WO2008044776A1 - Method for energization heating work, method for producing bonded body, method for producing sintered body, and device for energization heating work - Google Patents

Method for energization heating work, method for producing bonded body, method for producing sintered body, and device for energization heating work Download PDF

Info

Publication number
WO2008044776A1
WO2008044776A1 PCT/JP2007/070012 JP2007070012W WO2008044776A1 WO 2008044776 A1 WO2008044776 A1 WO 2008044776A1 JP 2007070012 W JP2007070012 W JP 2007070012W WO 2008044776 A1 WO2008044776 A1 WO 2008044776A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
side electrode
energization heating
electrodes
workpiece
Prior art date
Application number
PCT/JP2007/070012
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Fujimori
Original Assignee
Mole's Act Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mole's Act Co., Ltd. filed Critical Mole's Act Co., Ltd.
Publication of WO2008044776A1 publication Critical patent/WO2008044776A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating

Definitions

  • the present invention relates to a work current heating method, a joined body manufacturing method, a sintered body manufacturing method, and a ceramic current heating apparatus.
  • FIG. 19 is a view for explaining a conventional method of manufacturing a joined body.
  • the conventional method for manufacturing a joined body includes a plurality of metal members W as a workpiece disposed between a pair of electrodes 910a and 910b electrically connected to a power supply device 930.
  • This is a method for manufacturing a joined body in which a plurality of metal members W are energized and heated by flowing current through the plurality of metal members W to produce a joined body (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-262244
  • the desire to greatly increase the heating efficiency of the workpiece is that the workpiece energization heating in which the workpiece is energized and heated by passing a current through the workpiece with the workpiece placed between a pair of electrodes. It is common to all methods.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a work energization heating method capable of significantly increasing the heating efficiency of a work than before.
  • the present invention provides a method for manufacturing a joined body for producing a joined body using such a work current heating method, and a method for producing a sintered body for producing a sintered body using such a work current heating method. The purpose is to provide.
  • an object of the present invention is to provide a work energization heating apparatus that can significantly increase the heating efficiency of the work compared to the prior art.
  • the inventor of the present invention divides at least one of the pair of electrodes into a work side electrode body and a power supply side electrode body.
  • a conductive felt having a lower resistance than the work-side electrode body, a higher thermal conductivity and a higher electrical resistance than the work-side electrode body, and an electrical resistivity is disposed between the work-side electrode body and the power supply device-side electrode body. That is, at least one of the pair of electrodes has a work-side electrode body and lower than the work-side electrode body! /, Thermal conductivity and higher than the work-side electrode body! /, And electric resistivity. It has been found that by using an electrode having a structure in which a conductive felt and a power supply device side electrode body are laminated in this order, the heating efficiency of the workpiece can be made significantly higher than before. The present invention has been completed.
  • the work energization heating method of the present invention is the work energization heating method in which the work is energized and heated in a state where the work is disposed between a pair of electrodes electrically connected to a power supply device.
  • the workpiece side electrode body and the work side electrode body have lower! /, Thermal conductivity and higher than the workpiece side electrode body, and electrical resistivity.
  • the workpiece is energized and heated using an electrode having a structure in which a conductive felt and a power supply device side electrode body are laminated in this order.
  • the work side electrode body and the power supply device side The presence of a conductive felt having a lower thermal conductivity than the workpiece-side electrode body between the electrode body and the heat generated in the workpiece and the workpiece-side electrode body is prevented from moving to the power supply device-side electrode body. Therefore, the temperature of the workpiece can be significantly increased more easily than before, and the heating efficiency of the workpiece can be significantly increased as compared with the conventional case.
  • the conductive felt having a higher electrical resistivity than the work side electrode body exists between the work side electrode body and the power supply side electrode body. Therefore, since it is possible to generate a large amount of heat in the conductive felt, the temperature of the workpiece is significantly easier to raise than in the past, and the heating efficiency of the workpiece is significantly higher than before. It becomes possible to do.
  • the work can be energized and heated with much less electric power than before, and the temperature raising time of the work is significantly shortened compared to the conventional method.
  • the workpiece even if the workpiece is large in size, it can be heated and heated to a sufficiently high temperature.
  • the work energization heating method of the present invention there is a conductive felt having a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply side electrode body. Since it is possible to suppress the heat generated in the work and the work-side electrode body from moving to the power supply-side electrode body, it is possible to suppress the power supply-side electrode body from reaching a high temperature. It is possible to suppress surrounding parts from being easily deteriorated.
  • Japanese Patent Application Laid-Open No. 2005-230823 describes an electrode having a structure in which a workpiece side electrode body, a carbon chip, and a power supply side electrode body are laminated in this order as electrodes. (See Fig. 4 in Japanese Patent Publication No. 2005-230823).
  • Japanese Patent Application Laid-Open No. 2005-230823 it is only necessary to use the elastic force of the carbon chip, and the conductive felt as in the present invention. It does not make use of low! /, Thermal conductivity and high electrical resistivity.
  • JP 2004-323920 describes the use of carbon felt as a heat insulating material! (Refer to FIG. 1 and paragraph (0011) of JP 2004-323920 A). ).
  • the carbon felt is only used as a heat insulating material wound around the outer peripheral surface of the mold of the electric heating and sintering apparatus, and is used as an electrode material. Not a translation.
  • the invention described in Japanese Patent Application Laid-Open No. 2004-323920 uses only the low and / or thermal conductivity of carbon felt, and the conductive felt as in the present invention. It does not use the high electrical resistivity of
  • the conductive felt in the present invention refers to a felt formed by intertwining conductive fibers (for example, carbon fiber, stainless fiber, etc.).
  • the workpiece side electrode body in the present invention refers to an electrode body disposed on the workpiece side among the electrode bodies constituting the electrode, and the power supply apparatus side electrode body in the present invention constitutes an electrode.
  • the electrode body arranged on the power supply side is! /.
  • the thermal conductivity of the conductive felt is 1/10 or less of the thermal conductivity of the work-side electrode body, and the conductive felt
  • the electrical resistivity is preferably at least 5 times the electrical resistivity of the workpiece side electrode body! /.
  • the thermal conductivity of the conductive felt 1/10 or less of the thermal conductivity of the workpiece side electrode body, the heat generated in the workpiece or the workpiece side electrode body is transferred to the power supply device side electrode body. It is possible to greatly suppress the movement. Further, by setting the electrical resistivity of the conductive felt to 5 times or more of the electrical resistivity of the cake side electrode body, it is possible to generate a large amount of heat in the conductive felt.
  • the conductive felt is preferably made of carbon felt having a force and a density of 0.2 g / cm 3 or less.
  • a carbon felt having a force and density of 0.2 g / cm 3 or less has a sufficiently low thermal conductivity and a sufficiently high electrical resistivity. It is possible to greatly suppress the heat generated in the cake side electrode body from moving to the power source side electrode body. It becomes possible, and it becomes possible to generate a large amount of heat with the conductive felt.
  • the carbon felt in the present invention refers to a carbon fiber intertwined into a felt shape.
  • the conductive felt preferably has a structure in which a plurality of felt pieces are laminated.
  • the thickness of the conductive felt is less than the thickness of the work-side electrode body.
  • the thickness of the conductive felt becomes thicker than the thickness of the workpiece-side electrode body, the electrical resistance in the conductive felt becomes too large, and the amount of heat generated in the conductive felt (in other words, the amount of power consumed). Is too large compared to the amount of heat generated by the workpiece and the workpiece-side electrode body (in other words, power consumption). For this reason, it is difficult to supply the necessary amount of current if power supplies with the same power are used, so the amount of heat generated in the workpiece and workpiece-side electrode body is reduced, resulting in the heating efficiency of the workpiece. It is also a force that will reduce From this viewpoint, it is more preferable that the thickness of the conductive felt is thinner than half the thickness of the workpiece-side electrode body.
  • the work side electrode body and the power supply side electrode body are made of a carbon material! /.
  • the heat resistance of the workpiece-side electrode body can be increased by employing such a method.
  • carbon material used for the workpiece-side electrode body or the power supply apparatus-side electrode body graphite, a single-bon composite material, or the like can be used.
  • a gap between the pair of electrodes and the work is set. It is preferable that the workpiece is heated by energization with the carbon sheets arranged on the plate.
  • the carbon sheet in the present invention refers to a carbon fiber formed into a sheet shape.
  • the power supply device side electrode body preferably has a structure in which a plurality of flat plates are laminated.
  • the presence of the heat insulating housing makes it possible to suppress the heat generated in the cake from being radiated to the surrounding space. Suppressing deterioration of surrounding components (for example, a vacuum chamber described later). Is possible.
  • the heat insulating housing preferably has a carbon felt lining.
  • a slit portion or a window portion is formed in the heat insulating housing!
  • thermocouple wiring can be pulled out of the heat insulating housing through the slit portion or the window portion, and the thermocouple wiring can be removed. It is possible to easily perform the routing.
  • any electrode of the pair of electrodes has a work-side electrode body, a lower thermal conductivity than the work-side electrode body, and the temperature It is preferable that the workpiece is energized and heated using an electrode having a structure in which the conductive felt having a higher electrical resistance than the first electrode body and the electric power device side electrode body and the force S are stacked in this order. .
  • any of the pair of electrodes has a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply apparatus side electrode body.
  • the presence of the conductive felt makes it possible to suppress the heat generated in the workpiece and the workpiece-side electrode body from moving to the power supply device-side electrode body. It is possible to further greatly increase the heating efficiency.
  • a lower thermal conductivity than the work side electrode body is provided between the work side electrode body and the power supply apparatus side electrode body.
  • the presence of the conductive felt can suppress the heat generated in the work and the work-side electrode body from moving to the power supply-side electrode body, so that the power supply-side electrode body becomes hot. It is possible to suppress the deterioration of the components around the electrode.
  • the work is energized and heated in a state where the pair of electrodes are pressed in a direction approaching each other.
  • the work is energized and heated in a state in which a portion of the pair of electrodes on the power supply device side is cooled.
  • the work is energized and heated by passing a pulse current through the work.
  • the heating efficiency of the workpiece can be further greatly increased.
  • the reason why the heating efficiency of the workpiece can be further increased by flowing the noise current is that the induced current is induced in the workpiece by the noise current. This is presumably because the work generates heat to a higher temperature than usual due to the action of the induced current.
  • a method for manufacturing a joined body according to the present invention is a method for manufacturing a joined body using the work energization heating method according to the present invention, wherein a plurality of metal members are prepared as a workpiece.
  • an electric heating step of joining the plurality of metal members by energization heating of the plurality of metal members in this order is a method for manufacturing a joined body using the work energization heating method according to the present invention, wherein a plurality of metal members are prepared as a workpiece.
  • a plurality of metal members can be energized and heated with high heating efficiency. It is possible to join a plurality of metal members with much less power than that, and it is possible to greatly reduce the time required to join a plurality of metal members. Even when the size of the member is large, it becomes possible to bond at a sufficiently high temperature.
  • the arithmetic average roughness Ra of the planned joining surface of each metal member is preferably 0.02 ⁇ 111-0.2 m.
  • the arithmetic average roughness Ra of the planned joining surface of each metal member is set to 0.2 ⁇ m or less when the arithmetic average roughness Ra of the planned joining surface of each metal member exceeds 0.2 m. This is because it is difficult to obtain a sufficiently high joining force because the energization heating process is performed in a state where the distance between the surfaces to be joined in each metal member exceeds 0.4 m on average.
  • the arithmetic average roughness Ra of the surfaces to be bonded in each metal member was set to 0.02 111 or more when the arithmetic average roughness Ra of the surfaces to be bonded in each metal member was less than 0.02 m.
  • the contact resistance at the abutting surface of each metal member (resistance at the joining surface of each metal member in the later stage of the energization heating process) cannot be sufficiently increased, so that sufficient heat generation can be obtained. This is because it becomes difficult. From these viewpoints, it is preferable that the arithmetic average roughness Ra of the surfaces to be joined in each metal member is 0 ⁇ 04 ⁇ 111-0.15111.
  • the plurality of metal members are energized and heated while a predetermined first pressure is applied to the pair of electrodes.
  • a predetermined first pressure is applied to the pair of electrodes.
  • the second pressure for example, IMPa
  • the first pressure for example, 0.3 MPa
  • the pressure may be increased in two stages during the energization heating process, or the pressure may be increased in three or more stages. Further, the pressure may be increased stepwise during the electric heating process, or the pressure may be increased continuously.
  • the plurality of metal members are energized and heated at a predetermined current amount, and are delayed in the later stage of the energization heating step. It is preferable that the plurality of metal members be electrically heated by an amount of current more than the initial stage of the energization heating step.
  • the amount of current may be increased in two stages during the energization heating process, or the amount of current may be increased in three or more stages. Further, the amount of current may be increased stepwise during the current heating process, or the amount of current may be increased continuously.
  • the method for producing a sintered body of the present invention is a method for producing a sintered body by using the work energization heating method of the present invention.
  • the sintered body powder can be conductively heated with high heating efficiency, so that the sintered body powder is sintered at a sufficiently high temperature. As a result, it becomes possible to produce a high-quality sintered body.
  • a sintered body arranging step of arranging the sintered body between the pair of electrodes, and the sintering It is preferable to further include a second energization heating step of energizing and heating the body.
  • the degree of sintering of the sintered body can be further increased, and a high-quality sintered body can be produced.
  • the work energization heating device of the present invention includes a power supply device, a pair of electrodes electrically connected to the power supply device, and a vacuum chamber in which the pair of electrodes are installed.
  • the work energization heating apparatus that energizes and heats the work disposed between the pair of electrodes, at least one of the pair of electrodes is lower than the work side electrode body and the work side electrode body. It is characterized by having a structure in which a conductive felt having a thermal conductivity and higher electrical conductivity than the workpiece side electrode body and a power supply side electrode body are laminated in this order. To do.
  • the work energization heating device of the present invention there is a conductive felt having a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply side electrode body. As a result, it is possible to suppress the heat generated in the workpiece and workpiece side electrode body from moving to the power supply side electrode body. The efficiency can be made significantly higher than before.
  • the conductive felt having a higher electrical resistivity than the work side electrode body exists between the work side electrode body and the power supply side electrode body. It is possible to generate a large amount of heat in the conductive felt Therefore, also from this point, the temperature of the workpiece can be greatly increased more easily than in the past, and the heating efficiency of the workpiece can be significantly increased than before.
  • the workpiece energization heating apparatus of the present invention it is possible to energize and heat the workpiece with much less electric power than before, and the workpiece heating time is significantly shortened compared to the conventional method.
  • the workpiece even if the workpiece is large in size, it can be heated and heated to a sufficiently high temperature.
  • the work energization heating apparatus of the present invention there is a conductive felt having a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply side electrode body. As a result, it is possible to suppress the heat generated in the work and the work-side electrode body from moving to the power supply-side electrode body. It is possible to suppress the deterioration of parts around the electrode.
  • any electrode of the pair of electrodes includes a work side electrode body, a lower thermal conductivity than the work side electrode body, and the work side electrode. It is preferable to have a structure in which a conductive felt having an electrical resistivity higher than that of the body and a power supply device side electrode body are laminated in this order.
  • any of the pair of electrodes has a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply apparatus side electrode body.
  • the presence of the felt makes it possible to suppress the heat generated in the workpiece and the workpiece side electrode body from moving to the power supply side electrode body.
  • the heating efficiency can be further greatly increased.
  • the work energization heating apparatus of the present invention it becomes possible to energize and heat the work with much smaller electric power, and to further greatly shorten the temperature raising time of the work. Furthermore, even if the workpiece size is large, the temperature is sufficiently high. It is possible to heat and heat each time.
  • the thermal conductivity lower than that of the work-side electrode body is between the work-side electrode body and the power supply-side electrode body. Therefore, it is possible to suppress the heat generated in the work and the work-side electrode body from moving to the power supply-side electrode body, so that the power supply-side electrode body is heated to a high temperature. It is possible to suppress the deterioration of the components around the electrode.
  • the work energization heating apparatus of the present invention is preferably a joining apparatus that energizes and heats a plurality of metal members as the work to join the plurality of metal members.
  • the workpiece energization heating apparatus of the present invention is preferably a sintering device that sinters the sintered body powder by energizing and heating the sintered body powder as the workpiece.
  • the preferred feature described in the work electrical heating method of the present invention is the work electrical heating apparatus of the present invention (above (20) to (23)! /, The workpiece energization heating device described in any of the above).
  • FIG. 1 is a diagram showing a workpiece energization heating apparatus 100 used in a method for manufacturing a joined body according to Embodiment 1.
  • FIG. 2 is a flowchart shown for explaining a method for manufacturing a joined body according to Embodiment 1.
  • FIG. 3 is a view for explaining the method for manufacturing the joined body according to the first embodiment.
  • FIG. 4 is a diagram showing a workpiece energization heating apparatus 200 used in the method for manufacturing a joined body according to Embodiment 2.
  • FIG. 5 is a diagram showing a workpiece energization heating apparatus 300 used in the method for manufacturing a joined body according to Embodiment 3.
  • FIG. 6 is a diagram showing a workpiece energization heating apparatus 400 used in the method for manufacturing a joined body according to Embodiment 4.
  • FIG. 7 is a view for explaining a heat insulating housing 470.
  • FIG. 8 is a diagram showing a workpiece energization heating apparatus 500 used in the method for manufacturing a joined body according to Embodiment 5.
  • FIG. 9 is a flowchart for explaining a method for manufacturing a sintered body according to Embodiment 6.
  • FIG. 10 is a view for explaining the method for manufacturing the sintered body according to the sixth embodiment.
  • FIG. 11 is a flow chart for explaining a method for manufacturing a sintered body according to Embodiment 7.
  • FIG. 12 is a view shown for explaining a method for manufacturing a sintered body according to Embodiment 7.
  • FIG. 13 is a diagram for explaining a work energization heating method in Test Example 1.
  • FIG. 14 is a graph showing test results in Test Example 1.
  • FIG. 15 is a drawing-substituting photograph showing the electrically heated state of metal members Wa and Wb and electrodes 10a to 10f in Test Example 1.
  • FIG. 16 is a graph showing test results in Test Example 2.
  • FIG. 17 is a graph showing test results in Test Example 3.
  • FIG. 18 is a graph showing test results in Test Example 4.
  • FIG. 19 is a view for explaining a conventional method of manufacturing a joined body.
  • Embodiment 1 describes a case in which the work energization heating method of the present invention is applied to a joined body manufacturing method (joint body manufacturing method according to Embodiment 1) in which a plurality of metal members are joined to produce a joined body. It is embodiment to do.
  • FIG. 1 is a view showing a work energization heating apparatus 100 used in the method for manufacturing a joined body according to the first embodiment.
  • the upper side of the drawing sheet is the upper side of the workpiece energization heating apparatus 100
  • the lower side of the drawing plane is the lower side of the workpiece conduction heating apparatus 100.
  • FIG. 2 is a flowchart for explaining the method for manufacturing the joined body according to the first embodiment.
  • FIG. 3 is a view for explaining the method for manufacturing the joined body according to the first embodiment.
  • FIG. 3 (d) is a view showing a joined body manufactured by the method for manufacturing a joined body according to the first embodiment. 3 (b) and 3 (c), only the pair of electrodes 10a and 10b, the power supply device 30, the wiring 32, and the two metal members Wa and Wb are shown in order to simplify the drawing.
  • the method of manufacturing the joined body according to Embodiment 1 is electrically connected to the power supply device 30 using the workpiece energization heating apparatus 100 (work energization heating apparatus 100 according to Embodiment 1) shown in FIG.
  • the metal members Wa and Wb are energized and heated by flowing current through the metal members Wa and Wb to join them.
  • This is a method for manufacturing a joined body for manufacturing a body (see FIG. 3 (d)).
  • the work energization heating apparatus 100 includes a power supply device 30, a pair of electrodes 10a, 10b electrically connected to the power supply device 30, and a pair of electrodes 10a, A vacuum chamber 40 in which 10b is installed; a pair of cooling bodies 20a, 20b that cool the pair of electrodes 10a, 10b; and a pressing device 50 that presses the pair of electrodes 10a, 10b toward each other.
  • the joining device joins the metal members Wa and Wb by energizing and heating the metal members Wa and Wb disposed between the pair of electrodes 10a and 10b.
  • the power supply device 30 has a function of causing a pulse current to flow through the metal members Wa and Wb, and a pair of wires 32, the cooling bodies 20a and 20b, and the cooling body protection plates 24a and 24b (described later).
  • the electrodes 10a and 10b are electrically connected.
  • the metal members Wa and Wb are energized and heated, the metal members Wa and Wb are energized and heated by applying a pulse current to the metal members Wa and Wb. .
  • the pair of electrodes 10a and 10b includes a work-side electrode body 12a and 12b, and a conductor having lower thermal conductivity than the work-side electrode bodies 12a and 12b and higher electrical resistivity than the work-side electrode bodies 12a and 12b.
  • the electric felts 14a and 14b and the power supply device side electrode bodies 16a and 16b are stacked in this order.
  • the workpiece-side electrode bodies 12a and 12b are electrode bodies arranged on the metal members Wa and Wb side among the electrode bodies constituting the electrodes 10a and 10b.
  • As the work-side electrode bodies 12a and 12b disk-shaped flat plates made of a carbon material (for example, ISEM-3 manufactured by Toyo Tanso Co., Ltd.) are used.
  • the thermal conductivity of the workpiece side electrode bodies 12a, 12b is, for example, 128 W / (m′K).
  • the electrical resistivity of the negative electrode bodies 12a, 12b is, for example, 10. ⁇ ′m.
  • the size of the workpiece side electrode bodies 12a and 12b is, for example, 100 mm (diameter) ⁇ 20 mm (thickness).
  • the conductive felts 14a and 14b are members disposed between the work-side electrode bodies 12a and 12b and the power supply-side electrode bodies 16a and 16b among the members constituting the electrodes 10a and 10b.
  • the conductive felts 14a and 14b disc-shaped carbon felt (for example, a product manufactured by Across Co., Ltd., fired at 2000 ° C.) is used.
  • the thermal conductivity of the conductive felts 14a and 14b is, for example, 0.6 W / (mK).
  • the electrical resistivity of the conductive felts 14a and 14b is, for example, 1000 ⁇ ′m.
  • the force and density of the conductive felts 14a and 14b are, for example, 0. lg / cm 3 .
  • the size of the workpiece conductive felts 14a and 14b is, for example, 100 mm (diameter) X about 4 mm (thickness) in a natural state where no load is applied.
  • the thickness of the conductive felts 14a, 14b is, for example: It becomes about 2mm.
  • the thermal conductivities (0.6 W / (m.K)) of the conductive felts 14a, 14b are about 1/200 of the thermal conductivities (128 W / (m-K)) of the workpiece side electrode bodies 12a, 12b.
  • the electrical resistivity (1000 ⁇ .m) of the conductive felts 14a, 14b is about 100 times the electrical resistivity (10 ⁇ ⁇ . ⁇ ) of the workpiece side electrode bodies 12a, l 2 b.
  • the thickness (4mm) of the conductive phenols 14a, 14b is the same as the thickness of the workpiece side electrode bodies 12a, 12b (20m thinner than m).
  • the power supply device side electrode bodies 16a and 16b are electrode bodies arranged on the power supply device 30 side among the electrode bodies constituting the electrodes 10a and 10b.
  • the upper power supply device side electrode body 16a has a structure in which three flat plates 18a to 18a are laminated.
  • the lower power supply side electrode body 16b has three flat
  • Plates 18b to 18 have a structure in which 18b is laminated.
  • a flat plate (for example, ISEM-3, manufactured by Toyo Tanso Co., Ltd.) is used.
  • the size of 18b is, for example, 100mm (diameter) x 20mm (thickness), flat plate 18a, 18b
  • the size of 2 3 is, for example, 150 mm (diameter) X 20 mm (thickness).
  • the flat size of the flat plate 18a is the same as that of the upper cooling body protection plate 24a.
  • the plane size of the flat plate 18b is the lower cooling body protection plate 24b
  • the number of flat plates 18a to 18a, 18b to 18b is increased or decreased depending on the size (thickness) of the metal members Wa and Wb. Can do.
  • the vacuum chamber 40 includes a pair of electrodes 10a and 10b, metal members Wa and Wb, and a pair of cooling bodies.
  • a vacuum pump 60 for discharging the gas inside the vacuum chamber 40 to the outside is attached to the vacuum chamber 40.
  • the cooling bodies 20a and 20b are each made of stainless steel. Cooling medium flow paths 22a and 22b for flowing the cooling medium are formed in the cooling bodies 20a and 20b, respectively.
  • a cooling body protection plate 24a made of stainless steel for protecting the cooling body 20a from heat generated in the electrode 10a is disposed between the cooling body 20a and the electrode 10a.
  • a cooling body protection plate 24b made of stainless steel is provided between the cooling body 20b and the electrode 10b to protect the cooling body 20b from heat generated in the electrode 10b.
  • the cooling medium (cooling water) is added to the cooling medium passages 22a and 22b of the cooling bodies 20a and 20b.
  • the metal members Wa and Wb are energized and heated in a state where the portions on the power supply device 30 side of the pair of electrodes 10a and 10b are cooled.
  • the pressing device 50 has a hydraulic cylinder 52 that can move up and down, and is attached below the cooling body 20b. When the hydraulic cylinder 52 moves upward, the electrode 10b is pushed upward together with the cooling body 20b, and as a result, the pair of electrodes 10a and 10b are pressed toward each other.
  • the method of manufacturing the joined body according to Embodiment 1 includes a metal member preparation step S110, a metal member arrangement step S120, and an electric heating step S130 in this order. Including Hereinafter, these steps will be described in order.
  • the metal members Wa and Wb are arranged between the pair of electrodes 10a and 10b with the surfaces to be joined Sa and Sb (see FIG. 3 (a)) butted (see FIG. 3 (b)). .)
  • the metal members Wa and Wb are energized and heated to join the metal members Wa and Wb (see FIG. 3C).
  • the joined body Pj can be manufactured (see FIG. 3 (d)).
  • the gap between the workpiece side electrode bodies 12a, 12b and the power supply side electrode bodies 16a, 16b is lower than that of the workpiece side electrode bodies 12a, 12b.
  • the presence of the conductive felts 14a and 14b having thermal conductivity suppresses the heat generated in the metal members Wa and Wb and the workpiece side electrode bodies 12a and 12b from moving to the power supply side electrode bodies 16a and 16b. Therefore, the temperature of the metal members Wa and Wb can be greatly increased than before, and the heating efficiency of the metal members Wa and Wb can be significantly increased as compared with the prior art.
  • the electric power higher than that of the work side electrode bodies 12a and 12b is provided between the work side electrode bodies 12a and 12b and the power supply apparatus side electrode bodies 16a and 16b.
  • the method for manufacturing the joined body according to Embodiment 1 it is possible to heat and heat the metal members Wa and Wb with much less electric power than before, and the metal members Wa and Wb can be heated. It is possible to significantly shorten the temperature rise time than before, and furthermore, even if the metal members Wa and Wb are large in size, they can be heated to a sufficiently high temperature.
  • a lower heat than the work side electrode bodies 12a, 12b is provided between the work side electrode bodies 12a, 12b and the power supply device side electrode bodies 16a, 16b.
  • the presence of the conductive felts 14a and 14b having conductivity suppresses the heat generated in the metal members Wa and Wb and the workpiece side electrode bodies 12a and 12b from moving to the power supply side electrode bodies 16a and 16b. Therefore, it is possible to suppress the power supply device side electrode bodies 16a and 16b from becoming high temperature, and it is possible to suppress the components around the electrodes 10a and 10b from being easily deteriorated. .
  • the thermal conductivity of the conductive felts 14a and 14b is set to 1/10 or less of the thermal conductivity of the workpiece-side electrode bodies 12a and 12b.
  • the heat generated in the metal members Wa and Wb and the work-side electrode bodies 12a and 12b can be greatly suppressed from moving to the power supply apparatus-side electrode bodies 16a and 16b.
  • the electrical resistivity of the conductive felts 14a and 14b more than five times the electrical resistivity of the workpiece side electrode bodies 12a and 12b, a large amount of heat can be generated in the conductive felts 14a and 14b. Made possible
  • the conductive felts 14a and 14b are made of carbon felt having a force and a density of 0.2 g / cm 3 or less. , Wb and the heat generated by the workpiece side electrode bodies 12a, 12b can be greatly suppressed from transferring to the power supply side electrode bodies 16a, 16b, and a large amount of heat can be generated by the conductive felts 14a, 14b. Can be generated. [0129] Further, according to the method for manufacturing the joined body according to the first embodiment, since the workpiece side electrode bodies 12a and 12b are made of a carbon material, the heat resistance of the workpiece side electrode bodies 12a and 12b can be increased. It becomes.
  • the power supply device side electrode bodies 16a and 16b are made of a carbon material, so that the heat resistance of the power supply device side electrode bodies 16a and 16b is increased. Is possible.
  • the thickness of the conductive felts 14a and 14b is smaller than the thickness of the workpiece-side electrode bodies 12a and 12b. As a result, the heat resistance of the metal members Wa and Wb is not reduced due to the increase in electrical resistance.
  • the power device side electrode body 16a has a structure in which the flat plates 18a to 18a are stacked, and the power device side electrode body 16b is a flat plate. 18b ⁇
  • 18b Since 18b has a laminated structure, the number of flat plates 18a ⁇ ; 18a, 18b ⁇ ;
  • the metal members Wa and Wb are energized and heated in a state where the pair of electrodes 10a and 10b are pressed so as to approach each other. , 10b and the metal members Wa, Wb become close, and the contact resistance between the electrodes 10a, 10b and the metal members Wa, Wb hardly fluctuates, so that stable energization heating can be performed.
  • the metal members Wa and Wb are energized and heated while the power supply device 30 side of the pair of electrodes 10a and 10b is cooled. It is possible to suppress the temperature of the part on the power supply device 30 side in a and 10b from rising to an unfavorable temperature, and to further suppress deterioration of components around the electrodes 10a and 10b. It becomes a storehouse.
  • the metal members Wa and Wb are energized and heated by flowing a Nors current through the metal members Wa and Wb. The efficiency can be further greatly increased.
  • the metal member preparation step, the metal member arrangement step, and the energization heating step are included in this order.
  • the metal members Wa and Wb can be energized and heated with high heating efficiency, so that it is possible to join the metal members Wa and Wb with much less power than before, and the metal members
  • the time required to join W a and Wb can be greatly shortened, and the size of the metal members Wa and Wb is large! It becomes possible to do.
  • the metal members Wa and Wb can be energized and heated with high! / And heating efficiency, so that the joined body can be manufactured at low manufacturing cost.
  • the ability to produce Pj becomes S Kurakura.
  • Embodiment 2 describes a case where the workpiece energization heating method of the present invention is applied to a joined body manufacturing method (joint body manufacturing method according to Embodiment 2) in which a plurality of metal members are joined to manufacture a joined body. It is embodiment to do.
  • FIG. 4 is a diagram showing a workpiece energization heating apparatus 200 used in the method for manufacturing a joined body according to the second embodiment.
  • the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the method for manufacturing a joined body according to the second embodiment is basically a method for manufacturing a joined body including an electric heating process similar to the method for manufacturing the joined body according to the first embodiment. This configuration is different from that in the case of the joined body manufacturing method according to the first embodiment. That is, in the method for manufacturing a joined body according to the second embodiment, as shown in FIG. 4, even if the pair of electrodes 210a and 210b is misaligned, the three phenolic pieces 215a to 215a and 215b to 215b Laminated
  • the conductive felts 214a and 214b having the above structure are used.
  • the method for manufacturing the joined body according to Embodiment 2 differs from the method for producing the joined body according to Embodiment 1 in the configuration of the conductive felt, but the structure of the joined body according to Embodiment 1 is different.
  • the thermal conductivity lower than that of the workpiece side electrode bodies 12a and 12b and the side of the workpiece are set between the workpiece side electrode bodies 12a and 12b and the power supply side electrode bodies 16a and 16b as a pair of electrodes.
  • Conductive felt 214a, 214b force S with higher electrical resistivity than the electrode bodies 12a, 12b S Because the arranged electrodes 210a, 210b are used, the heat generated in the metal members Wa, Wb and the workpiece side electrode bodies 12a, 12b Can be suppressed from moving to the power supply device side electrode bodies 16a and 16b, and a large amount of heat can be generated in the conductive felts 214a and 214b. As a result, the temperature of the metal members Wa and Wb can be easily increased as compared with the conventional case, and the heating efficiency of the metal members Wa and Wb can be significantly increased as compared with the conventional case.
  • the conductive felts 214a and 214b have a structure in which three pieces of phenolate 215a to 215a and 215b to 215b are stacked.
  • the heat generated in the metal members Wa and Wb and the work-side electrode bodies 12a and 12b can be further greatly suppressed from moving to the power supply apparatus-side electrode bodies 16a and 16b.
  • the method for manufacturing a joined body according to the second embodiment is the same as the method for producing a joined body according to the first embodiment except for the configuration of the conductive felt. Has the corresponding effect as it is among the effects of the method for manufacturing the joined body according to aspect 1
  • Embodiment 3 describes a case where the work energization heating method of the present invention is applied to a method for manufacturing a joined body in which a plurality of metal members are joined to produce a joined body (a joined body manufacturing method according to Embodiment 3). It is embodiment to do.
  • FIG. 5 is a view showing a work energization heating apparatus 300 used in the method for manufacturing a joined body according to the third embodiment.
  • the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the method for manufacturing a joined body according to the third embodiment is basically a method for manufacturing a joined body including an energization heating process similar to the method for producing the joined body according to the first embodiment.
  • the configuration of the electrode body is different from that in the method for manufacturing the joined body according to the first embodiment. That is, in the method of manufacturing the joined body according to the third embodiment, as shown in FIG. 5, even if the pair of power supply side electrode bodies 316a and 316b is displaced, the three flat plates 318a to 318a, 318b—31 The plane size of 8b gradually increases toward the workpiece side electrode body 312a, 312b.
  • the plane sizes of the work side electrode bodies 312a and 312b and the conductive phenols 314a and 314b are the same as the plane sizes of the flat plates 318a and 318b.
  • the method for manufacturing a joined body according to the third embodiment differs from the method for producing a joined body according to the first embodiment in the configuration of the power supply side electrode body, but the joined body according to the first embodiment.
  • the thermal conductivity lower than that of the workpiece side electrode bodies 12a, 12b and the workpiece.
  • the electrodes 310a and 310b in which the conductive felts 314a and 314b having higher electrical resistivity than the side electrode bodies 12a and 12b are used are used, the heat generated by the metal members Wa and Wb and the workpiece side electrode bodies 312a and 312b Can be prevented from moving to the power supply device side electrode bodies 316a and 316b, and a large amount of heat can be generated in the conductive felts 314a and 314b.
  • the temperature of the metal members Wa and Wb can be significantly increased than before, and the heating efficiency of the metal members Wa and Wb can be significantly increased as compared with the conventional case.
  • planar size of the workpiece side electrode bodies 312a and 312b can be increased, and the metal members Wa and Wb having a large horizontal plane size can be energized and heated.
  • the manufacturing method of the joined body according to the third embodiment is the same as the manufacturing method of the joined body according to the first embodiment except for the configuration of the power device side electrode body.
  • Embodiment 4 describes the case where the work energization heating method of the present invention is applied to a method for manufacturing a joined body in which a plurality of metal members are joined to produce a joined body (a joined body manufacturing method according to Embodiment 4). It is embodiment to do.
  • FIG. 6 is a view for explaining the workpiece energization heating apparatus 400 used in the joined body manufacturing method according to the fourth embodiment.
  • FIG. 7 is a view for explaining the heat insulating housing 470.
  • the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the method for manufacturing a joined body according to the fourth embodiment is basically a method for manufacturing a joined body including an energization heating process similar to the method for manufacturing the joined body according to the first embodiment. , Different from the method for manufacturing the joined body according to Embodiment 1 in that a heat insulating housing is arranged around W b. That is, in the method of manufacturing the joined body according to the fourth embodiment, as shown in FIG. 6, the metal members Wa and Wb are energized and heated with the heat insulating housing 470 disposed around the metal members Wa and Wb. It is said.
  • the heat insulating housing 470 is made of a substantially cylindrical thin stainless steel plate, and has a slit 474 formed therein.
  • the heat insulating housing 470 has a carbon felt lining 472.
  • the method for manufacturing a joined body according to Embodiment 4 differs from the method for producing a joined body according to Embodiment 1 in that a heat insulating housing is disposed around the metal members Wa and Wb.
  • a heat insulating housing is disposed around the metal members Wa and Wb.
  • conductive felts 14a and 14b are provided between the workpiece side electrode bodies 12a and 12b and the power supply side electrode bodies 16a and 16b as a pair of electrodes. Since the arranged electrodes 10a and 10b are used, it is possible to suppress the heat generated in the metal members Wa and Wb and the workpiece side electrode bodies 12a and 12b from moving to the power supply side electrode bodies 16a and 16b.
  • the temperature of the metal members Wa and Wb can be easily increased significantly compared to the conventional case, and the heating efficiency of the metal members Wa and Wb can be significantly increased as compared with the conventional case.
  • the heat insulating housing 470 having the carbon felt lining 472 exists, the heat generated in the metal members Wa and Wb is surrounded by the surroundings. Since it is possible to suppress the radiation to the space, the metal members Wa and Wb can be more easily heated than before, and the heating efficiency of the metal members Wa and Wb can be further greatly increased. It becomes possible.
  • the carbon felt lining 47 The heat insulating housing 470 having 2 can suppress the heat generated in the metal members Wa and Wb from being radiated to the surrounding space. (For example, the vacuum chamber 40) can be prevented from being easily deteriorated.
  • the metal members Wa and Wb are covered with the heat insulating housing 470. However, the state of the metal members Wa and Wb can be observed through the slit portion 474.
  • thermocouple wiring can be drawn out of the heat insulating housing 470 through the slit portion 474, and the thermocouple wiring can be easily routed.
  • the manufacturing method of the joined body according to the fourth embodiment is the same as the manufacturing method of the joined body according to the first embodiment, except that a heat insulating housing is disposed around the metal members Wa and Wb. Since it is a manufacturing method of a joined body, it has the corresponding effect as it is among the effects of the manufacturing method of the joined body according to Embodiment 1.
  • Embodiment 5 describes the case where the work energization heating method of the present invention is applied to a method for manufacturing a joined body in which a plurality of metal members are joined to produce a joined body (a joined body manufacturing method according to Embodiment 5). It is embodiment to do.
  • FIG. 8 is a view showing a work energization heating apparatus 500 used in the method for manufacturing a joined body according to the fifth embodiment.
  • the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the method for manufacturing a joined body according to Embodiment 5 is basically a method for producing a joined body including an energization heating step similar to the method for producing a joined body according to Embodiment 1, but includes a pair of electrodes. This is different from the case of the joined body manufacturing method according to Embodiment 1 in that a carbon sheet is disposed between 10a, 10b and the metal members Wa, Wb. That is, the method of manufacturing the joined body according to Embodiment 5 In the method, as shown in FIG. 8, the metal members Wa and Wb are energized and calo-heated with the carbon sheets 582a and 582b disposed between the pair of electrodes 10a and 10b and the metal members Wa and Wb, respectively. Yes. A carbon sheet (thickness: about 0.2 mm) manufactured by Toyo Tanso Co., Ltd. was used as the carbon sheet.
  • the method for producing the joined body according to Embodiment 1 is different from that in the carbon sheet between the pair of electrodes 10a and 10b and the metal members Wa and Wb.
  • the pair of electrodes is disposed between the workpiece side electrode bodies 12a and 12b and the power supply side electrode bodies 16a and 16b.
  • electrodes 10a and 10b with conductive felts 14a and 14b placed on them prevents the heat generated by metal members Wa and Wb and workpiece side electrode bodies 12a and 12b from moving to power supply side electrode bodies 16a and 16b It is also possible to generate a large amount of heat in the conductive felts 14a and 14b. As a result, the temperature of the metal members Wa and Wb is much easier to raise than before, and the heating efficiency of the metal members Wa and Wb can be made much higher than before.
  • the carbon sheets 582a and 582b having high lubricity are disposed between the pair of electrodes 10a and 10b and the metal members Wa and Wb, respectively.
  • the metal members Wa and Wb are electrically heated, it is possible to suppress the electrodes 10a and 10b and the metal members Wa and Wb from being seized.
  • the method of manufacturing the joined body according to the fifth embodiment is the same as that of the first embodiment except that the carbon sheets 582a and 582b are disposed between the pair of electrodes 10a and 10b and the metal members Wa and Wb. Since the workpiece energization heating method is the same as in the case of the method for manufacturing a body, the corresponding effect among the effects of the method for manufacturing a bonded body according to Embodiment 1 remains as it is.
  • Embodiment 6 is a method for producing a sintered body (a method for producing a sintered body according to Embodiment 6) in which a sintered body is produced by energizing and heating a powder for a sintered body. This is an embodiment for explaining the case of application.
  • FIG. 9 is a flowchart for explaining a method for manufacturing a sintered body according to the sixth embodiment.
  • FIG. 10 is a view for explaining the method of manufacturing the sintered body according to the sixth embodiment.
  • the Fig. 10 (a) is a diagram showing a powder preparation step S610 for a sintered body
  • Fig. 10 (b) is a diagram showing a powder arrangement step S620 for a sintered body
  • Fig. 10 (c) is an electric heating step S630.
  • FIG. 10 (d) is a diagram showing a sintered body Ps manufactured by the method for manufacturing a sintered body according to Embodiment 6.
  • FIGS. 10 (b) and 10 (c) in order to simplify the drawings, a pair of electrodes 10a, 10b, a power supply device 30, wiring 32, a sintered body forming jig (cylindrical shape) Only the upper punch Ta, the cylindrical lower punch Tb, the cylindrical sintering mold Tc), and the sintered powder Ws are shown.
  • a method for manufacturing a sintered body according to Embodiment 6 uses a workpiece energization heating apparatus 600 (work energization heating apparatus 600 according to Embodiment 6) shown in FIGS. 10 (b) and 10 (c).
  • a workpiece energization heating apparatus 600 shown in FIGS. 10 (b) and 10 (c).
  • For the sintered body by passing a current through the powder Ws for the sintered body with the powder Ws for the sintered body as a work placed between the pair of electrodes 10a, 10b electrically connected to the power supply device 30
  • This is a method for manufacturing a sintered body, in which the powder Ws is energized and heated to manufacture a sintered body Ps (see FIG. 10 (d)).
  • the work energization heating device 600 includes the power supply device 30, the pair of electrodes 10a and 10b electrically connected to the power supply device 30, and the pair of electrodes 10a and 10b.
  • the method for manufacturing a sintered body according to Embodiment 6 includes a sintered body powder preparation step S610, a sintered body powder arrangement step S620, and an electric heating step S630. Include in this order. Hereinafter, these steps will be described in order.
  • a powder Ws for sintered bodies is prepared as a workpiece (see Fig. 10 (a)).
  • Fig. 10 (a) shows a state in which the weighed powder Ws for sintered body is put in a container.
  • the sintered body powder Ws is energized and heated to sinter the sintered body powder Ws (see FIG. 10 (c)).
  • the sintered body Ps can be manufactured (see FIG. 10 (d)).
  • the method for manufacturing a sintered body according to Embodiment 6 described above includes the powder preparation step S610 for the sintered body, the powder placement step S620 for the sintered body, and the electric heating step S630. Include in this order.
  • the powder preparation step S610 for the sintered body includes the powder preparation step S610 for the sintered body, the powder placement step S620 for the sintered body, and the electric heating step S630. Include in this order.
  • even when producing a large size sintered body Ps it is sintered at a sufficiently high temperature. It becomes possible.
  • Embodiment 7 is a sintered body having a high degree of sintering, in which the sintered body is manufactured by energizing and heating the powder for a sintered body, and then heating the sintered body again by energizing and heating the sintered body.
  • 5 is an embodiment for explaining a case where the present invention is applied to a method for manufacturing a sintered body (a method for manufacturing a sintered body according to Embodiment 7).
  • FIG. 11 is a flowchart for explaining the method for manufacturing a sintered body according to the seventh embodiment.
  • FIG. 12 is a view for explaining the method of manufacturing the sintered body according to the seventh embodiment.
  • Fig. 12 (a) is a diagram showing a sintered body Ps obtained by carrying out the electric heating step S730.
  • FIG. 12 (b) is a diagram showing the sintered body arranging step S740
  • FIG.12 (c) is a diagram showing the second energization heating step S750
  • FIG.12 (d) is a diagram showing the sintering according to the seventh embodiment.
  • FIG. 3 is a view showing a sintered body Ps ′ manufactured by a method for manufacturing a bonded body.
  • FIG. 12 (c) the same members as those described in the first and sixth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted. Further, in FIG. 12 (b) and FIG. 12 (c), only the pair of electrodes 10a and 10b, the power supply device 30, the wiring 32, and the sintered body Ps are shown in order to simplify the drawing.
  • a method for manufacturing a sintered body according to Embodiment 7 uses a workpiece energization heating device 600 described in Embodiment 6 to connect a pair of electrodes 10a, 10b electrically connected to power supply device 30.
  • the sintered body powder Ws is energized and heated by passing an electric current through the sintered body powder Ws in a state where the sintered body powder Ws is disposed as a workpiece, and the sintered body Ps (FIG. 12 (a)).
  • the sintered body Ps is energized and heated by passing a current through the sintered body Ps with the sintered body Ps placed between the pair of electrodes 10a and 10b.
  • This is a method of manufacturing a joined body for manufacturing a sintered body Ps ′ having a high thickness (see FIG. 12 (d)).
  • the method for manufacturing a sintered body according to Embodiment 7 includes, as shown in FIG. 11, a powder preparation process S710 for a sintered body, a powder placement step S720 for the sintered body, an electric heating step S730, The sintered body arranging step S740 and the second electric heating step S750 are included in this order.
  • Sintered powder preparation step S710 to energization heating step S730 is similar to the sintered body powder preparation step S610 to energization heating step S630 described in the sixth embodiment, and detailed description thereof will be omitted.
  • the “sintered body arranging step S740” and the “second electric heating step S750” will be described.
  • the sintered body Ps is disposed between the pair of electrodes 10a and 10b (see FIG. 12 (b)).
  • the sintered body Ps By passing an electric current through the sintered body Ps, the sintered body Ps is heated by energization (see Fig. 12 (c)).
  • the degree of sintering of the sintered body Ps can be further increased, and a high-quality sintered body Ps' is manufactured. Became possible [0187] In order to confirm the effect of the work energization heating method of the present invention, the following tests were conducted.
  • Test Example 1 the metal members Wa and Wb as works were energized and heated using the work energization heating method according to Example 1, Comparative Example 1 and Comparative Example 2 (details will be described later), and the predetermined time was exceeded. The temperature and power consumption of the metal members Wa and Wb at the time were compared.
  • FIG. 13 is a diagram for explaining the work energization heating method in Test Example 1.
  • FIG. 13 is a diagram for explaining the work energization heating method in Test Example 1.
  • FIG. 13 (a) is a view for explaining the work energization heating method according to Example 1
  • FIG. 13 (b) is a view for explaining the work energization heating method according to Comparative Example 1.
  • FIG. 13 (c) is a diagram for explaining the work energization heating method according to Comparative Example 2.
  • 13 (a) to 13 (c) the same members as those in FIG. 1 are denoted by the same reference numerals and detailed description thereof is omitted.
  • 13A to 13C only the pair of electrodes 10a to 10f, the power supply device 30, the wiring 32, and the metal members Wa and Wb are shown in order to simplify the drawing.
  • the work energization heating method according to Example 1 was performed using the work energization heating apparatus 102 having the same configuration as the work energization heating apparatus 100 according to Embodiment 1 described above.
  • the electric current heating method according to Comparative Example 1 was performed using the workpiece electric current heating device 104, and the electric current heating method according to Comparative Example 2 was performed using the workpiece electric current heating device 106.
  • the work energization heating devices 104 and 106 are basically different in the configuration of a force pair electrode having substantially the same configuration as the work energization heating device 102.
  • the configuration of the pair of electrodes in Example 1, Comparative Example 1 and Comparative Example 2 is as follows.
  • the pair of electrodes 10a and 10b in the first embodiment includes the workpiece side electrode bodies 12a and 12b, the conductive felts 14a and 14b, and the power supply side electrode bodies 16a and 16b in this order. It has a laminated structure. Carbon felt is used as the conductive felts 14a and 14b.
  • the pair of electrodes 10c and 10d in Comparative Example 1 has a structure in which workpiece side electrode bodies 12a and 12b and power supply side electrode bodies 16a and 16b are stacked in this order.
  • You The The pair of electrodes 10c, 10d in Comparative Example 1 has the same configuration as the electrode in the conventional work energization heating method described in Patent Document 1 (see FIG. 4 of Patent Document 1).
  • the pair of electrodes 10e, 10f in Comparative Example 2 is composed of the workpiece side electrode bodies 12a, 12b, the carbon tip layers 14e, 14f, and the power supply side electrode bodies 16a, 16b in this order. It has a laminated structure.
  • the pair of electrodes 10e and 10f in Comparative Example 2 is the same as the electrode in the conventional work energization heating method described in the above-mentioned JP-A-2005-230823 (see FIG. 1 of JP-A-2005-230823). However, the thickness of the carbon tip layer is thinner than that of the conventional work energization heating method).
  • the carbon chip layers 14e and 14f carbon sheets manufactured by Toyo Tanso Co., Ltd. were cut and chipped and laminated.
  • test conditions were as follows:
  • the current (working current) flowing through the metal members Wa and Wb is a constant current of 1500A, and the voltage (measurement voltage) between the pair of electrodes at this time is measured.
  • the heating time (work heating time) of the metal members Wa and Wb is 40 minutes, and the temperature of the metal members Wa and Wb (work temperature) is measured every 10 minutes.
  • Table 1 is a table showing test results in Example 1, Comparative Example 1, and Comparative Example 2.
  • the power consumption (kWh) is
  • Example 1 The average measured voltage in Example 1 was 3.3 V, the average measured voltage in Comparative Example 1 was 2.0 V, and the average measured voltage in Comparative Example 2 was 2.2 V.
  • FIG. 14 is a graph showing the test results in Test Example 1.
  • Fig. 14 (a) is a graph showing the relationship between the workpiece heating time and the workpiece temperature in Test Example 1
  • Fig. 14 (b) is a graph showing the relationship between the power consumption and the workpiece temperature in Test Example 1. is there.
  • the workpiece temperature of Comparative Example 1 was 420 ° C, and the workpiece temperature of Comparative Example 2 was about 510 ° C. In contrast, the workpiece temperature of Example 1 was about 730 ° C. From this, it can be seen that the heating efficiency of the metal members Wa and Wb of Example 1 is significantly higher than the heating efficiency of the metal members Wa and Wb of Comparative Example 1 and Comparative Example 2.
  • FIG. 15 is a drawing-substituting photograph showing the electrically heated state of the metal members Wa and Wb and the electrodes 10a to 10f in Test Example 1.
  • FIG. 15 (a) shows the current heating state of the metal members Wa and Wb and the electrodes 10a and 10b when the current heating is performed for 40 minutes in Example 1 (working temperature is 763 ° C.). This is a drawing substitute photo.
  • FIG. 15 (b) shows the current heating state of the metal members Wa, Wb and the electrodes 10c, 10d when the current heating is performed for 40 minutes in Comparative Example 1 (working temperature is 420 ° C.). Drawing substitute copy Is true.
  • FIG. 15 (c) shows 40 minutes of energization heating in Comparative Example 1, followed by 50 minutes of energization heating while gradually increasing the work current to 280 OA (90 minutes total energization heating)
  • FIG. 6 is a drawing-substituting photograph showing the current heating state (working temperature is 648 ° C.) of the metal members Wa and Wb and the electrodes 10c and 10d when the above is performed.
  • the member visible above the electrode 10c and below the electrode 10d is a cooling body protection plate (see reference numerals 24a and 24b in FIG. 1).
  • FIG. 15 (d) shows the current heating state (workpiece temperature is 516 ° C.) of the metal members Wa and Wb and the electrodes 10e and 10f when the current sample is heated for 40 minutes in Comparative Example 2. This is a drawing substitute photo.
  • FIG. 15 (e) shows a case of conducting heating for 40 minutes in Comparative Example 2, followed by further heating for 30 minutes while gradually increasing the workpiece current to 2800 A (heating for 70 minutes in total).
  • FIG. 6 is a drawing-substituting photograph showing the current heating state (working temperature is 724 ° C.) of the metal members Wa and Wb and the electrodes 10e and 10f when the above is performed.
  • the member visible above the electrode 10e and below the electrode 10f is a cooling body protection plate (see reference numerals 24a and 24b in FIG. 1).
  • Comparative Example 1 and Comparative Example 2 the reasons for conducting the electrical heating for 90 minutes in total and for conducting the electrical heating for 70 minutes in Comparative Example 2 were as follows: This is for observing the current heating state of the metal members Wa and Wb and the electrodes 10a to 10f in a high temperature state.
  • Example 1 Comparative Example 1 and Comparative Example 2
  • the current heating states of the metal members Wa and Wb and the electrodes 10a to 10f when the current heating is performed for 40 minutes are compared (FIG. 15 (a)).
  • Example 1 Comparative Example 1 and Comparative Example 2
  • the work temperature is low, no light emission is observed in any of the metal members Wa and Wb and the electrodes 10c to 10f.
  • Example 1 since the workpiece temperature is high, it is observed that the metal members Wa and Wb and the workpiece-side electrode bodies 12a and 12b emit light brightly. From this, it can be seen that in Example 1, the metal members Wa and Wb are much easier to be heated than in Comparative Example 1 and Comparative Example 2.
  • Example 1 and Comparative Example 2 the energized and heated states of the metal members Wa and Wb and the electrodes 10a to 10f in a high temperature state are compared (FIGS. 15A and 15C). ) And Figure 15 (e)).
  • Example 1 it is observed that only the metal members Wa and Wb and the work-side electrode bodies 12a and 12b emit light brightly as is clear from FIG. 15 (a). In the power supply side electrode bodies 16a and 16b, almost no light emission is observed. Because of this, the presence of the conductive felt 14a, 14b force S, the heat generated in the metal members Wa, Wb and the workpiece side electrode bodies 12a, 12b is transferred to the power supply side electrode bodies 16a, 16b. What you are suppressing
  • Test Example 2 the temperatures of the metal members Wa and Wb when the metal members Wa and Wb as the cake were energized and heated using the work energization heating method according to Example 2 and Comparative Example 3 were compared.
  • Example 2 The work energization heating method according to Example 2 and Comparative Example 3 was performed using the work energization heating apparatus having the same configuration as the single energization heating apparatus 100 according to Embodiment 1 described above.
  • the test conditions are as follows.
  • the pressure applied to the pair of electrodes shall be a constant pressure of 0.3 MPa.
  • the current (working current) flowing through the metal members Wa and Wb is a constant current of 1500A.
  • Wb was used for current heating using two metal members with an arithmetic mean roughness Ra of 0.01 m on the planned joining surface.
  • FIG. 16 is a graph showing the test results in Test Example 2.
  • the solid line shows the test results for Example 2 and the broken line shows the test results for Comparative Example 3.
  • Test Example 3 the temperatures of the metal members Wa and Wb when the metal members Wa and Wb as the cake were energized and heated using the work energization heating method according to Example 3 and Comparative Example 4 were compared.
  • Example 3 The work energization heating method according to Example 3 and Comparative Example 4 was performed using the work energization heating apparatus having the same configuration as that of the single energization heating apparatus 100 according to Embodiment 1 described above.
  • the test conditions are as follows.
  • the arithmetic average roughness Ra of the planned joining surfaces of the metal members Wa and Wb is 0 • 1 ⁇ m.
  • the current (working current) flowing through the metal members Wa and Wb is set to a constant current of 1500A.
  • FIG. 17 is a graph showing the test results in Test Example 3.
  • the solid line shows the test results for Example 3 and the broken line shows the test results for Comparative Example 4.
  • Test Example 4 the temperatures of the metal members Wa and Wb when the metal members Wa and Wb as the cake were energized and heated using the work energization heating method according to Example 4 and Comparative Example 5 were compared.
  • the workpiece energization heating method according to Example 4 and Comparative Example 5 was performed using the workpiece energization heating device having the same configuration as that of the single energization heating device 100 according to Embodiment 1 described above.
  • the test conditions are as follows.
  • the arithmetic average roughness Ra of the planned joining surfaces of the metal members Wa and Wb is 0 • 1 ⁇ m.
  • the heating time of the metal members Wa and Wb (work heating time) is 60 minutes, and the temperature of the metal members Wa and Wb (work temperature) is measured every minute.
  • the pressure applied to the pair of electrodes was set to 0.3 MPa, and the current (working current) passed through the metal members Wa and Wb.
  • the pressure applied to the pair of electrodes is IMPa pressure, and the current flowing through the metal members Wa and Wb (suck current) is 2000A. Electric heating was performed.
  • the pressure applied to the pair of electrodes is constant at 0.3 MPa over 60 minutes, and the current (work current) flowing through the metal members Wa and Wb is constant at 1500A. Electric heating was performed under the condition of current.
  • FIG. 18 is a graph showing the test results in Test Example 4.
  • the solid line shows the test results for Example 4 and the broken line shows the test result of Comparative Example 5.
  • Test Example 5 the metal members Wa, Wb when the metal members Wa, Wb as the workpiece were energized and heated using the workpiece energization heating method according to Example 5, Example 6, and Comparative Example 6 The temperatures were compared.
  • Example 5 The workpiece energization heating method according to Example 5, Example 6, and Comparative Example 6 is the embodiment described above.
  • the work energization heating apparatus having the same configuration as the work energization heating apparatus 100 according to 1 was used.
  • the test conditions are as follows.
  • metal members Wa and Wb two metal members made of hot mold steel SKD61 and having a cooling water channel groove formed on the planned joining surface are used.
  • steel members 32 and 36 shown in Fig. 6 (a) of the pamphlet of International Publication No. 2007/108058 are used.
  • Arithmetic average roughness Ra of the planned joining surfaces of metal members Wa and Wb is 0.1 m.
  • the electric heating is performed under the condition that the pressure applied to the pair of electrodes is 0.3 MPa for the first 20 minutes, and the pair for the subsequent 40 minutes.
  • Conduct current heating under the condition that the pressure applied to the electrode is IMPa, and then increase the pressure applied to the pair of electrodes to 5 MPa immediately after the current heating process, and hold for 1 minute in that state.
  • the joined body is cut to produce a mold (see Fig. 6 (e) in the pamphlet).
  • Table 2 is a table showing test results in Test Example 5.
  • the shot number until the resin mold is damaged when resin molding is performed using the resin mold is 10 times that of Comparative Example 6.
  • “ ⁇ ” was given as being able to withstand actual use.
  • the number of shots until the die casting mold is damaged when die casting is performed using the die casting mold is 10 times that of Comparative Example 6.
  • an evaluation of “ ⁇ ” was given, and an evaluation of “ ⁇ ” was given that it could sufficiently withstand actual use when it was 10 times or more of Example 5.
  • the durability / die casting mold column is “ ⁇ ”
  • an evaluation of “ ⁇ ” is given, and the durability / die casting mold column is “ ⁇ ”. The case was given a rating of “ ⁇ ”.
  • the pressure applied to the pair of electrodes at the initial stage of the energization heating process is set relatively low (0.3 MPa), and is applied to the pair of electrodes at the latter stage of the energization heating process. It was found that by setting the pressure relatively high (IMPa), it is possible to obtain a bonded body with sufficiently high bonding strength.
  • the pressure applied to the pair of electrodes in the initial stage of the electric heating process is set relatively low (0.3 MPa), and the pressure applied to the pair of electrodes in the latter stage of the electric heating process is set relatively high (IMPa).
  • a bonded body with higher bonding strength can be obtained by applying a higher pressure (5 MPa) to the pair of electrodes after the current heating step.
  • the force using carbon felt as the conductive felts 14a, 14b, 214a, 214b, 314a, 314b is not limited to this.
  • a conductive felt made of stainless fiber is used as the conductive felt.
  • the force using the workpiece-side electrode bodies 12a, 12b, 312a, 312b made of a carbon material is not limited to this.
  • a workpiece-side electrode body made of a metal material such as stainless steel can be used.
  • the force using the power supply device side electrode bodies 16a, 16b, 316a, 316b made of a carbon material is not limited to this.
  • a power device side electrode body made of a metal material such as stainless steel can be used.
  • the heat insulating housing 470 is formed with the slit portion 474, but the present invention is not limited to this.
  • the heat insulation housing has a window! /
  • the present invention can be suitably used in the case of manufacturing an assembly for manufacturing a molding die in which a heat exchange medium flow path such as a cooling water flow path is formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

In a method for energization heating metal members (Wa, Wb) under a state where the metal members (Wa, Wb) are arranged between a pair of electrodes, electrodes (10a, 10b) having a structure of laminating in this order work side electrode bodies (12a, 12b), conductive felts (14a, 14b) having a thermal conductivity lower than that of the work side electrode bodies (12a, 12b) and an electric resistance higher than that of the work side electrode bodies (12a, 12b), and power supply side electrode bodies (16a, 16b) are employed. Since the above-mentioned conductive felts (14a, 14b) exist, transfer of heat generated from the metal members (Wa, Wb) or the work side electrode bodies (12a, 12b) to the power supply side electrode bodies (16a, 16b) can be suppressed, and a large quantity of heat can be generated from the conductive felts (14a, 14b). As a result, temperature of the metal members (Wa, Wb) can be raised easily as compared with the prior art, and heating efficiency of the metal members (Wa, Wb) can be enhanced remarkably as compared with the prior art.

Description

明 細 書  Specification
ワーク通電加熱方法、接合体の製造方法、焼結体の製造方法及びワーク 通電加熱装置  Workpiece heating method, bonded body manufacturing method, sintered body manufacturing method, and workpiece current heating device
技術分野  Technical field
[0001] 本発明は、ワーク通電加熱方法、接合体の製造方法、焼結体の製造方法及びヮー ク通電加熱装置に関する。  The present invention relates to a work current heating method, a joined body manufacturing method, a sintered body manufacturing method, and a ceramic current heating apparatus.
背景技術  Background art
[0002] 図 19は、従来の接合体の製造方法を説明するために示す図である。  FIG. 19 is a view for explaining a conventional method of manufacturing a joined body.
従来の接合体の製造方法は、図 19に示すように、電源装置 930と電気的に接続さ れた一対の電極 910a, 910bの間に、ワークとしての複数の金属部材 Wを配置した 状態で複数の金属部材 Wに電流を流すことにより複数の金属部材 Wを通電加熱し て接合体を製造する接合体の製造方法である (例えば、特許文献 1参照。)。  As shown in FIG. 19, the conventional method for manufacturing a joined body includes a plurality of metal members W as a workpiece disposed between a pair of electrodes 910a and 910b electrically connected to a power supply device 930. This is a method for manufacturing a joined body in which a plurality of metal members W are energized and heated by flowing current through the plurality of metal members W to produce a joined body (see, for example, Patent Document 1).
[0003] 従来の接合体の製造方法によれば、複数の金属部材 Wを高温度に通電加熱する ことが可能となるため、複数の金属部材 Wを接合して接合体を製造することが可能と なる。  [0003] According to the conventional method of manufacturing a joined body, it is possible to heat and heat a plurality of metal members W at a high temperature, and thus it is possible to manufacture a joined body by joining a plurality of metal members W. It becomes.
[0004] 特許文献 1 :特開 2005— 262244号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2005-262244
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、従来の接合体の製造方法におレ、ては、ワークの加熱効率を従来よりも大 幅に高くしたいという要望がある。ワークの加熱効率を従来よりも大幅に高くすること ができれば、従来よりも大幅に少ない電力でワークを通電加熱することが可能となり、 また、ワークの昇温時間を従来よりも大幅に短縮化することが可能となり、さらには、ヮ ークのサイズが大きいものであっても十分高い温度に通電加熱することが可能となる [0005] By the way, there is a demand in the conventional method for manufacturing a joined body that the heating efficiency of the workpiece is greatly increased as compared with the conventional method. If the heating efficiency of the workpiece can be made significantly higher than before, it will be possible to heat and heat the workpiece with much less power than before, and the heating time of the workpiece will be significantly shortened compared to the conventional method. In addition, even if the size of the cake is large, it is possible to heat by heating to a sufficiently high temperature.
[0006] なお、このような要望は、上記した接合体の製造方法の場合のみならず、一対の電 極の間にワークとしての焼結体用粉末 (例えば、金属粉末、セラミックス粉末など。)を 配置した状態で焼結体用粉末に電流を流すことにより焼結体用粉末を通電加熱して 焼結体を製造する焼結体の製造方法の場合にも共通するものである。 [0006] Note that such a demand is not limited to the above-described manufacturing method of a joined body, but also a powder for a sintered body as a workpiece between a pair of electrodes (for example, metal powder, ceramic powder, etc.). In a state in which the sintered body powder is placed, the sintered body powder is energized and heated by passing an electric current through the sintered body powder. The same applies to the method of manufacturing a sintered body for manufacturing a sintered body.
[0007] すなわち、ワークの加熱効率を従来よりも大幅に高くしたいという要望は、一対の電 極の間にワークを配置した状態でワークに電流を流すことによりワークを通電加熱す るワーク通電加熱方法全般に共通するものである。 [0007] That is, the desire to greatly increase the heating efficiency of the workpiece is that the workpiece energization heating in which the workpiece is energized and heated by passing a current through the workpiece with the workpiece placed between a pair of electrodes. It is common to all methods.
[0008] そこで、本発明は、このような事情に鑑みてなされたもので、ワークの加熱効率を従 来よりも大幅に高くすることが可能なワーク通電加熱方法を提供することを目的とする 。また、本発明は、このようなワーク通電加熱方法を用いて接合体を製造する接合体 の製造方法及びこのようなワーク通電加熱方法を用いて焼結体を製造する焼結体の 製造方法を提供することを目的とする。さらにまた、本発明は、ワークの加熱効率を 従来よりも大幅に高くすることが可能なワーク通電加熱装置を提供することを目的と する。 [0008] Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a work energization heating method capable of significantly increasing the heating efficiency of a work than before. . In addition, the present invention provides a method for manufacturing a joined body for producing a joined body using such a work current heating method, and a method for producing a sintered body for producing a sintered body using such a work current heating method. The purpose is to provide. Furthermore, an object of the present invention is to provide a work energization heating apparatus that can significantly increase the heating efficiency of the work compared to the prior art.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の発明者は、上記の目的を達成するため鋭意努力を重ねた結果、一対の 電極のうち少なくとも一方の電極をワーク側電極体と電源装置側電極体とに分割す るとともに、これらワーク側電極体と電源装置側電極体との間にワーク側電極体よりも 低レ、熱伝導率及びワーク側電極体よりも高レ、電気抵抗率を有する導電性フェルトを 配置することで、すなわち、一対の電極のうち少なくとも一方の電極を、ワーク側電極 体と、ワーク側電極体よりも低!/、熱伝導率及びワーク側電極体よりも高!/、電気抵抗率 を有する導電性フェルトと、電源装置側電極体とがこの順序で積層された構造を有 する電極とすることで、ワークの加熱効率を従来よりも大幅に高くすることが可能とな ることを見出し、本発明を完成させるに至った。  As a result of intensive efforts to achieve the above object, the inventor of the present invention divides at least one of the pair of electrodes into a work side electrode body and a power supply side electrode body. In addition, a conductive felt having a lower resistance than the work-side electrode body, a higher thermal conductivity and a higher electrical resistance than the work-side electrode body, and an electrical resistivity is disposed between the work-side electrode body and the power supply device-side electrode body. That is, at least one of the pair of electrodes has a work-side electrode body and lower than the work-side electrode body! /, Thermal conductivity and higher than the work-side electrode body! /, And electric resistivity. It has been found that by using an electrode having a structure in which a conductive felt and a power supply device side electrode body are laminated in this order, the heating efficiency of the workpiece can be made significantly higher than before. The present invention has been completed.
[0010] (1)本発明のワーク通電加熱方法は、電源装置と電気的に接続された一対の電極の 間にワークを配置した状態で前記ワークを通電加熱するワーク通電加熱方法におい て、前記一対の電極のうち少なくとも一方の電極として、ワーク側電極体と、前記ヮー ク側電極体よりも低!/、熱伝導率及び前記ワーク側電極体よりも高!/、電気抵抗率を有 する導電性フェルトと、電源装置側電極体とがこの順序で積層された構造を有する電 極を用いて前記ワークを通電加熱することを特徴とする。  [0010] (1) The work energization heating method of the present invention is the work energization heating method in which the work is energized and heated in a state where the work is disposed between a pair of electrodes electrically connected to a power supply device. As at least one of the pair of electrodes, the workpiece side electrode body and the work side electrode body have lower! /, Thermal conductivity and higher than the workpiece side electrode body, and electrical resistivity. The workpiece is energized and heated using an electrode having a structure in which a conductive felt and a power supply device side electrode body are laminated in this order.
[0011] このため、本発明のワーク通電加熱方法によれば、ワーク側電極体と電源装置側 電極体との間にワーク側電極体よりも低い熱伝導率を有する導電性フェルトが存在 することにより、ワークやワーク側電極体で発生する熱が電源装置側電極体へ移動 するのを抑制することが可能となるため、ワークが従来よりも大幅に昇温し易くなり、ヮ ークの加熱効率を従来よりも大幅に高くすることが可能となる。 For this reason, according to the work energization heating method of the present invention, the work side electrode body and the power supply device side The presence of a conductive felt having a lower thermal conductivity than the workpiece-side electrode body between the electrode body and the heat generated in the workpiece and the workpiece-side electrode body is prevented from moving to the power supply device-side electrode body. Therefore, the temperature of the workpiece can be significantly increased more easily than before, and the heating efficiency of the workpiece can be significantly increased as compared with the conventional case.
[0012] また、本発明のワーク通電加熱方法によれば、ワーク側電極体と電源装置側電極 体との間にワーク側電極体よりも高い電気抵抗率を有する導電性フェルトが存在する ことにより、当該導電性フェルトにおいて多くの熱量を発生させることが可能となるた め、この点からも、ワークが従来よりも大幅に昇温し易くなり、ワークの加熱効率を従 来よりも大幅に高くすることが可能となる。  [0012] Further, according to the work energization heating method of the present invention, the conductive felt having a higher electrical resistivity than the work side electrode body exists between the work side electrode body and the power supply side electrode body. Therefore, since it is possible to generate a large amount of heat in the conductive felt, the temperature of the workpiece is significantly easier to raise than in the past, and the heating efficiency of the workpiece is significantly higher than before. It becomes possible to do.
[0013] その結果、本発明のワーク通電加熱方法によれば、従来よりも大幅に少ない電力 でワークを通電加熱することが可能となり、また、ワークの昇温時間を従来よりも大幅 に短縮化することが可能となり、さらには、ワークのサイズが大きいものであっても十 分高い温度に通電加熱することが可能となる。  As a result, according to the work energization heating method of the present invention, the work can be energized and heated with much less electric power than before, and the temperature raising time of the work is significantly shortened compared to the conventional method. In addition, even if the workpiece is large in size, it can be heated and heated to a sufficiently high temperature.
[0014] また、従来のワーク通電加熱方法においては、ワークに加えて電極の全体が高い 温度になるため、電極周囲の部品(例えば、電極取り付け部。)が劣化し易くなるとい う問題がある。これに対して、本発明のワーク通電加熱方法によれば、ワーク側電極 体と電源装置側電極体との間にワーク側電極体よりも低い熱伝導率を有する導電性 フェルトが存在することにより、ワークやワーク側電極体で発生する熱が電源装置側 電極体へ移動するのを抑制することが可能となるため、電源装置側電極体が高温に なるのを抑制することが可能となり、電極周囲の部品が劣化し易くなるのを抑制する ことが可能となる。  [0014] In addition, in the conventional work energization heating method, since the entire electrode is heated to a high temperature in addition to the work, there is a problem that parts around the electrode (for example, the electrode mounting portion) are likely to deteriorate. . On the other hand, according to the work energization heating method of the present invention, there is a conductive felt having a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply side electrode body. Since it is possible to suppress the heat generated in the work and the work-side electrode body from moving to the power supply-side electrode body, it is possible to suppress the power supply-side electrode body from reaching a high temperature. It is possible to suppress surrounding parts from being easily deteriorated.
[0015] ところで、特開 2005— 230823号公報には、電極として、ワーク側電極体とカーボ ンチップと電源装置側電極体とがこの順序で積層された構造を有する電極が記載さ れてレヽる(特開 2005— 230823号公幸の図 4参照。 )。し力、しな力ら、特開 2005— 2 30823号公報に記載の発明においては、カーボンチップが有する弾性力を利用し てレ、るだけであって、本発明のように導電性フェルトが有する低!/、熱伝導率及び高レ、 電気抵抗率を利用している訳ではない。また、後述の試験例 1において示すように、 電極が、特開 2005— 230823号公報に記載の構造を有していてもワークの加熱効 率の向上は小幅なものに留まり、本発明のワーク通電加熱方法ほどの効果は得られ ない。 [0015] By the way, Japanese Patent Application Laid-Open No. 2005-230823 describes an electrode having a structure in which a workpiece side electrode body, a carbon chip, and a power supply side electrode body are laminated in this order as electrodes. (See Fig. 4 in Japanese Patent Publication No. 2005-230823). In the invention described in Japanese Patent Application Laid-Open No. 2005-230823, it is only necessary to use the elastic force of the carbon chip, and the conductive felt as in the present invention. It does not make use of low! /, Thermal conductivity and high electrical resistivity. Further, as shown in Test Example 1 described later, even if the electrode has the structure described in JP-A-2005-230823, the heating effect of the workpiece is The improvement in the rate is only small, and the effect as much as the work energization heating method of the present invention cannot be obtained.
[0016] また、特開 2004— 323920号公報には、カーボンフェルトを断熱材として用いるこ とが記載されて!/、る (特開 2004— 323920号公報の図 1及び (0011)段落参照。 )。 しかしながら、特開 2004— 323920号公報に記載の発明においては、カーボンフエ ルトを、通電加熱焼結装置のモールドの外周面に巻き付ける断熱材として用いてい るだけであって、電極材料として用いている訳ではない。また、特開 2004— 323920 号公報に記載の発明にお!/、ては、カーボンフェルトが有する低!/、熱伝導性を利用し ているだけであって、本発明のように導電性フェルトが有する高い電気抵抗率を利用 している訳ではない。  [0016] In addition, JP 2004-323920 describes the use of carbon felt as a heat insulating material! (Refer to FIG. 1 and paragraph (0011) of JP 2004-323920 A). ). However, in the invention described in Japanese Patent Application Laid-Open No. 2004-323920, the carbon felt is only used as a heat insulating material wound around the outer peripheral surface of the mold of the electric heating and sintering apparatus, and is used as an electrode material. Not a translation. In addition, the invention described in Japanese Patent Application Laid-Open No. 2004-323920 uses only the low and / or thermal conductivity of carbon felt, and the conductive felt as in the present invention. It does not use the high electrical resistivity of
[0017] なお、本発明における導電性フェルトとは、導電性を有するファイバ(例えば、カー ボンファイバ、ステンレスファイバなど。)を絡み合わせてフェルト状にしたものをいう。  [0017] The conductive felt in the present invention refers to a felt formed by intertwining conductive fibers (for example, carbon fiber, stainless fiber, etc.).
[0018] また、本発明におけるワーク側電極体とは、電極を構成する電極体のうち、ワーク側 に配置される電極体をいい、本発明における電源装置側電極体とは、電極を構成す る電極体のうち、電源装置側に配置される電極体を!/、う。  [0018] Also, the workpiece side electrode body in the present invention refers to an electrode body disposed on the workpiece side among the electrode bodies constituting the electrode, and the power supply apparatus side electrode body in the present invention constitutes an electrode. Of the electrode bodies to be installed, the electrode body arranged on the power supply side is! /.
[0019] (2)本発明のワーク通電加熱方法においては、前記導電性フェルトの熱伝導率は、 前記ワーク側電極体の熱伝導率の 1/10以下であり、かつ、前記導電性フェルトの 電気抵抗率は、前記ワーク側電極体の電気抵抗率の 5倍以上であることが好まし!/、。  (2) In the work energization heating method of the present invention, the thermal conductivity of the conductive felt is 1/10 or less of the thermal conductivity of the work-side electrode body, and the conductive felt The electrical resistivity is preferably at least 5 times the electrical resistivity of the workpiece side electrode body! /.
[0020] このように、導電性フェルトの熱伝導率をワーク側電極体の熱伝導率の 1/10以下 とすることにより、ワークやワーク側電極体で発生する熱が電源装置側電極体へ移動 するのを大幅に抑制することが可能となる。また、導電性フェルトの電気抵抗率をヮ ーク側電極体の電気抵抗率の 5倍以上とすることにより、当該導電性フェルトにおい て多くの熱量を発生させることが可能となる。  [0020] Thus, by making the thermal conductivity of the conductive felt 1/10 or less of the thermal conductivity of the workpiece side electrode body, the heat generated in the workpiece or the workpiece side electrode body is transferred to the power supply device side electrode body. It is possible to greatly suppress the movement. Further, by setting the electrical resistivity of the conductive felt to 5 times or more of the electrical resistivity of the cake side electrode body, it is possible to generate a large amount of heat in the conductive felt.
[0021] (3)本発明のワーク通電加熱方法においては、前記導電性フェルトは、 0. 2g/cm3 以下の力、さ密度を有するカーボンフェルトからなることが好ましい。 (3) In the work energization heating method of the present invention, the conductive felt is preferably made of carbon felt having a force and a density of 0.2 g / cm 3 or less.
[0022] 0. 2g/cm3以下の力、さ密度を有するカーボンフェルトは、十分に低い熱伝導率及 び十分に高い電気抵抗率を有するため、このような方法とすることにより、ワークゃヮ ーク側電極体で発生する熱が電源側電極体へ移動するのを大幅に抑制することが 可能となり、当該導電性フェルトで多くの熱量を発生させることが可能となる。 [0022] A carbon felt having a force and density of 0.2 g / cm 3 or less has a sufficiently low thermal conductivity and a sufficiently high electrical resistivity. It is possible to greatly suppress the heat generated in the cake side electrode body from moving to the power source side electrode body. It becomes possible, and it becomes possible to generate a large amount of heat with the conductive felt.
[0023] また、カーボンフェルトは優れた耐熱性を有するため、このような方法とすることによ り、導電性フェルトの耐熱性を高くすることが可能となる。 [0023] In addition, since carbon felt has excellent heat resistance, the heat resistance of the conductive felt can be increased by adopting such a method.
[0024] なお、本発明におけるカーボンフェルトとは、カーボンファイバを絡み合わせてフエ ルト状にしたものをいう。 [0024] The carbon felt in the present invention refers to a carbon fiber intertwined into a felt shape.
[0025] (4)本発明のワーク通電加熱方法においては、前記導電性フェルトは、複数枚のフ エルト片が積層された構造を有することが好ましい。 (4) In the work energization heating method of the present invention, the conductive felt preferably has a structure in which a plurality of felt pieces are laminated.
[0026] このような方法とすることにより、導電性フェルトの厚さを厚くすることが可能となるた め、ワークやワーク側電極体で発生する熱が電源装置側電極体へ移動するのをさら に大幅に抑制することが可能となり、当該導電性フェルトでさらに多くの熱量を発生さ せること力 S可倉 となる。 [0026] By adopting such a method, it is possible to increase the thickness of the conductive felt, so that the heat generated in the workpiece and the workpiece-side electrode body is transferred to the power supply device-side electrode body. Furthermore, it becomes possible to significantly reduce the amount of heat generated by the conductive felt, and the force S can be generated.
[0027] (5)本発明のワーク通電加熱方法においては、前記導電性フェルトの厚さは、前記ヮ ーク側電極体の厚さよりも薄!/、ことが好ましレ、。  [0027] (5) In the work energization heating method of the present invention, it is preferable that the thickness of the conductive felt is less than the thickness of the work-side electrode body.
[0028] 導電性フェルトの厚さがワーク側電極体の厚さよりも厚くなると、導電性フェルトにお ける電気抵抗が大きくなり過ぎて、導電性フェルトで発生する熱量 (言い換えれば消 費電力量)がワークやワーク側電極体で発生する熱量 (言い換えれば消費電力量) に比べて大きくなり過ぎることとなる。このため、同じパワーの電源装置を用いたので は、必要な電流量を供給することが困難となるため、ワークやワーク側電極体で発生 する熱量が却って小さくなり、その結果、ワークの加熱効率を低下させてしまうことに なる力もである。この観点からすると、導電性フェルトの厚さは、ワーク側電極体の厚 さの 1/2の厚さよりも薄いことがさらに好ましい。  [0028] When the thickness of the conductive felt becomes thicker than the thickness of the workpiece-side electrode body, the electrical resistance in the conductive felt becomes too large, and the amount of heat generated in the conductive felt (in other words, the amount of power consumed). Is too large compared to the amount of heat generated by the workpiece and the workpiece-side electrode body (in other words, power consumption). For this reason, it is difficult to supply the necessary amount of current if power supplies with the same power are used, so the amount of heat generated in the workpiece and workpiece-side electrode body is reduced, resulting in the heating efficiency of the workpiece. It is also a force that will reduce From this viewpoint, it is more preferable that the thickness of the conductive felt is thinner than half the thickness of the workpiece-side electrode body.
[0029] (6)本発明のワーク通電加熱方法においては、前記ワーク側電極体及び前記電源 装置側電極体は、カーボン材料からなることが好まし!/、。  (6) In the work energization heating method of the present invention, it is preferable that the work side electrode body and the power supply side electrode body are made of a carbon material! /.
[0030] カーボン材料は優れた耐熱性を有するため、このような方法とすることにより、ワーク 側電極体の耐熱性を高くすることが可能となる。  [0030] Since the carbon material has excellent heat resistance, the heat resistance of the workpiece-side electrode body can be increased by employing such a method.
[0031] ワーク側電極体又は電源装置側電極体に用いるカーボン材料としては、黒鉛、力 一ボンコンポジット材料などを用いることができる。  [0031] As the carbon material used for the workpiece-side electrode body or the power supply apparatus-side electrode body, graphite, a single-bon composite material, or the like can be used.
[0032] (7)本発明のワーク通電加熱方法においては、前記一対の電極と前記ワークとの間 にカーボンシートをそれぞれ配置した状態で前記ワークを通電加熱することが好まし い。 (7) In the work energization heating method of the present invention, a gap between the pair of electrodes and the work is set. It is preferable that the workpiece is heated by energization with the carbon sheets arranged on the plate.
[0033] 電極におけるワーク側表面の潤滑性が低いときには、ワークを通電加熱する際に電 極とワークとが焼き付きを起こしてしまう場合がある。これに対して、本発明によれば、 カーボンシートの表面は高い潤滑性を有するため、電極とワークとが焼き付きを起し てしまうのを抑制することが可能となる。  [0033] When the work-side surface lubricity of the electrode is low, the electrode and the work may be seized when the work is energized and heated. On the other hand, according to the present invention, since the surface of the carbon sheet has high lubricity, it is possible to suppress seizure between the electrode and the workpiece.
[0034] なお、本発明におけるカーボンシートとは、カーボンファイバをシート状に成形した ものをいう。  [0034] The carbon sheet in the present invention refers to a carbon fiber formed into a sheet shape.
[0035] (8)本発明のワーク通電加熱方法においては、前記電源装置側電極体は、複数枚 の平板が積層された構造を有することが好ましレ、。  (8) In the work energization heating method of the present invention, the power supply device side electrode body preferably has a structure in which a plurality of flat plates are laminated.
[0036] このような方法とすることにより、平板の枚数を増減することで一対の電極の間隔を 変えることが可能となり、様々な厚さのワークを一対の電極の間に配置する作業を容 易に行うことが可能となる。 [0036] By adopting such a method, it is possible to change the distance between the pair of electrodes by increasing or decreasing the number of flat plates, and the work of arranging workpieces of various thicknesses between the pair of electrodes is possible. It can be done easily.
[0037] (9)本発明のワーク通電加熱方法においては、前記電源装置側電極体における各 平板の平面サイズは、前記ワーク側電極体に向かって徐々に大きくなることが好まし い。 (9) In the work energization heating method of the present invention, it is preferable that the planar size of each flat plate in the power supply device side electrode body gradually increases toward the work side electrode body.
[0038] このような方法とすることにより、電源装置側電極体における電源装置側の平板の 平面サイズを変更しなくてもワーク側電極体の平面サイズを大きくすることが可能とな り、大きい平面サイズを有するワークを通電加熱することが可能となる。  [0038] By adopting such a method, it becomes possible to increase the plane size of the work side electrode body without changing the plane size of the flat plate on the power source apparatus side in the power supply side electrode body. It becomes possible to electrically heat a workpiece having a planar size.
[0039] (10)本発明のワーク通電加熱方法においては、断熱用ハウジングを前記ワークの周 囲に配置した状態で前記ワークを通電加熱することが好ましい。  (10) In the work energization heating method of the present invention, it is preferable that the work is energized and heated in a state where a heat insulating housing is disposed around the work.
[0040] このような方法とすることにより、断熱用ハウジングが存在することにより、ワークで発 生する熱が周囲の空間に放射されるのを抑制することが可能となるため、ワークがさ らに大幅に昇温し易くなり、ワークの加熱効率をさらに大幅に高くすることが可能とな  [0040] By adopting such a method, it is possible to suppress the heat generated in the work from being radiated to the surrounding space due to the presence of the heat insulating housing. This makes it easier to raise the temperature and makes it possible to further increase the heating efficiency of the workpiece.
[0041] また、このような方法とすることにより、断熱用ハウジングが存在することにより、ヮー クで発生する熱が周囲の空間に放射されるのを抑制することが可能となるため、ヮー ク周囲の部品(例えば、後述する真空チャンバ。)が劣化し易くなるのを抑制すること が可能となる。 [0041] Further, by using such a method, the presence of the heat insulating housing makes it possible to suppress the heat generated in the cake from being radiated to the surrounding space. Suppressing deterioration of surrounding components (for example, a vacuum chamber described later). Is possible.
[0042] ( 1 1 )本発明のワーク通電加熱方法においては、前記断熱用ハウジングは、カーボン フェルトの内張りを有することが好ましい。  (1 1) In the work energization heating method of the present invention, the heat insulating housing preferably has a carbon felt lining.
[0043] カーボンフェルトは低い熱伝導率を有するため、このような方法とすることにより、ヮ ークで発生する熱が周囲の空間に放射されるのをさらに抑制することが可能となる。 このため、ワークがさらに大幅に昇温し易くなり、ワークの加熱効率をさらに大幅に高 くすること力 S可倉 となる。 [0043] Since carbon felt has a low thermal conductivity, it is possible to further suppress the heat generated in the cake from being radiated to the surrounding space by using such a method. For this reason, the temperature of the workpiece can be more easily increased, and the force S can be increased to further increase the heating efficiency of the workpiece.
[0044] また、このような方法とすることにより、ワークで発生する熱が周囲の空間に放射され るのをさらに抑制することが可能となるため、ワーク周囲の部品が劣化し易くなるのを さらに抑制することが可能となる。  [0044] Further, by adopting such a method, it is possible to further suppress the heat generated in the work from being radiated to the surrounding space, so that the parts around the work are likely to deteriorate. Further suppression is possible.
[0045] なお、本発明のワーク通電加熱方法においては、前記断熱用ハウジングには、スリ ット部又は窓部が形成されて!/、ること力 S好ましレ、。 [0045] In the work energization heating method of the present invention, a slit portion or a window portion is formed in the heat insulating housing!
[0046] このような方法とすることにより、ワークが断熱用ハウジングで覆われていても、スリツ ト部又は窓部を通じてワークの状態を観察することが可能となる。 [0046] By adopting such a method, it is possible to observe the state of the workpiece through the slit portion or the window portion even if the workpiece is covered with the heat insulating housing.
[0047] また、ワーク温度測定用の熱電対をワークに配置する場合に、熱電対の配線をスリ ット部又は窓部を通じて断熱用ハウジングの外部に引き出すことが可能となり、熱電 対の配線の引き回しを容易に行うことが可能となる。 [0047] Also, when a thermocouple for measuring the workpiece temperature is placed on the workpiece, the thermocouple wiring can be pulled out of the heat insulating housing through the slit portion or the window portion, and the thermocouple wiring can be removed. It is possible to easily perform the routing.
[0048] ( 12)本発明のワーク通電加熱方法においては、前記一対の電極のうちいずれの電 極としても、ワーク側電極体と、前記ワーク側電極体よりも低い熱伝導率及び前記ヮ ーク側電極体よりも高!/、電気抵抗率を有する導電性フェルトと、電源装置側電極体と 力 Sこの順序で積層された構造を有する電極を用いて前記ワークを通電加熱すること が好ましい。 [0048] (12) In the work energization heating method of the present invention, any electrode of the pair of electrodes has a work-side electrode body, a lower thermal conductivity than the work-side electrode body, and the temperature It is preferable that the workpiece is energized and heated using an electrode having a structure in which the conductive felt having a higher electrical resistance than the first electrode body and the electric power device side electrode body and the force S are stacked in this order. .
[0049] このような方法とすることにより、一対の電極のうちいずれの電極においても、ワーク 側電極体と電源装置側電極体との間にワーク側電極体よりも低い熱伝導率を有する 導電性フェルトが存在することにより、ワークやワーク側電極体で発生する熱が電源 装置側電極体へ移動するのを抑制することが可能となるため、ワークがさらに大幅に 昇温し易くなり、ワークの加熱効率をさらに大幅に高くすることが可能となる。  [0049] By adopting such a method, any of the pair of electrodes has a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply apparatus side electrode body. The presence of the conductive felt makes it possible to suppress the heat generated in the workpiece and the workpiece-side electrode body from moving to the power supply device-side electrode body. It is possible to further greatly increase the heating efficiency.
[0050] また、このような方法とすることにより、一対の電極のうちいずれの電極においても、 ワーク側電極体と電源装置側電極体との間にワーク側電極体よりも高い電気抵抗率 を有する導電性フェルトが存在することにより、当該導電性フェルトにお!/、て多くの熱 量を発生させることが可能となるため、この点からも、ワークが従来よりも大幅に昇温 し易くなり、ワークの加熱効率を従来よりも大幅に高くすることが可能となる。 [0050] By adopting such a method, in any of the pair of electrodes, Since there is a conductive felt having a higher electric resistivity than the work side electrode body between the work side electrode body and the power supply side electrode body, the conductive felt has a large amount of heat! From this point, the temperature of the workpiece can be easily raised more than before, and the heating efficiency of the workpiece can be significantly higher than that of the conventional.
[0051] その結果、本発明のワーク通電加熱方法によれば、さらに大幅に少ない電力でヮ ークを通電加熱することが可能となり、また、ワークの昇温時間をさらに大幅に短縮化 することが可能となり、さらには、ワークのサイズが大きいものであっても十分高い温 度に通電加熱することが可能となる。  [0051] As a result, according to the work energization heating method of the present invention, it becomes possible to energize and heat the work with much smaller electric power, and to further greatly shorten the temperature raising time of the work. In addition, even when the workpiece size is large, it is possible to heat the current to a sufficiently high temperature.
[0052] また、このような方法とすることにより、一対の電極のうちいずれの電極においても、 ワーク側電極体と電源装置側電極体との間にワーク側電極体よりも低い熱伝導率を 有する導電性フェルトが存在することにより、ワークやワーク側電極体で発生する熱 が電源装置側電極体へ移動するのを抑制することが可能となるため、電源装置側電 極体が高温になるのを抑制することが可能となり、電極周囲の部品が劣化し易くなる のを抑制することが可能となる。  [0052] Further, by adopting such a method, in any electrode of the pair of electrodes, a lower thermal conductivity than the work side electrode body is provided between the work side electrode body and the power supply apparatus side electrode body. The presence of the conductive felt can suppress the heat generated in the work and the work-side electrode body from moving to the power supply-side electrode body, so that the power supply-side electrode body becomes hot. It is possible to suppress the deterioration of the components around the electrode.
[0053] なお、本発明のワーク通電加熱方法においては、前記一対の電極を互いに近づけ る向きに押圧した状態で前記ワークを通電加熱することが好ましい。  [0053] In the work energization heating method of the present invention, it is preferable that the work is energized and heated in a state where the pair of electrodes are pressed in a direction approaching each other.
[0054] このような方法とすることにより、各電極とワークとの密接度が高くなり、各電極とヮー クとの接触抵抗が変動し難くなるため、安定した通電加熱を行うことが可能となる。  [0054] By adopting such a method, the close contact between each electrode and the workpiece is increased, and the contact resistance between each electrode and the workpiece is less likely to fluctuate, so that stable energization heating can be performed. Become.
[0055] また、本発明のワーク通電加熱方法においては、前記一対の電極における前記電 源装置側の部分を冷却した状態で前記ワークを通電加熱することが好ましい。  [0055] In the work energization heating method of the present invention, it is preferable that the work is energized and heated in a state in which a portion of the pair of electrodes on the power supply device side is cooled.
[0056] このような方法とすることにより、電極における電源装置側の部分が好ましくない温 度に上昇してしまうのを抑制することが可能となり、電極周囲の部品が劣化し易くなる のをさらに抑制することが可能となる。  [0056] By adopting such a method, it is possible to prevent the portion of the electrode on the power supply device side from rising to an undesired temperature, and the components around the electrode are more likely to deteriorate. It becomes possible to suppress.
[0057] また、本発明のワーク通電加熱方法においては、前記ワークにパルス電流を流すこ とにより前記ワークを通電加熱することが好ましい。  [0057] In the work energization heating method of the present invention, it is preferable that the work is energized and heated by passing a pulse current through the work.
[0058] このような方法とすることにより、ワークの加熱効率をさらに大幅に高くすることが可 能となる。なお、ノ ルス電流を流すことによりワークの加熱効率をさらに大幅に高くす ることが可能となる理由は、ノ ルス電流によってワークに誘導電流が誘起され、この 誘導電流の作用によって通常よりもワークが高い温度に発熱するからであると推測さ れる。 [0058] By adopting such a method, the heating efficiency of the workpiece can be further greatly increased. Note that the reason why the heating efficiency of the workpiece can be further increased by flowing the noise current is that the induced current is induced in the workpiece by the noise current. This is presumably because the work generates heat to a higher temperature than usual due to the action of the induced current.
[0059] (13)本発明の接合体の製造方法は、本発明のワーク通電加熱方法を用いて接合 体を製造する接合体の製造方法であって、ワークとして複数の金属部材を準備する 金属部材準備工程と、前記一対の電極の間に、接合予定面を突き合わせた状態で 前記複数の金属部材を配置する金属部材配置工程と、前記一対の電極を互いに近 づける向きに押圧した状態で前記複数の金属部材を通電加熱して前記複数の金属 部材を接合する通電加熱工程とをこの順序で含むことを特徴とする。  [0059] (13) A method for manufacturing a joined body according to the present invention is a method for manufacturing a joined body using the work energization heating method according to the present invention, wherein a plurality of metal members are prepared as a workpiece. A member preparation step, a metal member placement step of placing the plurality of metal members in a state in which the surfaces to be joined are abutted between the pair of electrodes, and a state in which the pair of electrodes are pressed in a direction approaching each other. And an electric heating step of joining the plurality of metal members by energization heating of the plurality of metal members in this order.
[0060] このため、本発明の接合体の製造方法によれば、本発明のワーク通電加熱方法を 用いることにより、高い加熱効率で複数の金属部材を通電加熱することが可能となる ため、従来よりも大幅に少ない電力で複数の金属部材を接合することが可能となり、 また、複数の金属部材を接合するのに要する時間を大幅に短縮化することが可能と なり、さらには、複数の金属部材のサイズが大きいものであっても十分高い温度で接 合することが可能となる。  [0060] Therefore, according to the method for manufacturing a joined body of the present invention, by using the work energization heating method of the present invention, a plurality of metal members can be energized and heated with high heating efficiency. It is possible to join a plurality of metal members with much less power than that, and it is possible to greatly reduce the time required to join a plurality of metal members. Even when the size of the member is large, it becomes possible to bond at a sufficiently high temperature.
[0061] また、本発明の接合体の製造方法によれば、高!/、加熱効率で複数の金属部材を 通電加熱することが可能となるため、十分高い温度で複数の金属部材を接合するこ とが可能となり、高品質の接合体を製造することが可能となる。  [0061] Further, according to the method for manufacturing a joined body of the present invention, it is possible to heat and heat a plurality of metal members with high! / Heating efficiency, so that the plurality of metal members are joined at a sufficiently high temperature. This makes it possible to manufacture a high-quality joined body.
[0062] また、本発明の接合体の製造方法によれば、高!/、加熱効率で複数の金属部材を 通電加熱することが可能となるため、製造コストの安価な接合体を製造することが可 能となる。  [0062] Also, according to the method for manufacturing a joined body of the present invention, it is possible to heat and heat a plurality of metal members with high! / Heating efficiency, and therefore it is possible to produce a joined body with low manufacturing cost. Is possible.
[0063] (14)本発明の接合体の製造方法においては、各金属部材における接合予定面の 算術平均粗さ Raは、 0. 02 ^ 111-0. 2 mであることが好ましい。  [0063] (14) In the method for producing a joined body of the present invention, the arithmetic average roughness Ra of the planned joining surface of each metal member is preferably 0.02 ^ 111-0.2 m.
[0064] 各金属部材における接合予定面の算術平均粗さ Raを 0. 2 μ m以下としたのは、各 金属部材における接合予定面の算術平均粗さ Raが 0. 2 mを超える場合には、各 金属部材における接合予定面同士の間隔が平均で 0. 4 mを超える状態で通電加 熱工程を行うこととなるため、十分に高い接合力を得ることが困難となるからである。 また、各金属部材における接合予定面の算術平均粗さ Raを 0. 02 111以上としたの は、各金属部材における接合予定面の算術平均粗さ Raが 0. 02 m未満である場 合には、各金属部材の突き合わせ面における接触抵抗(通電加熱工程の後期にお いては各金属部材の接合面における抵抗)を十分に高くすることができないため、十 分な発熱量を得ることが困難となるからである。これらの観点からすると、各金属部材 における接合予定面の算術平均粗さ Raは、 0· 04 ^ 111-0. 15 111であることが好ま しい。 [0064] The arithmetic average roughness Ra of the planned joining surface of each metal member is set to 0.2 μm or less when the arithmetic average roughness Ra of the planned joining surface of each metal member exceeds 0.2 m. This is because it is difficult to obtain a sufficiently high joining force because the energization heating process is performed in a state where the distance between the surfaces to be joined in each metal member exceeds 0.4 m on average. In addition, the arithmetic average roughness Ra of the surfaces to be bonded in each metal member was set to 0.02 111 or more when the arithmetic average roughness Ra of the surfaces to be bonded in each metal member was less than 0.02 m. In this case, the contact resistance at the abutting surface of each metal member (resistance at the joining surface of each metal member in the later stage of the energization heating process) cannot be sufficiently increased, so that sufficient heat generation can be obtained. This is because it becomes difficult. From these viewpoints, it is preferable that the arithmetic average roughness Ra of the surfaces to be joined in each metal member is 0 · 04 ^ 111-0.15111.
[0065] (15)本発明の接合体の製造方法において、前記通電加熱工程の初期においては 、前記一対の電極に対して所定の第 1圧力を印加した状態で前記複数の金属部材 を通電加熱し、前記通電加熱工程の後期においては、前記一対の電極に対して前 記第 1圧力よりも高い第 2圧力を印加した状態で前記複数の金属部材を通電加熱す ることが好ましい。  (15) In the method for manufacturing a joined body according to the present invention, at the initial stage of the energization heating step, the plurality of metal members are energized and heated while a predetermined first pressure is applied to the pair of electrodes. In the latter stage of the energization heating step, it is preferable that the plurality of metal members be energized and heated while a second pressure higher than the first pressure is applied to the pair of electrodes.
[0066] ところで、十分に接合力の高い接合体を製造するためには、一対の電極に対して 比較的高レ、圧力(例えば IMPa)を印加した状態で複数の金属部材を通電加熱する 必要がある。し力、しながら、通電加熱工程の最初から一対の電極に対してそのように 比較的高レ、圧力(例えば IMPa)を印加した状態で複数の金属部材を通電加熱した 場合には、各金属部材の突き合わせ面における接触抵抗を十分に高くすることがで きないため、十分な発熱量を得ることが困難となる。これに対して、本発明の接合体 の製造方法によれば、通電加熱工程の初期においては、通電加熱工程の後期にお V、て一対の電極に対して印加する第 2圧力(例えば IMPa)よりも低!/、第 1圧力(例え ば 0. 3MPa)を印加した状態で複数の金属部材を通電加熱することとしているため、 各金属部材の突き合わせ面での接触抵抗を十分に高くすることが可能となり、通電 加熱工程の最初から十分な発熱量を得ることが可能となる。  [0066] By the way, in order to manufacture a joined body having a sufficiently high joining force, it is necessary to energize and heat a plurality of metal members in a state where a relatively high pressure and pressure (for example, IMPa) are applied to a pair of electrodes. There is. However, when multiple metal members are energized and heated with a relatively high pressure (such as IMPa) applied to the pair of electrodes from the beginning of the energization heating process, Since the contact resistance at the abutting surface of the member cannot be made sufficiently high, it becomes difficult to obtain a sufficient calorific value. On the other hand, according to the method for manufacturing a joined body of the present invention, in the initial stage of the electric heating process, the second pressure (for example, IMPa) to be applied to the pair of electrodes V at the latter stage of the electric heating process. Lower than /, and the first pressure (for example, 0.3 MPa) is applied to heat and heat multiple metal members, so that the contact resistance at the butt surface of each metal member must be sufficiently high It becomes possible to obtain a sufficient calorific value from the beginning of the energization heating process.
[0067] なお、本発明の接合体においては、通電加熱工程中に 2段階で圧力を高くしてもよ いし、 3段階以上で圧力を高くしてもよい。また、通電加熱工程中において段階的に 圧力を高くしてもよいし、連続的に圧力を高くしてもよい。  [0067] In the joined body of the present invention, the pressure may be increased in two stages during the energization heating process, or the pressure may be increased in three or more stages. Further, the pressure may be increased stepwise during the electric heating process, or the pressure may be increased continuously.
[0068] (16)本発明の接合体の製造方法において、前記通電加熱工程の初期においては 、所定の電流量で前記複数の金属部材を通電加熱し、前記通電加熱工程の後期に ぉレヽては、前記通電加熱工程の初期よりも多!、電流量で前記複数の金属部材を通 電加熱することが好ましい。 [0069] ところで、通電加熱により接合体を製造する場合、通電加熱工程の実施中に複数 の金属部材が接合されていく過程で接触抵抗が徐々に低くなる傾向にある。このた め、電流量を一定にした条件で通電加熱を実施することとすると、 W (電力) =1 (電流 ) X R2 (抵抗の 2乗)の関係から明らかなように、単位時間当たりの発熱量は徐々に小 さくなり、接合部分の温度を十分に高くすることができなくなる。これに対して、本発明 の接合体の製造方法によれば、通電加熱工程の後期において、通電加熱工程の初 期よりも多い電流量で複数の金属部材を通電加熱することとしているため、単位時間 当たりの発熱量が小さくなるのを抑制することが可能となり、接合部分の温度を十分 に高くすることが可能となる。 [0068] (16) In the method for manufacturing a joined body according to the present invention, in the initial stage of the energization heating step, the plurality of metal members are energized and heated at a predetermined current amount, and are delayed in the later stage of the energization heating step. It is preferable that the plurality of metal members be electrically heated by an amount of current more than the initial stage of the energization heating step. [0069] By the way, when a joined body is manufactured by energization heating, the contact resistance tends to gradually decrease in the process of joining a plurality of metal members during the energization heating process. For this reason, assuming that current heating is performed under the condition that the amount of current is constant, as is clear from the relationship of W (power) = 1 (current) XR 2 (square of resistance), The calorific value gradually decreases, and the temperature at the joint cannot be raised sufficiently. On the other hand, according to the method for manufacturing a joined body of the present invention, a plurality of metal members are energized and heated in a later stage of the energization heating process than in the initial stage of the energization heating process. It becomes possible to suppress a decrease in the amount of heat generated per hour, and it is possible to sufficiently increase the temperature of the joint portion.
[0070] なお、本発明の接合体の製造方法においては、通電加熱工程中に 2段階で電流 量を多くしてもよいし、 3段階以上で電流量を多くしてもよい。また、通電加熱工程中 において段階的に電流量を多くしてもよいし、連続的に電流量を多くしてもよい。  [0070] In the method for manufacturing a joined body of the present invention, the amount of current may be increased in two stages during the energization heating process, or the amount of current may be increased in three or more stages. Further, the amount of current may be increased stepwise during the current heating process, or the amount of current may be increased continuously.
[0071] (17)本発明の接合体の製造方法においては、前記通電加熱工程の後期又は前記 通電加熱工程の後に、前記一対の電極に対して 2MPa以上の圧力を印加すること が好ましい。  [0071] (17) In the method for manufacturing a joined body according to the present invention, it is preferable to apply a pressure of 2 MPa or more to the pair of electrodes at a later stage of the energization heating process or after the energization heating process.
[0072] このような方法とすることにより、さらに接合力の高い接合体を得ることが可能となる 。このため、得られる接合体から、例えばダイカスト金型のように過酷な条件で使用さ れる金型を製造する場合であっても、十分に使用に耐えうる金型とすることが可能と なる。  [0072] By adopting such a method, it is possible to obtain a bonded body with higher bonding strength. For this reason, even when a die used under severe conditions, such as a die-cast die, is manufactured from the obtained joined body, it is possible to obtain a die that can sufficiently withstand use.
[0073] (18)本発明の焼結体の製造方法は、本発明のワーク通電加熱方法を用いて焼結 体を製造する焼結体の製造方法であって、ワークとして焼結体用粉末を準備する焼 結体用粉末準備工程と、前記一対の電極の間に前記焼結体用粉末を配置する焼結 体用粉末配置工程と、前記一対の電極を互いに近づける向きに押圧した状態で前 記焼結体用粉末を通電加熱して前記焼結体用粉末を焼結する通電加熱工程とをこ の順序で含むことを特徴とする。  [0073] (18) The method for producing a sintered body of the present invention is a method for producing a sintered body by using the work energization heating method of the present invention. In a state of pressing the sintered body powder preparing step, the sintered body powder arranging step of arranging the sintered body powder between the pair of electrodes, and the pair of electrodes being brought closer to each other. And an electric heating step of sintering the powder for a sintered body by heating the powder for a sintered body in this order.
[0074] このため、本発明の焼結体の製造方法によれば、高!/、加熱効率で焼結体用粉末を 通電加熱することが可能となるため、従来よりも大幅に少ない電力で焼結体用粉末を 焼結することが可能となり、また、焼結体用粉末を焼結するのに要する時間を大幅に 短縮化することが可能となり、さらには、サイズが大きい焼結体を製造する場合であつ ても十分高レ、温度で焼結することが可能となる。 [0074] For this reason, according to the method for producing a sintered body of the present invention, it becomes possible to electrically heat the sintered body powder with high! / Heating efficiency. It becomes possible to sinter the powder for sintered bodies, and the time required to sinter the powder for sintered bodies is greatly increased. In addition, even when a sintered body having a large size is manufactured, it is possible to sinter at a sufficiently high temperature.
[0075] また、本発明の焼結体の製造方法によれば、高い加熱効率で焼結体用粉末を通 電加熱することが可能となるため、十分高い温度で焼結体用粉末を焼結することが 可能となり、高品質の焼結体を製造することが可能となる。 [0075] Further, according to the method for producing a sintered body of the present invention, the sintered body powder can be conductively heated with high heating efficiency, so that the sintered body powder is sintered at a sufficiently high temperature. As a result, it becomes possible to produce a high-quality sintered body.
[0076] また、本発明の焼結体の製造方法によれば、高い加熱効率で焼結体用粉末を焼 結することが可能となるため、製造コストの安価な焼結体を製造することが可能となる [0076] Further, according to the method for producing a sintered body of the present invention, it becomes possible to sinter the powder for a sintered body with high heating efficiency, and therefore it is possible to produce a sintered body at a low production cost. Is possible
[0077] (19)本発明の焼結体の製造方法においては、前記通電加熱工程の後に、前記一 対の電極の間に前記焼結体を配置する焼結体配置工程と、前記焼結体を通電加熱 する第 2通電加熱工程とをさらに含むことが好ましい。 (19) In the method for producing a sintered body according to the present invention, after the energization heating step, a sintered body arranging step of arranging the sintered body between the pair of electrodes, and the sintering It is preferable to further include a second energization heating step of energizing and heating the body.
[0078] このような方法とすることにより、焼結体の焼結度をさらに高めることが可能となり、さ らに高品質の焼結体を製造することが可能となる。  [0078] By adopting such a method, the degree of sintering of the sintered body can be further increased, and a high-quality sintered body can be produced.
[0079] (20)本発明のワーク通電加熱装置は、電源装置と、前記電源装置と電気的に接続 された一対の電極と、前記一対の電極が内部に設置された真空チャンバとを備え、 前記一対の電極の間に配置されたワークを通電加熱するワーク通電加熱装置にお いて、前記一対の電極のうち少なくとも一方の電極は、ワーク側電極体と、前記ヮー ク側電極体よりも低!/、熱伝導率及び前記ワーク側電極体よりも高!/、電気抵抗率を有 する導電性フェルトと、電源装置側電極体とがこの順序で積層された構造を有するこ とを特徴とする。  [0079] (20) The work energization heating device of the present invention includes a power supply device, a pair of electrodes electrically connected to the power supply device, and a vacuum chamber in which the pair of electrodes are installed. In the work energization heating apparatus that energizes and heats the work disposed between the pair of electrodes, at least one of the pair of electrodes is lower than the work side electrode body and the work side electrode body. It is characterized by having a structure in which a conductive felt having a thermal conductivity and higher electrical conductivity than the workpiece side electrode body and a power supply side electrode body are laminated in this order. To do.
[0080] このため、本発明のワーク通電加熱装置によれば、ワーク側電極体と電源装置側 電極体との間にワーク側電極体よりも低い熱伝導率を有する導電性フェルトが存在 することにより、ワークやワーク側電極体で発生する熱が電源装置側電極体へ移動 するのを抑制することが可能となるため、ワークが従来よりも大幅に昇温し易くなり、ヮ ークの加熱効率を従来よりも大幅に高くすることが可能となる。  [0080] Therefore, according to the work energization heating device of the present invention, there is a conductive felt having a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply side electrode body. As a result, it is possible to suppress the heat generated in the workpiece and workpiece side electrode body from moving to the power supply side electrode body. The efficiency can be made significantly higher than before.
[0081] また、本発明のワーク通電加熱装置によれば、ワーク側電極体と電源装置側電極 体との間にワーク側電極体よりも高い電気抵抗率を有する導電性フェルトが存在する ことにより、当該導電性フェルトにおいて多くの熱量を発生させることが可能となるた め、この点からも、ワークが従来よりも大幅に昇温し易くなり、ワークの加熱効率を従 来よりも大幅に高くすることが可能となる。 [0081] Further, according to the work energization heating device of the present invention, the conductive felt having a higher electrical resistivity than the work side electrode body exists between the work side electrode body and the power supply side electrode body. It is possible to generate a large amount of heat in the conductive felt Therefore, also from this point, the temperature of the workpiece can be greatly increased more easily than in the past, and the heating efficiency of the workpiece can be significantly increased than before.
[0082] その結果、本発明のワーク通電加熱装置によれば、従来よりも大幅に少ない電力 でワークを通電加熱することが可能となり、また、ワークの昇温時間を従来よりも大幅 に短縮化することが可能となり、さらには、ワークのサイズが大きいものであっても十 分高い温度に通電加熱することが可能となる。  As a result, according to the workpiece energization heating apparatus of the present invention, it is possible to energize and heat the workpiece with much less electric power than before, and the workpiece heating time is significantly shortened compared to the conventional method. In addition, even if the workpiece is large in size, it can be heated and heated to a sufficiently high temperature.
[0083] また、本発明のワーク通電加熱装置によれば、ワーク側電極体と電源装置側電極 体との間にワーク側電極体よりも低い熱伝導率を有する導電性フェルトが存在するこ とにより、ワークやワーク側電極体で発生する熱が電源装置側電極体へ移動するの を抑制することが可能となるため、電源装置側電極体が高温になるのを抑制すること が可能となり、電極周囲の部品が劣化し易くなるのを抑制することが可能となる。  [0083] Further, according to the work energization heating apparatus of the present invention, there is a conductive felt having a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply side electrode body. As a result, it is possible to suppress the heat generated in the work and the work-side electrode body from moving to the power supply-side electrode body. It is possible to suppress the deterioration of parts around the electrode.
[0084] (21 )本発明のワーク通電加熱装置においては、前記一対の電極のうちいずれの電 極も、ワーク側電極体と、前記ワーク側電極体よりも低い熱伝導率及び前記ワーク側 電極体よりも高!/、電気抵抗率を有する導電性フェルトと、電源装置側電極体とがこの 順序で積層された構造を有することが好ましい。  (21) In the work energization heating device of the present invention, any electrode of the pair of electrodes includes a work side electrode body, a lower thermal conductivity than the work side electrode body, and the work side electrode. It is preferable to have a structure in which a conductive felt having an electrical resistivity higher than that of the body and a power supply device side electrode body are laminated in this order.
[0085] このように構成することにより、一対の電極のうちいずれの電極においても、ワーク 側電極体と電源装置側電極体との間にワーク側電極体よりも低い熱伝導率を有する 導電性フェルトが存在することにより、ワークやワーク側電極体で発生する熱が電源 装置側電極体へ移動するのを抑制することが可能となるため、ワークがさらに大幅に 昇温し易くなり、ワークの加熱効率をさらに大幅に高くすることが可能となる。  [0085] With this configuration, any of the pair of electrodes has a lower thermal conductivity than the work side electrode body between the work side electrode body and the power supply apparatus side electrode body. The presence of the felt makes it possible to suppress the heat generated in the workpiece and the workpiece side electrode body from moving to the power supply side electrode body. The heating efficiency can be further greatly increased.
[0086] また、このように構成することにより、一対の電極のうちいずれの電極においても、ヮ ーク側電極体と電源装置側電極体との間にワーク側電極体よりも高い電気抵抗率を 有する導電性フェルトが存在することにより、当該導電性フェルトにおいて多くの熱量 を発生させることが可能となるため、この点からも、ワークが従来よりも大幅に昇温し 易くなり、ワークの加熱効率を従来よりも大幅に高くすることが可能となる。  [0086] With this configuration, in any electrode of the pair of electrodes, an electrical resistivity higher than that of the work side electrode body is provided between the work side electrode body and the power supply side electrode body. Since there is a conductive felt having a large amount of heat, it is possible to generate a large amount of heat in the conductive felt. From this point as well, the temperature of the workpiece is much easier to raise than before, and the heating of the workpiece The efficiency can be made significantly higher than before.
[0087] その結果、本発明のワーク通電加熱装置によれば、さらに大幅に少ない電力でヮ ークを通電加熱することが可能となり、また、ワークの昇温時間をさらに大幅に短縮化 することが可能となり、さらには、ワークのサイズが大きいものであっても十分高い温 度に通電加熱することが可能となる。 As a result, according to the work energization heating apparatus of the present invention, it becomes possible to energize and heat the work with much smaller electric power, and to further greatly shorten the temperature raising time of the work. Furthermore, even if the workpiece size is large, the temperature is sufficiently high. It is possible to heat and heat each time.
[0088] また、このように構成することにより、一対の電極のうちいずれの電極においても、ヮ ーク側電極体と電源装置側電極体との間にワーク側電極体よりも低い熱伝導率を有 する導電性フェルトが存在することにより、ワークやワーク側電極体で発生する熱が 電源装置側電極体へ移動するのを抑制することが可能となるため、電源装置側電極 体が高温になるのを抑制することが可能となり、電極周囲の部品が劣化し易くなるの を抑制することが可能となる。  [0088] Also, with this configuration, in any of the pair of electrodes, the thermal conductivity lower than that of the work-side electrode body is between the work-side electrode body and the power supply-side electrode body. Therefore, it is possible to suppress the heat generated in the work and the work-side electrode body from moving to the power supply-side electrode body, so that the power supply-side electrode body is heated to a high temperature. It is possible to suppress the deterioration of the components around the electrode.
[0089] (22)本発明のワーク通電加熱装置は、前記ワークとしての複数の金属部材を通電 加熱して前記複数の金属部材を接合する接合装置であることが好ましい。  (22) The work energization heating apparatus of the present invention is preferably a joining apparatus that energizes and heats a plurality of metal members as the work to join the plurality of metal members.
[0090] このように構成することにより、複数の金属部材を通電加熱する際の加熱効率を従 来よりも大幅に高くすることが可能となる。その結果、複数の金属部材を従来よりも大 幅に少ない電力で接合することが可能となり、また、複数の金属部材を接合するのに 要する時間を大幅に短縮化することが可能となり、さらには、複数の金属部材のサイ ズが大きいものであっても接合することが可能となる。  [0090] With such a configuration, it is possible to significantly increase the heating efficiency when energizing and heating a plurality of metal members than before. As a result, it is possible to join a plurality of metal members with much less power than before, and it is possible to greatly reduce the time required to join a plurality of metal members. Even if the plurality of metal members are large in size, they can be joined.
[0091] (23)本発明のワーク通電加熱装置は、前記ワークとしての焼結体用粉末を通電加 熱して前記焼結体用粉末を焼結する焼結装置であることが好ましい。  (23) The workpiece energization heating apparatus of the present invention is preferably a sintering device that sinters the sintered body powder by energizing and heating the sintered body powder as the workpiece.
[0092] このように構成することにより、焼結体用粉末を通電加熱する際の加熱効率を従来 よりも大幅に高くすることが可能となる。その結果、焼結体用粉末を従来よりも大幅に 少ない電力で焼結することが可能となり、また、焼結体用粉末を焼結するのに要する 時間を大幅に短縮化することが可能となり、さらには、サイズが大きい焼結体を製造 する場合であっても十分高い温度に通電加熱することが可能となる。  By configuring in this way, it becomes possible to significantly increase the heating efficiency when the sintered powder is heated by current. As a result, it becomes possible to sinter sintered powder with much less power than before, and to significantly reduce the time required to sinter the sintered powder. In addition, even when a sintered body having a large size is manufactured, it is possible to heat by heating to a sufficiently high temperature.
[0093] なお、本発明のワーク通電加熱方法(上記(1)〜(; 12)のいずれかに記載のワーク 通電加熱方法)で説明した好適な特徴は、本発明のワーク通電加熱装置(上記(20) 〜(23)の!/、ずれかに記載のワーク通電加熱装置)にも適用可能である。  [0093] It should be noted that the preferred feature described in the work electrical heating method of the present invention (the work electrical heating method described in any one of (1) to (; 12) above) is the work electrical heating apparatus of the present invention (above (20) to (23)! /, The workpiece energization heating device described in any of the above).
図面の簡単な説明  Brief Description of Drawings
[0094] [図 1]実施形態 1に係る接合体の製造方法に用いるワーク通電加熱装置 100を示す 図である。  FIG. 1 is a diagram showing a workpiece energization heating apparatus 100 used in a method for manufacturing a joined body according to Embodiment 1.
[図 2]実施形態 1に係る接合体の製造方法を説明するために示すフローチャートであ [図 3]実施形態 1に係る接合体の製造方法を説明するために示す図である。 FIG. 2 is a flowchart shown for explaining a method for manufacturing a joined body according to Embodiment 1. FIG. 3 is a view for explaining the method for manufacturing the joined body according to the first embodiment.
[図 4]実施形態 2に係る接合体の製造方法に用いるワーク通電加熱装置 200を示す 図である。  FIG. 4 is a diagram showing a workpiece energization heating apparatus 200 used in the method for manufacturing a joined body according to Embodiment 2.
[図 5]実施形態 3に係る接合体の製造方法に用いるワーク通電加熱装置 300を示す 図である。  FIG. 5 is a diagram showing a workpiece energization heating apparatus 300 used in the method for manufacturing a joined body according to Embodiment 3.
[図 6]実施形態 4に係る接合体の製造方法に用いるワーク通電加熱装置 400を示す 図である。  FIG. 6 is a diagram showing a workpiece energization heating apparatus 400 used in the method for manufacturing a joined body according to Embodiment 4.
[図 7]断熱用ハウジング 470を説明するために示す図である。  FIG. 7 is a view for explaining a heat insulating housing 470.
[図 8]実施形態 5に係る接合体の製造方法に用いるワーク通電加熱装置 500を示す 図である。  FIG. 8 is a diagram showing a workpiece energization heating apparatus 500 used in the method for manufacturing a joined body according to Embodiment 5.
[図 9]実施形態 6に係る焼結体の製造方法を説明するために示すフローチャートであ  FIG. 9 is a flowchart for explaining a method for manufacturing a sintered body according to Embodiment 6.
[図 10]実施形態 6に係る焼結体の製造方法を説明するために示す図である。 FIG. 10 is a view for explaining the method for manufacturing the sintered body according to the sixth embodiment.
[図 11]実施形態 7に係る焼結体の製造方法を説明するために示すフローチャートで ある。  FIG. 11 is a flow chart for explaining a method for manufacturing a sintered body according to Embodiment 7.
[図 12]実施形態 7に係る焼結体の製造方法を説明するために示す図である。  FIG. 12 is a view shown for explaining a method for manufacturing a sintered body according to Embodiment 7.
[図 13]試験例 1におけるワーク通電加熱方法を説明するために示す図である。 FIG. 13 is a diagram for explaining a work energization heating method in Test Example 1.
[図 14]試験例 1における試験結果を示すグラフである。 FIG. 14 is a graph showing test results in Test Example 1.
[図 15]試験例 1における金属部材 Wa, Wb及び電極 10a〜; 10fの通電加熱状態を示 す図面代用写真である。  FIG. 15 is a drawing-substituting photograph showing the electrically heated state of metal members Wa and Wb and electrodes 10a to 10f in Test Example 1.
[図 16]試験例 2における試験結果を示すグラフである。  FIG. 16 is a graph showing test results in Test Example 2.
[図 17]試験例 3における試験結果を示すグラフである。 FIG. 17 is a graph showing test results in Test Example 3.
[図 18]試験例 4における試験結果を示すグラフである。 FIG. 18 is a graph showing test results in Test Example 4.
[図 19]従来の接合体の製造方法を説明するために示す図である。 FIG. 19 is a view for explaining a conventional method of manufacturing a joined body.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明のワーク通電加熱方法、接合体の製造方法、焼結体の製造方法及 びワーク通電加熱装置について、図に示す実施の形態に基づいて説明する。 [0096] 〔実施形態 1〕 DESCRIPTION OF EMBODIMENTS Hereinafter, a workpiece energization heating method, a joined body manufacturing method, a sintered body manufacturing method, and a workpiece energization heating apparatus according to the present invention will be described based on embodiments shown in the drawings. [Embodiment 1]
実施形態 1は、本発明のワーク通電加熱方法を、複数の金属部材を接合して接合 体を製造する接合体の製造方法 (実施形態 1に係る接合体の製造方法)に適用した 場合について説明する実施形態である。  Embodiment 1 describes a case in which the work energization heating method of the present invention is applied to a joined body manufacturing method (joint body manufacturing method according to Embodiment 1) in which a plurality of metal members are joined to produce a joined body. It is embodiment to do.
[0097] 図 1は、実施形態 1に係る接合体の製造方法に用いるワーク通電加熱装置 100を 示す図である。なお、図 1においては、紙面上側をワーク通電加熱装置 100における 上側とし、紙面下側をワーク通電加熱装置 100における下側とする。図 2は、実施形 態 1に係る接合体の製造方法を説明するために示すフローチャートである。  FIG. 1 is a view showing a work energization heating apparatus 100 used in the method for manufacturing a joined body according to the first embodiment. In FIG. 1, the upper side of the drawing sheet is the upper side of the workpiece energization heating apparatus 100, and the lower side of the drawing plane is the lower side of the workpiece conduction heating apparatus 100. FIG. 2 is a flowchart for explaining the method for manufacturing the joined body according to the first embodiment.
[0098] 図 3は、実施形態 1に係る接合体の製造方法を説明するために示す図である。図 3  FIG. 3 is a view for explaining the method for manufacturing the joined body according to the first embodiment. Fig 3
(a)は金属部材準備工程 S 110を示す図であり、図 3 (b)は金属部材配置工程 S 120 を示す図であり、図 3 (c)は通電加熱工程 S 130を示す図であり、図 3 (d)は実施形態 1に係る接合体の製造方法により製造された接合体 を示す図である。なお、図 3 (b )及び図 3 (c)においては、図を簡略化するために、一対の電極 10a, 10b、電源装 置 30、配線 32及び 2つの金属部材 Wa, Wbのみ図示する。  (a) is a diagram showing a metal member preparation step S 110, FIG. 3 (b) is a diagram showing a metal member arrangement step S 120, and FIG. 3 (c) is a diagram showing an electric heating step S 130. FIG. 3 (d) is a view showing a joined body manufactured by the method for manufacturing a joined body according to the first embodiment. 3 (b) and 3 (c), only the pair of electrodes 10a and 10b, the power supply device 30, the wiring 32, and the two metal members Wa and Wb are shown in order to simplify the drawing.
[0099] 実施形態 1に係る接合体の製造方法は、図 1に示すワーク通電加熱装置 100 (実 施形態 1に係るワーク通電加熱装置 100)を用いて、電源装置 30と電気的に接続さ れた一対の電極 10a, 10bの間に、ワークとしての 2つの金属部材 Wa, Wbを配置し た状態で金属部材 Wa, Wbに電流を流すことにより金属部材 Wa, Wbを通電加熱し て接合体巧(図 3 (d)参照。)を製造する接合体の製造方法である。  [0099] The method of manufacturing the joined body according to Embodiment 1 is electrically connected to the power supply device 30 using the workpiece energization heating apparatus 100 (work energization heating apparatus 100 according to Embodiment 1) shown in FIG. With the two metal members Wa and Wb as a workpiece placed between the pair of electrodes 10a and 10b, the metal members Wa and Wb are energized and heated by flowing current through the metal members Wa and Wb to join them. This is a method for manufacturing a joined body for manufacturing a body (see FIG. 3 (d)).
[0100] 実施形態 1に係るワーク通電加熱装置 100は、図 1に示すように、電源装置 30と、 電源装置 30と電気的に接続された一対の電極 10a, 10bと、一対の電極 10a, 10b が内部に設置された真空チャンバ 40と、一対の電極 10a, 10bを冷却する一対の冷 却体 20a, 20bと、一対の電極 10a, 10bを互いに近づける向きに押圧する押圧装置 50とを備え、一対の電極 10a, 10bの間に配置された金属部材 Wa, Wbを通電加熱 して金属部材 Wa, Wbを接合する接合装置である。  As shown in FIG. 1, the work energization heating apparatus 100 according to Embodiment 1 includes a power supply device 30, a pair of electrodes 10a, 10b electrically connected to the power supply device 30, and a pair of electrodes 10a, A vacuum chamber 40 in which 10b is installed; a pair of cooling bodies 20a, 20b that cool the pair of electrodes 10a, 10b; and a pressing device 50 that presses the pair of electrodes 10a, 10b toward each other. The joining device joins the metal members Wa and Wb by energizing and heating the metal members Wa and Wb disposed between the pair of electrodes 10a and 10b.
[0101] 電源装置 30は、金属部材 Wa, Wbにパルス電流を流す機能を有し、配線 32、冷 却体 20a, 20b及び冷却体保護板 24a, 24b (後述する。)を介して一対の電極 10a, 10bと電気的に接続されている。 [0102] 実施形態 1に係る接合体の製造方法においては、金属部材 Wa, Wbを通電加熱 する際には、金属部材 Wa, Wbにパルス電流を流すことにより金属部材 Wa, Wbを 通電加熱する。 [0101] The power supply device 30 has a function of causing a pulse current to flow through the metal members Wa and Wb, and a pair of wires 32, the cooling bodies 20a and 20b, and the cooling body protection plates 24a and 24b (described later). The electrodes 10a and 10b are electrically connected. [0102] In the method of manufacturing the joined body according to Embodiment 1, when the metal members Wa and Wb are energized and heated, the metal members Wa and Wb are energized and heated by applying a pulse current to the metal members Wa and Wb. .
[0103] 一対の電極 10a, 10bは、ワーク側電極体 12a, 12bと、ワーク側電極体 12a, 12b よりも低い熱伝導率及びワーク側電極体 12a, 12bよりも高い電気抵抗率を有する導 電性フェルト 14a, 14bと、電源装置側電極体 16a, 16bとがこの順序で積層された 構造を有する。  [0103] The pair of electrodes 10a and 10b includes a work-side electrode body 12a and 12b, and a conductor having lower thermal conductivity than the work-side electrode bodies 12a and 12b and higher electrical resistivity than the work-side electrode bodies 12a and 12b. The electric felts 14a and 14b and the power supply device side electrode bodies 16a and 16b are stacked in this order.
[0104] ワーク側電極体 12a, 12bは、電極 10a, 10bを構成する電極体のうち、金属部材 Wa, Wb側に配置される電極体である。ワーク側電極体 12a, 12bとして、カーボン 材料からなる円盤形状の平板 (例えば、東洋炭素株式会社製、 ISEM— 3。)を用い る。ワーク側電極体 12a, 12bの熱伝導率は、例えば、 128W/(m'K)である。ヮー ク側電極体 12a, 12bの電気抵抗率は、例えば、 10. Ομ Ω 'mである。ワーク側電極 体 12a, 12bのサイズは、例えば、 100mm (直径) X 20mm (厚さ)である。  [0104] The workpiece-side electrode bodies 12a and 12b are electrode bodies arranged on the metal members Wa and Wb side among the electrode bodies constituting the electrodes 10a and 10b. As the work-side electrode bodies 12a and 12b, disk-shaped flat plates made of a carbon material (for example, ISEM-3 manufactured by Toyo Tanso Co., Ltd.) are used. The thermal conductivity of the workpiece side electrode bodies 12a, 12b is, for example, 128 W / (m′K). The electrical resistivity of the negative electrode bodies 12a, 12b is, for example, 10. μμΩ′m. The size of the workpiece side electrode bodies 12a and 12b is, for example, 100 mm (diameter) × 20 mm (thickness).
[0105] 導電性フェルト 14a, 14bは、電極 10a, 10bを構成する部材のうち、ワーク側電極 体 12a, 12bと電源装置側電極体 16a, 16bとの間に配置される部材である。導電性 フェルト 14a, 14bとして、円盤形状のカーボンフェルト(例えば、株式会社ァクロス製 、 2000°C焼成品。)を用いる。導電性フェルト 14a, 14bの熱伝導率は、例えば、 0. 6W/(m.K)である。導電性フェルト 14a, 14bの電気抵抗率は、例えば、 1000 Ω 'mである。導電性フェルト 14a, 14bの力、さ密度は、例えば、 0. lg/cm3である。 ワーク導電性フェルト 14a, 14bのサイズは、荷重がかかっていない自然な状態であ るときには、例えば、 100mm (直径) X約 4mm (厚さ)である。導電性フェルト 14a, 1 4bをワーク側電極体 12a, 12bと電源装置側電極体 16a, 16bとの間に配置したとき には、導電性フェルト 14a, 14bの厚さは、例えば、;!〜 2mm程度になる。 [0105] The conductive felts 14a and 14b are members disposed between the work-side electrode bodies 12a and 12b and the power supply-side electrode bodies 16a and 16b among the members constituting the electrodes 10a and 10b. As the conductive felts 14a and 14b, disc-shaped carbon felt (for example, a product manufactured by Across Co., Ltd., fired at 2000 ° C.) is used. The thermal conductivity of the conductive felts 14a and 14b is, for example, 0.6 W / (mK). The electrical resistivity of the conductive felts 14a and 14b is, for example, 1000 Ω′m. The force and density of the conductive felts 14a and 14b are, for example, 0. lg / cm 3 . The size of the workpiece conductive felts 14a and 14b is, for example, 100 mm (diameter) X about 4 mm (thickness) in a natural state where no load is applied. When the conductive felts 14a, 14b are disposed between the workpiece side electrode bodies 12a, 12b and the power supply side electrode bodies 16a, 16b, the thickness of the conductive felts 14a, 14b is, for example: It becomes about 2mm.
[0106] 導電性フェルト 14a, 14bの熱伝導率(0. 6W/ (m.K) )は、ワーク側電極体 12a, 12bの熱伝導率( 128W/ (m-K))の約 1/200である。  [0106] The thermal conductivities (0.6 W / (m.K)) of the conductive felts 14a, 14b are about 1/200 of the thermal conductivities (128 W / (m-K)) of the workpiece side electrode bodies 12a, 12b.
[0107] 導電性フェルト 14a, 14bの電気抵抗率(1000 Ω .m)は、ワーク側電極体 12a, l2bの電気抵抗率(10· Ομ Ω .πι)の約 100倍である。 [0107] The electrical resistivity (1000 Ω.m) of the conductive felts 14a, 14b is about 100 times the electrical resistivity (10 · ΟμΩ.πι) of the workpiece side electrode bodies 12a, l 2 b.
[0108] 導電性フエノレト 14a, 14bの厚さ(4mm)は、ワーク側電極体 12a, 12bの厚さ(20m m)よりも薄い。 [0108] The thickness (4mm) of the conductive phenols 14a, 14b is the same as the thickness of the workpiece side electrode bodies 12a, 12b (20m thinner than m).
[0109] 電源装置側電極体 16a, 16bは、電極 10a, 10bを構成する電極体のうち、電源装 置 30側に配置される電極体である。上側の電源装置側電極体 16aは、 3枚の平板 1 8a〜; 18aが積層された構造を有する。下側の電源装置側電極体 16bは、 3枚の平 [0109] The power supply device side electrode bodies 16a and 16b are electrode bodies arranged on the power supply device 30 side among the electrode bodies constituting the electrodes 10a and 10b. The upper power supply device side electrode body 16a has a structure in which three flat plates 18a to 18a are laminated. The lower power supply side electrode body 16b has three flat
1 3 13
板 18b〜; 18bが積層された構造を有する。  Plates 18b to 18; have a structure in which 18b is laminated.
1 3  13
[0110] 平板 18a〜; 18a , 18b〜; 18bとして、それぞれカーボン材料からなる円盤形状の  [0110] Flat plates 18a-; 18a, 18b-;
1 3 1 3  1 3 1 3
平板 (例えば、東洋炭素株式会社製、 ISEM— 3。)を用いる。平板 18a〜; 18a , 18  A flat plate (for example, ISEM-3, manufactured by Toyo Tanso Co., Ltd.) is used. Flat plate 18a ~; 18a, 18
1 3 b〜: L 8bの熱伝導率は、例えば、 128W/ (m'K)である。平板 18a, 18a, 18b 1 3 b˜: The thermal conductivity of L 8b is, for example, 128 W / (m′K). Flat plate 18a, 18a, 18b
1 3 1 2 11 3 1 2 1
, 18bのサイズは、 列えば、、 100mm (直径) X 20mm (厚さ)であり、平板 18a, 18b The size of 18b is, for example, 100mm (diameter) x 20mm (thickness), flat plate 18a, 18b
2 3 のサイズは、例えば、 150mm (直径) X 20mm (厚さ)である。なお、平板 18a〜18 The size of 2 3 is, for example, 150 mm (diameter) X 20 mm (thickness). Flat plate 18a-18
3 1 aのうち平板 18aの平面サイズは、上側の冷却体保護板 24aの平面サイズと同じで3 The flat size of the flat plate 18a is the same as that of the upper cooling body protection plate 24a.
3 3 3 3
あり、平板 18b〜18bのうち平板 18bの平面サイズは、下側の冷却体保護板 24b  Yes, of the flat plates 18b to 18b, the plane size of the flat plate 18b is the lower cooling body protection plate 24b
1 3 3  1 3 3
の平面サイズと同じである。  Is the same as the plane size.
[0111] なお、実施形態 1に係る接合体の製造方法においては、金属部材 Wa, Wbのサイ ズ (厚さ)に応じて、平板 18a〜; 18a , 18b〜; 18bの枚数を増減することができる。 [0111] In the method of manufacturing the joined body according to Embodiment 1, the number of flat plates 18a to 18a, 18b to 18b is increased or decreased depending on the size (thickness) of the metal members Wa and Wb. Can do.
1 3 1 3  1 3 1 3
[0112] 真空チャンバ 40は、一対の電極 10a, 10bと、金属部材 Wa, Wbと、一対の冷却体  [0112] The vacuum chamber 40 includes a pair of electrodes 10a and 10b, metal members Wa and Wb, and a pair of cooling bodies.
20a, 20bの一部とを内包するように構成されている。真空チャンバ 40には、真空チ ヤンバ 40内部の気体を外部に排出する真空ポンプ 60が取り付けられている。  20a and 20b are included. A vacuum pump 60 for discharging the gas inside the vacuum chamber 40 to the outside is attached to the vacuum chamber 40.
[0113] 冷却体 20a, 20bは、それぞれステンレス鋼からなる。冷却体 20a, 20bには、それ ぞれ、冷却媒体を流す冷却媒体用流路 22a, 22bが形成されている。  [0113] The cooling bodies 20a and 20b are each made of stainless steel. Cooling medium flow paths 22a and 22b for flowing the cooling medium are formed in the cooling bodies 20a and 20b, respectively.
[0114] 冷却体 20aと電極 10aとの間には、電極 10aで発生する熱から冷却体 20aを保護 するためのステンレス鋼からなる冷却体保護板 24aが配設されている。同様に、冷却 体 20bと電極 10bとの間には、電極 10bで発生する熱から冷却体 20bを保護するた めのステンレス鋼からなる冷却体保護板 24bが配設されている。  [0114] Between the cooling body 20a and the electrode 10a, a cooling body protection plate 24a made of stainless steel for protecting the cooling body 20a from heat generated in the electrode 10a is disposed. Similarly, a cooling body protection plate 24b made of stainless steel is provided between the cooling body 20b and the electrode 10b to protect the cooling body 20b from heat generated in the electrode 10b.
[0115] 実施形態 1に係る接合体の製造方法においては、金属部材 Wa, Wbを通電加熱 する際には、冷却体 20a, 20bの冷却媒体用流路 22a, 22bに冷却媒体 (冷却水)を 流すことにより、一対の電極 10a, 10bにおける電源装置 30側の部分を冷却した状 態で金属部材 Wa, Wbを通電加熱する。 [0116] 押圧装置 50は、上下移動可能な油圧シリンダ 52を有し、冷却体 20bの下方に取り 付けられている。油圧シリンダ 52が上方に移動すると、冷却体 20bとともに電極 10b が上方へ押し上がり、結果として、一対の電極 10a, 10bは互いに近づく向きに押圧 される。 [0115] In the method of manufacturing the joined body according to Embodiment 1, when the metal members Wa and Wb are energized and heated, the cooling medium (cooling water) is added to the cooling medium passages 22a and 22b of the cooling bodies 20a and 20b. By flowing, the metal members Wa and Wb are energized and heated in a state where the portions on the power supply device 30 side of the pair of electrodes 10a and 10b are cooled. [0116] The pressing device 50 has a hydraulic cylinder 52 that can move up and down, and is attached below the cooling body 20b. When the hydraulic cylinder 52 moves upward, the electrode 10b is pushed upward together with the cooling body 20b, and as a result, the pair of electrodes 10a and 10b are pressed toward each other.
[0117] 実施形態 1に係る接合体の製造方法においては、金属部材 Wa, Wbを通電加熱 する際には、押圧装置 50によって、一対の電極 10a, 10bを互いに近づける向きに 押圧した状態で金属部材 Wa, Wbを通電加熱する。  [0117] In the method for manufacturing a joined body according to Embodiment 1, when the metal members Wa and Wb are energized and heated, the metal is pressed in a state in which the pair of electrodes 10a and 10b are pressed toward each other by the pressing device 50. The members Wa and Wb are heated by energization.
[0118] 実施形態 1に係る接合体の製造方法は、図 2及び図 3に示すように、金属部材準備 工程 S 110と、金属部材配置工程 S 120と、通電加熱工程 S130とをこの順序で含む 。以下、これらの工程を順に説明する。  [0118] As shown in FIGS. 2 and 3, the method of manufacturing the joined body according to Embodiment 1 includes a metal member preparation step S110, a metal member arrangement step S120, and an electric heating step S130 in this order. Including Hereinafter, these steps will be described in order.
[0119] 1.金属部材準備工程 S110  [0119] 1. Metal parts preparation process S110
まず、ワークとして、 2つの金属部材 Wa, Wbを準備する(図 3 (a)参照。)。  First, two metal members Wa and Wb are prepared as workpieces (see FIG. 3 (a)).
[0120] 2.金属部材配置工程 S 120  [0120] 2. Metal member placement process S 120
次に、一対の電極 10a, 10bの間に、接合予定面 Sa, Sb (図 3 (a)参照。)を突き合 せた状態で金属部材 Wa, Wbを配置する(図 3 (b)参照。)。  Next, the metal members Wa and Wb are arranged between the pair of electrodes 10a and 10b with the surfaces to be joined Sa and Sb (see FIG. 3 (a)) butted (see FIG. 3 (b)). .)
[0121] 3.通電加熱工程 S 130  [0121] 3. Electrical heating process S 130
次に、金属部材 Wa, Wbに電流を流すことにより、金属部材 Wa, Wbを通電加熱し て金属部材 Wa, Wbを接合する(図 3 (c)参照。)。  Next, by passing an electric current through the metal members Wa and Wb, the metal members Wa and Wb are energized and heated to join the metal members Wa and Wb (see FIG. 3C).
[0122] 以上の工程を行うことにより、接合体 Pjを製造することができる(図 3 (d)参照。)。  [0122] By performing the above steps, the joined body Pj can be manufactured (see FIG. 3 (d)).
[0123] 以上説明した実施形態 1に係る接合体の製造方法によれば、ワーク側電極体 12a , 12bと電源装置側電極体 16a, 16bとの間にワーク側電極体 12a, 12bよりも低い 熱伝導率を有する導電性フェルト 14a, 14bが存在することにより、金属部材 Wa, W bやワーク側電極体 12a, 12bで発生する熱が電源装置側電極体 16a, 16bへ移動 するのを抑制することが可能となるため、金属部材 Wa, Wbが従来よりも大幅に昇温 し易くなり、金属部材 Wa, Wbの加熱効率を従来よりも大幅に高くすることが可能とな  [0123] According to the manufacturing method of the joined body according to the first embodiment described above, the gap between the workpiece side electrode bodies 12a, 12b and the power supply side electrode bodies 16a, 16b is lower than that of the workpiece side electrode bodies 12a, 12b. The presence of the conductive felts 14a and 14b having thermal conductivity suppresses the heat generated in the metal members Wa and Wb and the workpiece side electrode bodies 12a and 12b from moving to the power supply side electrode bodies 16a and 16b. Therefore, the temperature of the metal members Wa and Wb can be greatly increased than before, and the heating efficiency of the metal members Wa and Wb can be significantly increased as compared with the prior art.
[0124] また、実施形態 1に係る接合体の製造方法によれば、ワーク側電極体 12a, 12bと 電源装置側電極体 16a, 16bとの間にワーク側電極体 12a, 12bよりも高い電気抵抗 率を有する導電性フェルト 14a, 14b力 S存在することにより、当該導電性フェルト 14a , 14bにおいて多くの熱量を発生させることが可能となるため、この点からも、金属部 材 Wa, Wbが従来よりも大幅に昇温し易くなり、金属部材 Wa, Wbの加熱効率を従来 よりも大幅に高くすることが可能となる。 [0124] Further, according to the manufacturing method of the joined body according to the first embodiment, the electric power higher than that of the work side electrode bodies 12a and 12b is provided between the work side electrode bodies 12a and 12b and the power supply apparatus side electrode bodies 16a and 16b. resistance Since the conductive felts 14a and 14b have a force S, a large amount of heat can be generated in the conductive felts 14a and 14b. From this point, the metal parts Wa and Wb It becomes easier to raise the temperature than before, and the heating efficiency of the metal members Wa and Wb can be made significantly higher than before.
[0125] その結果、実施形態 1に係る接合体の製造方法によれば、従来よりも大幅に少ない 電力で金属部材 Wa, Wbを通電加熱することが可能となり、また、金属部材 Wa, Wb の昇温時間を従来よりも大幅に短縮化することが可能となり、さらには、金属部材 Wa , Wbのサイズが大きいものであっても十分高い温度に通電加熱することが可能とな As a result, according to the method for manufacturing the joined body according to Embodiment 1, it is possible to heat and heat the metal members Wa and Wb with much less electric power than before, and the metal members Wa and Wb can be heated. It is possible to significantly shorten the temperature rise time than before, and furthermore, even if the metal members Wa and Wb are large in size, they can be heated to a sufficiently high temperature.
[0126] また、実施形態 1に係る接合体の製造方法によれば、ワーク側電極体 12a, 12bと 電源装置側電極体 16a, 16bとの間にワーク側電極体 12a, 12bよりも低い熱伝導率 を有する導電性フェルト 14a, 14bが存在することにより、金属部材 Wa, Wbやワーク 側電極体 12a, 12bで発生する熱が電源装置側電極体 16a, 16bへ移動するのを抑 制することが可能となるため、電源装置側電極体 16a, 16bが高温になるのを抑制す ることが可能となり、電極 10a, 10b周囲の部品が劣化し易くなるのを抑制することが 可能となる。 [0126] Further, according to the manufacturing method of the joined body according to the first embodiment, a lower heat than the work side electrode bodies 12a, 12b is provided between the work side electrode bodies 12a, 12b and the power supply device side electrode bodies 16a, 16b. The presence of the conductive felts 14a and 14b having conductivity suppresses the heat generated in the metal members Wa and Wb and the workpiece side electrode bodies 12a and 12b from moving to the power supply side electrode bodies 16a and 16b. Therefore, it is possible to suppress the power supply device side electrode bodies 16a and 16b from becoming high temperature, and it is possible to suppress the components around the electrodes 10a and 10b from being easily deteriorated. .
[0127] また、実施形態 1に係る接合体の製造方法によれば、導電性フェルト 14a, 14bの 熱伝導率をワーク側電極体 12a, 12bの熱伝導率の 1/10以下とすることにより、金 属部材 Wa, Wbやワーク側電極体 12a, 12bで発生する熱が電源装置側電極体 16 a, 16bへ移動するのを大幅に抑制することが可能となる。また、導電性フェルト 14a, 14bの電気抵抗率をワーク側電極体 12a, 12bの電気抵抗率の 5倍以上とすることに より、当該導電性フェルト 14a, 14bにおいて多くの熱量を発生させることが可能とな  [0127] In addition, according to the method for manufacturing a joined body according to Embodiment 1, the thermal conductivity of the conductive felts 14a and 14b is set to 1/10 or less of the thermal conductivity of the workpiece-side electrode bodies 12a and 12b. The heat generated in the metal members Wa and Wb and the work-side electrode bodies 12a and 12b can be greatly suppressed from moving to the power supply apparatus-side electrode bodies 16a and 16b. In addition, by making the electrical resistivity of the conductive felts 14a and 14b more than five times the electrical resistivity of the workpiece side electrode bodies 12a and 12b, a large amount of heat can be generated in the conductive felts 14a and 14b. Made possible
[0128] また、実施形態 1に係る接合体の製造方法によれば、導電性フェルト 14a, 14bは、 0. 2g/cm3以下の力、さ密度を有するカーボンフェルトからなるため、金属部材 Wa, Wbやワーク側電極体 12a, 12bで発生する熱が電源装置側電極体 16a, 16bへ移 動するのを大幅に抑制することが可能となり、当該導電性フェルト 14a, 14bで多くの 熱量を発生させることが可能となる。 [0129] また、実施形態 1に係る接合体の製造方法によれば、ワーク側電極体 12a, 12bは カーボン材料からなるため、ワーク側電極体 12a, 12bの耐熱性を高くすることが可 能となる。 [0128] Also, according to the method of manufacturing the joined body according to Embodiment 1, the conductive felts 14a and 14b are made of carbon felt having a force and a density of 0.2 g / cm 3 or less. , Wb and the heat generated by the workpiece side electrode bodies 12a, 12b can be greatly suppressed from transferring to the power supply side electrode bodies 16a, 16b, and a large amount of heat can be generated by the conductive felts 14a, 14b. Can be generated. [0129] Further, according to the method for manufacturing the joined body according to the first embodiment, since the workpiece side electrode bodies 12a and 12b are made of a carbon material, the heat resistance of the workpiece side electrode bodies 12a and 12b can be increased. It becomes.
[0130] また、実施形態 1に係る接合体の製造方法によれば、電源装置側電極体 16a, 16 bはカーボン材料からなるため、電源装置側電極体 16a, 16bの耐熱性を高くするこ とが可能となる。  [0130] Also, according to the manufacturing method of the joined body according to Embodiment 1, the power supply device side electrode bodies 16a and 16b are made of a carbon material, so that the heat resistance of the power supply device side electrode bodies 16a and 16b is increased. Is possible.
[0131] また、実施形態 1に係る接合体の製造方法によれば、導電性フェルト 14a, 14bの 厚さは、ワーク側電極体 12a, 12bの厚さよりも薄いため、導電性フェルト 14a, 14b における電気抵抗が大きくなつて多くの熱が発生するということがなくなり、金属部材 Wa, Wbの加熱効率を低下させてしまうことがなくなる。  [0131] Also, according to the method for manufacturing the joined body according to the first embodiment, the thickness of the conductive felts 14a and 14b is smaller than the thickness of the workpiece-side electrode bodies 12a and 12b. As a result, the heat resistance of the metal members Wa and Wb is not reduced due to the increase in electrical resistance.
[0132] また、実施形態 1に係る接合体の製造方法によれば、電源装置側電極体 16aは、 平板 18a〜; 18aが積層された構造を有し、電源装置側電極体 16bは、平板 18b 〜  [0132] Also, according to the method for manufacturing the joined body according to Embodiment 1, the power device side electrode body 16a has a structure in which the flat plates 18a to 18a are stacked, and the power device side electrode body 16b is a flat plate. 18b ~
1 3 1 1 3 1
18bが積層された構造を有するため、平板 18a〜; 18a , 18b〜; 18bの枚数を増Since 18b has a laminated structure, the number of flat plates 18a ~; 18a, 18b ~;
3 1 3 1 3 減することで一対の電極 10a, 10bの間隔を変えることが可能となり、様々な厚さの金 属部材を一対の電極 10a, 10bの間に配置する作業を容易に行うことが可能となる。 3 1 3 1 3 By reducing the distance, it becomes possible to change the distance between the pair of electrodes 10a, 10b, and to easily arrange the metal members of various thicknesses between the pair of electrodes 10a, 10b. Is possible.
[0133] また、実施形態 1に係る接合体の製造方法によれば、一対の電極 10a, 10bを互い に近づける向きに押圧した状態で金属部材 Wa, Wbを通電加熱するため、各電極 1 0a, 10bと金属部材 Wa, Wbとの密接度が高くなり、各電極 10a, 10bと金属部材 W a, Wbとの接触抵抗が変動し難くなるため、安定した通電加熱を行うことが可能となる[0133] Also, according to the method for manufacturing a joined body according to Embodiment 1, the metal members Wa and Wb are energized and heated in a state where the pair of electrodes 10a and 10b are pressed so as to approach each other. , 10b and the metal members Wa, Wb become close, and the contact resistance between the electrodes 10a, 10b and the metal members Wa, Wb hardly fluctuates, so that stable energization heating can be performed.
Yes
[0134] また、実施形態 1に係る接合体の製造方法によれば、一対の電極 10a, 10bにおけ る電源装置 30側を冷却した状態で金属部材 Wa, Wbを通電加熱するため、電極 10 a, 10bにおける電源装置 30側の部分が好ましくない温度に上昇してしまうのを抑制 することが可能となり、電極 10a, 10b周囲の部品が劣化し易くなるのをさらに抑制す ること力 S可倉 となる。  [0134] Also, according to the method of manufacturing the joined body according to Embodiment 1, the metal members Wa and Wb are energized and heated while the power supply device 30 side of the pair of electrodes 10a and 10b is cooled. It is possible to suppress the temperature of the part on the power supply device 30 side in a and 10b from rising to an unfavorable temperature, and to further suppress deterioration of components around the electrodes 10a and 10b. It becomes a storehouse.
[0135] また、実施形態 1に係る接合体の製造方法によれば、金属部材 Wa, Wbにノ ルス 電流を流すことにより金属部材 Wa, Wbを通電加熱するため、金属部材 Wa, Wbの 加熱効率をさらに大幅に高くすることが可能となる。 [0136] また、実施形態 1に係る接合体の製造方法によれば、上述したように、金属部材準 備工程と、金属部材配置工程と、通電加熱工程とをこの順序で含む。これにより、高 い加熱効率で金属部材 Wa, Wbを通電加熱することが可能となるため、従来よりも大 幅に少ない電力で金属部材 Wa, Wbを接合することが可能となり、また、金属部材 W a, Wbを接合するのに要する時間を大幅に短縮化することが可能となり、さらには、 金属部材 Wa, Wbのサイズが大き!/、ものであっても十分高!/、温度で接合することが 可能となる。 [0135] In addition, according to the method for manufacturing a joined body according to Embodiment 1, the metal members Wa and Wb are energized and heated by flowing a Nors current through the metal members Wa and Wb. The efficiency can be further greatly increased. [0136] In addition, according to the method for manufacturing a joined body according to Embodiment 1, as described above, the metal member preparation step, the metal member arrangement step, and the energization heating step are included in this order. As a result, the metal members Wa and Wb can be energized and heated with high heating efficiency, so that it is possible to join the metal members Wa and Wb with much less power than before, and the metal members The time required to join W a and Wb can be greatly shortened, and the size of the metal members Wa and Wb is large! It becomes possible to do.
[0137] また、実施形態 1に係る接合体の製造方法によれば、高!/、加熱効率で金属部材 W a, Wbを通電加熱することが可能となるため、十分高い温度で金属部材 Wa, Wbを 接合することが可能となり、高品質の接合体 Pjを製造することが可能となる。  [0137] In addition, according to the method for manufacturing a joined body according to Embodiment 1, it is possible to electrically heat the metal members Wa and Wb with high! / And heating efficiency, and thus the metal member Wa at a sufficiently high temperature. , Wb can be bonded, and a high-quality bonded body Pj can be manufactured.
[0138] また、実施形態 1に係る接合体の製造方法によれば、高!/、加熱効率で金属部材 W a, Wbを通電加熱することが可能となるため、製造コストの安価な接合体 Pjを製造す ること力 S可倉 となる。  [0138] Further, according to the method for manufacturing a joined body according to Embodiment 1, the metal members Wa and Wb can be energized and heated with high! / And heating efficiency, so that the joined body can be manufactured at low manufacturing cost. The ability to produce Pj becomes S Kurakura.
[0139] 〔実施形態 2〕  [Embodiment 2]
実施形態 2は、本発明のワーク通電加熱方法を、複数の金属部材を接合して接合 体を製造する接合体の製造方法 (実施形態 2に係る接合体の製造方法)に適用した 場合について説明する実施形態である。  Embodiment 2 describes a case where the workpiece energization heating method of the present invention is applied to a joined body manufacturing method (joint body manufacturing method according to Embodiment 2) in which a plurality of metal members are joined to manufacture a joined body. It is embodiment to do.
[0140] 図 4は、実施形態 2に係る接合体の製造方法に用いるワーク通電加熱装置 200を 示す図である。なお、図 4において、実施形態 1で説明した部材と同一の部材につい ては同一の符号を付し、詳細な説明を省略する。  [0140] FIG. 4 is a diagram showing a workpiece energization heating apparatus 200 used in the method for manufacturing a joined body according to the second embodiment. In FIG. 4, the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0141] 実施形態 2に係る接合体の製造方法は、基本的には実施形態 1に係る接合体の製 造方法と同様の通電加熱工程を含む接合体の製造方法であるが、導電性フェルトの 構成が実施形態 1に係る接合体の製造方法の場合とは異なる。すなわち、実施形態 2に係る接合体の製造方法においては、図 4に示すように、一対の電極 210a, 210b のレヽずれにおレヽても、 3枚のフエノレト片 215a ~215a , 215b〜215bカ積層され  [0141] The method for manufacturing a joined body according to the second embodiment is basically a method for manufacturing a joined body including an electric heating process similar to the method for manufacturing the joined body according to the first embodiment. This configuration is different from that in the case of the joined body manufacturing method according to the first embodiment. That is, in the method for manufacturing a joined body according to the second embodiment, as shown in FIG. 4, even if the pair of electrodes 210a and 210b is misaligned, the three phenolic pieces 215a to 215a and 215b to 215b Laminated
1 3 1 3  1 3 1 3
た構造を有する導電性フェルト 214a, 214bを用いている。  The conductive felts 214a and 214b having the above structure are used.
[0142] このように、実施形態 2に係る接合体の製造方法においては、実施形態 1に係る接 合体の製造方法とは導電性フェルトの構成が異なるが、実施形態 1に係る接合体の 製造方法の場合と同様に、一対の電極として、ワーク側電極体 12a, 12bと電源装置 側電極体 16a, 16bとの間にワーク側電極体 12a, 12bよりも低い熱伝導率及びヮー ク側電極体 12a, 12bよりも高い電気抵抗率を有する導電性フェルト 214a, 214b力 S 配置された電極 210a, 210bを用いるため、金属部材 Wa, Wbやワーク側電極体 12 a, 12bで発生する熱が電源装置側電極体 16a, 16bへ移動するのを抑制することが 可能となり、また、導電性フェルト 214a, 214bにおいて多くの熱量を発生させること が可能となる。その結果、金属部材 Wa, Wbが従来よりも大幅に昇温し易くなり、金 属部材 Wa, Wbの加熱効率を従来よりも大幅に高くすることが可能となる。 [0142] As described above, the method for manufacturing the joined body according to Embodiment 2 differs from the method for producing the joined body according to Embodiment 1 in the configuration of the conductive felt, but the structure of the joined body according to Embodiment 1 is different. As in the case of the manufacturing method, the thermal conductivity lower than that of the workpiece side electrode bodies 12a and 12b and the side of the workpiece are set between the workpiece side electrode bodies 12a and 12b and the power supply side electrode bodies 16a and 16b as a pair of electrodes. Conductive felt 214a, 214b force S with higher electrical resistivity than the electrode bodies 12a, 12b S Because the arranged electrodes 210a, 210b are used, the heat generated in the metal members Wa, Wb and the workpiece side electrode bodies 12a, 12b Can be suppressed from moving to the power supply device side electrode bodies 16a and 16b, and a large amount of heat can be generated in the conductive felts 214a and 214b. As a result, the temperature of the metal members Wa and Wb can be easily increased as compared with the conventional case, and the heating efficiency of the metal members Wa and Wb can be significantly increased as compared with the conventional case.
[0143] また、実施形態 2に係る接合体の製造方法によれば、導電性フェルト 214a, 214b は、 3枚のフエノレト片 215a〜215a , 215b〜215bカ積層された構造を有するた [0143] In addition, according to the method for manufacturing a joined body according to Embodiment 2, the conductive felts 214a and 214b have a structure in which three pieces of phenolate 215a to 215a and 215b to 215b are stacked.
1 3 1 3  1 3 1 3
め、金属部材 Wa, Wbやワーク側電極体 12a, 12bで発生する熱が電源装置側電極 体 16a, 16bへ移動するのをさらに大幅に抑制することが可能となる。  Therefore, the heat generated in the metal members Wa and Wb and the work-side electrode bodies 12a and 12b can be further greatly suppressed from moving to the power supply apparatus-side electrode bodies 16a and 16b.
[0144] なお、実施形態 2に係る接合体の製造方法は、導電性フェルトの構成以外は実施 形態 1に係る接合体の製造方法の場合と同様の接合体の製造方法であるため、実 施形態 1に係る接合体の製造方法が有する効果のうち該当する効果をそのまま有す [0144] The method for manufacturing a joined body according to the second embodiment is the same as the method for producing a joined body according to the first embodiment except for the configuration of the conductive felt. Has the corresponding effect as it is among the effects of the method for manufacturing the joined body according to aspect 1
[0145] 〔実施形態 3〕 [Embodiment 3]
実施形態 3は、本発明のワーク通電加熱方法を、複数の金属部材を接合して接合 体を製造する接合体の製造方法 (実施形態 3に係る接合体の製造方法)に適用した 場合について説明する実施形態である。  Embodiment 3 describes a case where the work energization heating method of the present invention is applied to a method for manufacturing a joined body in which a plurality of metal members are joined to produce a joined body (a joined body manufacturing method according to Embodiment 3). It is embodiment to do.
[0146] 図 5は、実施形態 3に係る接合体の製造方法に用いるワーク通電加熱装置 300を 示す図である。なお、図 5において、実施形態 1で説明した部材と同一の部材につい ては同一の符号を付し、詳細な説明を省略する。  FIG. 5 is a view showing a work energization heating apparatus 300 used in the method for manufacturing a joined body according to the third embodiment. In FIG. 5, the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0147] 実施形態 3に係る接合体の製造方法は、基本的には実施形態 1に係る接合体の製 造方法と同様の通電加熱工程を含む接合体の製造方法であるが、電源装置側電極 体の構成が実施形態 1に係る接合体の製造方法の場合とは異なる。すなわち、実施 形態 3に係る接合体の製造方法においては、図 5に示すように、一対の電源装置側 電極体 316a, 316bのレヽずれ ίこおレヽても、 3枚の平板 318a ~318a , 318b—31 8bの平面サイズは、ワーク側電極体 312a, 312bに向かって徐々に大きくなつてい[0147] The method for manufacturing a joined body according to the third embodiment is basically a method for manufacturing a joined body including an energization heating process similar to the method for producing the joined body according to the first embodiment. The configuration of the electrode body is different from that in the method for manufacturing the joined body according to the first embodiment. That is, in the method of manufacturing the joined body according to the third embodiment, as shown in FIG. 5, even if the pair of power supply side electrode bodies 316a and 316b is displaced, the three flat plates 318a to 318a, 318b—31 The plane size of 8b gradually increases toward the workpiece side electrode body 312a, 312b.
3 Three
る。ワーク側電極体 312a, 312b及び導電性フエノレト 314a, 314bの平面サイズは、 平板 318a , 318bの平面サイズと同じである。  The The plane sizes of the work side electrode bodies 312a and 312b and the conductive phenols 314a and 314b are the same as the plane sizes of the flat plates 318a and 318b.
[0148] このように、実施形態 3に係る接合体の製造方法においては、実施形態 1に係る接 合体の製造方法とは電源装置側電極体の構成が異なるが、実施形態 1に係る接合 体の製造方法の場合と同様に、一対の電極として、ワーク側電極体 312a, 312bと電 源装置側電極体 316a, 316bとの間にワーク側電極体 12a, 12bよりも低い熱伝導 率及びワーク側電極体 12a, 12bよりも高い電気抵抗率を有する導電性フェルト 314 a, 314bが配置された電極 310a, 310bを用いるため、金属部材 Wa, Wbやワーク 側電極体 312a, 312bで発生する熱が電源装置側電極体 316a, 316bへ移動する のを抑制することが可能となり、また、導電性フェルト 314a, 314bにおいて多くの熱 量を発生させることが可能となる。その結果、金属部材 Wa, Wbが従来よりも大幅に 昇温し易くなり、金属部材 Wa, Wbの加熱効率を従来よりも大幅に高くすることが可 能となる。 As described above, the method for manufacturing a joined body according to the third embodiment differs from the method for producing a joined body according to the first embodiment in the configuration of the power supply side electrode body, but the joined body according to the first embodiment. As in the case of the manufacturing method of the above, as a pair of electrodes, between the workpiece side electrode bodies 312a, 312b and the power supply apparatus side electrode bodies 316a, 316b, the thermal conductivity lower than that of the workpiece side electrode bodies 12a, 12b and the workpiece. Since the electrodes 310a and 310b in which the conductive felts 314a and 314b having higher electrical resistivity than the side electrode bodies 12a and 12b are used are used, the heat generated by the metal members Wa and Wb and the workpiece side electrode bodies 312a and 312b Can be prevented from moving to the power supply device side electrode bodies 316a and 316b, and a large amount of heat can be generated in the conductive felts 314a and 314b. As a result, the temperature of the metal members Wa and Wb can be significantly increased than before, and the heating efficiency of the metal members Wa and Wb can be significantly increased as compared with the conventional case.
[0149] また、実施形態 3に係る接合体の製造方法によれば、一対の電源装置側電極体 31 6a, 316bのレヽずれ ίこおレヽても、平板 318a ~318a , 318b〜318bの平面サイズ  [0149] Further, according to the method of manufacturing the joined body according to the third embodiment, the flat surfaces of the flat plates 318a to 318a and 318b to 318b even if the pair of power supply device side electrode bodies 316a and 316b is displaced. Size
1 3 1 3  1 3 1 3
は、ワーク側電極体 312a, 312bに向かって徐々に大きくなるため、電源装置側電極 体 316a, 316bにおける電源、装置 30側の平板 318a , 318bの平面サイズを変更し  Is gradually increased toward the workpiece side electrode bodies 312a and 312b.Therefore, the power supply in the power supply side electrode bodies 316a and 316b and the plane size of the flat plates 318a and 318b on the apparatus 30 side are changed.
3 3  3 3
なくてもワーク側電極体 312a, 312bの平面サイズを大きくすることが可能となり、大 きレヽ平面サイズを有する金属部材 Wa, Wbを通電加熱することが可能となる。  Even if not, the planar size of the workpiece side electrode bodies 312a and 312b can be increased, and the metal members Wa and Wb having a large horizontal plane size can be energized and heated.
[0150] なお、実施形態 3に係る接合体の製造方法は、電源装置側電極体の構成以外は 実施形態 1に係る接合体の製造方法の場合と同様の接合体の製造方法であるため[0150] Note that the manufacturing method of the joined body according to the third embodiment is the same as the manufacturing method of the joined body according to the first embodiment except for the configuration of the power device side electrode body.
、実施形態 1に係る接合体の製造方法が有する効果のうち該当する効果をそのまま 有する。 The corresponding effects of the manufacturing method of the joined body according to Embodiment 1 are maintained as they are.
[0151] 〔実施形態 4〕 [Embodiment 4]
実施形態 4は、本発明のワーク通電加熱方法を、複数の金属部材を接合して接合 体を製造する接合体の製造方法 (実施形態 4に係る接合体の製造方法)に適用した 場合について説明する実施形態である。 [0152] 図 6は、実施形態 4に係る接合体の製造方法に用いるワーク通電加熱装置 400を 説明するために示す図である。図 7は、断熱用ハウジング 470を説明するために示す 図である。なお、図 6において、実施形態 1で説明した部材と同一の部材については 同一の符号を付し、詳細な説明を省略する。 Embodiment 4 describes the case where the work energization heating method of the present invention is applied to a method for manufacturing a joined body in which a plurality of metal members are joined to produce a joined body (a joined body manufacturing method according to Embodiment 4). It is embodiment to do. FIG. 6 is a view for explaining the workpiece energization heating apparatus 400 used in the joined body manufacturing method according to the fourth embodiment. FIG. 7 is a view for explaining the heat insulating housing 470. In FIG. 6, the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0153] 実施形態 4に係る接合体の製造方法は、基本的には実施形態 1に係る接合体の製 造方法と同様の通電加熱工程を含む接合体の製造方法であるが、金属部材 Wa, W bの周囲に断熱用ハウジングを配置する点で実施形態 1に係る接合体の製造方法の 場合とは異なる。すなわち、実施形態 4に係る接合体の製造方法においては、図 6に 示すように、断熱用ハウジング 470を金属部材 Wa, Wbの周囲に配置した状態で金 属部材 Wa, Wbを通電加熱することとしている。  [0153] The method for manufacturing a joined body according to the fourth embodiment is basically a method for manufacturing a joined body including an energization heating process similar to the method for manufacturing the joined body according to the first embodiment. , Different from the method for manufacturing the joined body according to Embodiment 1 in that a heat insulating housing is arranged around W b. That is, in the method of manufacturing the joined body according to the fourth embodiment, as shown in FIG. 6, the metal members Wa and Wb are energized and heated with the heat insulating housing 470 disposed around the metal members Wa and Wb. It is said.
[0154] 断熱用ハウジング 470は、図 7に示すように、略円筒形状のステンレス製の薄板か らなり、スリット部 474が形成されている。また、断熱用ハウジング 470は、カーボンフ エルトの内張り 472を有する。  [0154] As shown in FIG. 7, the heat insulating housing 470 is made of a substantially cylindrical thin stainless steel plate, and has a slit 474 formed therein. The heat insulating housing 470 has a carbon felt lining 472.
[0155] このように、実施形態 4に係る接合体の製造方法においては、実施形態 1に係る接 合体の製造方法とは金属部材 Wa, Wbの周囲に断熱用ハウジングを配置する点で 異なるが、実施形態 1に係る接合体の製造方法の場合と同様に、一対の電極として、 ワーク側電極体 12a, 12bと電源装置側電極体 16a, 16bとの間に導電性フェルト 14 a, 14bが配置された電極 10a, 10bを用いるため、金属部材 Wa, Wbやワーク側電 極体 12a, 12bで発生する熱が電源装置側電極体 16a, 16bへ移動するのを抑制す ることが可能となり、また、導電性フェルト 14a, 14bにおいて多くの熱量を発生させる ことが可能となる。その結果、金属部材 Wa, Wbが従来よりも大幅に昇温し易くなり、 金属部材 Wa, Wbの加熱効率を従来よりも大幅に高くすることが可能となる。  [0155] Thus, the method for manufacturing a joined body according to Embodiment 4 differs from the method for producing a joined body according to Embodiment 1 in that a heat insulating housing is disposed around the metal members Wa and Wb. As in the case of the method of manufacturing the joined body according to Embodiment 1, conductive felts 14a and 14b are provided between the workpiece side electrode bodies 12a and 12b and the power supply side electrode bodies 16a and 16b as a pair of electrodes. Since the arranged electrodes 10a and 10b are used, it is possible to suppress the heat generated in the metal members Wa and Wb and the workpiece side electrode bodies 12a and 12b from moving to the power supply side electrode bodies 16a and 16b. In addition, it is possible to generate a large amount of heat in the conductive felts 14a and 14b. As a result, the temperature of the metal members Wa and Wb can be easily increased significantly compared to the conventional case, and the heating efficiency of the metal members Wa and Wb can be significantly increased as compared with the conventional case.
[0156] また、実施形態 4に係る接合体の製造方法によれば、カーボンフェルトの内張り 47 2を有する断熱用ハウジング 470が存在することにより、金属部材 Wa, Wbで発生す る熱が周囲の空間に放射されるのを抑制することが可能となるため、金属部材 Wa, Wbがさらに従来よりも大幅に昇温し易くなり、金属部材 Wa, Wbの加熱効率をさらに 大幅に高くすることが可能となる。  [0156] In addition, according to the method for manufacturing a joined body according to the fourth embodiment, since the heat insulating housing 470 having the carbon felt lining 472 exists, the heat generated in the metal members Wa and Wb is surrounded by the surroundings. Since it is possible to suppress the radiation to the space, the metal members Wa and Wb can be more easily heated than before, and the heating efficiency of the metal members Wa and Wb can be further greatly increased. It becomes possible.
[0157] また、実施形態 4に係る接合体の製造方法によれば、カーボンフェルトの内張り 47 2を有する断熱用ハウジング 470が存在することにより、金属部材 Wa, Wbで発生す る熱が周囲の空間に放射されるのを抑制することが可能となるため、金属部材 Wa, Wb周囲の部品(例えば、真空チャンバ 40。)が劣化し易くなるのを抑制することが可 能となる。 [0157] Further, according to the joined body manufacturing method according to the fourth embodiment, the carbon felt lining 47 The heat insulating housing 470 having 2 can suppress the heat generated in the metal members Wa and Wb from being radiated to the surrounding space. (For example, the vacuum chamber 40) can be prevented from being easily deteriorated.
[0158] また、実施形態 4に係る接合体の製造方法によれば、断熱用ハウジング 470にはス リット部 474が形成されているため、金属部材 Wa, Wbが断熱用ハウジング 470で覆 われていても、スリット部 474を通じて金属部材 Wa, Wbの状態を観察することが可 能となる。  [0158] Also, according to the method of manufacturing the joined body according to the fourth embodiment, since the slit portion 474 is formed in the heat insulating housing 470, the metal members Wa and Wb are covered with the heat insulating housing 470. However, the state of the metal members Wa and Wb can be observed through the slit portion 474.
[0159] また、実施形態 4に係る接合体の製造方法によれば、断熱用ハウジング 470にはス リット部 474が形成されているため、ワーク温度測定用の熱電対を金属部材 Wa, Wb に配置する場合に、熱電対の配線をスリット部 474を通じて断熱用ハウジング 470の 外部に引き出すことが可能となり、熱電対の配線の引き回しを容易に行うことが可能 となる。  [0159] Also, according to the method of manufacturing the joined body according to Embodiment 4, since the slit portion 474 is formed in the heat insulating housing 470, the thermocouple for measuring the workpiece temperature is applied to the metal members Wa and Wb. In the case of the arrangement, the thermocouple wiring can be drawn out of the heat insulating housing 470 through the slit portion 474, and the thermocouple wiring can be easily routed.
[0160] なお、実施形態 4に係る接合体の製造方法は、金属部材 Wa, Wbの周囲に断熱用 ハウジングを配置する点以外は、実施形態 1に係る接合体の製造方法の場合と同様 の接合体の製造方法であるため、実施形態 1に係る接合体の製造方法が有する効 果のうち該当する効果をそのまま有する。  [0160] The manufacturing method of the joined body according to the fourth embodiment is the same as the manufacturing method of the joined body according to the first embodiment, except that a heat insulating housing is disposed around the metal members Wa and Wb. Since it is a manufacturing method of a joined body, it has the corresponding effect as it is among the effects of the manufacturing method of the joined body according to Embodiment 1.
[0161] 〔実施形態 5〕  [Embodiment 5]
実施形態 5は、本発明のワーク通電加熱方法を、複数の金属部材を接合して接合 体を製造する接合体の製造方法 (実施形態 5に係る接合体の製造方法)に適用した 場合について説明する実施形態である。  Embodiment 5 describes the case where the work energization heating method of the present invention is applied to a method for manufacturing a joined body in which a plurality of metal members are joined to produce a joined body (a joined body manufacturing method according to Embodiment 5). It is embodiment to do.
[0162] 図 8は、実施形態 5に係る接合体の製造方法に用いるワーク通電加熱装置 500を 示す図である。なお、図 8において、実施形態 1で説明した部材と同一の部材につい ては同一の符号を付し、詳細な説明を省略する。  FIG. 8 is a view showing a work energization heating apparatus 500 used in the method for manufacturing a joined body according to the fifth embodiment. In FIG. 8, the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0163] 実施形態 5に係る接合体の製造方法は、基本的には実施形態 1に係る接合体の製 造方法と同様の通電加熱工程を含む接合体の製造方法であるが、一対の電極 10a , 10bと金属部材 Wa, Wbとの間にカーボンシートを配置する点で実施形態 1に係る 接合体の製造方法の場合とは異なる。すなわち、実施形態 5に係る接合体の製造方 法においては、図 8に示すように、一対の電極 10a, 10bと金属部材 Wa, Wbとの間 にカーボンシート 582a, 582bをそれぞれ配置した状態で金属部材 Wa, Wbを通電 カロ熱することとしている。なお、カーボンシートとして、東洋炭素株式会社製のカーボ ンシート(厚さ約 0· 2mm。)を用いた。 [0163] The method for manufacturing a joined body according to Embodiment 5 is basically a method for producing a joined body including an energization heating step similar to the method for producing a joined body according to Embodiment 1, but includes a pair of electrodes. This is different from the case of the joined body manufacturing method according to Embodiment 1 in that a carbon sheet is disposed between 10a, 10b and the metal members Wa, Wb. That is, the method of manufacturing the joined body according to Embodiment 5 In the method, as shown in FIG. 8, the metal members Wa and Wb are energized and calo-heated with the carbon sheets 582a and 582b disposed between the pair of electrodes 10a and 10b and the metal members Wa and Wb, respectively. Yes. A carbon sheet (thickness: about 0.2 mm) manufactured by Toyo Tanso Co., Ltd. was used as the carbon sheet.
[0164] このように、実施形態 5に係る接合体の製造方法においては、実施形態 1に係る接 合体の製造方法とは一対の電極 10a, 10bと金属部材 Wa, Wbとの間にカーボンシ ートを配置する点で異なるが、実施形態 1に係る接合体の製造方法の場合と同様に 、一対の電極として、ワーク側電極体 12a, 12bと電源装置側電極体 16a, 16bとの 間に導電性フェルト 14a, 14bが配置された電極 10a, 10bを用いるため、金属部材 Wa, Wbやワーク側電極体 12a, 12bで発生する熱が電源装置側電極体 16a, 16b へ移動するのを抑制することが可能となり、また、導電性フェルト 14a, 14bにおいて 多くの熱量を発生させることが可能となる。その結果、金属部材 Wa, Wbが従来よりも 大幅に昇温し易くなり、金属部材 Wa, Wbの加熱効率を従来よりも大幅に高くするこ とが可能となる。 [0164] Thus, in the method for manufacturing a joined body according to Embodiment 5, the method for producing the joined body according to Embodiment 1 is different from that in the carbon sheet between the pair of electrodes 10a and 10b and the metal members Wa and Wb. As in the case of the method of manufacturing the joined body according to the first embodiment, the pair of electrodes is disposed between the workpiece side electrode bodies 12a and 12b and the power supply side electrode bodies 16a and 16b. Use of electrodes 10a and 10b with conductive felts 14a and 14b placed on them prevents the heat generated by metal members Wa and Wb and workpiece side electrode bodies 12a and 12b from moving to power supply side electrode bodies 16a and 16b It is also possible to generate a large amount of heat in the conductive felts 14a and 14b. As a result, the temperature of the metal members Wa and Wb is much easier to raise than before, and the heating efficiency of the metal members Wa and Wb can be made much higher than before.
[0165] また、実施形態 5に係る接合体の製造方法によれば、一対の電極 10a, 10bと金属 部材 Wa, Wbとの間に高い潤滑性を有するカーボンシート 582a, 582bをそれぞれ 配置した状態で金属部材 Wa, Wbを通電加熱するため、電極 10a, 10bと金属部材 Wa, Wbとが焼き付きを起こしてしまうのを抑制することが可能となる。  [0165] Further, according to the method of manufacturing the joined body according to Embodiment 5, the carbon sheets 582a and 582b having high lubricity are disposed between the pair of electrodes 10a and 10b and the metal members Wa and Wb, respectively. Thus, since the metal members Wa and Wb are electrically heated, it is possible to suppress the electrodes 10a and 10b and the metal members Wa and Wb from being seized.
[0166] なお、実施形態 5に係る接合体の製造方法は、一対の電極 10a, 10bと金属部材 Wa, Wbとの間にカーボンシート 582a, 582bを配置する点以外は実施形態 1に係る 接合体の製造方法の場合と同様のワーク通電加熱方法であるため、実施形態 1に係 る接合体の製造方法が有する効果のうち該当する効果をそのまま有する。  [0166] Note that the method of manufacturing the joined body according to the fifth embodiment is the same as that of the first embodiment except that the carbon sheets 582a and 582b are disposed between the pair of electrodes 10a and 10b and the metal members Wa and Wb. Since the workpiece energization heating method is the same as in the case of the method for manufacturing a body, the corresponding effect among the effects of the method for manufacturing a bonded body according to Embodiment 1 remains as it is.
[0167] 〔実施形態 6〕  [Embodiment 6]
実施形態 6は、本発明のワーク通電加熱方法を、焼結体用粉末を通電加熱して焼 結体を製造する焼結体の製造方法 (実施形態 6に係る焼結体の製造方法)に適用し た場合について説明する実施形態である。  Embodiment 6 is a method for producing a sintered body (a method for producing a sintered body according to Embodiment 6) in which a sintered body is produced by energizing and heating a powder for a sintered body. This is an embodiment for explaining the case of application.
[0168] 図 9は、実施形態 6に係る焼結体の製造方法を説明するために示すフローチャート である。図 10は、実施形態 6に係る焼結体の製造方法を説明するために示す図であ る。図 10 (a)は焼結体用粉末準備工程 S610を示す図であり、図 10 (b)は焼結体用 粉末配置工程 S620を示す図であり、図 10 (c)は通電加熱工程 S630を示す図であ り、図 10 (d)は実施形態 6に係る焼結体の製造方法により製造された焼結体 Psを示 す図である。なお、図 10 (b)及び図 10 (c)において、実施形態 1で説明した部材と同 一の部材については同一の符号を付し、詳細な説明を省略する。また、図 10 (b)及 び図 10 (c)においては、図を簡略化するために、一対の電極 10a, 10b、電源装置 3 0、配線 32、焼結体形成用治具(円柱形状の上パンチ Ta、円柱形状の下パンチ Tb 及び円筒形状の焼結用金型 Tc)及び焼結体用粉末 Wsのみ図示する。 [0168] FIG. 9 is a flowchart for explaining a method for manufacturing a sintered body according to the sixth embodiment. FIG. 10 is a view for explaining the method of manufacturing the sintered body according to the sixth embodiment. The Fig. 10 (a) is a diagram showing a powder preparation step S610 for a sintered body, Fig. 10 (b) is a diagram showing a powder arrangement step S620 for a sintered body, and Fig. 10 (c) is an electric heating step S630. FIG. 10 (d) is a diagram showing a sintered body Ps manufactured by the method for manufacturing a sintered body according to Embodiment 6. In FIG. 10 (b) and FIG. 10 (c), the same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In FIGS. 10 (b) and 10 (c), in order to simplify the drawings, a pair of electrodes 10a, 10b, a power supply device 30, wiring 32, a sintered body forming jig (cylindrical shape) Only the upper punch Ta, the cylindrical lower punch Tb, the cylindrical sintering mold Tc), and the sintered powder Ws are shown.
[0169] 実施形態 6に係る焼結体の製造方法は、図 10 (b)及び図 10 (c)に示すワーク通電 加熱装置 600 (実施形態 6に係るワーク通電加熱装置 600)を用いて、電源装置 30と 電気的に接続された一対の電極 10a, 10bの間に、ワークとしての焼結体用粉末 Ws を配置した状態で焼結体用粉末 Wsに電流を流すことにより焼結体用粉末 Wsを通電 加熱して焼結体 Ps (図 10 (d)参照。 )を製造する焼結体の製造方法である。  [0169] A method for manufacturing a sintered body according to Embodiment 6 uses a workpiece energization heating apparatus 600 (work energization heating apparatus 600 according to Embodiment 6) shown in FIGS. 10 (b) and 10 (c). For the sintered body by passing a current through the powder Ws for the sintered body with the powder Ws for the sintered body as a work placed between the pair of electrodes 10a, 10b electrically connected to the power supply device 30 This is a method for manufacturing a sintered body, in which the powder Ws is energized and heated to manufacture a sintered body Ps (see FIG. 10 (d)).
[0170] 実施形態 6に係るワーク通電加熱装置 600は、ここでは図示による説明を省略する  [0170] In the workpiece energization heating apparatus 600 according to the sixth embodiment, the illustration is omitted here.
1S 実施形態 1に係るワーク通電加熱装置 100と同様の構成を有する。すなわち、実 施形態 6に係るワーク通電加熱装置 600は、電源装置 30と、電源装置 30と電気的に 接続された一対の電極 10a, 10bと、一対の電極 10a, 10bが内部に設置された真空 チャンバ 40と、一対の電極 10a, 10bを冷却する一対の冷却体 20a, 20bと、一対の 電極 10a, 10bを互いに近づける向きに押圧する押圧装置 50とを備え、一対の電極 10a, 10bの間に配置された焼結体用粉末 Wsを通電加熱して焼結体用粉末 Wsを 焼結する焼結装置である。  1S It has the same configuration as the workpiece energization heating apparatus 100 according to the first embodiment. That is, the work energization heating device 600 according to Embodiment 6 includes the power supply device 30, the pair of electrodes 10a and 10b electrically connected to the power supply device 30, and the pair of electrodes 10a and 10b. A vacuum chamber 40; a pair of cooling bodies 20a, 20b that cool the pair of electrodes 10a, 10b; and a pressing device 50 that presses the pair of electrodes 10a, 10b toward each other. This is a sintering apparatus that sinters the sintered powder Ws by energizing and heating the sintered powder Ws disposed therebetween.
[0171] 実施形態 6に係る焼結体の製造方法は、図 9に示すように、焼結体用粉末準備ェ 程 S610と、焼結体用粉末配置工程 S620と、通電加熱工程 S630とをこの順序で含 む。以下、これらの工程を順に説明する。  [0171] As shown in Fig. 9, the method for manufacturing a sintered body according to Embodiment 6 includes a sintered body powder preparation step S610, a sintered body powder arrangement step S620, and an electric heating step S630. Include in this order. Hereinafter, these steps will be described in order.
[0172] 1.焼結体用粉末準備工程 S610  [0172] 1. Powder preparation process for sintered compact S610
まず、ワークとして、焼結体用粉末 Wsを準備する(図 10 (a)参照。)。図 10 (a)は、 秤量された焼結体用粉末 Wsを容器に入れた状態を示している。  First, a powder Ws for sintered bodies is prepared as a workpiece (see Fig. 10 (a)). Fig. 10 (a) shows a state in which the weighed powder Ws for sintered body is put in a container.
[0173] 2.焼結体用粉末配置工程 S 620 次に、金属製の焼結体形成用治具(円柱形状の上パンチ Ta、円柱形状の下パン チ Tb及び円筒形状の焼結用金型 Tc)を用いて、一対の電極 10a, 10bの間に焼結 体用粉末 Wsを配置する(図 10 (b)参照。)。 [0173] 2. Powder placement process for sintered compact S 620 Next, using a metal sintered body forming jig (a cylindrical upper punch Ta, a cylindrical lower punch Tb, and a cylindrical sintering die Tc), a pair of electrodes 10a, 10b The sintered powder Ws is placed between them (see Fig. 10 (b)).
[0174] 3.通電加熱工程 S 630  [0174] 3. Electrical heating process S 630
次に、焼結体用粉末 Wsに電流を流すことにより、焼結体用粉末 Wsを通電加熱し て焼結体用粉末 Wsを焼結する(図 10 (c)参照。)。  Next, by passing an electric current through the sintered body powder Ws, the sintered body powder Ws is energized and heated to sinter the sintered body powder Ws (see FIG. 10 (c)).
[0175] 以上の工程を行うことにより、焼結体 Psを製造することができる(図 10 (d)参照。)。  [0175] By performing the above steps, the sintered body Ps can be manufactured (see FIG. 10 (d)).
[0176] 以上説明した実施形態 6に係る焼結体の製造方法は、上述したように、焼結体用 粉末準備工程 S610と、焼結体用粉末配置工程 S620と、通電加熱工程 S630とをこ の順序で含む。これにより、高い加熱効率で焼結体用粉末 Wsを通電加熱することが 可能となるため、従来よりも大幅に少ない電力で焼結体用粉末 Wsを焼結することが 可能となり、また、焼結体用粉末 Wsを焼結するのに要する時間を大幅に短縮化する ことが可能となり、さらには、サイズが大きい焼結体 Psを製造する場合であっても十分 高レヽ温度で焼結することが可能となる。  [0176] As described above, the method for manufacturing a sintered body according to Embodiment 6 described above includes the powder preparation step S610 for the sintered body, the powder placement step S620 for the sintered body, and the electric heating step S630. Include in this order. As a result, it becomes possible to heat and heat the sintered powder Ws with high heating efficiency. Therefore, it is possible to sinter the sintered powder Ws with significantly less electric power than before, and to sinter the sintered powder Ws. It is possible to significantly reduce the time required to sinter the compacted powder Ws. Furthermore, even when producing a large size sintered body Ps, it is sintered at a sufficiently high temperature. It becomes possible.
[0177] また、実施形態 6に係る焼結体の製造方法によれば、高い加熱効率で焼結体用粉 末 Wsを通電加熱することが可能となるため、十分高い温度で焼結体用粉末 Wsを焼 結することが可能となり、高品質の焼結体 Psを製造することが可能となる。  [0177] In addition, according to the method for manufacturing a sintered body according to Embodiment 6, it becomes possible to energize and heat the powder Ws for a sintered body with high heating efficiency, so that the sintered body is used at a sufficiently high temperature. Powder Ws can be sintered, and high-quality sintered Ps can be produced.
[0178] また、実施形態 6に係る焼結体の製造方法によれば、高い加熱効率で焼結体用粉 末 Wsを焼結することが可能となるため、製造コストの安価な焼結体 Psを製造すること が可能となる。  [0178] Further, according to the method for manufacturing a sintered body according to Embodiment 6, it becomes possible to sinter the powder Ws for a sintered body with high heating efficiency, so that the sintered body can be manufactured at low manufacturing cost. Ps can be manufactured.
[0179] 〔実施形態 7〕  [Embodiment 7]
実施形態 7は、本発明のワーク通電加熱方法を、焼結体用粉末を通電加熱して焼 結体を製造した後、当該焼結体を再度通電加熱して焼結度の高い焼結体を製造す る焼結体の製造方法 (実施形態 7に係る焼結体の製造方法)に適用した場合につい て説明する実施形態である。  Embodiment 7 is a sintered body having a high degree of sintering, in which the sintered body is manufactured by energizing and heating the powder for a sintered body, and then heating the sintered body again by energizing and heating the sintered body. 5 is an embodiment for explaining a case where the present invention is applied to a method for manufacturing a sintered body (a method for manufacturing a sintered body according to Embodiment 7).
[0180] 図 11は、実施形態 7に係る焼結体の製造方法を説明するために示すフローチヤ一 トである。図 12は、実施形態 7に係る焼結体の製造方法を説明するために示す図で ある。図 12 (a)は通電加熱工程 S 730を実施して得られた焼結体 Psを示す図であり、 図 12 (b)は焼結体配置工程 S 740を示す図であり、図 12 (c)は第 2通電加熱工程 S 750を示す図であり、図 12 (d)は実施形態 7に係る焼結体の製造方法により製造さ れた焼結体 Ps'を示す図である。なお、図 12 (b)及び図 12 (c)において、実施形態 1 及び実施形態 6で説明した部材と同一の部材については同一の符号を付し、詳細な 説明を省略する。また、図 12 (b)及び図 12 (c)において、図を簡略化するために、一 対の電極 10a, 10b,電源装置 30及び配線 32及び焼結体 Psのみ図示する。 FIG. 11 is a flowchart for explaining the method for manufacturing a sintered body according to the seventh embodiment. FIG. 12 is a view for explaining the method of manufacturing the sintered body according to the seventh embodiment. Fig. 12 (a) is a diagram showing a sintered body Ps obtained by carrying out the electric heating step S730. FIG. 12 (b) is a diagram showing the sintered body arranging step S740, FIG.12 (c) is a diagram showing the second energization heating step S750, and FIG.12 (d) is a diagram showing the sintering according to the seventh embodiment. FIG. 3 is a view showing a sintered body Ps ′ manufactured by a method for manufacturing a bonded body. In FIG. 12 (b) and FIG. 12 (c), the same members as those described in the first and sixth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted. Further, in FIG. 12 (b) and FIG. 12 (c), only the pair of electrodes 10a and 10b, the power supply device 30, the wiring 32, and the sintered body Ps are shown in order to simplify the drawing.
[0181] 実施形態 7に係る焼結体の製造方法は、実施形態 6で説明したワーク通電加熱装 置 600を用いて、電源装置 30と電気的に接続された一対の電極 10a, 10bの間に、 ワークとしての焼結体用粉末 Wsを配置した状態で焼結体用粉末 Wsに電流を流すこ とにより焼結体用粉末 Wsを通電加熱して焼結体 Ps (図 12 (a)参照。)を製造した後、 一対の電極 10a, 10bの間に、焼結体 Psを配置した状態で焼結体 Psに電流を流す ことにより焼結体 Psを通電加熱して、焼結度の高い焼結体 Ps ' (図 12 (d)参照。)を 製造する接合体の製造方法である。  [0181] A method for manufacturing a sintered body according to Embodiment 7 uses a workpiece energization heating device 600 described in Embodiment 6 to connect a pair of electrodes 10a, 10b electrically connected to power supply device 30. In addition, the sintered body powder Ws is energized and heated by passing an electric current through the sintered body powder Ws in a state where the sintered body powder Ws is disposed as a workpiece, and the sintered body Ps (FIG. 12 (a)). After manufacturing, the sintered body Ps is energized and heated by passing a current through the sintered body Ps with the sintered body Ps placed between the pair of electrodes 10a and 10b. This is a method of manufacturing a joined body for manufacturing a sintered body Ps ′ having a high thickness (see FIG. 12 (d)).
[0182] 実施形態 7に係る焼結体の製造方法は、図 11に示すように、焼結体用粉末準備ェ 程 S710と、焼結体用粉末配置工程 S720と、通電加熱工程 S730と、焼結体配置ェ 程 S 740と、第 2通電加熱工程 S 750とをこの順序で含む。焼結体用粉末準備工程 S 710〜通電加熱工程 S730は、実施形態 6で説明した焼結体用粉末準備工程 S610 〜通電加熱工程 S630と同様の工程であるため、詳細な説明を省略する。以下、「焼 結体配置工程 S 740」及び「第 2通電加熱工程 S750」を説明する。  [0182] The method for manufacturing a sintered body according to Embodiment 7 includes, as shown in FIG. 11, a powder preparation process S710 for a sintered body, a powder placement step S720 for the sintered body, an electric heating step S730, The sintered body arranging step S740 and the second electric heating step S750 are included in this order. Sintered powder preparation step S710 to energization heating step S730 is similar to the sintered body powder preparation step S610 to energization heating step S630 described in the sixth embodiment, and detailed description thereof will be omitted. Hereinafter, the “sintered body arranging step S740” and the “second electric heating step S750” will be described.
[0183] 「焼結体配置工程 S 740」  [0183] "Sintered body placement process S 740"
通電加熱工程 S730の後に、一対の電極 10a, 10bの間に焼結体 Psを配置する( 図 12 (b)参照。)。  After the electric heating step S730, the sintered body Ps is disposed between the pair of electrodes 10a and 10b (see FIG. 12 (b)).
[0184] 「第 2通電加熱工程 S 750」  [0184] "Second electric heating process S 750"
焼結体 Psに電流を流すことにより、焼結体 Psを通電加熱する(図 12 (c)参照。)。  By passing an electric current through the sintered body Ps, the sintered body Ps is heated by energization (see Fig. 12 (c)).
[0185] 以上の工程を行うことにより、焼結度の高い焼結体 Ps 'を製造することができる(図 1 2 (d)参照。)。  [0185] By performing the above steps, a sintered body Ps' having a high degree of sintering can be produced (see Fig. 12 (d)).
[0186] 以上の工程を含む実施形態 7に係る焼結体の製造方法によれば、焼結体 Psの焼 結度をさらに高めることが可能となり、高品質の焼結体 Ps'を製造することが可能とな [0187] 本発明のワーク通電加熱方法の効果を確認するために以下に示す試験を行った。 [0186] According to the method for manufacturing a sintered body according to Embodiment 7 including the above steps, the degree of sintering of the sintered body Ps can be further increased, and a high-quality sintered body Ps' is manufactured. Became possible [0187] In order to confirm the effect of the work energization heating method of the present invention, the following tests were conducted.
[0188] 〔試験例 1〕 [Test Example 1]
試験例 1においては、実施例 1、比較例 1及び比較例 2に係るワーク通電加熱方法 (詳細を後述する。)を用いてワークとしての金属部材 Wa, Wbを通電加熱し、所定時 間が経過したときの金属部材 Wa, Wbの温度及び消費電力量を比較した。  In Test Example 1, the metal members Wa and Wb as works were energized and heated using the work energization heating method according to Example 1, Comparative Example 1 and Comparative Example 2 (details will be described later), and the predetermined time was exceeded. The temperature and power consumption of the metal members Wa and Wb at the time were compared.
[0189] 図 13は、試験例 1におけるワーク通電加熱方法を説明するために示す図である。  FIG. 13 is a diagram for explaining the work energization heating method in Test Example 1. FIG.
図 13 (a)は実施例 1に係るワーク通電加熱方法を説明するために示す図であり、図 1 3 (b)は比較例 1に係るワーク通電加熱方法を説明するために示す図であり、図 13 (c )は比較例 2に係るワーク通電加熱方法を説明するために示す図である。なお、図 13 (a)〜図 13 (c)において、図 1と同一の部材については同一の符号を付し、詳細な 説明を省略する。また、図 13 (a)〜図 13 (c)においては、図を簡略化するために、一 対の電極 10a〜; 10f、電源装置 30、配線 32及び金属部材 Wa, Wbのみ図示する。  FIG. 13 (a) is a view for explaining the work energization heating method according to Example 1, and FIG. 13 (b) is a view for explaining the work energization heating method according to Comparative Example 1. FIG. 13 (c) is a diagram for explaining the work energization heating method according to Comparative Example 2. 13 (a) to 13 (c), the same members as those in FIG. 1 are denoted by the same reference numerals and detailed description thereof is omitted. 13A to 13C, only the pair of electrodes 10a to 10f, the power supply device 30, the wiring 32, and the metal members Wa and Wb are shown in order to simplify the drawing.
[0190] 実施例 1に係るワーク通電加熱方法は、上述した実施形態 1に係るワーク通電加熱 装置 100と同じ構成のワーク通電加熱装置 102を用いて行った。比較例 1に係るヮ 一ク通電加熱方法は、ワーク通電加熱装置 104を用いて行い、比較例 2に係るヮー ク通電加熱方法は、ワーク通電加熱装置 106を用いて行った。ワーク通電加熱装置 104, 106は、基本的にはワーク通電加熱装置 102とほぼ同じ構成を有する力 一 対の電極の構成が異なる。実施例 1、比較例 1及び比較例 2における一対の電極の 構成は、以下の通りである。  [0190] The work energization heating method according to Example 1 was performed using the work energization heating apparatus 102 having the same configuration as the work energization heating apparatus 100 according to Embodiment 1 described above. The electric current heating method according to Comparative Example 1 was performed using the workpiece electric current heating device 104, and the electric current heating method according to Comparative Example 2 was performed using the workpiece electric current heating device 106. The work energization heating devices 104 and 106 are basically different in the configuration of a force pair electrode having substantially the same configuration as the work energization heating device 102. The configuration of the pair of electrodes in Example 1, Comparative Example 1 and Comparative Example 2 is as follows.
[0191] 実施例 1  [0191] Example 1
実施例 1における一対の電極 10a, 10bは、図 13 (a)に示すように、ワーク側電極 体 12a, 12bと導電性フェルト 14a, 14bと電源装置側電極体 16a, 16bとがこの順序 で積層された構造を有する。導電性フェルト 14a, 14bとして、カーボンフェルトを用 いる。  As shown in FIG. 13 (a), the pair of electrodes 10a and 10b in the first embodiment includes the workpiece side electrode bodies 12a and 12b, the conductive felts 14a and 14b, and the power supply side electrode bodies 16a and 16b in this order. It has a laminated structure. Carbon felt is used as the conductive felts 14a and 14b.
[0192] 比較例 1 [0192] Comparative Example 1
比較例 1における一対の電極 10c, 10dは、図 13 (b)に示すように、ワーク側電極 体 12a, 12bと、電源装置側電極体 16a, 16bとがこの順序で積層された構造を有す る。比較例 1における一対の電極 10c, 10dは、前述の特許文献 1に記載された従来 のワーク通電加熱方法における電極(特許文献 1の図 4参照。)と同様の構成である。 As shown in FIG. 13 (b), the pair of electrodes 10c and 10d in Comparative Example 1 has a structure in which workpiece side electrode bodies 12a and 12b and power supply side electrode bodies 16a and 16b are stacked in this order. You The The pair of electrodes 10c, 10d in Comparative Example 1 has the same configuration as the electrode in the conventional work energization heating method described in Patent Document 1 (see FIG. 4 of Patent Document 1).
[0193] 比較例 2 [0193] Comparative Example 2
比較例 2における一対の電極 10e, 10fは、図 13 (c)に示すように、ワーク側電極体 12a, 12bとカーボンチップ層 14e, 14fと電源装置側電極体 16a, 16bとがこの順序 で積層された構造を有する。比較例 2における一対の電極 10e, 10fは、前述の特開 2005— 230823号公報に記載された従来のワーク通電加熱方法における電極(特 開 2005— 230823号公報の図 1参照。)と同様 (但し、カーボンチップ層の厚さが従 来のワーク通電加熱方法よりも薄い。)の構成である。カーボンチップ層 14e, 14fとし て、東洋炭素株式会社製のカーボンシートを裁断 ·チップ化して積層したものを用い た。  As shown in FIG. 13 (c), the pair of electrodes 10e, 10f in Comparative Example 2 is composed of the workpiece side electrode bodies 12a, 12b, the carbon tip layers 14e, 14f, and the power supply side electrode bodies 16a, 16b in this order. It has a laminated structure. The pair of electrodes 10e and 10f in Comparative Example 2 is the same as the electrode in the conventional work energization heating method described in the above-mentioned JP-A-2005-230823 (see FIG. 1 of JP-A-2005-230823). However, the thickness of the carbon tip layer is thinner than that of the conventional work energization heating method). As the carbon chip layers 14e and 14f, carbon sheets manufactured by Toyo Tanso Co., Ltd. were cut and chipped and laminated.
[0194] 試験条件は、以下のひ)〜(3)とした。  [0194] The test conditions were as follows:
(1)金属部材 Wa, Wbとして、 2つのステンレス鋼 SUS420 (サイズ: 50mm X 50mm X 10mmリを用レヽる。  (1) As the metal members Wa and Wb, use two stainless steel SUS420 (size: 50mm x 50mm x 10mm).
(2)金属部材 Wa, Wbに流す電流(ワーク電流)を 1500Aの定電流とし、このときの 一対の電極間の電圧 (測定電圧)を測定する。  (2) The current (working current) flowing through the metal members Wa and Wb is a constant current of 1500A, and the voltage (measurement voltage) between the pair of electrodes at this time is measured.
(3)金属部材 Wa, Wbの加熱時間(ワーク加熱時間)を 40分間とし、 10分毎に金属 部材 Wa, Wbの温度(ワーク温度)を測定する。  (3) The heating time (work heating time) of the metal members Wa and Wb is 40 minutes, and the temperature of the metal members Wa and Wb (work temperature) is measured every 10 minutes.
[0195] 表 1は、実施例 1、比較例 1及び比較例 2における試験結果を示す表である。表 1に おいて、消費電力量(kWh)は、  [0195] Table 1 is a table showing test results in Example 1, Comparative Example 1, and Comparative Example 2. In Table 1, the power consumption (kWh) is
「ワーク電流 (A) X平均測定電圧(V) Xワーク加熱時間(h) /1000」 により算出した。  It was calculated by “work current (A) X average measurement voltage (V) X work heating time (h) / 1000”.
なお、実施例 1における平均測定電圧は 3. 3Vであり、比較例 1における平均測定 電圧は 2. 0Vであり、比較例 2における平均測定電圧は 2. 2Vであった。  The average measured voltage in Example 1 was 3.3 V, the average measured voltage in Comparative Example 1 was 2.0 V, and the average measured voltage in Comparative Example 2 was 2.2 V.
[0196] [表 1] つ-ーク加熱時間(分) [0196] [Table 1] Heating time (minutes)
0 1 0 20 30 40 ワーク温度 (°c) 26 635 725 745 763 実施例 1  0 1 0 20 30 40 Work temperature (° c) 26 635 725 745 763 Example 1
消費電力量(kWh) 0 0. 8 1 . 7 2. 5 3. 3 ワーク温度 (°c) 26 345  Power consumption (kWh) 0 0. 8 1. 7 2. 5 3. 3 Work temperature (° c) 26 345
比較例 1  Comparative Example 1
消費電力量(kWh) 0 1 . 0  Power consumption (kWh) 0 1.0
比較例 2 ヮ一ク温度 (°c) 26 326 440 496 51 6  Comparative Example 2 ヮ Cake temperature (° c) 26 326 440 496 51 6
消費電力量(kWh) 0 0. 6 1 . 1 1 . 7 2. 2  Power consumption (kWh) 0 0. 6 1. 1 1. 7 2. 2
[0197] 図 14は、試験例 1における試験結果を示すグラフである。図 14 (a)は試験例 1にお けるワーク加熱時間とワーク温度との関係を示すグラフであり、図 14 (b)は試験例 1 における消費電力量とワーク温度との関係を示すグラフである。 FIG. 14 is a graph showing the test results in Test Example 1. Fig. 14 (a) is a graph showing the relationship between the workpiece heating time and the workpiece temperature in Test Example 1, and Fig. 14 (b) is a graph showing the relationship between the power consumption and the workpiece temperature in Test Example 1. is there.
[0198] まず、金属部材 Wa, Wbの昇温し易さを、ワー〇M (  [0198] First, the easiness of raising the temperature of the metal members Wa, Wb
寸 .ク加熱時間が 40分間である場合に おけるワーク温度で比較する(表 1及び図 14 (a)参照。)。比較例 1のワーク温度は 4 20°Cであり、比較例 2のワーク温度は 516°Cであった。これに対して、実施例 1のヮ ーク温度は 763°Cであった。このこと力も、実施例 1においては、比較例 1及び比較 例 2においてよりも金属部材 Wa, Wbが大幅に昇温し易いことがわ力0) 0T I、る。  Compare the workpiece temperature when the heating time is 40 minutes (see Table 1 and Fig. 14 (a)). The workpiece temperature of Comparative Example 1 was 420 ° C, and the workpiece temperature of Comparative Example 2 was 516 ° C. In contrast, the cake temperature of Example 1 was 763 ° C. This force also indicates that the metal members Wa and Wb are much easier to raise the temperature in Example 1 than in Comparative Example 1 and Comparative Example 2.
[0199] 次に、ワークの加熱効率を、 2. OkWhの消費電力量におけるワーク温度で比較す  [0199] Next, the heating efficiency of the workpiece is compared with the workpiece temperature at the power consumption of 2. OkWh.
寸 < る(表 1及び図 14 (b)参照。なお、図 14 (b)における仮想泉 mは、 2. OkWhM .の C  (Refer to Table 1 and Fig. 14 (b). Note that the virtual spring m in Fig. 14 (b) is 2. OkWhM.
〇 ο消費電 力量を示す線である。)。比較例 1のワーク温度は 420°Cであり、比較例 2のワーク温 度は約 510°Cであった。これに対して、実施例 1のワーク温度は約 730°Cであった。 このこと力、ら、実施例 1の金属部材 Wa, Wbの加熱効率は、比較例 1及び比較例 2の 金属部材 Wa, Wbの加熱効率よりも大幅に高!/、ことがわかる。  〇 ο This is a line indicating the power consumption. ). The workpiece temperature of Comparative Example 1 was 420 ° C, and the workpiece temperature of Comparative Example 2 was about 510 ° C. In contrast, the workpiece temperature of Example 1 was about 730 ° C. From this, it can be seen that the heating efficiency of the metal members Wa and Wb of Example 1 is significantly higher than the heating efficiency of the metal members Wa and Wb of Comparative Example 1 and Comparative Example 2.
[0200] 図 15は、試験例 1における金属部材 Wa, Wb及び電極 10a〜; 10fの通電加熱状態 を示す図面代用写真である。  FIG. 15 is a drawing-substituting photograph showing the electrically heated state of the metal members Wa and Wb and the electrodes 10a to 10f in Test Example 1.
[0201] 図 15 (a)は、実施例 1において、 40分間の通電加熱を行ったときの金属部材 Wa, Wb及び電極 10a, 10bの通電加熱状態(ワーク温度は 763°C。)を示す図面代用写 真である。  [0201] FIG. 15 (a) shows the current heating state of the metal members Wa and Wb and the electrodes 10a and 10b when the current heating is performed for 40 minutes in Example 1 (working temperature is 763 ° C.). This is a drawing substitute photo.
[0202] 図 15 (b)は、比較例 1において、 40分間の通電加熱を行ったときの金属部材 Wa, Wb及び電極 10c, 10dの通電加熱状態(ワーク温度は 420°C。)を示す図面代用写 真である。 [0202] FIG. 15 (b) shows the current heating state of the metal members Wa, Wb and the electrodes 10c, 10d when the current heating is performed for 40 minutes in Comparative Example 1 (working temperature is 420 ° C.). Drawing substitute copy Is true.
[0203] 図 15 (c)は、比較例 1において、 40分間の通電加熱を行った後、ワーク電流を 280 OAまで段階的に上げつつさらに 50分間の通電加熱 (合計で 90分間の通電加熱。 ) を行ったときの金属部材 Wa, Wb及び電極 10c, 10dの通電加熱状態(ワーク温度 は 648°C。)を示す図面代用写真である。  [0203] Fig. 15 (c) shows 40 minutes of energization heating in Comparative Example 1, followed by 50 minutes of energization heating while gradually increasing the work current to 280 OA (90 minutes total energization heating) FIG. 6 is a drawing-substituting photograph showing the current heating state (working temperature is 648 ° C.) of the metal members Wa and Wb and the electrodes 10c and 10d when the above is performed.
なお、図 15 (c)において、電極 10cの上方及び電極 10dの下方に見える部材は、 冷却体保護板(図 1の符号 24a及び符号 24b参照。)である。  In FIG. 15 (c), the member visible above the electrode 10c and below the electrode 10d is a cooling body protection plate (see reference numerals 24a and 24b in FIG. 1).
[0204] 図 15 (d)は、比較例 2において、 40分間の通電加熱を行ったときの金属部材 Wa, Wb及び電極 10e, 10fの通電加熱状態(ワーク温度は 516°C。)を示す図面代用写 真である。  [0204] FIG. 15 (d) shows the current heating state (workpiece temperature is 516 ° C.) of the metal members Wa and Wb and the electrodes 10e and 10f when the current sample is heated for 40 minutes in Comparative Example 2. This is a drawing substitute photo.
[0205] 図 15 (e)は、比較例 2において、 40分間の通電加熱を行った後、ワーク電流を 280 0Aまで段階的に上げつつさらに 30分間の通電加熱 (合計で 70分間の通電加熱。 ) を行ったときの金属部材 Wa, Wb及び電極 10e, 10fの通電加熱状態(ワーク温度は 724°C。)を示す図面代用写真である。  [0205] Fig. 15 (e) shows a case of conducting heating for 40 minutes in Comparative Example 2, followed by further heating for 30 minutes while gradually increasing the workpiece current to 2800 A (heating for 70 minutes in total). FIG. 6 is a drawing-substituting photograph showing the current heating state (working temperature is 724 ° C.) of the metal members Wa and Wb and the electrodes 10e and 10f when the above is performed.
なお、図 15 (e)において、電極 10eの上方及び電極 10fの下方に見える部材は、 冷却体保護板(図 1の符号 24a及び符号 24b参照。)である。  In FIG. 15 (e), the member visible above the electrode 10e and below the electrode 10f is a cooling body protection plate (see reference numerals 24a and 24b in FIG. 1).
[0206] 比較例 1において合計で 90分間の通電加熱を行ったこと、及び、比較例 2におい て合計で 70分間の通電加熱を行ったことの理由は、比較例 1及び比較例 2において 、高温状態における金属部材 Wa, Wb及び電極 10a〜10fの通電加熱状態を観察 するためである。  [0206] In Comparative Example 1 and Comparative Example 2, the reasons for conducting the electrical heating for 90 minutes in total and for conducting the electrical heating for 70 minutes in Comparative Example 2 were as follows: This is for observing the current heating state of the metal members Wa and Wb and the electrodes 10a to 10f in a high temperature state.
[0207] まず、実施例 1、比較例 1及び比較例 2において 40分間の通電加熱を行ったときの 金属部材 Wa, Wb及び電極 10a〜10fの通電加熱状態を比較する(図 15 (a)、図 15 (b)及び図 15 (d)参照。)。  First, in Example 1, Comparative Example 1 and Comparative Example 2, the current heating states of the metal members Wa and Wb and the electrodes 10a to 10f when the current heating is performed for 40 minutes are compared (FIG. 15 (a)). (See Figure 15 (b) and Figure 15 (d).)
[0208] 比較例 1及び比較例 2のいずれにおいても、ワーク温度が低いため、金属部材 Wa , Wb及び電極 10c〜10fのいずれも発光が観察されない。これに対して、実施例 1 においては、ワーク温度が高いため、金属部材 Wa, Wb及びワーク側電極体 12a, 1 2bが明るく発光しているのが観察される。このことから、実施例 1においては、比較例 1及び比較例 2においてよりも金属部材 Wa, Wbが大幅に昇温し易いことがわかる。 [0209] 次に、実施例 1、比較例 1及び比較例 2において、高温状態における金属部材 Wa , Wb及び電極 10a〜10fの通電加熱状態を比較する(図 15 (a)、図 15 (c)及び図 1 5 (e)参照。)。 In both Comparative Example 1 and Comparative Example 2, since the work temperature is low, no light emission is observed in any of the metal members Wa and Wb and the electrodes 10c to 10f. On the other hand, in Example 1, since the workpiece temperature is high, it is observed that the metal members Wa and Wb and the workpiece-side electrode bodies 12a and 12b emit light brightly. From this, it can be seen that in Example 1, the metal members Wa and Wb are much easier to be heated than in Comparative Example 1 and Comparative Example 2. [0209] Next, in Example 1, Comparative Example 1 and Comparative Example 2, the energized and heated states of the metal members Wa and Wb and the electrodes 10a to 10f in a high temperature state are compared (FIGS. 15A and 15C). ) And Figure 15 (e)).
[0210] 比較例 1及び比較例 2のいずれにおいても、金属部材 Wa, Wbに加えて電極 10c 〜10fの全体が明るく発光しているのが観察される。このこと力 、比較例 1及び比較 例 2のいずれにおいても、金属部材 Wa, Wbやワーク側電極体 12a, 12bで発生す る熱が電源装置側電極体 16a, 16bへ移動していることがわ力、つた。  [0210] In both Comparative Example 1 and Comparative Example 2, it is observed that the electrodes 10c to 10f as a whole emit light brightly in addition to the metal members Wa and Wb. This means that in both Comparative Example 1 and Comparative Example 2, heat generated in the metal members Wa and Wb and the workpiece side electrode bodies 12a and 12b is transferred to the power supply side electrode bodies 16a and 16b. Wow, ivy.
[0211] これに対して、実施例 1においては、図 15 (a)からも明らかなように、金属部材 Wa, Wb及びワーク側電極体 12a, 12bのみが明るく発光しているのが観察され、電源装 置側電極体 16a, 16bにおいてはほとんど発光が観察されない。このこと力、ら、導電 性フェルト 14a, 14b力 S存在することにより、金属部材 Wa, Wbやワーク側電極体 12a , 12bで発生する熱が電源装置側電極体 16a, 16bへ移動するのを抑制していること カゎカゝつた。  On the other hand, in Example 1, it is observed that only the metal members Wa and Wb and the work-side electrode bodies 12a and 12b emit light brightly as is clear from FIG. 15 (a). In the power supply side electrode bodies 16a and 16b, almost no light emission is observed. Because of this, the presence of the conductive felt 14a, 14b force S, the heat generated in the metal members Wa, Wb and the workpiece side electrode bodies 12a, 12b is transferred to the power supply side electrode bodies 16a, 16b. What you are suppressing
[0212] 〔試験例 2〕  [0212] [Test Example 2]
試験例 2においては、実施例 2及び比較例 3に係るワーク通電加熱方法を用いてヮ ークとしての金属部材 Wa, Wbを通電加熱したときの金属部材 Wa, Wbの温度を比 較した。  In Test Example 2, the temperatures of the metal members Wa and Wb when the metal members Wa and Wb as the cake were energized and heated using the work energization heating method according to Example 2 and Comparative Example 3 were compared.
[0213] 実施例 2及び比較例 3に係るワーク通電加熱方法は、上述した実施形態 1に係るヮ 一ク通電加熱装置 100と同じ構成のワーク通電加熱装置を用いて行った。試験条件 は以下のとおりである。  [0213] The work energization heating method according to Example 2 and Comparative Example 3 was performed using the work energization heating apparatus having the same configuration as the single energization heating apparatus 100 according to Embodiment 1 described above. The test conditions are as follows.
[0214] (1)金属部材 Wa, Wbとして、 2つのステンレス鋼 SUS420 (サイズ: 50mm X 50mm  [0214] (1) Two stainless steel SUS420 as metal members Wa and Wb (size: 50mm X 50mm
X 10mmリを用レヽる。  Use X 10mm.
(2)一対の電極に印加する圧力を 0· 3MPaの一定圧力とする。  (2) The pressure applied to the pair of electrodes shall be a constant pressure of 0.3 MPa.
(3)金属部材 Wa, Wbに流す電流(ワーク電流)を 1500Aの定電流とする。  (3) The current (working current) flowing through the metal members Wa and Wb is a constant current of 1500A.
(4)金属部材 Wa, Wbの加熱時間(ワーク加熱時間)を 60分間とし、 1分毎に金属部 材 Wa, Wbの温度(ワーク温度)を測定する。  (4) Heat the metal members Wa and Wb (work heating time) for 60 minutes, and measure the temperature of the metal members Wa and Wb (work temperature) every minute.
[0215] 但し、実施例 2に係るワーク通電加熱方法においては、各金属部材 Wa, Wbとして 、接合予定面の算術平均粗さ Raが 0. 1 mである 2つの金属部材を用いて通電加 熱を行った。また、比較例 3に係るワーク通電加熱方法においては、各金属部材 Wa[0215] However, in the work energization heating method according to Example 2, the energization was performed using two metal members each having an arithmetic average roughness Ra of 0.1 m as the metal members Wa and Wb. Heat was done. In the work energization heating method according to Comparative Example 3, each metal member Wa
, Wbとして、接合予定面の算術平均粗さ Raが 0. 01 mである 2つの金属部材を用 いて通電加熱を行った。 , Wb was used for current heating using two metal members with an arithmetic mean roughness Ra of 0.01 m on the planned joining surface.
[0216] 図 16は、試験例 2における試験結果を示すグラフである。図 16中、実線は実施例 2 につ!/、ての試験結果を示し、破線は比較例 3につ!/、ての試験結果を示す。 FIG. 16 is a graph showing the test results in Test Example 2. In FIG. 16, the solid line shows the test results for Example 2 and the broken line shows the test results for Comparative Example 3.
[0217] 図 16から明らかなように、接合予定面の算術平均粗さ Raがある程度粗い(0. 1 μ m)金属部材を用いる方が金属部材 Wa, Wbが昇温し易いことがわかった。 [0217] As is apparent from Fig. 16, it was found that the metal members Wa and Wb are more likely to rise in temperature when the metal members with a somewhat rough arithmetic mean roughness Ra (0.1 μm) are used. .
[0218] 〔試験例 3〕 [Test Example 3]
試験例 3においては、実施例 3及び比較例 4に係るワーク通電加熱方法を用いてヮ ークとしての金属部材 Wa, Wbを通電加熱したときの金属部材 Wa, Wbの温度を比 較した。  In Test Example 3, the temperatures of the metal members Wa and Wb when the metal members Wa and Wb as the cake were energized and heated using the work energization heating method according to Example 3 and Comparative Example 4 were compared.
[0219] 実施例 3及び比較例 4に係るワーク通電加熱方法は、上述した実施形態 1に係るヮ 一ク通電加熱装置 100と同じ構成のワーク通電加熱装置を用いて行った。試験条件 は以下のとおりである。  [0219] The work energization heating method according to Example 3 and Comparative Example 4 was performed using the work energization heating apparatus having the same configuration as that of the single energization heating apparatus 100 according to Embodiment 1 described above. The test conditions are as follows.
[0220] (1)金属部材 Wa, Wbとして、 2つのステンレス鋼 SUS420 (サイズ: 50mm X 50mm  [0220] (1) Two stainless steels SUS420 as metal members Wa and Wb (size: 50mm X 50mm
X 10mm)を用いる。金属部材 Wa, Wbにおける接合予定面の算術平均粗さ Raは 0 • 1 μ mである。  X 10mm). The arithmetic average roughness Ra of the planned joining surfaces of the metal members Wa and Wb is 0 • 1 μm.
(2)金属部材 Wa, Wbに流す電流(ワーク電流)を 1500Aの定電流とする。  (2) The current (working current) flowing through the metal members Wa and Wb is set to a constant current of 1500A.
(3)金属部材 Wa, Wbの加熱時間(ワーク加熱時間)を 60分間とし、 1分毎に金属部 材 Wa, Wbの温度(ワーク温度)を測定する。  (3) Heat the metal members Wa and Wb (work heating time) for 60 minutes and measure the temperature of the metal members Wa and Wb (work temperature) every minute.
[0221] 但し、実施例 3に係るワーク通電加熱方法においては、一対の電極に印加する圧 力を 0. 3MPaの一定圧力とした条件で通電加熱を行った。また、比較例 4に係るヮ 一ク通電加熱方法においては、一対の電極に印加する圧力を IMPaの一定圧力と した条件で通電加熱を行った。  [0221] However, in the work energization heating method according to Example 3, energization heating was performed under the condition that the pressure applied to the pair of electrodes was a constant pressure of 0.3 MPa. Further, in the single electric heating method according to Comparative Example 4, the electric heating was performed under the condition that the pressure applied to the pair of electrodes was a constant pressure of IMPa.
[0222] 図 17は、試験例 3における試験結果を示すグラフである。図 17中、実線は実施例 3 につ!/、ての試験結果を示し、破線は比較例 4につ!/、ての試験結果を示す。  FIG. 17 is a graph showing the test results in Test Example 3. In FIG. 17, the solid line shows the test results for Example 3 and the broken line shows the test results for Comparative Example 4.
[0223] 図 17から明らかなように、一対の電極に印加する圧力がある程度低い条件(0. 3M Pa)で通電加熱を行う方が金属部材 Wa, Wbが昇温し易いことがわかった。 [0224] 〔試験例 4〕 As is apparent from FIG. 17, it was found that the metal members Wa and Wb are more likely to rise in temperature when electric heating is performed under a condition where the pressure applied to the pair of electrodes is somewhat low (0.3 MPa). [Test Example 4]
試験例 4においては、実施例 4及び比較例 5に係るワーク通電加熱方法を用いてヮ ークとしての金属部材 Wa, Wbを通電加熱したときの金属部材 Wa, Wbの温度を比 較した。  In Test Example 4, the temperatures of the metal members Wa and Wb when the metal members Wa and Wb as the cake were energized and heated using the work energization heating method according to Example 4 and Comparative Example 5 were compared.
[0225] 実施例 4及び比較例 5に係るワーク通電加熱方法は、上述した実施形態 1に係るヮ 一ク通電加熱装置 100と同じ構成のワーク通電加熱装置を用いて行った。試験条件 は以下のとおりである。  [0225] The workpiece energization heating method according to Example 4 and Comparative Example 5 was performed using the workpiece energization heating device having the same configuration as that of the single energization heating device 100 according to Embodiment 1 described above. The test conditions are as follows.
[0226] (1)金属部材 Wa, Wbとして、 2つのステンレス鋼 SUS420 (サイズ: 50mm X 50mm  [0226] (1) Two stainless steel SUS420 as metal members Wa and Wb (size: 50mm X 50mm
X 10mm)を用いる。金属部材 Wa, Wbにおける接合予定面の算術平均粗さ Raは 0 • 1 μ mである。  X 10mm). The arithmetic average roughness Ra of the planned joining surfaces of the metal members Wa and Wb is 0 • 1 μm.
(2)金属部材 Wa, Wbの加熱時間(ワーク加熱時間)を 60分間とし、 1分毎に金属部 材 Wa, Wbの温度(ワーク温度)を測定する。  (2) The heating time of the metal members Wa and Wb (work heating time) is 60 minutes, and the temperature of the metal members Wa and Wb (work temperature) is measured every minute.
[0227] 但し、実施例 4に係るワーク通電加熱方法においては、最初の 20分間については 一対の電極に印加する圧力を 0. 3MPaの圧力とし、金属部材 Wa, Wbに流す電流( ワーク電流)を 1500Aとした条件で通電加熱を行い、その後の 40分間については一 対の電極に印加する圧力を IMPaの圧力とし、金属部材 Wa, Wbに流す電流(ヮー ク電流)を 2000Aとした条件で通電加熱を行った。また、比較例 5に係るワーク通電 加熱方法においては、 60分間を通して、一対の電極に印加する圧力を 0. 3MPaの 一定圧力とし、金属部材 Wa, Wbに流す電流(ワーク電流)を 1500Aの一定電流とし た条件で通電加熱を行った。  [0227] However, in the work energization heating method according to Example 4, for the first 20 minutes, the pressure applied to the pair of electrodes was set to 0.3 MPa, and the current (working current) passed through the metal members Wa and Wb. For 40 minutes after that, the pressure applied to the pair of electrodes is IMPa pressure, and the current flowing through the metal members Wa and Wb (suck current) is 2000A. Electric heating was performed. In the work energization heating method according to Comparative Example 5, the pressure applied to the pair of electrodes is constant at 0.3 MPa over 60 minutes, and the current (work current) flowing through the metal members Wa and Wb is constant at 1500A. Electric heating was performed under the condition of current.
[0228] 図 18は、試験例 4における試験結果を示すグラフである。図 18中、実線は実施例 4 につ!/、ての試験結果を示し、破線は比較例 5の試験結果を示す。  FIG. 18 is a graph showing the test results in Test Example 4. In FIG. 18, the solid line shows the test results for Example 4 and the broken line shows the test result of Comparative Example 5.
[0229] 図 18から明らかなように、十分に接合力の高い接合体を得ることを目的として通電 加熱の途中で一対の電極に印加する圧力を高くしても、電流を増大させれば金属部 材 Wa, Wbが十分に昇温し得ることがわ力 た。  As is apparent from FIG. 18, even if the pressure applied to the pair of electrodes is increased during energization and heating for the purpose of obtaining a joined body having a sufficiently high joining force, the metal can be increased by increasing the current. It was obvious that the materials Wa and Wb could be heated sufficiently.
[0230] 〔試験例 5〕  [Test Example 5]
試験例 5においては、実施例 5、実施例 6及び比較例 6に係るワーク通電加熱方法 を用いてワークとしての金属部材 Wa, Wbを通電加熱したときの金属部材 Wa, Wb の温度を比較した。 In Test Example 5, the metal members Wa, Wb when the metal members Wa, Wb as the workpiece were energized and heated using the workpiece energization heating method according to Example 5, Example 6, and Comparative Example 6 The temperatures were compared.
[0231] 実施例 5、実施例 6及び比較例 6に係るワーク通電加熱方法は、上述した実施形態  [0231] The workpiece energization heating method according to Example 5, Example 6, and Comparative Example 6 is the embodiment described above.
1に係るワーク通電加熱装置 100と同じ構成のワーク通電加熱装置を用いて行った。 試験条件は以下のとおりである。  The work energization heating apparatus having the same configuration as the work energization heating apparatus 100 according to 1 was used. The test conditions are as follows.
[0232] (1)金属部材 Wa, Wbとして、熱間金型用鋼 SKD61からなり、接合予定面に冷却水 流路用溝が形成された 2つの金属部材を用いる(2つの金属部材としては、例えば国 際公開第 2007/108058号パンフレットの図 6 (a)に記載の鉄鋼部材 32, 36を参 照。)。金属部材 Wa, Wbにおける接合予定面の算術平均粗さ Raは 0. 1 mである [0232] (1) As the metal members Wa and Wb, two metal members made of hot mold steel SKD61 and having a cooling water channel groove formed on the planned joining surface are used. (For example, see steel members 32 and 36 shown in Fig. 6 (a) of the pamphlet of International Publication No. 2007/108058). Arithmetic average roughness Ra of the planned joining surfaces of metal members Wa and Wb is 0.1 m.
Yes
[0233] (2)上記の金属部材 Wa, Wbの通電加熱を行い、接合面に冷却水流路が形成され た接合体を製造する(上記パンフレットの図 6 (b)参照。)。このとき、比較例 6に係るヮ 一ク通電加熱方法においては、 60分間を通して一対の電極に印加する圧力を 0. 3 MPaの圧力とした条件で通電加熱を行う。一方、実施例 5に係るワーク通電加熱方 法においては、最初の 20分間については一対の電極に印加する圧力を 0. 3MPa の圧力とした条件で通電加熱を行い、その後の 40分間については一対の電極に印 加する圧力を IMPaの圧力とした条件で通電加熱を行う。また、実施例 6に係るヮー ク通電加熱方法においては、最初の 20分間については一対の電極に印加する圧力 を 0. 3MPaの圧力とした条件で通電加熱を行い、その後の 40分間については一対 の電極に印加する圧力を IMPaの圧力とした条件で通電加熱を行い、さらにその後 、通電加熱工程の直後に一対の電極に印加する圧力を 5MPaまで高くし、その状態 で 1分間保持する。  [0233] (2) The metal members Wa and Wb are energized and heated to produce a joined body in which a cooling water channel is formed on the joining surface (see FIG. 6 (b) of the pamphlet). At this time, in the single energization heating method according to Comparative Example 6, the energization heating is performed under the condition that the pressure applied to the pair of electrodes for 60 minutes is a pressure of 0.3 MPa. On the other hand, in the work energization heating method according to Example 5, the energization heating is performed under the condition that the pressure applied to the pair of electrodes is 0.3 MPa for the first 20 minutes, and the pair for the subsequent 40 minutes. Conduction heating is performed under the condition that the pressure applied to the electrode is the pressure of IMPa. Further, in the electric current heating method according to Example 6, the electric heating is performed under the condition that the pressure applied to the pair of electrodes is 0.3 MPa for the first 20 minutes, and the pair for the subsequent 40 minutes. Conduct current heating under the condition that the pressure applied to the electrode is IMPa, and then increase the pressure applied to the pair of electrodes to 5 MPa immediately after the current heating process, and hold for 1 minute in that state.
[0234] (3)その後、得られた接合体について、国際公開第 2007/108058号パンフレット に記載の方法(同パンフレットの図 1〜4参照。)に従って、均一化工程及び接合力強 化工程を行い、接合体における接合力を強化する(上記パンフレットの図 6 (c)及び 図 6 (d)参照。)。  [0234] (3) Thereafter, according to the method described in the pamphlet of International Publication No. 2007/108058 (see FIGS. 1 to 4 of the pamphlet), the obtained joined body is subjected to a homogenization step and a bonding strength strengthening step. To strengthen the bonding force in the bonded body (see Fig. 6 (c) and Fig. 6 (d) in the above pamphlet).
(4)その後、接合体に対して切削加工を施して成形金型を製造する(同パンフレット の図 6 (e)参照。)。  (4) Then, the joined body is cut to produce a mold (see Fig. 6 (e) in the pamphlet).
(5)その後、当該成形金型を樹脂成形金型及びダイカスト成形金型として用いて、樹 脂成形金型及びダイカスト成形金型としての耐久性を評価する。 (5) After that, using the molding die as a resin molding die and die casting molding die, The durability as a fat molding die and a die casting die is evaluated.
[0235] 表 2は、試験例 5における試験結果を示す表である。なお、表 2の耐久性/樹脂成 形金型の欄においては、樹脂成形金型を用いて樹脂成形を行ったときに樹脂成形 金型が破損するまでのショット数字が比較例 6の 10倍以上の場合に十分に実使用に 耐え得るとして「◎」の評価を与えた。また、表 2の耐久性/ダイカスト成形金型の欄 においては、ダイカスト成形金型を用いてダイカスト成形を行ったときにダイカスト成 形金型が破損するまでのショット数が比較例 6の 10倍以上の場合に「〇」の評価を与 え、実施例 5の 10倍以上の場合に十分に実使用に耐え得るとして「◎」の評価を与え た。また、表 2の総合評価の欄においては、耐久性/ダイカスト成形金型の欄が「◎」 の場合に「◎」の評価を与え、耐久性/ダイカスト成形金型の欄が「〇」の場合に「〇 」の評価を与えた。 [0235] Table 2 is a table showing test results in Test Example 5. In the column of Durability / Resin Mold in Table 2, the shot number until the resin mold is damaged when resin molding is performed using the resin mold is 10 times that of Comparative Example 6. In the above cases, “◎” was given as being able to withstand actual use. In addition, in the column of Durability / Die Casting Mold in Table 2, the number of shots until the die casting mold is damaged when die casting is performed using the die casting mold is 10 times that of Comparative Example 6. In the above case, an evaluation of “◯” was given, and an evaluation of “◎” was given that it could sufficiently withstand actual use when it was 10 times or more of Example 5. Also, in the overall evaluation column of Table 2, when the durability / die casting mold column is “◎”, an evaluation of “◎” is given, and the durability / die casting mold column is “◯”. The case was given a rating of “〇”.
[0236] [表 2] 耐久性 [0236] [Table 2] Durability
種別 総合評価  Type Overall evaluation
樹脂成形金型 ダイカスト成形金型  Resin mold Die-cast mold
実施例 5 ◎ 〇 〇  Example 5 ◎ 〇 〇
実施例 6 ◎ ◎ ◎  Example 6 ◎ ◎ ◎
比較例 6  Comparative Example 6
[0237] 表 2から明らかなように、通電加熱工程の初期に一対の電極に印加する圧力を比 較的低く設定する(0. 3MPa)とともに、通電加熱工程の後期に一対の電極に印加 する圧力を比較的高く設定する(IMPa)ことにより、十分に接合力の高い接合体が 得られることがわかった。また、通電加熱工程の初期に一対の電極に印加する圧力 を比較的低く設定する(0. 3MPa)とともに、通電加熱工程の後期に一対の電極に 印加する圧力を比較的高く設定し(IMPa)、さらには、通電加熱工程の後に一対の 電極にさらに高い圧力を印加する(5MPa)ことにより、さらに接合力の高い接合体が 得られることがわかった [0237] As is clear from Table 2, the pressure applied to the pair of electrodes at the initial stage of the energization heating process is set relatively low (0.3 MPa), and is applied to the pair of electrodes at the latter stage of the energization heating process. It was found that by setting the pressure relatively high (IMPa), it is possible to obtain a bonded body with sufficiently high bonding strength. In addition, the pressure applied to the pair of electrodes in the initial stage of the electric heating process is set relatively low (0.3 MPa), and the pressure applied to the pair of electrodes in the latter stage of the electric heating process is set relatively high (IMPa). Furthermore, it was found that a bonded body with higher bonding strength can be obtained by applying a higher pressure (5 MPa) to the pair of electrodes after the current heating step.
[0238] 以上、本発明のワーク通電加熱方法、接合体の製造方法、焼結体の製造方法及 びワーク通電加熱装置を上記の各実施形態に基づいて説明した力 本発明は上記 の各実施形態に限られるものではなぐその要旨を逸脱しない範囲において種々の 態様において実施することが可能であり、例えば次のような変形も可能である。 [0238] The work energizing heating method, the joined body manufacturing method, the sintered body manufacturing method, and the work energizing heating apparatus of the present invention described above based on the above embodiments are described above. The present invention is not limited to the embodiments described above, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.
[0239] (1)上記各実施形態においては、導電性フェルト 14a, 14b, 214a, 214b, 314a, 314bとしてカーボンフェルトを用いている力 本発明はこれに限定されるものではな い。導電性フェルトとして、例えば、ステンレスファイバからなる導電性フェルトを用い ることあでさる。 (1) In the above embodiments, the force using carbon felt as the conductive felts 14a, 14b, 214a, 214b, 314a, 314b is not limited to this. For example, a conductive felt made of stainless fiber is used as the conductive felt.
[0240] (2)上記各実施形態においては、カーボン材料からなるワーク側電極体 12a, 12b, 312a, 312bを用いている力 本発明はこれに限定されるものではない。例えば、ス テンレス鋼などの金属材料からなるワーク側電極体を用いることもできる。  (2) In each of the above embodiments, the force using the workpiece-side electrode bodies 12a, 12b, 312a, 312b made of a carbon material. The present invention is not limited to this. For example, a workpiece-side electrode body made of a metal material such as stainless steel can be used.
[0241] (3)上記各実施形態においては、カーボン材料からなる電源装置側電極体 16a, 16 b, 316a, 316bを用いている力 本発明はこれに限定されるものではない。例えば、 ステンレス鋼などの金属材料からなる電源装置側電極体を用いることもできる。  [0241] (3) In each of the above embodiments, the force using the power supply device side electrode bodies 16a, 16b, 316a, 316b made of a carbon material is not limited to this. For example, a power device side electrode body made of a metal material such as stainless steel can be used.
[0242] (4)上記実施形態 4においては、断熱用ハウジング 470にはスリット部 474が形成さ れているが、本発明はこれに限定されるものではない。たとえば、断熱用ハウジング には窓部が形成されて!/、てもよレ、。  [0242] (4) In Embodiment 4 described above, the heat insulating housing 470 is formed with the slit portion 474, but the present invention is not limited to this. For example, the heat insulation housing has a window! /
[0243] (5)上記試験例 5においては、通電加熱工程の直後に一対の電極に印加する圧力 を 5MPaまで高くした場合の例を示した力 本発明はこれに限定されるものではない 。通電加熱工程の直後に一対の電極に印加する圧力を 2MPa以上とすることにより、 極めて接合力の高い接合体を製造することができる。  [0243] (5) In Test Example 5 described above, the force shown in the example in which the pressure applied to the pair of electrodes is increased to 5 MPa immediately after the energization heating step is not limited to this. By setting the pressure applied to the pair of electrodes to 2 MPa or more immediately after the energization heating process, it is possible to manufacture a bonded body with extremely high bonding strength.
[0244] (6)本発明は、冷却水流路等の熱交換用媒体流路が内部に形成された成形金型製 造用の接合体を製造する場合に好適に用いることができる。  [0244] (6) The present invention can be suitably used in the case of manufacturing an assembly for manufacturing a molding die in which a heat exchange medium flow path such as a cooling water flow path is formed.
符号の説明  Explanation of symbols
[0245] 10a, 10b, 10c, 10d, lOe, l Of, 210a, 210b, 310a, 310b, 910a, 910b…電 極、 12a, 12b, 312a, 312b…ワーク側電極体、 14a, 14b, 214a, 214b, 314a, 314b…導電性フェルト、 14e, 14f…カーボンチップ、 16a, 16b, 316a, 316b…電 源装置側電極体、 18a ~ 18a , 18b ~ 18b , 318a ~318a , 318b〜318b…  [0245] 10a, 10b, 10c, 10d, lOe, l Of, 210a, 210b, 310a, 310b, 910a, 910b ... Electrode, 12a, 12b, 312a, 312b ... Work side electrode body, 14a, 14b, 214a, 214b, 314a, 314b… Conductive felt, 14e, 14f… Carbon tip, 16a, 16b, 316a, 316b… Power supply side electrode body, 18a to 18a, 18b to 18b, 318a to 318a, 318b to 318b…
1 3 1 3 1 3 1 3 平板、 20a, 20b…冷却体、 22a, 22b…冷却媒体用流路、 24a, 24b…冷却体保護 板、 30, 930…電源装置、 32…酉己線、 40, 940…真空チャンバ、 50…押圧装置、 5 2…油圧シリンダ、 60…真空ポンプ、 215a ~215a , 215b〜215b …フェル卜片、 1 3 1 3 1 3 1 3 Flat plate, 20a, 20b ... cooling body, 22a, 22b ... cooling medium flow path, 24a, 24b ... cooling body protection plate, 30, 930 ... power supply, 32 ... selfish wire, 40 , 940… Vacuum chamber, 50… Pressing device, 5 2 ... Hydraulic cylinder, 60 ... Vacuum pump, 215a to 215a, 215b to 215b ...
1 3 1 3  1 3 1 3
470…断熱用ノヽウジング、 472…内張り、 474…スリット部、 100, 102, 104, 106, 200, 300, 400, 500, 600, 900…ワーク通電力口熱装置、 582a, 582b…カーボン シート、 Pj…接合体, Ps, Ps '…焼結体、 Ta…上パンチ、 Tb…下パンチ、 Tc…焼結 用金型、 W , Wa, Wb…金属部材、 Ws…焼結体用粉末  470… Insulation for insulation, 472… Inner lining, 474… Slit part, 100, 102, 104, 106, 200, 300, 400, 500, 600, 900… Work power outlet heating device, 582a, 582b… Carbon sheet, Pj: Bonded body, Ps, Ps': Sintered body, Ta: Upper punch, Tb: Lower punch, Tc: Mold for sintering, W, Wa, Wb ... Metal member, Ws ... Powder for sintered body

Claims

請求の範囲 The scope of the claims
[1] 電源装置と電気的に接続された一対の電極の間にワークを配置した状態で前記ヮ ークを通電加熱するワーク通電加熱方法にお!/ヽて、  [1] A work energization heating method in which the work is energized and heated in a state where the work is disposed between a pair of electrodes electrically connected to the power supply device.
前記一対の電極のうち少なくとも一方の電極として、ワーク側電極体と、前記ワーク 側電極体よりも低!/、熱伝導率及び前記ワーク側電極体よりも高!/、電気抵抗率を有す る導電性フェルトと、電源装置側電極体とがこの順序で積層された構造を有する電極 を用いて前記ワークを通電加熱することを特徴とするワーク通電加熱方法。  As at least one electrode of the pair of electrodes, the workpiece side electrode body and the workpiece side electrode body have lower! /, Thermal conductivity and higher than the workpiece side electrode body! /, And electrical resistivity. A work energization heating method, wherein the work is energized and heated using an electrode having a structure in which a conductive felt and a power supply side electrode body are laminated in this order.
[2] 請求項 1に記載のワーク通電加熱方法にお!/ヽて、 [2] In the work energization heating method according to claim 1!
前記導電性フェルトの熱伝導率は、前記ワーク側電極体の熱伝導率の 1/10以下 であり、かつ、前記導電性フェルトの電気抵抗率は、前記ワーク側電極体の電気抵 抗率の 5倍以上であることを特徴とするワーク通電加熱方法。  The thermal conductivity of the conductive felt is 1/10 or less of the thermal conductivity of the workpiece-side electrode body, and the electrical resistivity of the conductive felt is the electrical resistivity of the workpiece-side electrode body. A work energization heating method characterized by being 5 times or more.
[3] 請求項 1又は 2に記載のワーク通電加熱方法において、 [3] In the work energization heating method according to claim 1 or 2,
前記導電性フェルトは、 0. 2g/cm3以下の力、さ密度を有するカーボンフェルトから なることを特徴とするワーク通電加熱方法。 The method according to claim 1, wherein the conductive felt is made of carbon felt having a force and density of 0.2 g / cm 3 or less.
[4] 請求項 1〜3のいずれかに記載のワーク通電加熱方法において、 [4] In the work energization heating method according to any one of claims 1 to 3,
前記導電性フェルトは、複数枚のフェルト片が積層された構造を有することを特徴と するワーク通電加熱方法。  The conductive felt heating method, wherein the conductive felt has a structure in which a plurality of felt pieces are laminated.
[5] 請求項 1〜4のいずれかに記載のワーク通電加熱方法において、 [5] In the work energization heating method according to any one of claims 1 to 4,
前記導電性フェルトの厚さは、前記ワーク側電極体の厚さよりも薄いことを特徴とす るワーク通電加熱方法。  A work energization heating method, wherein a thickness of the conductive felt is thinner than a thickness of the work side electrode body.
[6] 請求項 1〜5のいずれかに記載のワーク通電加熱方法において、 [6] In the work energization heating method according to any one of claims 1 to 5,
前記ワーク側電極体及び前記電源装置側電極体は、カーボン材料からなることを 特徴とするワーク通電加熱方法。  The work energization heating method, wherein the work side electrode body and the power supply side electrode body are made of a carbon material.
[7] 請求項 1〜6のいずれかに記載のワーク通電加熱方法において、 [7] In the work energization heating method according to any one of claims 1 to 6,
前記一対の電極と前記ワークとの間にカーボンシートをそれぞれ配置した状態で前 記ワークを通電加熱することを特徴とするワーク通電加熱方法。  A work energization heating method, wherein the work is energized and heated in a state where a carbon sheet is disposed between the pair of electrodes and the work.
[8] 請求項 1〜7のいずれかに記載のワーク通電加熱方法において、 [8] In the work energization heating method according to any one of claims 1 to 7,
前記電源装置側電極体は、複数枚の平板が積層された構造を有することを特徴と するワーク通電加熱方法。 The power device side electrode body has a structure in which a plurality of flat plates are laminated. Work energization heating method.
請求項 8に記載のワーク通電加熱方法において、  In the work energization heating method according to claim 8,
前記電源装置側電極体における各平板の平面サイズは、前記ワーク側電極体に 向かって徐々に大きくなることを特徴とするワーク通電加熱方法。  The workpiece energization heating method, wherein a planar size of each flat plate in the power supply device side electrode body gradually increases toward the workpiece side electrode body.
請求項 1〜9のいずれかに記載のワーク通電加熱方法において、  In the work energization heating method according to any one of claims 1 to 9,
断熱用ハウジングを前記ワークの周囲に配置した状態で前記ワークを通電加熱す ることを特徴とするワーク通電加熱方法。  A work energization heating method, wherein the work is energized and heated in a state where a heat insulating housing is disposed around the work.
請求項 10に記載のワーク通電加熱方法において、  In the work energization heating method according to claim 10,
前記断熱用ハウジングは、カーボンフェルトの内張りを有することを特徴とするヮー ク通電加熱方法。  The method for energizing and heating a ceramic, wherein the heat insulating housing has a carbon felt lining.
請求項 1〜; 11のいずれかに記載のワーク通電加熱方法において、  The work energization heating method according to any one of claims 1 to 11;
前記一対の電極のうちいずれの電極としても、ワーク側電極体と、前記ワーク側電 極体よりも低!/、熱伝導率及び前記ワーク側電極体よりも高!/、電気抵抗率を有する導 電性フェルトと、電源装置側電極体とがこの順序で積層された構造を有する電極を 用いて前記ワークを通電加熱することを特徴とするワーク通電加熱方法。  As either electrode of the pair of electrodes, the workpiece side electrode body and the workpiece side electrode body have lower! /, Thermal conductivity and higher than the workpiece side electrode body! /, And electrical resistivity. A work energization heating method, wherein the work is energized and heated using an electrode having a structure in which a conductive felt and a power supply device side electrode body are laminated in this order.
請求項;!〜 12のいずれかに記載のワーク通電加熱方法を用いて接合体を製造す る接合体の製造方法であって、  A method for producing a joined body for producing a joined body using the work energization heating method according to any one of claims;
ワークとして複数の金属部材を準備する金属部材準備工程と、  A metal member preparation step of preparing a plurality of metal members as a workpiece;
前記一対の電極の間に、接合予定面を突き合わせた状態で前記複数の金属部材 を配置する金属部材配置工程と、  A metal member disposing step of disposing the plurality of metal members in a state where the surfaces to be joined are abutted between the pair of electrodes;
前記一対の電極を互いに近づける向きに押圧した状態で前記複数の金属部材を 通電加熱して前記複数の金属部材を接合する通電加熱工程とをこの順序で含むこと を特徴とする接合体の製造方法。  A method of manufacturing a joined body, comprising: an energization heating step in which the plurality of metal members are energized and heated to join the plurality of metal members in a state in which the pair of electrodes are pressed in a direction approaching each other. .
請求項 13に記載の接合体の製造方法において、  In the manufacturing method of the joined object according to claim 13,
各金属部材における接合予定面の算術平均粗さ Raは、 0. 02 ^ 111-0. 2 111であ ることを特徴とする接合体の製造方法。  The method for producing a joined body, characterized in that the arithmetic average roughness Ra of the planned joining surface of each metal member is 0.02 ^ 111-0.2111.
請求項 13又は 14に記載の接合体の製造方法において、  In the manufacturing method of the joined object according to claim 13 or 14,
前記通電加熱工程の初期においては、前記一対の電極に対して所定の第 1圧力 を印加した状態で前記複数の金属部材を通電加熱し、 In the initial stage of the energization heating step, a predetermined first pressure is applied to the pair of electrodes. The plurality of metal members are energized and heated while applying
前記通電加熱工程の後期においては、前記一対の電極に対して前記第 1圧力より も高い第 2圧力を印加した状態で前記複数の金属部材を通電加熱することを特徴と する接合体の製造方法。  In the latter stage of the energization heating process, the plurality of metal members are energized and heated in a state where a second pressure higher than the first pressure is applied to the pair of electrodes. .
[16] 請求項 13〜; 15のいずれかに記載の接合体の製造方法において、 [16] The method for producing a joined body according to any one of claims 13 to 15;
前記通電加熱工程の初期にお!/、ては、所定の電流量で前記複数の金属部材を通 電加熱し、  In the initial stage of the energization heating process! /, The plurality of metal members are electrically heated by a predetermined amount of current,
前記通電加熱工程の後期においては、前記通電加熱工程の初期よりも多い電流 量で前記複数の金属部材を通電加熱することを特徴とする接合体の製造方法。  In the latter stage of the energization heating process, the plurality of metal members are energized and heated with a larger amount of current than in the initial stage of the energization heating process.
[17] 請求項 15又は 16に記載の接合体の製造方法において、 [17] In the method for producing a joined body according to claim 15 or 16,
前記通電加熱工程の後期又は前記通電加熱工程の後に、前記一対の電極に対し て 2MPa以上の圧力を印加することを特徴とする接合体の製造方法。  A method for producing a joined body, wherein a pressure of 2 MPa or more is applied to the pair of electrodes at a later stage of the energization heating process or after the energization heating process.
[18] 請求項;!〜 12のいずれかに記載のワーク通電加熱方法を用いて焼結体を製造す る焼結体の製造方法であって、 [18] A method for producing a sintered body, wherein the sintered body is produced using the work energization heating method according to any one of claims;! -12.
ワークとして焼結体用粉末を準備する焼結体用粉末準備工程と、  A powder preparation process for a sintered body for preparing a powder for a sintered body as a workpiece,
前記一対の電極の間に前記焼結体用粉末を配置する焼結体用粉末配置工程と、 前記一対の電極を互いに近づける向きに押圧した状態で前記焼結体用粉末を通 電加熱して前記焼結体用粉末を焼結する通電加熱工程とをこの順序で含むことを特 徴とする焼結体の製造方法。  The sintered body powder placement step of placing the sintered body powder between the pair of electrodes, and the sintered body powder being heated while the pair of electrodes are pressed toward each other. A method for producing a sintered body comprising an electric heating step for sintering the powder for a sintered body in this order.
[19] 請求項 18に記載の焼結体の製造方法において、 [19] The method for producing a sintered body according to claim 18,
前記通電加熱工程の後に、  After the current heating step,
前記一対の電極の間に前記焼結体を配置する焼結体配置工程と、  A sintered body arrangement step of arranging the sintered body between the pair of electrodes;
前記焼結体を通電加熱する第 2通電加熱工程とをさらに含むことを特徴とする焼結 体の製造方法。  A method for producing a sintered body, further comprising a second current heating step of electrically heating the sintered body.
[20] 電源装置と、 [20] a power supply;
前記電源装置と電気的に接続された一対の電極と、  A pair of electrodes electrically connected to the power supply device;
前記一対の電極が内部に設置された真空チャンバとを備え、  A vacuum chamber in which the pair of electrodes are installed,
前記一対の電極の間に配置されたワークを通電加熱するワーク通電加熱装置にお いて、 In a work energization heating apparatus that energizes and heats a work placed between the pair of electrodes. And
前記一対の電極のうち少なくとも一方の電極は、ワーク側電極体と、前記ワーク側 電極体よりも低!/、熱伝導率及び前記ワーク側電極体よりも高!/、電気抵抗率を有する 導電性フェルトと、電源装置側電極体とがこの順序で積層された構造を有することを 特徴とするワーク通電加熱装置。  At least one of the pair of electrodes has a work-side electrode body and a lower electrical conductivity than the work-side electrode body and a higher thermal conductivity and an electrical resistivity than the work-side electrode body. A work energization heating device characterized by having a structure in which a conductive felt and a power supply device side electrode body are laminated in this order.
[21] 請求項 20に記載のワーク通電加熱装置において、 [21] In the work energization heating device according to claim 20,
前記一対の電極のうちいずれの電極も、ワーク側電極体と、前記ワーク側電極体よ りも低!/、熱伝導率及び前記ワーク側電極体よりも高!、電気抵抗率を有する導電性フ エルトと、電源装置側電極体とがこの順序で積層された構造を有することを特徴とす るワーク通電加熱装置。  Either electrode of the pair of electrodes is a work-side electrode body and a conductivity lower than that of the work-side electrode body /, having a thermal conductivity and higher than that of the work-side electrode body, and having an electrical resistivity. A work energizing / heating apparatus characterized by having a structure in which a felt and a power supply side electrode body are laminated in this order.
[22] 請求項 20又は 21に記載のワーク通電加熱装置にお!/、て、 [22] In the work electric heating apparatus according to claim 20 or 21,! /,
前記ワーク通電加熱装置は、前記ワークとしての複数の金属部材を通電加熱して 前記複数の金属部材を接合する接合装置であることを特徴とするワーク通電加熱装 置。  The work energization heating apparatus is a joining apparatus that energizes and heats a plurality of metal members as the work to join the plurality of metal members.
[23] 請求項 20又は 21に記載のワーク通電加熱装置にお!/、て、  [23] In the work energization heating device according to claim 20 or 21,! /,
前記ワーク通電加熱装置は、前記ワークとしての焼結体用粉末を通電加熱して前 記焼結体用粉末を焼結する焼結装置であることを特徴とするワーク通電加熱装置。  The workpiece energization heating apparatus is a sintering apparatus for energizing and heating the sintered body powder as the workpiece to sinter the sintered body powder.
PCT/JP2007/070012 2006-10-13 2007-10-13 Method for energization heating work, method for producing bonded body, method for producing sintered body, and device for energization heating work WO2008044776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/320512 WO2008044320A1 (en) 2006-10-13 2006-10-13 Work conduction heating method, method for producing bonded body, method for producing sintered body and work conduction heating device
JPPCT/JP2006/320512 2006-10-13

Publications (1)

Publication Number Publication Date
WO2008044776A1 true WO2008044776A1 (en) 2008-04-17

Family

ID=39282532

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/320512 WO2008044320A1 (en) 2006-10-13 2006-10-13 Work conduction heating method, method for producing bonded body, method for producing sintered body and work conduction heating device
PCT/JP2007/070012 WO2008044776A1 (en) 2006-10-13 2007-10-13 Method for energization heating work, method for producing bonded body, method for producing sintered body, and device for energization heating work

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320512 WO2008044320A1 (en) 2006-10-13 2006-10-13 Work conduction heating method, method for producing bonded body, method for producing sintered body and work conduction heating device

Country Status (1)

Country Link
WO (2) WO2008044320A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165414A1 (en) 2011-05-31 2012-12-06 株式会社 旭 Molding device and method for manufacturing molded product
JP2018534762A (en) * 2015-09-10 2018-11-22 燕山大学 PERMANENT MAGNETIC MATERIAL AND METHOD FOR PREPARING THE SAME

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584881B2 (en) * 2012-05-17 2014-09-10 株式会社エレニックス Spark sintering equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054877A (en) * 1990-10-03 1993-01-14 Daihen Corp Method for electrically joining body containing ceramics to be joined
JPH0826709A (en) * 1994-07-13 1996-01-30 Toyo Tanso Kk Production of carbon material
JPH11342479A (en) * 1998-05-28 1999-12-14 Agency Of Ind Science & Technol High melting point metallic joined body, ion gun parts for ion jinection device, and manufacturing method therefor
JP2003069090A (en) * 2001-08-22 2003-03-07 Kyocera Corp Method of manufacturing thermoelectric material
JP2003193112A (en) * 2001-12-28 2003-07-09 Sumitomo Coal Mining Co Ltd Pulse energized pressure sintering method, sintering apparatus, and sintered compact
JP2004323920A (en) * 2003-04-25 2004-11-18 Sumitomo Heavy Industries Techno-Fort Co Ltd Sintering die of electric pressure sintering device
JP2005171379A (en) * 2003-10-24 2005-06-30 Rolls Royce Plc Method of manufacturing fiber reinforced metal matrix composite article
JP2005230823A (en) * 2004-02-17 2005-09-02 Suwa Netsukogyo Kk Joining apparatus and joining method with pulse energization
JP2005262244A (en) * 2004-03-17 2005-09-29 Suwa Netsukogyo Kk Method for joining metallic member by pulse energization
JP2006138006A (en) * 2004-11-15 2006-06-01 Asahi Glass Co Ltd Cylindrical target and film-forming method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126470A (en) * 1992-10-20 1994-05-10 Komatsu Ltd Resistance diffused junction device
JP2000220849A (en) * 1999-01-29 2000-08-08 Shikoku Res Inst Inc Home heater/cooker
JP2000239709A (en) * 1999-02-25 2000-09-05 Aisin Chem Co Ltd Direct energization sintering method and device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054877A (en) * 1990-10-03 1993-01-14 Daihen Corp Method for electrically joining body containing ceramics to be joined
JPH0826709A (en) * 1994-07-13 1996-01-30 Toyo Tanso Kk Production of carbon material
JPH11342479A (en) * 1998-05-28 1999-12-14 Agency Of Ind Science & Technol High melting point metallic joined body, ion gun parts for ion jinection device, and manufacturing method therefor
JP2003069090A (en) * 2001-08-22 2003-03-07 Kyocera Corp Method of manufacturing thermoelectric material
JP2003193112A (en) * 2001-12-28 2003-07-09 Sumitomo Coal Mining Co Ltd Pulse energized pressure sintering method, sintering apparatus, and sintered compact
JP2004323920A (en) * 2003-04-25 2004-11-18 Sumitomo Heavy Industries Techno-Fort Co Ltd Sintering die of electric pressure sintering device
JP2005171379A (en) * 2003-10-24 2005-06-30 Rolls Royce Plc Method of manufacturing fiber reinforced metal matrix composite article
JP2005230823A (en) * 2004-02-17 2005-09-02 Suwa Netsukogyo Kk Joining apparatus and joining method with pulse energization
JP2005262244A (en) * 2004-03-17 2005-09-29 Suwa Netsukogyo Kk Method for joining metallic member by pulse energization
JP2006138006A (en) * 2004-11-15 2006-06-01 Asahi Glass Co Ltd Cylindrical target and film-forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165414A1 (en) 2011-05-31 2012-12-06 株式会社 旭 Molding device and method for manufacturing molded product
JP2018534762A (en) * 2015-09-10 2018-11-22 燕山大学 PERMANENT MAGNETIC MATERIAL AND METHOD FOR PREPARING THE SAME
US10249418B2 (en) 2015-09-10 2019-04-02 Yanshan University Permanent magnet material and method for preparing the same

Also Published As

Publication number Publication date
WO2008044320A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP3154629U (en) Electrostatic chuck
JP5427462B2 (en) Thermoelectric conversion module
JP5117146B2 (en) Heating device
KR20210116638A (en) Tobacco heating assembly and electric heating smoking device
JP5967834B2 (en) Resin molding die, method for manufacturing the resin molding die, and method for manufacturing a resin molded product
WO2017115599A1 (en) Ceramic member
JP2007291524A (en) Target for sputtering source
WO2008044776A1 (en) Method for energization heating work, method for producing bonded body, method for producing sintered body, and device for energization heating work
US20130154143A1 (en) High dynamic temperature control system
JP5173921B2 (en) Solar cell module laminator
JP2013187036A (en) Device and method for manufacturing member for fuel cell
JP2012045757A5 (en)
CN104014921B (en) A kind of method preparing copper molybdenum multilayer materials fast
JP6697997B2 (en) Electrostatic chuck, substrate fixing device
US20130216842A1 (en) Method of bonding ceramic and metal and bonded structure of ceramic and metal
JP4639764B2 (en) Cylindrical target and film forming method
JP2016198937A (en) Composite material containing carbon material layer and heat exchanger
US20180326646A1 (en) Screw machine and method for the processing of material to be processed
JP5708470B2 (en) Electric heating device
TWI475122B (en) And a film forming apparatus having the target
JP6376812B2 (en) Cooling structure and mold cooling device
KR100186933B1 (en) Cooking vessel multiple bottom junction method by high frequency induction heating
JP2018182280A (en) Ceramic member
KR102357819B1 (en) Cylindrical Sputtering Target
KR20200072301A (en) Spot welding electrode tip and manuafacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP