WO2008044665A1 - Contact-less micro relay - Google Patents

Contact-less micro relay Download PDF

Info

Publication number
WO2008044665A1
WO2008044665A1 PCT/JP2007/069634 JP2007069634W WO2008044665A1 WO 2008044665 A1 WO2008044665 A1 WO 2008044665A1 JP 2007069634 W JP2007069634 W JP 2007069634W WO 2008044665 A1 WO2008044665 A1 WO 2008044665A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
voltage
oxide film
aluminum
insulating film
Prior art date
Application number
PCT/JP2007/069634
Other languages
French (fr)
Japanese (ja)
Inventor
Seisuke Nigo
Seiichi Kato
Hideaki Kitazawa
Yoshio Uno
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to JP2008538721A priority Critical patent/JP5266472B2/en
Publication of WO2008044665A1 publication Critical patent/WO2008044665A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0094Switches making use of nanoelectromechanical systems [NEMS]

Definitions

  • the present invention relates to a contactless microrelay that can be used in an electric circuit in which a current of several milliamperes or more flows.
  • Solid-state devices are used in electronic circuit relays that carry minute currents of several microamperes or less, making it possible to integrate electronic circuits.
  • mechanical contact relays are used in electrical circuits. The reason for this is that mechanical contact relays are used because it is necessary to pass a current of several milliamperes or more through the electrical circuit, and that no leakage current flows when the relay is off.
  • MEMS Micro E 1 ectro Mechanical System
  • Devices are being developed. In that case, it is necessary to make the mechanical contact relay as small as possible.
  • Device for flexure of contact by micro processing technology using semiconductor manufacturing technology for example, Japanese Patent Application Laid-Open No. 2003-203549
  • device for increasing sensitivity by incorporating solid elements in parallel for example, Japanese Patent Application Laid-Open No. 2003-21 7423, Japanese Patent Application Laid-open No. 2006
  • others for example, developed a 2.5 mm 4. 0 x 1. 3 mm MEMS relay, which enabled the miniaturization of mobile phones.
  • the increase in manufacturing costs due to microfabrication and the elimination of the basic weaknesses (contact flapping and life) of mechanical contacts have reached their limits. Disclosure of the invention
  • the present invention meets that need.
  • One of the issues is to eliminate the need for relay contactlessness and microfabrication.
  • Means for solving the problem is to eliminate the need for relay contactlessness and microfabrication.
  • the present inventor has found that switching characteristics comparable to a mechanical contact relay can be obtained by a solid-state element, and has developed a contactless microrelay shown below using this.
  • the contactless microrelay of the first aspect of the invention is a microphone port relay that turns on and off power from the output terminal by turning on and off the relay terminal caused by a voltage change at the input terminal, and the relay terminal is a conductive substrate.
  • the relay element is composed of an insulating film having a vertical nanostructure formed on an insulating material and an electrode formed on the surface of the insulating film.
  • the contactless microrelay of the invention 2 is the contactless microrelay of the invention 1, wherein the relay element is made of aluminum as a conductive substrate, and an insulating film having a vertical nanostructure of aluminum oxide is formed on the surface thereof. A vapor deposition electrode is provided on the surface of the insulating film.
  • the element of the present invention is not a semiconductor device but a strongly correlated electron device. In other words, it is not the conduction by a minority carrier generated by thermal excitation like a semiconductor, but the metal conduction by the majority carrier electrons injected from the electrode.
  • the off state is an insulating state with an insulating film to which no impurity is added. For this reason, the on / off resistance ratio is 6 digits or more, and switching characteristics comparable to mechanical contact relays can be obtained.
  • Fig. 1 is a cross-sectional photograph (transmission electron micrograph) of the aluminum anodized film used in the relay element.
  • Figure 2 is a surface photograph (scanning electron micrograph) of the aluminum anodized film used in the relay element.
  • Fig. 3 is a schematic cross-sectional view of a relay element.
  • Fig. 4 is a photograph showing the appearance of the relay element.
  • FIG. 5 is a graph showing the current-voltage characteristics of the relay element.
  • FIG. 6 is a circuit diagram showing a circuit for measuring current-voltage characteristics.
  • Figure 7 is a circuit diagram of a self-holding electromagnetic relay.
  • FIG. 8 is a circuit diagram showing an example of an element relay.
  • Figure 9 is a graph showing the relationship between the aluminum oxide film thickness and the on-voltage.
  • FIG. 10 is a graph showing the current-voltage characteristics of Comparative Example 1.
  • FIG. 11 is a graph showing the current-voltage characteristics of Comparative Example 2.
  • Fig. 12 is a schematic cross-sectional view (off state) of the relay element.
  • Figure 13 is a plane slice transmission electron micrograph of a porous aluminum oxide film.
  • FIG. 14 is a schematic cross-sectional view (on state) of the relay element.
  • Figure 15 shows the surface of the aluminum oxide film (scanning electron micrograph) in a charged state.
  • FIG. 16 is a system diagram showing a two-step anodizing method. Explanation of symbols
  • Figure 9 shows the relationship between the oxide film thickness and the ON voltage switching to the ON state.
  • the general range of the oxide film thickness is 1 to 0.1 ⁇ , preferably 0.8 to 0. l zm, more preferably 0.6 to 0.15 Aim. If the pitch of nanoholes perpendicular to the aluminum substrate is in the range of 20 to 200 nm, the switching characteristics are not affected.
  • the material conditions are as follows: (1) The oxide film is insulative, (2) The substrate is conductive, and (3) Metals other than aluminum are used if the nanoholes formed by anodization are perpendicular to the substrate Is possible. For example, tin and indium can not be used because the oxide is not insulative, but titanium satisfies the conditions 1, 2, and 3 and can be used.
  • the means for making the oxide film have the above preferred thickness can be controlled by the anodic oxidation treatment time and the electrolyte temperature.
  • Table 1 shows examples.
  • the electrolyte used for anodic oxidation is 0.2 to 0.
  • Sulfuric acid or phosphoric acid may be used at a concentration of 5 mol%.
  • the evaluation was made based on whether or not switching characteristics of an on-current of 25 milliamperes and an off-current (leakage current) of 4 nanoamperes can be obtained.
  • the present invention is not limited to this. The point is that the contactless microrelay of the present invention that exhibits characteristics that can only be achieved with conventional mechanical contact relays is also included in the scope of the present invention.
  • a board for the relay element (1) was created by the following procedure.
  • the anodization is performed while stirring with a stirrer at a constant temperature and constant voltage of 20 ° C and 40V, using a single-bonded electrode as the cathode.
  • a tunnel current flows uniformly over the entire surface of the aluminum, and an oxide film is uniformly formed.
  • the tunnel current becomes difficult to flow, the current flows locally, the temperature of the oxide film in that portion rises, and the surface is dissolved and recessed by oxalic acid.
  • a current selectively flows through the recess, and the oxidation of aluminum and the dissolution of aluminum oxide proceed simultaneously to deepen the recess.
  • the first dents appear in random, but as time goes on, the dents disappear, and when the voltage is 40 V, the pitch of the dents is almost 100 nm after about 30 minutes.
  • Fig. 1 shows a transmission electron micrograph of this oxide film cross section
  • Fig. 2 shows a scanning electron micrograph of the oxide film surface.
  • the aluminum oxide film (A 1 2) has a vertical 40 nm diameter nanohole (31) perpendicular to the aluminum bullion (4) and a 60 nm wide partition wall (32) arranged in 100 nm pitch.
  • This anodized aluminum plate is found to be nanostructured, cut to 1 Omm square, and 50 nm thick gold is deposited on the surface of the oxide film (3) to form the upper electrode (2).
  • a two-electrode element with a three-layer structure was made using gold as the lower electrode.
  • Fig. 3 shows the cross-sectional structure
  • Fig. 4 shows the appearance. As shown in FIG.
  • the partition wall (32) is composed of an inner layer (32A) and an outer layer (32B), the inner layer (32 A) is composed of A 10 4 + A 10 5 , and the outer layer (32 B) is composed of A It consists of 1 o 6 .
  • This element (1) exhibits the current-voltage characteristics of FIG. 5, and can be switched between an on state and an off state by an applied voltage using a circuit as shown in FIG. For example, if a voltage of 5.5 V, which is the on-voltage (N 1), is applied, the connection at the point A is established, and if a voltage of 2 V, which is the off-voltage (F 1), is applied, the point B is not conducting It becomes a state.
  • the relay element (1) is cut off and the output terminals (42) are cut off.
  • the output terminal (55) of the conventional self-holding electromagnetic relay (50) can be applied with a voltage (eg ⁇ 12V) determined by the withstand voltage of the relay contact, but the output of the element relay (40) It is necessary to limit the terminal (42) within the range of the relay operating voltage (1 to 4V in the embodiment) shown in the current-voltage characteristic of FIG. When a voltage exceeding this range is applied to the output terminal, it is necessary to design a circuit that takes into account the switching characteristics of the element relay (40). With the miniaturization of electrical circuits, the use of lower voltages is advancing.
  • the on-voltage (N 1) can be adjusted by the thickness (H) of the aluminum oxide film (3).
  • Fig. 9 shows the on-voltage (N 1) of an element using a sample in which the thickness (H) of the aluminum oxide film (3) is changed by changing the anodic oxidation time. This relational expression is for the case where the upper electrode (2) is formed by vapor deposition of gold, and it varies depending on the type of electrode and the deposition method, but the influence of the oxide film thickness (H) is overwhelmingly large.
  • the on-state voltage (N1) can be substantially controlled by the oxide film thickness (H). (Table 1) Oxide film thickness implementation and comparative example
  • Fig. 12 is a schematic diagram of an electron micrograph (Fig. 1), which is a schematic cross-sectional view of the entire relay element (1) including the upper electrode (2).
  • the film thickness is 80 nm or less, as shown in Comparative Example 2, the current value shows hysteresis depending on the voltage, but a clear switching phenomenon does not occur.
  • the diameter of the nanohole (31) is preferably 30 ⁇ or more and 6 ⁇ or less. Outside this range, the shape of the nanohole deforms and becomes no longer vertical, and the off-operation becomes unstable.
  • Fig. 13 is a transmission electron micrograph of an oxide film showing the state of the inner layer (32A) and outer layer (32 B) in the schematic diagram of the oxide film partition wall in Fig. 12.
  • the inner layer (dark part) and outer layer A dense oxygen coordination defect (G) is formed at the boundary of the (bright part).
  • Electrons (E) injected from the electrodes by the application of the on-voltage (N1) are trapped (captured) by the above-mentioned coordination defects, and the potential potential at the center of the partition (32) is lowered to form a conduction channel (CH).
  • a schematic diagram is shown in FIG.
  • Fig. 15 shows a scanning electron micrograph of the surface corresponding to a state close to the actual state of the schematic diagram in Fig. 14.
  • Fig. 2 is a scanning electron micrograph of the surface corresponding to the off state.
  • the reason why the anodized aluminum film (3) shown in Fig. 1 exhibits unique functionality is the presence of a two-dimensional layered electron level with a vertical nanostructure.
  • the method for manufacturing such an aluminum anodic oxide film is different from the usual anodizing (anodizing) used for building materials and the like. Details are described at the beginning of the example with reference to FIG. That's right. Industrial applicability
  • the present invention is a new relay that has no moving parts, and is an indispensable part for the manufacture of micromachines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Contacts (AREA)

Abstract

It is possible to eliminate necessity of a relay contact micro processing which has been one of bottlenecks of MEMS. A contact-less micro relay turns ON/OFF power from an output terminal by ON/OFF of a relay terminal caused by a voltage change in an input terminal. The relay terminal is a relay element (1) formed by an insulating film (3) having a vertical nano structure formed on a conductive substrate (4) by an insulating material and an electrode (2) formed on the surface of the insulating film (3).

Description

明細書 無接点マイクロリレー 技術分野  Description Contactless Micro Relay Technical Field
本発明は、 数ミリアンペア以上の電流が流れる電気回路に用いることができる 無接点マイクロリレーに関する技術である。 背景技術  The present invention relates to a contactless microrelay that can be used in an electric circuit in which a current of several milliamperes or more flows. Background art
数マイクロアンペア以下の微小電流が流れる電子回路のリレーには、 固体素子 が使われており電子回路の集積化を可能にしている。 し力 し、 電気回路には機械 式接点リレーが使われている。 その理由は、 電気回路には数ミリアンペア以上の 電流を流す必要があること、 リレーのオフ状態ではリーク電流が流れないことが 必要であるために機械式接点リレーが使われている。  Solid-state devices are used in electronic circuit relays that carry minute currents of several microamperes or less, making it possible to integrate electronic circuits. However, mechanical contact relays are used in electrical circuits. The reason for this is that mechanical contact relays are used because it is necessary to pass a current of several milliamperes or more through the electrical circuit, and that no leakage current flows when the relay is off.
近年のデバイスの小型化ニーズに対応するために MEMS (Mi c r o E 1 e c t r o Me c h a n i c a l S y s t ems) を利用して、機械要素部品、 センサー、 ァクチユエータ、 電子回路を一つのシリコン基板上に集積化したデバ イスが開発されている。 その場合には機械接点リレーも可能な限り小型化する必 要がある。 半導体製造技術を用いたマイクロ加工技術による接点の撓み梁の工夫 (例えば特開 2003-203549) や固体素子を並列に組み込むことにより 感度ァップする工夫 (例えば、 特開 2003— 21 7423、 特開 2006— 2 2871 7) 等により、 例えば 2. 5 4. 0 X 1. 3 mmの MEMSリ レー が開発され、 携帯電話の小型化を可能にした。 し力 し、 微細加工による製造コス トの上昇と機械式接点であるための基本的弱点 (接点のばたつき、 寿命) を解消 するのは限界に達している。 発明の開示 In order to meet the recent miniaturization needs of devices, MEMS (Micro E 1 ectro Mechanical System) is used to integrate machine element parts, sensors, actuators, and electronic circuits on a single silicon substrate. Devices are being developed. In that case, it is necessary to make the mechanical contact relay as small as possible. Device for flexure of contact by micro processing technology using semiconductor manufacturing technology (for example, Japanese Patent Application Laid-Open No. 2003-203549) and device for increasing sensitivity by incorporating solid elements in parallel (for example, Japanese Patent Application Laid-Open No. 2003-21 7423, Japanese Patent Application Laid-open No. 2006) — 2 2871 7) and others, for example, developed a 2.5 mm 4. 0 x 1. 3 mm MEMS relay, which enabled the miniaturization of mobile phones. However, the increase in manufacturing costs due to microfabrication and the elimination of the basic weaknesses (contact flapping and life) of mechanical contacts have reached their limits. Disclosure of the invention
発明が解決しょうとする課題 '  Problems to be solved by the invention ''
本発明はそのニーズに応えたものであり、 この発明によって MEMSのネック の一つであったリレーの無接点化とその微細加工の必要性を無くすことを課題と する。 課題を解決するための手段 The present invention meets that need. One of the issues is to eliminate the need for relay contactlessness and microfabrication. Means for solving the problem
本発明者は機械式接点リレーに匹敵するスィツチング特性が固体素子によって 得られることを知見し、 これを利用して以下に示す無接点マイクロリレーを開発 した。 発明 1の無接点マイクロリレーは、 入力端子における電圧変化によって生じる リレー端子の O N— O F Fにより出力端子からの電力を O N— O F Fするマイク 口リ レーであって、 前記リ レー端子が、 導電性基板上に絶縁性材料により形成さ れた垂直ナノ構造を有する絶縁性膜と、 その絶縁性膜表面に形成した電極とによ り構成されたリレー素子であることを特徴とする。 発明 2の無接点マイクロリレーは、 発明 1の無接点マイクロリレーにおいて、 前記リ レー素子は、 アルミニウムを導電性基板とし、 その表面に酸化アルミユウ ムの垂直ナノ構造を有する絶縁性膜が形成され、 その絶縁性膜の表面に蒸着電極 が設けられてなることを特徴とする。 発明の効果  The present inventor has found that switching characteristics comparable to a mechanical contact relay can be obtained by a solid-state element, and has developed a contactless microrelay shown below using this. The contactless microrelay of the first aspect of the invention is a microphone port relay that turns on and off power from the output terminal by turning on and off the relay terminal caused by a voltage change at the input terminal, and the relay terminal is a conductive substrate. The relay element is composed of an insulating film having a vertical nanostructure formed on an insulating material and an electrode formed on the surface of the insulating film. The contactless microrelay of the invention 2 is the contactless microrelay of the invention 1, wherein the relay element is made of aluminum as a conductive substrate, and an insulating film having a vertical nanostructure of aluminum oxide is formed on the surface thereof. A vapor deposition electrode is provided on the surface of the insulating film. The invention's effect
例えば、 1 X 1 X 1 mmの大きさで、 従来の半導体を使った素子は少数キヤリ ァによる電気伝導であるために、 オン電流が小さく、 ドーピングされた不純物に よるリーク電流の発生が不可避であった。 本発明の素子は半導体デバイスではな く、 強相関電子系デバイスである。 つまり、 半導体のように熱励起されて発生し た少数キヤリァによる伝導ではなく、 電極から注入された多数キヤリァの電子に よる金属伝導である。 オフ状態は不純物を添加しない絶縁性膜による絶縁状態で ある。 そのためにオン ·オフ抵抗比は 6桁以上になり、 機械式接点リレーに匹敵 するスィツチング特性が得られる。  For example, since a device with a size of 1 X 1 X 1 mm and a conventional semiconductor uses electrical conduction by a small number of carriers, the on-state current is small, and the generation of leakage current due to doped impurities is inevitable. there were. The element of the present invention is not a semiconductor device but a strongly correlated electron device. In other words, it is not the conduction by a minority carrier generated by thermal excitation like a semiconductor, but the metal conduction by the majority carrier electrons injected from the electrode. The off state is an insulating state with an insulating film to which no impurity is added. For this reason, the on / off resistance ratio is 6 digits or more, and switching characteristics comparable to mechanical contact relays can be obtained.
また、 垂直ナノ構造は、 化学的な処理により得られるものであるから、 M E M sリレーのような微細加工は全く不要であり、 これらに比べて生産性が桁違いに 高い。 さらに、 材料としてアルミを用いることにより、 生産性が MEMSリ レー の 100倍以上に見込むことが可能である。 図面の簡単な説明 Also, vertical nanostructures are obtained by chemical treatment, so MEM s Microfabrication like relays is completely unnecessary, and the productivity is much higher than these. Furthermore, by using aluminum as the material, productivity can be expected to be 100 times that of MEMS relays. Brief Description of Drawings
図 1は、 リ レー素子に用いたアルミニウム陽極酸化膜の断面写真 (透過型電子 顕微鏡写真) である。  Fig. 1 is a cross-sectional photograph (transmission electron micrograph) of the aluminum anodized film used in the relay element.
図 2は、 リ レー素子に用いたアルミニウム陽極酸化膜の表面写真 (走査型電子 顕微鏡写真) である。  Figure 2 is a surface photograph (scanning electron micrograph) of the aluminum anodized film used in the relay element.
図 3は、 リ レー素子の断面模式図である  Fig. 3 is a schematic cross-sectional view of a relay element.
図 4は、 リ レー素子の外観を示す写真である  Fig. 4 is a photograph showing the appearance of the relay element.
図 5は、 リ レー素子の電流一電圧特性を示すグラフである。  FIG. 5 is a graph showing the current-voltage characteristics of the relay element.
図 6は、 電流一電圧特性の測定回路を示す回路図である。  FIG. 6 is a circuit diagram showing a circuit for measuring current-voltage characteristics.
図 7は、 自己保持型電磁リ レーの回路図である。  Figure 7 is a circuit diagram of a self-holding electromagnetic relay.
図 8は、 素子リ レーの実施例を示す回路図である。  FIG. 8 is a circuit diagram showing an example of an element relay.
図 9は、 アルミニウム酸化膜厚とオン電圧の関係を示すグラフである。  Figure 9 is a graph showing the relationship between the aluminum oxide film thickness and the on-voltage.
図 10は、 比較例 1の電流一電圧特性を示すグラフである。  FIG. 10 is a graph showing the current-voltage characteristics of Comparative Example 1.
図 1 1は、 比較例 2の電流一電圧特性を示すグラフである。  FIG. 11 is a graph showing the current-voltage characteristics of Comparative Example 2.
図 12は、 リ レー素子の断面模式図 (オフ状態) である。  Fig. 12 is a schematic cross-sectional view (off state) of the relay element.
図 1 3は、 ポーラスアルミニウム酸化膜の平面スライス透過型電子顕微鏡写真 である。  Figure 13 is a plane slice transmission electron micrograph of a porous aluminum oxide film.
図 14は、 リ レー素子の断面模式図 (オン状態) である。  FIG. 14 is a schematic cross-sectional view (on state) of the relay element.
図 1 5は、 電荷がチャージされた状態のアルミニウム酸化膜表面 (走査型電顕 写真) である。  Figure 15 shows the surface of the aluminum oxide film (scanning electron micrograph) in a charged state.
図 16は、 2ステップ陽極酸化法を示す系統図である。 符号の説明  FIG. 16 is a system diagram showing a two-step anodizing method. Explanation of symbols
(1) リ レー素子 (2) 上部蒸着電極 (3) 陽極酸化膜  (1) Relay element (2) Upper vapor deposition electrode (3) Anodized film
(4) 地金 (5) 蒸着電極側リード線 (6) 地金側リード線 (31) ナノホール (32) 隔壁 (4) Metal (5) Vapor deposition lead wire (6) Metal lead wire (31) Nanohole (32) Bulkhead
(32 A) 隔壁内層 (32B) 隔壁外層  (32 A) Bulkhead inner layer (32B) Bulkhead outer layer
(40) 素子リレー (41 A) 入力端子 A (41 B) 入力端子 B  (40) Element relay (41 A) Input terminal A (41 B) Input terminal B
(42) 出力端子  (42) Output terminal
(50) 電磁リレー (51) オン · コイル (52) リレー接点  (50) Electromagnetic relay (51) ON coil (52) Relay contact
(53 A) 入力端子 A (53 B) 入力端子 B (53C) 入力端子 C (54) オフ ' コイル (55) 出力端子  (53 A) Input terminal A (53 B) Input terminal B (53C) Input terminal C (54) Off 'Coil (55) Output terminal
(H) 陽極酸化膜の厚さ  (H) Anodized film thickness
(L) ナノホールのピッチ  (L) Nanohole pitch
(G) 高密度の酸素配位欠陥が形成された境界層  (G) Boundary layer with high-density oxygen coordination defects formed
(E) 酸素配位欠陥に捕捉された電子 (CH) 導通チャンネル  (E) Electron (CH) conduction channel trapped in oxygen coordination defect
(F 1) オフ電位 (F 2) オフ範囲  (F 1) Off potential (F 2) Off range
(N 1) オン電位 (N2) オン範囲  (N 1) ON potential (N2) ON range
(RV) リレー使用電圧範囲 発明を実施するための最良の形態  (RV) Relay operating voltage range BEST MODE FOR CARRYING OUT THE INVENTION
図 9力、ら酸化膜厚とオン状態にスイッチングするオン電圧の関係は明らかであ り、 酸化膜厚の一般的な範囲は 1〜0. 1 μπιであり、 好ましくは 0. 8〜0. l zm、 より好ましくは 0. 6〜0. 15 Aimである。 アルミニウム基板に垂直 なナノホールのピッチは、 20〜200 nmの範囲であれば、 スイッチング特性 に影響しない。  Figure 9 shows the relationship between the oxide film thickness and the ON voltage switching to the ON state. The general range of the oxide film thickness is 1 to 0.1 μπι, preferably 0.8 to 0. l zm, more preferably 0.6 to 0.15 Aim. If the pitch of nanoholes perpendicular to the aluminum substrate is in the range of 20 to 200 nm, the switching characteristics are not affected.
材質に関する条件としては、 ①酸化膜が絶縁性であること、 ②基板は導電性が あり、 ③陽極酸化によつて形成されるナノホールが基板に対して垂直であれば、 アルミニウム以外の金属も利用可能である。 例えば錫やインジユウムは、 酸化物 が絶縁性でないために利用できないが、 チタンは①、 ②、 ③の条件を満たしてお り、 利用可能である。  The material conditions are as follows: (1) The oxide film is insulative, (2) The substrate is conductive, and (3) Metals other than aluminum are used if the nanoholes formed by anodization are perpendicular to the substrate Is possible. For example, tin and indium can not be used because the oxide is not insulative, but titanium satisfies the conditions ①, ②, and ③ and can be used.
酸化膜を上記の好ましい膜厚にする手段は、 陽極酸化の処理時間と電解液の温 度で制御でき、 実施例を表 1に示す。  The means for making the oxide film have the above preferred thickness can be controlled by the anodic oxidation treatment time and the electrolyte temperature. Table 1 shows examples.
陽極酸化に使用する電解液は、 下記の実施例に示した蓚酸以外に、 0. 2〜0. 5モル%の濃度であれば硫酸や燐酸でもよい。 The electrolyte used for anodic oxidation is 0.2 to 0. Sulfuric acid or phosphoric acid may be used at a concentration of 5 mol%.
なお、 本実施例では、 オン電流 25ミリアンペア、 オフ電流 (リーク電流) 4 ナノアンペアのスィッチング特性が得られるか否かを目安に評価したが、 必ずし もこれに限定されるものではない。 要は、 従来の機械式接点リ レーでしか達成で きないとされていた特性を本発明の無接点マイクロリレーが発揮するものは、 い ずれも本発明の範疇に含まれるものである。 実施例  In this example, the evaluation was made based on whether or not switching characteristics of an on-current of 25 milliamperes and an off-current (leakage current) of 4 nanoamperes can be obtained. However, the present invention is not limited to this. The point is that the contactless microrelay of the present invention that exhibits characteristics that can only be achieved with conventional mechanical contact relays is also included in the scope of the present invention. Example
図 16に示すように、 以下の手順でリレー素子 (1) 用の基板を作成した。 (ST 1) :厚さ 1 mm、 純度 99. 99 %のアルミニウム ( A 1 ) を 0. 3モ ル%蓚酸 (純水 500m lに蓚酸 1 3. 6 gを溶かす) の電解液の陽極とし、 力 一ボン電極を陰極として、 20°C、 40Vの定温'定電圧下で、 スタラーで攪拌 しながら陽極酸化を行う。 開始直後は、 アルミニウム表面全面に均一にトンネル 電流が流れ、 均一に酸化膜が形成される。 しかし膜厚が 30 nm程度以上に増加 すると トンネル電流が流れ難くなり、 局所的に電流が流れてその部分の酸化膜の 温度が上昇し、 その表面が蓚酸によって溶解され凹んだ状態になる。 その後は凹 み部分の酸化膜は薄いので、 選択的に電流がその部分を流れてアルミニウムの酸 化と酸化アルミニウムの溶解が同時進行して凹みが深くなる。 最初の凹みはラン ダムに発生するが時間の経過と共に、 凹みが淘汰され、 電圧 40 Vの場合には、 30分程度経過すると、 凹みのピッチはほぼ 100 nmに揃ってくる。  As shown in Fig. 16, a board for the relay element (1) was created by the following procedure. (ST 1): Ammonium (A 1) with a thickness of 1 mm and a purity of 99.99% was used as the anode for the electrolyte of 0.3 mol% oxalic acid (13.6 g of oxalic acid dissolved in 500 ml of pure water). The anodization is performed while stirring with a stirrer at a constant temperature and constant voltage of 20 ° C and 40V, using a single-bonded electrode as the cathode. Immediately after the start, a tunnel current flows uniformly over the entire surface of the aluminum, and an oxide film is uniformly formed. However, when the film thickness increases to about 30 nm or more, the tunnel current becomes difficult to flow, the current flows locally, the temperature of the oxide film in that portion rises, and the surface is dissolved and recessed by oxalic acid. After that, since the oxide film in the recess is thin, a current selectively flows through the recess, and the oxidation of aluminum and the dissolution of aluminum oxide proceed simultaneously to deepen the recess. The first dents appear in random, but as time goes on, the dents disappear, and when the voltage is 40 V, the pitch of the dents is almost 100 nm after about 30 minutes.
(S T 2) : この状態 (20°C、 40 の定温*定電圧下) で 6時間、 スタラー で攪拌しながら陽極酸化して表面に陽極酸ィ匕膜 (A l 1) を形成する。  (S T 2): In this state (20 ° C, constant temperature of 40, constant voltage) for 6 hours, anodizing while stirring with a stirrer to form an anodic oxide film (A l 1) on the surface.
(ST3) : クロム酸と燐酸の混合液 (純水 50 Om 1に酸化クロム 7. 8 gを 溶かし、 燐酸 1 7. 5m l . を混合した溶解液) に上記の陽極酸化したアルミ二 ゥム板を浸漬してスタラーで攪拌しながら 1時間、 液温を 60°Cに保って溶解処 理を行う。 この処理によって陽極酸化膜 (A l 1) は全て溶解除去され、 残った アルミニウム表面には、 ほぼ 100 nmの等ピッチで深さ 20 nmの凹が規則的 に配列した状態になる。 (ST 4) : このアルミニウム板を純水中で超音波洗浄したのち、 再び、 最初と 同じ条件で 60秒間、陽極酸化して目的厚さのナノ構造を有するアルミ酸化膜( A(ST3): The above-mentioned anodized aluminum in a mixed solution of chromic acid and phosphoric acid (dissolved solution in which 7.8 g of chromium oxide was dissolved in 50 Om 1 of pure water and 17.5 ml of phosphoric acid was mixed). Immerse the plate and stir with a stirrer for 1 hour, and keep the liquid temperature at 60 ° C for dissolution. This treatment completely dissolves and removes the anodic oxide film (A l 1), and the remaining aluminum surface is in a state in which concaves with a depth of 20 nm are regularly arranged at an equal pitch of approximately 100 nm. (ST 4): After this aluminum plate was ultrasonically cleaned in pure water, it was again anodized for 60 seconds under the same conditions as the first, and an aluminum oxide film (A
1 2) を得た。 この酸化膜断面の透過型電子顕微鏡写真を図 1に、 酸化膜表面の 走査型電子顕微鏡写真を図 2に示す。 アルミニウム酸化膜 (A 1 2) は、 直径 40 n mのナノホール (31) がアル ミニゥム地金 (4) に対して垂直に存在し、 巾 60 nmの隔壁 (32) が 100 n mピツチに配列した垂直ナノ構造になっていることが判る この陽極酸化アル ミ板を 1 Omm角に切断し、 酸化膜 (3) の表面に厚さ 50 n mの金を蒸着して 上部電極 (2) とし、 アルミニウム地金をそのまま下部電極にして 3層構造の 2 電極素子を作成した。 図 3に断面構造図と図 4に外観を示す。 前記隔壁 (32) は、 図 1 2で示すように、 内層 (32A) と外層 (32B) からなり、 内層 (32 A) は A 104 + A 105からなり、 外層 (32 B) は A 1 o6からなるものである。 この素子 (1) は、 図 5の電流一電圧特性を示し、 図 6のような回路を用いて、 印可電圧によってオン状態とオフ状態を切替えることができる。 例えば、 オン電 圧(N 1) である電圧 5. 5 Vを印加すれば A点の導通状態になり、オフ電圧(F 1) である— 2 Vの電圧を印加すれば B点の非導通状態になる。 リレー素子 (1) の回路電圧が 3 Vの場合には、 導通時には 25mA (C点) が流れ、 非導通状態 のリーク電流は 4 nA (D点) となり、 オン ·オフ電流比 (25mA/4 nA 6 X 106) である。 そして、 このようなオン ·オフ電流比を示す範囲をリレー使用電圧範囲 (R V) とすることで、 電気回路のスィッチとして使用できる。 なお、 オフ状態に変化す る範囲をオフ範囲 (F 2) 、 オン状態に変化する範囲をオン範囲 (N2) とする。 このリ レー素子 (1) を利用したリ レー (40) の実施例 (図 8) を従来の自 己保持型電磁リ レー (50) (図 7) と対比してリ レー動作を説明する。 図 7の 電磁リレー (50) では、 AC端子間 (53 A) (53 C) に 6 Vを印可すると、 オン · コイル (52) が励磁し、 リレー接点 (52) が接触して出力端子間が導 通状態になる。 BC端子間 (53 B) (53 C) に 6 Vを印可すると、 オフ · コ ィル (54) が励磁し、 リ レー接点 (52) が切れて出力端子間 (55) が遮断 される。 図 8の素子リ レー (40) では、 AB端子間 (4 1A) (41 B) に 5. 5V のパルス電圧を印可するとリ レー素子 (1) が導通状態になり出力端子間 (42) が導通状態になる。 また、 AB端子間 (41 A) (41 B) に一 2Vのパルス電 圧を印可すると、 リ レー素子 (1) が遮断状態になり出力端子間 (42) が遮断 される。 従来の自己保持型電磁リ レー (50) の出力端子 (55) には、 リ レー 接点の耐電圧等で決まる電圧 (例えば ± 12V) を加えることができるが、 素子 リ レー (40) の出力端子 (42) には、 図 5の電流一電圧特性に示されたリ レ 一使用電圧 (実施例では一 1〜4V) の範囲内に制限する必要がある。 その範囲を超えた電圧が出力端子に加わると、 そのことにより素子リ レー (4 0) のオン ·オフが切替わる特性を考慮した回路設計が必要になる。 電気回路の 小型化と共に低電圧化が進んでおり、 例えば駆動電圧 1. 5 Vが標準仕様になれ ばこの問題はなくなる。 素子リ レー (40) をパルス電圧で切替える方法は、 従 来の直流回路ではパルス電圧を発生するための制御が必要になるが、 デジタル化 された電気回路では問題はなくなる。オン電圧(N 1 )はアルミニウム酸化膜(3) の厚さ (H) によって調整することができる。 例えば、 陽極酸化時間を変えてアルミニウム酸化膜 (3) の厚さ (H) を変え たサンプルを用いた素子のオン電圧 (N 1) は図 9のようになる。 この関係式は 金を蒸着して上部電極 (2) を形成した場合のものであり、 電極の種類、 蒸着の 方法によっても変化するが、 酸化膜厚 (H) の影響が圧倒的に大きいので、 オン 電圧 (N1) の実質的な制御は酸化膜厚 (H) で行うことができる。 (表 1 ) 酸化膜厚に関する実施 ·比較例 1 2) was obtained. Fig. 1 shows a transmission electron micrograph of this oxide film cross section, and Fig. 2 shows a scanning electron micrograph of the oxide film surface. The aluminum oxide film (A 1 2) has a vertical 40 nm diameter nanohole (31) perpendicular to the aluminum bullion (4) and a 60 nm wide partition wall (32) arranged in 100 nm pitch. This anodized aluminum plate is found to be nanostructured, cut to 1 Omm square, and 50 nm thick gold is deposited on the surface of the oxide film (3) to form the upper electrode (2). A two-electrode element with a three-layer structure was made using gold as the lower electrode. Fig. 3 shows the cross-sectional structure and Fig. 4 shows the appearance. As shown in FIG. 12, the partition wall (32) is composed of an inner layer (32A) and an outer layer (32B), the inner layer (32 A) is composed of A 10 4 + A 10 5 , and the outer layer (32 B) is composed of A It consists of 1 o 6 . This element (1) exhibits the current-voltage characteristics of FIG. 5, and can be switched between an on state and an off state by an applied voltage using a circuit as shown in FIG. For example, if a voltage of 5.5 V, which is the on-voltage (N 1), is applied, the connection at the point A is established, and if a voltage of 2 V, which is the off-voltage (F 1), is applied, the point B is not conducting It becomes a state. When the circuit voltage of the relay element (1) is 3 V, 25 mA (point C) flows when conducting, and the non-conducting leakage current is 4 nA (point D), and the on / off current ratio (25 mA / 4 nA 6 X 10 6 ). By setting the range showing such an on / off current ratio to the relay operating voltage range (RV), it can be used as a switch of an electric circuit. The range that changes to the off state is the off range (F 2), and the range that changes to the on state is the on range (N2). The embodiment (Fig. 8) of the relay (40) using this relay element (1) is compared with the conventional device. The relay operation is explained in contrast to the self-retained electromagnetic relay (50) (Fig. 7). In the electromagnetic relay (50) in Fig. 7, when 6 V is applied between the AC terminals (53 A) and (53 C), the on-coil (52) is excited and the relay contact (52) comes into contact between the output terminals. Becomes conductive. When 6 V is applied between the BC terminals (53 B) and (53 C), the off coil (54) is excited, the relay contact (52) is cut, and the output terminals (55) are shut off. In the element relay (40) in Fig. 8, when a 5.5V pulse voltage is applied between the AB terminals (41A) (41B), the relay element (1) becomes conductive and the output terminal (42) is not connected. It becomes conductive. Also, if a 12V pulse voltage is applied between the AB terminals (41 A) and (41 B), the relay element (1) is cut off and the output terminals (42) are cut off. The output terminal (55) of the conventional self-holding electromagnetic relay (50) can be applied with a voltage (eg ± 12V) determined by the withstand voltage of the relay contact, but the output of the element relay (40) It is necessary to limit the terminal (42) within the range of the relay operating voltage (1 to 4V in the embodiment) shown in the current-voltage characteristic of FIG. When a voltage exceeding this range is applied to the output terminal, it is necessary to design a circuit that takes into account the switching characteristics of the element relay (40). With the miniaturization of electrical circuits, the use of lower voltages is advancing. For example, if the drive voltage of 1.5 V becomes the standard specification, this problem will disappear. The method of switching the element relay (40) with the pulse voltage requires control to generate the pulse voltage in the conventional DC circuit, but there is no problem with the digitized electric circuit. The on-voltage (N 1) can be adjusted by the thickness (H) of the aluminum oxide film (3). For example, Fig. 9 shows the on-voltage (N 1) of an element using a sample in which the thickness (H) of the aluminum oxide film (3) is changed by changing the anodic oxidation time. This relational expression is for the case where the upper electrode (2) is formed by vapor deposition of gold, and it varies depending on the type of electrode and the deposition method, but the influence of the oxide film thickness (H) is overwhelmingly large. The on-state voltage (N1) can be substantially controlled by the oxide film thickness (H). (Table 1) Oxide film thickness implementation and comparative example
酸化膜厚 陽極酸化条件 オン ¾£E in m) 液温度 電圧 時間 (V) 比較例 1 1. 9 20°C 40 V 4分 3 X 103 実施例 0. 15 20°C 40V 60秒 4 比較例 2 0. 08 20°C 40V 30秒 閾値なし 動作 評価 比較例 1 非常に高いパルス電圧でのみスィツチングする (図 9) X Oxide thickness Anodizing condition On ¾ £ E in m) Liquid temperature Voltage Time (V) Comparative example 1 1. 9 20 ° C 40 V 4 min 3 X 10 3 Example 0. 15 20 ° C 40V 60 seconds 4 Comparison Example 2 0. 08 20 ° C 40V 30 seconds No threshold Operation Evaluation Comparative example 1 Switching only at very high pulse voltage (Fig. 9) X
実施例 良好 (図 4) 〇 比較例 2 ヒステリシス現象はあるが、 スイッチング動作ない (図 10) X  Example Good (Fig. 4) 〇 Comparative Example 2 Hysteresis phenomenon but no switching action (Fig. 10) X
図 12は電顕写真 (図 1) を模式化したもので、 上部電極 (2) を含むリ レー 素子 (1) 全体の断面模式図である。 膜厚が 80 nm以下であると、 比較例 2に 示すように電圧により電流値はヒステリシスを示すが明確なスィツチング現象が 発生しなくなる。 また 1. 9ミクロンであると、 3000V以上のオン電圧が必 要になり実用不可能になる。 ナノホール (31) の直径は、 30 ηπιψ以上、 6 Ο ηπιφ以下が望ましい。 その範囲を外れると、 ナノホールの形状が変形して垂 直でなくなり、 オフ動作が安定しなくなる。 また、 ナノホール (31) のピッチ (L) は、 20〜200 nmの範囲であれば、 スィツチング特性に影響しない。 図 13は、 図 12の酸化膜隔壁模式図の内層 (32A) ·外層 (32 B) の実 態を示す酸化膜を平面スライスした透過型電子顕微鏡写真であり、 内層 (暗い部 分) と外層 (明るい部分) の境界に高密度の酸素配位欠陥 (G) が形成されてい る。 オン電圧 (N1) の印加により電極から注入された電子 (E) 、 上記の配 位欠陥にトラップ (捕捉) され、 隔壁 (32) 中央の電位ポテンシャルが低下し て導通チャネル (CH) が形成された模式図を図 14に示す。 図 14の模式図の実態に近い状態に相当する表面の走査型電子顕微鏡写真を図 15に示す。 図 2はオフ状態に相当する表面の走査型電子顕微鏡写真であり、 図 1 5と比べるとオン状態とオフ状態で表面の電子状態が異なることが明確であ る。 図 1に示すアルミニウム陽極酸化膜 (3 ) が特異な機能性を発揮する理由は、 垂直ナノ構造をした 2次元の層状電子準位が存在することである。 そのようなァ ルミニゥム陽極酸化膜を製造する方法は、 建材等に使用される通常のアルマイ ト 加工 (陽極酸化) とは異なる方法であり、 詳細は実施例の冒頭に、 図 1 6を用い て記載した通りである。 産業上の利用可能性 Fig. 12 is a schematic diagram of an electron micrograph (Fig. 1), which is a schematic cross-sectional view of the entire relay element (1) including the upper electrode (2). When the film thickness is 80 nm or less, as shown in Comparative Example 2, the current value shows hysteresis depending on the voltage, but a clear switching phenomenon does not occur. On the other hand, if it is 1.9 microns, an on-voltage of 3000V or more is required, making it impractical. The diameter of the nanohole (31) is preferably 30 ηπιψ or more and 6 ηηπιφ or less. Outside this range, the shape of the nanohole deforms and becomes no longer vertical, and the off-operation becomes unstable. In addition, the pitch (L) of the nanohole (31) does not affect the switching characteristics as long as it is in the range of 20 to 200 nm. Fig. 13 is a transmission electron micrograph of an oxide film showing the state of the inner layer (32A) and outer layer (32 B) in the schematic diagram of the oxide film partition wall in Fig. 12. The inner layer (dark part) and outer layer A dense oxygen coordination defect (G) is formed at the boundary of the (bright part). Electrons (E) injected from the electrodes by the application of the on-voltage (N1) are trapped (captured) by the above-mentioned coordination defects, and the potential potential at the center of the partition (32) is lowered to form a conduction channel (CH). A schematic diagram is shown in FIG. Fig. 15 shows a scanning electron micrograph of the surface corresponding to a state close to the actual state of the schematic diagram in Fig. 14. Fig. 2 is a scanning electron micrograph of the surface corresponding to the off state. Compared to Fig. 15, it is clear that the electronic state of the surface differs between the on state and the off state. The reason why the anodized aluminum film (3) shown in Fig. 1 exhibits unique functionality is the presence of a two-dimensional layered electron level with a vertical nanostructure. The method for manufacturing such an aluminum anodic oxide film is different from the usual anodizing (anodizing) used for building materials and the like. Details are described at the beginning of the example with reference to FIG. That's right. Industrial applicability
本発明は、 稼働部分を全く有しない新たなリ レーであり、 マイクロマシンの製 造には欠かせない部品である。  The present invention is a new relay that has no moving parts, and is an indispensable part for the manufacture of micromachines.

Claims

請求の範囲 The scope of the claims
1 . 入力端子における電圧変化によって生じるリレー端子の O N— O F Fにより 出力端子からの電力を O N— O F Fするマイクロリレーであって、 前記リレ一端 子が、 導電性基板上に絶縁性材料により形成された垂直ナノ構造を有する絶縁性 膜と、 その絶縁性膜表面に形成した電極とにより構成されたリレー素子であるこ とを特徴とする無接点マイクロリレー。 1. A micro relay that turns on and off power from an output terminal by turning on and off of a relay terminal caused by a voltage change at an input terminal, wherein the relay terminal is formed of an insulating material on a conductive substrate. A contactless microrelay characterized in that it is a relay element composed of an insulating film having a vertical nanostructure and an electrode formed on the surface of the insulating film.
2 . 請求の範囲第 1項に記載の無接点マイクロリ レーにおいて、 前記リ レー素子 は、 アルミニウムを導電性基板とし、 その表面に酸化アルミニウムの垂直ナノ構 造を有する絶縁性膜が形成され、 その絶縁性膜の表面に蒸着電極が設けられてな ることを特徴とする無接点マイクロリレー。  2. The contactless micro relay according to claim 1, wherein the relay element has aluminum as a conductive substrate, and an insulating film having a vertical nanostructure of aluminum oxide is formed on the surface thereof. A contactless microrelay characterized in that a vapor deposition electrode is provided on the surface of the insulating film.
PCT/JP2007/069634 2006-10-03 2007-10-02 Contact-less micro relay WO2008044665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538721A JP5266472B2 (en) 2006-10-03 2007-10-02 Solid state micro relay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-272115 2006-10-03
JP2006272115 2006-10-03

Publications (1)

Publication Number Publication Date
WO2008044665A1 true WO2008044665A1 (en) 2008-04-17

Family

ID=39282859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069634 WO2008044665A1 (en) 2006-10-03 2007-10-02 Contact-less micro relay

Country Status (2)

Country Link
JP (1) JP5266472B2 (en)
WO (1) WO2008044665A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222784A (en) * 2012-04-16 2013-10-28 Nihon Univ Resistance change type nonvolatile memory and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof
JP2002076325A (en) * 2000-09-01 2002-03-15 Japan Science & Technology Corp Electronic device capable of controlling conductance
JP2005183570A (en) * 2003-12-18 2005-07-07 Misuzu R & D:Kk Schottky junction type nonvolatile memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof
JP2002076325A (en) * 2000-09-01 2002-03-15 Japan Science & Technology Corp Electronic device capable of controlling conductance
JP2005183570A (en) * 2003-12-18 2005-07-07 Misuzu R & D:Kk Schottky junction type nonvolatile memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222784A (en) * 2012-04-16 2013-10-28 Nihon Univ Resistance change type nonvolatile memory and method of manufacturing the same

Also Published As

Publication number Publication date
JP5266472B2 (en) 2013-08-21
JPWO2008044665A1 (en) 2010-02-12

Similar Documents

Publication Publication Date Title
WO2008067135A1 (en) Thin film transistor with enhanced stability
JP3940362B2 (en) Fabrication of silicon micromechanical structures
TW202231937A (en) Metal filled microstructure and manufacturing method for metal filled microstructure
WO2008044665A1 (en) Contact-less micro relay
JP2016537210A (en) Migration and manufacturing of wire arrays using electronic assist technology
US20180040744A1 (en) Method for structuring layers of oxidizable materials by means of oxidation and substrate having a structured coating
Tang et al. Selective etching of ZnO films on an ITO substrate using a scanning electrochemical microscope
CN103534390A (en) Insulating-layer-covered aluminum conductor, and insulating layer and method for forming the insulating layer
KR20230121857A (en) Plating solution and manufacturing method of metal filled structure
Chang Micromachining of p-type 6H–SiC by electrochemical etching
Chung et al. On characteristics of pore size distribution in hybrid pulse anodized high-aspect-ratio aluminum oxide with Taguchi method
JPH09306791A (en) Manufacture of solid electrolytic capacitor
CN1860566B (en) Production method of a capacitor
CN116670337A (en) Metal-filled microstructure and method for producing metal-filled microstructure
Oh et al. A tungsten interlayer process for fabrication of through-pore AAO scaffolds on gold substrates
KR20080084218A (en) High sensitive microbalance using nano porous electrode and manufacturing method thereof
JP2005179730A (en) Method of producing porous metal oxide, and biochip using porous metal oxide obtained thereby
JP2000192295A (en) Method for controlling anodization and anodization device
JP2005324325A (en) Nanostructure, electron emitting device, and method of producing carbon nanotube device
Kawamura et al. Electrochemically driven intrusion of silver particles into silicon under polarization
JP4505612B2 (en) Metal surface treatment method
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
KR100955498B1 (en) Method For Making Cathode of Electrochemical Oxygen Gas Sensor
US20230172079A1 (en) Lateral programmable metallization cell devices
US3471378A (en) Method of manufacturing elemental part for dry type electrolytic condenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829372

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008538721

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829372

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)