。
如图 2所示, 该方法包括:
步骤 201: 各小区广播本小区的身份标志 ( cell identity )„ 在这里, 各小区优选周期性地广播本小区的身份标志, 从而使得终 端能够接收到各小区的身份标志。 对于周期性广播的广播频率并无特别 的限定, 只要能够保证整个系统的即时性即可。
当无线通信系统为 3GPP/ UMTS系统时, 各小区可以通过广播信道 BCH广播系统消息, 该系统消息中应该包括小区身份标志。
当无线通信系统为 3GPP/ LTE 系统时, 各小区可以通过广播信道 BCH和 /或同步信道 SCH广播系统消息, 该系统消息中应该包括小区身 份标志。
步骤 202: 向终端发送当前小区的邻区扰码和邻区小区身份标志解 析指令, 在该邻区小区身份标志解析指令中指示有需要解析小区身份标 志的邻区扰码。
在这里, 邻区小区身份标志解析指令优选被扩展在各邻区扰码的小 区信息表中。 终端收到该邻区小区身份标志解析指令后, 可以获知需要 解析出小区身份标志的邻区小区。
步骤 203: 终端测量所述当前小区的邻区扰码的信号质量, 并根据 所述邻区小区身份标志解析指令, 从所述需要执行解析的邻区扰码中选 择性地解析出至少一个小区身份标志。
优选地, 从小区身份标志解析指令中指示需要解析小区身份标志的 邻区扰码中, 终端按照邻区扰码信号强度由大到小的顺序确定预定数目 邻区小区, 并解析出该预定数目邻区小区的小区身份标志。 其中, 对于 预定数目, 本发明并无特别限定, 优选为 1至 6中的任一个, 甚至可以 为 1。 当为 1时, 此时终端解析出信号强度最强的扰码的小区身份标志。
步骤 204: 根据所述信号质量测量结果和解析出的小区身份标志, 从所述当前小区切换到目标小区。
具体地, 本发明可以适用到各种由邻区数量能力限制所造成的小区 无法切换场景中。 比如, 在某示范性场景下: 宏蜂窝下的无线接入点 AP扰码复用后, 终端上报宏蜂窝邻近 AP小区的扰码和信号质量后, 系 统无法判断扰码对应的目标小区。
此时, 如果一个宏蜂窝下的 AP扰码不复用, 需要系统在测量目标 小区列表中将这些 AP的扰码全部下发, 这样无限制地增加测量目标小 区列表空间显然不具备可操作性。
为了唯一识别测量报告中的目标小区, 当终端在对邻区进行指定扰 码场强测量时, 根据测量控制指示, 应该选择性解析该扰码信号的小区 身份标志。 这样, 在终端上报的测量报告中, 针对此类扰码复用目标小 区, 既包含扰码和信号质量, 还包含该信号的小区身份标志, 从而系统 能够准备判断目标小区而判决切换。
下面针对 3GPP/UMTS系统和 3GPP/LTE系统, 分别详细给出本发 明实施例的详细方案。
第一实施例: 将本发明应用到 3GPP/UMTS方案中。
根据上面所述, 目前 UMTS中, 小区身份标志只在系统消息 3和 4 中下发。 而系统帧号 (SFN )在广播信道(BCH ) 中进行广播。 终端在 邻区测量中, 当需要获取服务小区和目标小区时间差异时, 可以读取邻 区 BCH中的 SFN信息。
目前, BCH的信道编码方式如图 3所示。 从图 3中可以看出, BCH 传输信道 ΤΉ为 20ms , 需要占用两个 PCCPCH物理帧。 对应的传输信 道 BCH 20ms TTI承载系统消息体如表 1所示(部分示出)。
表 1
系统消息体中含有 SFN以及其他系统消息块(主系统消息块, 调度 块, 信息块等)。
本发明实施例中, 在此基 上, 在 SFN信息后增加一个信元, 也就 是小区身份标志(cell identity ), 如下表 2所示。 表 2为根据本发明实施 例的 UMTS系统消息体表(部分示出)。
表 2
其中 Cell identity 字段的比特数可以缩短为 16bit, 此时能标志出 65536个小区, 与全球小区识别码 CGI中的 CI部分数量一致。
为了和 3GPP已有参数一致,还可以将 Cell identity字段的比特数定 义为 28bit。 位数定义的原则是确保一个宏蜂窝覆盖范围 AP小区能够被 唯一识别, 根据实际组网场景分析, 可以约束比特位数代表小区数至少 在 10000以上。
为了方便终端在邻区测量中对 cell identity 进行解析, 优选 cell identity在消息体中是单独的, 不放在某一个具体的消息块中。 同时, 按 照目前 BCH信道的编码方式, 可以在 libit的 SFN后, 用 28bit来承载 cell identity。与此配合,在系统消息 3和系统消息 4中,删除 cell identity 信元以节约空口资源。
为了避免不必要的测量, 在小区信息表中, 增加信元 Read cell identity indicator (读取小区身份指示)。 当读取小区身份指示为真( true ) 时, 终端解析这个扰码的 BCH中的小区身份标志 (Cell identity )。 表 3 为根据本发明实施例的 UMTS小区信息表(部分示出)。
表 3
可以根据小区测量报告范畴表中的 Cell Identity reporting indicator (小区身份信息报告指示)来决定是否上报该扰码信号的小区身份( cell identity )。 也可以删除小区测量报告范畴表中的 Cell Identity reporting indicator (小区身份信息报告指示), 而直接根据小区信息表中的测量指 示来决定 cell identity的测量和上报。表 4为根据本发明实施例的 UMTS 小区测量报告范畴表(部分示出)。
信元名称 数量范 类型和参考
围
Cell synchronisation Boolean information reporting
indicator/小区同步信息报告
指示
Cell Identity reporting Boolean indicator/小区 份信息报告
指示
CHOICE mode/模式选择
>FDD/频分双工
信元名称 数量范 类型和参考
围
»CPICH Ec/N0 reporting Boolean indicator/主导频码片能量和
噪声之比报告指示 表 4
在本实施例中, 终端为了读取 BCH信息, 需要首先同步 SCH, 花 费时间较长。
为了节约终端资源, 终端优选对该频点中测量得到的主导频扰码信 号质量前 6名中需要读取小区身份标志的小区扰码解析其 BCH中的小 区身份标志。 甚至, 终端只需读取这 6个最强扰码中需要读取小区身份 标志的最强扰码的小区身份标志。
综上,在本实施例中,预先在 UMTS系统消息体中增加" cell identity/ 小区身份标志"字段; 在 UMTS 小区信息表中增加" Read cell identity indicator/读取小区身份指示"字段; 在 UMTS 小区测量报告范畴表中删 除" Cell Identity reporting indicator/小区身份信息报告指示"字段。
然后, 系统首先下发当前小区的邻区扰码和邻区扰码小区标志解析 指示给终端; 终端测试给定扰码的信号强度, 并根据系统下发的邻区扰 码小区标志解析指示, 选择性解析扰码信号中的 BCH小区信道中身份 标志; 然后终端上报测量结果, 在测量结果中包含信号质量和小区身份 标志, 最后基站再根据所述信号质量和小区身份标志, 从当前小区切换 到目标小区。
第二实施例: 将本发明应用到 3GPP/LTE方案中。
在 3GPP/LTE方案中, 同步信道 SCH和广播信道 BCH都可以进行小区 相关消息的广播。 由于 SCH信道的特殊地位, 即终端在解析小区 BCH信 道前, 都需要同步和解析 SCH信道, 因此将小区身份标志放在 SCH信道
中是较为优选的方法。
当 SCH信道采用分级同步信道 Hierarchical SCH方案时, 小区身份标 志可以放置在第二个同步信道 secondary SCH上。
表 5为根据本发明实施例的 LTE secondary SCH中携带小区身份标志 的示意表„
表 5
其中, Cell identity的具体位数的选取原则类似于前述的 3GPP/LTE。 下面以 M来代替小区身份标志比特数, M—般在协议中固定。
如果 SCH信道无法携带这些小区身份标志比特, 可以将小区身份标 志比特放置在系统消息体中, 在每个 BCH传输块上发送。 当小区身份标 志放置在系统消息体中时, 定义可以和上述第一实施例的 3GPP/UMTS 方案中一样, 小区身份标志放置在每个 BCH TTI的固定位置, 比如最前 M比特。
表 6为根据本发明实施的 BCH块示意表(部分示出)。
表 6
由于 LTE中基本 TTI是 lms, 无线子帧 0.5ms,
子帧。 为了节约 SCH和 BCH资源, 可以将 M bit的小区身份标志放在 n个 SCH或 BCH传输块中, n可以被小区身份标志的比特位数 M整除。
比如, 当 n=4时, 即分 4个传输块 8个无线子帧来传输 M个比特, 这样 每个传输块就只需传输 M/4 bit小区身份信息。
所以, 当定义用 n个传输块来传输 M bit小区身份标志时, 每隔 2n个无 线子帧, 小区身份标志被重复一次; 假设无线子帧号从零开始编号, 那 么小区身份标志总比特第一部分(一共 n部分)在无线子帧号为 2n自然 数倍(大于等于零的整数)开始的一个传输块中。 n可在协议中固定, 或作为一个全局系统消息参数(比如一个业务区) 下发。
比如, 当 n为 4, 2n为 8时, 在以 0, 8, 16, 24, 32, …等以 8为自然 数倍数的无线子帧开始的传输块上,承载着 M bit小区身份标志的第一部 分 M/n个比特。
当 M为 16、 n = 4时, 此时小区身份标志可以标志 65536个小区, 而每 个传输块只需传送 4bit小区身份信息, 传送完这 16bit信息, 需要 4个传输 块, 即 4ms。
表 7
M/n位比特, 可以约定放在 SCH/BCH消息体的最前 M/n个比特位。 表 8为当以分块方式传送小区身份标志时, 分块数 n作为全局系统 数下发示例表。
信元类型 Type and
reference
partial Cell identity No./分 3比特
块数 n 表 8
当终端知道 n、 M以及当前测量小区无线子帧号后,任意接收 n个传输 块并解析约定位置的比特, 就可经过组合得到被测量小区的小区身份标 志。
同时, 在 LTE系统下发的测量控制消息中的小区信息表中, 携带有信 元 Read cell identity indicator/读取小区身份指示, 以指示终端是否需要解 析和上报这个扰码信号的小区身份标志。
表 9
终端为了读取 SCH/BCH信息, 花费时间较长。 为了节约终端资源, 终端只需对该频点中测量得到的主导频扰码信号质量前 6名中需要读取 小区身份标志的小区解析其 SCH/BCH中的小区身份标志;甚至只需读取 这 6个最强扰码中需要读取小区身份标志的最强扰码的小区身份标志。
比如, 终端对测量控制消息中的 1 , 2, 3, ...32号主导频 4尤码进行测 量, 按照信号场强进行排序, 在最强的 6个主导频中, 比如 1 , 2, 3, 4, 5 , 6, 其中 1和 2号扰码指示需要解析小区身份标志, 此时终端只需对 1 和 2号扰码读取小区身份标志; 还可定义终端只需读取 1和 2扰码中最强 扰码的小区身份标志。
对于 3GPP/LTE中, 小区身份标志的编码过程一般包括: 首先定义小 区身份标志位数 M,然后将定义的 M比特分散到 n个 BCH或 SCH传输块或 DL-SCH传输块中传送, 并且 n作为全局参数下发, 将 n部分信息中的第 一部分比特放在无线子帧号为 2n自然数倍开始的一个 BCH或 SCH传输 块或 DL-SCH传输块中指定位置, 其他 n-1部分比特依次放置为后续 n-1 个 BCH或 SCH传输块中; 终端任意接收 n个 BCH或 SCH传输块或 DL-SCH 传输块, 并解析约定位置的比特, 经过组合得到被测量小区 cell identity。
综上, 在本实施例中, 首先在 LTE secondary SCH中增加 "New Cell identity/新小区身份"字段, 其中如果 SCH 信道无法携带 "New Cell identity/新小区身份", 将该字段在 BCH传输块上发送; 然后在 LTE系 统下发的测量控制消息中的小区信息表中, 携带" Read cell identity indicator/读取小区身份指示"字段。
然后, 系统首先下发当前小区的邻区扰码和邻区扰码 cell identity解 析指示给终端; 终端测试给定扰码的信号强度, 并根据系统下发的解析 指示, 选择性解析扰码信号中的 BCH信道中小区身份标志 cell identity; 然后终端上报测量结果, 测量结果中包含信号质量和小区身份标志 cell identity; 最后基站再根据所述信号质量和小区身份标志, 从当前小区切 换到目标小区。
其中, 在 3GPP/LTE中, 小区身份标志还可以同样的方式在下行共 享信道 DL-SCH中传送; 或采用新的信道来专门传送小区身份标志, 处 于激活态下的终端可以方便读取这些信道中的小区身份标志。
当采用第一实施例的技术方案 (针对 3GPP/UMTS )后, 针对图 1 组网场景, 在 AP小区间进行扰码复用, 并且 AP使用扰码总数不超过 32个时, 宏蜂窝通过测量目标小区信息表, 来控制终端是否对该表中的 主导频扰码信号解析、 上报其小区身份标志 cell identity。
采用第一实施例的技术方案后, 在 UMTS中, 目前终端能力可以测 量同频状态下邻区 BCH 中的小区身份标志; 当采用双接收机后, 也可 测量异频邻区 BCH中的小区身份标志。
当采用第二实施例的技术方案 (针对 3GPP/LTE )后, 针对图 1场 景, 在 AP小区间进行扰码复用, AP使用扰码总数不超过 LTE邻区下 发限制个数 (比如和 UMTS—致的 32或扩展为 64个 ), 宏蜂窝通过测 量目标小区信息表, 来控制终端是否对该表中的主导频扰码信号解析、 上报其小区身份标志 cell identity。
采用第二实施例的技术方案后, 在 LTE中, 基本 ΤΉ只有 1ms, 取消压缩模式而采用调度的方法来测量异频 (异系统), 加上终端能力 的增强,终端不论是测量和解析邻区 SCH中的小区身份标志,还是 BCH 中的小区身份标志, 都不会成为问题。
同时, 为了更好做到 AP小区的即插即用, 系统侧不需要维护宏蜂 窝以 AP小区为目标的固定邻区关系,系统可以在测量目标小区列表中, 把 AP小区所使用的主导频扰码信息全部下发。 根据终端上报的 AP小 区主导频信息、 信号质量以及小区身份标志, 判决目标小区, 最终达到 从宏蜂窝到 AP小区的切换目的。
本发明还提出了一种无线通信系统的小区切换系统。 图 4为根据本 发明实施例的无线通信系统的小区切换系统的示范性结构图。
如图 4所示, 该系统包括:
基站 401 , 用于广播各小区的身份标志, 向终端 402发送当前小区 的邻区扰码和邻区小区身份标志解析指令, 所述邻区小区身份标志解析 指令中指示有需要解析出小区身份标志的邻区小区扰码, 所述基站 401 进一步用于根据终端 402上报的信号质量测量结果和解析出的小区身份 标志, 从当前小区切换到目标小区;
终端 402, 用于测量当前小区的邻区扰码的信号质量, 并根据所述 邻区小区身份标志解析指令, 从所述需要执行解析的邻区扰码中选择性 地解析出至少一个小区身份标志, 并将所述信号质量测量结果和解析出 的小区身份标志上报到基站 401。
优选地, 所述基站 401 , 用于周期性广播各小区的身份标志。
终端 402, 可以用于从小区身份标志解析指令中指示需要解析小区 身份标志的邻区扰码中, 按照邻区扰码信号强度由大到小的顺序确定预 定数目邻区小区, 并解析出该预定数目邻区小区扰码的小区身份标志。 其中, 对预定数目并无特别限定, 优选为 1至 6中的任一个, 甚至可以 为 1 , 此时读取信号强度最强的扰码的小区身份标志。
当无线通信系统为 3GPP/UMTS 系统时, 基站 401 , 用于通过广播 信道 BCH广播系统消息, 该系统消息中包括小区身份标志。
当无线通信系统为 3GPP/LTE系统时, 基站 401 , 用于通过广播信 道 BCH或同步信道 SCH或 DL-SCH信道广播系统消息, 该系统消息中 包括小区身份标志。
具体地,可将本发明应用到宏蜂窝小区切换到小蜂窝小区的场景中, 其中小蜂窝小区可以为各种无线接入点。 而且, 本发明还能够应用到 3GPP2或后续其他的移动通信系统中。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的 保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、等同替换、 改进等, 均应包含在本发明的保护范围之内
Claims
1、一种无线通信系统的小区切换系统, 该系统包括一个宏基站, 在 该宏基站覆盖范围内的至少两个无线接入点 AP, 以及终端, 其特征在 于,
所述宏基站和 AP广播自身的小区身份标志;
所述宏基站或 AP向所述终端发送当前小区的邻区扰码和邻区小区 身份标志解析指令, 所述邻区小区身份标志解析指令指示需要解析小区 身份标志的邻区扰码;
所述终端测量所述当前小区的邻区 4尤码的信号质量;
所述终端根据所述邻区小区身份标志解析指令, 选择性地从需要执 行解析的邻区扰码中解析出所述宏基站或 AP广播的小区身份标志; 根据信号质量测量结果和解析出的小区身份标志, 从所述当前小区 切换到目标小区。
2、根据权利要求 1所述无线通信系统的小区切换系统,其特征在于, 所述无线通信系统为第三代合作伙伴计划 3GPP/通用移动通信系统 UMTS时, 所述小区身份标志在广播信道 BCH中广播。
3、根据权利要求 1所述无线通信系统的小区切换系统,其特征在于, 所述无线通信系统为第三代合作伙伴计划 3GPP/长期演进 LTE系统时, 所述小区身份标志在广播信道 BCH或同步信道 SCH或下行共享信道 DL-SCH中广播。
4、根据权利要求 2或 3所述无线通信系统的小区切换系统,其特征 在于, 当小区身份标志在广播信道 BCH 中广播时, 该小区身份标志放 置在 SFN信息之后。
5、根据权利要求 3所述无线通信系统的小区切换系统,其特征在于,
当小区身份标志在同步信道 SCH中广播, 且 SCH信道采用分级同步信 道 Hierarchical SCH 方案时, 该小区身份标志放置在第二个同步信道 secondary SCH上。
6、根据权利要求 2或 3所述无线通信系统的小区切换系统,其特征 在于, 所述小区身份标志被分散到至少两个 BCH传输块或 SCH传输块 或 DL-SCH传输块中传送。
7、根据权利要求 1所述无线通信系统的小区切换系统,其特征在于, 所述邻区小区身份标志解析指令被扩展在各邻区扰码的小区信息表中。
8、根据权利要求 1所述无线通信系统的小区切换系统,其特征在于, 所述选择性地解析出小区身份标志为:
从所述小区身份标志解析指令中指示需要解析小区身份标志的邻区 扰码中, 按照邻区扰码信号强度由大到小的顺序确定预定数目邻区小 区, 并解析出该预定数目邻区小区的小区身份标志; 或者,
对测量得到的主导频扰码信号质量最好的预定数目的小区扰码中, 需要读取小区身份标志的小区扰码解析其 BCH中的小区身份标志。
9、根据权利要求 1所述的无线通信系统的小区切换系统,其特征在 于, 在所述选择性地从需要执行解析的邻区扰码中解析出所述宏基站或 AP广播的小区身份标志的步骤后, 还包括:
所述终端根据 ']、区测量报告范畴表中的小区身份信息报告指示决定 是否上报扰码信号的小区身份; 或者,
所述终端根据小区信息表中的测量指示决定是否上报扰码信号的小 区身份。
10、 根据权利要求 9所述的无线通信系统的小区切换系统, 其特征 在于, 当所述终端根据小区信息表中的测量指示决定是否上报扰码信号 的小区身份时, 小区测量报告范畴表中不携带小区身份信息报告指示。
11、 一种基站, 其特征在于, 该基站包括:
用于广播自身的小区身份标志的单元;
用于发送当前小区的邻区扰码和邻区小区身份标志解析指令的单 元;
用于根据终端发送的信号质量测量结果和解析出的小区身份标志, 从所述当前小区切换到目标小区的单元。
12、 一种终端, 其特征在于, 该终端包括:
用于接收基站发送的小区身份标志, 以及当前小区的邻区扰码和邻 区小区身份标志解析指令的单元;
用于测量所述当前小区的邻区 4尤码的信号质量的单元;
用于根据所述邻区小区身份标志解析指令, 选择性地从需要执行解 析的邻区扰码中解析出所述宏基站或 AP广播的小区身份标志的单元; 用于根据信号质量测量结果和解析出的小区身份标志, 从所述当前 小区切换到目标小区的单元。
13、 一种无线通信系统的小区切换方法, 其特征在于, 包括: 接收宏基站和 AP广播的各自的小区身份标志;
接收宏基站或 AP发送的当前小区的邻区扰码和邻区小区身份标志 解析指令, 所述邻区小区身份标志解析指令指示需要解析小区身份标志 的邻区扰码;
测量所述当前小区的邻区 4尤码的信号质量;
根据所述邻区小区身份标志解析指令, 选择性地从需要执行解析的 邻区扰码中解析出所述宏基站或 AP广播的小区身份标志;
根据信号质量测量结果和解析出的小区身份标志, 从所述当前小区 切换到目标小区。
14、根据权利要求 13所述无线通信系统的小区切换方法,其特征在
于, 所述小区身份标志携带在广播信道 BCH或同步信道 SCH或下行共 享信道 DL-SCH中。
15、根据权利要求 14所述无线通信系统的小区切换方法,其特征在 于, 所述小区身份标志被分散到至少两个 BCH传输块或 SCH传输块或 DL-SCH传输块中传送。
16、根据权利要求 13所述无线通信系统的小区切换方法,其特征在 于, 所述选择性地解析出小区身份标志为:
从所述小区身份标志解析指令中指示需要解析小区身份标志的邻区 扰码中, 按照邻区扰码信号强度由大到小的顺序确定预定数目邻区小 区, 并解析出该预定数目邻区小区的小区身份标志; 或者,
对测量得到的主导频扰码信号质量最好的预定数目的小区扰码中, 需要读取小区身份标志的小区扰码解析其 BCH中的小区身份标志。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610152818.0 | 2006-10-20 | ||
CN2006101528180A CN101166361B (zh) | 2006-10-20 | 2006-10-20 | 一种无线通信系统的小区切换方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008046356A1 true WO2008046356A1 (fr) | 2008-04-24 |
Family
ID=39313626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/070916 WO2008046356A1 (fr) | 2006-10-20 | 2007-10-17 | Système de transfert intercellulaire d'un système de communication sans fil, dispositif et procédé associé |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101166361B (zh) |
WO (1) | WO2008046356A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102057294B (zh) * | 2008-06-06 | 2014-03-26 | 上海贝尔股份有限公司 | 用于分布式天线系统中室内无线定位的设备和方法 |
CN102638822A (zh) * | 2008-06-24 | 2012-08-15 | 华为技术有限公司 | 测量控制的方法、终端、网络侧设备及网络系统 |
GB2461845B (en) | 2008-06-27 | 2012-05-16 | Ubiquisys Ltd | Scrambling code selection |
WO2010127494A1 (zh) * | 2009-05-07 | 2010-11-11 | 华为技术有限公司 | 一种指示异系统邻区信息的方法和装置 |
CN106535321B (zh) * | 2015-09-10 | 2019-11-12 | 展讯通信(上海)有限公司 | 移动终端及其定位方法 |
CN106535110B (zh) * | 2015-09-10 | 2019-07-05 | 展讯通信(上海)有限公司 | 移动终端及其定位方法 |
CN109392032B (zh) * | 2017-08-07 | 2021-08-06 | 中国移动通信有限公司研究院 | 频点切换处理方法、网络设备、终端和计算机存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1252206A (zh) * | 1997-02-28 | 2000-05-03 | 诺基亚电信公司 | 移动通信系统中的越区切换和呼叫建立 |
CN1426184A (zh) * | 2001-12-11 | 2003-06-25 | 深圳市中兴通讯股份有限公司上海第二研究所 | 周期上报频间硬切换判决方法 |
CN1434595A (zh) * | 2002-01-24 | 2003-08-06 | 华为技术有限公司 | 一种cdma系统中自动维护邻区列表的方法 |
-
2006
- 2006-10-20 CN CN2006101528180A patent/CN101166361B/zh active Active
-
2007
- 2007-10-17 WO PCT/CN2007/070916 patent/WO2008046356A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1252206A (zh) * | 1997-02-28 | 2000-05-03 | 诺基亚电信公司 | 移动通信系统中的越区切换和呼叫建立 |
CN1426184A (zh) * | 2001-12-11 | 2003-06-25 | 深圳市中兴通讯股份有限公司上海第二研究所 | 周期上报频间硬切换判决方法 |
CN1434595A (zh) * | 2002-01-24 | 2003-08-06 | 华为技术有限公司 | 一种cdma系统中自动维护邻区列表的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101166361B (zh) | 2010-06-09 |
CN101166361A (zh) | 2008-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101536452B (zh) | 用于发送和接收多模式移动终端的控制信息的方法 | |
KR101009776B1 (ko) | 통신 시스템에서 인접 기지국 정보 송수신 시스템 및 방법 | |
EP1622316B1 (en) | Method and apparatus for selecting a frequency layer for connected mode UE in a MBMS mobile communication sytem | |
KR101358469B1 (ko) | 무선 네트워크(network) 안에서 상향(uplink)및 하향(downlink) 대역폭(bandwidth)의선택 및 신호 방법 | |
CN102077648B (zh) | 用于在演进型通用陆地无线电接入网络中执行切换的方法和设备 | |
KR101494406B1 (ko) | 계층적 셀 구조의 무선 통신 시스템에서 시스템 정보 송수신 장치 및 방법 | |
KR101613845B1 (ko) | 무선통신 시스템에서 펨토 기지국이 효율적으로 비코닝 하기 위한 장치 및 방법 | |
CN105165050B (zh) | 用于提供与小小区有关的配置信息的方法及装置 | |
KR101629317B1 (ko) | 광대역 무선 접속 시스템에서의 효율적인 스캐닝 수행 방법 | |
KR20140116601A (ko) | 무선통신시스템에서 셀 내 무선랜 정보를 송수신하기 위한 방법 및 장치 | |
JP2010516163A (ja) | システム情報の送信及び受信方法 | |
US20070105592A1 (en) | Apparatus and method for providing neighbor node information in cellular communication system | |
WO2008046356A1 (fr) | Système de transfert intercellulaire d'un système de communication sans fil, dispositif et procédé associé | |
EP2375821B1 (en) | Method for sending scan response in multi-carrier based system and base station | |
KR101636038B1 (ko) | 다중 반송파 시스템에 기반한 스캔 리포트 송신 방법 및 단말 | |
WO2012176319A1 (ja) | 移動体通信システム、移動局装置、基地局装置及び測定方法 | |
KR102556736B1 (ko) | 무선 통신 시스템에서 ue-대-네트워크 릴레잉을 지원하기 위한 릴레이 ue 사이드링크 rlc 베어러 구성을 위한 방법 및 장치 | |
JP4601677B2 (ja) | ハンドオーバテスト機能を有する携帯インターネット計測器 | |
JP5097819B2 (ja) | 隣接セルのシステム情報の読み出し | |
KR20070109810A (ko) | 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 중간링크 영역 정보 제공 장치 및 방법 | |
CN118338365A (zh) | 通信系统及通信终端装置 | |
WO2018011776A1 (ja) | 通信システム、基地局装置、通信端末装置および通信方法 | |
CN116325919B (zh) | 通信控制方法、基站、用户设备以及处理器 | |
KR100884756B1 (ko) | 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 중간링크 영역 정보 제공 장치 및 방법 | |
CN117981394A (zh) | 通信系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07817107 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07817107 Country of ref document: EP Kind code of ref document: A1 |