WO2008042973A2 - Lipid containing formulations - Google Patents
Lipid containing formulations Download PDFInfo
- Publication number
- WO2008042973A2 WO2008042973A2 PCT/US2007/080331 US2007080331W WO2008042973A2 WO 2008042973 A2 WO2008042973 A2 WO 2008042973A2 US 2007080331 W US2007080331 W US 2007080331W WO 2008042973 A2 WO2008042973 A2 WO 2008042973A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- preparation
- formula
- alkyl
- lipid
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 131
- 150000002632 lipids Chemical class 0.000 title claims description 163
- 238000009472 formulation Methods 0.000 title description 19
- 238000000034 method Methods 0.000 claims abstract description 209
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 151
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 148
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 148
- 239000002502 liposome Substances 0.000 claims abstract description 51
- 150000001875 compounds Chemical class 0.000 claims description 427
- 238000002360 preparation method Methods 0.000 claims description 270
- 125000000217 alkyl group Chemical group 0.000 claims description 220
- 108091034117 Oligonucleotide Proteins 0.000 claims description 133
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 105
- -1 chloro, bromo, iodo Chemical group 0.000 claims description 100
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 95
- 239000011541 reaction mixture Substances 0.000 claims description 94
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 91
- 108020004459 Small interfering RNA Proteins 0.000 claims description 83
- 125000003342 alkenyl group Chemical group 0.000 claims description 78
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 78
- 239000002679 microRNA Substances 0.000 claims description 76
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 claims description 73
- 108700011259 MicroRNAs Proteins 0.000 claims description 70
- 108090000623 proteins and genes Proteins 0.000 claims description 62
- 150000001412 amines Chemical class 0.000 claims description 56
- 150000003839 salts Chemical class 0.000 claims description 53
- 230000004048 modification Effects 0.000 claims description 48
- 238000012986 modification Methods 0.000 claims description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 47
- 235000012000 cholesterol Nutrition 0.000 claims description 39
- 230000000692 anti-sense effect Effects 0.000 claims description 36
- 125000002947 alkylene group Chemical group 0.000 claims description 33
- 239000003814 drug Substances 0.000 claims description 28
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 27
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 27
- 239000004327 boric acid Substances 0.000 claims description 27
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 26
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 claims description 26
- 238000013375 chromatographic separation Methods 0.000 claims description 25
- 125000000304 alkynyl group Chemical group 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 24
- 229940124597 therapeutic agent Drugs 0.000 claims description 23
- 125000001424 substituent group Chemical group 0.000 claims description 21
- 239000000872 buffer Substances 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 20
- 238000000926 separation method Methods 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 16
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 claims description 15
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 15
- 239000000741 silica gel Substances 0.000 claims description 15
- 229910002027 silica gel Inorganic materials 0.000 claims description 15
- 230000015556 catabolic process Effects 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 230000001225 therapeutic effect Effects 0.000 claims description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical group CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 12
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 12
- 125000005741 alkyl alkenyl group Chemical group 0.000 claims description 11
- 238000006731 degradation reaction Methods 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 239000000074 antisense oligonucleotide Substances 0.000 claims description 8
- 238000012230 antisense oligonucleotides Methods 0.000 claims description 8
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 8
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 7
- 239000005977 Ethylene Substances 0.000 claims description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical group [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 claims description 6
- 241000124008 Mammalia Species 0.000 claims description 6
- 125000001153 fluoro group Chemical group F* 0.000 claims description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 6
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 6
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical group Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 claims description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 5
- 239000007822 coupling agent Substances 0.000 claims description 5
- 238000004305 normal phase HPLC Methods 0.000 claims description 5
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 claims description 4
- 101150102415 Apob gene Proteins 0.000 claims description 4
- 150000004676 glycans Polymers 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 150000002905 orthoesters Chemical class 0.000 claims description 4
- 150000004804 polysaccharides Polymers 0.000 claims description 4
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 3
- 125000001246 bromo group Chemical group Br* 0.000 claims description 3
- 150000001718 carbodiimides Chemical group 0.000 claims description 3
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 125000002346 iodo group Chemical group I* 0.000 claims description 3
- 210000004185 liver Anatomy 0.000 claims description 3
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 2
- 159000000021 acetate salts Chemical class 0.000 claims description 2
- 150000004675 formic acid derivatives Chemical class 0.000 claims description 2
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 2
- 150000007524 organic acids Chemical class 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 230000005588 protonation Effects 0.000 claims description 2
- 238000004007 reversed phase HPLC Methods 0.000 claims description 2
- XJOTXKZIRSHZQV-RXHOOSIZSA-N (3S)-3-amino-4-[[(2S,3R)-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S,3S)-1-[[(1R,6R,12R,17R,20S,23S,26R,31R,34R,39R,42S,45S,48S,51S,59S)-51-(4-aminobutyl)-31-[[(2S)-6-amino-1-[[(1S,2R)-1-carboxy-2-hydroxypropyl]amino]-1-oxohexan-2-yl]carbamoyl]-20-benzyl-23-[(2S)-butan-2-yl]-45-(3-carbamimidamidopropyl)-48-(hydroxymethyl)-42-(1H-imidazol-4-ylmethyl)-59-(2-methylsulfanylethyl)-7,10,19,22,25,33,40,43,46,49,52,54,57,60,63,64-hexadecaoxo-3,4,14,15,28,29,36,37-octathia-8,11,18,21,24,32,41,44,47,50,53,55,58,61,62,65-hexadecazatetracyclo[32.19.8.26,17.212,39]pentahexacontan-26-yl]amino]-3-methyl-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-4-oxobutanoic acid Chemical group CC[C@H](C)[C@H](NC(=O)[C@@H]1CCCN1C(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](Cc1cnc[nH]1)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)[C@@H](C)O)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@@H]2CSSC[C@@H]3NC(=O)[C@@H]4CSSC[C@H](NC(=O)[C@H](Cc5ccccc5)NC(=O)[C@@H](NC1=O)[C@@H](C)CC)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](Cc1cnc[nH]1)NC3=O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N2)C(=O)NCC(=O)N4)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O XJOTXKZIRSHZQV-RXHOOSIZSA-N 0.000 claims 2
- 101001098868 Homo sapiens Proprotein convertase subtilisin/kexin type 9 Proteins 0.000 claims 2
- 102100038955 Proprotein convertase subtilisin/kexin type 9 Human genes 0.000 claims 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims 2
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims 2
- 102000018511 hepcidin Human genes 0.000 claims 2
- 108060003558 hepcidin Proteins 0.000 claims 2
- 229940066919 hepcidin Drugs 0.000 claims 2
- 238000002560 therapeutic procedure Methods 0.000 abstract description 8
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 312
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 138
- 239000000047 product Substances 0.000 description 116
- 238000006243 chemical reaction Methods 0.000 description 104
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 97
- 125000003729 nucleotide group Chemical group 0.000 description 96
- 239000002773 nucleotide Substances 0.000 description 89
- 239000003795 chemical substances by application Substances 0.000 description 72
- 239000002904 solvent Substances 0.000 description 70
- 239000000243 solution Substances 0.000 description 66
- 229920000768 polyamine Polymers 0.000 description 65
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 64
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 64
- 230000015572 biosynthetic process Effects 0.000 description 57
- 229920001223 polyethylene glycol Polymers 0.000 description 50
- 238000003786 synthesis reaction Methods 0.000 description 47
- 230000000295 complement effect Effects 0.000 description 45
- 239000007787 solid Substances 0.000 description 45
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 43
- 239000003446 ligand Substances 0.000 description 42
- 229920002477 rna polymer Polymers 0.000 description 42
- 238000005160 1H NMR spectroscopy Methods 0.000 description 41
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 41
- 235000019439 ethyl acetate Nutrition 0.000 description 39
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 36
- 230000008685 targeting Effects 0.000 description 36
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 35
- 210000004027 cell Anatomy 0.000 description 35
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 35
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 34
- 108020004999 messenger RNA Proteins 0.000 description 33
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 31
- 125000005647 linker group Chemical group 0.000 description 31
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 30
- 150000002148 esters Chemical class 0.000 description 30
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 28
- 230000002829 reductive effect Effects 0.000 description 27
- 238000000746 purification Methods 0.000 description 26
- 238000006845 Michael addition reaction Methods 0.000 description 25
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- 229940093499 ethyl acetate Drugs 0.000 description 23
- 239000002777 nucleoside Substances 0.000 description 23
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 238000003756 stirring Methods 0.000 description 22
- 238000003776 cleavage reaction Methods 0.000 description 21
- 230000014509 gene expression Effects 0.000 description 21
- 230000007017 scission Effects 0.000 description 21
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 20
- 150000001408 amides Chemical class 0.000 description 19
- 125000003277 amino group Chemical group 0.000 description 19
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 238000010898 silica gel chromatography Methods 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 17
- 102000053602 DNA Human genes 0.000 description 17
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 17
- XQPVIMDDIXCFFS-UHFFFAOYSA-N n-dodecylprop-2-enamide Chemical compound CCCCCCCCCCCCNC(=O)C=C XQPVIMDDIXCFFS-UHFFFAOYSA-N 0.000 description 17
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 17
- 238000012384 transportation and delivery Methods 0.000 description 17
- 238000011282 treatment Methods 0.000 description 17
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 16
- 238000004587 chromatography analysis Methods 0.000 description 16
- 238000001819 mass spectrum Methods 0.000 description 16
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 16
- 235000000346 sugar Nutrition 0.000 description 16
- 239000000843 powder Substances 0.000 description 15
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 15
- 102100023804 Coagulation factor VII Human genes 0.000 description 14
- 108010023321 Factor VII Proteins 0.000 description 14
- 239000002253 acid Substances 0.000 description 14
- 229940012413 factor vii Drugs 0.000 description 14
- 230000001976 improved effect Effects 0.000 description 14
- 238000001727 in vivo Methods 0.000 description 14
- 239000002243 precursor Substances 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 13
- 125000003118 aryl group Chemical group 0.000 description 13
- 230000030279 gene silencing Effects 0.000 description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 230000029936 alkylation Effects 0.000 description 12
- 238000005804 alkylation reaction Methods 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 12
- 125000003710 aryl alkyl group Chemical group 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 229940126214 compound 3 Drugs 0.000 description 12
- 150000003840 hydrochlorides Chemical class 0.000 description 12
- 125000003835 nucleoside group Chemical group 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 239000012267 brine Substances 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 238000010828 elution Methods 0.000 description 11
- 125000005456 glyceride group Chemical group 0.000 description 11
- 230000001404 mediated effect Effects 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 11
- 239000003039 volatile agent Substances 0.000 description 11
- 125000002091 cationic group Chemical group 0.000 description 10
- 150000003833 nucleoside derivatives Chemical class 0.000 description 10
- 239000012044 organic layer Substances 0.000 description 10
- 150000003141 primary amines Chemical class 0.000 description 10
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 10
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 9
- 101710163270 Nuclease Proteins 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 150000004985 diamines Chemical class 0.000 description 9
- 230000002222 downregulating effect Effects 0.000 description 9
- 239000003480 eluent Substances 0.000 description 9
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 9
- 230000000799 fusogenic effect Effects 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 239000001632 sodium acetate Substances 0.000 description 9
- 235000017281 sodium acetate Nutrition 0.000 description 9
- 229910052938 sodium sulfate Inorganic materials 0.000 description 9
- 238000010626 work up procedure Methods 0.000 description 9
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 8
- 108091023037 Aptamer Proteins 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 208000037273 Pathologic Processes Diseases 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- 108091081021 Sense strand Proteins 0.000 description 8
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 8
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 8
- 239000007795 chemical reaction product Substances 0.000 description 8
- 238000004440 column chromatography Methods 0.000 description 8
- 239000003937 drug carrier Substances 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910000027 potassium carbonate Inorganic materials 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 235000011152 sodium sulphate Nutrition 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 230000014616 translation Effects 0.000 description 8
- JVVRCYWZTJLJSG-UHFFFAOYSA-N 4-dimethylaminophenol Chemical compound CN(C)C1=CC=C(O)C=C1 JVVRCYWZTJLJSG-UHFFFAOYSA-N 0.000 description 7
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-dimethylaminopyridine Substances CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 7
- 239000004202 carbamide Substances 0.000 description 7
- 238000007385 chemical modification Methods 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 239000012043 crude product Substances 0.000 description 7
- 238000010790 dilution Methods 0.000 description 7
- 239000012895 dilution Substances 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 230000009054 pathological process Effects 0.000 description 7
- 239000008194 pharmaceutical composition Substances 0.000 description 7
- 102000040430 polynucleotide Human genes 0.000 description 7
- 108091033319 polynucleotide Proteins 0.000 description 7
- 239000002157 polynucleotide Substances 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 108091028664 Ribonucleotide Proteins 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000008351 acetate buffer Substances 0.000 description 6
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 6
- PYMYPHUHKUWMLA-LMVFSUKVSA-N aldehydo-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 229940125898 compound 5 Drugs 0.000 description 6
- 239000006071 cream Substances 0.000 description 6
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 235000019152 folic acid Nutrition 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 6
- 125000001072 heteroaryl group Chemical group 0.000 description 6
- 125000000623 heterocyclic group Chemical group 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 6
- 125000006239 protecting group Chemical group 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 239000002336 ribonucleotide Substances 0.000 description 6
- 125000002652 ribonucleotide group Chemical group 0.000 description 6
- 239000012047 saturated solution Substances 0.000 description 6
- 150000003335 secondary amines Chemical class 0.000 description 6
- 235000017557 sodium bicarbonate Nutrition 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- 150000003573 thiols Chemical class 0.000 description 6
- 229910052727 yttrium Inorganic materials 0.000 description 6
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 5
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 5
- 108020005544 Antisense RNA Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 150000001241 acetals Chemical class 0.000 description 5
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 5
- 125000004103 aminoalkyl group Chemical group 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000004700 cellular uptake Effects 0.000 description 5
- 230000021615 conjugation Effects 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 125000000753 cycloalkyl group Chemical group 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 238000003818 flash chromatography Methods 0.000 description 5
- 239000011724 folic acid Substances 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 125000004475 heteroaralkyl group Chemical group 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000005457 ice water Substances 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229940014800 succinic anhydride Drugs 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 5
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 4
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 4
- 229930024421 Adenine Natural products 0.000 description 4
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 108060002716 Exonuclease Proteins 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 4
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 239000013504 Triton X-100 Substances 0.000 description 4
- 229920004890 Triton X-100 Polymers 0.000 description 4
- 229960000643 adenine Drugs 0.000 description 4
- 229940126575 aminoglycoside Drugs 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 229940126086 compound 21 Drugs 0.000 description 4
- 229940126208 compound 22 Drugs 0.000 description 4
- 229940125846 compound 25 Drugs 0.000 description 4
- 239000005547 deoxyribonucleotide Substances 0.000 description 4
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 102000013165 exonuclease Human genes 0.000 description 4
- 230000001036 exonucleolytic effect Effects 0.000 description 4
- 229960000304 folic acid Drugs 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 125000001921 locked nucleotide group Chemical group 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- VQSRKMNBWMHJKY-YTEVENLXSA-N n-[3-[(4ar,7as)-2-amino-6-(5-fluoropyrimidin-2-yl)-4,4a,5,7-tetrahydropyrrolo[3,4-d][1,3]thiazin-7a-yl]-4-fluorophenyl]-5-methoxypyrazine-2-carboxamide Chemical compound C1=NC(OC)=CN=C1C(=O)NC1=CC=C(F)C([C@@]23[C@@H](CN(C2)C=2N=CC(F)=CN=2)CSC(N)=N3)=C1 VQSRKMNBWMHJKY-YTEVENLXSA-N 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000003880 polar aprotic solvent Substances 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 230000018883 protein targeting Effects 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000010532 solid phase synthesis reaction Methods 0.000 description 4
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical group NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000000108 ultra-filtration Methods 0.000 description 4
- 229940035893 uracil Drugs 0.000 description 4
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 3
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 3
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 3
- 108700023418 Amidases Proteins 0.000 description 3
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 3
- 102000018616 Apolipoproteins B Human genes 0.000 description 3
- 108010027006 Apolipoproteins B Proteins 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 229940126639 Compound 33 Drugs 0.000 description 3
- 108090000371 Esterases Proteins 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 3
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 108091007780 MiR-122 Proteins 0.000 description 3
- OUSFTKFNBAZUKL-UHFFFAOYSA-N N-(5-{[(5-tert-butyl-1,3-oxazol-2-yl)methyl]sulfanyl}-1,3-thiazol-2-yl)piperidine-4-carboxamide Chemical compound O1C(C(C)(C)C)=CN=C1CSC(S1)=CN=C1NC(=O)C1CCNCC1 OUSFTKFNBAZUKL-UHFFFAOYSA-N 0.000 description 3
- 150000001204 N-oxides Chemical class 0.000 description 3
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- PNUZDKCDAWUEGK-CYZMBNFOSA-N Sitafloxacin Chemical compound C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 PNUZDKCDAWUEGK-CYZMBNFOSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 239000007984 Tris EDTA buffer Substances 0.000 description 3
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 102000005922 amidase Human genes 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- MJSHDCCLFGOEIK-UHFFFAOYSA-N benzyl (2,5-dioxopyrrolidin-1-yl) carbonate Chemical compound O=C1CCC(=O)N1OC(=O)OCC1=CC=CC=C1 MJSHDCCLFGOEIK-UHFFFAOYSA-N 0.000 description 3
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 229940125773 compound 10 Drugs 0.000 description 3
- 229940126142 compound 16 Drugs 0.000 description 3
- 229940125833 compound 23 Drugs 0.000 description 3
- 229940125851 compound 27 Drugs 0.000 description 3
- 229940104302 cytosine Drugs 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 230000012202 endocytosis Effects 0.000 description 3
- 210000001163 endosome Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000012226 gene silencing method Methods 0.000 description 3
- 125000003147 glycosyl group Chemical group 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 3
- 229960001680 ibuprofen Drugs 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000000138 intercalating agent Substances 0.000 description 3
- 150000002540 isothiocyanates Chemical class 0.000 description 3
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 3
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 3
- 108091051828 miR-122 stem-loop Proteins 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N monoethanolamine hydrochloride Natural products NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 3
- MJCJUDJQDGGKOX-UHFFFAOYSA-N n-dodecyldodecan-1-amine Chemical compound CCCCCCCCCCCCNCCCCCCCCCCCC MJCJUDJQDGGKOX-UHFFFAOYSA-N 0.000 description 3
- 229960002009 naproxen Drugs 0.000 description 3
- CMWTZPSULFXXJA-VIFPVBQESA-M naproxen(1-) Chemical compound C1=C([C@H](C)C([O-])=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-M 0.000 description 3
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 150000008300 phosphoramidites Chemical class 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 150000003212 purines Chemical class 0.000 description 3
- 239000004055 small Interfering RNA Substances 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- ABJSOROVZZKJGI-OCYUSGCXSA-N (1r,2r,4r)-2-(4-bromophenyl)-n-[(4-chlorophenyl)-(2-fluoropyridin-4-yl)methyl]-4-morpholin-4-ylcyclohexane-1-carboxamide Chemical compound C1=NC(F)=CC(C(NC(=O)[C@H]2[C@@H](C[C@@H](CC2)N2CCOCC2)C=2C=CC(Br)=CC=2)C=2C=CC(Cl)=CC=2)=C1 ABJSOROVZZKJGI-OCYUSGCXSA-N 0.000 description 2
- KAFZOLYKKCWUBI-HPMAGDRPSA-N (2s)-2-[[(2s)-2-[[(2s)-1-[(2s)-3-amino-2-[[(2s)-2-[[(2s)-2-(3-cyclohexylpropanoylamino)-4-methylpentanoyl]amino]-5-methylhexanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]butanediamide Chemical compound N([C@@H](CC(C)C)C(=O)N[C@@H](CCC(C)C)C(=O)N[C@@H](CN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC(N)=O)C(N)=O)C(=O)CCC1CCCCC1 KAFZOLYKKCWUBI-HPMAGDRPSA-N 0.000 description 2
- LJIOTBMDLVHTBO-CUYJMHBOSA-N (2s)-2-amino-n-[(1r,2r)-1-cyano-2-[4-[4-(4-methylpiperazin-1-yl)sulfonylphenyl]phenyl]cyclopropyl]butanamide Chemical compound CC[C@H](N)C(=O)N[C@]1(C#N)C[C@@H]1C1=CC=C(C=2C=CC(=CC=2)S(=O)(=O)N2CCN(C)CC2)C=C1 LJIOTBMDLVHTBO-CUYJMHBOSA-N 0.000 description 2
- FRJJJAKBRKABFA-TYFAACHXSA-N (4r,6s)-6-[(e)-2-[6-chloro-4-(4-fluorophenyl)-2-propan-2-ylquinolin-3-yl]ethenyl]-4-hydroxyoxan-2-one Chemical compound C(\[C@H]1OC(=O)C[C@H](O)C1)=C/C=1C(C(C)C)=NC2=CC=C(Cl)C=C2C=1C1=CC=C(F)C=C1 FRJJJAKBRKABFA-TYFAACHXSA-N 0.000 description 2
- VGNCBRNRHXEODV-XXVHXNRLSA-N (6r,7r)-1-[(4s,5r)-4-acetyloxy-5-methyl-3-methylidene-6-phenylhexyl]-6-dodecoxy-4,7-dihydroxy-2,8-dioxabicyclo[3.2.1]octane-3,4,5-tricarboxylic acid Chemical compound C([C@@H](C)[C@H](OC(C)=O)C(=C)CCC12[C@H](O)[C@H](C(O2)(C(O)=O)C(O)(C(O1)C(O)=O)C(O)=O)OCCCCCCCCCCCC)C1=CC=CC=C1 VGNCBRNRHXEODV-XXVHXNRLSA-N 0.000 description 2
- GOLAKLHPPDDLST-HZJYTTRNSA-N (9z,12z)-octadeca-9,12-dien-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCN GOLAKLHPPDDLST-HZJYTTRNSA-N 0.000 description 2
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 2
- IGVKWAAPMVVTFX-BUHFOSPRSA-N (e)-octadec-5-en-7,9-diynoic acid Chemical compound CCCCCCCCC#CC#C\C=C\CCCC(O)=O IGVKWAAPMVVTFX-BUHFOSPRSA-N 0.000 description 2
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 2
- KKHFRAFPESRGGD-UHFFFAOYSA-N 1,3-dimethyl-7-[3-(n-methylanilino)propyl]purine-2,6-dione Chemical compound C1=NC=2N(C)C(=O)N(C)C(=O)C=2N1CCCN(C)C1=CC=CC=C1 KKHFRAFPESRGGD-UHFFFAOYSA-N 0.000 description 2
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 2
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- PVVTWNMXEHROIA-UHFFFAOYSA-N 2-(3-hydroxypropyl)-1h-quinazolin-4-one Chemical compound C1=CC=C2NC(CCCO)=NC(=O)C2=C1 PVVTWNMXEHROIA-UHFFFAOYSA-N 0.000 description 2
- PYRKKGOKRMZEIT-UHFFFAOYSA-N 2-[6-(2-cyclopropylethoxy)-9-(2-hydroxy-2-methylpropyl)-1h-phenanthro[9,10-d]imidazol-2-yl]-5-fluorobenzene-1,3-dicarbonitrile Chemical compound C1=C2C3=CC(CC(C)(O)C)=CC=C3C=3NC(C=4C(=CC(F)=CC=4C#N)C#N)=NC=3C2=CC=C1OCCC1CC1 PYRKKGOKRMZEIT-UHFFFAOYSA-N 0.000 description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 2
- 108020003589 5' Untranslated Regions Proteins 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- OJRUSAPKCPIVBY-KQYNXXCUSA-N C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N Chemical compound C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N OJRUSAPKCPIVBY-KQYNXXCUSA-N 0.000 description 2
- VGCXGMAHQTYDJK-UHFFFAOYSA-N Chloroacetyl chloride Chemical compound ClCC(Cl)=O VGCXGMAHQTYDJK-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 108020004394 Complementary RNA Proteins 0.000 description 2
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- 229930010555 Inosine Natural products 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 108091092724 Noncoding DNA Proteins 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 108010039918 Polylysine Proteins 0.000 description 2
- 108091027568 Single-stranded nucleotide Proteins 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229920002253 Tannate Polymers 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- 229940022663 acetate Drugs 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000001251 acridines Chemical class 0.000 description 2
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 125000006242 amine protecting group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 229940072107 ascorbate Drugs 0.000 description 2
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 2
- 229940077388 benzenesulfonate Drugs 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- UWTDFICHZKXYAC-UHFFFAOYSA-N boron;oxolane Chemical compound [B].C1CCOC1 UWTDFICHZKXYAC-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 125000003636 chemical group Chemical group 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 2
- 238000011097 chromatography purification Methods 0.000 description 2
- 229940125758 compound 15 Drugs 0.000 description 2
- 229940125810 compound 20 Drugs 0.000 description 2
- 229940125961 compound 24 Drugs 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical group OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 2
- 238000009509 drug development Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 102000006815 folate receptor Human genes 0.000 description 2
- 108020005243 folate receptor Proteins 0.000 description 2
- PGBHMTALBVVCIT-VCIWKGPPSA-N framycetin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)N)O[C@@H]1CO PGBHMTALBVVCIT-VCIWKGPPSA-N 0.000 description 2
- 229960003704 framycetin Drugs 0.000 description 2
- 229940050411 fumarate Drugs 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical compound [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 230000009368 gene silencing by RNA Effects 0.000 description 2
- 229940050410 gluconate Drugs 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 2
- 150000002357 guanidines Chemical class 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000004366 heterocycloalkenyl group Chemical group 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 229960003786 inosine Drugs 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- TWBYWOBDOCUKOW-UHFFFAOYSA-M isonicotinate Chemical compound [O-]C(=O)C1=CC=NC=C1 TWBYWOBDOCUKOW-UHFFFAOYSA-M 0.000 description 2
- 229940001447 lactate Drugs 0.000 description 2
- 150000002634 lipophilic molecules Chemical class 0.000 description 2
- 239000002479 lipoplex Substances 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-M oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC([O-])=O ZQPPMHVWECSIRJ-KTKRTIGZSA-M 0.000 description 2
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical class C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 2
- 229940014662 pantothenate Drugs 0.000 description 2
- 235000019161 pantothenic acid Nutrition 0.000 description 2
- 239000011713 pantothenic acid Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920000656 polylysine Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 229940080818 propionamide Drugs 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000002516 radical scavenger Substances 0.000 description 2
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 2
- 229960001860 salicylate Drugs 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical class [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 2
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- 229940063675 spermine Drugs 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 150000003462 sulfoxides Chemical class 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 2
- 229940070710 valerate Drugs 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 1
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 1
- STBLNCCBQMHSRC-BATDWUPUSA-N (2s)-n-[(3s,4s)-5-acetyl-7-cyano-4-methyl-1-[(2-methylnaphthalen-1-yl)methyl]-2-oxo-3,4-dihydro-1,5-benzodiazepin-3-yl]-2-(methylamino)propanamide Chemical compound O=C1[C@@H](NC(=O)[C@H](C)NC)[C@H](C)N(C(C)=O)C2=CC(C#N)=CC=C2N1CC1=C(C)C=CC2=CC=CC=C12 STBLNCCBQMHSRC-BATDWUPUSA-N 0.000 description 1
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 1
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 1
- QGVQZRDQPDLHHV-DPAQBDIFSA-N (3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthrene-3-thiol Chemical compound C1C=C2C[C@@H](S)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 QGVQZRDQPDLHHV-DPAQBDIFSA-N 0.000 description 1
- MDAXKAUIABOHTD-UHFFFAOYSA-N 1,4,8,11-tetraazacyclotetradecane Chemical compound C1CNCCNCCCNCCNC1 MDAXKAUIABOHTD-UHFFFAOYSA-N 0.000 description 1
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 description 1
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 1
- GODZNYBQGNSJJN-UHFFFAOYSA-N 1-aminoethane-1,2-diol Chemical compound NC(O)CO GODZNYBQGNSJJN-UHFFFAOYSA-N 0.000 description 1
- MZMNEDXVUJLQAF-UHFFFAOYSA-N 1-o-tert-butyl 2-o-methyl 4-hydroxypyrrolidine-1,2-dicarboxylate Chemical compound COC(=O)C1CC(O)CN1C(=O)OC(C)(C)C MZMNEDXVUJLQAF-UHFFFAOYSA-N 0.000 description 1
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 1
- NRKYWOKHZRQRJR-UHFFFAOYSA-N 2,2,2-trifluoroacetamide Chemical compound NC(=O)C(F)(F)F NRKYWOKHZRQRJR-UHFFFAOYSA-N 0.000 description 1
- XBNGYFFABRKICK-UHFFFAOYSA-N 2,3,4,5,6-pentafluorophenol Chemical compound OC1=C(F)C(F)=C(F)C(F)=C1F XBNGYFFABRKICK-UHFFFAOYSA-N 0.000 description 1
- JFJNVIPVOCESGZ-UHFFFAOYSA-N 2,3-dipyridin-2-ylpyridine Chemical compound N1=CC=CC=C1C1=CC=CN=C1C1=CC=CC=N1 JFJNVIPVOCESGZ-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- CRZJPEIBPQWDGJ-UHFFFAOYSA-N 2-chloro-1,1-dimethoxyethane Chemical compound COC(CCl)OC CRZJPEIBPQWDGJ-UHFFFAOYSA-N 0.000 description 1
- SQERDRRMCKKWIL-UHFFFAOYSA-N 2-hydroperoxy-2-oxoacetic acid Chemical compound OOC(=O)C(O)=O SQERDRRMCKKWIL-UHFFFAOYSA-N 0.000 description 1
- 108010030844 2-methylcitrate synthase Proteins 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- IMOYOUMVYICGCA-UHFFFAOYSA-N 2-tert-butyl-4-hydroxyanisole Chemical compound COC1=CC=C(O)C=C1C(C)(C)C IMOYOUMVYICGCA-UHFFFAOYSA-N 0.000 description 1
- DXMDWMBMSSCYKI-UHFFFAOYSA-N 3,10-dimethyl-1,3,5,8,10,12-hexazacyclotetradecane Chemical compound CN1CNCCNCN(C)CNCCNC1 DXMDWMBMSSCYKI-UHFFFAOYSA-N 0.000 description 1
- QCMHUGYTOGXZIW-UHFFFAOYSA-N 3-(dimethylamino)propane-1,2-diol Chemical compound CN(C)CC(O)CO QCMHUGYTOGXZIW-UHFFFAOYSA-N 0.000 description 1
- WFOVEDJTASPCIR-UHFFFAOYSA-N 3-[(4-methyl-5-pyridin-4-yl-1,2,4-triazol-3-yl)methylamino]-n-[[2-(trifluoromethyl)phenyl]methyl]benzamide Chemical compound N=1N=C(C=2C=CN=CC=2)N(C)C=1CNC(C=1)=CC=CC=1C(=O)NCC1=CC=CC=C1C(F)(F)F WFOVEDJTASPCIR-UHFFFAOYSA-N 0.000 description 1
- BGAJNPLDJJBRHK-UHFFFAOYSA-N 3-[2-[5-(3-chloro-4-propan-2-yloxyphenyl)-1,3,4-thiadiazol-2-yl]-3-methyl-6,7-dihydro-4h-pyrazolo[4,3-c]pyridin-5-yl]propanoic acid Chemical compound C1=C(Cl)C(OC(C)C)=CC=C1C1=NN=C(N2C(=C3CN(CCC(O)=O)CCC3=N2)C)S1 BGAJNPLDJJBRHK-UHFFFAOYSA-N 0.000 description 1
- YBANXOPIYSVPMH-UHFFFAOYSA-N 3-[[di(propan-2-yl)amino]-[6-[[(4-methoxyphenyl)-diphenylmethyl]amino]hexoxy]phosphanyl]oxypropanenitrile Chemical compound C1=CC(OC)=CC=C1C(NCCCCCCOP(OCCC#N)N(C(C)C)C(C)C)(C=1C=CC=CC=1)C1=CC=CC=C1 YBANXOPIYSVPMH-UHFFFAOYSA-N 0.000 description 1
- 125000004080 3-carboxypropanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C(O[H])=O 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 1
- RRELDGDKULRRDM-UHFFFAOYSA-N 6-[2-chloro-4-nitro-5-(oxan-4-yloxy)anilino]-3,4-dihydro-1H-quinolin-2-one Chemical compound [O-][N+](=O)c1cc(Cl)c(Nc2ccc3NC(=O)CCc3c2)cc1OC1CCOCC1 RRELDGDKULRRDM-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-UHFFFAOYSA-N 9,12-Octadecadienoic Acid Chemical compound CCCCCC=CCC=CCCCCCCCC(O)=O OYHQOLUKZRVURQ-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical class NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 208000008037 Arthrogryposis Diseases 0.000 description 1
- IYHHRZBKXXKDDY-UHFFFAOYSA-N BI-605906 Chemical compound N=1C=2SC(C(N)=O)=C(N)C=2C(C(F)(F)CC)=CC=1N1CCC(S(C)(=O)=O)CC1 IYHHRZBKXXKDDY-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- BQXUPNKLZNSUMC-YUQWMIPFSA-N CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 Chemical compound CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 BQXUPNKLZNSUMC-YUQWMIPFSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 108010071536 Citrate (Si)-synthase Proteins 0.000 description 1
- 102000006732 Citrate synthase Human genes 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 108091027757 Deoxyribozyme Proteins 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Natural products C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 101150053603 HMGCR gene Proteins 0.000 description 1
- 206010019842 Hepatomegaly Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108010070875 Human Immunodeficiency Virus tat Gene Products Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 description 1
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 description 1
- 208000002682 Hyperkalemia Diseases 0.000 description 1
- 108010050332 IQ motif containing GTPase activating protein 1 Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- WINFHLHJTRGLCV-BZSNNMDCSA-N Lys-Tyr-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CCCCN)C(O)=O)CC1=CC=C(O)C=C1 WINFHLHJTRGLCV-BZSNNMDCSA-N 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 101100015391 Mus musculus Ralgds gene Proteins 0.000 description 1
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 1
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 description 1
- 102000055056 N-Myc Proto-Oncogene Human genes 0.000 description 1
- NUGPIZCTELGDOS-QHCPKHFHSA-N N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclopentanecarboxamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CC[C@@H](C=1C=NC=CC=1)NC(=O)C1CCCC1)C NUGPIZCTELGDOS-QHCPKHFHSA-N 0.000 description 1
- LVDRREOUMKACNJ-BKMJKUGQSA-N N-[(2R,3S)-2-(4-chlorophenyl)-1-(1,4-dimethyl-2-oxoquinolin-7-yl)-6-oxopiperidin-3-yl]-2-methylpropane-1-sulfonamide Chemical compound CC(C)CS(=O)(=O)N[C@H]1CCC(=O)N([C@@H]1c1ccc(Cl)cc1)c1ccc2c(C)cc(=O)n(C)c2c1 LVDRREOUMKACNJ-BKMJKUGQSA-N 0.000 description 1
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 1
- POFVJRKJJBFPII-UHFFFAOYSA-N N-cyclopentyl-5-[2-[[5-[(4-ethylpiperazin-1-yl)methyl]pyridin-2-yl]amino]-5-fluoropyrimidin-4-yl]-4-methyl-1,3-thiazol-2-amine Chemical compound C1(CCCC1)NC=1SC(=C(N=1)C)C1=NC(=NC=C1F)NC1=NC=C(C=C1)CN1CCN(CC1)CC POFVJRKJJBFPII-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000007990 PIPES buffer Substances 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 108020005093 RNA Precursors Proteins 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 230000007022 RNA scission Effects 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 102100034419 Ras GTPase-activating-like protein IQGAP1 Human genes 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 206010039020 Rhabdomyolysis Diseases 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- STSCVKRWJPWALQ-UHFFFAOYSA-N TRIFLUOROACETIC ACID ETHYL ESTER Chemical compound CCOC(=O)C(F)(F)F STSCVKRWJPWALQ-UHFFFAOYSA-N 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- NBLHOLNNKJBEDC-XOGQCRKLSA-N [(2r,3s,4s,5r,6r)-2-[(2r,3s,4s,5s,6s)-2-[(1r,2s)-2-[[6-amino-2-[(1s)-3-amino-1-[[(2s)-2,3-diamino-3-oxopropyl]amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[[(2r,3s,4s)-5-[[(2s,3r)-1-[2-[4-[4-[4-(diaminomethylideneamino)butylcarbamoyl]-1,3-th Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCCN=C(N)N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C NBLHOLNNKJBEDC-XOGQCRKLSA-N 0.000 description 1
- RLXCFCYWFYXTON-JTTSDREOSA-N [(3S,8S,9S,10R,13S,14S,17R)-3-hydroxy-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-16-yl] N-hexylcarbamate Chemical group C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC(OC(=O)NCCCCCC)[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 RLXCFCYWFYXTON-JTTSDREOSA-N 0.000 description 1
- NYDLOCKCVISJKK-WRBBJXAJSA-N [3-(dimethylamino)-2-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CN(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC NYDLOCKCVISJKK-WRBBJXAJSA-N 0.000 description 1
- XQAXGZLFSSPBMK-UHFFFAOYSA-M [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;chloride;trihydrate Chemical compound O.O.O.[Cl-].C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21 XQAXGZLFSSPBMK-UHFFFAOYSA-M 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XVIYCJDWYLJQBG-UHFFFAOYSA-N acetic acid;adamantane Chemical compound CC(O)=O.C1C(C2)CC3CC1CC2C3 XVIYCJDWYLJQBG-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229940045686 antimetabolites antineoplastic purine analogs Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000003460 beta-lactamyl group Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- TXFLGZOGNOOEFZ-UHFFFAOYSA-N bis(2-chloroethyl)amine Chemical compound ClCCNCCCl TXFLGZOGNOOEFZ-UHFFFAOYSA-N 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- QYOAUOAXCQAEMW-UTXKDXHTSA-N bleomycin A5 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCCNCCCCN)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C QYOAUOAXCQAEMW-UTXKDXHTSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical compound O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000012304 carboxyl activating agent Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125797 compound 12 Drugs 0.000 description 1
- 229940126543 compound 14 Drugs 0.000 description 1
- 229940125877 compound 31 Drugs 0.000 description 1
- 229940125878 compound 36 Drugs 0.000 description 1
- 229940126540 compound 41 Drugs 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical compound CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 description 1
- 229940099500 cystamine Drugs 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 231100000020 developmental retardation Toxicity 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical group C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002616 endonucleolytic effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000030414 genetic transfer Effects 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 231100000001 growth retardation Toxicity 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N guanidine group Chemical group NC(=N)N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000004438 haloalkoxy group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- RENRQMCACQEWFC-UGKGYDQZSA-N lnp023 Chemical compound C1([C@H]2N(CC=3C=4C=CNC=4C(C)=CC=3OC)CC[C@@H](C2)OCC)=CC=C(C(O)=O)C=C1 RENRQMCACQEWFC-UGKGYDQZSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 108010045397 lysyl-tyrosyl-lysine Proteins 0.000 description 1
- 230000036212 malign transformation Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- DTSDBGVDESRKKD-UHFFFAOYSA-N n'-(2-aminoethyl)propane-1,3-diamine Chemical compound NCCCNCCN DTSDBGVDESRKKD-UHFFFAOYSA-N 0.000 description 1
- ACYBVNYNIZTUIL-UHFFFAOYSA-N n'-benzylethane-1,2-diamine Chemical compound NCCNCC1=CC=CC=C1 ACYBVNYNIZTUIL-UHFFFAOYSA-N 0.000 description 1
- IXSXIMCFYLTCMM-UHFFFAOYSA-N n,n-didodecylprop-2-enamide Chemical compound CCCCCCCCCCCCN(C(=O)C=C)CCCCCCCCCCCC IXSXIMCFYLTCMM-UHFFFAOYSA-N 0.000 description 1
- NFQBIAXADRDUGK-KWXKLSQISA-N n,n-dimethyl-2,3-bis[(9z,12z)-octadeca-9,12-dienoxy]propan-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/CCCCC NFQBIAXADRDUGK-KWXKLSQISA-N 0.000 description 1
- GLGLUQVVDHRLQK-WRBBJXAJSA-N n,n-dimethyl-2,3-bis[(z)-octadec-9-enoxy]propan-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/CCCCCCCC GLGLUQVVDHRLQK-WRBBJXAJSA-N 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N n,n-dimethylpropan-1-amine Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- UTIPULPIFMBWRB-UHFFFAOYSA-N n-dodecyl-3-[2-[3-(dodecylamino)-3-oxopropyl]-2-propylhydrazinyl]propanamide Chemical compound CCCCCCCCCCCCNC(=O)CCNN(CCC)CCC(=O)NCCCCCCCCCCCC UTIPULPIFMBWRB-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 101150037779 ndrg3 gene Proteins 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- RBXVOQPAMPBADW-UHFFFAOYSA-N nitrous acid;phenol Chemical class ON=O.OC1=CC=CC=C1 RBXVOQPAMPBADW-UHFFFAOYSA-N 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachloro-phenol Natural products OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 1
- ONTNXMBMXUNDBF-UHFFFAOYSA-N pentatriacontane-17,18,19-triol Chemical compound CCCCCCCCCCCCCCCCC(O)C(O)C(O)CCCCCCCCCCCCCCCC ONTNXMBMXUNDBF-UHFFFAOYSA-N 0.000 description 1
- 102000014187 peptide receptors Human genes 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-O propan-1-aminium Chemical compound CCC[NH3+] WGYKZJWCGVVSQN-UHFFFAOYSA-O 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000006578 reductive coupling reaction Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- RWWYLEGWBNMMLJ-YSOARWBDSA-N remdesivir Chemical compound NC1=NC=NN2C1=CC=C2[C@]1([C@@H]([C@@H]([C@H](O1)CO[P@](=O)(OC1=CC=CC=C1)N[C@H](C(=O)OCC(CC)CC)C)O)O)C#N RWWYLEGWBNMMLJ-YSOARWBDSA-N 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 239000012898 sample dilution Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 229940071117 starch glycolate Drugs 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical group NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- UOZFEYZIDUEEQS-UHFFFAOYSA-N tert-butyl n-(2-aminoethyl)-n-[2-[2-aminoethyl-[(2-methylpropan-2-yl)oxycarbonyl]amino]ethyl]carbamate Chemical compound CC(C)(C)OC(=O)N(CCN)CCN(CCN)C(=O)OC(C)(C)C UOZFEYZIDUEEQS-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- AUHHYELHRWCWEZ-UHFFFAOYSA-N tetrachlorophthalic anhydride Chemical compound ClC1=C(Cl)C(Cl)=C2C(=O)OC(=O)C2=C1Cl AUHHYELHRWCWEZ-UHFFFAOYSA-N 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 125000000464 thioxo group Chemical group S=* 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 229940126672 traditional medicines Drugs 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-O triethylammonium ion Chemical compound CC[NH+](CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-O 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C219/00—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C219/02—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C219/04—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C219/06—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having the hydroxy groups esterified by carboxylic acids having the esterifying carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms of an acyclic saturated carbon skeleton
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/325—Carbamic acids; Thiocarbamic acids; Anhydrides or salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
- A61K9/1273—Polymersomes; Liposomes with polymerisable or polymerised bilayer-forming substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/68—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
- C07C209/78—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton from carbonyl compounds, e.g. from formaldehyde, and amines having amino groups bound to carbon atoms of six-membered aromatic rings, with formation of methylene-diarylamines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/34—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
- C07C233/35—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/36—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/08—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
- C07C271/10—Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/23—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C323/24—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
- C07C323/25—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
Definitions
- This invention relates to compositions and methods useful in administering nucleic acid based therapies, for example association complexes such as liposomes and lipoplexes.
- nucleic acid based therapies holds significant promise, providing solutions to medical problems that could not be addressed with current, traditional medicines.
- the location and sequences of an increasing number of disease-related genes are being identified, and clinical testing of nucleic acid-based therapeutics for a variety of diseases is now underway.
- One method of introducing nucleic acids into a cell is mechanically, using direct microinjection. However this method is not generally effective for systemic administration to a subject.
- Systemic delivery of a nucleic acid therapeutic requires distributing nucleic acids to target cells and then transferring the nucleic acid across a target cell membrane intact and in a form that can function in a therapeutic manner.
- Viral vectors have, in some instances, been used clinically successfully to administer nucleic acid based therapies. However, while viral vectors have the inherent ability to transport nucleic acids across cell membranes, they can pose risks. One such risk involves the random integration of viral genetic sequences into patient chromosomes, potentially damaging the genome and possibly inducing a malignant transformation. Another risk is that the viral vector may revert to a pathogenic genotype either through mutation or genetic exchange with a wild type virus.
- Lipid-based vectors have also been used in nucleic acid therapies and have been formulated in one of two ways.
- the nucleic acid is introduced into preformed liposomes or lipoplexes made of mixtures of cationic lipids and neutral lipids.
- the complexes thus formed have undefined and complicated structures and the transfection efficiency is severely reduced by the presence of serum.
- the second method involves the formation of DNA complexes with mono- or poly-cationic lipids without the presence of a neutral lipid. These complexes are prepared in the presence of ethanol and are not stable in water. Additionally, these complexes are adversely affected by serum (see, Behr, Ace. Chem. Res. 26:274-78 (1993)).
- the invention features novel preparations that include a polyamine compound or a lipid moiety described herein.
- the invention features a preparation comprising one or more compounds, each individually having a structure defined by formula (I) or a pharmaceutically acceptable salt thereof,
- each X a and X b for each occurrence, is independently C 1-6 alkylene; n is 0, 1 , 2, 3, 4, or 5; each R is independently H,
- At least n + 2 of the R moieties in at least about 50% of the molecules of the compound of formula (I) in the preparation are not H; m is 1, 2, 3 or 4; Y is O, NR 2 , or S;
- R 1 is alkyl alkenyl or alkynyl; each of which is optionally substituted with one or more substiruents; and
- R when R is not H, R is R a , for example, when R is not H, R is R a for each occurrence.
- R when R is not H, R is R b , for example, when R is not H, R is R b , for each occurrence. In some embodiments, when R is not H, R is R c , for example, when R is not H,
- R is R c , for each occurrence.
- R when R is not H, R is R d , for example, when R is not H, R is R d , for each occurrence.
- R when R is not H, R is R e , for example, when R is not H, R is R e , for each occurrence.
- n + 2 of the R moieties of formula (I) are not H. In some embodiments, n + 3 of the R moieties of formula (I) are not H. In some embodiments, n + 4 of the R moieties of formula (I) are not H.
- n + 1 of the R moieties of formula (I) are not H. In some embodiments, n > 0, and at least one R of NR of formula (I) is H.
- At least one R of NR 2 of formula (I) is H.
- n + 2 of the R moieties of formula (I) are not H, or n + 3 of the R moieties of formula (I) are not H, or n + 4 of the R moieties of formula (I) are not H. In some embodiments, n is 2 or 0.
- X a and X b are C 2 alkylene.
- n is O and X b is ethylene or propylene.
- n >1 and X a varies with at least one occurrence.
- R when R not H, R is
- Y can be O or NR .
- m is 2.
- Y is O or NR 2 and m is 2.
- m is 1.
- m is 1 and Y is O or NR 2 .
- R 1 for at least one occurrence is alkyl, for example, R 1 for each occurrence is alkyl.
- R 1 is alkyl and R 2 is H, for at least one occurrence, e.g., for each occurrence.
- R 1 and R 2 are alkyl for at least one occurrence, e.g., for each occurrence.
- R 1 for at least one occurrence is alkenyl.
- R 1 for at least one occurrence is alkenyl.
- R when R is not H, R is Ra, for at least one occurrence, e.g., for each occurrence, and Y is O or NH.
- Y is O.
- Y is NH.
- R 1 is alkyl, e.g., C 10-30 alkyl or C 12 alkyl.
- n is 2.
- X a for each occurrence is C 2 alkylene and X b is C 2 alkylene.
- m is 2.
- n is 2 and R, when R is not H, is R a , for at least one occurrence, e.g., for each occurrence,
- R 1 is alkyl, e.g., C 10-18 alkyl or C 12 alkyl.
- Y is O or Y is NH.
- X a for each occurrence is C 2 alkylene and X b is C 2 alkylene.
- m is 2.
- at least 1 R of NR is H and R, when not H is R a , for at least one occurrence, e.g. for each occurrence, and Y is O or NH.
- R 1 is alkyl, e.g., C 10-18 alkyl or C 12 alkyl.
- Y is O or Y is NH.
- X a for each occurrence is C 2 alkylene and X b is C 2 alkylene.
- m is 2.
- at least 1 R of NR is H and R, when not H is
- Y is O or Y is NH.
- R 1 is alkyl, e.g., C 10-18 alkyl or C 12 alkyl.
- n is 2.
- X a for each occurrence is C 2 alkylene and X b is C 2 alkylene.
- m is 2.
- n is 2 and at least 1 R of NR is H and when R is not H, R is R a , for at least one occurrence, e.g. for each occurrence, and Y is O or NH.
- R 1 is alkyl, e.g., C 10-18 alkyl or C 12 alkyl.
- Y is O or Y is NH.
- X a for each occurrence is C 2 alkylene and X b is C 2 alkylene.
- m is 2.
- at least 1 R of NR 2 is H and R is R a , for at least one occurrence, e.g. for each occurrence, and wherein Y is O or NH.
- Y is O or Y is NH.
- R 1 is alkyl, e.g., C 10-30 alkyl, C 10-18 alkyl or C 12 alkyl.
- n is 2.
- X a for each occurrence is C 2 alkylene and X b is C 2 alkylene.
- m is 2.
- n is 2 and at least 1 R of NR 2 is H and R is R a , for at least one occurrence, e.g. for each occurrence, and wherein Y is O or NH.
- R 1 is alkyl, e.g., C 10-18 alkyl or C 12 alkyl.
- Y is O or Y is NH.
- X a for each occurrence is C 2 alkylene and X b is C 2 alkylene.
- m is 2.
- the preparation comprises one or a mixture of the formula below, wherein R is not H unless specified in the formula below.
- the preparation consists essentially of one or a mixture of the formula below
- each R is
- each R is .
- R 1 is C 10 -C 18 alkyl (e.g., C 12 alkyl), or C 10 -C 30 alkenyl.
- R is
- R 1 is C 10 -C 18 alkyl, e.g., C 12 alkyl. In some embodiments, R 1 is C 12 alkyl and R 2 is H. In some embodiments, n is 0 and X is propylene. In some embodiments, 1 R is
- R when R is not H, R is R a , for at least one occurrence, e.g. for each occurrence.
- R 1 is alkyl, e.g., C 10-30 alkyl or C 12 alkyl.
- Y is O or Y is NH.
- m is 2.
- formula (I) is
- R is . In some embodiments, R 1 is C 10 -C 18 alkyl, or C 10 -C 30 alkenyl. In some embodiments, R is . In some embodiments, R 1 is C 10 -C 18 alkyl, or C 10 -C 30 alkenyl and R 2 is H.
- n is 2; X a , for each occurrence is C 2 alkylene and X b is C 2 alkylene; and wherein each R is H or
- R a for at least one occurrence, e.g. for each occurrence, m is 2;
- Y is NH or O
- R 1 is C 12 alkyl. In some embodiments, at least 80% of the molecules of the compound of formula (I) are a single structural isomer. In some embodiments, Y is NH, e.g., wherein at least 80% of the molecules of the compound of formula (I) are a single structural isomer. In some embodiments, R is R a , for 5 occurrences, In some embodiments, in at least 80% of the molecules of the compound of formula (I), R is R a , for 5 occurrences. In some embodiments, Y is NH.
- the compound of formula (I) is an inorganic or organic salt thereof, e.g., a hydrohalide salt thereof, such as a hydrochloride salt thereof, hi some embodiments, the hydrochloride salt ranges from a single equivalent of HCL, to n+2 equivalents of HCl.
- the compound of formula (I) is salt of an organic acid, e.g., an acetate, for example, the acetate salt ranges from a single equivalent of acetate, to n+2 equivalents of acetate or a formate, for example, the formate salt ranges from a single equivalent of acetate, to n+2 equivalents of formate.
- the compound of formula (I) is in the form of a hydrate.
- R 1 for at least one occurrence, e.g., for each occurrence, comprises an alkenyl moiety, for example, R 1 comprises a cis double bond.
- the invention features a preparation including a compound of formula (I) and a nucleic acid (e.g., an RNA such as an siRNA or dsRNA or a DNA).
- a nucleic acid e.g., an RNA such as an siRNA or dsRNA or a DNA.
- the preparation also includes an additional lipid such as a fusogenic lipid, or a PEG-lipid.
- the preparation comprises less than 11%, by weight, of
- the preparation comprises less than 90% by weight of
- the preparation comprises a plurality of compounds of formula (I).
- the preparation comprises a mixture of compounds of the formulas below:
- formula (I) wherein in formula (I"), five of the R moieties are R a .
- formula (I') and (I") are present in a ratio of from about 1 :2 to about 2:1.
- the invention features a method of making a compound of formula
- each X a and X for each occurrence, is independently C 1-6 alkylene; n is 0, 1 , 2, 3, 4, or 5; and wherein each R is independently H or
- n 2;
- Y is O, NR 2 , or S; R 1 is alkyl or alkenyl; R 2 is H or C alkyl or alkenyl; the method comprising reacting a compound of formula (III)
- the invention features a method of making a compound of formula
- each X a and X b for each occurrence, is independently C 1-6 alkylene; n is 0, 1 , 2, 3, 4, or 5; and wherein each R is independently H or m is 2;
- Y is O, NR 2 , or S
- R 1 is alkyl or alkenyl
- R 2 is H or C alkyl or alkenyl
- the invention features a method of making a compound of formula
- each X a and X b for each occurrence, is independently C 1-6 alkylene; n is 0, 1, 2, 3, 4, or 5; and wherein each R is independently H or R a ; m is 2;
- Y is O, NR 2 , or S
- R 1 is alkyl or alkenyl
- R 2 is H or alkyl or alkenyl
- reaction mixture comprises from about 0.8 about 1.2 molar equivalents of a compound of formula (III), with from about 3.8 to about 6.5 molar equivalents of a compound of formula (IV).
- the reaction mixture comprises from about 0.8 about 1.2 molar equivalents of a compound of formula (III), with from about 5.5 to about 6.5 molar equivalents of a compound of formula (IV). In some embodiments, the reaction mixture comprises about 1 molar equivalents of a compound of formula (III), with from about 6 molar equivalents of a compound of formula (IV). In some embodiments, the reaction mixture comprises about 1 molar equivalents of a compound of formula (III), with from about 5 molar equivalents of a compound of formula (IV).
- the invention features a method of making a compound of formula
- each X a and X b for each occurrence, is independently C 1-6 alkylene; n is 0, 1, 2, 3, 4, or 5; and wherein each R is independently H or
- n 2;
- Y is O, NR 2 , or S;
- R 1 is alkyl or alkenyl;
- R 2 is H or alkyl or alkenyl
- the first step process involving the reaction mixture comprises from about 0.8 about 1.2 molar equivalents of a compound of formula (III), with from about 3.8 to about 4.2 molar equivalents of a compound of formula (IV) and the second step process involving addition of about 0.8 to 1.2 molar equivalent of compound of formula (IV).
- the invention features a method of making a compound of formula
- each X a and X b for each occurrence, is independently C 1-6 alkylene; n is 0, 1, 2, 3, 4, or 5; and wherein each R is independently H or
- n 2;
- Y is O, NR 2 , or S
- R 1 is alkyl or alkenyl
- R 2 is H or alkyl or alkenyl
- the structural isomer of formula (II) is separated from the reaction mixture using chromatographic separation.
- the chromatographic separation is using flash silica gel for separation of isomers.
- the chromatographic separation is gravity separation of isomers using silica gel.
- the chromatographic separation is using moving bed chromatagraphy for separation of isomers.
- the chromatographic separation uses liquid chromatagraphy (LC) for separation of isomers.
- the chromatographic separation is normal phase HPLC for separation of isomers.
- the chromatographic separation is reverse phase HPLC for separation of isomers.
- the substantially purified preparation comprises at least about 80% of the structural isomer of formula (II), e.g., at least about 90% of the structural isomer of formula (II), at least about 95% of the structural isomer of formula (II).
- the invention features a method of making a compound of formula (V) or a pharmaceutically acceptable salt thereof,
- each X a and X b for each occurrence, is independently C 1-6 alkylene; n is 0, 1, 2, 3, 4, or 5; and wherein each R is independently H or
- n 1;
- Y is O, NR 2 , or S
- R 1 is alkyl or alkenyl
- R 2 is H or alkyl or alkenyl
- the pharmaceutically acceptable salt thereof is a hydrochloride salt of the compound of formula (V).
- the invention features a compound of formula (X),
- R 1 and R 2 are each independently H, C 1 -C 6 alkyl, optionally substituted with 1-4 R 5 , C 2 -C 6 alkenyl, optionally substituted with 1-4 R 5 , or C(NR 6 )(NR 6 ) 2 ;
- R 3 and R 4 are each independently alkyl, alkenyl, alkynly, each of which is optionally substituted with fluoro, chloro, bromo, or iodo;
- L 1 -R 3 and L 2 -R 4 can be taken together to form an acetal, a ketal, or an orthoester, wherein R 3 and R 4 are defined as above and can also be H or phenyl;
- R 5 is fluoro, chloro, bromo, iodo, -OR 7 , -N(R 8 )(R 9 ), -CN, SR 10 , S(O)R 10 , S(O) 2 R 10 R 6 is H, C 1 -C 6 alkyl,
- R 7 is H or C 1 -C 6 alkyl; each R 8 and R 9 are independently H or C 1 -C 6 alkyl;
- R 10 is H or C 1 -C 6 alkyl; m is 1, 2, 3, 4, 5, or 6; n is 0, 1, 2, 3, 4, 5, or 6; and pharmaceutically acceptable salts thereof.
- the compound is an inorganic salt thereof, for example a hydrohalide salt thereof such as a hydrochloride salt thereof. In some embodiments, the compound is an organic salt thereof.
- R 1 and R 2 are each independently C 1 -C 3 alkyl.
- R 1 is methyl
- R 2 is methyl
- R 1 and R 2 are both methyl. In some embodiments, R 1 is H, methyl, ethyl, isopropyl, or 2-hydroxyethyl.
- R 2 is H.
- R 2 is methyl, ethyl, propyl, or isopropyl.
- R 1 is H, methyl, ethyl, isopropyl, or 2-hydroxyethyl and R 2 is H, methyl, ethyl, propyl, or isopropyl. In some embodiments, m is 1.
- n 1
- both m and n are 1.
- L 1 is -NR 6 C(O)-, or -C(O)NR 6 -.
- L 1 is -OC(O)- or -C(O)O-. In some embodiments, L 1 is S-S-.
- L 1 is -N(R 6 )C(O)N(R 6 )-.
- L 1 is -OC(O)N(R 6 )- or -N(R 6 )C(O)O-.
- L 2 is -NR 6 C(O)-, or -C(O)NR 6 -.
- L is -OC(O)- or -C(O)O-.
- L 2 is S-S-. In some embodiments, L 2 is -N(R 6 )C(O)N(R 6 )-.
- L 2 is -OC(O)N(R 6 )- or -N(R 6 )C(O)O-.
- both L 1 and L 2 are -NR 6 C(O)-, or -C(O)NR 6 -.
- both L 1 and L 2 are -OC(O)- or -C(O)O-.
- both L 1 and L 2 are S-S-.
- both L 1 and L 2 are -N(R 6 )C(O)N(R 6 )-.
- both L 1 and L 2 are -OC(O)N(R 6 )- or -N(R 6 )C(O)O-.
- L 1 is -NR 6 C(O)- and L 2 is -S-S-.
- L 1 is -OC(O)- and L 2 is -S-S-.
- L 1 is -OC(O)N(R 6 ) or -N(R 6 )C(O)O- and L 2 is -S-S-.
- L 1 is -N(R 6 )C(O)N(R 6 )- and L2 is -S-S-.
- L 1 -R 3 and L 2 -R 4 are taken together to form an acetal, a ketal, or an orthoester.
- each R 3 and R 4 are independently alkyl.
- both R 3 and R 4 are C 6 -C 28 alkyl.
- each L and L are independently -S-S-, -OC(O)N(R )- or -N(R 6 )C(O)O-.
- R 3 is alkyl.
- R 4 is alkyl
- R 3 is alkenyl
- R 4 is alkenyl
- each R 3 and R 4 are independently alkenyl, for example, each R 3 and R 4 are independently C 6 -C 30 alkenyl or each R 3 and R 4 are the same alkenyl moiety.
- each R 3 and R 4 includes two double bond moieties. In some embodiments, at least one of the double bonds have a Z configuration. In some embodiments, both of the double bonds have a Z configuration. In some embodiments, at least one of R 3 and R 4 is provided in formula (II) below
- both of R 3 and R 4 are of the formula (II).
- at least one of the double bonds have an E configuration, e.g., both of the double bonds have an E configuration.
- at least one of R 1 and R 2 is provided in formula (III) below
- x is an integer from 1 to 8; and y is an integer from 1-10.
- each R 1 and R 2 includes three double bond moieties. In some embodiments, at least one of the double bonds have a Z configuration. In some embodiments, at least two of the double bonds have a Z configuration. In some embodiments, all three of the double bonds have a Z configuration. In some embodiments, at least one of R 1 and R 2 is provided in formula (IV) below
- R 1 and R 2 are as provided in formula (IV).
- at least one of the double bonds have an E configuration.
- at least two of the double bonds have an E configuration.
- all three of the double bonds have an E configuration.
- at least one of R 1 and R 2 is provided in formula (IV) below
- both of R 1 and R 2 are as provided in formula (V).
- R 1 and R 2 are each C 1 -C 6 alkyl (e.g., methyl), L1 and L1 are each -OC(O)-, and R 3 and R 4 are each alkenyl.
- R3 and R4 are the same.
- R 3 and R 4 both include two double bonds (e.g., having cis linkages).
- R 3 and R 4 are provided in formula (II) below
- x is an integer from 1 to 8 e.g., 5; and y is an integer from 1-10 e.g., 4.
- the invention features a preparation including a compound of formula (X).
- the invention features a preparation including a compound of formula (X) and a nucleic acid (e.g., an RNA such as an siRNA or dsRNA or a DNA).
- the preparation also includes an additional lipid such as a fusogenic lipid, or a PEG-lipid.
- the invention features a method of making a compound of formula (X),
- R 1 and R 2 are each independently C 1 -C 6 alkyl, optionally substituted with 1-4 R 5 ;
- R 3 is alkyl, alkenyl, alkynyl
- L 1 is -OC(O)-
- R 5 is -OR 7 , -N(R 8 XR 9 ), -CN, SR 10 , S(O)R 10 , S(O) 2 R 10
- R 6 is H, C 1 -C 6 alkyl
- R 7 is H or C 1 -C 6 alkyl
- each R 8 and R 9 are independently H or C 1 -C 6 alkyl
- R 10 is H or C 1 -C 6 alkyl; m and n are each independently 1, 2, 3, 4, 5, or 6, the method comprising reacting a compound of formula (VI),
- the coupling agent is a carbodiimide such as EDCI.
- the invention features a compound of formula (XV) below
- each L 1 and L 2 are independently a bond or C(O); each R 1 and R 2 are independently alkyl alkenyl or alkynyl; each of which is optionally substituted with one or more substituents;
- X is -C(O)NH-, C(S)NH, -C(O) C 1-3 alkylC(O)NH-; or -C(O) C 1-3 alkylC(O)O-;
- m is an integer from 0-11 and n is an integer from 1-500.
- L 1 and L 2 are both a bond.
- L 1 and L 2 are both C(O).
- each R 1 and R 2 are independently alkyl, for example C 6 -
- both R 1 and R 2 are alkyl, e.g., straight chain alkyl having the same length, e.g., C 6 -C 28 alkyl, e.g.,C 10 -C 18 alkyl, e.g., C 13 alkyl, C 14 alkyl, C 15 alkyl, or C 16 alkyl.
- both R 1 and R 2 are C 14 alkyl.
- the formula XV reperesents a racemic mixture
- the compound of formula XV has an enantiomeric excess of the R isomer, e.g., at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99%.
- the formula XV represents enantiomerically pure 'R' isomer.
- the compound of formula XV has an enantiomeric excess of the S isomer, e.g., at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99%.
- the formula XV represents enantiomerically pure 'S' isomer.
- each R 1 and R 2 are independently alkenyl, for example, each R 1 and R 2 are independently C 6 -C 30 alkenyl or each R 1 and R 2 are the same alkenyl moiety.
- each R 1 and R 2 includes a single double bond, for example a single double bond in the E or Z configuration.
- each R 1 and R 2 includes two double bond moieties. In some embodiments, at least one of the double bonds has a Z configuration. In some embodiments, both of the double bonds have a Z configuration. In some embodiments, at least one of R 1 and R 2 is provided in formula (II) below
- both of R 1 and R 2 are of the formula (II).
- at least one of the double bonds has an E configuration, e.g., both of the double bonds have an E configuration.
- at least one of R 1 and R 2 is provided in formula (III) below
- x is an integer from 1 to 8; and y is an integer from 1-10.
- each R 1 and R 2 includes three double bond moieties. In some embodiments, at least one of the double bonds has a Z configuration. In some embodiments, at least two of the double bonds have a Z configuration. In some embodiments, all three of the double bonds have a Z configuration. In some embodiments, at least one of R 1 and R 2 is provided in formula (IV) below
- R 1 and R 2 are as provided in formula (IV).
- at least one of the double bonds has an E configuration.
- at least two of the double bonds have an E configuration.
- all three of the double bonds have an E configuration.
- at least one of R 1 and R 2 is provided in formula (IV) below
- both of R 3 and R 4 are as provided in formula (V).
- X is -C(O)NH-, providing a compound of formula (XV') below:
- each R 1 and R 2 are independently alkyl, for example C 6 -C 28 alkyl, e.g.,C 10 -C 18 alkyl, e.g., C 13 alkyl, C 14 alkyl, C 15 alkyl, or C 16 alkyl,.
- both R 1 and R 2 are alkyl, e.g., straight chain alkyl having the same length, e.g., C 6 -C 28 alkyl, e.g.,C 10 -C 18 alkyl, e.g., C 13 alkyl, C 14 alkyl, C 15 alkyl, or C 16 alkyl.
- both R 1 and R 2 are C 14 alkyl.
- X is -C(O) C 1-3 alkylC(O)O-.
- n is an integer from 1-10, for example an integer from 2- 4 or an integer 2.
- n is an integer from 1-500, for example an integer from 40-400, from 100-350, from 40-50 or from 42-47.
- the compound is a compound of formula (XV),
- each R 1 and R 2 are independently alkyl, for example C 6 -C 28 alkyl, e.g.,C 10 -C 18 alkyl, e.g., C 14 alkyl, C 15 alkyl, or C 16 alkyl.
- both R 1 and R 2 are alkyl, e.g., straight chain alkyl having the same length, e.g., C 6 -C 28 alkyl, e.g.,C 10 -C 18 alkyl, e.g., C 14 alkyl, C 15 alkyl, or C 16 alkyl.
- both R 1 and R 2 are C 14 alkyl.
- m is an integer from 1-10, for example an integer from 2-4 or an integer 2
- n is an integer from 1-500, for example an integer from 40-400, or from 40-50.
- the compound is a compound of formula (XV), wherein L1 and L2 are both bonds, R1 and R2 are both alkyl (e.g., C 6 -C 28 alkyl, e.g.,C 10 -C 18 alkyl, preferrably C 14 alkyl), and n is an integer from about 40-400.
- L1 and L2 are both bonds
- R1 and R2 are both alkyl (e.g., C 6 -C 28 alkyl, e.g.,C 10 -C 18 alkyl, preferrably C 14 alkyl)
- n is an integer from about 40-400.
- the comound has a formula (XVI) below:
- the compound of formula XV has an enantiomeric excess of the R isomer, e.g., at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99%.
- the compound of formula XVI is a stereo isomer with preferred absolute configuration 'R'.
- the invention features a PEG lipid conjugated to a cholesterol moiety.
- a PEG lipid conjugated to a cholesterol moiety For example, the compound of formula (XX) below:
- X is -C(O)NH-, C(S)NH, -C(O)C 1-3 alkylC(O)NH-; or -C(O)C 1-3 alkylC(O)O-; m is an integer from 0-11 and n is an integer from 1-500.
- the O attached to the cholesterol in formula (XX) is part of the cholesterol moiety.
- X is -C(O)NH-, or -C(O)C 1-3 alkylC(O)O-.
- the compound of formula (XX) is as provided below in formula (XX')
- the invention features a PEG lipid bound to a targeting moiety, for example a sugar residue.
- a targeting moiety for example a sugar residue.
- the compounds of formula (XV) or (XX) are modified at the OMe terminal end with a targeting moiety.
- the targeting moiety is bound to the PEG moiety via a linker.
- Examplary targeted PEG lipids are provided in formulas (XXI) and (XXII) below.
- the lipid is a compound of formula (XXI)
- each L 1 and L 2 are independently a bond or C(O); each R 1 and R 2 are independently alkyl alkenyl or alkynyl; each of which is optionally substituted with one or more substituents; each X and X' is independently -C(O)NH-, -NHC(O) -, C(S)NH, C(S)NH, - C(O)C ,.
- L 1 and L 2 are both a bond.
- L 1 and L 2 are both C(O).
- each R 1 and R 2 are independently alkyl, for example C 6 - C 28 alkyl, e.g.,C 10 -C 18 alkyl, e.g., C 14 alkyl, C 15 alkyl, or C 16 alkyl,.
- both R 1 and R 2 are alkyl, e.g., straight chain alkyl having the same length, e.g., C 6 -C 28 alkyl, e.g.,C 10 -C 18 alkyl, e.g., C 14 alkyl, C 15 alkyl, or C 16 alkyl.
- both R 1 and R 2 are C 14 alkyl.
- the formula (XXI) reperesents a racemic mixture
- the compound of formula (XXI) has an enantiomeric excess of the R isomer, e.g., at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99%.
- the formula (XXI) represents enantiomerically pure 1 R' isomer.
- the compound of formula (XXI) has an enantiomeric excess of the S isomer, e.g., at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99%.
- the formula (XXI) represents enantiomerically pure '5" isomer.
- each R 1 and R 2 are independently alkenyl, for example, each R 1 and R 2 are independently C 6 -C 30 alkenyl or each R 1 and R 2 are the same alkenyl moiety.
- each R 1 and R 2 includes a single double bond, for example a single double bond in the E or Z configuration.
- each R and R 2 includes two double bond moieties. In some embodiments, at least one of the double bonds has a Z configuration. In some embodiments, both of the double bonds have a Z configuration. In some embodiments, at least one of R 1 and R 2 is provided in formula (II) below
- both of R 1 and R 2 are of the formula (II).
- at least one of the double bonds has an E configuration, e.g., both of the double bonds have an E configuration.
- at least one of R 1 and R 2 is provided in formula (III) below
- each R 1 and R 2 includes three double bond moieties.
- at least one of the double bonds has a Z configuration.
- at least two of the double bonds have a Z configuration,
- all three of the double bonds have a Z configuration.
- at least one of R 1 and R 2 is provided in formula (IV) below
- R 1 and R 2 are as provided in formula (IV).
- at least one of the double bonds has an E configuration.
- at least two of the double bonds have an E configuration.
- all three of the double bonds have an E configuration,
- at least one of R 1 and R 2 is provided in formula (IV) below
- both of R 3 and R 4 are as provided in formula (V).
- p is 3.
- L is NHC(O)C 1-6 alkyl (e.g., NHC(O)C 3 alkyl).
- the compound of formula (XXI) is the compound of (XXI') below:
- the lipid is a compound of formula (XXII)
- each X and X' is independently -C(O)NH-, -NHC(O) -, C(S)NH, C(S)NH, - C(O) C 1-3 alkylC(O)NH-; NHC(O)C 1-3 alkylC(O) -; -C(O)C 1-3 alkylC(O)O-; NHC(O)C 1- 3 alkyl-; or C 1-3 alkylC(O)NH-; m is an integer from 0-11 and n is an integer from 1-500 p is an integer from 1-6, e.g., 3; T is a targeting moiety such as a glycosyl moiety (e.g., a sugar residue).
- the compound of formula (XXII) is the compound of (XXII') as provided below:
- the invention features an association complex comprising a compound preparation comprising a compound described herein (e.g., a compound of formula (I) or a compound of formula (X)) and a nucleic acid such as an RNA a single stranded or double stranded RNA (e.g., siRNA or dsRNA or a DNA).
- a compound preparation comprising a compound described herein (e.g., a compound of formula (I) or a compound of formula (X)) and a nucleic acid such as an RNA a single stranded or double stranded RNA (e.g., siRNA or dsRNA or a DNA).
- a nucleic acid such as an RNA a single stranded or double stranded RNA (e.g., siRNA or dsRNA or a DNA).
- the association complex is a lipoplex or a liposome.
- the association complex includes one or more additional components such as a targeting moiety, a fusogenic lipid, a PEGylated lipid, such as a PEG-lipid described herein such as a PEG-lipid having the formula (XV), ,(XV) or (XVI) or a structural component.
- the PEG-lipid is a targeted PEG-lipid as described herein, e.g., a compound of formula (XXI), (XXI'), (XXII), or (XXII').
- the invention features a method of forming a liposome comprising contacting a lipid preparation comprising a compound described herein (e.g. a lipid described herein such as a compound of formula (I) or formula (X)) with a therapeutic agent in the presence of a buffer, wherein said buffer: is of sufficient strength that substantially all amines of the molecules formula I are protonated; is present at between 100 and 300mM; is present at a concentration that provides significantly more protonation of than does the same buffer at 20 raM.
- a buffer is of sufficient strength that substantially all amines of the molecules formula I are protonated
- the invention features a liposome made by the method described herein.
- the invention features a method of forming a liposome comprising contacting a lipid preparation described herein (e.g., a lipid preparation comprising a compound of formula (I) or a compound of formula (X)) with a therapeutic agent in a mixture comprising at least about 90% ethanol and rapidly mixing the lipid preparation with the therapeutic agent to provide a particle having a diameter of less than about 200 uM. In some embodiments, the particle has a diameter of less than about 50 uM.
- a lipid preparation described herein e.g., a lipid preparation comprising a compound of formula (I) or a compound of formula (X)
- a therapeutic agent in a mixture comprising at least about 90% ethanol
- rapidly mixing the lipid preparation with the therapeutic agent to provide a particle having a diameter of less than about 200 uM.
- the particle has a diameter of less than about 50 uM.
- the invention features a method of forming a liposome comprising contacting a lipid preparation described herein (e.g., a lipid preparation comprising a compound of formula (I) or a compound of formula (X)) with a therapeutic agent in the presence of a buffer, wherein said buffer has a concentration from about 100 to about 300mM.
- a lipid preparation described herein e.g., a lipid preparation comprising a compound of formula (I) or a compound of formula (X)
- a buffer wherein said buffer has a concentration from about 100 to about 300mM.
- the invention features liposome comprising a preparation described herein (e.g., a lipid preparation comprising a compound of formula (I) or a compound of formula (X)) and a nucleic acid.
- a preparation described herein e.g., a lipid preparation comprising a compound of formula (I) or a compound of formula (X)
- the preparation also includes a PEGyI ated lipid, for example a PEG-lipid described herein, such as a
- the PEG-lipid having the formula (XV), ,(XV') or (XVI).
- the PEG- lipid is a targeted PEG-lipid as described herein, e.g., a compound of formula (XXI), (XXI'), (XXII), or (XXII').
- the preparation also includes a structural moiety such as cholesterol,
- the preparation of asscociation complex includes compounds of formaulae (I), (XV) and cholesterol.
- said nucleic acid is an siRNA, for example said nucleic acid is an siRNA which has been modified to resist degradation, said nucleic acid is an siRNA which has been modified by modification of the polysaccharide backbone, or said siRNA targets the ApoB gene.
- the liposome further comprisies a structural moiety and a
- PEGylated lipid such as a PEG-lipid described herein, wherein the ratio, by weight, of preparation (e.g., a lipid preparation comprising a compound of formula (I) or a compound of formula (X)), a structural moiety such as cholesterol, PEGylated lipid, and a nucleic acid, is 8-22:4-10:4-12:0.4-2.2.
- the structural moiety is cholesterol.
- the ratio is 10-20:0.5-8.0:5-10:0.5-2.0, e.g.,
- the average liposome diameter is between 10 nm and 750 nm, e.g., the average liposome diameter is between 30 and 200 nm or the average liposome diameter is between 50 and 100 ran.
- the preparation is less than 15%, by weight, of unreacted lipid.
- the ratio of the preparation e.g., a lipid preparation comprising a compound of formula (I) or a compound of formula (X)), the structural moiety such as cholesterol, and the PEG lipid is about 42/48/10 (molar ratio).
- the total lipid to nucleic acid e.g., siRNA
- an association complex described herein has a weight ratio of total excipients to nucleic acid of less than about 15:1, for example, about 10:1, 7.5:1 or about 5:1.
- the invention features a method of forming an association complex comprising a plurality of lipid moieties and a therapeutic agent, the method comprising: mixing a plurality of lipid moieties in ethanol and aqueous NaOAc buffer to provide a particle; and adding the therapeutic agent to the particle, thereby forming the association complex.
- the lipid moieties are provided in a solution of 100% ethanol.
- the plurality of lipid moieties comprise a cationic lipid.
- the cationic lipid is a lipid described herein, for example, the cationic lipid is a lipid of one of the following or a mixture thereof:
- the cationic lipid is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N
- the plurality of lipid moieties comprise a PEG-lipid
- the PEG-lipid has the following structure:
- each L 1 and L 2 are independently a bond or C(O); each R 1 and R 2 are independently alkyl alkenyl or alkynyl; each of which is optionally substituted with one or more substituents;
- X is -C(O)NH-, C(S)NH, -C(O)C 1-3 alkylC(O)NH-; or -C(O)C 1-3 alkylC(O)O-; m is an integer from 0-11 and n is an integer from 1-500.
- the PEG-lipid is a PEG lipd of formula (XVI), wherein the repeating PEG moiety has an average molecular weight of 2000, for example, with an n value between 42 and 47 or the lipid provided below:
- the plurality of lipid moieties comprises a structural lipid, for example, the structural lipid is cholesterol.
- the PEG-lipid is a targeted PEG-lipid as described herein, e.g., a compound of formula (XXI), (XXI'), (XXII), or (XXII').
- the method includes further comprising extruding the lipid containing particles, for example, prior to addition of the therapeutic agent.
- the therapeutic agent is a nucleic acid, for example, an siRNA, such as an siRNA which has been modified to resist degradation, an siRNA which has been modified by modification of the polysaccharide backbone, or an siRNA conjugated to a Lipophilic moiety.
- the siRNA targets the ApoB gene.
- the association complex comprises a cationic lipid, a structural lipid, a PEG-lipid and a nucleic acid.
- the molar ratio of the cationic lipid, structural lipid, PEG-lipid and nucleic acid is 36-48:42-54:6-14, for example, 38-46:44-52:8-12 or about 42:48:10.
- the weight ratio of total exipient to nucleic acid is less than about 15:1, for example, about 10:1 about 7.5: 1 or about 5:1.
- the cationic lipid has the following
- the PEG-lipid is a PEG lipd of formula (XVI), wherein the repeating PEG moiety has an average molecular weight of 2000, for example, with an n value between 42 and 47 or has the following structure:
- the structural lipid is cholesterol, for example, wherein the molar ratio of the cationic lipid, structural lipid, is PEG-lipid is 38-46:44-52:8-12, e.g., about 42:48:10. In some preferred embodiments, the weight ratio of total exipient to nucleic acid is less than about 15:1, e.g., about 10:1, about 7.5:1, or about 5:1.
- the invention features an association complex made from a method described herein.
- the invention features association complex comprising a cationic lipid, a structural lipid, a PEG-lipid and a nucleic acid, wherein the cationic lipid is is a lipid of one of the following or a mixture thereof: or
- the PEG-lipid is a PEG lipd of formula (XVI), wherein the repeating PEG moiety has an average molecular weight of 2000, for example, with an n value between 42 and 47 or has the following structure:
- the structural lipid is cholesterol.
- the nucleic acid is an siRNA.
- the cationic lipid has the following formula:
- the molar ratio of the cationic lipid preparation, structural lipid (e.g., cholesterol), PEG-lipid and nucleic acid is 36-48:42-54:6-14, for example, 38- 46:44-52:8-12 or about 42:48:10.
- the weight ratio of total exipient to nucleic acid is less than about 15:1, for example, about 10:1, about 7.5:1, or about 5:1.
- an association complex described herein has a mean diameter or particle size of less than about 25000 nm, e.g., from about 20 to 200 nm, about 60, or about 50 nm.
- a nucleic acid as administered in an association complex described herein demonstrates a serum half life (e.g., in vitro) for at least about 4 hours, e.g., at least about 6 hours, at least about 8 hours, at least about 12 hours, at least about 24 hours, at least about 2 days, at least about 3 days, at least about 4 days, at least about 1 week, at least about 2 weeks, or at least about 3 weeks.
- serum half life e.g., in vitro
- the invention features a pharmaceutically acceptable composition comprising the preparation described herein.
- the invention features a pharmaceutically acceptable composition comprising a liposome described herein.
- the invention features a method of treating a mammal comprising administering to said mammal a therapeutic amount of a pharmaceutically acceptable composition, for example, an association complex such as a liposome described herein.
- a pharmaceutically acceptable composition for example, an association complex such as a liposome described herein.
- halo or halogen refers to any radical of fluorine, chlorine, bromine or iodine.
- alkyl refers to a hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms.
- C1-C36 alkyl indicates that the group may have from 1 to 136 (inclusive) carbon atoms in it.
- haloalkyl refers to an alkyl in which one or more hydrogen atoms are replaced by halo, and includes alkyl moieties in which all hydrogens have been replaced by halo (e.g., perfluoroalkyl).
- arylalkyl or “aralkyl” refer to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group.
- Aralkyl includes groups in which more than one hydrogen atom has been replaced by an aryl group.
- arylalkyl or “aralkyl” include benzyl, 2-phenylethyl, 3-phenylpropyl, 9- fluorenyl, benzhydryl, and trityl groups.
- alkylene refers to a divalent alkyl, e.g., -CH 2 -, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, and CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -.
- alkenyl refers to a straight or branched hydrocarbon chain containing 2-36 carbon atoms and having one or more double bonds.
- alkenyl groups include, but are not limited to, allyl, propenyl, 2-butenyl, 3-hexenyl and 3-octenyl groups.
- One of the double bond carbons may optionally be the point of attachment of the alkenyl substituent.
- alkynyl refers to a straight or branched hydrocarbon chain containing 2-36 carbon atoms and characterized in having one or more triple bonds. Examples of alkynyl groups include, but are not limited to, ethynyl, propargyl, and 3-hexynyl.
- One of the triple bond carbons may optionally be the point of attachment of the alkynyl substituent.
- substituted refers to a group “substituted” on an alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclyl, heterocycloalkenyl, cycloalkenyl, aryl, or heteroaryl group at any atom of that group. Any atom can be substituted.
- Suitable substituents include, without limitation, alkyl (e.g., Cl, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12 straight or branched chain alkyl), cycloalkyl, haloalkyl (e.g., perfluoroalkyl such as CF3), aryl, heteroaryl, aralkyl, heteroaralkyl, heterocyclyl, alkenyl, alkynyl, cycloalkenyl, heterocycloalkenyl, alkoxy, haloalkoxy (e.g., perfluoroalkoxy such as OCF 3 ), halo, hydroxy, carboxy, carboxylate, cyano, nitro, amino, alkyl amino, SO 3 H, sulfate, phosphate, methylenedioxy (-O-CH 2 -O- wherein oxygens are attached to same carbon (geminal substitution) atoms), ethyl ened
- structural isomer refers to any of two or more chemical compounds, such as propyl alcohol and isopropyl alcohol, having the same molecular formula but different structural formulas.
- geometric isomer or “stereoisomer” as used herein refers to two or more compounds which contain the same number and types of atoms, and bonds (i.e., the connectivity between atoms is the same), but which have different spatial arrangements of the atoms, for example cis and trans isomers of a double bond, enantiomers, and diasteriomers.
- G,” “C,” “A” and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, and uracil as a base, respectively.
- ribonucleotide or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety.
- guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide comprising a nucleotide bearing such replacement moiety.
- a nucleotide comprising inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil.
- nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of the invention by a nucleotide containing, for example, inosine. Sequences comprising such replacement moieties are embodiments of the invention.
- target sequence refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of the corresponding gene, including mRNA that is a product of RNA processing of a primary transcription product.
- a target region is a segment in a target gene that is complementary to a portion of the RNAi agent.
- strand comprising a sequence refers to an oligonucleotide comprising a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.
- the term "complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucleotide sequence, as will be understood by the skilled person.
- Such conditions can, for example, be stringent conditions, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50°C or 70°C for 12-16 hours followed by washing.
- sequences can be referred to as “fully complementary” with respect to each other herein.
- first sequence is referred to as “substantially complementary” with respect to a second sequence herein
- the two sequences can be fully complementary, or they may form one or more, but generally not more than 4, 3 or 2 mismatched base pairs upon hybridization, while retaining the ability to hybridize under the conditions most relevant to their ultimate application.
- an oligonucleotide agent comprising one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as "fully complementary" for the purposes of the invention.
- “Complementary” sequences may also include, or be formed entirely from, non- Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled.
- a polynucleotide which is "substantially complementary to at least part of a messenger RNA (mRNA) refers to a polynucleotide which is substantially complementary to a contiguous portion of the mRNA of interest.
- mRNA messenger RNA
- a polynucleotide is complementary to at least a part of an ApoB mRNA if the sequence is substantially complementary to a non-interrupted portion of a mRNA encoding ApoB.
- an "oligonucleotide agent” refers to a single stranded oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or both or modifications thereof, which is antisense with respect to its target.
- This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally- occurring portions which function similarly.
- Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.
- Oligonucleotide agents include both nucleic acid targeting (NAT) oligonucleotide agents and protein-targeting (PT) oligonucleotide agents.
- NAT and PT oligonucleotide agents refer to single stranded oligomers or polymers of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or both or modifications thereof.
- RNA ribonucleic acid
- DNA deoxyribonucleic acid
- This term includes oligonucleotides composed of naturally occurring nucleobases, sugars, and covalent internucleoside (backbone) linkages as well as oligonucleotides having non- naturally-occurring portions that function similarly.
- NATs designed to bind to specific RNA or DNA targets have substantial complementarity, e.g., at least 70, 80, 90, or 100% complementary, with at least 10, 20, or 30 or more bases of a target nucleic acid, and include antisense RNAs, microRNAs, antagomirs and other non-duplex structures which can modulate expression.
- Other NAT oligonucleotide agents include external guide sequence (EGS) oligonucleotides (oligozymes), DNAzymes, and ribozymes.
- the NAT oligonucleotide agents can target any nucleic acid, e.g., a miRNA, a pre-miRNA, a pre-mRNA, an mRNA, or a DNA. These NAT oligonucleotide agents may or may not bind via Watson-Crick complementarity to their targets.
- PT oligonucleotide agents bind to protein targets, preferably by virtue of three-dimensional interactions, and modulate protein activity. They include decoy RNAs, aptamers, and the like. While not wishing to be bound by theory, an oligonucleotide agent may act by one or more of a number of mechanisms, including a cleavage-dependent or cleavage- independent mechanism.
- a cleavage-based mechanism can be RNAse H dependent and/or can include RISC complex function.
- Cleavage-independent mechanisms include occupancy-based translational arrest, such as can be mediated by miRNAs, or binding of the oligonucleotide agent to a protein, as do aptamers.
- Oligonucleotide agents may also be used to alter the expression of genes by changing the choice of splice site in a pre- mRNA. Inhibition of splicing can also result in degradation of the improperly processed message, thus down-regulating gene expression.
- double-stranded RNA refers to a complex of ribonucleic acid molecules, having a duplex structure comprising two anti- parallel and substantially complementary, as defined above, nucleic acid strands.
- the two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where separate RNA molecules, such dsRNA are often referred to in the literature as siRNA ("short interfering RNA").
- the connecting RNA chain is referred to as a "hairpin loop", “short hairpin RNA” or “shRNA”.
- the connecting structure is referred to as a "linker”.
- the RNA strands may have the same or a different number of nucleotides.
- dsRNA may comprise one or more nucleotide overhangs.
- dsRNA may include chemical modifications to ribonucleotides, including substantial modifications at multiple nucleotides and including all types of modifications disclosed herein or known in the art. Any such modifications, as used in an siRNA type molecule, are encompassed by "dsRNA" for the purposes of this specification and claims.
- nucleotide overhang refers to the unpaired nucleotide or nucleotides that protrude from the duplex structure of a dsRNA when a 3'-end of one strand of the dsRNA extends beyond the 5'-end of the other strand, or vice versa.
- Bount or “blunt end” means that there are no unpaired nucleotides at that end of the dsRNA, i.e., no nucleotide overhang.
- a “blunt ended" dsRNA is a dsRNA that is double-stranded over its entire length, i.e., no nucleotide overhang at either end of the molecule.
- antisense strand refers to the strand of a dsRNA which includes a region that is substantially complementary to a target sequence.
- region of complementarity refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, as defined herein.
- the mismatches are most tolerated in the terminal regions and, if present, are generally in a terminal region or regions, e.g., within 6, 5, 4, 3, or 2 nucleotides of the 5' and/or 3' terminus.
- sense strand refers to the strand of a dsRNA that includes a region that is substantially complementary to a region of the antisense strand.
- suppression and “inhibit the expression of, in as far as they refer to a target gene, herein refer to the at least partial suppression of the expression of the gene, as manifested by a reduction of the amount of mRNA transcribed from the gene which may be isolated from a first cell or group of cells in which the gene is transcribed and which has or have been treated such that the expression of the gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells).
- the degree of inhibition is usually expressed in terms of
- the degree of inhibition may be given in terms of a reduction of a parameter that is functionally linked to gene transcription, e.g. the amount of protein encoded by the gene which is secreted by a cell, or the number of cells displaying a certain phenotype, e.g apoptosis.
- gene silencing may be determined in any cell expressing the target, either constitutively or by genomic engineering, and by any appropriate assay.
- the assay provided in the Examples below shall serve as such reference.
- expression of the gene is suppressed by at least about 20%, 25%, 35%, or 50% by administration of the double-stranded oligonucleotide of the invention.
- the gene is suppressed by at least about 60%, 70%, or 80% by administration of the double-stranded oligonucleotide of the invention.
- the gene is suppressed by at least about 85%, 90%, or 95% by administration of the double-stranded oligonucleotide of the invention.
- the terms “treat”, “treatment”, and the like refer to relief from or alleviation of pathological processes which can be mediated by down regulating a particular gene.
- the terms “treat”, “treatment”, and the like mean to relieve or alleviate at least one symptom associated with such condition, or to slow or reverse the progression of such condition.
- the phrases "therapeutically effective amount” and “prophylactically effective amount” refer to an amount that provides a therapeutic benefit in the treatment, prevention, or management of pathological processes which can be mediated by down regulating the gene on or an overt symptom of pathological processes which can be mediated by down regulating the gene.
- the specific amount that is therapeutically effective can be readily determined by ordinary medical practitioner, and may vary depending on factors known in the art, such as, e.g. the type of pathological processes which can be mediated by down regulating the gene, the patient's history and age, the stage of pathological processes which can be mediated by down regulating gene expression, and the administration of other anti-pathological processes which can be mediated by down regulating gene expression.
- an effective amount, in the context of treating a subject, is sufficient to produce a therapeutic benefit.
- therapeutic benefit refers to anything that promotes or enhances the well-being of the subject with respect to the medical treatment of the subject's cell proliferative disease.
- a "pharmaceutical composition” comprises a pharmacologically effective amount of an oligonucleotide agent and a pharmaceutically acceptable carrier.
- pharmacologically effective amount refers to that amount of an RNA effective to produce the intended pharmacological, therapeutic or preventive result. For example, if a given clinical treatment is considered effective when there is at least a 25% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 25% reduction in that parameter.
- pharmaceutically acceptable carrier refers to a carrier for administration of a therapeutic agent.
- Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof and are described in more detail below.
- the term specifically excludes cell culture medium.
- Fig. 1 depicts a bar graph comparing the efficacy of various ND98 compositions.
- Fig. 2 depicts a bar graph comparing the efficacy of various ND98 compositions.
- Fig. 3 depicts a bar graph demonsrating the efficacy of a 6-tailed isomer of
- Fig. 4 depicts a bar graph comparing the efficacy of association complexes prepared using two different procedures.
- Fig. 5 depicts various PEG lipid moieties, including those having various chain lengths.
- Fig. 6 depicts a bar graph comparing the efficacy of association complexes.
- Fig. 7 depicts a bar graph comparing the tolerability of various complexes as the ratio of lipid to siRNA is reduced.
- Fig. 8 is a flow chart of a process for making an association complex loaded with nucleic acid.
- Fig. 9 are bar graphs depicting the efficacy of siRNAs with two targets, FVII and
- Fig. 10 is a flow chart of a process for making an association complex loaded with nucleic acid.
- Fig. 11 is a bar graph depicting the effect of particle size of association complexes on the efficacy of a nucleic acid in a silencing assay.
- Figs. 12a and 12b are bar graphs comparing the serum half life of nucleic acid therapeutics in unformulated and formulated forms.
- Fig. 13 is a bar graph comparing the efficacy of association complexes having PEG lipids with varied chain lengths.
- lipid preparations and delivery systems useful to administer nucleic acid based therapies such as siRNA are described herein.
- Cationic Lipid compounds and lipid preparations Poly amine lipid preparations Applicants have discovered that certain polyamine lipid moieties provide desirable properties for administration of nucleic acids, such as siRNA.
- a lipid moiety is complexed with a Factor VII-targeting siRNA and administered to an animal such as a mouse. The level of secreted serum Factor VII is then quantified (24 h post administration), where the degree of Factor VII silencing indicates the degree of in vivo siRNA delivery.
- lipids providing enhanced in vivo delivery of a nucleic acid such as siRNA are preferred.
- polyamines having substitutions described herein can have desirable properties for delivering siRNA, such as bioavailability, biodegradability, and tolerability.
- a lipid preparation includes a polyamine moiety having a plurality of substituents, such as acrylamide or acrylate substituents attached thereto.
- a lipid moiety can include a polyamine moiety as provided below,
- X a and X b are alkylene moieties.
- X a and X b have the same chain length, for example X a and X b are both ethylene moieties.
- X a and X b are of differing chain lengths.
- X a can vary with one or more occurrences. For example, where the polyamine is spermine, X a in one occurrence is propylene, X a in another occurrence is butylenes, and X b is propylene.
- polyamine preparations where at least 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, at least about 99%, or substantially all) of the polyamines in the preparation have at least n + 2 of the hydrogens substituted with a substiruent provide desirable properties, for example for use in administering a nucleic acid such as siRNA.
- a preparation comprises a compound of formula (I) or a pharmaceutically acceptable salt thereof,
- each X a and X b for each occurence, is independently C 1-6 alkylene; n is 0, 1, 2, 3, 4, or 5; each R is independently H,
- the preparation includes molecules containing symmetrical as well as asymmetrical polyamine derivatives.
- X a is independent for each occurrence and X b is independent of X a .
- X a can either be the same for each occurrence or can be different for each occurrence or can be the same for some occurrences and different for one or more other occurrences.
- X b is independent of X a regardless of the number of occurrences of X a in each polyamine derivative.
- X a for each occurrence and independent of X b , can be methylene, ethylene, propylene, butylene, pentylene, or hexylene.
- Exemplary polyamine derivatives include those polyamines derived from N 1 ,N 1' -(ethane-1,2-diyl)diethane-1,2-diamine, ethane-1,2- diamine, propane- 1,3 -diamine, spermine, spermidine, putrecine, and N '-(2- Aminoethyl)-propane- 1 ,3-diamine.
- Preferred polyamine derivatives include propane- 1,3-diamine and N 1 ,N 1' -(ethane-1,2-diyl)diethane-1,2-diamine.
- the polyamine of formula (I) is substituted with at least n+2 R moieties that are not H.
- each non-hydrogen R moiety includes an alkyl, alkenyl, or alkynyl moiety, which is optionally substituted with one or more substituents, attached to a nitrogen of the polyamine derivative via a linker.
- Suitable linkers include amides, esters, thioesters, sulfones, sulfoxides, ethers, amines, and thioethers.
- the linker moiety is bound to the nitrogen of the polyamine via an alkylene moiety (e.g., methylene, ethylene, propylene, or butylene).
- an amide or ester linker is attached to the nitrogen of the polyamine through a methylene or ethylene moiety.
- a 1,4 conjugated precursor acrylate or acrylamide can be reacted with the polyamine to provide the substituted polyamine.
- an amide or ester including an alpha-halo substituent, such as an alpha-chloro moiety can be reacted with the polyamine to provide the substituted polyamine.
- R 2 is H.
- the R 1 moiety is a long chain moiety, such as C 6 -C 32 alkyl, C 6 -C 32 alkenyl, or C 6 -C 32 alkynyl.
- R 1 is an alkyl moiety.
- R 1 is C 10 -
- C 18 alkyl such as C 12 alkyl.
- R moieties are provided below.
- the preparations including a compound of formula (I) can be mixtures of a plurality of compounds of formula (I).
- the preparation can include a mixture of compounds of formula (I) having varying degrees of substitution on the polyamine moiety.
- the preparations described herein are selected such that at least n + 2 of the R moieties in at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, at least about 99%, or substantially all) of the molecules of the compound of formula (I) in the preparation are not H.
- a preparation includes a polyamine moiety having two amino groups wherein in at least 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, at least about 99%, or substantially all) of the molecules of formula (I) in the mixture are substituted with three R moieties that are not H.
- exemplary compounds of formula (I) are provided below.
- R 1 isC 10 -C 18 alkyl, or C 10 -C 30 alkenyl.
- a preparation includes a polyamine moiety having three or four (e.g., four) amino groups wherein at least n+2 of the R moieties in at least about 80% (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, at least about 99%, or substantially all) of the molecules of formula (I) are not H.
- Exemplary compounds of formula (I) having 4 amino moieties are provided below.
- R 1 isC 10 -C 18 alkyl (e.g., C 12 alkyl), or C 10 -C 30 alkenyl.
- Examples of polyamine moieties where five (i.e., n+3) R moieties are not H are provided below:
- R 1 isC 10 -C 18 alkyl (e.g., C 12 alkyl), or C 10 -C 30 alkenyl.
- polyamine moieties where four (i.e, n+2) R moieties are not H are provided below:
- R 1 isC 10 -C 18 alkyl (e.g., C 12 alkyl), or C 10 -C 30 alkenyl.
- the polyamine is a compound of isomer (1) or (2) below, preferably a compound of isomer (1)
- the preparation including a compound of formula (I) includes a mixture of molecules having formula (I).
- the mixture can include molecules having the same polyamine core but differing R substituents, such as differing degrees of R substituents that are not H.
- a preparation described herein includes a compound of formula (I) having a single polyamine core wherein each R of the polyamine core is either R or a single moiety such as
- the preparation therefore includes a mixture of molecules having formula (I), wherein the mixture is comprised of either polyamine compounds of formula (I) having a varied number of R moieties that are H and/or a polyamine compounds of formula (I) having a single determined number of R moieties that are not H where the compounds of formula (I) are structural isomers of the polyamine, such as the structural isomers provided above.
- the preparation includes molecules of formula
- the preparation includes a mixture of two or more compounds of formula (I). In some embodiments, the preparation is a mixture of structural isomers of the same chemical formula. In some embodiments, the preparation is a mixture of compounds of formula (I) where the compounds vary in the chemical nature of the R substituents. For example, the preparation can include a mixture of the following compounds:
- n 0 and each R is independently H or and formu
- n 2 and each R is independently H or
- the compound of formula (I) is in the form of a salt, such as a pharmaceutically acceptable salt.
- a salt for example, can be formed between an anion and a positively charged substituent (e.g., amino) on a compound described herein.
- Suitable anions include fluoride, chloride, bromide, iodide, sulfate, bisulfate, nitrate, phosphate, citrate, methanesulfonate, trifluoroacetate, acetate, fumarate, oleate, valerate, maleate, oxalate, isonicotinate, lactate, salicylate, tartrate, tannate, pantothenate, bitartrate, ascorbate, succinate, gentisinate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, ethanesulfonate, benzenesulfonate,p- toluensulfonate, and pamoate.
- the compound of formula (I) is a hydrohalide salt, such as a hydrochloride salt.
- cationic lipids that include one or more biocleavable moieties can be used as a component in an association complex, such as a liposome, for the delivery of nucleic acid therapies (e.g., dsRNA).
- nucleic acid therapies e.g., dsRNA
- cationic lipids that are subject to cleavage in vivo, for example, via an enzyme such as an esterase, an amidase, or a disulfide cleaving enzyme, In some instances, the lipid is cleaved chemically, for example by hydrolysis of an acid labile moiety such as an acetal or ketal.
- the lipid includes a moiety that is hydrolyzed in vitro and then subject to enzymatic cleavage by one or more of an esterase, amidase, or a disulfide cleaving enzyme. This can happen in vesicular compartments of the cell such as endosomes.
- Another acid sensitive cleavable linkage is ⁇ -thiopropionate linkage which is cleaved in the acidic environment of endosomes (Jeong et al. Bioconjugate chem. 2003, 4, 1426).
- the invention features a compound of formula (X) or a pharmaceutically acceptable salt thereof, wherein
- R 1 and R 2 are each independently H, C 1 -C 6 alkyl, optionally substituted with 1-4 R 5 , C 2 -C 6 alkenyl, optionally substituted with 1-4 R 5 , or C(NR 6 )(NR 6 ) 2 ;
- R 3 and R 4 are each independently alkyl, alkenyl, alkynly, each of which is optionally substituted with fluoro, chloro, bromo, or iodo;
- L 1 and L 2 are each independently -NR 6 C(O)-, -C(O)NR 6 -, -OC(O)-, -C(O)O-, -
- L 1 -R 3 and L 2 -R 4 can be taken together to form an acetal or a ketal;
- R 5 is fluoro, chloro, bromo, iodo, -OR 7 , -N(R 8 )(R 9 ), -CN, SR 10 , S(O)R 10 , S(O) 2 R 10
- R 6 is H, C 1 -C 6 alkyl,
- R 7 is H or C 1 -C 6 alkyl; each R 8 and R 9 are independently H or C 1 -C6 alkyl; R 10 is H or C 1 -C 6 alkyl; m is 1, 2, 3, 4, 5, or 6; n is 0, 1, 2, 3, 4, 5, or 6; and pharmaceutically acceptable salts thereof.
- R 1 is H, a lower alkyl, such as methyl, ethyl, propyl, or isopropyl, or a substituted alkyl, such as 2-hydroxyethyl.
- R 2 is H or a lower alkyl, such as methyl, ethyl, propyl, or isopropyl.
- R 1 or R 2 form a quanadine moiety with the nitrogen of formula (X).
- L 1 -R 3 and L 2 -R or the combination thereof provide at least one moiety that is cleaved in vivo.
- both L 1 -R 3 and L 2 -R 4 are biocleavable.
- both L 1 -R 3 and L 2 -R 4 are independently subject to enzymatic cleavage (e.g., by an esterase, amidase, or a disulfide cleaving enzyme).
- both L 1 and L 2 are the same chemical moiety such as an ester, amide or disulfide.
- L 1 and L 2 are different, for example, one of L 1 or L 2 is an ester an the other of L 1 or L 2 is a disulfide.
- L 1 -R 3 and L 2 -R 4 together form an acetal or ketal moiety, which is hydrolyzed in vivo.
- one of L 1 -R 3 or L 2 -R 4 is subject to enzymatic cleavage.
- one of L'-R 3 or L 2 -R 4 is cleaved in vivo, providing a free hydroxyl moiety or free amine on the lipid, which becomes available to chemically react with the remaining L 1 -R 3 or L 2 -R 4 moiety.
- Exemplary embodiments are provided below:
- a carbamate or urea moiety is included in combination with an amide, ester or disulfide moiety.
- the lipid includes an ester moiety, which upon cleavage (e.g., enzymatic cleavage) becomes available to chemically react with the carbamate or urea moiety.
- L 1 and L 2 include two amides, two esters, an amide and an ester, two disulfides, an amide and a disulfide, an ester and a disulfide, a carbamate and a disulfide, and a urea and a disulfide. Exemplary compounds are provided below: Amide and ester linkages with Z configuration (two double bonds)
- I 1
- I 1
- I 1
- I 1
- I 1
- the lipid includes an oxime or hydrazone, which can undergo acidic cleavage.
- R 3 and R 4 are generally long chain hydrophobic moieties, such as alkyl, alkenyl, or alkynyl.
- R 3 or R 4 are substituted with a halo moiety, for example, to provide a perfluoroalkyl or perfluoroalkenyl moiety.
- Each of R 3 and R 4 are independent of each other. In some embodiments, both of R 3 and R 4 are the same. In some embodiments, R 3 and R 4 are different.
- R 3 and/or R 4 are alkyl.
- R 3 and/or R 4 are C 6 to C 30 alkyl, e.g., C 10 to C 26 alkyl, C 12 to C20 alkyl, or C 12 alkyl.
- R 3 and/or R 4 are alkenyl.
- R 3 and/or R 4 include 2 or 3 double bonds.
- R 3 and/or R 4 includes 2 double bonds or R 3 and/or R 4 includes 3 double bonds.
- the double bonds can each independently have a Z or E configuration.
- Exemplary alkenyl moieties are provided below: wherein x is an integer from 1 to 8; and y is an integer from 1-10.
- R 3 and/or R 4 are C 6 to C 30 alkenyl, e.g., C 10 to C 26 alkenyl, C 12 to C 20 alkenyl, or Cn alkenyl, for example having two double bonds, such as two double bonds with Z configuration.
- R 3 and/or R 4 can be the same or different. In some preferred embodiments, R 3 and R 4 are the same.
- R 3 and/or R 4 are alkynyl.
- C 6 to C 30 alkynyl e.g., C 10 to C 26 alkynyl, C 12 to C 20 alkynyl.
- R 3 and/or R 4 can have from 1 to 3 triple bonds, for example, one, two, or three triple bonds.
- the compound of formula (X) is in the form of a salt, such as a pharmaceutically acceptable salt.
- a salt for example, can be formed between an anion and a positively charged substituent (e.g., amino) on a compound described herein.
- Suitable anions include fluoride, chloride, bromide, iodide, sulfate, bisulfate, nitrate, phosphate, citrate, methanesulfonate, trifluoroacetate, acetate, fumarate, oleate, valerate, maleate, oxalate, isonicotinate, lactate, salicylate, tartrate, tannate, pantothenate, bitartrate, ascorbate, succinate, gentisinate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, ethanesulfonate, benzenesulfonate, p- toluensulfonate, and pamoate.
- the compound of formula (X) is a hydrohalide salt, such as a hydrochloride salt.
- PEG containing lipid moieties provide desirable properties for administration of a nucleic acid agent such as single stranded or double stranded nucleic acid, for example siRNA.
- a nucleic acid agent such as single stranded or double stranded nucleic acid
- siRNA single stranded or double stranded nucleic acid
- the lipid provides enhanced delivery of the nucleic acid moiety. This enhanced delivery can be determined, for example, by evaluation in a gene silencing assay such as silencing of FVII.
- the PEG-lipids of formula (XV) can have desirable properties for the delivery of siRNA, including improved bioavailability, diodegradability, and tolerability.
- the PEG is attached via a linker moiety to a structure including two hydrophobic moieties, such as a long chanin alkyl moiety.
- Examplary PEG-lipids are provided above, for example, those encompassed by formula (XV), (XV), and (XVI).
- the PEG-lipid has the structure below:
- the preferred stereochemistry of the chiral center is 'R' and the repeating PEG moiety has a total average molecular weight of about 2000 daltons.
- a PEG lipid described herein is conjugated to a targeting
- the targeting moiety is attached to the PEG lipid through a linker, for example a linker described herein.
- exemplary targeted PEG lipid compounds are compounds of formula (XXI), (XXI'), (XXII), and (XXII') described herein. Methods of making such lipids are described, for example, in Examples 42 and 43. Methods of making cationic lipid compounds and cationic lipid containing preparations
- the compounds described herein can be obtained from commercial sources (e.g., Asinex, Moscow, Russia; Bionet, Camelford, England; ChemDiv, SanDiego, CA; Comgenex, Budapest, Hungary; Enamine, Kiev, Ukraine; IF Lab, Ukraine; Interbioscreen, Moscow, Russia; Maybridge, Tintagel, UK; Specs, The Netherlands; Timtec, Newark, DE; Vitas-M Lab, Moscow, Russia) or synthesized by conventional methods as shown below using commercially available starting materials and reagents.
- a compound of formula (I) can be made by reacting a polyamine of formula (III) as provided below
- the compounds of formula (HI) and (IV) are reacted together neat (i.e., free of solvent).
- the compounds of formula (III) and (IV) are reacted together neat at elevated temperature (e.g., at least about 60 °C, at least about 65 °C, at least about 70 °C, at least about 75 °C, at least about 80 °C, at least about 85 °C, or at least about 90 °C), preferably at about 90 °C.
- the compounds of formula (III) and (IV) are reacted together with a solvent (e.g., a polar aprotic solvent such as acetonitrile or DMF).
- a solvent e.g., a polar aprotic solvent such as acetonitrile or DMF.
- the compounds of formula (III) and (IV) are reacted together in solvent at an elevated temperature from about 50 °C to about 120 °C.
- the compounds of formula (III) and (IV) are reacted together in the presence of a radical quencher or scavenger (e.g., hydroquinone).
- the reaction conditions including a radical quencher can be neat or in a solvent e.g., a polar aprotic solvent such as acetonitrile or DMF.
- the reaction can be at an elevated temperature (e.g., neat at an elevated temperature such as 90 °C or with solvent at an elevated temperature such as from about 50 °C to about 120 °C).
- the term "radical quencher” or "radical scavenger” as used herein refers to a chemical moiety that can absorb free radicals in a reaction mixture. Examples of radical quenchers/scavengers include hydroquinone, ascorbic acid, cresols, thiamine, 3,5-Di-te ⁇ t-butyl-4- hydroxytoluene, tert-Butyl-4-hydroxyanisole and thiol containing moieties.
- the compounds of formula (III) and (IV) are reacted together in the presence of a reaction promoter (e.g., water or a Michael addition promoter such as acetic acid, boric acid, citric acid, benzoic acid, tosic acid, pentafluorophenol, picric acid aromatic acids, salts such as bicarbonate, bisulphate, mono and di-hydrogen phophates, phenols, perhalophenols, nitrophenols, sulphonic acids, PTTS, etc.), preferably boric acid such as a saturated aqueous boric acid.
- a reaction promoter e.g., water or a Michael addition promoter such as acetic acid, boric acid, citric acid, benzoic acid, tosic acid, pentafluorophenol, picric acid aromatic acids, salts such as bicarbonate, bisulphate, mono and di-hydrogen phophates, phenols, perhalophenols, nitrophenols, sulphonic acids, PTTS
- reaction conditions including a reaction promoter can be neat or in a solvent e.g., a polar aprotic solvent such as acetonitrile or DMF.
- the reaction can be at an elevated temperature (e.g., neat at an elevated temperature such as 90 °C or with solvent at an elevated temperature such as from about 50 °C to about 120 °C).
- reaction promoter refers to a chemical moiety that, when used in a reaction mixture, accelerates/enhances the rate of reaction.
- the ratio of compounds of formula (III) to formula (IV) can be varied, providing variability in the substitution on the polyamine of formula (III).
- ratios of compounds of formula (III)/formula (IV) are selected to provide for products having a relatively high degree of substitution of the free amine (e.g., at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 99%, or substantially all).
- n is 0 in the polyamine of formula (III), and the ratio of compounds of formula (III) to compounds of formula (IV) is from about 1 :3 to about 1 :5, preferable about 1 :4. In some preferred embodiments, n is 2 in the polyamine of formula (III), and the ratio of compound of formula (III) to compounds of formula (IV) is from about 1 :3 to about 1:6, preferably about 1:5.
- the compounds of formula (III) and formula (IV) are reacted in a two step process.
- the first step process includes a reaction mixture having from about 0.8 about 1.2 molar equivalents of a compound of formula (III), with from about 3.8 to about 4.2 molar equivalents of a compound of formula (IV) and the second step process includes addition of about 0.8 to 1.2 molar equivalent of compound of formula (IV) to the reaction mixture.
- one or more products having formula (I) can be isolated from the reaction mixture.
- a compound of formula (I) can be isolated as a single product (e.g., a single structural isomer) or as a mixture of product (e.g., a plurality of structural isomers and/or a plurality of compounds of formula (I)).
- one or more reaction products can be isolated and/or purified using chromatography, such as flash chromatography, gravity chromatography (e.g., gravity separation of isomers using silica gel), column chromatography (e.g., normal phase HPLC or RPHPLC), or moving bed chromatography.
- a reaction product is purified to provide a preparation containing at least about 80% of a single compound, such as a single structural isomer (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 99%).
- a single structural isomer e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 99%.
- a free amine product is treated with an acid such as HCl to prove an amine salt of the product (e.g., a hydrochloride salt).
- a salt product provides improved properties, e.g., for handling and/or storage, relative to the corresponding free amine product.
- a salt product can prevent or reduce the rate of formation of breakdown product such as N-oxide or N-carbonate formation relative to the corresponding free amine.
- a salt product can have improved properties for use in a therapeutic formulation relative to the corresponding free amine.
- the reaction mixture is further treated, for example, to purify one or more products or to remove impurities such as unreacted starting materials.
- the reaction mixture is treated with an immobilized (e.g., polymer bound) thiol moiety, which can trap unreacted acrylamide.
- an isolated product can be treated to further remove impurities, e.g., an isolated product can be treated with an immobilized thiol moiety, trapping unreacted acrylamide compounds.
- a reaction product can be treated with an immobilized (e.g., polymer bound) isothiocyanate.
- an immobilized e.g., polymer bound
- a reaction product including tertiary amines can be treated with an immobilized isothiocyanate to remove primary and/or secondary amines from the product.
- a compound of formula (I) can be made by reacting a polyamine of formula (III) as provided below
- the compound of formula (III) and formula (VI) are reacted together neat. In some embodiments, the compound of formula (III) and formula (VI) are reacted together in the presence of one or more solvents, for example a polar aprotic solvent such as acetonitrile or DMF. In some embodiments, the reactants (formula (III) and formula (VI)) are reacted together at elevated temperature (e.g., at least about 50 °C, at least about 60 °C, at least about 70 °C, at least about 80 °C, at least about 90 °C, at least about 100 °C).
- elevated temperature e.g., at least about 50 °C, at least about 60 °C, at least about 70 °C, at least about 80 °C, at least about 90 °C, at least about 100 °C.
- the reaction mixture also includes a base, for example a carbonate such as K 2 CO 3 .
- the reaction mixture also includes a catalyst.
- the compound of formula (VI) is prepared by reacting an amine moiety with an activated acid such as an acid anhydrate or acid halide (e.g., acid chloride) to provide a compound of formula (VI).
- an activated acid such as an acid anhydrate or acid halide (e.g., acid chloride)
- the ratio of compounds of formula (III) to formula (VI) can be varied, providing variability in the substitution on the polyamine of formula (III). In general, polyamines having at least about 50% of the hydrogen moieties substituted with a non-hydrogen moiety are preferred.
- ratios of compounds of formula (III)/formula (VI) are selected to provide for products having a relatively high degree of substitution of the free amine (e.g., at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 99%, or substantially all).
- n is 0 in the polyamine of formula (III), and the ratio of compounds of formula (III) to compounds of formula (VI) is from about 1 :3 to about 1 :5, preferable about 1 :4.
- n is 2 in the polyamine of formula (III), and the ratio of compound of formula (III) to compounds of formula (VI) is from about 1:3 to about 1:6, preferably about 1 :5.
- the compounds of formula (III) and formula (VI) are reacted in a two step process.
- the first step process includes a reaction mixture having from about 0.8 about 1.2 molar equivalents of a compound of formula (III), with from about 3.8 to about 4.2 molar equivalents of a compound of formula (VI) and the second step process includes addition of about 0.8 to 1.2 molar equivalent of compound of formula (VI) to the reaction mixture.
- one or more amine moieties of formula (III) are selectively protected using a protecting group prior to reacting the polyamine of formula (III) with a compound of formula (IV) or (VI), thereby providing improved selectivity in the synthesis of the final product.
- one or more primary amines of the polyamine of formula (III) can be protected prior to reaction with a compound of formula (IV) or (VI), providing selectivity for the compound of formula (IV) or (VI) to react with secondary amines.
- Other protecting group strategies can be employed to provide for selectivity towards primary amines, for example, use of orthogonal protecting groups that can be selectively removed.
- one or more products having formula (I) can be isolated from the reaction mixture.
- a compound of formula (I) can be isolated as a single product (e.g., a single structural isomer) or as a mixture of product (e.g., a plurality of structural isomers and/or a plurality of compounds of formula (I)).
- on or more reaction products can be isolated and/or purified using chromatography, such as flash chromatography, gravity chromatography (e.g., gravity separation of isomers using silica gel), column chromatography (e.g., normal phase HPLC or RPHPLC), or moving bed chromatography.
- a reaction product is purified to provide a preparation containing at least about 80% of a single compound, such as a single structural isomer (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 99%).
- a single structural isomer e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 99%.
- a free amine product is treated with an acid such as HCl to prove an amine salt of the product (e.g., a hydrochloride salt).
- a salt product provides improved properties, e.g., for handling and/or storage, relative to the corresponding free amine product.
- a salt product can prevent or reduce the rate of formation of breakdown product such as N-oxide or N-carbonate formation relative to the corresponding free amine.
- a salt product can have improved properties for use in a therapeutic formulation relative to the corresponding free amine.
- a polyamine cationic lipid can be made in using a regioselective synthesis approach.
- the regioselective synthetic approach provides a convenient way to make site specific alkylation on nitrogen(s) of the polyamine backbone that leads to synthesis of specific alkylated derivatives of interest.
- a compound of formula (I) is initially reacted with a reagent that selectively reacts with primary amines or terminal amines to block them from reacting or interfering with further reactions and these blockages could be selectively removed at appropriate stages during the synthesis of a target compound.
- one or more of the secondary amines could be selectively blocked with an orthogonal amine protecting groups by using appropriate molar ratios of the reagent and reaction conditions. Selective alkylations, followed by selective deprotection of the blocked amines and further alkylation of regenerated amines and appropriate repetition of the sequence of reactions described provides specific compound of interest.
- terminal amines of triethylenetetramine (1) is selectively blocked with primary amine specific protecting groups (e.g., trifiuoroacetamide) under appropriate reaction conditions and subsequently reacted with excess of orthogonal amine protecting reagent [(BoC) 2 O, for e.g.)] in the presence of a base (for e.g., diisopropylethylamine) to block all internal amines (e.g., Boc).
- primary amine specific protecting groups e.g., trifiuoroacetamide
- orthogonal amine protecting reagent for e.g., diisopropylethylamine
- Deblocking of the internal amine protection and subsequent alkylation with calculated amount of an acrylamide for instance yields a partially alkylated product 7.
- Another approach to make compound 7 is to react terminally protected compound 1 with calculated amount of an orthogonal amine protecting reagent [(Boc) 2 O, for e.g.)] to obtain a partially protected derivatives of compound 1. Removal of the terminal amine protecting groups of partially and selectively protected 1 and subsequent alkylation of all unprotected amines with an acrylamide, for instance, yields compound 7 of interest.
- a compound of formula (X) can be made by reacting a compound of formula
- R 1 , R 2 , and R 3 are as defined above.
- the compounds of formulas (XI) and (XII) are reacted in the presence of a coupling agent such as a carbodiimide (e.g., a water soluble carbodiimide such as EDCI).
- a coupling agent such as a carbodiimide (e.g., a water soluble carbodiimide such as EDCI).
- one or more products having formula (X) can be isolated from the reaction mixture.
- a compound of formula (X) can be isolated as a single product (e.g., a single structural isomer) or as a mixture of product (e.g., a plurality of structural isomers and/or a plurality of compounds of formula (X)).
- on or more reaction products can be isolated and/or purified using chromatography, such as flash chromatography, gravity chromatography (e.g., gravity separation of isomers using silica gel), column chromatography (e.g., normal phase HPLC or RPHPLC), or moving bed chromatography.
- a reaction product is purified to provide a preparation containing at least about 80% of a single compound, such as a single structural isomer (e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 99%).
- a single structural isomer e.g., at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 99%.
- a free amine product is treated with an acid such as HCl to prove an amine salt of the product (e.g., a hydrochloride salt).
- a salt product provides improved properties, e.g., for handling and/or storage, relative to the corresponding free amine product.
- a salt product can prevent or reduce the rate of formation of breakdown product such as N-oxide or N-carbonate formation relative to the corresponding free amine.
- a salt product can have improved properties for use in a therapeutic formulation relative to the corresponding free amine.
- the PEG-lipid compounds can be made, for example, by reacting a glyceride moiety (e.g., a dimyristyl glyceride, dipalmityl glyceride, or distearyl glyceride) with an activating moiety under appropriate conditions, for example, to provide an activated intermediate that could be subsequently reacted with a PEG component having a reactive moiety such as an amine or a hydroxyl group to obtain a PEG-lipid.
- a glyceride moiety e.g., a dimyristyl glyceride, dipalmityl glyceride, or distearyl glyceride
- an activating moiety under appropriate conditions, for example, to provide an activated intermediate that could be subsequently reacted with a PEG component having a reactive moiety such as an amine or a hydroxyl group to obtain a PEG-lipid.
- a dalkylglyceride e.g., dimyristyl glyceride
- NJV'- disuccinimidyl carbonate in the presence of a base (for e.g., triethylamine) and subsequent reaction of the intermediate formed with a PEG-amine (e.g., mPEG2000- NH 2 ) in the presence of base such as pyridine affords a PEG-lipid of interest.
- base for e.g., triethylamine
- PEG-amine e.g., mPEG2000- NH 2
- base such as pyridine
- a PEG-lipid can be made, for example, by reacting a glyceride moiety (e.g., dimyristyl glyceride, dipalmityl glyceride, distearyl glyceride, dimyristoyl glyceride, dipalmitoyl glyceride or distearoyl glyceride) with succinic anhydride and subsequent activation of the carboxyl generated followed by reaction of the activated intermediate with a PEG component with an amine or a hydroxyl group, for instance, to obtain a PEG-lipid.
- a glyceride moiety e.g., dimyristyl glyceride, dipalmityl glyceride, distearyl glyceride, dimyristoyl glyceride, dipalmitoyl glyceride or distearoyl glyceride
- dimyristyl glyceride is reacted with succinic anhydride in the presence of a base such as DMAP to obtain a hemi-succinate.
- the free carboxyl moiety of the hemi-succinate thus obtained is activated using standard carboxyl activating agents such as HBTU and diisopropylethylamine and subsequent reaction of the activated carboxyl with mPEH2000-NH2, for instance, yields a PEG- lipid.
- the PEG component is linked to the lipid component via a succinate bridge.
- association complexes The lipid compounds and lipid preparations described herein can be used as a component in an association complex, for example a liposome or a lipoplex. Such association complexes can be used to administer a nucleic acid based therapy such as an RNA, for example a single stranded or double stranded RNA such as dsRNA.
- a nucleic acid based therapy such as an RNA, for example a single stranded or double stranded RNA such as dsRNA.
- association complexes disclosed herein can be useful for packaging an oligonucleotide agent capable of modifying gene expression by targeting and binding to a nucleic acid.
- An oligonucleotide agent can be single-stranded or double-stranded, and can include, e.g., a dsRNA, aa pre-mRNA, an mRNA, a microRNA (miRNA), a mi- RNA precursor (pre-miRNA), plasmid or DNA, or to a protein.
- An oligonucleotide agent featured in the invention can be, e.g., a dsRNA, a microRNA, antisense RNA, antagomir, decoy RNA, DNA, plasmid and aptamer.
- Association complexes can include a plurality of components.
- an association complex such as a liposome can include an active ingredient such as a nucleic acid therapeutic (such as an oligonucleotide agent, e.g., dsRNA), a cationic lipid such as a lipid described herein.
- the association complex can include a plurality of therapeutic agents, for example two or three single or double stranded nucleic acid moieties targeting more than one gene or different regions of the same gene.
- Other components can also be included in an association complex, including a PEG-lipid such as a PEG-lipid described herein, or a structural component, such as cholesterol.
- the association complex also includes a fusogenic lipid or component and/or a targeting molecule.
- the association complex is a liposome including an oligonucleotide agent such as dsRNA, a lipid described herein such as a compound of formula (I) or (X), a PEG-lipid such as a PEG-lipid described herein (e.g., a PEG-lipid of formula (XV), and a structural component such as cholesterol.
- Oligonucleotide agents include microRNAs (miRNAs).
- MicroRNAs are small noncoding RNA molecules that are capable of causing post-transcriptional silencing of specific genes in cells such as by the inhibition of translation or through degradation of the targeted mRNA.
- An miRNA can be completely complementary or can have a region of noncomplementarity with a target nucleic acid, consequently resulting in a "bulge" at the region of non-complementarity.
- the region of noncomplementarity (the bulge) can be flanked by regions of sufficient complementarity, preferably complete complementarity to allow duplex formation.
- the regions of complementarity are at least 8 to 10 nucleotides long (e.g., 8, 9, or 10 nucleotides long).
- a miRNA can inhibit gene expression by repressing translation, such as when the microRNA is not completely complementary to the target nucleic acid, or by causing target RNA degradation, which is believed to occur only when the miRNA binds its target with perfect complementarity.
- the invention also can include double-stranded precursors of miRNAs that may or may not form a bulge when bound to their targets.
- an oligonucleotide agent featured in the invention can target an endogenous miRNA or pre-miRNA.
- the oligonucleotide agent featured in the invention can include naturally occurring nucleobases, sugars, and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally- occurring portions that function similarly.
- Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for the endogenous miRNA target, and/or increased stability in the presence of nucleases.
- An oligonucleotide agent designed to bind to a specific endogenous miRNA has substantial complementarity, e.g., at least 70, 80, 90, or 100% complementary, with at least 10, 20, or 25 or more bases of the target miRNA.
- a miRNA or pre-miRNA can be 18-100 nucleotides in length, and more preferably from 18-80 nucleotides in length.
- Mature miRNAs can have a length of 19- 30 nucleotides, preferably 21-25 nucleotides, particularly 21, 22, 23, 24, or 25 nucleotides.
- MicroRNA precursors can have a length of 70-100 nucleotides and have a hairpin conformation.
- MicroRNAs can be generated in vivo from pre-miRNAs by enzymes called Dicer and Drosha that specifically process long pre-miRNA into functional miRNA.
- the microRNAs or precursor mi-RNAs featured in the invention can be synthesized in vivo by a cell-based system or can be chemically synthesized.
- MicroRNAs can be synthesized to include a modification that imparts a desired characteristic.
- the modification can improve stability, hybridization thermodynamics with a target nucleic acid, targeting to a particular tissue or cell-type, or cell permeability, e.g., by an endocytosis-dependent or -independent mechanism. Modifications can also increase sequence specificity, and consequently decrease off-site targeting. Methods of synthesis and chemical modifications are described in greater detail below.
- an miRNA Given a sense strand sequence (e.g., the sequence of a sense strand of a cDNA molecule), an miRNA can be designed according to the rules of Watson and Crick base pairing.
- the miRNA can be complementary to a portion of an RNA, e.g., a miRNA, a pre-miRN A, a pre-mRNA or an mRN A.
- the miRNA can be complementary to the coding region or noncoding region of an mRN A or pre-mRNA, e.g., the region surrounding the translation start site of a pre-mRNA or mRNA, such as the 5' UTR.
- An miRNA oligonucleotide can be, for example, from about 12 to 30 nucleotides in length, preferably about 15 to 28 nucleotides in length (e.g., 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length).
- an miRNA or a pre-miRNA featured in the invention can have a chemical modification on a nucleotide in an internal (i.e., non-terminal) region having noncomplementarity with the target nucleic acid.
- a modified nucleotide can be incorporated into the region of a miRNA that forms a bulge.
- the modification can include a ligand attached to the miRNA, e.g., by a linker (e.g., see diagrams OT-I through OT-IV below).
- the modification can, for example, improve pharmacokinetics or stability of a therapeutic miRNA, or improve hybridization properties (e.g., hybridization thermodynamics) of the miRNA to a target nucleic acid.
- the orientation of a modification or ligand incorporated into or tethered to the bulge region of a miRNA is oriented to occupy the space in the bulge region.
- the modification can include a modified base or sugar on the nucleic acid strand or a ligand that functions as an intercalator. These are preferably located in the bulge.
- the intercalator can be an aromatic, e.g., a polycyclic aromatic or heterocyclic aromatic compound.
- a polycyclic intercalator can have stacking capabilities, and can include systems with 2, 3, or 4 fused rings.
- the universal bases described below can be incorporated into the miRNAs.
- the orientation of a modification or ligand incorporated into or tethered to the bulge region of a miRNA is oriented to occupy the space in the bulge region. This orientation facilitates the improved hybridization properties or an otherwise desired characteristic of the miRNA.
- an miRNA or a pre-miRNA can include an aminoglycoside ligand, which can cause the miRNA to have improved hybridization properties or improved sequence specificity.
- exemplary aminoglycosides include glycosylated polylysine; galactosylated polylysine; neomycin B; tobramycin; kanamycin A; and acridine conjugates of aminoglycosides, such as Neo-N-acridine, Neo-S-acridine, Neo- C-acridine, Tobra-N-acridine, and KanaA-N-acridine.
- Use of an acridine analog can increase sequence specificity.
- neomycin B has a high affinity for RNA as compared to DNA, but low sequence-specificity.
- An acridine analog, neo-S-acridine has an increased affinity for the HIV Rev-response element (RRE).
- the guanidine analog (the guanidinoglycoside) of an aminoglycoside ligand is tethered to an oligonucleotide agent.
- the amine group on the amino acid is exchanged for a guanidine group. Attachment of a guanidine analog can enhance cell permeability of an oligonucleotide agent.
- the ligand can include a cleaving group that contributes to target gene inhibition by cleavage of the target nucleic acid.
- the cleaving group is tethered to the miRNA in a manner such that it is positioned in the bulge region, where it can access and cleave the target RNA.
- the cleaving group can be, for example, a bleomycin (e.g., bleomycin-A 5 , bleomycin-A 2 , or bleomycin-B 2 ), pyrene, phenanthroline (e.g., O-phenanthroline), a polyamine, a tripeptide (e.g., lys-tyr-lys tripeptide), or metal ion chelating group.
- a bleomycin e.g., bleomycin-A 5 , bleomycin-A 2 , or bleomycin-B 2
- pyrene e.g., phenanthroline (e.g., O-phenanthroline)
- phenanthroline e.g., O-phenanthroline
- polyamine e.g., a tripeptide (e.g., lys-tyr-lys tripeptide), or metal ion chelating group.
- the metal ion chelating group can include, e.g., an Lu(III) or EU(III) macrocyclic complex, a Zn(II) 2,9-dimethylphenanthroline derivative, a Cu(II) terpyridine, or acridine, which can promote the selective cleavage of target RNA at the site of the bulge by free metal ions, such as Lu(III).
- a peptide ligand can be tethered to a miRNA or a pre-miRNA to promote cleavage of the target RNA, e.g., at the bulge region.
- 1,8-dimethyl- 1,3,6,8,10,13-hexaazacyclotetradecane can be conjugated to a peptide (e.g., by an amino acid derivative) to promote target RNA cleavage.
- the methods and compositions featured in the invention include miRNAs that inhibit target gene expression by a cleavage or non-cleavage dependent mechanism.
- An miRNA or a pre-miRNA can be designed and synthesized to include a region of noncomplementarity (e.g., a region that is 3, 4, 5, or 6 nucleotides long) flanked by regions of sufficient complementarity to form a duplex (e.g., regions that are 7, 8, 9, 10, or 11 nucleotides long).
- the miRNA sequences can include 2'-O-methyl, 2'-fluorine, 2'-O-methoxyethyl, 2'-O- aminopropyl, 2'-amino, and/or phosphorothioate linkages.
- LNA locked nucleic acids
- 2-thiopyrimidines e.g., 2-thio-U
- 2-amino-A e.g., G-clamp modifications
- ENA ethylene nucleic acids
- 2'-4'-ethylene-bridged nucleic acids can also increase binding affinity to the target.
- furanose sugars in the oligonucleotide backbone can also decrease endonucleolytic cleavage.
- An miRNA or a pre-miRNA can be further modified by including a 3' cationic group, or by inverting the nucleoside at the 3'-terminus with a 3'-3' linkage.
- the 3'-terminus can be blocked with an aminoalkyl group, e.g., a 3' C5-aminoalkyl dT.
- Other 3' conjugates can inhibit 3'-5' exonucleolytic cleavage.
- a 3' conjugate such as naproxen or ibuprofen
- Even small alkyl chains, aryl groups, or heterocyclic conjugates or modified sugars can block 3'-5'-exonucleases.
- the 5' -terminus can be blocked with an aminoalkyl group, e.g., a 5'-O- alkylamino substituent.
- Other 5' conjugates can inhibit 5 -3' exonucleolytic cleavage.
- a 5' conjugate such as naproxen or ibuprofen
- Even small alkyl chains, aryl groups, or heterocyclic conjugates or modified sugars can block 3'-5'- exonucleases.
- an miRNA or a pre-miRNA includes a modification that improves targeting, e.g. a targeting modification described herein.
- modifications that target miRNA molecules to particular cell types include carbohydrate sugars such as galactose, N-acetylgalactosamine, mannose; vitamins such as folates; other ligands such as RGDs and RGD mimics; and small molecules including naproxen, ibuprofen or other known protein-binding molecules.
- An miRNA or a pre-miRNA can be constructed using chemical synthesis and/or enzymatic ligation reactions using procedures known in the art.
- an miRNA or a pre-miRNA can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the miRNA or a pre-miRNA and target nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.
- target nucleic acids e.g., phosphorothioate derivatives and acridine substituted nucleotides.
- Other appropriate nucleic acid modifications are described herein.
- the miRNA or pre-miRNA nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).
- the single-stranded oligonucleotide agents featured in the invention include antisense nucleic acids.
- An "antisense" nucleic acid includes a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a gene expression product, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an RNA sequence, e.g., a pre-mRNA, mRNA, miRNA, or pre- miRNA. Accordingly, an antisense nucleic acid can form hydrogen bonds with a sense nucleic acid target.
- antisense nucleic acids can be designed according to the rules of Watson and Crick base pairing.
- the antisense nucleic acid molecule can be complementary to a portion of the coding or noncoding region of an RNA, e.g. , a pre-mRN A or mRNA.
- the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a pre-mRNA or mRNA, e.g., the 5' UTR.
- An antisense oligonucleotide can be, for example, about 10 to 25 nucleotides in length (e.g., 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, or 24 nucleotides in length).
- An antisense oligonucleotide can also be complementary to a miRNA or pre-miRNA.
- an antisense nucleic acid can be constructed using chemical synthesis and/or enzymatic ligation reactions using procedures known in the art.
- an antisense nucleic acid e.g., an antisensc oligonucleotide
- an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and target nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.
- Other appropriate nucleic acid modifications are described herein.
- the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).
- An antisense agent can include ribonucleotides only, deoxyribonucleotides only (e.g., oligodeoxynucleotides), or both deoxyribonucleotides and ribonucleotides.
- an antisense agent consisting only of ribonucleotides can hybridize to a complementary RNA, and prevent access of the translation machinery to the target RNA transcript, thereby preventing protein synthesis.
- An antisense molecule including only deoxyribonucleotides, or deoxyribonucleotides and ribonucleotides, e.g., DNA sequence flanked by RNA sequence at the 5' and 3' ends of the antisense agent, can hybridize to a complementary RNA, and the RNA target can be subsequently cleaved by an enzyme, e.g., RNAse H. Degradation of the target RNA prevents translation.
- flanking RNA sequences can include 2'-O-methylated nucleotides, and phosphorothioate linkages
- the internal DNA sequence can include phosphorothioate internucleotide linkages.
- the internal DNA sequence is preferably at least five nucleotides in length when targeting by RNAseH activity is desired.
- an antisense agent can be further modified by inverting the nucleoside at the 3'-terminus with a 3'-3' linkage.
- the 3'-terminus can be blocked with an aminoalkyl group.
- an antisense oligonucleotide agent includes a modification that improves targeting, e.g. a targeting modification described herein.
- An oligonucleotide agent featured in the invention can be a decoy nucleic acid, e.g., a decoy RNA.
- a decoy nucleic acid resembles a natural nucleic acid, but is modified in such a way as to inhibit or interrupt the activity of the natural nucleic acid.
- a decoy RNA can mimic the natural binding domain for a ligand.
- the decoy RNA therefore competes with natural binding target for the binding of a specific ligand.
- the natural binding target can be an endogenous nucleic acid, e.g., a pre- miRNA, miRNA, premRNA, mRNA or DNA.
- TAR HIV trans-activation response
- a decoy RNA includes a modification that improves targeting, e.g. a targeting modification described herein.
- a targeting modification described herein e.g. a targeting modification described herein.
- the chemical modifications described above for miRNAs and antisense RNAs, and described elsewhere herein, are also appropriate for use in decoy nucleic acids.
- An oligonucleotide agent featured in the invention can be an aptamer.
- An aptamer binds to a non-nucleic acid ligand, such as a small organic molecule or protein, e.g. , a transcription or translation factor, and subsequently modifies (e.g. , inhibits) activity.
- a non-nucleic acid ligand such as a small organic molecule or protein, e.g. , a transcription or translation factor
- An aptamer can fold into a specific structure that directs the recognition of the targeted binding site on the non-nucleic acid ligand.
- An aptamer can contain any of the modifications described herein.
- an aptamer includes a modification that improves targeting, e.g. a targeting modification described herein.
- antagomirs are single stranded, double stranded, partially double stranded and hairpin structured chemically modified oligonucleotides that target a microRNA.
- antagomir consisting essentially of or comprising at least 12 or more contiguous nucleotides substantially complementary to an endogenous miRNA and more particularly agents that include 12 or more contiguous nucleotides substantially complementary to a target sequence of an miRNA or pre-miRNA nucleotide sequence.
- an antagomir featured in the invention includes a nucleotide sequence sufficiently complementary to hybridize to a miRNA target sequence of about 12 to 25 nucleotides, preferably about 15 to 23 nucleotides. More preferably, the target sequence differs by no more than 1 , 2, or 3 nucleotides from a sequence shown in Table 1 , and in one embodiment, the antagomir is an agent shown in Table 2a-e.
- the antagomir includes a non-nucleotide moiety, e.g., a cholesterol moiety.
- the non- nucleotide moiety can be attached, e.g., to the 3' or 5' end of the oligonucleotide agent.
- a cholesterol moiety is attached to the 3' end of the oligonucleotide agent.
- antagomirs are stabilized against nucleolytic degradation such as by the incorporation of a modification, e.g., a nucleotide modification.
- the antagomir includes a phosphorothioate at at least the first, second, or third internucleotide linkage at the 5 ' or 3' end of the nucleotide sequence.
- the antagomir includes a 2 '-modified nucleotide, e.g., a 2'-deoxy, T- deoxy-2'-fluoro, 2'-O-methyl, 2'-O-methoxyethyl (2'-O-MOE), 2'-O-aminopropyl (2'-O- AP), 2'-O-dimethylaminoethyl (2'-O-DMAOE), 2'-O-dimethylaminopropyl (2'-O- DMAP), 2'-O-dimethylaminoethyloxyethyl (2'-O-DMAEOE), or 2'-O-N- methylacetamido (2'-O-NMA).
- the antagomir includes at least one 2'-O-methyl-modified nucleotide, and in some embodiments, all of the nucleotides of the antagomir include a 2'-O-methyl modification
- An antagomir that is substantially complementary to a nucleotide sequence of an miRNA can be delivered to a cell or a human to inhibit or reduce the activity of an endogenous miRNA, such as when aberrant or undesired miRNA activity, or insufficient activity of a target mRNA that hybridizes to the endogenous miRNA, is linked to a disease or disorder.
- an antagomir featured in the invention has a nucleotide sequence that is substantially complementary to miR-122 (see Table 1), which hybridizes to numerous RNAs, including aldolase A mRNA, N-myc downstram regulated gene (Ndrg3) mRNA, IQ motif containing GTPase activating protein-1 (Iqgapl) mRNA, HMG-CoA-reductase (Hmgcr) mRNA, and citrate synthase mRNA and others.
- the antagomir that is substantially complementary to miR-122 is antagomir-122 (Table 2a-e).
- Aldolase A deficiencies have been found to be associated with a variety of disorders, including hemolytic anemia, arthrogryposis complex congenita, pituitary ectopia, rhabdomyolysis, hyperkalemia. Humans suffering from aldolase A deficiencies also experience symptoms that include growth and developmental retardation, midfacial hypoplasia, hepatomegaly, as well as myopathic symptoms. Thus a human who has or who is diagnosed as having any of these disorders or symptoms is a candidate to receive treatment with an antagomir that hybridizes to miR-122.
- Double-stranded ribonucleic acid dsRNA
- the invention provides a double-stranded ribonucleic acid (dsRNA) molecule packaged in an association complex, such as a liposome, for inhibiting the expression of a gene in a cell or mammal, wherein the dsRNA comprises an antisense strand comprising a region of complementarity which is complementary to at least a part of an mRNA formed in the expression of the gene, and wherein the region of complementarity is less than 30 nucleotides in length, generally 19-24 nucleotides in length, and wherein said dsRNA, upon contact with a cell expressing said gene, inhibits the expression of said gene by at least 40%.
- dsRNA double-stranded ribonucleic acid
- the dsRNA comprises two RNA strands that are sufficiently complementary to hybridize to form a duplex structure.
- One strand of the dsRNA (the antisense strand) comprises a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence, derived from the sequence of an mRNA formed during the expression of a gene
- the other strand (the sense strand) comprises a region which is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions.
- the duplex structure is between 15 and 30, more generally between 18 and 25, yet more generally between 19 and 24, and most generally between 19 and 21 base pairs in length.
- the region of complementarity to the target sequence is between 15 and 30, more generally between 18 and 25, yet more generally between 19 and 24, and most generally between 19 and 21 nucleotides in length.
- the dsRNA of the invention may further comprise one or more single-stranded nucleotide overhang(s).
- the dsRNA can be synthesized by standard methods known in the art as further discussed below, e.g., by use of an automated DNA synthesizer, such as are commercially available from, for example, Biosearch, Applied Biosystems, Inc.
- the dsRNAs suitable for packaging in the association complexes described herein can include a duplex structure of between 18 and 25 basepairs (e.g., 21 base pairs), In some embodiments, the dsRNAs include at least one strand that is at least
- the dsRNAs include at least one strand that is at least 15, 16, 17, 18, 19, 20, or more contiguous nucleotides.
- the dsRNAs suitable for packaging in the association complexes described herein can contain one or more mismatches to the target sequence.
- the dsRNA contains no more than 3 mismatches. If the antisense strand of the dsRNA contains mismatches to a target sequence, it is preferable that the area of mismatch not be located in the center of the region of complementarity. If the antisense strand of the dsRNA contains mismatches to the target sequence, it is preferable that the mismatch be restricted to 5 nucleotides from either end, for example 5, 4, 3, 2, or 1 nucleotide from either the 5 ' or 3' end of the region of complementarity.
- At least one end of the dsRNA has a single-stranded nucleotide overhang of 1 to 4, generally 1 or 2 nucleotides.
- the single- stranded overhang is located at the 3'-terminal end of the antisense strand or, alternatively, at the 3'-terminal end of the sense strand.
- the dsRNA may also have a blunt end, generally located at the 5'-end of the antisense strand.
- Such dsRNAs have improved stability and inhibitory activity, thus allowing administration at low dosages, i.e., less than 5 mg/kg body weight of the recipient per day.
- the antisense strand of the dsRNA has a nucleotide overhang at the 3'-end, and the 5 '-end is blunt.
- one or more of the nucleotides in the overhang is replaced with a nucleoside thiophosphate.
- a dsRNA packaged in an association complex is chemically modified to enhance stability.
- nucleic acids may be synthesized and/or modified by methods well established in the art, such as those described in "Current protocols in nucleic acid chemistry", Beaucage, S. L. et al. (Edrs.), John Wiley & Sons, Inc., New York, NY, USA, which is hereby incorporated herein by reference.
- Chemical modifications may include, but are not limited to 2' modifications, modifications at other sites of the sugar or base of an oligonucleotide, introduction of non-natural bases into the oligonucleotide chain, covalent attachment to a ligand or chemical moiety, and replacement of internucleotide phosphate linkages with alternate linkages such as thiophosphates. More than one such modification may be employed.
- Chemical linking of the two separate dsRNA strands may be achieved by any of a variety of well-known techniques, for example by introducing covalent, ionic or hydrogen bonds; hydrophobic interactions, van der Waals or stacking interactions; by means of metal -ion coordination, or through use of purine analogues.
- Such chemically linked dsRNAs are suitable for packaging in the association complexes described herein.
- the chemical groups that can be used to modify the dsRNA include, without limitation, methylene blue; bifunctional groups, generally bis-(2- chloroethyl)amine; N-acetyl-N'-(p-glyoxylbenzoyl)cystamine; 4-thiouracil; and psoralen.
- the linker is a hexa-ethylene glycol linker.
- the dsRNA are produced by solid phase synthesis and the hexa-ethylene glycol linker is incorporated according to standard methods (e.g., Williams, D.J., and K.B. Hall, Biochem. (1996) 35:14665-14670).
- the 5'-end of the antisense strand and the 3'-end of the sense strand are chemically linked via a hexaethylene glycol linker.
- at least one nucleotide of the dsRNA comprises a phosphorothioate or phosphorodithioate groups.
- the chemical bond at the ends of the dsRNA is generally formed by triple-helix bonds.
- the nucleotides at one or both of the two single strands may be modified to prevent or inhibit the degradation activities of cellular enzymes, such as, for example, without limitation, certain nucleases.
- At least one 2'-hydroxyl group of the nucleotides on a dsRNA is replaced by a chemical group, generally by a 2'-F or a 2'-O-methyl group.
- at least one nucleotide may be modified to form a locked nucleotide.
- Such locked nucleotide contains a methylene bridge that connects the 2'-oxygen of ribose with the 4'-carbon of ribose.
- Oligonucleotides containing the locked nucleotide are described in Koshkin, A.A., et al., Tetrahedron (1998), 54: 3607-3630) and Obika, S. et al., Tetrahedron Lett.
- Conjugating a ligand to a dsRNA can enhance its cellular absorption as well as targeting to a particular tissue or uptake by specific types of cells such as liver cells.
- a hydrophobic ligand is conjugated to the dsRNA to facilitate direct permeation of the cellular membrane and or uptake across the liver cells.
- the ligand conjugated to the dsRNA is a substrate for receptor-mediated endocytosis.
- oligonucleotides include 1-pyrene butyric acid, l,3-bis-O-(hexadecyl)glycerol, and menthol.
- a ligand for receptor- mediated endocytosis is folic acid. Folic acid enters the cell by folate-receptor-mediated endocytosis. dsRNA compounds bearing folic acid would be efficiently transported into the cell via the folate-receptor-mediated endocytosis.
- Li and coworkers report that attachment of folic acid to the 3'-terminus of an oligonucleotide resulted in an 8-fold increase in cellular uptake of the oligonucleotide.
- Other ligands that have been conjugated to oligonucleotides include polyethylene glycols, carbohydrate clusters, cross-linking agents, porphyrin conjugates, delivery peptides and lipids such as cholesterol.
- Other chemical modifications for siRNAs have been described in Manoharan, M. RNA interference and chemically modified small interfering RNAs.
- the ligand-conjugated dsRNA of the invention may be synthesized by the use of a dsRNA that bears a pendant reactive functionality, such as that derived from the attachment of a linking molecule onto the dsRNA.
- This reactive oligonucleotide may be reacted directly with commercially-available ligands, ligands that are synthesized bearing any of a variety of protecting groups, or ligands that have a linking moiety attached thereto.
- the methods of the invention facilitate the synthesis of ligand- conjugated dsRNA by the use of, in some preferred embodiments, nucleoside monomers that have been appropriately conjugated with ligands and that may further be attached to a solid-support material.
- Such ligand-nucleoside conjugates are prepared according to some preferred embodiments of the methods of the invention via reaction of a selected serum-binding ligand with a linking moiety located on the 5' position of a nucleoside or oligonucleotide.
- a dsRNA bearing an aralkyl ligand attached to the 3'-terminus of the dsRNA is prepared by first covalently attaching a monomer building block to a controlled-pore- glass support via a long-chain aminoalkyl group. Then, nucleotides are bonded via standard solid-phase synthesis techniques to the monomer building-block bound to the solid support.
- the monomer building block may be a nucleoside or other organic compound that is compatible with solid-phase synthesis.
- the dsRNA used in the conjugates of the invention may be conveniently and routinely made through the well-known technique of solid-phase synthesis.
- Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is also known to use similar techniques to prepare other oligonucleotides, such as the phosphorothioates and alkylated derivatives.
- 5,587,469 drawn to oligonucleotides having N-2 substituted purines
- U.S. Pat. No. 5,587,470 drawn to oligonucleotides having 3-deazapurines
- U.S. Pat. Nos. 5,602,240, and 5,610,289 drawn to backbone-modified oligonucleotide analogs
- U.S. Pat. Nos. 6,262,241, and 5,459,255 drawn to, inter alia, methods of synthesizing 2'-fluoro-oligonucleotides.
- the oligonucleotides and oligonucleosides may be assembled on a suitable DNA synthesizer utilizing standard nucleotide or nucleoside precursors, or nucleotide or nucleoside conjugate precursors that already bear the linking moiety, ligand-nucleotide or nucleoside-conjugate precursors that already bear the ligand molecule, or non-nucleoside ligand-bearing building blocks.
- nucleotide-conjugate precursors that already bear a linking moiety
- the synthesis of the sequence-specific linked nucleosides is typically completed, and the ligand molecule is then reacted with the linking moiety to form the ligand-conjugated oligonucleotide.
- Oligonucleotide conjugates bearing a variety of molecules such as steroids, vitamins, lipids and reporter molecules, has previously been described (see Manoharan et al., PCT Application WO 93/07883).
- the oligonucleotides or linked nucleosides of the invention are synthesized by an automated synthesizer using phosphoramidites derived from ligand-nucleoside conjugates in addition to the standard phosphoramidites and non-standard phosphoramidites that are commercially available and routinely used in oligonucleotide synthesis.
- the dsRNAs packaged in the association complexes described herein can include one or more modified nucleosides, e.g., a 2-O-methyl, 2'-O-ethyl, 2'-O-propyl, 2'-O-aIIyI, 2'-O-aminoalkyl or 2'-deoxy-2'-fluoro group in the nucleosides.
- modified nucleosides e.g., a 2-O-methyl, 2'-O-ethyl, 2'-O-propyl, 2'-O-aIIyI, 2'-O-aminoalkyl or 2'-deoxy-2'-fluoro group in the nucleosides.
- modifications confer enhanced hybridization properties to the oligonucleotide.
- oligonucleotides containing phosphorothioate backbones have enhanced nuclease stability.
- linked nucleosides can be augmented to include either or both a phosphorothioate backbone or a 2'-O-methyl, 2'-O-ethyl, 2'-O-propyl, 2'-O- aminoalkyl, 2'-O-allyl or 2'-deoxy-2'-fluoro group.
- a phosphorothioate backbone or a 2'-O-methyl, 2'-O-ethyl, 2'-O-propyl, 2'-O- aminoalkyl, 2'-O-allyl or 2'-deoxy-2'-fluoro group.
- functionalized nucleoside sequences possessing an amino group at the 5'-terminus are prepared using a DNA synthesizer, and then reacted with an active ester derivative of a selected ligand.
- Active ester derivatives are well known to those skilled in the art. Representative active esters include N-hydrosuccinimide esters, tetrafluorophenolic esters, pentafluorophenolic esters and pentachlorophenolic esters.
- the reaction of the amino group and the active ester produces an oligonucleotide in which the selected ligand is attached to the 5'-position through a linking group.
- the amino group at the 5'-terminus can be prepared utilizing a 5'-Amino-Modifier C6 reagent.
- ligand molecules may be conjugated to oligonucleotides at the 5'-position by the use of a ligand-nucleoside phosphoramidite wherein the ligand is linked to the 5'-hydroxy group directly or indirectly via a linker.
- ligand-nucleoside phosphoramidites are typically used at the end of an automated synthesis procedure to provide a ligand-conjugated oligonucleotide bearing the ligand at the 5'-terminus.
- modified internucleoside linkages or backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5* linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'.
- Various salts, mixed salts and free-acid forms are also included.
- modified internucleoside linkages or backbones that do not include a phosphorus atom therein i.e., oligonucleosides
- backbones that are formed by short chain alkyl or cycloalkyl intersugar linkages, mixed heteroatom and alkyl or cycloalkyl intersugar linkages, or one or more short chain heteroatomic or heterocyclic intersugar linkages.
- oligonucleosides include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH 2 component parts.
- Representative United States patents relating to the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315;
- an oligonucleotide included in an association complex may be modified by a non-ligand group.
- a number of non-Iigand molecules have been conjugated to oligonucleotides in order to enhance the activity, cellular distribution or cellular uptake of the oligonucleotide, and procedures for performing such conjugations are available in the scientific literature.
- Such non-ligand moieties have included lipid moieties, such as cholesterol (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86:6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660:306; Manoharan et al., Bioorg. Med. Chem.
- lipid moieties such as cholesterol (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86:6553), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4:1053), a thioether, e.g., he
- Acids Res., 1990, 18:3777 a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14:969), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36:3651), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264:229), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277:923).
- oligonucleotide conjugates Representative United States patents that teach the preparation of such oligonucleotide conjugates have been listed above. Typical conjugation protocols involve the synthesis of oligonucleotides bearing an aminolinker at one or more positions of the sequence. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction may be performed either with the oligonucleotide still bound to the solid support or following cleavage of the oligonucleotide in solution phase. Purification of the oligonucleotide conjugate by HPLC typically affords the pure conjugate. The modifications described above are appropriate for use with an oligonucleotide agent as described herein. Fusogenic Lipids
- fusogenic refers to the ability of a lipid or other drug delivery system to fuse with membranes of a cell.
- the membranes can be either the plasma membrane or membranes surrounding organelles, e.g., endosome, nucleus, etc.
- suitable fusogenic lipids include, but are not limited to dioleoylphosphatidylethanolamine (DOPE), DODAC, DODMA, DODAP, or DLinDMA.
- DOPE dioleoylphosphatidylethanolamine
- DODMA DODMA
- DODAP DODAP
- DLinDMA DLinDMA
- the association complex include a small molecule such as an imidzole moiety conjugated to a lipid, for example, for endosomal release.
- the association complexes include a bilayer stabilizing component (BSC) such as an ATTA-lipid or a PEG-lipid.
- BSC bilayer stabilizing component
- Examplary lipids are as follows: PEG coupled to dialkyloxypropyls (PEG-DAA) as described in, e.g., WO 05/026372, PEG coupled to diacylglycerol (PEG-DAG) as described in, e.g., U.S. Patent Publication Nos. 20030077829 and 2005008689), PEG coupled to phosphatidylethanolamine (PE) (PEG-PE), or PEG conjugated to ceramides, or a mixture thereof (see, U.S. Pat. No. 5,885,613).
- the association includes a PEG-lipid described here, for example a PEG-lipid of formula
- the BSC is a conjugated lipid that inhibits aggregation of the SPLPs.
- Suitable conjugated lipids include, but are not limited to PEG-lipid conjugates, ATTA-lipid conjugates, cationic-polymer-lipid conjugates (CPLs) or mixtures thereof.
- the SPLPs comprise either a PEG-lipid conjugate or an ATTA-lipid conjugate together with a CPL.
- PEG is a polyethylene glycol, a linear, water-soluble polymer of ethylene PEG repeating units with two terminal hydroxyl groups. PEGs are classified by their molecular weights; for example, PEG 2000 has an average molecular weight of about 2,000 daltons, and PEG 5000 has an average molecular weight of about 5,000 daltons. PEGs are commercially available from Sigma Chemical Co.
- monomethoxypolyethylene glycol (MePEG-OH), monomethoxypolyethylene glycol-succinate (MePEG-S), monomethoxypolyethylene glycol-succinimidyl succinate (MePEG-S-NHS), monomethoxypolyethylene glycol- amine (MePEG-NH.sub.2), monomethoxypolyethylene glycol-tresylate (MePEG- TRES), and monomethoxypolyethylene glycol-imidazolyl-carbonyl (MePEG-IM).
- monomethoxypolyethyleneglycol-acetic acid (MePEG-CH.sub ⁇ COOH) is particularly useful for preparing the PEG-lipid conjugates including, e.g., PEG-DAA conjugates.
- the PEG has an average molecular weight of from about 550 daltons to about 10,000 daltons, more preferably of about 750 daltons to about 5,000 daltons, more preferably of about 1 ,000 daltons to about 5,000 daltons, more preferably of about 1,500 daltons to about 3,000 daltons and, even more preferably, of about 2,000 daltons, or about 750 daltons.
- the PEG can be optionally substituted by an alkyl, alkoxy, acyl or aryl group.
- PEG can be conjugated directly to the lipid or may be linked to the lipid via a linker moiety.
- linker moiety suitable for coupling the PEG to a lipid can be used including, e.g., non-ester containing linker moieties and ester-containing linker moieties.
- the linker moiety is a non-ester containing linker moiety.
- non-ester containing linker moiety refers to a linker moiety that does not contain a carboxylic ester bond (— OC(O)--).
- Suitable non-ester containing linker moieties include, but are not limited to, amido (--C(O)NH--), amino (--NR--), carbonyl (--C(O)--), carbamate (-- NHC(O)O--), urea (--NHC(O)NH--), disulphide (--S--S--), ether (--O--), succinyl (-- (O)CCH.sub.2CH.sub.2C(O) ⁇ ), succinamidyl (--NHC(O)CH.sub.2CH.sub.2C(O- )NH- -), ether, disulphide, etc. as well as combinations thereof (such as a linker containing both a carbamate linker moiety and an amido linker moiety).
- a carbamate linker is used to couple the PEG to the lipid.
- an ester containing linker moiety is used to couple the PEG to the lipid.
- Suitable ester containing linker moieties include, e.g., carbonate (-- OC(O)O--), succinoyl, phosphate esters (--O--(O)POH--O--), sulfonate esters, and combinations thereof.
- the association complex includes a targeting agent.
- a targeting agent can be included in the surface of the association complex (e.g., liposome) to help direct the association complex to a targeted area of the body.
- An example of targeting agents galactose, mannose, and folate.
- Other examples of targeting agents include small molecule receptors, peptides and antibodies.
- the targeting agent is conjugated to the therapeutic moiety such as oligonucleotide agent.
- the targeting moiety is attached directly to a lipid component of an association complex.
- the targeting moiety is attached directly to the lipid component via PEG preferably with PEG of average molecular weight 2000 amu.
- the targeting agent is unconjugated, for example on the surface of the association complex.
- the association complex includes one or more components that improves the structure of the complex (e.g., liposome).
- a therapeutic agents such as dsRNA can be attached (e.g., conjugated) to a lipophilic compound such as cholesterol, thereby providing a lipophilic anchor to the dsRNA.
- conjugation of dsRNA to a lipophilic moiety such as cholesterol can improve the encapsulation efficiency of the association complex.
- Association complexes such as liposomes are generally particles with hydrodynamic diameter ranging from about 25 run to 500 nm. In some preferred embodiments, the association complexes are less than 500 nm, e.g., from about 25 to about 400 nm, e.g., from about 25 nm to about 300 nm, preferably about 120 nm or less. In some embodiments, the weight ratio of total excipients within the association complex to RNA is less than about 20: 1 , for example about 15:1. In some preferred embodiments, the weight ratio is less than 10:1, for example about 7.5:1.
- the association complex has a pKa such that the association complex is protonated under endozomal conditions (e.g., facilitating the rupture of the complex), but is not protonated under physiological conditions.
- the association complex provides improved in vivo delivery of an oligonucleotide such as dsRNA.
- an oligonucleotide such as dsRNA.
- In vivo delivery of an oligonucleotide can be measured, using a gene silencing assay, for example an assay measuring the silencing of Factor VIl.
- a gene silencing assay for example an assay measuring the silencing of Factor VIl.
- C57BL/6 mice received tail vein injections of saline or various lipid formulations.
- Lipid-formulated siRNAs are administered at varying doses in an injection volume of 10 ⁇ L/g animal body weight. Twenty-four hours after administration, serum samples are collected by retroorbital bleed. Serum Factor VIl concentrations are determined using a chromogenic diagnostic kit (Coaset Factor VII Assay Kit, DiaPharma) according to manufacturer protocols.
- an association complex is made by contacting a therapeutic agent such as an oligonucleotide with a lipid in the presence of solvent and a buffer.
- a therapeutic agent such as an oligonucleotide
- a lipid in the presence of solvent and a buffer.
- a plurality of lipids are included in the solvent, for example, one or more of a cationic lipid (e.g., a polyamine containing lipid or a lipid including a biocleavable moiety as described herein), a PEG-lipid, a targeting lipid or a fusogenic lipid.
- the buffer is of a strength sufficient to protonate substantially all amines of an amine containing lipid such as lipid described herein, e.g., a lipid of formula (I) or formula (X).
- the buffer is an acetate buffer, such as sodium acetate (pH of about 5). In some embodiments, the buffer is present in solution at a concentration of from about 100 mM and about 300 mM.
- the solvent is ethanol.
- the mixture includes at least about 90% ethanol, or 100% ethanol.
- the method includes extruding the mixture to provide association complexes having particles of a size with hydrodynamic diameter less than about 500 nm (e.g., a size from about 25 ran to about 300 nm, for example in some preferred embodiments the particle sizes ranges from about 40-120 nm). In some embodiments, the method does not include extrusion of the mixture.
- a liposome is prepared by providing a solution of a lipid described herein mixed in a solution with cholesterol, PEG, ethanol, and a 25 mM acetate buffer to provide a mixture of about pH 5. The mixture is gently vortexed, and to the mixture is added sucrose. The mixture is then vortexed again until the sucrose is dissolved. To this mixture is added a solution of siRNA in acetate buffer, vortexing lightly for about 20 minutes.
- the mixture is then extruded (e.g., at least about 10 times, e.g., 11 times or more) through at least one filter (e.g., two 200 nm filters) at 40 °C, and dialyzed against PBS at pH 7.4 for about 90 minutes at RT.
- at least one filter e.g., two 200 nm filters
- a liposome is prepared without extruding the liposome mixture.
- a lipid described herein is combined with cholesterol, PEG, and siRNA in 100% ethanol, water, and an acetate buffer having a concentration from about 100 mM to about 300 mM (pH of about 5). The combination is rapidly mixed in 90% ethanol. Upon completion, the mixture is dialyzed (or treated with ultrafiltration) against an acetate buffer having a concentration from about 100 mM to about 300 mM (pH of about 5) to remove ethanol, and then dialyzed (or treated with ultrafiltration) against PBS to change buffer conditions.
- Association complexes can,be formed in the absence of a therapeutic agent such as single or double stranded nucleic acid, and then upon formation be treated with one or more therpauetically active single or double stranded nucleic acid moieties to provide a loaded association complex, i.e., an association complex that is loaded with the therpaueitcally active nucleic acids.
- the nucleic acid can be entrapped within the association complex, adsorbed to the surface of the association complex or both.
- methods of forming association complexes such as liposomes above can be used to form association complexes free of a therapeutic agent, such as a nucleic acid, for example a single or double stranded RNA such as siRNA.
- the complex Upon formation of the association complex, the complex can then be treated with the therapeutic agent such as siRNA to provide a loaded association complex.
- a mixture including cationic lipid such as a lipid described in formula (I), preferably a cationic lipid of the following formula
- a PEG-lipid for example a PEG-lipid described herein, such as the PEG-lipid below, are provided in ethanol (e.g., 100% ethanol) and combined with an aqueous buffer such as aqueous NaOAc, to provide unloaded association complexes.
- the association complexes are then optionally extruded, providing a more uniform size distribution of the association complexes.
- the association complexes are then treated with the thereapeutic agent such as siRNA in ethanol (e.g., 35% ethanol) to thereby provide a loaded association complex,
- the association complex is then treated with a process that removes the ethanol, such as dialysis.
- Association complexes prepared by any of the methods above are characterized in a similar manner.
- Association complexes are first characterized by visual inspection.
- preferred association complexes are whitish translucent solutions free from aggregates or sediment.
- Particle size and particle size distribution of lipid-nanoparticles are measured by dynamic light scattering using a Malvern Zetasizer Nano ZS (Malvern, USA).
- Preferred particles are 20-300 nm, more preferrably, 40-100 nm in size. In some preferred embodiments, the particle size distribution is unimodal.
- the total siRNA concentration in the formulation, as well as the entrapped fraction is estimated using a dye exclusion assay.
- a sample of the formulated siRNA is incubated with the RNA- binding dye Ribogreen (Molecular Probes) in the presence or absence of a formulation disrupting surfactant, 0.5% Triton-Xl00.
- the total siRNA in the formulation is determined by the signal from the sample containing the surfactant, relative to a standard curve.
- the entrapped fraction is determined by subtracting the "free" siRNA content (as measured by the signal in the absence of surfactant) from the total siRNA content. Percent entrapped siRNA is typically >85%.
- compositions comprising oligonucleotide agents
- An oligonucleotide agent assembled in an association complex can be administered, e.g., to a cell or to a human, in a single-stranded or double-stranded configuration.
- An oligonucleotide agent that is in a double-stranded configuration is bound to a substantially complementary oligonucleotide strand. Delivery of an oligonucleotide agent in a double stranded configuration may confer certain advantages on the oligonucleotide agent, such as an increased resistance to nucleases.
- the invention provides pharmaceutical compositions including an oligonucleotide agent packaged in an association complex, such as a liposome, as described herein, and a pharmaceutically acceptable carrier.
- the pharmaceutical composition comprising the packaged oligonucleotide agent is useful for treating a disease or disorder associated with the expression or activity of a target gene, such as a pathological process which can be mediated by down regulating gene expression.
- Such pharmaceutical compositions are formulated based on the mode of delivery.
- One example is compositions that are formulated for delivery to a specific organ/tissue, such as the liver, via parenteral delivery.
- compositions featured in the invention are administered in dosages sufficient to inhibit expression of a target gene.
- a suitable dose of a packaged oligonucleotide agent will be such that the oligonucleotide agent delivered is in the range of 0.01 to 5.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 microgram to 1 mg per kilogram body weight per day.
- the pharmaceutical composition may be administered once daily, or the oligonucleotide agent may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation. In that case, the oligonucleotide agentcontained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage.
- the dosage unit can also be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release of the packaged oligonucleotide agent over a several day period.
- sustained release formulations are well known in the art.
- treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments.
- Estimates of effective dosages and in vivo half-lives for the individual oligonucleotide agents packaged in the association complexes can be made using conventional methodologies or on the basis of in vivo testing using an appropriate animal model, as described elsewhere herein. Advances in mouse genetics have generated a number of mouse models for the study of various human diseases. Such models are used for in vivo testing of oligonucleotide agents packaged in lipophilic compositions, as well as for determining a therapeutically effective dose.
- any method can be used to administer an oligonucleotide agent packaged in an association complex, such as a liposome, to a mammal.
- administration can be direct; oral; or parenteral (e.g., by subcutaneous, intraventricular, intramuscular, or intraperitoneal injection, or by intravenous drip).
- Administration can be rapid (e.g., by injection), or can occur over a period of time (e.g., by slow infusion or administration of slow release formulations).
- An oligonucleotide agent packaged in an association complex can be formulated into compositions such as sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions in liquid or solid oil bases.
- Such solutions also can contain buffers, diluents, and other suitable additives.
- an oligonucleotide agent can be formulated into compositions such as sterile aqueous solutions, which also can contain buffers, diluents, and other suitable additives (e.g., penetration enhancers, carrier compounds, and other pharmaceutically acceptable carriers).
- the oligonucleotide agents packaged in an association complex can be formulated in a pharmaceutically acceptable carrier or diluent.
- a “pharmaceutically acceptable carrier” (also referred to herein as an “excipient”) is a pharmaceutically acceptable solvent, suspending agent, or any other pharmacologically inert vehicle.
- Pharmaceutically acceptable carriers can be liquid or solid, and can be selected with the planned manner of administration in mind so as to provide for the desired bulk, consistency, and other pertinent transport and chemical properties.
- Typical pharmaceutically acceptable carriers include, by way of example and not limitation: water; saline solution; binding agents (e.g., polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose and other sugars, gelatin, or calcium sulfate); lubricants (e.g., starch, polyethylene glycol, or sodium acetate); disintegrates (e.g., starch or sodium starch glycolate); and wetting agents (e.g., sodium lauryl sulfate).
- binding agents e.g., polyvinylpyrrolidone or hydroxypropyl methylcellulose
- fillers e.g., lactose and other sugars, gelatin, or calcium sulfate
- lubricants e.g., starch, polyethylene glycol, or sodium acetate
- disintegrates e.g., starch or sodium starch glycolate
- wetting agents e.g., sodium lau
- the reaction mixture was analyzed by TLC using CH2Cl 2 :MeOH:NEt3 (90:5:5) as the eluent.
- the TLC showed the near complete consumption of the starting acrylamide 1.
- the reaction mixture was dissolved in dichloromethane (40 mL), loaded on a pre-packed column of silica gel and the mixture was separated using eluent CH 2 Cl 2 :MeOH:NEt 3 (48:1:1 to 8:1 :1). In order to achieve complete separation, multiple columns using the same conditions were performed and the following pure products were obtained. The required five addition products 3 and 4 were isolated along with the six addition product 5. In this reaction mixture some of the lower addition products were also detected in the TLC and the LC-MS of the crude reaction mixture.
- Example 2 Syntheses and purification of compounds 3, 4 and 4: alkylation of triethylenetetramine under Michael addition condition - method 2 (Scheme 2)
- Scheme 2 In another experiment, in order to prevent the polymerization of the starting acrylamide 1 at high temperature, a radical quencher benzoquinone was added to the reaction mixture.
- Compound 4 The five addition product, isomer II, was isolated as a white powder (3.9 g, 14%). The analytical and spectral data for this compound was identical to that of 4 obtained by Method 1. A pure mixture of isomers 3 and 4 ( 1.9 g, 7%) was also isolated. Compound 5: The six addition product was isolated as a cream powder (6.9 g, 26%). The analytical and spectral data for this compound was identical to that of 5 obtained by Method 1.
- the TLC showed the near complete consumption of the starting acrylamide 1.
- the reaction mixture was dissolved in dichloromethane (100 mL) and the solution was stirred with solid sodium bicarbonate and the organic layer was filtered and concentrated in a rotory evaporator.
- This crude product was purified by column chromatography (silica gel) using CH 2 Cl 2 :MeOH:NEt 3 (48:1:1 to 8:1 :1). In order to achieve complete separation, multiple columns using the same conditions were performed and the following pure products were obtained. Under this reaction condition an increase in yields of compound 4 (isomer II) and six addition product 5 were achieved.
- Compound 4 The five addition product 4, isomer II, was isolated as a white powder (5.7 g, 20%). The analytical and spectral data for this compound was identical to that of 4 obtained by Method 1. A pure mixture of isomers 3 and 4 (2.1 g, 7%) was also isolated.
- Compound 5 The six addition product 5 was isolated as a cream powder (7.6 g,
- Example 4 Syntheses and purification of compounds 3 and 4: alkylation of triethylenetetramine under Michael addition condition - method 4 (Scheme 4)
- Scheme 4 alkylation of triethylenetetramine under Michael addition condition - method 4
- Example 2 was performed except that, the reactions were performed in the presence of solvents at 90 °C with stirring.
- jV-dodecyl-acrylamide 1 (10 g, 41.8 mmol) was dissolved in 20 mL of either acetonitrile or DMF.
- triethylenetetramine 2 (1 g, 6.8 mmol) was added and the mixture was heated at 90 °C for 5 days.
- the reaction mixture was analyzed by TLC using CH 2 Cl 2 :MeOH:NEt3 (90:5:5) as the eluent.
- the TLC showed the formation of only minor amounts of the required five addition product.
- the major product in this reaction was a mixture of four addition products along with very polar lower addition products.
- Example 5 Separation of unreacted acrylamide from the reaction mixture and/or the isolated products 3, 4 and 5 To remove unreacted acrylamide 1 from the reaction mixture, the reaction mixture is diluted with ethyl acetate or DMF and stirred with polystyrene or polymer bound thiol (or mercaptan) to capture all the acrylamide. The immobilized thiol was added to the solution and gently shaken at ambient temperature and filter off the solid.
- Example 7 Separation of primary amine contaminants from compound 3 and 4 After the completion of the reaction the reaction mixture is treated with tetrachlorophthalic anhydride in the presence of triethylamine in dichloromethane at room temperature and the solvent is evaporated and the residue stirred with ethyl acetate and the solid is filtered and the filtrate is concentrated to get the products which lacks the primary amine contaminant.
- Example 8 Methods of preparation of the hydrochloride salts of the products 3, 4 and 5
- Step 1 Preparation of compound 10: Triethylenetetramine, 2 (20.55 g, 140.52 mmol, purchased from Sigma-Aldrich) in acetonitrile (500 mL) was cooled over an ice bath under constant stirring. Ethyl trifluroacetate (35.20 mL, 295.09 mmol) was added to the stirring solution and stirred for 20h. Solvent and volatiles were removed under reduced pressure and dried under high vacuum to get 9 as white solid (44.4 g, 94%). The product thus obtained could be used for the next reaction without further purification
- Step 2 Preparation of compound 11: Compound 10 (12.60 g, 20.78 mmol) was suspended in methanol (MeOH, 150 mL) at ambient temperature and 8M solution of methylamine in ethanol (40 ml) was added to the suspension under constant stirring. All the solids went into solution, after stirring for Ih at ambient temperature, the mixture was warmed to 50°C and stirred for 8h. Reaction was monitored by TLC. All the solvents were removed under reduced pressure and the residue was purified by silica gel column chromatography (gradient elution, 10% MeOH/DCM to 10:10:80, MeOH:TEA:DCM) to yield the product 11 (7.80g, 91%) as pale yellow gummy liquid.
- silica gel column chromatography gradient elution, 10% MeOH/DCM to 10:10:80, MeOH:TEA:DCM
- Step 3 Preparation of compound 13: Compound 12 was prepared from triethylenetetramine, 100 (10.25g, 70.09mmol) as described in step 1 for the synthesis of compound 9 by reacting with 1.1 molar equivalent of ethyl trifluoroacetate (8.80mL, 77.10mmol).
- Step 4 Preparation of 14: A solution of compound 13 (25g, 47.32 mmol) in MeOH (200 mL) was stirred with K 2 CO 3 (50g) in the presence of water (1 mL) at 50 °C overnight. Progress of the reaction was monitored by TLC. Solid K 2 CO 3 was filtered off, washed with MeOH, combined washing and solvents were removed in vacuo.
- Step 5 Preparation of compound 15: Compound 9 (23.0g, 68.02 mmol) was dissolved in a mixture of acetonitrile/dichloromethane (1 :1, 300mL) and cooled to 0 °C. Z-OSu (17.00g, 69 mmol) was added to the solution and stirred for 10 minutes. Triethylamine (23.40 mL, 210mmol) was subsequently added to the reaction mixture and allowed to stir overnight. Solvents and triethylamine were removed in vacuo and the residue was extracted into DCM, washed with water (two times), brine and dried.
- Example 10 Synthesis of 5-alkylated single isomer 4 - Method 1 Step 1: Reaction of 11 with N-dodecylacrylamide: Diamine 11 (1.00g, 2.41 mmol) and N-dodecylacrylamide (3.47g, 14.50 mmol) were taken together in a pressure tube and heated at 90 °C for 5 days. The reaction was monitored by TLC. Once the reaction is over, the mixture is dissolved in dichloromethane and purified by flash chromatography to get the products 17, 18 and 19.
- Step 2 Preparation of compound 20: Compound 19 (2.00g, 1.46 mmol) is dissolved in a mixture of ethylacetate and methanol (1 :2, 15 ml) to that 2 eq. of acetic acid is added. The mixture is hydrogenated under pressure (50 psi) using palladium/carbon (0.200g, 10% wt) as a catalyst to get the desired product 20.
- Step 3 Preparation of single isomer 4: Compound 20 (1.50g, 1.36 mmol) and the acrylamide 1 (0.325 mmol, 1.36 mmol) is dissolved in toluene (4mL) and heated at 90°C days to form compound 4. Progress of the reaction is monitored by TLC. After completion of reaction, the mixture is cooled to room temperature, dissolved in DCM and purified by flash silica gel column chromatography to obtain the desired product 4.
- Example 11 Synthesis of 5-alkylated single isomer 4 - Method 2
- Step 1 Preparation of compound 21: Compound 16 (1.0g, 3.56mmol) and N- dodecylacrylamide (6.00g, 7eq) are taken together in a pressure tube and heated to obtain compound 21. Progress of the reaction is monitored by TLC. After completion of the reaction the mixture is dissolved in DCM and purified by flash silica gel chromatography to afford the desired compound 21.
- Step 2 Preparation of compound 4 from 21: Compound 21 (2.00g, 1.35 mmol) is dissolved in a mixture of ethyl acetate and methanol (1:2, 15 ml) to that 2 eq. of acetic acid is added. The mixture is hydrogenated under pressure (50 psi) over palladium-carbon (0.200g, 10%wt) to afford the desired single isomer 4.
- Example 12 Synthesis of 5-alkylated single isomer 3 - Method 1 Step 1: Preparation of compound 22: Compound 14 (5.06g, 11.30 mmol) and N-dodecylacrylamide (2.94g, 12.43 mmol) were taken in toluene and heated at 90°C for five days. TLC was checked and showed the formation of product. The reaction mixture was directly loaded on a pre-packed column of column silica gel and purified by flash chromatography (5% MeOH/DCM) to afford compound 22 (4.82g, 62%).
- Step 2 Preparation of compound 23: Compound 22 (4.75g, 6.92 mmol) was dissolved in dichloromethane (100mL) and cooled to 0°C. Z-OSu (2.59g, 1.5eq) was added to the solution and stirred for 10 minutes. The reaction mixture was subsequently stirred with triethylamine (2.82 mL, 20.76mmol) overnight.
- Step 3 Preparation of compound 24: 4M HCl in dioxane (50 mL) was added into a solution of compound 23 (5.30g, 6.50 mmol) in dioxane (100ml). The reaction mixture was then allowed to stir overnight. Product was precipitated out during the courseo f the reaction. Solvent and HCl were removed under vacuum to yield a white solid. The residue was taken in MeOH containing excess triethylamine and the suspension was stirred for Ih to obtain a homogeneous solution. Solvents were removed in vacuo and the residue was triturated with EtOAc, filtered off the triethylamine hydrochloride salt.
- Step 4 Preparation of compound 25: Compound 24 (1.00g, 1.925 mmol) and N-dodecylacrylamide (3.70g, 8eq) are taken together in a pressure tube and heated at elevated temperature to form desired compound 25. Formation of the product is monitored by TLC and is subsequently purified by flash silica gel column chromatography to afford a pure compound 25.
- Step 5 Preparation of compound 3: Compound 25 (2.00g, 1.35 mmol) is dissolved in a mixture of ethyl acetate and methanol (1:2, 15 ml) to that 2 eq. of acetic acid is added. The mixture is hydrogenated under pressure (50 psi) over palladium- carbon (0.200g, 10%wt) to afford the desired product 3.
- Example 13 Synthesis of 5-alkylated single isomer 3 - Method 2 Step 1 : Preparation of compound 26: Benzyl bromide (1.25 ml, 1.5eq) to a suspension of compound 22 (4.80g, 7.00mmol) and K 2 CO 3 (9.67g, 10eq) in DMF (100 mL) and the mixture was stirred overnight. Progress of the reaction was monitored by TLC. Solids were filtered off, washed with MeOH and ethyl acetate. Combined filtrate was concentrated under reduced pressure and the residue thus obtained was purified by silica gel column chromatography (50-100% EtOAc/Hexane) to afford the desired compound 26 (3.30g, 61%).
- Step 2 Preparation of compound 27: Compound 26 (3.30g, 4.25 mmol) in dioxane (50ml) was stirred with 4M HCl (50 mL) in dioxane overnight. Formation of white precipitate was seen during the course of the reaction. Solvent and acid were removed under vacuum and white residue thus obtained was redissolved in methanol containing excess triethylamine. The homogeneous solution was then evaporated under reduced pressure to obtain while residue. The residue was triturated with EtOAc and filtered off triethylamine hydrochloride salt. Filtrate was evaporated under vacuum to afford the desired compound 27 (2.36g, 99%) as gummy liquid. 1 H NMR (CDCl 3 ,
- Step 3 Preparation of compound 28: Neat compound 27 (1.00g, 2.10 mmol) and N-dodecylacrylamide (4.0g, 8eq) are mixed in a pressure tube and heated to elevated temperature to form compound 28. Formation of 28 is monitored by TLC and LC-MS. After completion of the reaction the product is isolated by chromatographic purification to afford pure compound 28.
- Step 4 Preparation of compound 3 from compound 28: Compound 28 (2.00g, 1.40 mmol) is dissolved in a mixture of ethyl acetate and methanol (1 :2, 15 ml) to that 6 eq. of acetic acid is added. The mixture is hydrogenated under pressure (50 psi) over palladium-carbon (0.200g, 10%wt) to obtain compound 3 )
- Example 14 Convergent synthesis of isomer 3 - Method 1 Step 1: Preparation of compounds 30, 31 and 32: Ethylenediamine 29 (0.978ml, 14.63mmol), N-dodecylacrylamide (7.00g, 29.26mmol) and boric acid (l00mg) were taken in 5 mL of water and heated at 90°C for four days. Complete disappearance of acrylamide was ascertained by TLC analysis. The reaction mixture was dissolved in DCM, washed with water and bicarbonate and dried over sodium sulfate.
- Step 2 Preparation of compound 33: Compound 31 (1.55g, 2mmol) and K 2 CO 3 (2.76g, 20mmol) are taken in DMF. To that chloroacetaldehyde dimethyl acetal (0.453 ml, 4.00mmol) is added and stirred for 24h. Reaction is monitored by TLC, filtered off K 2 CO 3 washed with MeOH. Solvents are removed under reduced pressure and the residue is subjected to chromatographic purification to afford compound 33.
- Step 3 Preparation of compound 34: Compound 33 (2.00g, 2.31 mmol) is taken in a mixture of MeOH and DCM, to that PTSA (2.0eq) is added and reaction mixture is stirred overnight. The solution is neutralized with sodium bicarbonate solution and extract with DCM and dried. Compound is purified by chromatographic separation to afford the desired product 34.
- Step 4 Preparation of single isomer 3 from 34: Compound 34 (2.00g, 2.43 mmol) and 30 (1.3 Ig, 2.43 mmol) are taken in DCM; to that activated molecular sieves is added and stirred for 3h. The reaction is monitored by TLC. Once the reaction is over solvents is removed. The residue is dissolved in THF and sodium triacetoxyborohydride (5 eq.) and acetic acid are added and stirred overnight. Solvents are removed and extracts with DCM, chromatographic separation of the residue affords pure isomer 3.
- Example 15 Convergent synthesis of isomer 3 - Method 2
- the desired single isomer 3 is also prepared from compound 30 by selective protection of one of the nitrogen to obtain compound 35.
- Compound 35 is subsequently reacted with aldehyde 34 under reductive conditions to obtain compound 36.
- Acid treatment of 36 affords desired compound 3.
- Example 16 Convergent synthesis of isomer 3 - Method 3
- the desired single isomer 3 is also prepared from monobenzyl ethylenediamine 37. Alkylation of 37 with 1 affords a mixture of compounds 38, 39 and 40. Compound 40 is reacted with aldehyde 34 under reductive conditions to obtain compound 41. Hydrogenolysis of 41 affords the desired compound 3.
- Step 1 Preparation of compounds 43: In a 150 mL pressure bottle N-dodecyl- acrylamide 1 (16.4 g, 68.8 mmol) was melted under argon by gently heating the vessel and to this 3 mL of aqueous boric acid was added. To this melt was added Boc protected ethylenediamine 42 (5 g, 31.2 mmol) and the mixture was heated at 90 °C overnight. The reaction mixture was analyzed by TLC using CH 2 Cl 2 :MeOH:NEt 3 (90:5:5) as the eluent. The TLC showed the near complete consumption of the starting acrylamide 1.
- reaction mixture was dissolved in dichloromethane (100 mL) and the solution was stirred with solid sodium bicarbonate and the organic layer was filtered and concentrated in a rotory evaporator.
- This crude product was purified by column chromatography (silica gel) using CH 2 Cl 2 :MeOH:NEt 3 (48:1 :1 to 8:1:1). The major product in this reaction is the double addition product 43. Minor amounts of mono adduct was also observed.
- Step 2 Preparation of compound 44: Compound 43 (2.00g, 3.13 mmol) is taken in dioxane (50 mL) to that HCl (20 mL, 4M solution in dioxane) is added and stirred overnight. Solvent is removed to get the compound 44.
- Step 3 Preparation of single isomer 4 from 34 and 44: Compound 34 (2.00g, 2.43 mmol) and 44 (1.3 Ig, 2.43 mmol) are taken in DCM; to that activated molecular sieves is added and stirred for 3h. The reaction is monitored by TLC. Once the reaction is over solvents are removed. The residue is dissolved in THF and sodium triacetoxy borohydride (5 eq.) and acetic acid are added and stirred overnight. Solvents are removed and extracts with DCM, chromatographic separation of the residue affords pure isomer 4.
- Example 18 Addition of N-dodecylacrylamide to 1,3-diaminopropane and subsequent reduction of the amide to amine
- the reaction mixture was analyzed by TLC using CH 2 Cl 2 :MeOH:NEt 3 (90:5:5) as the eluent.
- the TLC showed the near complete consumption of the starting acrylamide 1.
- the reaction mixture was dissolved in dichloromethane ( 100 mL) and the solution was stirred with solid sodium bicarbonate and the organic layer was filtered and concentrated in a rotory evaporator.
- This crude product was purified by column chromatography (silica gel) using CH 2 Cl 2 :MeOH:NEt 3 (48:1 :1 to 8:1:1).
- the major product in this reaction is the triple addition product 46. Minor amounts of tetra adduct 47 and bis adduct 48 were also isolated.
- the three addition product 46 was isolated as a white powder (5.7 g, 35%). MS m/z 793 (MH + ).
- Step 2 Conversion of amines 4, 35 and 36 to their corresponding hydrochloride salts 49, 50 and 51.
- Example 8 In a similar procedure to that described in Example 8 the amine 47 is treated with 4M HCl to obtain the dihydrochloride salt 50. In a similar procedure to that described in Example 8 the amine 48 is treated with 4M HCl to obtain the dihydrochloride salt 51.
- Step 3 Reduction of amides 46, 47 and 48 to amines 52, 53 and 54: Amine 46 is refluxed in THF with excess of diborane overnight and subsequent treatment with 4M HCl affords hydrochloride salt of polyamine 52. A similar treatment of amines 47 and 48 affords the corresponding reduced product 53 and 54 as their respective hydrochloride salt.
- Example 19 Reduction of polyamides 3, 4 and 5 to the corresponding polyamine dendrimers
- Example 20 Polyamino alkyl lipids - reduction of amides to amines
- Example 21 Synthesis of polyamido-polyamino alkyls - alkylation of amines using alkyl halides
- Step 1 preparation of compound 62: A solution of chloroacetyl chloride (10.31 m.L, 129.37 mmol) in DCM (200 mL) was cooled over an ice bath and to this a solution of dodecylamine (61, 20.00g, 107.81 mmol) in dichloromethane containing TEA (36.70 ml, 269.5 mmol) was added dropwise over a period of 1 hr. The reaction mixture tuned brownish-black by this time, continued the stirring for another hour at 0°C.
- reaction mixture was filtered through a sintered funnel, washed with EtOAc, diluted with chloroform, washed successively with water, sodium bicarbonate solution, IM HCl and brine. Organic layer was dried over sodium sulfate. Solvents were removed and the residue was purified by silica gel column chromatography (5-50% EtOAc/Hexane) to afford compound 62 (26.00g, 92%) as brown solid.
- Step 2 Preparation of 63, 64 and 65: Triethylenetetramine 2 (1.00g, 6.83 mmol) and chloroacetamide 62 (10.00g, 5.5 eq) are taken together in a mixture of CH 3 CN/DMF (1 :3), to that K 2 CO 3 (9.43 g, 10 eq) and KI (50 mg)are added and heated at 85 °C for three days. The reaction mixture is filtered to remove solids, wash with DCM, solvents are removed in vacuo and chromatographic separation of the crude residue affords pure compounds 63, 64 and 65.
- Example 22 Synthesis of polyamido-polyamino alkyls - alkylation of amines using alkyl halides with branched aminoalkyls
- Step 1 Preparation of 67: Chloroacetyl chloride (4.05mL, 51 mmol) was taken in DCM (100 mL) and cooled down to 0°C. To this a dichloromethane solution of N,N- didodecylamine (66, 15.00g, 42.41 mmol) and TEA (14.43 ml, 2.5 eq.) were added dropwise over a period of lhr. The reaction mixture tuned brownish-black by this time, after the addition the reaction mixture was stirred for 24 h at ambinet temperature.
- Step 2 Preparation of 68, 69 and 70: Triethylenetetramine 2 (0.500g, 6.83 mmol) and chloroacetamide 67 (8.10g, 5.5 eq) are taken together in a mixture of CH 3 CN/DMF (1 :3), to that K 2 CO 3 (4.72g, 10 eq) and KI (30 mg) are added and heated at 85 °C for three days. The reaction mixture was filtered to remove insoluble solids, wash with DCM, solvents are removed and chromatographic separation of the residue affords t 68, 69 and 70.
- Example 23 Addition of N,N-dialkylacrylamide to polyamines In order to study the effect of adding more hydrophobic chains to the cationic lipids, didodecylamine was used as a precursor to the acrylamide.
- Step 1 Synthesis of N,N-Didodecylacrylamide 71
- Step 3 Synthesis of hydrochloride salts 75, 76 and 77: Each single compound obtained is taken in dioxane and 4M HCl in dioxane is added to the solution and stirred as described in example 8 to yield the corresponding hydrochloride salt.
- Example 24 Alkenylation of polyamines using mono unsaturated N-alkyl acrylamide under Michael addition condition
- Step 1 Synthesis of compound 79: To a solution of oleylamine 78 (26.75 g, 100 mmol) and triethylamine (20 g, 200 mmol) in anhydrous CH 2 Cl 2 (200 mL) at -10 °C, a solution of acryloyl chloride (9.9 g, 110 mmol) in CH 2 Cl 2 (100 mL) was added dropwise over a period of 20 min. After the completion of the addition the reaction mixture was stirred for 4 h at 0 °C after which the TLC of the reaction mixture showed the completion of the reaction. The reaction mixture was washed with satd.
- Step 2 Reaction of compound 79 with triethylenetetramine
- the acrylamide 79 is treated with triethylenetetramine 2 and after usual work-up and column purification of the Michael addition products affords pure compounds 80, 81 and 82.
- Step 3 Synthesis of hydrochloride salts 83, 84 and 85: Each single compound (80, 81 or 82) obtained is taken in dioxane and 4M HCl in dioxane is added to the solution and stirred as described in example 8 to yield the corresponding hydrochloride salt.
- Example 25 Alkenylation of diamines using mono unsaturated N-alkyl acrylamide under Michael addition condition
- Example 26 Alkenylation of polyamines using poly unsaturated N-alkyl acrylamide under Michael addition condition
- Step 2 Reaction of compound 79 with triethylenetetramine
- the acrylamide 79 is treated with triethylenetetramine 2 and after usual work-up and column purification of the Michael addition products affords pure compounds 80, 81 and 82.
- Step 3 Synthesis of hydrochloride salts 83, 84 and 85: Each single compound (80, 81 or 82) obtained is taken in dioxane and 4M HCl in dioxane is added to the solution and stirred as described in example 8 to yield the corresponding hydrochloride salt.
- Example 25 Alkenylation of diamines using mono unsaturated N-alkyl acrylamide under Michael addition condition
- Example 26 Alkenylation of polyamines using poly unsaturated N-alkyl acrylamide under Michael addition condition
- Step 1 Compound 93: Linolylamine 92 is treated with acryloyl chloride in a similar procedure to that of Example 24, step 1 and the corresponding acrylamide 93 is isolated.
- Step 2 Reaction of compound 93 with triethylenetetramine
- the acrylamide 93 is treated with triethylenetetramine 2 in the presence of boric acid as described in Example 3 and after usual work-up and column purification of the Michael addition products affords pure compounds 94, 95 and 96.
- Step 3 Synthesis of hydrochloride salts 97, 98 and 99: Each single compound (94, 95 or 96) obtained is taken in dioxanc and 4M HCl in dioxane is added to the solution and stirred as described in example 8 to yield the corresponding hydrochloride salt.
- Example 27 Alkenylation of diamines using poly unsaturated N-alkyl acrylamide under Michael addition condition
- Example 28 Alkenylation of polymines using alkyl acrylates under Michael addition condition
- n-Dodecylacrylate (106) is stirred with triethylenetetramine 2 in the presence of boric acid in methanol-water at 40 °C to obtain compounds 107, 108 and
- n-Dodecylacrylate (106) is stirred with triethylenetetramine 2 in methanol-water at 40 °C to obtain compounds 110, 111 and 112. The products are isolated by chromatographic separation.
- n-Dodecylacrylate (106) is stirred with triethylenetetramine 2 in the presence of boric acid in methanol-water at 40 °C to obtain compounds 110, 111 and 112. The products are isolated by chromatographic separation.
- Example 30 Synthesis of Octadeca-9,12-dienoic acid 3 -dimethyl amino-2- octadeca-9.12-dienoyloxy-propyl ester 3
- Example 31 Exemplary procedure for making a liposome using extrusion Prepare stock solutions of ND98 (120 mg/ml), cholesterol (25 mg/ml), and C 16- PEG-Cer-2000 (100 mg/ml) in 100% ethanol. Store at -20°C. Warm in 37°C water bath prior to preparing formulations (up to 30 minutes is helpful - it takes a while for the cholesterol to dissolve completely).
- Example 32 Exemplary procedure for making a liposome without using extrusion
- Example 33 Exemplary protocol for quantification of RNA in a liposome sample
- the procedure below can be used to quantify (1) the proportion of entrapped siRNA and (2) the total amount of siRNA in a liposome.
- Example 34 Comparison of Lipid moieties as formulated into Liposomes
- the effectiveness of lipid compositions can be tested by determining the relative ability of a lipid to deliver an siRNA moiety to a target. For example, the silencing of a target indicates that the siRNA is delivered into the cell.
- ND:98 1 :1, 2:1, 3:1, 4:1, 5:1, and 6:1).
- Table 1 below provides the average particle size and percent entrapment of the liposomes using the various monomer ratios (i.e, the number indicating the ratio of ND relative to 98).
- Figure 1 provides the results of the FVII siliencing assay for the various monomer ratios using an experimental dosing of 2 mg/kg siRNA.
- the results suggest that the ND98 5 tail moiety and/or ND 98 6 tail moiety are the active species as these are the most abundants species on the ND98 6:1 preparation.
- a 5 tail moiety indicates a compound where 5 of the hydrogens on the starting amine 98 have been reacted with a starting acrylamide moiety ND.
- a 6 tail moiety indicates a compound where 6 of the hydrogens on the starting amine 98 have been reacted with an acrylamide moiety ND. Accordingly, the numer of "tails" indicates the number of reacted hydrogens on the starting amine.
- ND98 lipid moieties are the lipid moieties resulting in the reaction of ND, the structure of which is provided below:
- Table 2 below provides the average particle size and percent entrapment of the liposomes using the various monomer ratios (i.e, the number idicating the ratio of ND relative to 98). Table 2:
- Example 37 Liposome particle size using various ND98 lipid starting materials A plurality of lipid starting materials having the ND98 structures (as provided in examples 34 and 35 above) were formulated into liposomes. The particle size of the liposomes were evaluated, the results of which are provided in table 3 below:
- Liposome complexes were prepared using ND98 lipids.
- Figure 4 shows the results of an FVII silencing assay, demonstrating the comparative activity of the formulations made using the various processes.
- Step 1 Preparation of compound 9: Triethylenetetramine, 1 (48.83 g, 0.334 mol, purchased from Sigma-Aldrich) in anhydrous acetonitrile (500 mL) was cooled over an ice bath under constant stirring. Ethyl trifluroacetate (79.6 mL, 0.668 mol) was added to the solution and after completion of the addition the reaction mixture was allowed to warm to room temperature and stirred for 20h. Solvent and volatiles were removed under reduced pressure and the residue was dissolved in minimum amount of warm dichloromethane (100 mL) and to it cold hexanes was added with stirring. The precipitated product was cooled in ice and filtered to get a white solid (112.2 g, 99%).
- Step 2 Synthesis of (2- ⁇ tert-butoxycarbonyl-[2-(2,2,2-trifluoro- acetylannino)ethyl]-amino ⁇ -2-(2,2,2-trifIuoro-acetylamino)ethyl]-carbamic acid tert- butyl ester 113
- the trifluroacetamide 9 (112.2 g, 0.332 mol) was dissolved in CH 2 C1 2 /THF (600 mL/100 mL) and to it diisopropylethylamine (129.25 g, 1 mol) was added and stirred over an ice bath.
- Step 3 Synthesis of (2-amino-ethyl)- ⁇ 2-((2-amino-ethyl)-tert- butoxycarbonyl-amino]-ethyl ⁇ carbamic acid tert-butyl ester
- the acetamide 113 (167 g, 0.31 mol) was taken in a stainless steel pressure reactor and to it a solution of methylamine (33% by wt) in ethanol (200 ml) was added. The mixture was warmed to 90'C and stirred for 24 h. Reaction was monitored by mass spectra.
- Step 4 Synthesis of Michael addition product 115
- the diamine 114 (103 g, 0.297 mmol), N-dodecylacrylamide (356 g, 1.487 mol) and saturated solution of boric acid in water (30 mL) were taken together in a pressure reactor and heated at 90°C for 4 days. The reaction was monitored by TLC and Mass spectra. The reaction mixture was extracted into dichloromethane (DCM), washed successively with NaHCO 3 solution and brine, dried over anhydrous sodium sulfate.
- DCM dichloromethane
- Step 6 Synthesis of 117: Compound 116 (164 g, 149 mmol) , N- dodecylacrylamide (35.6 g, 149 mmol) and saturated solution of boric acid in water (30 mL) were taken together in a pressure reactor and heated at 90°C for 3 days. Progress of the reaction was monitored by TLC and Mass spectra. The reaction mixture extracted into dichloromethane (DCM), washed successively with NaHCO 3 solution and brine, dried over anhydrous sodium sulfate.
- DCM dichloromethane
- Step1 Triethylenetetramine, 1 (200g g, 1.37 mol, purchased from Sigma-
- Step 5 4M HCl in dioxane (400 mL) was added into a solution of compound 105 (184.00 g, 127.23 mmol) in dioxane (300 mL). The reaction mixture was then allowed to stir for overnight. The reaction was monitored by Mass spectra. Excess HCl was removed by passing nitrogen through the solution. Solvents were removed under vacuum and residue was co evaporated three times with ethanol (500 mL X 3) to yield a pale yellow gummy solid 7 (186,00g , 98%) as tetra hydrochloride salt. The material was compared with authentic sample TLC (qualitative), HPLC and Mass spectra. MS: C 81 H 163 N 9 O 5 CaI. 1342.28, Found 1343.30(M + ).
- Step 1 Compound 102 (103.45g, 238.90 mmol, crude compound from step 2, Method 1 was dissolved in Ethanol/Methyl amine (400 ml, 33 wt% methylamine solution in EtOH) at ambient temperature in a pressure reactor. The mixture was warmed to 90°C and stirred for two days. Reaction was monitored by mass spectra. AU the solvents were removed under reduced pressure and the residue was subjected to high vacuum at 80 °C over a water bath to yield the product 103 (63.50 g) as pale yellow gummy liquid and this compound could be used for the next reaction with out further purification.
- Ethanol/Methyl amine 400 ml, 33 wt% methylamine solution in EtOH
- Step 4 Triamine 103 (63.50 g, 238 mmol), N-dodecylacrylamide (320.00 g, 1338 mmol) and saturated solution of boric acid in water (50 mL) were taken together in a pressure reactor and heated at 90°C for 6 days as described in step 4, Method 1. The reaction was monitored by TLC and Mass spectra. The reaction mixture extracted into to get 101 as white solid (429 g, 93%). The product thus obtained could be used for the next reaction without further purification. MS: C 10 H 16 F 6 N 4 O 2 CaI. 338.12, Found 339.0(M + ).
- Step2 Crude compound 101 (427g, 1.26 mol) was dissolved in a mixture of solvents (3 L, THF/DCM (1:2)) and stirred over an ice- water bath.
- Solvents were removed and the residue was extracted into dichloromethane (DCM, 1000 mL), washed successively with NaH CO3 solution (500 mL), water (500 mL x2) and brine, dried over anhydrous sodium sulfate.
- Solvents were removed in vacuo and residue thus obtained was triturated with DCM/Hexane (2:1) and filtered. Solvents were removed and the residue was dried under high vacuum to get the compound 102 as gummy liquid (523g).
- Step 3 Purified compound 102 (102.0g, 233.40 mmol) was dissolved in
- Step 4 Triamine 103 (56.00 g, 227.64 mmol), N-dodecylacrylamide (327.00 g, 1365 mmol) and saturated solution of boric acid in water (50 mL) were taken together in a pressure reactor and heated at 90°C for 6 days. The reaction was monitored by TLC and Mass spectra. The reaction mixture extracted into dichloromethane (DCM), washed dichloromethane (DCM), washed successively with NaHCO 3 solution (400 mL) and dried over anhydrous sodium sulfate.
- DCM dichloromethane
- DCM dichloromethane
- NaHCO 3 solution 400 mL
- Method 3 Compound 102 was prepared as described in Method 1 : steps 1 and 2. The crude product obtained from step 2 of Method 1 was used for the next reaction without further purification.
- Step3 Compound 102 (105.20g, 240 mmol, crude compound from method I) was dissolved in Ethanol/Methyl amine (400 ml, 33 wt% methylamine solution in EtOH) at ambient temperature in a pressure reactor. The mixture was warmed to 90°C and stirred for two days. Reaction was monitored by mass spectra. All the solvents were removed under reduced pressure and the residue was subjected to high vacuum at 80 °C over a water bath to yield the product 103 (64.70 g) as pale yellow gummy liquid and this compound could be used for the next reaction with out further purification.
- Step 4 Triamine 103 (64.70 g, 240 mmol), N-dodecylacrylamide (370.00 g,
- Example 41 Comparison of activity of siRNA formulated into various association complexes having differing PEG-lipid moieties:
- lipid compositions can be tested by determining the relative ability of a lipid to deliver an siRNA moiety to a target. For example, the silencing of a target indicates that the siRNA is delivered into the cell.
- Applicants have compared association complexes that include one of 13 different PEG-lipid moieties as provided in Figure 5, together with siRNA that is used to silence Factor VII (FVII).
- PEG-lipids 1-13 were synthesized using the following procecures:
- the reaction mixture was diluted with DCM (400 mL) and the organic layer was washed with water (2X500 mL), aqueous NaHCO 3 solution (500 mL) followed by standard work-up. Residue obtained was dried at ambient temperature under high vacuum overnight. After drying the crude carbonate 3 thus obtained was dissolved in dichloromethane (500 mL) and stirred over an ice bath. To the stirring solution InPEG 20 Oo-NH 2 (4, 103.00 g, 47.20 mmol, purchased from NOF Corporation, Japan) and anhydrous pyridine (80 mL, excess) were added under argon. The reaction mixture was then allowed stir at ambient temperature overnight.
- Step 1 Compound 14 (2.00 g, 1.01 mmol) and cholesterol chloroformate 15
- Step 2 Compound 16 (1.00g, 0.417 mmol), 17 (0.235g, 0.542 mmol) and HBTU (0.190g, 0.5 mmol) were taken in a mixture of DCM/DMF (20 mL, 2:1). To that DIEA was added and stirred overnight. Reaction was monitored by TLC, solvents were removed under reduced pressure and the residue was purified by chromatography (5- 10% MeOH/DCM) to get the desired compound 18 (1.02g, 87 %).
- Step 3 Compound 18 (1.02g, 0.362 mmol) was dissolved in a mixture of MeOH/DCM (10 mL) to that 0.5 M solution of NaOMe in methanol (excess) was added and stirred overnight. Progress of the reaction was monitored by TLC. The mixture was neutralized with AcOH. Solvents were removed under vacuum and the residue was purified by chromatography (5-10 % MeOH /DCM) to get compound 19 (280 mg,
- Step 1 Compound 14 (2.00 g, 1.01 mmol) and compound 20 (0.453 g, 1.01 mmol) were taken together in dichloromethane (20 mL). The mixture was cooled in an ice- water bath. Pyridine (1 mL, excess) was added and the reaction mixture was stirred overnight. Reaction was monitored by TLC. Solvent was removed and the residue was purified by silica gel chromatography (Ethyl acetate followed by 5-10% MeOH/DCM) to get the desired compound 21 (400 mg, 15 %).
- Step 2 Compound 21 (0.415 g, 0.159 mmol), 17 (0.100g, 1.3 eq) and HBTU (0.90g, 1.15 eq) were taken in a mixture of DCM/DMF (20 mL, 2:1). To that DIEA (0.2 mL) was added and stirred overnight. Reaction was monitored by TLC, solvents were removed under reduced pressure and the residue was purified by chromatography (3- 10% MeOH/DCM) to get the desired compound 22 (0.450g, 94%).
- Step 3 Compound 22 (0.450 g, 0.359 mmol) was dissolved in a mixture of MeOH/DCM (5 mL) to that 0.5 M solution of NaOMe in methanol (excess) was added and stirred overnight. Progress of the reaction was monitored by TLC. The mixture was neutralized with AcOH. Solvents were removed under vacuum and the residue was purified by chromatography (5-10 % MeOH/DCM) to get compound 23 (365 mg, 85 %).
- formulations when administered to a subject, provided a varying degree of silencing of FVII.
- formulation 3 provided a relative high degree of silencing of FVII, as did formulation 5, 6, and 12.
- Example 45 Formation of association complexes by first forming unloaded complexes and then treating the unloaded complexes with siRNA and administration of association complexes including two therapeutic agents
- Association complexes having two different nucleic acid moieties were prepared as follows. Stock solutions of ND98, cholesterol, and PEG-C 14 in ethanol were prepared at the following concentrations: 133 mg/mL, 25 mg/mL, and 100 mg/mL for ND98, cholesterol, and PEG-C14, respectively. The lipid stocks were then mixed to yield ND98:cholesterol:PEG-C14 molar ratios of 42:48:10. This mixture was then added to aqueous buffer resulting in the spontaneous formulation of lipid nanoparticles in 35% ethanol, 100 raM sodium acetate, pH 5.
- the unloaded lipid nanoparticles were then passed twice through a 0.08 ⁇ m membrane (Whatman, Nucleopore) using an extruder (Lipex, Northern Lipids) to yield unimodal vesicles 20-100 nm in size.
- the appropriate amount of siRNA in 35% ethanol was then added to the pre-sized, unloaded vesicles at a total excipient: siRNA ratio of 7.5:1 (wf.wt).
- the resulting mixture was then incubated at 37 °C for 30 min to allow for loading of siRNA into the lipid nanoparticles. After incubation, ethanol removal and buffer exchange was performed by either dialysis or tangential flow filtration against PBS.
- a flow chart demonstrating the order of addition of exhipients and therapeutic agents is provided in Figure 8.
- a 1 :1 mixture of siRNAs targeting ApoB and Factor VII were formulated as described in Example 44. Separately, the same ApoB- and Factor VII-targeting siRNAs were individually formulated as described in Example 31.
- the three formulations were then administered at varying doses in an injection volume of 10 ⁇ L/g animal body weight. Forty-eight hours after administration, serum samples were collected by retroorbital bleed, animals were sacrificed, and livers were harvested.
- Serum Factor VII concentrations were determined using a chromogenic diagnostic kit (Coaset Factor VII Assay Kit, DiaPharma) according to manufacturer protocols. Liver mRNA levels of ApoB and Factor VII were determined using a branched-DNA (bDNA) assay (Quantigene, Panomics), the results of which are provided in figure 9. No evidence of inhibition between the two therapeutic agents was observed. Rather, both of the therapeutic agents demonstrated effectiveness when administered.
- Example 46 Methods of making association complexes using preformed vesicles
- lipidoid ND98.4HC1 (MW 1487), cholesterol, and PEG-C14 were prepared in ethanol at the following concentrations: 133 mg/mL, 25 mg/mL, and 100 mg/mL for ND98, cholesterol, and PEG-C 14, respectively. Stock solutions were warmed at 50°C to assist in bring lipids into solution.
- An aqueous mixture was also prepared according to the volumes listed in the table below.
- the ethanolic Lipid Mixture was then added to the Aqueous Mixture while rapidly stirring on a magnetic stir plate. Upon mixing, lipidoid vesicles formed spontaneously. The resulting vesicles were then extruded (2 passes) through a 0.08 ⁇ membrane (Whatman, Nucleopore) to size the empty vesicles. All manipulations were performed at room temperature.
- siRNA stock solution was prepared by dissolving desalted duplex siRNA in 50 mM sodium acetate pH 5 at a concentration of 10 mg/mL. An appropriate volume of this siRNA stock was mixed with the appropriate volume of ethanol to yield a diluted siRNA solution in 35% (vol) ethanol (see table below).
- siRNA solution 277 mL was added to 623 mL of empty vesicle mixture while rapidly stirring on a magnetic stir plate. The resulting combined mixture was then incubated at 37°C for 30 min to allow for loading of siRNA.
- the 900 mL loaded nanoparticle mixture was diluted into 1.8 L of PBS to yield a 2.7 L diluted mixture.
- This diluted mixture was then concentrated to ⁇ 1 L and diafiltered by tangential flow filtration against 10 volumes of PBS using a Sartorius TFF system utilizing two stacked 100,000 MWCO cartridges. No backpressure was applied to the cartridge and the pump speed was set to 300 rpm. After buffer exchange the resulting solution was concentrated to roughly 2 mg/mL siRNA.
- Terminal filtration was performed by passing the solution through a 0.2 ⁇ filter capsule (Whatman, Polycap 36 AS).
- association complexes were formed using the procedure generally described in Example 46. However, because the complexes were being evaluated based on size, different extrusion membranes were used to produce particles having the following diameters: 150 nm, 85nm, 60 nm, and 50 nm. The siRNAs loaded in the complexes targeted factor VII.
- Example 48 Comparison of half life of nucleic acid agents unformulated versus formulated into an association complex
- siRNA formulated in association complexes was evaluated in vitro in human serum at 37 °C.
- the association complexes were prepared as in Example 46.
- unformulated siRNA was also evaluated in vitro in human serum.
- the percent of full length product determined by HPLC was evaluated for both the formulated and unformulated siRNA.
- the formulated siRNA had a significantly improved half life in vitro in human serum.
- Example 49 Comparison of efficacy of association having PEG lipids of varied chain length Association complexes were prepared as in Example 46 with variation on the length of the alkyl chain of the PEG lipid. Alkyl chain lengths of 10, 11, 12, 13, 14, 15, and 16 were evaluated and compared for efficacy in a Factor VII silencing assay. As shown in Figure 13, chain lengths of 13, 14, and 15 demonstrated the most silencing as measured in the assay.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200780044738.6A CN101616677B (en) | 2006-10-03 | 2007-10-03 | Lipid containing formulations |
EP07853756.0A EP2068886B1 (en) | 2006-10-03 | 2007-10-03 | Lipid containing formulations |
MX2014014382A MX363224B (en) | 2006-10-03 | 2007-10-03 | Lipid containing formulations. |
CA2665225A CA2665225C (en) | 2006-10-03 | 2007-10-03 | Lipid containing formulations |
IN255DEN2015 IN2015DN00255A (en) | 2006-10-03 | 2007-10-03 | |
KR1020097009148A KR101129509B1 (en) | 2006-10-03 | 2007-10-03 | Lipid containing formulations |
JP2009531586A JP5933163B2 (en) | 2006-10-03 | 2007-10-03 | New compounds |
DK07853756.0T DK2068886T3 (en) | 2006-10-03 | 2007-10-03 | Lipid-containing preparations |
MX2009003548A MX2009003548A (en) | 2006-10-03 | 2007-10-03 | Lipid containing formulations. |
AU2007303205A AU2007303205A1 (en) | 2006-10-03 | 2007-10-03 | Lipid containing formulations |
ES07853756T ES2430206T3 (en) | 2006-10-03 | 2007-10-03 | Formulation containing lipids |
US12/056,230 US8034376B2 (en) | 2006-10-03 | 2008-03-26 | Lipid containing formulations |
US13/211,094 US8642076B2 (en) | 2006-10-03 | 2011-08-16 | Lipid containing formulations |
US14/149,496 US20140121393A1 (en) | 2006-10-03 | 2014-01-07 | Lipid containing formulations |
US15/492,898 US20180065918A1 (en) | 2006-10-03 | 2017-04-20 | Lipid containing formulations |
US16/713,712 US11420931B2 (en) | 2006-10-03 | 2019-12-13 | Lipid containing formulations |
US17/863,885 US20230174459A1 (en) | 2006-10-03 | 2022-07-13 | Lipid containing formulations |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82802206P | 2006-10-03 | 2006-10-03 | |
US60/828,022 | 2006-10-03 | ||
US87045706P | 2006-12-18 | 2006-12-18 | |
US60/870,457 | 2006-12-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/056,230 Continuation US8034376B2 (en) | 2006-10-03 | 2008-03-26 | Lipid containing formulations |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008042973A2 true WO2008042973A2 (en) | 2008-04-10 |
WO2008042973A3 WO2008042973A3 (en) | 2008-08-28 |
Family
ID=39269192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/080331 WO2008042973A2 (en) | 2006-10-03 | 2007-10-03 | Lipid containing formulations |
Country Status (12)
Country | Link |
---|---|
US (6) | US8034376B2 (en) |
EP (3) | EP2068886B1 (en) |
JP (7) | JP5933163B2 (en) |
KR (1) | KR101129509B1 (en) |
CN (3) | CN105030654A (en) |
AU (1) | AU2007303205A1 (en) |
CA (4) | CA2665225C (en) |
DK (1) | DK2068886T3 (en) |
ES (2) | ES2430206T3 (en) |
IN (1) | IN2015DN00255A (en) |
MX (4) | MX363224B (en) |
WO (1) | WO2008042973A2 (en) |
Cited By (243)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009088892A1 (en) * | 2008-01-02 | 2009-07-16 | Alnylam Pharmaceuticals, Inc. | Liver screening method |
WO2010057217A1 (en) * | 2008-11-17 | 2010-05-20 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for increasing cellular uptake of rnai via sid-1 |
WO2010068816A1 (en) | 2008-12-10 | 2010-06-17 | Alnylam Pharmaceuticals, Inc. | Gnaq targeted dsrna compositions and methods for inhibiting expression |
WO2010088537A2 (en) | 2009-01-29 | 2010-08-05 | Alnylam Pharmaceuticals, Inc. | Improved lipid formulation |
WO2010099341A1 (en) | 2009-02-26 | 2010-09-02 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of mig-12 gene |
WO2010105209A1 (en) | 2009-03-12 | 2010-09-16 | Alnylam Pharmaceuticals, Inc. | LIPID FORMULATED COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION OF Eg5 AND VEGF GENES |
WO2010129709A1 (en) | 2009-05-05 | 2010-11-11 | Alnylam Pharmaceuticals, Inc. | Lipid compositions |
WO2010129687A1 (en) | 2009-05-05 | 2010-11-11 | Alnylam Pharmaceuticals, Inc | Methods of delivering oligonucleotides to immune cells |
WO2010133970A1 (en) | 2009-05-20 | 2010-11-25 | Eth Zurich | Targeting micrornas for metabolic disorders |
WO2010144740A1 (en) | 2009-06-10 | 2010-12-16 | Alnylam Pharmaceuticals, Inc. | Improved lipid formulation |
US7939505B2 (en) | 2007-05-04 | 2011-05-10 | Marina Biotech, Inc. | Amino acid lipids and uses thereof |
WO2011075656A1 (en) | 2009-12-18 | 2011-06-23 | The University Of British Columbia | Methods and compositions for delivery of nucleic acids |
WO2011139695A2 (en) | 2010-04-28 | 2011-11-10 | Isis Pharmaceuticals, Inc. | Modified 5' diphosphate nucleosides and oligomeric compounds prepared therefrom |
WO2011139702A2 (en) | 2010-04-28 | 2011-11-10 | Isis Pharmaceuticals, Inc. | Modified nucleosides and oligomeric compounds prepared therefrom |
WO2011139699A2 (en) | 2010-04-28 | 2011-11-10 | Isis Pharmaceuticals, Inc. | 5' modified nucleosides and oligomeric compounds prepared therefrom |
WO2011141704A1 (en) | 2010-05-12 | 2011-11-17 | Protiva Biotherapeutics, Inc | Novel cyclic cationic lipids and methods of use |
WO2011141705A1 (en) | 2010-05-12 | 2011-11-17 | Protiva Biotherapeutics, Inc. | Novel cationic lipids and methods of use thereof |
WO2011153323A2 (en) | 2010-06-02 | 2011-12-08 | Alnylam Pharmaceuticals, Inc. | Compositions and methods directed to treating liver fibrosis |
WO2011153493A2 (en) | 2010-06-03 | 2011-12-08 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
WO2012016188A2 (en) | 2010-07-30 | 2012-02-02 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for delivery of active agents |
WO2012016184A2 (en) | 2010-07-30 | 2012-02-02 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for delivery of active agents |
WO2012017208A1 (en) | 2010-08-04 | 2012-02-09 | Cizzle Biotechnology Limited | Methods and compounds for the diagnosis and treatment of |
JP2012508263A (en) * | 2008-11-10 | 2012-04-05 | アルニラム・ファーマシューティカルズ・インコーポレーテッド | Novel lipids and compositions for delivering therapeutic agents |
US8168775B2 (en) | 2008-10-20 | 2012-05-01 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of transthyretin |
EP2447274A2 (en) | 2008-10-24 | 2012-05-02 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and methods |
WO2012064824A1 (en) | 2010-11-09 | 2012-05-18 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes |
WO2012068176A1 (en) * | 2010-11-15 | 2012-05-24 | Life Technologies Corporation | Amine-containing transfection reagents and methods for making and using same |
WO2012078967A2 (en) | 2010-12-10 | 2012-06-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for increasing erythropoietin (epo) production |
WO2012079046A2 (en) | 2010-12-10 | 2012-06-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of klf-1 and bcl11a genes |
WO2012099755A1 (en) | 2011-01-11 | 2012-07-26 | Alnylam Pharmaceuticals, Inc. | Pegylated lipids and their use for drug delivery |
US8273869B2 (en) | 2009-06-15 | 2012-09-25 | Alnylam Pharmaceuticals, Inc. | Lipid formulated dsRNA targeting the PCSK9 gene |
US8293719B2 (en) | 2004-03-12 | 2012-10-23 | Alnylam Pharmaceuticals, Inc. | iRNA agents targeting VEGF |
WO2012145374A1 (en) | 2011-04-19 | 2012-10-26 | Regulus Therapeutics Inc. | TARGETING miR-378 FAMILY MEMBERS FOR THE TREATMENT OF METABOLIC DISORDERS |
WO2012148952A1 (en) | 2011-04-25 | 2012-11-01 | Regulus Therapeutics Inc | Microrna compounds and methods for modulating mir-21 activity |
WO2012177784A2 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals | Angiopoietin-like 3 (angptl3) irna compostions and methods of use thereof |
WO2012178033A2 (en) | 2011-06-23 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Serpina1 sirnas: compositions of matter and methods of treatment |
WO2012177947A2 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of expression of apolipoprotein c-iii (apoc3) genes |
WO2012177906A1 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Assays and methods for determining activity of a therapeutic agent in a subject |
WO2013049328A1 (en) | 2011-09-27 | 2013-04-04 | Alnylam Pharmaceuticals, Inc. | Di-aliphatic substituted pegylated lipids |
WO2013086354A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
WO2013086373A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Lipids for the delivery of active agents |
WO2013086322A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Branched alkyl and cycloalkyl terminated biodegradable lipids for the delivery of active agents |
EP2617828A1 (en) | 2007-12-10 | 2013-07-24 | Alnylam Pharmaceuticals Inc. | Compositions and methods for inhibiting expression of factor VII gene |
WO2013154799A1 (en) | 2012-04-09 | 2013-10-17 | Isis Pharmaceuticals, Inc. | Tricyclic nucleosides and oligomeric compounds prepared therefrom |
WO2013155204A2 (en) | 2012-04-10 | 2013-10-17 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the alas1 gene |
WO2013163258A1 (en) | 2012-04-25 | 2013-10-31 | Regulus Therapeutics Inc. | Microrna compounds and methods for modulating mir-21 activity |
EP2690175A2 (en) | 2008-09-02 | 2014-01-29 | Alnylam Pharmaceuticals | Compositions and methods for combined inhibition of mutant EGFR gene and IL-6 expression |
WO2014018375A1 (en) | 2012-07-23 | 2014-01-30 | Xenon Pharmaceuticals Inc. | Cyp8b1 and uses thereof in therapeutic and diagnostic methods |
JP2014502615A (en) * | 2010-12-30 | 2014-02-03 | サムヤン バイオファーマシューティカルズ コーポレイション | Anionic drug carrier containing cationic lipid and method for producing the same |
EP2712926A2 (en) | 2008-03-05 | 2014-04-02 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of Eg5 and VEGF genes |
WO2014089313A1 (en) | 2012-12-05 | 2014-06-12 | Alnylam Pharmaceuticals | PCSK9 iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
WO2014089486A1 (en) * | 2012-12-07 | 2014-06-12 | Shire Human Genetic Therapies, Inc. | Lipidic nanoparticles for mrna delivering |
EP2743265A1 (en) * | 2008-10-09 | 2014-06-18 | Tekmira Pharmaceuticals Corporation | Improved amino lipids and methods for the delivery of nucleic acids |
US8809292B2 (en) | 2006-05-11 | 2014-08-19 | Alnylam Pharmaceuticals, Inc | Compositions and methods for inhibiting expression of the PCSK9 gene |
WO2014134445A1 (en) | 2013-02-28 | 2014-09-04 | Tufts Unversity | Disulfide compounds for delivery of pharmaceutical agents |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
WO2014179445A1 (en) | 2013-05-01 | 2014-11-06 | Regulus Therapeutics Inc. | Compounds and methods for enhanced cellular uptake |
WO2014179446A2 (en) | 2013-05-01 | 2014-11-06 | Regulus Therapeutics Inc. | Microrna compounds and methods for modulating mir-122 |
WO2014182661A2 (en) | 2013-05-06 | 2014-11-13 | Alnylam Pharmaceuticals, Inc | Dosages and methods for delivering lipid formulated nucleic acid molecules |
WO2014190157A1 (en) | 2013-05-22 | 2014-11-27 | Alnylam Pharmaceuticals, Inc. | Tmprss6 compositions and methods of use thereof |
WO2014190137A1 (en) | 2013-05-22 | 2014-11-27 | Alnylam Pharmaceuticals, Inc. | SERPINA1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
EP2810643A2 (en) | 2009-08-14 | 2014-12-10 | Alnylam Pharmaceuticals Inc. | Lipid formulated compositions and mehods for inhibiting expression of a gene from the ebola virus |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
WO2015050990A1 (en) | 2013-10-02 | 2015-04-09 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the lect2 gene |
WO2015061536A1 (en) | 2013-10-25 | 2015-04-30 | Regulus Therapeutics Inc. | Microrna compounds and methods for modulating mir-21 activity |
US9051567B2 (en) | 2009-06-15 | 2015-06-09 | Tekmira Pharmaceuticals Corporation | Methods for increasing efficacy of lipid formulated siRNA |
US9101643B2 (en) | 2009-11-03 | 2015-08-11 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of transthyretin (TTR) |
WO2015123264A1 (en) | 2014-02-11 | 2015-08-20 | Alnylam Pharmaceuticals, Inc. | Ketohexokinase (khk) irna compositions and methods of use thereof |
US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9181321B2 (en) | 2013-03-14 | 2015-11-10 | Shire Human Genetic Therapies, Inc. | CFTR mRNA compositions and related methods and uses |
US9187746B2 (en) | 2009-09-22 | 2015-11-17 | Alnylam Pharmaceuticals, Inc. | Dual targeting siRNA agents |
US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
WO2015179724A1 (en) | 2014-05-22 | 2015-11-26 | Alnylam Pharmaceuticals, Inc. | Angiotensinogen (agt) irna compositions and methods of use thereof |
US9200276B2 (en) | 2009-06-01 | 2015-12-01 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotides for multivalent RNA interference, compositions and methods of use thereof |
US9206421B2 (en) | 2008-09-25 | 2015-12-08 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of serum amyloid A gene |
US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9228186B2 (en) | 2002-11-14 | 2016-01-05 | Thermo Fisher Scientific Inc. | Methods and compositions for selecting siRNA of improved functionality |
WO2016022753A1 (en) | 2014-08-07 | 2016-02-11 | Regulus Therapeutics Inc. | Targeting micrornas for metabolic disorders |
WO2016040589A1 (en) | 2014-09-12 | 2016-03-17 | Alnylam Pharmaceuticals, Inc. | Polynucleotide agents targeting complement component c5 and methods of use thereof |
US9308281B2 (en) | 2011-06-08 | 2016-04-12 | Shire Human Genetic Therapies, Inc. | MRNA therapy for Fabry disease |
WO2016057893A1 (en) | 2014-10-10 | 2016-04-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression |
WO2016061487A1 (en) | 2014-10-17 | 2016-04-21 | Alnylam Pharmaceuticals, Inc. | Polynucleotide agents targeting aminolevulinic acid synthase-1 (alas1) and uses thereof |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
WO2016077321A1 (en) | 2014-11-10 | 2016-05-19 | Alnylam Pharmaceuticals, Inc. | Hepatitis b virus (hbv) irna compositions and methods of use thereof |
WO2016081444A1 (en) | 2014-11-17 | 2016-05-26 | Alnylam Pharmaceuticals, Inc. | Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof |
US9399775B2 (en) | 2011-11-18 | 2016-07-26 | Alnylam Pharmaceuticals, Inc. | RNAi agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases |
US9415059B2 (en) | 2009-08-31 | 2016-08-16 | Nanocarrier Co., Ltd. | Particulate composition and pharmaceutical composition containing the same |
WO2016130806A2 (en) | 2015-02-13 | 2016-08-18 | Alnylam Pharmaceuticals, Inc. | Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9518259B2 (en) | 2010-06-15 | 2016-12-13 | Ionis Pharmaceuticals, Inc. | Compounds and methods for modulating interaction between proteins and target nucleic acids |
WO2016201301A1 (en) | 2015-06-12 | 2016-12-15 | Alnylam Pharmaceuticals, Inc. | Complement component c5 irna compositions and methods of use thereof |
US9522176B2 (en) | 2013-10-22 | 2016-12-20 | Shire Human Genetic Therapies, Inc. | MRNA therapy for phenylketonuria |
WO2016205323A1 (en) | 2015-06-18 | 2016-12-22 | Alnylam Pharmaceuticals, Inc. | Polynucleotde agents targeting hydroxyacid oxidase (glycolate oxidase, hao1) and methods of use thereof |
WO2016209862A1 (en) | 2015-06-23 | 2016-12-29 | Alnylam Pharmaceuticals, Inc. | Glucokinase (gck) irna compositions and methods of use thereof |
WO2017011286A1 (en) | 2015-07-10 | 2017-01-19 | Alnylam Pharmaceuticals, Inc. | Insulin-like growth factor binding protein, acid labile subunit (igfals) and insulin-like growth factor 1 (igf-1) irna compositions and methods of use thereof |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
WO2017035319A1 (en) | 2015-08-26 | 2017-03-02 | Regulus Therapeutics Inc. | Methods for treatment of polycystic kidney disease |
US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
WO2017040078A1 (en) | 2015-09-02 | 2017-03-09 | Alnylam Pharmaceuticals, Inc. | PROGRAMMED CELL DEATH 1 LIGAND 1 (PD-L1) iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
US9695475B2 (en) | 2012-12-11 | 2017-07-04 | Ionis Pharmaceuticals, Inc. | Competitive modulation of microRNAs |
US9725479B2 (en) | 2010-04-22 | 2017-08-08 | Ionis Pharmaceuticals, Inc. | 5′-end derivatives |
WO2017184689A1 (en) | 2016-04-19 | 2017-10-26 | Alnylam Pharmaceuticals, Inc. | High density lipoprotein binding protein (hdlbp/vigilin) irna compositions and methods of use thereof |
KR101800833B1 (en) * | 2009-03-20 | 2017-11-23 | 씨엘에스엔 래버러토리스, 인코퍼레이티드 | Polyamine Derivatives |
WO2017214518A1 (en) | 2016-06-10 | 2017-12-14 | Alnylam Pharmaceuticals, Inc. | COMPLETMENT COMPONENT C5 iRNA COMPOSTIONS AND METHODS OF USE THEREOF FOR TREATING PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH) |
US9850269B2 (en) | 2014-04-25 | 2017-12-26 | Translate Bio, Inc. | Methods for purification of messenger RNA |
WO2018035387A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2018035388A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
EP3312281A2 (en) | 2013-03-14 | 2018-04-25 | Alnylam Pharmaceuticals, Inc. | Complement component c5 irna compositions and methods of use thereof |
US9957499B2 (en) | 2013-03-14 | 2018-05-01 | Translate Bio, Inc. | Methods for purification of messenger RNA |
WO2018098117A1 (en) | 2016-11-23 | 2018-05-31 | Alnylam Pharmaceuticals, Inc. | SERPINA1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
EP3329924A1 (en) | 2010-03-29 | 2018-06-06 | Alnylam Pharmaceuticals, Inc. | Sirna therapy for transthyretin (ttr) related ocular amyloidosis |
WO2018106568A1 (en) | 2016-12-05 | 2018-06-14 | Regulus Therapeutics Inc. | Methods for treatment of polycystic kidney disease |
WO2018106566A1 (en) | 2016-12-05 | 2018-06-14 | Regulus Therapeutics Inc. | Modified oligonucleotides for treatment of polycystic kidney disease |
WO2018112320A1 (en) | 2016-12-16 | 2018-06-21 | Alnylam Pharmaceuticals, Inc. | Methods for treating or preventing ttr-associated diseases using transthyretin (ttr) irna compositions |
US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US10060921B2 (en) | 2014-08-29 | 2018-08-28 | Alnylam Pharmaceuticals, Inc. | Methods of treating transthyretin (TTR) mediated amyloidosis |
EP3388068A1 (en) | 2011-06-21 | 2018-10-17 | Alnylam Pharmaceuticals, Inc. | Composition and methods for inhibition of expression of protein c (proc) genes |
WO2018191750A2 (en) | 2017-04-14 | 2018-10-18 | The Broad Institute Inc. | Novel delivery of large payloads |
WO2018195165A1 (en) | 2017-04-18 | 2018-10-25 | Alnylam Pharmaceuticals, Inc. | Methods for the treatment of subjects having a hepatitis b virus (hbv) infection |
US20180346410A1 (en) | 2015-12-30 | 2018-12-06 | Samyang Biopharmaceuticals Corporation | Method for selectively synthesizing cationic lipids |
US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US10207010B2 (en) | 2015-12-10 | 2019-02-19 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10208307B2 (en) | 2015-07-31 | 2019-02-19 | Alnylam Pharmaceuticals, Inc. | Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases |
US10266485B2 (en) | 2015-09-17 | 2019-04-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2019089922A1 (en) | 2017-11-01 | 2019-05-09 | Alnylam Pharmaceuticals, Inc. | Complement component c3 irna compositions and methods of use thereof |
WO2019094983A1 (en) | 2017-11-13 | 2019-05-16 | The Broad Institute, Inc. | Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway |
WO2019100039A1 (en) | 2017-11-20 | 2019-05-23 | Alnylam Pharmaceuticals, Inc. | Serum amyloid p component (apcs) irna compositions and methods of use thereof |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
JP2020007562A (en) * | 2009-12-23 | 2020-01-16 | ノバルティス アーゲー | Lipids, lipid compositions, and methods of using them |
WO2020037125A1 (en) | 2018-08-16 | 2020-02-20 | Alnylam Pharmaceuticals Inc. | Compositions and methods for inhibiting expression of the lect2 gene |
US10576166B2 (en) | 2009-12-01 | 2020-03-03 | Translate Bio, Inc. | Liver specific delivery of messenger RNA |
EP3620522A1 (en) | 2012-10-09 | 2020-03-11 | Sanofi | Methods for treatment of alport syndrome |
WO2020060986A1 (en) | 2018-09-18 | 2020-03-26 | Alnylam Pharmaceuticals, Inc. | Ketohexokinase (khk) irna compositions and methods of use thereof |
WO2020072324A1 (en) | 2018-10-01 | 2020-04-09 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
WO2020102142A1 (en) | 2018-11-13 | 2020-05-22 | Regulus Therapeutics Inc. | Microrna compounds and methods for modulating mir-10b activity |
WO2020132521A1 (en) | 2018-12-20 | 2020-06-25 | Praxis Precision Medicines, Inc. | Compositions and methods for the treatment of kcnt1 related disorders |
EP3674409A1 (en) | 2011-03-29 | 2020-07-01 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of tmprss6 gene |
US10731157B2 (en) | 2015-08-24 | 2020-08-04 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotide nanoparticles for the modulation of gene expression and uses thereof |
US10730924B2 (en) | 2016-05-18 | 2020-08-04 | Modernatx, Inc. | Polynucleotides encoding relaxin |
EP3693463A1 (en) | 2013-10-04 | 2020-08-12 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the alas1 gene |
WO2020186213A1 (en) | 2019-03-14 | 2020-09-17 | The Broad Institute, Inc. | Novel nucleic acid modifiers |
WO2020191102A1 (en) | 2019-03-18 | 2020-09-24 | The Broad Institute, Inc. | Type vii crispr proteins and systems |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
WO2020236972A2 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2021020412A1 (en) | 2019-07-30 | 2021-02-04 | 塩野義製薬株式会社 | Nucleic acid drug targeting murf1 |
WO2021030522A1 (en) | 2019-08-13 | 2021-02-18 | Alnylam Pharmaceuticals, Inc. | SMALL RIBOSOMAL PROTEIN SUBUNIT 25 (RPS25) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF |
WO2021046122A1 (en) | 2019-09-03 | 2021-03-11 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the lect2 gene |
WO2021046265A1 (en) | 2019-09-06 | 2021-03-11 | Generation Bio Co. | Lipid nanoparticle compositions comprising closed-ended dna and cleavable lipids and methods of use thereof |
EP3798306A1 (en) | 2013-12-12 | 2021-03-31 | Alnylam Pharmaceuticals, Inc. | Complement component irna compositions and methods of use thereof |
WO2021061707A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | Compositions and methods for modulating apolipoprotein b (apob) gene expression |
WO2021061815A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4α) GENE EXPRESSION |
US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
WO2021067747A1 (en) | 2019-10-04 | 2021-04-08 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing ugt1a1 gene expression |
WO2021087325A1 (en) | 2019-11-01 | 2021-05-06 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing dnajb1-prkaca fusion gene expression |
WO2021087036A1 (en) | 2019-11-01 | 2021-05-06 | Alnylam Pharmaceuticals, Inc. | HUNTINGTIN (HTT) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF |
WO2021102373A1 (en) | 2019-11-22 | 2021-05-27 | Alnylam Pharmaceuticals, Inc. | Ataxin3 (atxn3) rnai agent compositions and methods of use thereof |
WO2021119226A1 (en) | 2019-12-13 | 2021-06-17 | Alnylam Pharmaceuticals, Inc. | Human chromosome 9 open reading frame 72 (c9orf72) irna agent compositions and methods of use thereof |
US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
WO2021154941A1 (en) | 2020-01-31 | 2021-08-05 | Alnylam Pharmaceuticals, Inc. | Complement component c5 irna compositions for use in the treatment of amyotrophic lateral sclerosis (als) |
WO2021155274A1 (en) * | 2020-01-31 | 2021-08-05 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
WO2021163066A1 (en) | 2020-02-10 | 2021-08-19 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing vegf-a expression |
WO2021178607A1 (en) | 2020-03-05 | 2021-09-10 | Alnylam Pharmaceuticals, Inc. | Complement component c3 irna compositions and methods of use thereof for treating or preventing complement component c3-associated diseases |
WO2021183720A1 (en) | 2020-03-11 | 2021-09-16 | Omega Therapeutics, Inc. | Compositions and methods for modulating forkhead box p3 (foxp3) gene expression |
WO2021195307A1 (en) | 2020-03-26 | 2021-09-30 | Alnylam Pharmaceuticals, Inc. | Coronavirus irna compositions and methods of use thereof |
WO2021195218A1 (en) | 2020-03-24 | 2021-09-30 | Generation Bio Co. | Non-viral dna vectors and uses thereof for expressing gaucher therapeutics |
WO2021195214A1 (en) | 2020-03-24 | 2021-09-30 | Generation Bio Co. | Non-viral dna vectors and uses thereof for expressing factor ix therapeutics |
WO2021202443A2 (en) | 2020-03-30 | 2021-10-07 | Alnylam Pharmaceucticals, Inc. | Compositions and methods for silencing dnajc15 gene expression |
WO2021206922A1 (en) | 2020-04-07 | 2021-10-14 | Alnylam Pharmaceuticals, Inc. | Transmembrane serine protease 2 (tmprss2) irna compositions and methods of use thereof |
WO2021207167A1 (en) | 2020-04-06 | 2021-10-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing myoc expression |
WO2021206917A1 (en) | 2020-04-07 | 2021-10-14 | Alnylam Pharmaceuticals, Inc. | ANGIOTENSIN-CONVERTING ENZYME 2 (ACE2) iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
WO2021207189A1 (en) | 2020-04-07 | 2021-10-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing scn9a expression |
EP3904519A1 (en) | 2014-10-30 | 2021-11-03 | Genzyme Corporation | Polynucleotide agents targeting serpinc1 (at3) and methods of use thereof |
WO2021222065A1 (en) | 2020-04-27 | 2021-11-04 | Alnylam Pharmaceuticals, Inc. | Apolipoprotein e (apoe) irna agent compositions and methods of use thereof |
US11174500B2 (en) | 2018-08-24 | 2021-11-16 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US11173190B2 (en) | 2017-05-16 | 2021-11-16 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR |
WO2021237097A1 (en) | 2020-05-21 | 2021-11-25 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting marc1 gene expression |
WO2021252557A1 (en) | 2020-06-09 | 2021-12-16 | Alnylam Pharmaceuticals, Inc. | Rnai compositions and methods of use thereof for delivery by inhalation |
US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
US11224642B2 (en) | 2013-10-22 | 2022-01-18 | Translate Bio, Inc. | MRNA therapy for argininosuccinate synthetase deficiency |
WO2022023284A1 (en) | 2020-07-27 | 2022-02-03 | Anjarium Biosciences Ag | Compositions of dna molecules, methods of making therefor, and methods of use thereof |
US11253605B2 (en) | 2017-02-27 | 2022-02-22 | Translate Bio, Inc. | Codon-optimized CFTR MRNA |
US11254936B2 (en) | 2012-06-08 | 2022-02-22 | Translate Bio, Inc. | Nuclease resistant polynucleotides and uses thereof |
WO2022066847A1 (en) | 2020-09-24 | 2022-03-31 | Alnylam Pharmaceuticals, Inc. | Dipeptidyl peptidase 4 (dpp4) irna compositions and methods of use thereof |
WO2022076291A1 (en) | 2020-10-05 | 2022-04-14 | Alnylam Pharmaceuticals, Inc. | G protein-coupled receptor 75 (gpr75) irna compositions and methods of use thereof |
WO2022087041A1 (en) | 2020-10-21 | 2022-04-28 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for treating primary hyperoxaluria |
WO2022087329A1 (en) | 2020-10-23 | 2022-04-28 | Alnylam Pharmaceuticals, Inc. | Mucin 5b (muc5b) irna compositions and methods of use thereof |
WO2022119873A1 (en) | 2020-12-01 | 2022-06-09 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression |
EP4035659A1 (en) | 2016-11-29 | 2022-08-03 | PureTech LYT, Inc. | Exosomes for delivery of therapeutic agents |
US11408000B2 (en) | 2020-06-03 | 2022-08-09 | Triplet Therapeutics, Inc. | Oligonucleotides for the treatment of nucleotide repeat expansion disorders associated with MSH3 activity |
WO2022174000A2 (en) | 2021-02-12 | 2022-08-18 | Alnylam Pharmaceuticals, Inc. | Superoxide dismutase 1 (sod1) irna compositions and methods of use thereof for treating or preventing superoxide dismutase 1- (sod1-) associated neurodegenerative diseases |
WO2022182864A1 (en) | 2021-02-25 | 2022-09-01 | Alnylam Pharmaceuticals, Inc. | Prion protein (prnp) irna compositions and methods and methods of use thereof |
WO2022192519A1 (en) | 2021-03-12 | 2022-09-15 | Alnylam Pharmaceuticals, Inc. | Glycogen synthase kinase 3 alpha (gsk3a) irna compositions and methods of use thereof |
WO2022212231A2 (en) | 2021-03-29 | 2022-10-06 | Alnylam Pharmaceuticals, Inc. | Huntingtin (htt) irna agent compositions and methods of use thereof |
WO2022223556A1 (en) | 2021-04-20 | 2022-10-27 | Anjarium Biosciences Ag | Compositions of dna molecules encoding amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase, methods of making thereof, and methods of use thereof |
WO2022232289A1 (en) | 2021-04-27 | 2022-11-03 | Generation Bio Co. | Non-viral dna vectors expressing therapeutic antibodies and uses thereof |
WO2022232286A1 (en) | 2021-04-27 | 2022-11-03 | Generation Bio Co. | Non-viral dna vectors expressing anti-coronavirus antibodies and uses thereof |
WO2022232343A1 (en) | 2021-04-29 | 2022-11-03 | Alnylam Pharmaceuticals, Inc. | Signal transducer and activator of transcription factor 6 (stat6) irna compositions and methods of use thereof |
WO2022245583A1 (en) | 2021-05-18 | 2022-11-24 | Alnylam Pharmaceuticals, Inc. | Sodium-glucose cotransporter-2 (sglt2) irna compositions and methods of use thereof |
WO2022256290A2 (en) | 2021-06-04 | 2022-12-08 | Alnylam Pharmaceuticals, Inc. | HUMAN CHROMOSOME 9 OPEN READING FRAME 72 (C9ORF72) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF |
US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
WO2023283359A2 (en) | 2021-07-07 | 2023-01-12 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
WO2023044343A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Acyclic lipids and methods of use thereof |
WO2023044333A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Cyclic lipids and methods of use thereof |
WO2023060237A1 (en) | 2021-10-08 | 2023-04-13 | Regulus Therapeutics Inc. | Methods and compositions for treatment of polycystic kidney disease |
WO2023060238A2 (en) | 2021-10-08 | 2023-04-13 | Regulus Therapeutics Inc. | Methods and compositions for avoiding off-target effects |
WO2023076450A2 (en) | 2021-10-29 | 2023-05-04 | Alnylam Pharmaceuticals, Inc. | HUNTINGTIN (HTT) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF |
WO2023081526A1 (en) | 2021-11-08 | 2023-05-11 | Orna Therapeutics, Inc. | Lipid nanoparticle compositions for delivering circular polynucleotides |
WO2023122752A1 (en) | 2021-12-23 | 2023-06-29 | Renagade Therapeutics Management Inc. | Constrained lipids and methods of use thereof |
WO2023122762A1 (en) | 2021-12-22 | 2023-06-29 | Camp4 Therapeutics Corporation | Modulation of gene transcription using antisense oligonucleotides targeting regulatory rnas |
EP4209592A1 (en) | 2012-04-26 | 2023-07-12 | Genzyme Corporation | Serpinc1 irna compositions and methods of use thereof |
WO2023135273A2 (en) | 2022-01-14 | 2023-07-20 | Anjarium Biosciences Ag | Compositions of dna molecules encoding factor viii, methods of making thereof, and methods of use thereof |
WO2023141314A2 (en) | 2022-01-24 | 2023-07-27 | Alnylam Pharmaceuticals, Inc. | Heparin sulfate biosynthesis pathway enzyme irna agent compositions and methods of use thereof |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
WO2023177655A1 (en) | 2022-03-14 | 2023-09-21 | Generation Bio Co. | Heterologous prime boost vaccine compositions and methods of use |
WO2023196931A1 (en) | 2022-04-07 | 2023-10-12 | Renagade Therapeutics Management Inc. | Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents |
WO2023196818A1 (en) | 2022-04-04 | 2023-10-12 | The Regents Of The University Of California | Genetic complementation compositions and methods |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
US11806360B2 (en) | 2017-09-19 | 2023-11-07 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for treating transthyretin (TTR) mediated amyloidosis |
WO2023239756A1 (en) | 2022-06-07 | 2023-12-14 | Generation Bio Co. | Lipid nanoparticle compositions and uses thereof |
WO2023240277A2 (en) | 2022-06-10 | 2023-12-14 | Camp4 Therapeutics Corporation | Methods of modulating progranulin expression using antisense oligonucleotides targeting regulatory rnas |
WO2024040222A1 (en) | 2022-08-19 | 2024-02-22 | Generation Bio Co. | Cleavable closed-ended dna (cedna) and methods of use thereof |
WO2024059165A1 (en) | 2022-09-15 | 2024-03-21 | Alnylam Pharmaceuticals, Inc. | 17b-hydroxysteroid dehydrogenase type 13 (hsd17b13) irna compositions and methods of use thereof |
US11959081B2 (en) | 2021-08-03 | 2024-04-16 | Alnylam Pharmaceuticals, Inc. | Transthyretin (TTR) iRNA compositions and methods of use thereof |
US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
WO2024102730A1 (en) | 2022-11-08 | 2024-05-16 | Orna Therapeutics, Inc. | Lipids and nanoparticle compositions for delivering polynucleotides |
WO2024102762A1 (en) | 2022-11-08 | 2024-05-16 | Orna Therapeutics, Inc. | Lipids and lipid nanoparticle compositions for delivering polynucleotides |
WO2024102677A1 (en) | 2022-11-08 | 2024-05-16 | Orna Therapeutics, Inc. | Circular rna compositions |
WO2024119051A1 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Novel polyglycerol-conjugated lipids and lipid nanoparticle compositions comprising the same |
WO2024119074A1 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Stealth lipid nanoparticle compositions for cell targeting |
WO2024119103A1 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Lipid nanoparticles comprising nucleic acids and lipid-anchored polymers |
WO2024119145A1 (en) | 2022-12-01 | 2024-06-06 | Camp4 Therapeutics Corporation | Modulation of syngap1 gene transcription using antisense oligonucleotides targeting regulatory rnas |
WO2024119039A2 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Stealth lipid nanoparticles and uses thereof |
EP4385568A2 (en) | 2010-04-06 | 2024-06-19 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of cd274/pd-l1 gene |
WO2024125469A1 (en) * | 2022-12-12 | 2024-06-20 | Starna Therapeutics | Novel compounds and use thereof for targeted delivery |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
WO2024196998A1 (en) | 2023-03-22 | 2024-09-26 | Regulus Therapeutics, Inc. | Methods for treating nervous system disorders |
WO2024205657A2 (en) | 2023-03-29 | 2024-10-03 | Orna Therapeutics, Inc. | Lipids and lipid nanoparticle compositions for delivering polynucleotides |
US12121592B2 (en) | 2022-06-03 | 2024-10-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020142304A1 (en) * | 2001-03-09 | 2002-10-03 | Anderson Daniel G. | Uses and methods of making microarrays of polymeric biomaterials |
US9006487B2 (en) * | 2005-06-15 | 2015-04-14 | Massachusetts Institute Of Technology | Amine-containing lipids and uses thereof |
US8598333B2 (en) * | 2006-05-26 | 2013-12-03 | Alnylam Pharmaceuticals, Inc. | SiRNA silencing of genes expressed in cancer |
KR101129509B1 (en) | 2006-10-03 | 2012-04-13 | 알닐람 파마슈티칼스 인코포레이티드 | Lipid containing formulations |
AU2009241591A1 (en) * | 2008-01-31 | 2009-11-05 | Alnylam Pharmaceuticals, Inc. | Optimized methods for delivery of DSRNA targeting the PCSK9 gene |
WO2010047765A2 (en) | 2008-10-20 | 2010-04-29 | Massachussetts Institute Of Technology | Nanostructures for drug delivery |
CA2742954C (en) | 2008-11-07 | 2018-07-10 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
EP2184054A1 (en) * | 2008-11-08 | 2010-05-12 | Lipoxen Technologies Limited | Small Interfering RNA Delivery |
WO2010120385A1 (en) * | 2009-04-18 | 2010-10-21 | Massachusetts Institute Of Technology | pH SENSITIVE BIODEGRADABLE POLYMERIC PARTICLES FOR DRUG DELIVERY |
AU2017200272A1 (en) * | 2009-05-05 | 2017-02-02 | Arbutus Biopharma Corporation | Lipid compositions |
WO2011017548A1 (en) * | 2009-08-05 | 2011-02-10 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes |
JP5863670B2 (en) * | 2010-01-19 | 2016-02-17 | ノースウェスタン ユニバーシティ | Synthetic nanostructures containing nucleic acids and / or other components |
US20130116419A1 (en) | 2010-01-22 | 2013-05-09 | Daniel Zewge | Post-synthetic chemical modification of rna at the 2'-position of the ribose ring via "click" chemistry |
US9193827B2 (en) | 2010-08-26 | 2015-11-24 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
WO2012031205A2 (en) | 2010-09-03 | 2012-03-08 | The Brigham And Women's Hospital, Inc. | Lipid-polymer hybrid particles |
PL2691443T3 (en) | 2011-03-28 | 2021-08-30 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US9035039B2 (en) | 2011-12-22 | 2015-05-19 | Protiva Biotherapeutics, Inc. | Compositions and methods for silencing SMAD4 |
JP6275655B2 (en) | 2012-02-24 | 2018-02-07 | プロティバ バイオセラピューティクス インコーポレイテッド | Trialkylcationic lipids and methods of use thereof |
AU2013249548A1 (en) | 2012-04-19 | 2014-11-06 | Sirna Therapeutics, Inc. | Novel diester and triester based low molecular weight, biodegradable cationic lipids for oligonucleotide delivery |
US9255154B2 (en) | 2012-05-08 | 2016-02-09 | Alderbio Holdings, Llc | Anti-PCSK9 antibodies and use thereof |
WO2013172358A1 (en) * | 2012-05-14 | 2013-11-21 | 公立大学法人大阪府立大学 | Functional compound, molecular assembly containing functional compound, composition containing molecular assembly, kit, and use of molecular assembly, composition or kit |
BR112014031421A2 (en) | 2012-06-15 | 2017-06-27 | Brigham & Womens Hospital Inc | cancer treatment compositions and methods for producing them |
WO2014028487A1 (en) | 2012-08-13 | 2014-02-20 | Massachusetts Institute Of Technology | Amine-containing lipidoids and uses thereof |
LT2922554T (en) | 2012-11-26 | 2022-06-27 | Modernatx, Inc. | Terminally modified rna |
KR102205278B1 (en) | 2013-03-14 | 2021-01-22 | 다이서나 파마수이티컬, 인크. | Process for formulating an anionic agent |
WO2014179562A1 (en) | 2013-05-01 | 2014-11-06 | Massachusetts Institute Of Technology | 1,3,5-triazinane-2,4,6-trione derivatives and uses thereof |
WO2014186366A1 (en) | 2013-05-13 | 2014-11-20 | Tufts University | Nanocomplexes for delivery of saporin |
CN110974981A (en) | 2013-07-23 | 2020-04-10 | 野草莓树生物制药公司 | Compositions and methods for delivering messenger RNA |
NZ718817A (en) | 2013-10-22 | 2020-07-31 | Massachusetts Inst Technology | Lipid formulations for delivery of messenger rna |
CA3236835A1 (en) | 2013-11-22 | 2015-05-28 | Mina Therapeutics Limited | C/ebp alpha short activating rna compositions and methods of use |
AU2015241198A1 (en) | 2014-04-03 | 2016-11-17 | Invictus Oncology Pvt. Ltd. | Supramolecular combinatorial therapeutics |
SG10201912038TA (en) | 2014-04-23 | 2020-02-27 | Modernatx Inc | Nucleic acid vaccines |
ES2750686T3 (en) | 2014-05-30 | 2020-03-26 | Translate Bio Inc | Biodegradable lipids for nucleic acid administration |
PE20171238A1 (en) | 2014-06-24 | 2017-08-24 | Shire Human Genetic Therapies | STEREOCHEMICALLY ENRICHED COMPOSITIONS FOR NUCLEIC ACIDS ADMINISTRATION |
HRP20221536T1 (en) | 2014-06-25 | 2023-02-17 | Acuitas Therapeutics Inc. | Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US9840479B2 (en) | 2014-07-02 | 2017-12-12 | Massachusetts Institute Of Technology | Polyamine-fatty acid derived lipidoids and uses thereof |
AU2015320748A1 (en) | 2014-09-25 | 2017-04-20 | Cold Spring Harbor Laboratory | Treatment of Rett Syndrome |
EP3201338B1 (en) | 2014-10-02 | 2021-11-03 | Arbutus Biopharma Corporation | Compositions and methods for silencing hepatitis b virus gene expression |
EP3234141A4 (en) | 2014-12-18 | 2018-06-20 | Alnylam Pharmaceuticals, Inc. | Reversir tm compounds |
US20180245074A1 (en) | 2015-06-04 | 2018-08-30 | Protiva Biotherapeutics, Inc. | Treating hepatitis b virus infection using crispr |
SI3313829T1 (en) | 2015-06-29 | 2024-09-30 | Acuitas Therapeutics Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
EP3329003A2 (en) | 2015-07-29 | 2018-06-06 | Arbutus Biopharma Corporation | Compositions and methods for silencing hepatitis b virus gene expression |
WO2017031232A1 (en) | 2015-08-17 | 2017-02-23 | Modernatx, Inc. | Methods for preparing particles and related compositions |
CN113636947A (en) | 2015-10-28 | 2021-11-12 | 爱康泰生治疗公司 | Novel lipid and lipid nanoparticle formulations for delivery of nucleic acids |
US10836706B2 (en) | 2016-02-24 | 2020-11-17 | Rutgers, The State University Of New Jersey | Bacterial efflux pump inhibitors |
KR102336362B1 (en) | 2016-03-03 | 2021-12-08 | 보이저 테라퓨틱스, 인크. | Closed-ended linear duplex DNA for non-viral gene delivery |
CN109563511A (en) * | 2016-06-30 | 2019-04-02 | 阿布特斯生物制药公司 | For delivering the composition and method of mRNA |
US11180459B2 (en) | 2017-03-10 | 2021-11-23 | Rutgers, The State University Of New Jersey | Bacterial efflux pump inhibitors |
CA3061238A1 (en) | 2017-03-10 | 2018-09-13 | Rutgers, The State University Of New Jersey | Indole derivatives as efflux pump inhibitors |
US11938114B2 (en) | 2017-03-10 | 2024-03-26 | Rutgers, The State University Of New Jersey | Bacterial efflux pump inhibitors |
WO2018191657A1 (en) | 2017-04-13 | 2018-10-18 | Acuitas Therapeutics, Inc. | Lipids for delivery of active agents |
AU2018256877B2 (en) | 2017-04-28 | 2022-06-02 | Acuitas Therapeutics, Inc. | Novel carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids |
EP3630109A4 (en) | 2017-05-26 | 2021-03-17 | Rutgers, the State University of New Jersey | Bacterial efflux pump inhibitors |
US11458121B2 (en) | 2017-06-26 | 2022-10-04 | Rutgers, The State University Of New Jersey | Therapeutic compounds and methods to treat infection |
US20210228738A1 (en) | 2017-07-17 | 2021-07-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Compositions and methods for increasing or enhancing transduction of gene therapy vectors and for removing or reducing immunoglobulins |
WO2019036008A1 (en) | 2017-08-16 | 2019-02-21 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
WO2019036028A1 (en) | 2017-08-17 | 2019-02-21 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
WO2019036000A1 (en) | 2017-08-17 | 2019-02-21 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US11524932B2 (en) | 2017-08-17 | 2022-12-13 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US20200208152A1 (en) | 2017-09-08 | 2020-07-02 | Mina Therapeutics Limited | Stabilized sarna compositions and methods of use |
CA3075205A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | Stabilized hnf4a sarna compositions and methods of use |
US20190175560A1 (en) | 2017-12-01 | 2019-06-13 | Shepherd Therapeutics, Inc. | Mebendazole cancer therapies and methods of use |
WO2019126739A1 (en) | 2017-12-21 | 2019-06-27 | Shepherd Therapeutics, Inc. | Pyrvinium pamoate anti-cancer therapies |
EP4242307A3 (en) | 2018-04-12 | 2023-12-27 | MiNA Therapeutics Limited | Sirt1-sarna compositions and methods of use |
JP2021534101A (en) | 2018-08-09 | 2021-12-09 | ヴェルソー セラピューティクス, インコーポレイテッド | Oligonucleotide compositions for targeting CCR2 and CSF1R and their use |
US10913951B2 (en) | 2018-10-31 | 2021-02-09 | University of Pittsburgh—of the Commonwealth System of Higher Education | Silencing of HNF4A-P2 isoforms with siRNA to improve hepatocyte function in liver failure |
CN109432504B (en) * | 2018-11-27 | 2021-11-16 | 中国人民解放军总医院第四医学中心 | Osteogenesis gene intervention functional material and preparation method thereof |
MX2021008358A (en) | 2019-01-11 | 2021-09-30 | Acuitas Therapeutics Inc | Lipids for lipid nanoparticle delivery of active agents. |
US20220211740A1 (en) | 2019-04-12 | 2022-07-07 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
US11976019B2 (en) | 2020-07-16 | 2024-05-07 | Acuitas Therapeutics, Inc. | Cationic lipids for use in lipid nanoparticles |
JP2024511092A (en) | 2021-03-26 | 2024-03-12 | ミナ セラピューティクス リミテッド | TMEM173saRNA composition and method of use |
EP4342881A1 (en) * | 2021-05-20 | 2024-03-27 | Beijing Institute Of Technology | Compound, liposome, and uses thereof |
WO2023092102A1 (en) | 2021-11-19 | 2023-05-25 | Sanegene Bio Usa Inc. | Double stranded rna targeting angiopoietin-like 3 (angptl-3) and methods of use thereof |
WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
KR20230096312A (en) * | 2021-12-23 | 2023-06-30 | 주식회사 삼양홀딩스 | Lipid for drug delivery and nanoparticle comprising the same, and composition comprising the nanoparticle for drug delivery |
KR20230096311A (en) * | 2021-12-23 | 2023-06-30 | 주식회사 삼양홀딩스 | Nanoparticle composition for drug delivery to lung |
WO2023143601A1 (en) * | 2022-01-30 | 2023-08-03 | 康希诺生物股份公司 | Novel ionizable lipid used for nucleic acid delivery as well as lnp composition and vaccine thereof |
CN116554042A (en) * | 2022-01-30 | 2023-08-08 | 康希诺生物股份公司 | Novel ionizable lipids for nucleic acid delivery and LNP compositions and vaccines thereof |
WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
WO2023220561A1 (en) | 2022-05-09 | 2023-11-16 | Sanegene Bio Usa Inc. | Double stranded rna targeting 17-beta hydroxysteroiddehydrogenase 13 (hsd17b13) and methods of use thereof |
WO2023231959A2 (en) | 2022-05-30 | 2023-12-07 | Shanghai Circode Biomed Co., Ltd | Synthetic circular rna compositions and methods of use thereof |
CN117247359A (en) * | 2022-06-09 | 2023-12-19 | 中国科学院广州生物医药与健康研究院 | Dendrimer-like lipid compound, liposome, lipid complex, lipid nanoparticle and application thereof |
WO2024030976A2 (en) | 2022-08-03 | 2024-02-08 | Voyager Therapeutics, Inc. | Compositions and methods for crossing the blood brain barrier |
WO2024031101A1 (en) | 2022-08-05 | 2024-02-08 | Sanegene Bio Usa Inc. | Double stranded rna targeting angiotensinogen (agt) and methods of use thereof |
WO2024064910A1 (en) | 2022-09-23 | 2024-03-28 | Chroma Medicine, Inc. | Compositions and methods for epigenetic regulation of hbv gene expression |
WO2024081954A2 (en) | 2022-10-14 | 2024-04-18 | Sanegene Bio Usa Inc. | Small interfering rna targeting c3 and uses thereof |
WO2024137590A2 (en) | 2022-12-19 | 2024-06-27 | Sanegene Bio Usa Inc. | Small interfering rna targeting cfb and uses thereof |
WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
WO2024168010A2 (en) | 2023-02-09 | 2024-08-15 | Alnylam Pharmaceuticals, Inc. | Reversir molecules and methods of use thereof |
US20240309383A1 (en) | 2023-02-24 | 2024-09-19 | Suzhou Sanegene Bio Inc. | Small interfering rna targeting hbv and uses thereof |
WO2024186673A2 (en) | 2023-03-03 | 2024-09-12 | Sanegene Bio Usa Inc. | Small interfering rna targeting apoc3 and uses thereof |
Citations (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3608046A (en) | 1968-09-30 | 1971-09-21 | Nasa | Technique of duplicating fragile core |
US3687808A (en) | 1969-08-14 | 1972-08-29 | Univ Leland Stanford Junior | Synthetic polynucleotides |
US4469863A (en) | 1980-11-12 | 1984-09-04 | Ts O Paul O P | Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof |
US4476301A (en) | 1982-04-29 | 1984-10-09 | Centre National De La Recherche Scientifique | Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon |
US5023243A (en) | 1981-10-23 | 1991-06-11 | Molecular Biosystems, Inc. | Oligonucleotide therapeutic agent and method of making same |
US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
US5138045A (en) | 1990-07-27 | 1992-08-11 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
US5166315A (en) | 1989-12-20 | 1992-11-24 | Anti-Gene Development Group | Sequence-specific binding polymers for duplex nucleic acids |
US5177196A (en) | 1990-08-16 | 1993-01-05 | Microprobe Corporation | Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof |
US5185444A (en) | 1985-03-15 | 1993-02-09 | Anti-Gene Deveopment Group | Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages |
US5188897A (en) | 1987-10-22 | 1993-02-23 | Temple University Of The Commonwealth System Of Higher Education | Encapsulated 2',5'-phosphorothioate oligoadenylates |
WO1993007883A1 (en) | 1991-10-24 | 1993-04-29 | Isis Pharmaceuticals, Inc. | Derivatized oligonucleotides having improved uptake and other properties |
US5212293A (en) | 1990-08-06 | 1993-05-18 | American Cyanamid Company | Process for the preparation of deoxynucleosides |
US5214134A (en) | 1990-09-12 | 1993-05-25 | Sterling Winthrop Inc. | Process of linking nucleosides with a siloxane bridge |
US5216141A (en) | 1988-06-06 | 1993-06-01 | Benner Steven A | Oligonucleotide analogs containing sulfur linkages |
US5218105A (en) | 1990-07-27 | 1993-06-08 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
US5223168A (en) | 1989-12-12 | 1993-06-29 | Gary Holt | Surface cleaner and treatment |
US5235033A (en) | 1985-03-15 | 1993-08-10 | Anti-Gene Development Group | Alpha-morpholino ribonucleoside derivatives and polymers thereof |
US5264423A (en) | 1987-03-25 | 1993-11-23 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5264564A (en) | 1989-10-24 | 1993-11-23 | Gilead Sciences | Oligonucleotide analogs with novel linkages |
US5264562A (en) | 1989-10-24 | 1993-11-23 | Gilead Sciences, Inc. | Oligonucleotide analogs with novel linkages |
US5276019A (en) | 1987-03-25 | 1994-01-04 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5278302A (en) | 1988-05-26 | 1994-01-11 | University Patents, Inc. | Polynucleotide phosphorodithioates |
US5321131A (en) | 1990-03-08 | 1994-06-14 | Hybridon, Inc. | Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling |
US5378825A (en) | 1990-07-27 | 1995-01-03 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogs |
US5386023A (en) | 1990-07-27 | 1995-01-31 | Isis Pharmaceuticals | Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling |
US5387470A (en) | 1990-03-02 | 1995-02-07 | W. R. Grace & Co.-Conn. | Packaging film |
US5399676A (en) | 1989-10-23 | 1995-03-21 | Gilead Sciences | Oligonucleotides with inverted polarity |
US5405939A (en) | 1987-10-22 | 1995-04-11 | Temple University Of The Commonwealth System Of Higher Education | 2',5'-phosphorothioate oligoadenylates and their covalent conjugates with polylysine |
US5405938A (en) | 1989-12-20 | 1995-04-11 | Anti-Gene Development Group | Sequence-specific binding polymers for duplex nucleic acids |
US5434257A (en) | 1992-06-01 | 1995-07-18 | Gilead Sciences, Inc. | Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages |
US5455233A (en) | 1989-11-30 | 1995-10-03 | University Of North Carolina | Oligoribonucleoside and oligodeoxyribonucleoside boranophosphates |
US5457191A (en) | 1990-01-11 | 1995-10-10 | Isis Pharmaceuticals, Inc. | 3-deazapurines |
US5459255A (en) | 1990-01-11 | 1995-10-17 | Isis Pharmaceuticals, Inc. | N-2 substituted purines |
US5466677A (en) | 1993-03-06 | 1995-11-14 | Ciba-Geigy Corporation | Dinucleoside phosphinates and their pharmaceutical compositions |
US5470967A (en) | 1990-04-10 | 1995-11-28 | The Dupont Merck Pharmaceutical Company | Oligonucleotide analogs with sulfamate linkages |
US5476925A (en) | 1993-02-01 | 1995-12-19 | Northwestern University | Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups |
US5489677A (en) | 1990-07-27 | 1996-02-06 | Isis Pharmaceuticals, Inc. | Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms |
US5506351A (en) | 1992-07-23 | 1996-04-09 | Isis Pharmaceuticals | Process for the preparation of 2'-O-alkyl guanosine and related compounds |
US5519126A (en) | 1988-03-25 | 1996-05-21 | University Of Virginia Alumni Patents Foundation | Oligonucleotide N-alkylphosphoramidates |
US5521302A (en) | 1990-01-11 | 1996-05-28 | Isis Pharmaceuticals, Inc. | Process for preparing oligonucleotides having chiral phosphorus linkages |
US5539082A (en) | 1993-04-26 | 1996-07-23 | Nielsen; Peter E. | Peptide nucleic acids |
US5541307A (en) | 1990-07-27 | 1996-07-30 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogs and solid phase synthesis thereof |
US5550111A (en) | 1984-07-11 | 1996-08-27 | Temple University-Of The Commonwealth System Of Higher Education | Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof |
US5554746A (en) | 1994-05-16 | 1996-09-10 | Isis Pharmaceuticals, Inc. | Lactam nucleic acids |
US5561225A (en) | 1990-09-19 | 1996-10-01 | Southern Research Institute | Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages |
US5571799A (en) | 1991-08-12 | 1996-11-05 | Basco, Ltd. | (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response |
US5571902A (en) | 1993-07-29 | 1996-11-05 | Isis Pharmaceuticals, Inc. | Synthesis of oligonucleotides |
US5578718A (en) | 1990-01-11 | 1996-11-26 | Isis Pharmaceuticals, Inc. | Thiol-derivatized nucleosides |
US5587361A (en) | 1991-10-15 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5596086A (en) | 1990-09-20 | 1997-01-21 | Gilead Sciences, Inc. | Modified internucleoside linkages having one nitrogen and two carbon atoms |
US5599797A (en) | 1991-10-15 | 1997-02-04 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5602240A (en) | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
US5608046A (en) | 1990-07-27 | 1997-03-04 | Isis Pharmaceuticals, Inc. | Conjugated 4'-desmethyl nucleoside analog compounds |
US5610289A (en) | 1990-07-27 | 1997-03-11 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogues |
US5618704A (en) | 1990-07-27 | 1997-04-08 | Isis Pharmacueticals, Inc. | Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling |
US5623070A (en) | 1990-07-27 | 1997-04-22 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
US5625050A (en) | 1994-03-31 | 1997-04-29 | Amgen Inc. | Modified oligonucleotides and intermediates useful in nucleic acid therapeutics |
US5633360A (en) | 1992-04-14 | 1997-05-27 | Gilead Sciences, Inc. | Oligonucleotide analogs capable of passive cell membrane permeation |
US5663312A (en) | 1993-03-31 | 1997-09-02 | Sanofi | Oligonucleotide dimers with amide linkages replacing phosphodiester linkages |
US5677439A (en) | 1990-08-03 | 1997-10-14 | Sanofi | Oligonucleotide analogues containing phosphate diester linkage substitutes, compositions thereof, and precursor dinucleotide analogues |
US5677437A (en) | 1990-07-27 | 1997-10-14 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
US5697248A (en) | 1991-07-25 | 1997-12-16 | The Whitaker Corporation | Liquid level sensor |
US6262241B1 (en) | 1990-08-13 | 2001-07-17 | Isis Pharmaceuticals, Inc. | Compound for detecting and modulating RNA activity and gene expression |
WO2003070918A2 (en) | 2002-02-20 | 2003-08-28 | Ribozyme Pharmaceuticals, Incorporated | Rna interference by modified short interfering nucleic acid |
US20050064595A1 (en) | 2003-07-16 | 2005-03-24 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
WO2005026372A1 (en) | 2003-09-15 | 2005-03-24 | Protiva Biotherapeutics, Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
US20060211642A1 (en) | 2001-05-18 | 2006-09-21 | Sirna Therapeutics, Inc. | RNA inteference mediated inhibition of hepatitis C virus (HVC) gene expression using short interfering nucleic acid (siNA) |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3233734A (en) | 1961-04-19 | 1966-02-08 | Muller Hans | Filtering apparatus |
US3223734A (en) * | 1961-04-26 | 1965-12-14 | Archer Daniels Midland Co | Process for producing tertiary amines |
GB1561618A (en) * | 1976-10-18 | 1980-02-27 | Texaco Development Corp | Polyurethane formation using high tertiary amine content catalysts |
DE2820892A1 (en) * | 1978-05-12 | 1979-11-22 | Nattermann A & Cie | NEW STRUCTURAL ANALOGS OF GLYVERIDES AND METHOD FOR THE PRODUCTION THEREOF |
DD237512A1 (en) * | 1984-04-11 | 1986-07-16 | Rainer Noack | PROCESS FOR POLYMERIZING ISOCYANATES |
US4933470A (en) * | 1987-10-05 | 1990-06-12 | Neorx Corporation | Method of synthesis of vicinal diamines |
JPH02767A (en) * | 1987-12-17 | 1990-01-05 | Shionogi & Co Ltd | Lipid derivative |
JP2805649B2 (en) | 1988-12-24 | 1998-09-30 | 靖雄 菊川 | Process for producing diacylamide compounds and amides |
US5045338A (en) | 1989-09-19 | 1991-09-03 | Nabisco Brands, Inc. | Secondary amide esters as low calorie fat mimetics |
DE4013632A1 (en) * | 1990-04-27 | 1991-10-31 | Max Planck Gesellschaft | LIPOSOMES WITH POSITIVE EXCESS CHARGE |
JP3034993B2 (en) | 1991-06-17 | 2000-04-17 | 旭電化工業株式会社 | Synthetic resin composition with improved transparency |
US5239113A (en) * | 1991-10-15 | 1993-08-24 | Monsanto Company | Substituted β-amino acid derivatives useful as platelet aggregation inhibitors and intermediates thereof |
US5399460A (en) * | 1991-12-04 | 1995-03-21 | E. I. Du Pont De Nemours And Company | Negative photoresists containing aminoacrylate salts |
JP3122520B2 (en) * | 1992-03-13 | 2001-01-09 | 生化学工業株式会社 | 2-Aminopyridine derivative, production method thereof and fluorescent labeling agent |
JP2982621B2 (en) * | 1994-07-22 | 1999-11-29 | 味の素株式会社 | Novel amino acid with photosensitizing function |
US5830430A (en) * | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
US5646241A (en) | 1995-05-12 | 1997-07-08 | Quantum Materials, Inc. | Bleed resistant cyanate ester-containing compositions |
US5679852A (en) | 1995-06-02 | 1997-10-21 | Schering Aktiengesellschaft | Process for the production of DTPA-monoamides of the central carboxylic acid and their use as pharmaceutical agents |
AU7078396A (en) * | 1995-09-27 | 1997-04-30 | Regents Of The University Of California, The | Polyfunctional cationic cytofectins, formulations and methods for generating active cytofectin:polynucleotide transfection complexes |
US5869715A (en) * | 1995-09-27 | 1999-02-09 | The Reagents Of The University Of California | Polyfunctional cationic cytofectins |
JP2001505194A (en) * | 1996-11-05 | 2001-04-17 | ブリストル―マイヤーズ・スクイブ・カンパニー | Branched peptide linker |
US6210707B1 (en) | 1996-11-12 | 2001-04-03 | The Regents Of The University Of California | Methods of forming protein-linked lipidic microparticles, and compositions thereof |
EP1027033B1 (en) * | 1997-05-14 | 2009-07-22 | The University Of British Columbia | High efficiency encapsulation of nucleic acids in lipid vesicles |
JP2001055327A (en) * | 1999-06-11 | 2001-02-27 | Fuji Chemical Industries Ltd | New medicine containing hydroxamic acid derivative |
GB9914045D0 (en) | 1999-06-16 | 1999-08-18 | Smithkline Beecham Plc | Novel compounds |
CN1193059C (en) | 1999-07-14 | 2005-03-16 | 阿尔萨公司 | Neutral lipopolymer and liposomal compositions contg. same |
US6458876B1 (en) * | 1999-08-09 | 2002-10-01 | Air Products And Chemicals, Inc. | Ink jet paper coatings containing polyvinyl alcohol-alkylated polyamine blends |
MXPA02012198A (en) | 2000-06-09 | 2004-08-19 | Teni Boulikas | Encapsulation of plasmid dna (lipogenestm). |
ATE353900T1 (en) * | 2001-02-24 | 2007-03-15 | Boehringer Ingelheim Pharma | XANTHINE DERIVATIVES, THEIR PRODUCTION AND THEIR USE AS MEDICINAL PRODUCTS |
GB0118517D0 (en) * | 2001-07-30 | 2001-09-19 | Mitsubishi Tokyo Pharm Inc | Compound |
US20030194445A1 (en) * | 2001-11-12 | 2003-10-16 | Kuhner Carla H. | Compositions and methods of use of peptides in combination with biocides and/or germicides |
JP4493970B2 (en) * | 2002-10-16 | 2010-06-30 | 武田薬品工業株式会社 | Sustained formulation |
AU2004218463B2 (en) * | 2003-03-03 | 2009-07-16 | Array Biopharma, Inc. | p38 inhibitors and methods of use thereof |
JP2008502583A (en) * | 2003-10-01 | 2008-01-31 | バイエル・ヘルスケア・アクチェンゲゼルシャフト | Antibacterial amide macrocycle |
AU2005252273B2 (en) * | 2004-06-07 | 2011-04-28 | Arbutus Biopharma Corporation | Lipid encapsulated interfering RNA |
ATE537263T1 (en) | 2004-06-07 | 2011-12-15 | Protiva Biotherapeutics Inc | CATIONIC LIPIDS AND METHODS OF USE |
CA2572439A1 (en) | 2004-07-02 | 2006-01-12 | Protiva Biotherapeutics, Inc. | Immunostimulatory sirna molecules and uses therefor |
DE602005009535D1 (en) * | 2004-07-07 | 2008-10-16 | Statens Seruminstitut | OF ADJUVANS LIPID-BASED FORMS, USING GLYCOLIPIDES |
JP2006091276A (en) * | 2004-09-22 | 2006-04-06 | Fuji Photo Film Co Ltd | Anti-reflection film, polarizer, image display device, and method of manufacturing anti-reflection film |
GB0422877D0 (en) * | 2004-10-14 | 2004-11-17 | Univ Glasgow | Bioactive polymers |
EP1828109B1 (en) * | 2004-11-12 | 2013-06-05 | UCL Business PLC | Guanidine derivatives as inhibitors of ddah |
GB0425555D0 (en) * | 2004-11-19 | 2004-12-22 | Glaxo Group Ltd | Novel compounds |
GB0425556D0 (en) * | 2004-11-19 | 2004-12-22 | Glaxo Group Ltd | Novel compounds |
DE102004058925A1 (en) | 2004-12-07 | 2006-06-08 | Siemens Ag | High-frequency plasma ignition device for internal combustion engines, in particular for directly injecting gasoline engines |
WO2006074546A1 (en) | 2005-01-13 | 2006-07-20 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering rna |
GB0502482D0 (en) * | 2005-02-07 | 2005-03-16 | Glaxo Group Ltd | Novel compounds |
ITRM20050090A1 (en) * | 2005-03-02 | 2006-09-03 | Sigma Tau Ind Farmaceutiche Riunite Spa | DERIVATIVES OF AMINO-BUTANOIC ACID INHIBITOR OF THE CPT. |
US20060228406A1 (en) * | 2005-03-17 | 2006-10-12 | Invitrogen Corporation | Transfection reagent for non-adherent suspension cells |
US9006487B2 (en) * | 2005-06-15 | 2015-04-14 | Massachusetts Institute Of Technology | Amine-containing lipids and uses thereof |
JP2007230789A (en) * | 2006-02-27 | 2007-09-13 | Fujifilm Corp | Manufacturing process for inorganic oxide fine particle, inorganic oxide fine particle obtained by it and composition and optical film using it |
KR101129509B1 (en) | 2006-10-03 | 2012-04-13 | 알닐람 파마슈티칼스 인코포레이티드 | Lipid containing formulations |
WO2009086558A1 (en) * | 2008-01-02 | 2009-07-09 | Tekmira Pharmaceuticals Corporation | Improved compositions and methods for the delivery of nucleic acids |
-
2007
- 2007-10-03 KR KR1020097009148A patent/KR101129509B1/en active IP Right Grant
- 2007-10-03 CA CA2665225A patent/CA2665225C/en active Active
- 2007-10-03 ES ES07853756T patent/ES2430206T3/en active Active
- 2007-10-03 EP EP07853756.0A patent/EP2068886B1/en active Active
- 2007-10-03 CN CN201410667578.2A patent/CN105030654A/en active Pending
- 2007-10-03 DK DK07853756.0T patent/DK2068886T3/en active
- 2007-10-03 CA CA2848238A patent/CA2848238C/en not_active Expired - Fee Related
- 2007-10-03 MX MX2014014382A patent/MX363224B/en unknown
- 2007-10-03 AU AU2007303205A patent/AU2007303205A1/en not_active Abandoned
- 2007-10-03 CA CA3144493A patent/CA3144493A1/en active Pending
- 2007-10-03 CA CA2927045A patent/CA2927045A1/en not_active Abandoned
- 2007-10-03 CN CN200780044738.6A patent/CN101616677B/en active Active
- 2007-10-03 EP EP16002442.8A patent/EP3192788A1/en active Pending
- 2007-10-03 EP EP13004405.0A patent/EP2695608B1/en not_active Not-in-force
- 2007-10-03 MX MX2009003548A patent/MX2009003548A/en active IP Right Grant
- 2007-10-03 JP JP2009531586A patent/JP5933163B2/en active Active
- 2007-10-03 IN IN255DEN2015 patent/IN2015DN00255A/en unknown
- 2007-10-03 WO PCT/US2007/080331 patent/WO2008042973A2/en active Application Filing
- 2007-10-03 ES ES13004405.0T patent/ES2611924T3/en active Active
- 2007-10-03 CN CN201910154334.7A patent/CN110066224A/en active Pending
-
2008
- 2008-03-26 US US12/056,230 patent/US8034376B2/en not_active Expired - Fee Related
-
2009
- 2009-04-02 MX MX2019003005A patent/MX2019003005A/en unknown
- 2009-04-02 MX MX2022013691A patent/MX2022013691A/en unknown
-
2011
- 2011-08-16 US US13/211,094 patent/US8642076B2/en active Active
-
2013
- 2013-06-11 JP JP2013123084A patent/JP5833597B2/en not_active Expired - Fee Related
-
2014
- 2014-01-07 US US14/149,496 patent/US20140121393A1/en active Granted
-
2015
- 2015-08-07 JP JP2015157142A patent/JP2015227370A/en active Pending
-
2016
- 2016-11-10 JP JP2016219673A patent/JP2017036330A/en active Pending
-
2017
- 2017-04-20 US US15/492,898 patent/US20180065918A1/en not_active Abandoned
-
2018
- 2018-12-18 JP JP2018236147A patent/JP2019048887A/en active Pending
-
2019
- 2019-12-13 US US16/713,712 patent/US11420931B2/en active Active
-
2020
- 2020-10-30 JP JP2020182378A patent/JP7127098B2/en active Active
-
2022
- 2022-07-13 US US17/863,885 patent/US20230174459A1/en active Pending
- 2022-08-17 JP JP2022129999A patent/JP2022164716A/en active Pending
Patent Citations (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3608046A (en) | 1968-09-30 | 1971-09-21 | Nasa | Technique of duplicating fragile core |
US3687808A (en) | 1969-08-14 | 1972-08-29 | Univ Leland Stanford Junior | Synthetic polynucleotides |
US4469863A (en) | 1980-11-12 | 1984-09-04 | Ts O Paul O P | Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof |
US5023243A (en) | 1981-10-23 | 1991-06-11 | Molecular Biosystems, Inc. | Oligonucleotide therapeutic agent and method of making same |
US4476301A (en) | 1982-04-29 | 1984-10-09 | Centre National De La Recherche Scientifique | Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon |
US5550111A (en) | 1984-07-11 | 1996-08-27 | Temple University-Of The Commonwealth System Of Higher Education | Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof |
US5185444A (en) | 1985-03-15 | 1993-02-09 | Anti-Gene Deveopment Group | Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages |
US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
US5235033A (en) | 1985-03-15 | 1993-08-10 | Anti-Gene Development Group | Alpha-morpholino ribonucleoside derivatives and polymers thereof |
US5264423A (en) | 1987-03-25 | 1993-11-23 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5286717A (en) | 1987-03-25 | 1994-02-15 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5276019A (en) | 1987-03-25 | 1994-01-04 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5188897A (en) | 1987-10-22 | 1993-02-23 | Temple University Of The Commonwealth System Of Higher Education | Encapsulated 2',5'-phosphorothioate oligoadenylates |
US5405939A (en) | 1987-10-22 | 1995-04-11 | Temple University Of The Commonwealth System Of Higher Education | 2',5'-phosphorothioate oligoadenylates and their covalent conjugates with polylysine |
US5519126A (en) | 1988-03-25 | 1996-05-21 | University Of Virginia Alumni Patents Foundation | Oligonucleotide N-alkylphosphoramidates |
US5453496A (en) | 1988-05-26 | 1995-09-26 | University Patents, Inc. | Polynucleotide phosphorodithioate |
US5278302A (en) | 1988-05-26 | 1994-01-11 | University Patents, Inc. | Polynucleotide phosphorodithioates |
US5216141A (en) | 1988-06-06 | 1993-06-01 | Benner Steven A | Oligonucleotide analogs containing sulfur linkages |
US5399676A (en) | 1989-10-23 | 1995-03-21 | Gilead Sciences | Oligonucleotides with inverted polarity |
US5264564A (en) | 1989-10-24 | 1993-11-23 | Gilead Sciences | Oligonucleotide analogs with novel linkages |
US5264562A (en) | 1989-10-24 | 1993-11-23 | Gilead Sciences, Inc. | Oligonucleotide analogs with novel linkages |
US5455233A (en) | 1989-11-30 | 1995-10-03 | University Of North Carolina | Oligoribonucleoside and oligodeoxyribonucleoside boranophosphates |
US5223168A (en) | 1989-12-12 | 1993-06-29 | Gary Holt | Surface cleaner and treatment |
US5166315A (en) | 1989-12-20 | 1992-11-24 | Anti-Gene Development Group | Sequence-specific binding polymers for duplex nucleic acids |
US5405938A (en) | 1989-12-20 | 1995-04-11 | Anti-Gene Development Group | Sequence-specific binding polymers for duplex nucleic acids |
US5587469A (en) | 1990-01-11 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides containing N-2 substituted purines |
US5578718A (en) | 1990-01-11 | 1996-11-26 | Isis Pharmaceuticals, Inc. | Thiol-derivatized nucleosides |
US5521302A (en) | 1990-01-11 | 1996-05-28 | Isis Pharmaceuticals, Inc. | Process for preparing oligonucleotides having chiral phosphorus linkages |
US5457191A (en) | 1990-01-11 | 1995-10-10 | Isis Pharmaceuticals, Inc. | 3-deazapurines |
US5459255A (en) | 1990-01-11 | 1995-10-17 | Isis Pharmaceuticals, Inc. | N-2 substituted purines |
US5387470A (en) | 1990-03-02 | 1995-02-07 | W. R. Grace & Co.-Conn. | Packaging film |
US5321131A (en) | 1990-03-08 | 1994-06-14 | Hybridon, Inc. | Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling |
US5563253A (en) | 1990-03-08 | 1996-10-08 | Worcester Foundation For Biomedical Research | Linear aminoalkylphosphoramidate oligonucleotide derivatives |
US5541306A (en) | 1990-03-08 | 1996-07-30 | Worcester Foundation For Biomedical Research | Aminoalkylphosphotriester oligonucleotide derivatives |
US5536821A (en) | 1990-03-08 | 1996-07-16 | Worcester Foundation For Biomedical Research | Aminoalkylphosphorothioamidate oligonucleotide deratives |
US5470967A (en) | 1990-04-10 | 1995-11-28 | The Dupont Merck Pharmaceutical Company | Oligonucleotide analogs with sulfamate linkages |
US5623070A (en) | 1990-07-27 | 1997-04-22 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
US5218105A (en) | 1990-07-27 | 1993-06-08 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
US5608046A (en) | 1990-07-27 | 1997-03-04 | Isis Pharmaceuticals, Inc. | Conjugated 4'-desmethyl nucleoside analog compounds |
US5489677A (en) | 1990-07-27 | 1996-02-06 | Isis Pharmaceuticals, Inc. | Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms |
US5138045A (en) | 1990-07-27 | 1992-08-11 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
US5677437A (en) | 1990-07-27 | 1997-10-14 | Isis Pharmaceuticals, Inc. | Heteroatomic oligonucleoside linkages |
US5602240A (en) | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
US5378825A (en) | 1990-07-27 | 1995-01-03 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogs |
US5386023A (en) | 1990-07-27 | 1995-01-31 | Isis Pharmaceuticals | Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling |
US5541307A (en) | 1990-07-27 | 1996-07-30 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogs and solid phase synthesis thereof |
US5610289A (en) | 1990-07-27 | 1997-03-11 | Isis Pharmaceuticals, Inc. | Backbone modified oligonucleotide analogues |
US5618704A (en) | 1990-07-27 | 1997-04-08 | Isis Pharmacueticals, Inc. | Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling |
US5677439A (en) | 1990-08-03 | 1997-10-14 | Sanofi | Oligonucleotide analogues containing phosphate diester linkage substitutes, compositions thereof, and precursor dinucleotide analogues |
US5212293A (en) | 1990-08-06 | 1993-05-18 | American Cyanamid Company | Process for the preparation of deoxynucleosides |
US6262241B1 (en) | 1990-08-13 | 2001-07-17 | Isis Pharmaceuticals, Inc. | Compound for detecting and modulating RNA activity and gene expression |
US5177196A (en) | 1990-08-16 | 1993-01-05 | Microprobe Corporation | Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof |
US5214134A (en) | 1990-09-12 | 1993-05-25 | Sterling Winthrop Inc. | Process of linking nucleosides with a siloxane bridge |
US5561225A (en) | 1990-09-19 | 1996-10-01 | Southern Research Institute | Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages |
US5596086A (en) | 1990-09-20 | 1997-01-21 | Gilead Sciences, Inc. | Modified internucleoside linkages having one nitrogen and two carbon atoms |
US5697248A (en) | 1991-07-25 | 1997-12-16 | The Whitaker Corporation | Liquid level sensor |
US5571799A (en) | 1991-08-12 | 1996-11-05 | Basco, Ltd. | (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response |
US5587361A (en) | 1991-10-15 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5599797A (en) | 1991-10-15 | 1997-02-04 | Isis Pharmaceuticals, Inc. | Oligonucleotides having phosphorothioate linkages of high chiral purity |
WO1993007883A1 (en) | 1991-10-24 | 1993-04-29 | Isis Pharmaceuticals, Inc. | Derivatized oligonucleotides having improved uptake and other properties |
US5633360A (en) | 1992-04-14 | 1997-05-27 | Gilead Sciences, Inc. | Oligonucleotide analogs capable of passive cell membrane permeation |
US5434257A (en) | 1992-06-01 | 1995-07-18 | Gilead Sciences, Inc. | Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages |
US5506351A (en) | 1992-07-23 | 1996-04-09 | Isis Pharmaceuticals | Process for the preparation of 2'-O-alkyl guanosine and related compounds |
US5476925A (en) | 1993-02-01 | 1995-12-19 | Northwestern University | Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups |
US5466677A (en) | 1993-03-06 | 1995-11-14 | Ciba-Geigy Corporation | Dinucleoside phosphinates and their pharmaceutical compositions |
US5663312A (en) | 1993-03-31 | 1997-09-02 | Sanofi | Oligonucleotide dimers with amide linkages replacing phosphodiester linkages |
US5539082A (en) | 1993-04-26 | 1996-07-23 | Nielsen; Peter E. | Peptide nucleic acids |
US5571902A (en) | 1993-07-29 | 1996-11-05 | Isis Pharmaceuticals, Inc. | Synthesis of oligonucleotides |
US5625050A (en) | 1994-03-31 | 1997-04-29 | Amgen Inc. | Modified oligonucleotides and intermediates useful in nucleic acid therapeutics |
US5554746A (en) | 1994-05-16 | 1996-09-10 | Isis Pharmaceuticals, Inc. | Lactam nucleic acids |
US20060211642A1 (en) | 2001-05-18 | 2006-09-21 | Sirna Therapeutics, Inc. | RNA inteference mediated inhibition of hepatitis C virus (HVC) gene expression using short interfering nucleic acid (siNA) |
WO2003070918A2 (en) | 2002-02-20 | 2003-08-28 | Ribozyme Pharmaceuticals, Incorporated | Rna interference by modified short interfering nucleic acid |
US20050064595A1 (en) | 2003-07-16 | 2005-03-24 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
WO2005026372A1 (en) | 2003-09-15 | 2005-03-24 | Protiva Biotherapeutics, Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
Non-Patent Citations (4)
Title |
---|
CHAUDHURL, MIHIR K; HUSSAIN, SAHID; KANTAM, M. LAKSHMI; NEELIMA, B., TETRAHEDRON LETTERS, vol. 46, no. 48, 2005, pages 8329 - 8331 |
M. MANOHARAN, ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT, vol. 12, 2002, pages 103 |
SLEE, DEBORAH H.; ROMANO, SUZANNE J.; YU, JISGHUA; NGUYEN, TRUE N.; JOHN, JUDY K.; RAHEJA, NEIL K.; AXE, FRANK U.; JONES, TODD K.;, JOURNAL OF MEDICINAL CHEMISTRY, vol. 44, no. 13, 2001, pages 2094 - 2107 |
WENDER P. A. ET AL., ORGANIC LETTERS, vol. 7, 2005, pages 4815 |
Cited By (429)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9228186B2 (en) | 2002-11-14 | 2016-01-05 | Thermo Fisher Scientific Inc. | Methods and compositions for selecting siRNA of improved functionality |
US11198870B2 (en) | 2002-11-14 | 2021-12-14 | Thermo Fisher Scientific Inc. | Methods and compositions for selecting siRNA of improved functionality |
US9777270B2 (en) | 2002-11-14 | 2017-10-03 | Thermo Fisher Scientific Inc. | Methods and compositions for selecting siRNA of improved functionality |
US10233449B2 (en) | 2002-11-14 | 2019-03-19 | Thermo Fisher Scientific Inc. | Methods and compositions for selecting siRNA of improved functionality |
US8293719B2 (en) | 2004-03-12 | 2012-10-23 | Alnylam Pharmaceuticals, Inc. | iRNA agents targeting VEGF |
US10501742B2 (en) | 2006-05-11 | 2019-12-10 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the PCSK9 gene |
US9260718B2 (en) | 2006-05-11 | 2016-02-16 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the PCSK9 gene |
US9822365B2 (en) | 2006-05-11 | 2017-11-21 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the PCSK9 gene |
US8809292B2 (en) | 2006-05-11 | 2014-08-19 | Alnylam Pharmaceuticals, Inc | Compositions and methods for inhibiting expression of the PCSK9 gene |
US7939505B2 (en) | 2007-05-04 | 2011-05-10 | Marina Biotech, Inc. | Amino acid lipids and uses thereof |
US8501824B2 (en) | 2007-05-04 | 2013-08-06 | Marina Biotech, Inc. | Amino acid lipids and uses thereof |
US8877729B2 (en) | 2007-05-04 | 2014-11-04 | Marina Biotech, Inc. | Amino acid lipids and uses thereof |
US9731016B2 (en) | 2007-05-04 | 2017-08-15 | Marina Biotech, Inc. | Tyrosine-based lipids for delivery of therapeutics |
US9339461B2 (en) | 2007-05-04 | 2016-05-17 | Marina Biotech, Inc. | Arginine-based lipids for delivery of therapeutics |
EP2617828A1 (en) | 2007-12-10 | 2013-07-24 | Alnylam Pharmaceuticals Inc. | Compositions and methods for inhibiting expression of factor VII gene |
EP2848688A1 (en) | 2007-12-10 | 2015-03-18 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of factor VII gene |
WO2009088892A1 (en) * | 2008-01-02 | 2009-07-16 | Alnylam Pharmaceuticals, Inc. | Liver screening method |
EP2712926A2 (en) | 2008-03-05 | 2014-04-02 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of Eg5 and VEGF genes |
EP3208337A1 (en) | 2008-09-02 | 2017-08-23 | Alnylam Pharmaceuticals, Inc. | Compositions for combined inhibition of mutant egfr and il-6 expression |
EP2690175A2 (en) | 2008-09-02 | 2014-01-29 | Alnylam Pharmaceuticals | Compositions and methods for combined inhibition of mutant EGFR gene and IL-6 expression |
US11149273B2 (en) | 2008-09-25 | 2021-10-19 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of serum amyloid A gene |
US10472628B2 (en) | 2008-09-25 | 2019-11-12 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of Serum Amyloid A gene |
US11884919B2 (en) | 2008-09-25 | 2024-01-30 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of serum amyloid a gene |
US9206421B2 (en) | 2008-09-25 | 2015-12-08 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of serum amyloid A gene |
US9868950B2 (en) | 2008-09-25 | 2018-01-16 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of serum amyloid A gene |
EP3584320A1 (en) | 2008-09-25 | 2019-12-25 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of serum amyloid a gene |
EP2743265A1 (en) * | 2008-10-09 | 2014-06-18 | Tekmira Pharmaceuticals Corporation | Improved amino lipids and methods for the delivery of nucleic acids |
EP3225621A1 (en) * | 2008-10-09 | 2017-10-04 | Arbutus Biopharma Corporation | Improved amino lipids and methods for the delivery of nucleic acids |
CN104119242A (en) * | 2008-10-09 | 2014-10-29 | 泰米拉制药公司 | Improved amino lipids and methods for the delivery of nucleic acids |
CN104119242B (en) * | 2008-10-09 | 2017-07-07 | 泰米拉制药公司 | The amino lipids of improvement and the method for delivering nucleic acid |
EP3848461A1 (en) | 2008-10-20 | 2021-07-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of transthyretin |
EP3354733A1 (en) | 2008-10-20 | 2018-08-01 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of transthyretin |
US10240152B2 (en) | 2008-10-20 | 2019-03-26 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of transthyretin |
US8168775B2 (en) | 2008-10-20 | 2012-05-01 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of transthyretin |
EP2937418A1 (en) | 2008-10-20 | 2015-10-28 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of transthyretin |
US9234196B2 (en) | 2008-10-20 | 2016-01-12 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of transthyretin |
US8741866B2 (en) | 2008-10-20 | 2014-06-03 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of transthyretin |
EP2447274A2 (en) | 2008-10-24 | 2012-05-02 | Isis Pharmaceuticals, Inc. | Oligomeric compounds and methods |
US10117941B2 (en) | 2008-11-10 | 2018-11-06 | Arbutus Biopharma Corporation | Lipids and compositions for the delivery of therapeutics |
JP2015214560A (en) * | 2008-11-10 | 2015-12-03 | テクミラ ファーマシューティカルズ コーポレイションTekmira Pharmaceuticals Corporation | Novel lipids and compositions for the delivery of therapeutics |
JP2012508263A (en) * | 2008-11-10 | 2012-04-05 | アルニラム・ファーマシューティカルズ・インコーポレーテッド | Novel lipids and compositions for delivering therapeutic agents |
JP2018012724A (en) * | 2008-11-10 | 2018-01-25 | アルブータス・バイオファーマー・コーポレイション | Novel lipids and compositions for delivery of therapeutics |
US8999351B2 (en) | 2008-11-10 | 2015-04-07 | Tekmira Pharmaceuticals Corporation | Lipids and compositions for the delivery of therapeutics |
US10821186B2 (en) | 2008-11-10 | 2020-11-03 | Arbutus Biopharma Corporation | Lipids and compositions for the delivery of therapeutics |
US9682139B2 (en) | 2008-11-10 | 2017-06-20 | Arbutus Biopharma Corporation | Lipids and compositions for the delivery of therapeutics |
WO2010057217A1 (en) * | 2008-11-17 | 2010-05-20 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for increasing cellular uptake of rnai via sid-1 |
US9566295B2 (en) | 2008-12-10 | 2017-02-14 | Alnylam Pharmaceuticals, Inc. | GNAQ targeted dsRNA compositions and methods for inhibiting expression |
US12031133B2 (en) | 2008-12-10 | 2024-07-09 | Alnylam Pharmaceuticals, Inc. | GNAQ targeted dsRNA compositions and methods for inhibiting expression |
EP3225281A1 (en) | 2008-12-10 | 2017-10-04 | Alnylam Pharmaceuticals, Inc. | Gnaq targeted dsrna compositions and methods for inhibiting expression |
WO2010068816A1 (en) | 2008-12-10 | 2010-06-17 | Alnylam Pharmaceuticals, Inc. | Gnaq targeted dsrna compositions and methods for inhibiting expression |
US10954516B2 (en) | 2008-12-10 | 2021-03-23 | Alnylam Pharmaceuticals, Inc. | GNAQ targeted dsRNA compositions and methods for inhibiting expression |
US9963700B2 (en) | 2008-12-10 | 2018-05-08 | Alnylam Pharmaceuticals, Inc. | GNAQ targeted dsRNA compositions and methods for inhibiting expression |
WO2010088537A2 (en) | 2009-01-29 | 2010-08-05 | Alnylam Pharmaceuticals, Inc. | Improved lipid formulation |
EP3243504A1 (en) | 2009-01-29 | 2017-11-15 | Arbutus Biopharma Corporation | Improved lipid formulation |
WO2010099341A1 (en) | 2009-02-26 | 2010-09-02 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of mig-12 gene |
WO2010105209A1 (en) | 2009-03-12 | 2010-09-16 | Alnylam Pharmaceuticals, Inc. | LIPID FORMULATED COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION OF Eg5 AND VEGF GENES |
KR101800833B1 (en) * | 2009-03-20 | 2017-11-23 | 씨엘에스엔 래버러토리스, 인코퍼레이티드 | Polyamine Derivatives |
WO2010129687A1 (en) | 2009-05-05 | 2010-11-11 | Alnylam Pharmaceuticals, Inc | Methods of delivering oligonucleotides to immune cells |
JP2017149777A (en) * | 2009-05-05 | 2017-08-31 | アルブータス・バイオファーマー・コーポレイションTekmira Pharmaceuticals Corporation | Lipid compositions |
KR102229618B1 (en) | 2009-05-05 | 2021-03-18 | 알닐람 파마슈티칼스 인코포레이티드 | Lipid compositions |
EP3698631A2 (en) | 2009-05-05 | 2020-08-26 | Arbutus Biopharma Corporation | Methods of delivering oligonucleotides to immune cells |
JP2012526135A (en) * | 2009-05-05 | 2012-10-25 | アルニラム・ファーマシューティカルズ・インコーポレーテッド | Lipid composition |
KR20120088540A (en) * | 2009-05-05 | 2012-08-08 | 알닐람 파마슈티칼스 인코포레이티드 | Lipid compositions |
EP3504967A1 (en) | 2009-05-05 | 2019-07-03 | Arbutus Biopharma Corporation | Methods of delivering oligonucleotides to immune cells |
CN114524781A (en) * | 2009-05-05 | 2022-05-24 | 阿布特斯生物制药公司 | Lipid composition |
CN105903022A (en) * | 2009-05-05 | 2016-08-31 | 阿尔尼拉姆医药品有限公司 | Lipid compositions |
EP3097908A1 (en) | 2009-05-05 | 2016-11-30 | Arbutus Biopharma Corporation | Lipid compositions |
WO2010129709A1 (en) | 2009-05-05 | 2010-11-11 | Alnylam Pharmaceuticals, Inc. | Lipid compositions |
JP2015127341A (en) * | 2009-05-05 | 2015-07-09 | アルニラム・ファーマシューティカルズ・インコーポレーテッド | Lipid composition |
WO2010133970A1 (en) | 2009-05-20 | 2010-11-25 | Eth Zurich | Targeting micrornas for metabolic disorders |
US9957505B2 (en) | 2009-06-01 | 2018-05-01 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotides for multivalent RNA interference, compositions and methods of use thereof |
US9200276B2 (en) | 2009-06-01 | 2015-12-01 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotides for multivalent RNA interference, compositions and methods of use thereof |
JP2018141019A (en) * | 2009-06-10 | 2018-09-13 | アルブータス・バイオファーマー・コーポレイション | Improved lipid formulation |
US9394234B2 (en) | 2009-06-10 | 2016-07-19 | Arbutus Biopharma Corporation | Lipid formulations |
JP2012530059A (en) * | 2009-06-10 | 2012-11-29 | アルニラム・ファーマシューティカルズ・インコーポレーテッド | Improved lipid formulation |
WO2010144740A1 (en) | 2009-06-10 | 2010-12-16 | Alnylam Pharmaceuticals, Inc. | Improved lipid formulation |
EP3431076A1 (en) | 2009-06-10 | 2019-01-23 | Arbutus Biopharma Corporation | Improved lipid formulation |
JP2017122126A (en) * | 2009-06-10 | 2017-07-13 | アルブータス・バイオファーマー・コーポレイションTekmira Pharmaceuticals Corporation | Improved lipid formulation |
US8598139B2 (en) | 2009-06-15 | 2013-12-03 | Alnylam Pharmaceuticals, Inc. | Lipid formulated dsRNA targeting the PCSK9 gene |
US8273869B2 (en) | 2009-06-15 | 2012-09-25 | Alnylam Pharmaceuticals, Inc. | Lipid formulated dsRNA targeting the PCSK9 gene |
US9051567B2 (en) | 2009-06-15 | 2015-06-09 | Tekmira Pharmaceuticals Corporation | Methods for increasing efficacy of lipid formulated siRNA |
US10053689B2 (en) | 2009-06-15 | 2018-08-21 | Arbutus Biopharma Corporation | Methods for increasing efficacy of lipid formulated siRNA |
US9029338B2 (en) | 2009-08-14 | 2015-05-12 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus |
EP2810643A2 (en) | 2009-08-14 | 2014-12-10 | Alnylam Pharmaceuticals Inc. | Lipid formulated compositions and mehods for inhibiting expression of a gene from the ebola virus |
EP3150194A1 (en) * | 2009-08-31 | 2017-04-05 | NanoCarrier Co., Ltd. | Particle composition and medicinal composition comprising same |
EP2474306B1 (en) * | 2009-08-31 | 2016-11-09 | NanoCarrier Co., Ltd. | Particle composition and medicinal composition comprising same |
US9415059B2 (en) | 2009-08-31 | 2016-08-16 | Nanocarrier Co., Ltd. | Particulate composition and pharmaceutical composition containing the same |
US9187746B2 (en) | 2009-09-22 | 2015-11-17 | Alnylam Pharmaceuticals, Inc. | Dual targeting siRNA agents |
US9101643B2 (en) | 2009-11-03 | 2015-08-11 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of transthyretin (TTR) |
US10576166B2 (en) | 2009-12-01 | 2020-03-03 | Translate Bio, Inc. | Liver specific delivery of messenger RNA |
EP3494963A1 (en) | 2009-12-18 | 2019-06-12 | The University of British Columbia | Methods and compositions for delivery of nucleic acids |
WO2011075656A1 (en) | 2009-12-18 | 2011-06-23 | The University Of British Columbia | Methods and compositions for delivery of nucleic acids |
JP2020007562A (en) * | 2009-12-23 | 2020-01-16 | ノバルティス アーゲー | Lipids, lipid compositions, and methods of using them |
EP3329924A1 (en) | 2010-03-29 | 2018-06-06 | Alnylam Pharmaceuticals, Inc. | Sirna therapy for transthyretin (ttr) related ocular amyloidosis |
EP4385568A2 (en) | 2010-04-06 | 2024-06-19 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of cd274/pd-l1 gene |
US9725479B2 (en) | 2010-04-22 | 2017-08-08 | Ionis Pharmaceuticals, Inc. | 5′-end derivatives |
US9156873B2 (en) | 2010-04-28 | 2015-10-13 | Isis Pharmaceuticals, Inc. | Modified 5′ diphosphate nucleosides and oligomeric compounds prepared therefrom |
US9127033B2 (en) | 2010-04-28 | 2015-09-08 | Isis Pharmaceuticals, Inc. | 5′ modified nucleosides and oligomeric compounds prepared therefrom |
US10676738B2 (en) | 2010-04-28 | 2020-06-09 | Ionis Pharmaceuticals, Inc. | 5′ modified nucleosides and oligomeric compounds prepared therefrom |
US11268094B2 (en) | 2010-04-28 | 2022-03-08 | Ionis Pharmaceuticals, Inc | 5′ modified nucleosides and oligomeric compounds prepared therefrom |
EP3173419A1 (en) | 2010-04-28 | 2017-05-31 | Ionis Pharmaceuticals, Inc. | Modified nucleosides, analogs thereof and oligomeric compounds prepared therefrom |
WO2011139695A2 (en) | 2010-04-28 | 2011-11-10 | Isis Pharmaceuticals, Inc. | Modified 5' diphosphate nucleosides and oligomeric compounds prepared therefrom |
WO2011139702A2 (en) | 2010-04-28 | 2011-11-10 | Isis Pharmaceuticals, Inc. | Modified nucleosides and oligomeric compounds prepared therefrom |
EP3091027A1 (en) | 2010-04-28 | 2016-11-09 | Ionis Pharmaceuticals, Inc. | 5' modified nucleosides and oligomeric compounds prepared therefrom |
WO2011139699A2 (en) | 2010-04-28 | 2011-11-10 | Isis Pharmaceuticals, Inc. | 5' modified nucleosides and oligomeric compounds prepared therefrom |
WO2011141704A1 (en) | 2010-05-12 | 2011-11-17 | Protiva Biotherapeutics, Inc | Novel cyclic cationic lipids and methods of use |
WO2011141705A1 (en) | 2010-05-12 | 2011-11-17 | Protiva Biotherapeutics, Inc. | Novel cationic lipids and methods of use thereof |
EP3456827A2 (en) | 2010-06-02 | 2019-03-20 | Alnylam Pharmaceuticals, Inc. | Compositions and methods directed to treating liver fibrosis |
WO2011153323A2 (en) | 2010-06-02 | 2011-12-08 | Alnylam Pharmaceuticals, Inc. | Compositions and methods directed to treating liver fibrosis |
WO2011153493A2 (en) | 2010-06-03 | 2011-12-08 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
EP3254672A1 (en) | 2010-06-03 | 2017-12-13 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US9518259B2 (en) | 2010-06-15 | 2016-12-13 | Ionis Pharmaceuticals, Inc. | Compounds and methods for modulating interaction between proteins and target nucleic acids |
WO2012016188A2 (en) | 2010-07-30 | 2012-02-02 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for delivery of active agents |
WO2012016184A2 (en) | 2010-07-30 | 2012-02-02 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for delivery of active agents |
WO2012016188A3 (en) * | 2010-07-30 | 2012-04-12 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for delivery of active agents |
WO2012017208A1 (en) | 2010-08-04 | 2012-02-09 | Cizzle Biotechnology Limited | Methods and compounds for the diagnosis and treatment of |
US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9657295B2 (en) | 2010-10-01 | 2017-05-23 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US10064959B2 (en) | 2010-10-01 | 2018-09-04 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
WO2012064824A1 (en) | 2010-11-09 | 2012-05-18 | Alnylam Pharmaceuticals, Inc. | Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes |
CN103380113B (en) * | 2010-11-15 | 2018-03-30 | 生命科技公司 | Transfection reagent and its preparation and application containing amine |
CN103380113A (en) * | 2010-11-15 | 2013-10-30 | 生命科技公司 | Amine-containing transfection reagents and methods for making and using same |
US11464863B2 (en) | 2010-11-15 | 2022-10-11 | Life Technologies Corporation | Amine-containing transfection reagents and methods for making and using same |
CN113214102A (en) * | 2010-11-15 | 2021-08-06 | 生命技术公司 | Amine-containing transfection reagents and methods of making and using same |
WO2012068176A1 (en) * | 2010-11-15 | 2012-05-24 | Life Technologies Corporation | Amine-containing transfection reagents and methods for making and using same |
US10406237B2 (en) | 2010-11-15 | 2019-09-10 | Life Technololgies Corporation | Amine-containing transfection reagents and methods for making and using same |
US9901642B2 (en) | 2010-11-15 | 2018-02-27 | Life Technologies Corporation | Amine-containing transfection reagents and methods for making and using same |
WO2012078967A2 (en) | 2010-12-10 | 2012-06-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for increasing erythropoietin (epo) production |
WO2012079046A2 (en) | 2010-12-10 | 2012-06-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of klf-1 and bcl11a genes |
US9220779B2 (en) | 2010-12-30 | 2015-12-29 | Samyang Biopharmaceuticals Corporation | Carrier for negatively charged drugs comprising a cationic lipid and a preparation method thereof |
JP2014502615A (en) * | 2010-12-30 | 2014-02-03 | サムヤン バイオファーマシューティカルズ コーポレイション | Anionic drug carrier containing cationic lipid and method for producing the same |
EP3202760A1 (en) | 2011-01-11 | 2017-08-09 | Alnylam Pharmaceuticals, Inc. | Pegylated lipids and their use for drug delivery |
WO2012099755A1 (en) | 2011-01-11 | 2012-07-26 | Alnylam Pharmaceuticals, Inc. | Pegylated lipids and their use for drug delivery |
EP3674409A1 (en) | 2011-03-29 | 2020-07-01 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of tmprss6 gene |
US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
WO2012145374A1 (en) | 2011-04-19 | 2012-10-26 | Regulus Therapeutics Inc. | TARGETING miR-378 FAMILY MEMBERS FOR THE TREATMENT OF METABOLIC DISORDERS |
EP3211082A1 (en) | 2011-04-25 | 2017-08-30 | Regulus Therapeutics Inc. | Microrna compounds and methods for modulating mir-21 activity |
EP3933040A1 (en) | 2011-04-25 | 2022-01-05 | Sanofi | Microrna compounds and methods for modulating mir-21 activity |
WO2012148952A1 (en) | 2011-04-25 | 2012-11-01 | Regulus Therapeutics Inc | Microrna compounds and methods for modulating mir-21 activity |
US10413618B2 (en) | 2011-06-08 | 2019-09-17 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11052159B2 (en) | 2011-06-08 | 2021-07-06 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11338044B2 (en) | 2011-06-08 | 2022-05-24 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US10238754B2 (en) | 2011-06-08 | 2019-03-26 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US11951179B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US10507249B2 (en) | 2011-06-08 | 2019-12-17 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11291734B2 (en) | 2011-06-08 | 2022-04-05 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11951180B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US11547764B2 (en) | 2011-06-08 | 2023-01-10 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US9308281B2 (en) | 2011-06-08 | 2016-04-12 | Shire Human Genetic Therapies, Inc. | MRNA therapy for Fabry disease |
US11951181B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US10350303B1 (en) | 2011-06-08 | 2019-07-16 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US10888626B2 (en) | 2011-06-08 | 2021-01-12 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11730825B2 (en) | 2011-06-08 | 2023-08-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11185595B2 (en) | 2011-06-08 | 2021-11-30 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US9597413B2 (en) | 2011-06-08 | 2017-03-21 | Shire Human Genetic Therapies, Inc. | Pulmonary delivery of mRNA |
EP3388068A1 (en) | 2011-06-21 | 2018-10-17 | Alnylam Pharmaceuticals, Inc. | Composition and methods for inhibition of expression of protein c (proc) genes |
EP4092120A1 (en) | 2011-06-21 | 2022-11-23 | Alnylam Pharmaceuticals, Inc. | Angiopoietin-like 3 (anglptl3) irna compositions and methods of use thereof |
WO2012177906A1 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Assays and methods for determining activity of a therapeutic agent in a subject |
WO2012177784A2 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals | Angiopoietin-like 3 (angptl3) irna compostions and methods of use thereof |
EP3656860A1 (en) | 2011-06-21 | 2020-05-27 | Alnylam Pharmaceuticals, Inc. | Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof |
WO2012177947A2 (en) | 2011-06-21 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of expression of apolipoprotein c-iii (apoc3) genes |
EP3444348A1 (en) | 2011-06-21 | 2019-02-20 | Alnylam Pharmaceuticals, Inc. | Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof |
EP3564393A1 (en) | 2011-06-21 | 2019-11-06 | Alnylam Pharmaceuticals, Inc. | Assays and methods for determining activity of a therapeutic agent in a subject |
EP3693464A2 (en) | 2011-06-21 | 2020-08-12 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of expression of apolipoprotein c-iii (apoc3) genes |
EP4134433A1 (en) | 2011-06-23 | 2023-02-15 | Alnylam Pharmaceuticals, Inc. | Serpina1 sirnas: compositions of matter and methods of treatment |
EP3366312A1 (en) | 2011-06-23 | 2018-08-29 | Alnylam Pharmaceuticals, Inc. | Serpina 1 sirnas: compositions of matter and methods of treatment |
EP3597750A1 (en) | 2011-06-23 | 2020-01-22 | Alnylam Pharmaceuticals, Inc. | Serpina1 sirnas: compositions of matter and methods of treatment |
WO2012178033A2 (en) | 2011-06-23 | 2012-12-27 | Alnylam Pharmaceuticals, Inc. | Serpina1 sirnas: compositions of matter and methods of treatment |
US10751386B2 (en) | 2011-09-12 | 2020-08-25 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
WO2013049328A1 (en) | 2011-09-27 | 2013-04-04 | Alnylam Pharmaceuticals, Inc. | Di-aliphatic substituted pegylated lipids |
EP3456317A1 (en) | 2011-09-27 | 2019-03-20 | Alnylam Pharmaceuticals, Inc. | Di-aliphatic substituted pegylated lipids |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US10570391B2 (en) | 2011-11-18 | 2020-02-25 | Alnylam Pharmaceuticals, Inc. | RNAi agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases |
US9399775B2 (en) | 2011-11-18 | 2016-07-26 | Alnylam Pharmaceuticals, Inc. | RNAi agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases |
US11590229B2 (en) | 2011-12-07 | 2023-02-28 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
EP3988537A1 (en) | 2011-12-07 | 2022-04-27 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11633480B2 (en) | 2011-12-07 | 2023-04-25 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11612657B2 (en) | 2011-12-07 | 2023-03-28 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
WO2013086354A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11400158B2 (en) | 2011-12-07 | 2022-08-02 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11382979B2 (en) | 2011-12-07 | 2022-07-12 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11633479B2 (en) | 2011-12-07 | 2023-04-25 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11246933B1 (en) | 2011-12-07 | 2022-02-15 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11679158B2 (en) | 2011-12-07 | 2023-06-20 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
WO2013086373A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Lipids for the delivery of active agents |
WO2013086322A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Branched alkyl and cycloalkyl terminated biodegradable lipids for the delivery of active agents |
US9295689B2 (en) | 2011-12-16 | 2016-03-29 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
US9061059B2 (en) | 2012-04-02 | 2015-06-23 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating protein deficiency |
US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
US9089604B2 (en) | 2012-04-02 | 2015-07-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating galactosylceramidase protein deficiency |
US9192651B2 (en) | 2012-04-02 | 2015-11-24 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
US9114113B2 (en) | 2012-04-02 | 2015-08-25 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding citeD4 |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9301993B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding apoptosis inducing factor 1 |
US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
WO2013154799A1 (en) | 2012-04-09 | 2013-10-17 | Isis Pharmaceuticals, Inc. | Tricyclic nucleosides and oligomeric compounds prepared therefrom |
EP3868883A1 (en) | 2012-04-10 | 2021-08-25 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the alas1 gene |
WO2013155204A2 (en) | 2012-04-10 | 2013-10-17 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the alas1 gene |
EP3284824A1 (en) | 2012-04-10 | 2018-02-21 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the alas1 gene |
WO2013163258A1 (en) | 2012-04-25 | 2013-10-31 | Regulus Therapeutics Inc. | Microrna compounds and methods for modulating mir-21 activity |
EP4209592A1 (en) | 2012-04-26 | 2023-07-12 | Genzyme Corporation | Serpinc1 irna compositions and methods of use thereof |
US11254936B2 (en) | 2012-06-08 | 2022-02-22 | Translate Bio, Inc. | Nuclease resistant polynucleotides and uses thereof |
WO2014018375A1 (en) | 2012-07-23 | 2014-01-30 | Xenon Pharmaceuticals Inc. | Cyp8b1 and uses thereof in therapeutic and diagnostic methods |
EP3620522A1 (en) | 2012-10-09 | 2020-03-11 | Sanofi | Methods for treatment of alport syndrome |
EP3336187A1 (en) | 2012-12-05 | 2018-06-20 | Alnylam Pharmaceuticals, Inc. | Pcsk9 irna compositions and methods of use thereof |
EP4083209A1 (en) | 2012-12-05 | 2022-11-02 | Alnylam Pharmaceuticals, Inc. | Pcsk9 irna compositions and methods of use thereof |
WO2014089313A1 (en) | 2012-12-05 | 2014-06-12 | Alnylam Pharmaceuticals | PCSK9 iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
WO2014089486A1 (en) * | 2012-12-07 | 2014-06-12 | Shire Human Genetic Therapies, Inc. | Lipidic nanoparticles for mrna delivering |
US9695475B2 (en) | 2012-12-11 | 2017-07-04 | Ionis Pharmaceuticals, Inc. | Competitive modulation of microRNAs |
WO2014134445A1 (en) | 2013-02-28 | 2014-09-04 | Tufts Unversity | Disulfide compounds for delivery of pharmaceutical agents |
US9765022B2 (en) | 2013-02-28 | 2017-09-19 | Tufts University | Disulfide compounds for delivery of pharmaceutical agents |
CN105283441A (en) * | 2013-02-28 | 2016-01-27 | 塔夫茨大学 | Disulfide compounds for delivery of pharmaceutical agents |
EP3995489A2 (en) | 2013-02-28 | 2022-05-11 | Tufts University | Disulfide compounds for delivery of pharmaceutical agents |
US10876104B2 (en) | 2013-03-14 | 2020-12-29 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US10420791B2 (en) | 2013-03-14 | 2019-09-24 | Translate Bio, Inc. | CFTR MRNA compositions and related methods and uses |
US11820977B2 (en) | 2013-03-14 | 2023-11-21 | Translate Bio, Inc. | Methods for purification of messenger RNA |
EP3312281A2 (en) | 2013-03-14 | 2018-04-25 | Alnylam Pharmaceuticals, Inc. | Complement component c5 irna compositions and methods of use thereof |
US9181321B2 (en) | 2013-03-14 | 2015-11-10 | Shire Human Genetic Therapies, Inc. | CFTR mRNA compositions and related methods and uses |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
US11692189B2 (en) | 2013-03-14 | 2023-07-04 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US9713626B2 (en) | 2013-03-14 | 2017-07-25 | Rana Therapeutics, Inc. | CFTR mRNA compositions and related methods and uses |
US9957499B2 (en) | 2013-03-14 | 2018-05-01 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US11510937B2 (en) | 2013-03-14 | 2022-11-29 | Translate Bio, Inc. | CFTR MRNA compositions and related methods and uses |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
WO2014179446A2 (en) | 2013-05-01 | 2014-11-06 | Regulus Therapeutics Inc. | Microrna compounds and methods for modulating mir-122 |
WO2014179445A1 (en) | 2013-05-01 | 2014-11-06 | Regulus Therapeutics Inc. | Compounds and methods for enhanced cellular uptake |
WO2014182661A2 (en) | 2013-05-06 | 2014-11-13 | Alnylam Pharmaceuticals, Inc | Dosages and methods for delivering lipid formulated nucleic acid molecules |
EP3587578A1 (en) | 2013-05-22 | 2020-01-01 | Alnylam Pharmaceuticals, Inc. | Tmprss6 irna compositions and methods of use thereof |
WO2014190137A1 (en) | 2013-05-22 | 2014-11-27 | Alnylam Pharmaceuticals, Inc. | SERPINA1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
EP3828276A1 (en) | 2013-05-22 | 2021-06-02 | Alnylam Pharmaceuticals, Inc. | Tmprss6 irna compositions and methods of use thereof |
WO2014190157A1 (en) | 2013-05-22 | 2014-11-27 | Alnylam Pharmaceuticals, Inc. | Tmprss6 compositions and methods of use thereof |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
WO2015050990A1 (en) | 2013-10-02 | 2015-04-09 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the lect2 gene |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
EP3693463A1 (en) | 2013-10-04 | 2020-08-12 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the alas1 gene |
US9522176B2 (en) | 2013-10-22 | 2016-12-20 | Shire Human Genetic Therapies, Inc. | MRNA therapy for phenylketonuria |
US11224642B2 (en) | 2013-10-22 | 2022-01-18 | Translate Bio, Inc. | MRNA therapy for argininosuccinate synthetase deficiency |
US11377642B2 (en) | 2013-10-22 | 2022-07-05 | Translate Bio, Inc. | mRNA therapy for phenylketonuria |
US10208295B2 (en) | 2013-10-22 | 2019-02-19 | Translate Bio, Inc. | MRNA therapy for phenylketonuria |
WO2015061536A1 (en) | 2013-10-25 | 2015-04-30 | Regulus Therapeutics Inc. | Microrna compounds and methods for modulating mir-21 activity |
EP3798306A1 (en) | 2013-12-12 | 2021-03-31 | Alnylam Pharmaceuticals, Inc. | Complement component irna compositions and methods of use thereof |
WO2015123264A1 (en) | 2014-02-11 | 2015-08-20 | Alnylam Pharmaceuticals, Inc. | Ketohexokinase (khk) irna compositions and methods of use thereof |
EP3960860A2 (en) | 2014-02-11 | 2022-03-02 | Alnylam Pharmaceuticals, Inc. | Ketohexokinase (khk) irna compositions and methods of use thereof |
US9850269B2 (en) | 2014-04-25 | 2017-12-26 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US11059841B2 (en) | 2014-04-25 | 2021-07-13 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US12060381B2 (en) | 2014-04-25 | 2024-08-13 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US10155785B2 (en) | 2014-04-25 | 2018-12-18 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US11884692B2 (en) | 2014-04-25 | 2024-01-30 | Translate Bio, Inc. | Methods for purification of messenger RNA |
WO2015179724A1 (en) | 2014-05-22 | 2015-11-26 | Alnylam Pharmaceuticals, Inc. | Angiotensinogen (agt) irna compositions and methods of use thereof |
EP3739048A1 (en) | 2014-05-22 | 2020-11-18 | Alnylam Pharmaceuticals, Inc. | Angiotensinogen (agt) irna compositions and methods of use thereof |
WO2016022753A1 (en) | 2014-08-07 | 2016-02-11 | Regulus Therapeutics Inc. | Targeting micrornas for metabolic disorders |
US10060921B2 (en) | 2014-08-29 | 2018-08-28 | Alnylam Pharmaceuticals, Inc. | Methods of treating transthyretin (TTR) mediated amyloidosis |
US11079379B2 (en) | 2014-08-29 | 2021-08-03 | Alnylam Pharmaceuticals, Inc. | Methods of treating transthyretin (TTR) mediated amyloidosis |
WO2016040589A1 (en) | 2014-09-12 | 2016-03-17 | Alnylam Pharmaceuticals, Inc. | Polynucleotide agents targeting complement component c5 and methods of use thereof |
WO2016057893A1 (en) | 2014-10-10 | 2016-04-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression |
EP4039809A1 (en) | 2014-10-10 | 2022-08-10 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression |
WO2016061487A1 (en) | 2014-10-17 | 2016-04-21 | Alnylam Pharmaceuticals, Inc. | Polynucleotide agents targeting aminolevulinic acid synthase-1 (alas1) and uses thereof |
EP3904519A1 (en) | 2014-10-30 | 2021-11-03 | Genzyme Corporation | Polynucleotide agents targeting serpinc1 (at3) and methods of use thereof |
EP3647424A1 (en) | 2014-11-10 | 2020-05-06 | Alnylam Pharmaceuticals, Inc. | Hepatitis b virus (hbv) irna compositions and methods of use thereof |
WO2016077321A1 (en) | 2014-11-10 | 2016-05-19 | Alnylam Pharmaceuticals, Inc. | Hepatitis b virus (hbv) irna compositions and methods of use thereof |
WO2016081444A1 (en) | 2014-11-17 | 2016-05-26 | Alnylam Pharmaceuticals, Inc. | Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof |
WO2016130806A2 (en) | 2015-02-13 | 2016-08-18 | Alnylam Pharmaceuticals, Inc. | Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof |
WO2016201301A1 (en) | 2015-06-12 | 2016-12-15 | Alnylam Pharmaceuticals, Inc. | Complement component c5 irna compositions and methods of use thereof |
WO2016205323A1 (en) | 2015-06-18 | 2016-12-22 | Alnylam Pharmaceuticals, Inc. | Polynucleotde agents targeting hydroxyacid oxidase (glycolate oxidase, hao1) and methods of use thereof |
WO2016209862A1 (en) | 2015-06-23 | 2016-12-29 | Alnylam Pharmaceuticals, Inc. | Glucokinase (gck) irna compositions and methods of use thereof |
WO2017011286A1 (en) | 2015-07-10 | 2017-01-19 | Alnylam Pharmaceuticals, Inc. | Insulin-like growth factor binding protein, acid labile subunit (igfals) and insulin-like growth factor 1 (igf-1) irna compositions and methods of use thereof |
US10683501B2 (en) | 2015-07-31 | 2020-06-16 | Alnylam Pharmaceuticals, Inc. | Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases |
US12049628B2 (en) | 2015-07-31 | 2024-07-30 | Alnylam Pharmaceuticals, Inc. | Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases |
US10208307B2 (en) | 2015-07-31 | 2019-02-19 | Alnylam Pharmaceuticals, Inc. | Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases |
US11286486B2 (en) | 2015-07-31 | 2022-03-29 | Alnylam Pharmaceuticals, Inc. | Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases |
US10731157B2 (en) | 2015-08-24 | 2020-08-04 | Halo-Bio Rnai Therapeutics, Inc. | Polynucleotide nanoparticles for the modulation of gene expression and uses thereof |
US10633657B2 (en) | 2015-08-26 | 2020-04-28 | Regulus Therapeutics Inc. | Methods for treatment of polycystic kidney disease |
US11168325B2 (en) | 2015-08-26 | 2021-11-09 | Regulus Therapeutics Inc. | Methods for treatment of polycystic kidney disease |
EP4268891A2 (en) | 2015-08-26 | 2023-11-01 | Regulus Therapeutics Inc. | Compound for use in methods for treatment of polycystic kidney disease |
WO2017035319A1 (en) | 2015-08-26 | 2017-03-02 | Regulus Therapeutics Inc. | Methods for treatment of polycystic kidney disease |
RU2742300C2 (en) * | 2015-08-26 | 2021-02-04 | Регьюлэс Терапьютикс Инк. | Methods of treating polycystic kidney disease |
EP4393495A2 (en) | 2015-09-02 | 2024-07-03 | Alnylam Pharmaceuticals, Inc. | Programmed cell death 1 ligand 1 (pd-l1) irna compositions and methods of use thereof |
WO2017040078A1 (en) | 2015-09-02 | 2017-03-09 | Alnylam Pharmaceuticals, Inc. | PROGRAMMED CELL DEATH 1 LIGAND 1 (PD-L1) iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
US10442756B2 (en) | 2015-09-17 | 2019-10-15 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US11220476B2 (en) | 2015-09-17 | 2022-01-11 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10266485B2 (en) | 2015-09-17 | 2019-04-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10392341B2 (en) | 2015-09-17 | 2019-08-27 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10485885B2 (en) | 2015-12-10 | 2019-11-26 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US11285222B2 (en) | 2015-12-10 | 2022-03-29 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10556018B2 (en) | 2015-12-10 | 2020-02-11 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10207010B2 (en) | 2015-12-10 | 2019-02-19 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10799463B2 (en) | 2015-12-22 | 2020-10-13 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US10793516B2 (en) | 2015-12-30 | 2020-10-06 | Samyang Biopharmaceuticals Corporation | Method for selectively synthesizing cationic lipids |
US20180346410A1 (en) | 2015-12-30 | 2018-12-06 | Samyang Biopharmaceuticals Corporation | Method for selectively synthesizing cationic lipids |
WO2017184689A1 (en) | 2016-04-19 | 2017-10-26 | Alnylam Pharmaceuticals, Inc. | High density lipoprotein binding protein (hdlbp/vigilin) irna compositions and methods of use thereof |
US12103955B2 (en) | 2016-05-18 | 2024-10-01 | Modernatx, Inc. | Polynucleotides encoding relaxin |
US10730924B2 (en) | 2016-05-18 | 2020-08-04 | Modernatx, Inc. | Polynucleotides encoding relaxin |
WO2017214518A1 (en) | 2016-06-10 | 2017-12-14 | Alnylam Pharmaceuticals, Inc. | COMPLETMENT COMPONENT C5 iRNA COMPOSTIONS AND METHODS OF USE THEREOF FOR TREATING PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH) |
WO2018035388A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
WO2018035387A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
WO2018098117A1 (en) | 2016-11-23 | 2018-05-31 | Alnylam Pharmaceuticals, Inc. | SERPINA1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
EP4035659A1 (en) | 2016-11-29 | 2022-08-03 | PureTech LYT, Inc. | Exosomes for delivery of therapeutic agents |
WO2018106566A1 (en) | 2016-12-05 | 2018-06-14 | Regulus Therapeutics Inc. | Modified oligonucleotides for treatment of polycystic kidney disease |
WO2018106568A1 (en) | 2016-12-05 | 2018-06-14 | Regulus Therapeutics Inc. | Methods for treatment of polycystic kidney disease |
WO2018112320A1 (en) | 2016-12-16 | 2018-06-21 | Alnylam Pharmaceuticals, Inc. | Methods for treating or preventing ttr-associated diseases using transthyretin (ttr) irna compositions |
US11253605B2 (en) | 2017-02-27 | 2022-02-22 | Translate Bio, Inc. | Codon-optimized CFTR MRNA |
US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
WO2018191750A2 (en) | 2017-04-14 | 2018-10-18 | The Broad Institute Inc. | Novel delivery of large payloads |
WO2018195165A1 (en) | 2017-04-18 | 2018-10-25 | Alnylam Pharmaceuticals, Inc. | Methods for the treatment of subjects having a hepatitis b virus (hbv) infection |
US11173190B2 (en) | 2017-05-16 | 2021-11-16 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
US11806360B2 (en) | 2017-09-19 | 2023-11-07 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for treating transthyretin (TTR) mediated amyloidosis |
WO2019089922A1 (en) | 2017-11-01 | 2019-05-09 | Alnylam Pharmaceuticals, Inc. | Complement component c3 irna compositions and methods of use thereof |
WO2019094983A1 (en) | 2017-11-13 | 2019-05-16 | The Broad Institute, Inc. | Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway |
WO2019100039A1 (en) | 2017-11-20 | 2019-05-23 | Alnylam Pharmaceuticals, Inc. | Serum amyloid p component (apcs) irna compositions and methods of use thereof |
US11999767B2 (en) | 2018-04-03 | 2024-06-04 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
WO2020037125A1 (en) | 2018-08-16 | 2020-02-20 | Alnylam Pharmaceuticals Inc. | Compositions and methods for inhibiting expression of the lect2 gene |
US11174500B2 (en) | 2018-08-24 | 2021-11-16 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US12084702B2 (en) | 2018-08-24 | 2024-09-10 | Translate Bio, Inc. | Methods for purification of messenger RNA |
WO2020060986A1 (en) | 2018-09-18 | 2020-03-26 | Alnylam Pharmaceuticals, Inc. | Ketohexokinase (khk) irna compositions and methods of use thereof |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
WO2020072324A1 (en) | 2018-10-01 | 2020-04-09 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
EP4218722A2 (en) | 2018-10-01 | 2023-08-02 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
WO2020102142A1 (en) | 2018-11-13 | 2020-05-22 | Regulus Therapeutics Inc. | Microrna compounds and methods for modulating mir-10b activity |
WO2020132521A1 (en) | 2018-12-20 | 2020-06-25 | Praxis Precision Medicines, Inc. | Compositions and methods for the treatment of kcnt1 related disorders |
WO2020186213A1 (en) | 2019-03-14 | 2020-09-17 | The Broad Institute, Inc. | Novel nucleic acid modifiers |
WO2020191102A1 (en) | 2019-03-18 | 2020-09-24 | The Broad Institute, Inc. | Type vii crispr proteins and systems |
WO2020236972A2 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
WO2021020412A1 (en) | 2019-07-30 | 2021-02-04 | 塩野義製薬株式会社 | Nucleic acid drug targeting murf1 |
WO2021030522A1 (en) | 2019-08-13 | 2021-02-18 | Alnylam Pharmaceuticals, Inc. | SMALL RIBOSOMAL PROTEIN SUBUNIT 25 (RPS25) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF |
WO2021046122A1 (en) | 2019-09-03 | 2021-03-11 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of the lect2 gene |
EP4025196A4 (en) * | 2019-09-06 | 2023-07-12 | Generation Bio Co. | Lipid nanoparticle compositions comprising closed-ended dna and cleavable lipids and methods of use thereof |
WO2021046265A1 (en) | 2019-09-06 | 2021-03-11 | Generation Bio Co. | Lipid nanoparticle compositions comprising closed-ended dna and cleavable lipids and methods of use thereof |
US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
US11597698B2 (en) | 2019-09-19 | 2023-03-07 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
WO2021061707A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | Compositions and methods for modulating apolipoprotein b (apob) gene expression |
WO2021061815A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4α) GENE EXPRESSION |
WO2021067747A1 (en) | 2019-10-04 | 2021-04-08 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing ugt1a1 gene expression |
WO2021087036A1 (en) | 2019-11-01 | 2021-05-06 | Alnylam Pharmaceuticals, Inc. | HUNTINGTIN (HTT) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF |
WO2021087325A1 (en) | 2019-11-01 | 2021-05-06 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing dnajb1-prkaca fusion gene expression |
WO2021102373A1 (en) | 2019-11-22 | 2021-05-27 | Alnylam Pharmaceuticals, Inc. | Ataxin3 (atxn3) rnai agent compositions and methods of use thereof |
WO2021119226A1 (en) | 2019-12-13 | 2021-06-17 | Alnylam Pharmaceuticals, Inc. | Human chromosome 9 open reading frame 72 (c9orf72) irna agent compositions and methods of use thereof |
WO2021155274A1 (en) * | 2020-01-31 | 2021-08-05 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
WO2021154941A1 (en) | 2020-01-31 | 2021-08-05 | Alnylam Pharmaceuticals, Inc. | Complement component c5 irna compositions for use in the treatment of amyotrophic lateral sclerosis (als) |
WO2021163066A1 (en) | 2020-02-10 | 2021-08-19 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing vegf-a expression |
WO2021178607A1 (en) | 2020-03-05 | 2021-09-10 | Alnylam Pharmaceuticals, Inc. | Complement component c3 irna compositions and methods of use thereof for treating or preventing complement component c3-associated diseases |
WO2021183720A1 (en) | 2020-03-11 | 2021-09-16 | Omega Therapeutics, Inc. | Compositions and methods for modulating forkhead box p3 (foxp3) gene expression |
WO2021195218A1 (en) | 2020-03-24 | 2021-09-30 | Generation Bio Co. | Non-viral dna vectors and uses thereof for expressing gaucher therapeutics |
WO2021195214A1 (en) | 2020-03-24 | 2021-09-30 | Generation Bio Co. | Non-viral dna vectors and uses thereof for expressing factor ix therapeutics |
WO2021195307A1 (en) | 2020-03-26 | 2021-09-30 | Alnylam Pharmaceuticals, Inc. | Coronavirus irna compositions and methods of use thereof |
WO2021202443A2 (en) | 2020-03-30 | 2021-10-07 | Alnylam Pharmaceucticals, Inc. | Compositions and methods for silencing dnajc15 gene expression |
WO2021207167A1 (en) | 2020-04-06 | 2021-10-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing myoc expression |
WO2021206922A1 (en) | 2020-04-07 | 2021-10-14 | Alnylam Pharmaceuticals, Inc. | Transmembrane serine protease 2 (tmprss2) irna compositions and methods of use thereof |
WO2021206917A1 (en) | 2020-04-07 | 2021-10-14 | Alnylam Pharmaceuticals, Inc. | ANGIOTENSIN-CONVERTING ENZYME 2 (ACE2) iRNA COMPOSITIONS AND METHODS OF USE THEREOF |
WO2021207189A1 (en) | 2020-04-07 | 2021-10-14 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for silencing scn9a expression |
WO2021222065A1 (en) | 2020-04-27 | 2021-11-04 | Alnylam Pharmaceuticals, Inc. | Apolipoprotein e (apoe) irna agent compositions and methods of use thereof |
WO2021237097A1 (en) | 2020-05-21 | 2021-11-25 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting marc1 gene expression |
US11408000B2 (en) | 2020-06-03 | 2022-08-09 | Triplet Therapeutics, Inc. | Oligonucleotides for the treatment of nucleotide repeat expansion disorders associated with MSH3 activity |
WO2021252557A1 (en) | 2020-06-09 | 2021-12-16 | Alnylam Pharmaceuticals, Inc. | Rnai compositions and methods of use thereof for delivery by inhalation |
WO2022023284A1 (en) | 2020-07-27 | 2022-02-03 | Anjarium Biosciences Ag | Compositions of dna molecules, methods of making therefor, and methods of use thereof |
WO2022066847A1 (en) | 2020-09-24 | 2022-03-31 | Alnylam Pharmaceuticals, Inc. | Dipeptidyl peptidase 4 (dpp4) irna compositions and methods of use thereof |
WO2022076291A1 (en) | 2020-10-05 | 2022-04-14 | Alnylam Pharmaceuticals, Inc. | G protein-coupled receptor 75 (gpr75) irna compositions and methods of use thereof |
WO2022087041A1 (en) | 2020-10-21 | 2022-04-28 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for treating primary hyperoxaluria |
WO2022087329A1 (en) | 2020-10-23 | 2022-04-28 | Alnylam Pharmaceuticals, Inc. | Mucin 5b (muc5b) irna compositions and methods of use thereof |
WO2022119873A1 (en) | 2020-12-01 | 2022-06-09 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression |
WO2022174000A2 (en) | 2021-02-12 | 2022-08-18 | Alnylam Pharmaceuticals, Inc. | Superoxide dismutase 1 (sod1) irna compositions and methods of use thereof for treating or preventing superoxide dismutase 1- (sod1-) associated neurodegenerative diseases |
US11622972B2 (en) | 2021-02-19 | 2023-04-11 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
WO2022182864A1 (en) | 2021-02-25 | 2022-09-01 | Alnylam Pharmaceuticals, Inc. | Prion protein (prnp) irna compositions and methods and methods of use thereof |
WO2022192519A1 (en) | 2021-03-12 | 2022-09-15 | Alnylam Pharmaceuticals, Inc. | Glycogen synthase kinase 3 alpha (gsk3a) irna compositions and methods of use thereof |
WO2022212231A2 (en) | 2021-03-29 | 2022-10-06 | Alnylam Pharmaceuticals, Inc. | Huntingtin (htt) irna agent compositions and methods of use thereof |
WO2022223556A1 (en) | 2021-04-20 | 2022-10-27 | Anjarium Biosciences Ag | Compositions of dna molecules encoding amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase, methods of making thereof, and methods of use thereof |
WO2022232286A1 (en) | 2021-04-27 | 2022-11-03 | Generation Bio Co. | Non-viral dna vectors expressing anti-coronavirus antibodies and uses thereof |
WO2022232289A1 (en) | 2021-04-27 | 2022-11-03 | Generation Bio Co. | Non-viral dna vectors expressing therapeutic antibodies and uses thereof |
WO2022232343A1 (en) | 2021-04-29 | 2022-11-03 | Alnylam Pharmaceuticals, Inc. | Signal transducer and activator of transcription factor 6 (stat6) irna compositions and methods of use thereof |
WO2022245583A1 (en) | 2021-05-18 | 2022-11-24 | Alnylam Pharmaceuticals, Inc. | Sodium-glucose cotransporter-2 (sglt2) irna compositions and methods of use thereof |
WO2022256290A2 (en) | 2021-06-04 | 2022-12-08 | Alnylam Pharmaceuticals, Inc. | HUMAN CHROMOSOME 9 OPEN READING FRAME 72 (C9ORF72) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF |
WO2023283359A2 (en) | 2021-07-07 | 2023-01-12 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
US11959081B2 (en) | 2021-08-03 | 2024-04-16 | Alnylam Pharmaceuticals, Inc. | Transthyretin (TTR) iRNA compositions and methods of use thereof |
WO2023044343A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Acyclic lipids and methods of use thereof |
WO2023044333A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Cyclic lipids and methods of use thereof |
WO2023060237A1 (en) | 2021-10-08 | 2023-04-13 | Regulus Therapeutics Inc. | Methods and compositions for treatment of polycystic kidney disease |
WO2023060238A2 (en) | 2021-10-08 | 2023-04-13 | Regulus Therapeutics Inc. | Methods and compositions for avoiding off-target effects |
WO2023076450A2 (en) | 2021-10-29 | 2023-05-04 | Alnylam Pharmaceuticals, Inc. | HUNTINGTIN (HTT) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF |
WO2023081526A1 (en) | 2021-11-08 | 2023-05-11 | Orna Therapeutics, Inc. | Lipid nanoparticle compositions for delivering circular polynucleotides |
WO2023122762A1 (en) | 2021-12-22 | 2023-06-29 | Camp4 Therapeutics Corporation | Modulation of gene transcription using antisense oligonucleotides targeting regulatory rnas |
WO2023122752A1 (en) | 2021-12-23 | 2023-06-29 | Renagade Therapeutics Management Inc. | Constrained lipids and methods of use thereof |
WO2023135273A2 (en) | 2022-01-14 | 2023-07-20 | Anjarium Biosciences Ag | Compositions of dna molecules encoding factor viii, methods of making thereof, and methods of use thereof |
WO2023141314A2 (en) | 2022-01-24 | 2023-07-27 | Alnylam Pharmaceuticals, Inc. | Heparin sulfate biosynthesis pathway enzyme irna agent compositions and methods of use thereof |
WO2023177655A1 (en) | 2022-03-14 | 2023-09-21 | Generation Bio Co. | Heterologous prime boost vaccine compositions and methods of use |
WO2023196818A1 (en) | 2022-04-04 | 2023-10-12 | The Regents Of The University Of California | Genetic complementation compositions and methods |
WO2023196931A1 (en) | 2022-04-07 | 2023-10-12 | Renagade Therapeutics Management Inc. | Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents |
US12121592B2 (en) | 2022-06-03 | 2024-10-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
WO2023239756A1 (en) | 2022-06-07 | 2023-12-14 | Generation Bio Co. | Lipid nanoparticle compositions and uses thereof |
WO2023240277A2 (en) | 2022-06-10 | 2023-12-14 | Camp4 Therapeutics Corporation | Methods of modulating progranulin expression using antisense oligonucleotides targeting regulatory rnas |
WO2024040222A1 (en) | 2022-08-19 | 2024-02-22 | Generation Bio Co. | Cleavable closed-ended dna (cedna) and methods of use thereof |
WO2024059165A1 (en) | 2022-09-15 | 2024-03-21 | Alnylam Pharmaceuticals, Inc. | 17b-hydroxysteroid dehydrogenase type 13 (hsd17b13) irna compositions and methods of use thereof |
WO2024102677A1 (en) | 2022-11-08 | 2024-05-16 | Orna Therapeutics, Inc. | Circular rna compositions |
WO2024102762A1 (en) | 2022-11-08 | 2024-05-16 | Orna Therapeutics, Inc. | Lipids and lipid nanoparticle compositions for delivering polynucleotides |
WO2024102730A1 (en) | 2022-11-08 | 2024-05-16 | Orna Therapeutics, Inc. | Lipids and nanoparticle compositions for delivering polynucleotides |
WO2024119051A1 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Novel polyglycerol-conjugated lipids and lipid nanoparticle compositions comprising the same |
WO2024119039A2 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Stealth lipid nanoparticles and uses thereof |
WO2024119145A1 (en) | 2022-12-01 | 2024-06-06 | Camp4 Therapeutics Corporation | Modulation of syngap1 gene transcription using antisense oligonucleotides targeting regulatory rnas |
WO2024119103A1 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Lipid nanoparticles comprising nucleic acids and lipid-anchored polymers |
WO2024119074A1 (en) | 2022-12-01 | 2024-06-06 | Generation Bio Co. | Stealth lipid nanoparticle compositions for cell targeting |
WO2024125469A1 (en) * | 2022-12-12 | 2024-06-20 | Starna Therapeutics | Novel compounds and use thereof for targeted delivery |
WO2024196998A1 (en) | 2023-03-22 | 2024-09-26 | Regulus Therapeutics, Inc. | Methods for treating nervous system disorders |
WO2024205657A2 (en) | 2023-03-29 | 2024-10-03 | Orna Therapeutics, Inc. | Lipids and lipid nanoparticle compositions for delivering polynucleotides |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11420931B2 (en) | Lipid containing formulations | |
US20090163705A1 (en) | Cationic lipids | |
CA2878431A1 (en) | Cationic lipid | |
AU2024204669A1 (en) | Lipid containing formulations | |
JP2024150681A (en) | Lipid nanoparticles for pharmaceutical use | |
US20140294978A1 (en) | Cationic lipid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780044738.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07853756 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2665225 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007853756 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007303205 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2009531586 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2211/DELNP/2009 Country of ref document: IN Ref document number: MX/A/2009/003548 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2007303205 Country of ref document: AU Date of ref document: 20071003 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097009148 Country of ref document: KR |