WO2008041395A1 - Motor controller - Google Patents

Motor controller Download PDF

Info

Publication number
WO2008041395A1
WO2008041395A1 PCT/JP2007/062232 JP2007062232W WO2008041395A1 WO 2008041395 A1 WO2008041395 A1 WO 2008041395A1 JP 2007062232 W JP2007062232 W JP 2007062232W WO 2008041395 A1 WO2008041395 A1 WO 2008041395A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
absolute value
operating
algorithm
Prior art date
Application number
PCT/JP2007/062232
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Yoshimatsu
Original Assignee
Hy Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hy Incorporated filed Critical Hy Incorporated
Priority to JP2008537420A priority Critical patent/JP4294086B2/en
Publication of WO2008041395A1 publication Critical patent/WO2008041395A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/207Control of propulsion units of the type electric propulsion units, e.g. electric motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/128Braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device for a motor that controls output torque of a motor that operates an inertial body based on an operation of an operation end.
  • a hydraulic pump or a hydraulic motor is used as a drive device for operating an inertial body having a large inertial mass such as a construction machine, including a turning operation of a hydraulic shovel and a hydraulic crane and a traveling operation of a wheel loader.
  • Many hydraulic drives have been adopted.
  • an electric drive system using an electric motor with less energy loss is being adopted instead of the hydraulic drive system using a hydraulic drive system with a large energy loss.
  • the electric drive system also has the advantage of using the motor as a generator when decelerating the inertia body and regenerating braking energy for deceleration.
  • a hydraulic drive system using a conventional hydraulic drive system is characterized in that the operator operates an operating end such as a lever or a pedal to control the operation of the inertial body, which is a human operation sense.
  • the motorized drive system using a motor can not realize the operability and sense of operation like a hydraulic drive system, while the operator operates it. The problem is happening!
  • the operation amount of the operation end and the rotation speed of the hydraulic motor are obtained. Accordingly, the output torque is controlled and acceleration, deceleration and stop of the inertia body are performed smoothly.
  • the speed control is performed with the output torque as the maximum value. As a result, the acceleration and deceleration of the inertial body become steep, and the smooth operability as in the hydraulic drive system can not be obtained, and there is a problem that the operator's sense of operation is far from the hydraulic drive system.
  • the first target torque is calculated based on a predetermined functional relationship with respect to the operation amount of the operation end, and the operation amount of the operation end is calculated.
  • a target speed of the motor is calculated based on a predetermined functional relation
  • a second target torque is calculated based on a predetermined functional relation for the speed deviation between the target speed and the actual speed of the motor.
  • the output torque of the motor is controlled with the target torque having the smaller absolute value among the first and second target torques as the target value.
  • the first target torque calculated based on the operation amount of the operator is With the target torque of 2) as the target value and the speed of the motor increases and the speed deviation becomes smaller, the second target torque (the first target torque) calculated based on the speed deviation is used as the target.
  • torque control characteristics as the operator's operation amount can be obtained during the transition period of acceleration and the like.
  • the allowable maximum torque calculated based on a predetermined functional relationship with the actual speed of the motor is set as a third target torque, and the first and second target torques are set as the first target torque. It is also proposed to set the one with the smallest absolute value among these target torques, including the target torque of 3, as the target torque, and to prevent the overload of the motor.
  • the hydraulic pressure is controlled in a controller that controls the motor.
  • the control target value is calculated by the emulation model according to the operation of the control terminal, and the motor is controlled, Ru.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-10783
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-33063
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-333876
  • the motor can be controlled by a simple algorithm of limiting the maximum output torque of the motor and commanding the acceleration torque or the braking torque according to the deviation of the turning speed.
  • a simple algorithm of limiting the maximum output torque of the motor and commanding the acceleration torque or the braking torque according to the deviation of the turning speed.
  • a target torque having a smaller absolute value among a first target torque based on an operation amount and a second target torque based on a speed deviation of a motor is set as a target value.
  • the torque control based on the speed deviation is performed by adding a maximum value limit to the torque output with respect to the manipulated variable.
  • the same technique as described in US Pat. No. 5,677,859, in which the smaller of the torques that are performed and consequently both forces are also calculated is selected. Therefore, the control described in Patent Document 2 also differs from the control characteristic of the hydraulic drive system, and the operability and operational feeling thereof are different from those of the hydraulic drive system.
  • Patent Document 3 needs to calculate an emulation model of a complicated algorithm in real time, which can bring the operability and sense of operation much closer to those of the hydraulic drive system. Because of this, the control model is complicated, long and requires computation time, and the response time of the control is long, and there is a problem that fine control can not be performed. It also has a very high performance to incorporate emulation models of complex algorithms There is also a problem that requires a controller.
  • an object of the present invention is to provide a control device of a motor that can obtain the same operability and sense of operation as a hydraulic drive system by control based on a simple algorithm. Means to solve the problem
  • the present invention controls the rotational drive of a motor for operating an inertial body by at least the operation of an operating end for varying the operating amount, and detects the operating amount of the operating end. Based on the operation detection means, the rotation detection means for detecting the rotation direction and the rotation speed of the electric motor, and the detection values of the operation detection means and the rotation detection means, the target torque to be borne by the motor is calculated.
  • the motor control means controls the output torque of the electric motor to the direction and the magnitude of the target torque, and the output torque corresponds to a fly torque as the electric motor function of the electric motor and a regenerative torque as the electric generator function.
  • control device for the motor when the absolute value of the amount of operation of the operating end increases, the amount of operation of the operation end of the operating end is constant. And it employs a configuration that incorporates the algorithms absolute value of the rotational speed is reduced becomes larger of the electric motor.
  • the torque to be applied increases as the absolute value of the operation amount at the operation end increases, and the rotational speed of the motor is increased even if the operation amount at the operation end is constant.
  • the control characteristic similar to the bleed-off pressure control in the hydraulic drive system is provided, and the operating speed targeted by the operator is set. We made it easy to control and made it possible to obtain the same operability and feel as the hydraulic drive system by control based on a simple algorithm.
  • the meter-in pressure P and the meter-out pressure P of the hydraulic motor 53 are effective.
  • the differential pressure is the hydraulic motor torque. If meter-in pressure P is higher, oil
  • the meter-in control throttle 51b of the spool valve 51 shown in FIG. 7 controls the meter-in pressure P of the hydraulic motor 53 when the other actuator is operated by the same hydraulic pump 52.
  • the resistance of the driving pressure of the hydraulic motor 53 is intended.
  • the hydraulic driving system has a basic control characteristic in which the driving pressure is controlled by controlling the meter-in pressure P by the bleed-off control throttle 51a.
  • the regenerative torque increases as the absolute value of the operation amount at the operating end decreases, and the absolute value of the rotational speed of the motor decreases even if the operation amount at the operating end is constant.
  • the meter out control throttle 51 c of the spool valve 51 starts to open when the operation amount of the operating end also reaches a value with zero force. Therefore, the opening area increases with the increase of the operation amount. If the operating amount is returned to a smaller value in this state, the meter-out pressure P is increased, and the rotational speed of the hydraulic motor 53 is increased with the same operating amount.
  • the braking pressure decreases as the braking pressure increases when the rotational speed increases, and the braking pressure and friction of the drive system become less At the value corresponding to, the deceleration of the inertial body is lost and the operator is controlled to the target operating speed. Therefore, by incorporating the above algorithm, the control characteristic similar to that of the control of the meter-out pressure P of such a hydraulic drive system can be obtained. He is happy.
  • the operation detecting means is the operating amount of the operating end.
  • the operation direction of the operation end is detected in the neutral range including zero, or the operation direction of the operation end and the rotation direction of the electric motor are opposite to each other.
  • the motor is rotated in one direction by the operation of the pedal as the operation end like the wheel loader travel control.
  • the operation detecting means is used as the operating amount of the operating end. And positive or negative operation direction shall be detected.
  • the absolute value of the rotational speed of the motor is zero.
  • the inertial body can be slope-started or the inertial body is turned upward on a slope At the same time, it is possible to smoothly carry out slope start and upward turn by suppressing the downward and backward movement and downward turning of the inertial body.
  • the calculation means is divided into a drive torque for driving the inertial body by the electric motor and a driven torque for driving the electric motor by the inertial body using an arithmetic algorithm stored in advance. Also calculated as the sum of the drive torque and the driven torque In this arithmetic algorithm, the absolute value of the driving torque increases as the absolute value of the operating amount of the operating end increases, and the absolute value of the rotational speed of the motor is increased even if the operating amount of the operating end is constant.
  • the driving torque calculation algorithm decreases as the value increases, and the absolute value of the driven torque increases as the absolute value of the operating amount of the operating end decreases, and the operating amount of the operating end is constant even if the operating amount of the operating end is constant.
  • the drive torque calculation algorithm is incorporated to control design of the output torque of the motor. It can carry out similarly to the case of control of motor torque. Therefore, design and adjustment of motor torque characteristics can be easily performed based on conventional knowledge. That is, the hydraulic motor torque is controlled by the effective differential pressure between the meter-in pressure by the bleed-off control throttle and the meter-out pressure by the metering control throttle. The characteristics of the bleed-off control throttle and the meter-out control throttle are independent. It is possible to design, and the control characteristic of the motor torque is determined as the sum of the two characteristics (difference as calculation of pressure).
  • the drive torque is designed against the meter-in pressure by the bleed-off control throttle of the hydraulic motor, and the drive torque is designed against the meter-out pressure by the meter-out control throttle.
  • the target torque can be designed as the sum of both characteristics.
  • the resistance torque equivalent to the pressure loss in the hydraulic drive system can be obtained by incorporating one or both of the algorithm to reduce and the algorithm to increase the absolute value of the driven torque.
  • the pressure loss in the hydraulic drive system is an energy loss. This resistance torque is a hypothetical one, so it does not become an energy loss!
  • the inertial body operating with each of the above-described motors can be an inertial body that performs turning operation or traveling operation of the construction machine.
  • the steering torque increases as the absolute value of the operation amount of the operation end increases, and the operation amount of the operation end is constant. Also, by incorporating an algorithm that decreases as the absolute value of the rotational speed of the motor increases, the control characteristic similar to that of bleed-off pressure control in the hydraulic drive system is provided to control the operating speed targeted by the operator. Since it has been made easy, it is possible to obtain the same operability and sense of operation as the hydraulic drive system by control based on a simple algorithm.
  • the regenerative torque increases as the absolute value of the operating amount at the operating end decreases, and decreases as the absolute value of the rotational speed of the motor decreases, even if the operating amount at the operating end is constant.
  • the operation detection means includes the operation amount of the operation end and the plus. It is assumed that a negative operation direction is detected, and when the operation amount of the operation end is in the neutral range including zero, or when the operation direction of the operation end and the rotation direction of the motor are opposite to each other,
  • an algorithm that sets the torque to zero and the regenerative torque to the maximum value such as traveling control of a wheel loader, shovels and cranes can be operated only by rotating the motor in one direction by operating the pedal as the operating end.
  • the invention can be applied to rotation control of the motor in both directions plus and minus by operation of the lever as the operation end, as in the case of turning control of When the operation amount of the work end is in the neutral range, to have a neutral braking function for stopping and holding, Misao operation ends
  • the inertial body is decelerated and stopped with a large braking torque, for example, when the inertial body is started on a slope or the inertial body is turned upward on a slope.
  • the operation detection means includes the operation amount of the operation end and the plus. It is assumed that a negative operation direction is detected, and when the operation amount of the operation end is in the neutral range including zero, or when the operation direction of the operation end and the rotation direction of the motor are opposite to each other, Incorporating an algorithm that increases the absolute value of the regenerative torque according to the absolute value of the motor's rotational speed within a small range where the absolute value of the motor's rotational speed is near zero, or allows the inertial body to start on a hill When the inertial body is turned upward on a slope, it is possible to smoothly start a slope or turn upward by suppressing the downward and backward movement and downward turning of the inertial body.
  • the calculation means is divided into a target torque, a drive torque for driving the inertia body by the motor, and a driven torque for driving the motor by the inertia body, using a calculation algorithm stored in advance.
  • the absolute value of the drive torque increases as the absolute value of the operation amount at the operating end increases, and the operation amount at the operation end is constant.
  • the absolute value of the rotational speed of the motor increases, the drive torque calculation algorithm decreases, and the absolute value of the driven torque increases as the absolute value of the operation amount of the operation end decreases, and the operation amount of the operation end becomes constant. Even if the absolute value of the rotational speed of the motor decreases, at least the drive torque calculation algorithm among the driven torque calculation algorithms becomes smaller.
  • control design of the output torque of the motor can be performed in the same manner as in the case of the control of the hydraulic motor torque by the control throttle of the control valve.
  • the control design of the output torque of the motor can be performed in the same manner as in the case of the control of the hydraulic motor torque by the control throttle of the control valve.
  • the above calculation algorithm is added with the calculation of the resistance torque to reduce the target torque,
  • the absolute value of torque increases as the absolute value of the rotational speed of the motor increases, and by incorporating one or both of an algorithm for reducing the absolute value of the drive torque and an algorithm for increasing the absolute value of the driven torque.
  • a resistance torque element equivalent to the pressure loss in the hydraulic drive system in addition to the resistance of the common drive system, the balance between the actual output torque of the motor and the load torque is further stabilized. Can be stably controlled to achieve the intended target speed.
  • FIG. 1 is a side view showing a hydraulic shovel incorporating a control device for an electric motor according to the present invention.
  • FIG. 2 A block diagram showing a configuration of a control device of a motor incorporated in the hydraulic shovel of FIG. 1.
  • FIG. 3 A graph showing a basic map of the calculation algorithm of FIG.
  • FIG. 4 A graph showing the target torque in the first quadrant and the fourth quadrant of the graph of FIG. 3 disassembled into a driving torque and a driven torque.
  • FIG. 6 A graph showing the driven torque calculated in the range where the absolute value of the rotational speed is near zero with the operation algorithm of Fig. 2
  • FIG. 8 A graph showing control characteristics of bleed off pressure in the hydraulic drive system of FIG.
  • FIG. 9 A graph showing control characteristics of meter-out pressure in the hydraulic drive system of FIG.
  • FIG. 1 shows a hydraulic shovel incorporating the motor control device according to the present invention.
  • This hydraulic shovel includes a crawler type lower traveling body 20, an upper rotating body 30 as an inertial body which pivots left and right on the lower traveling body 20, and an excavating attachment attached to a front portion of the rotating body 30. And 40.
  • the lower traveling body 20 travels by driving the left and right crawlers 23 separately by the traveling hydraulic motor 21 and the reduction gear 22.
  • the drilling attachment 40 includes a boom 41, an arm 42 and a packet 43, a boom cylinder 41a for operating them, an arm cylinder 42a and a bucket cylinder. Da 43a is equipped.
  • the revolving unit 30 includes an engine 31, a hydraulic pump 32 and a generator 33 driven by the engine 31, a power storage device 34 such as a notch or a capacitor, and a motor 1 for causing the revolving unit 30 to swing.
  • a reduction gear 35 is mounted.
  • the discharge oil of the hydraulic pump 32 is supplied to the traveling hydraulic motor 21 and the boom 41, the arm 42, and the cylinders 41a of the notch 43 via control valves.
  • the power of the generator 33 is controlled by the converter 36 so that the voltage and current are controlled and stored in the storage device 34, and is also supplied to the motor 1 through the inverter 4 described later.
  • the electric motor 1 is a permanent magnet type motor having a permanent magnet as a rotor, and the control device of the electric motor according to the present invention controls the electric motor 1 to cause the turning body 30 to perform a turning operation.
  • FIG. 2 is a block diagram showing a configuration of a control device of the motor 1.
  • This control device comprises an operation detection means 2a for detecting the operation amount X of the operation lever 2 as plus and minus in both directions as an operation end, and a rotation detection means la for detecting the plus and minus rotational speed N of the motor 1 rotating in both directions.
  • the controller 3 as a computing means for computing the direction and magnitude of the target torque To to be borne by the motor 1 from the detected operation amount X of the control lever 2 and the rotational speed N of the motor 1
  • the inverter 4 as motor control means for controlling the output torque T of the motor 1 to the direction and magnitude of the target torque To calculated by the controller 3 with respect to the power supplied from the motor 33 or the storage device 34 ing.
  • the controller 3 is provided with a memory 3a, and an arithmetic algorithm 3b for dividing the target torque To into a driving torque Ta and a driven torque Tb so as to express the control characteristic of the hydraulic driving system, It is stored in advance in the memory 3a.
  • the target torque To is calculated as the sum of the driving torque Ta and the driven torque Tb, and the calculated target torque To is a torque in the case where it is output in the same direction as the operation direction of the control lever 2. If it is output in the direction opposite to the operation direction, it is the regenerative torque.
  • the inverter 4 includes a signal conversion circuit 4a and a current control circuit 4b.
  • the signal conversion circuit 4a converts the target torque To input from the controller 3 into a target current Io
  • the current control circuit 4b outputs an output to the motor 1 Feedback control is performed to set the current I to the target current Io.
  • FIG. 3 shows a basic map for calculating the target torque To by the calculation algorithm 3b.
  • the horizontal axis is the plus / minus manipulated variable X of the control lever 2 and the vertical axis is the target torque To, and the relationship between them is a characteristic curve with the plus or minus rotational speed N of the motor 1 as a parameter.
  • the target torque To is a positive torque
  • the manipulated variable X and the target torque To have a different sign in the second quadrant
  • the target torque To is the regenerative torque.
  • the absolute value of the target torque To which is the torque to be applied, increases as the absolute value of the operation amount X of the operation lever 2 increases, and the operation amount X becomes constant.
  • the absolute value of the rotational speed N of the motor 1 is calculated so as to decrease as the absolute value of the rotational speed N increases, and the same control characteristic as the control of the bleed-off pressure of the hydraulic drive system can be obtained.
  • the absolute value of the target torque To which is the regenerative torque
  • the rotational speed It is calculated so as to become smaller as the absolute value force S of N becomes smaller, and a control characteristic similar to that of the meter-out pressure control in the hydraulic drive system can be obtained.
  • the torque to move 2 2 is output, and acceleration is started to turn the swing body 30 to the left.
  • the absolute value of the steering torque is also set to the same maximum value Tmax as the regenerative torque.
  • FIG. 4 shows the target torque To as a solid line for the first quadrant and the fourth quadrant that turn to the right in FIG.
  • the driving torque Ta and the driven torque Tb indicated by a dotted line are shown in the form of a disassembly.
  • the driving torque Ta corresponds to the torque due to the meter-in pressure of the hydraulic motor
  • the driven torque Tb corresponds to the torque due to the meter-out pressure of the hydraulic motor.
  • the absolute value of the driving torque Ta in the first quadrant increases as the absolute value of the manipulated variable X increases, and is calculated so as to decrease as the absolute value of the rotational speed N increases, even if the manipulated variable X is constant. Maximum value Tamax is set.
  • the absolute value of the driven torque Tb in the fourth quadrant increases as the absolute value of the manipulated variable X decreases, and decreases as the absolute value of the rotational speed N decreases, even if the manipulated variable X is constant.
  • the maximum value Tbmax is set.
  • the target torque To shown in the first quadrant and the fourth quadrant of FIG. 3 is obtained as the sum of the driving torque Ta and the driven torque Tb thus calculated. Although illustration is omitted, the target torque To in the second and third quadrants of FIG. 3 which turns left is also obtained as the sum of the drive torque Ta and the driven torque Tb which are similarly calculated.
  • the graph of FIG. 5 shows a resistance torque ⁇ that reduces the target torque To calculated by the calculation algorithm 3b.
  • the resistance torque ⁇ increases as the absolute value of the rotational speed N of the motor 1 increases, and decreases the absolute value of the drive torque Ta calculated in the first and third quadrants.
  • the second and fourth quadrants are added so as to increase the absolute value of the calculated driven torque Tb, and a point at which the actual output torque and load torque are balanced, as in the pressure loss in the hydraulic drive system. Stabilize and allow stable control to achieve the operator's intended target speed.
  • the absolute value of the resistance torque ⁇ increases in proportion to the first to second orders relative to the absolute value of the rotational speed N of the motor 1.
  • the arithmetic algorithm 3b is used.
  • the calculated driven torque Tb in the small range near zero of the absolute value of the rotational speed N of the motor 1 is shown.
  • the driven torque Tb is calculated so as to increase in accordance with the magnitude of the absolute value of the rotational speed N in a range where the absolute value of the rotational speed N is small near zero, and turns the revolving unit 30 upward on a slope.
  • the driving torque Ta is smaller than the load torque due to the inclination, reverse rotation of the motor 1 in the downward direction is suppressed.
  • Drive torque Ta is larger than load torque Then, the rotating body 30 smoothly starts turning upward by the driving torque Ta. In this case, turn right upward.
  • the generator and the storage device are used as an electric power source to control the electric motor that turns the upper turning body of the hydraulic shovel left and right, but the control device of the electric motor according to the present invention
  • the present invention can be applied to one that controls a motor that operates an inertial body in only one direction, such as one that drives a wheel loader.
  • the power source of the motor is not limited to the generator or the storage device.
  • the power supplied from the power company or the like It can be a power source.
  • the calculation algorithm of the drive torque and the drive torque is stored in the controller as the characteristic curve represented by the map, but the calculation algorithm of the drive torque and the drive torque is Let's store it as a mathematical expression with the operation amount of the operation end and the rotational speed of the motor as parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

An algorithm for increasing a powering torque outputted when a target torque To is outputted in the same direction as the operating direction as the controlled variable X of an operating lever (2) increases and for decreasing the powering torque as the rotational speed N of a motor (1) increases even if the controlled variable X is constant is built in an operation algorithm (3b) prestored in a controller (3) so that control characteristics similar to control of bleed off pressure in a hydraulic drive system are imparted. Consequently, an operator can control to a target operational speed easily, and operability and operation sense similar to those in a hydraulic drive system can be attained through control based on a simple algorithm.

Description

明 細 書  Specification
電動機の制御装置  Motor control device
技術分野  Technical field
[0001] 本発明は、慣性体を動作させる電動機の出力トルクを操作端の操作に基づ ヽて制 御する電動機の制御装置に関する。  [0001] The present invention relates to a control device for a motor that controls output torque of a motor that operates an inertial body based on an operation of an operation end.
背景技術  Background art
[0002] 油圧ショベル、油圧クレーンの旋回動作や、ホイールローダの走行動作を始めとし て、建設機械等の大きな慣性質量を有する慣性体を動作させる駆動装置には、油圧 ポンプや油圧モータを用いた油圧駆動装置が多く採用されていた。近年、油圧エネ ルギを制御弁で絞り捨てるためにエネルギ損失が大きい油圧駆動装置を用いた油 圧駆動方式に替えて、エネルギ損失の少な 、電動機を用いた電動駆動方式が採用 されつつある。電動駆動方式は、慣性体を減速させるときに電動機を発電機とし、減 速の制動エネルギを回生できる利点もある。  [0002] A hydraulic pump or a hydraulic motor is used as a drive device for operating an inertial body having a large inertial mass such as a construction machine, including a turning operation of a hydraulic shovel and a hydraulic crane and a traveling operation of a wheel loader. Many hydraulic drives have been adopted. In recent years, in order to squeeze away hydraulic energy with a control valve, an electric drive system using an electric motor with less energy loss is being adopted instead of the hydraulic drive system using a hydraulic drive system with a large energy loss. The electric drive system also has the advantage of using the motor as a generator when decelerating the inertia body and regenerating braking energy for deceleration.
[0003] し力しながら、従来の油圧駆動装置を用いた油圧駆動方式は、オペレータがレバ 一やペダル等の操作端を操作して慣性体の動作を制御する操作性が、人間の操作 感覚に適合するように操作しやすく設計されているのに対して、電動機を用いた電動 駆動方式は、油圧駆動方式のような操作性と操作感覚を実現することができず、ォ ペレータが操作し難 、と 、う問題が生じて!/、る。  [0003] A hydraulic drive system using a conventional hydraulic drive system is characterized in that the operator operates an operating end such as a lever or a pedal to control the operation of the inertial body, which is a human operation sense. The motorized drive system using a motor can not realize the operability and sense of operation like a hydraulic drive system, while the operator operates it. The problem is happening!
[0004] すなわち、油圧駆動方式では、操作端の操作でスプール弁のブリードオフ制御絞り やメータアウト制御絞りの開口面積を制御することにより、操作端の操作量と油圧モ ータの回転速度に応じて出力トルクが制御され、スムーズな慣性体の加速と減速およ び停止が行われるが、電動駆動方式の場合は、電動機の回転速度を制御すると、出 力トルクを最大値として速度制御が行われるので、慣性体の加速や減速が急峻にな り、油圧駆動方式のようなスムーズな操作性が得られず、オペレータの操作感覚も油 圧駆動方式とかけ離れたものとなる問題がある。  That is, in the hydraulic drive system, by controlling the opening area of the bleed-off control throttle of the spool valve and the meter-out control throttle by the operation of the operation end, the operation amount of the operation end and the rotation speed of the hydraulic motor are obtained. Accordingly, the output torque is controlled and acceleration, deceleration and stop of the inertia body are performed smoothly. However, in the case of the electric drive system, when the rotational speed of the motor is controlled, the speed control is performed with the output torque as the maximum value. As a result, the acceleration and deceleration of the inertial body become steep, and the smooth operability as in the hydraulic drive system can not be obtained, and there is a problem that the operator's sense of operation is far from the hydraulic drive system.
[0005] このような問題を解消するために、電動駆動方式で建設機械等の慣性体を動作さ せるときの操作性や操作感覚を、油圧駆動方式のものに近づける研究開発が進めら れ、操作性や操作感覚を油圧駆動方式のものに近づけるように、電動機の出力トル クを操作端の操作に基づいて制御するいくつかの手段が提案されている(例えば、 特許文献 1 3参照)。 In order to solve such problems, research and development has been advanced to bring the operability and sense of operation when operating an inertial body such as a construction machine by an electric drive system closer to that of a hydraulic drive system. Several methods have been proposed to control the output torque of the motor based on the operation of the operating end so as to bring the operability and sense of operation closer to those of the hydraulic drive system (see, for example, Patent Document 13) ).
[0006] 特許文献 1に記載された電動駆動方式の旋回制御装置では、操作端の操作量が 最大または最大近傍のときに最大加速トルク (カ行トルク)が出力され、操作量が零ま たは零近傍のときに最大制動トルク(回生トルク)が出力されるようにして、油圧駆動 方式のように、操作端の中立位置で慣性体をスムーズに停止させるとともに、慣性体 の旋回速度を検出する旋回速度センサを設けて、操作端の操作量に応じて予め設 定された旋回速度と実際の旋回速度の偏差を求め、この偏差に応じた加速トルクま たは制動トルクを指令するようにして、旋回の加速や減速の過渡期に、オペレータの 操作量通りのトルク制御特性が得られるようにしている。  In the turning control device of the electric drive system described in Patent Document 1, when the operation amount of the operating end is at or near the maximum, the maximum acceleration torque (curling torque) is output, and the operation amount is zero. The maximum braking torque (regenerative torque) is output near zero, and as in the hydraulic drive system, the inertia body is smoothly stopped at the neutral position of the operation end, and the turning speed of the inertia body is detected. A swing speed sensor is provided to determine the deviation between the preset swing speed and the actual swing speed according to the amount of operation of the operating end, and to give an acceleration torque or a braking torque according to this deviation. Thus, during the transition period of acceleration and deceleration of turning, torque control characteristics according to the amount manipulated by the operator can be obtained.
[0007] 特許文献 2に記載された建設機械の駆動装置では、操作端の操作量に対して予め 定められた関数関係に基づいて第 1の目標トルクを算出するとともに、操作端の操作 量に対して予め定められた関数関係に基づいて電動機の目標速度を算出して、この 電動機の目標速度と実速度との速度偏差に対して予め定められた関数関係に基づ いて第 2の目標トルクを算出し、これらの第 1および第 2の目標トルクのうち絶対値が 小さい方の目標トルクを目標値として、電動機の出力トルクを制御するようにしている 。すなわち、特許文献 2に記載されたものは、例えば、電動機の目標速度と実速度と の速度偏差が大きくなる加速操作時には、オペレータの操作量に基づいて算出され る第 1の目標トルク(く第 2の目標トルク)を目標値とし、電動機の速度が増大して速 度偏差が小さくなつたときは、速度偏差に基づいて算出される第 2の目標トルク(く第 1の目標トルク)を目標値とすることにより、特許文献 1に記載されたものと同様に、加 速の過渡期等にオペレータの操作量通りのトルク制御特性が得られるようにしている 。特許文献 2に記載されたものでは、電動機の実速度に対して予め定められた関数 関係に基づいて算出した許容最大トルクを第 3の目標トルクとし、第 1および第 2の目 標トルクに第 3の目標トルクも含めて、これらの目標トルクのうち絶対値が最も小さいも のを目標トルクとし、電動機の過負荷を防止することも提案して 、る。  In the drive apparatus for a construction machine described in Patent Document 2, the first target torque is calculated based on a predetermined functional relationship with respect to the operation amount of the operation end, and the operation amount of the operation end is calculated. A target speed of the motor is calculated based on a predetermined functional relation, and a second target torque is calculated based on a predetermined functional relation for the speed deviation between the target speed and the actual speed of the motor. The output torque of the motor is controlled with the target torque having the smaller absolute value among the first and second target torques as the target value. That is, in the case of the acceleration operation in which the speed deviation between the target speed and the actual speed of the motor becomes large, for example, the first target torque calculated based on the operation amount of the operator is With the target torque of 2) as the target value and the speed of the motor increases and the speed deviation becomes smaller, the second target torque (the first target torque) calculated based on the speed deviation is used as the target. By using these values, as in the case described in Patent Document 1, torque control characteristics as the operator's operation amount can be obtained during the transition period of acceleration and the like. In the case described in Patent Document 2, the allowable maximum torque calculated based on a predetermined functional relationship with the actual speed of the motor is set as a third target torque, and the first and second target torques are set as the first target torque. It is also proposed to set the one with the smallest absolute value among these target torques, including the target torque of 3, as the target torque, and to prevent the overload of the motor.
[0008] また、特許文献 3に記載されたものでは、電動機を制御するコントローラ内に、油圧 駆動装置の動特性をリアルタイムでシミュレーションするエミユレーシヨンモデルを組 み込み、操作端の操作に応じてエミユレーシヨンモデルで制御目標値を演算して、電 動機を制御するようにして 、る。 [0008] Further, in the device described in Patent Document 3, the hydraulic pressure is controlled in a controller that controls the motor. By incorporating an emulation model that simulates the dynamic characteristics of the drive device in real time, the control target value is calculated by the emulation model according to the operation of the control terminal, and the motor is controlled, Ru.
[0009] 特許文献 1 :特開 2001— 10783号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-10783
特許文献 2:特開 2003 - 33063号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2003-33063
特許文献 3:特開 2003 - 333876号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2003-333876
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0010] 特許文献 1に記載されたものは、電動機の最大出力トルクに制限を加えて、旋回速 度の偏差に応じた加速トルクまたは制動トルクを指令するという簡単なアルゴリズムで 電動機を制御できるが、後述するように、油圧駆動装置では、操作端の操作によって スプール弁のブリードオフ制御絞りの開口面積を制御することにより、このブリードォ フ開口面積とブリードオフ流量(=ポンプ流量 モータ流量)の関数として、ブリード オフ圧力やメータアウト圧力を圧力制御しているので、油圧駆動装置の制御特性と は異なり、その操作性や操作感覚も油圧駆動方式のものと異なる問題がある。  According to Patent Document 1, the motor can be controlled by a simple algorithm of limiting the maximum output torque of the motor and commanding the acceleration torque or the braking torque according to the deviation of the turning speed. As described later, in the hydraulic drive, by controlling the opening area of the bleed-off control throttle of the spool valve by the operation of the operation end, a function of the bleed-off opening area and the bleed-off flow rate (= pump flow rate motor flow rate) As the bleed-off pressure and the meter-out pressure are pressure-controlled, the control characteristics of the hydraulic drive are different, and the operability and sense of operation are different from those of the hydraulic drive system.
[0011] 特許文献 2に記載されたものは、操作量に基づく第 1の目標トルクと、電動機の速 度偏差に基づく第 2の目標トルクのうちの絶対値が小さいほうの目標トルクを目標値と して電動機の出力トルクを制御すると記載され、表現は異なるが、基本的には、操作 量に対して出力されるトルクに最大値の制限を加えて、速度偏差に基づいたトルク制 御を行い、結果として両方力も演算されるトルクの小さいほうが選択される特許文献 1 に記載されたものと同じ技術である。したがって、特許文献 2に記載されたものも油圧 駆動装置の制御特性とは異なり、その操作性や操作感覚が油圧駆動方式のものと 異なる。  According to Patent Document 2, a target torque having a smaller absolute value among a first target torque based on an operation amount and a second target torque based on a speed deviation of a motor is set as a target value. Although it is described that the output torque of the motor is controlled and the expression is different, basically, the torque control based on the speed deviation is performed by adding a maximum value limit to the torque output with respect to the manipulated variable. The same technique as described in US Pat. No. 5,677,859, in which the smaller of the torques that are performed and consequently both forces are also calculated is selected. Therefore, the control described in Patent Document 2 also differs from the control characteristic of the hydraulic drive system, and the operability and operational feeling thereof are different from those of the hydraulic drive system.
[0012] 一方、特許文献 3に記載されたものは、操作性や操作感覚を油圧駆動方式のもの にかなり近づけることができる力 複雑なアルゴリズムのエミユレーシヨンモデルをリア ルタイムで演算する必要があるので、制御モデルが複雑で長 、演算時間を要するも のとなり、制御の応答時間が長くなつて、きめ細かな制御ができない問題がある。また 、複雑なアルゴリズムのエミユレーシヨンモデルを組み込むために、非常に高性能な コントローラを必要とする問題もある。 On the other hand, the technique described in Patent Document 3 needs to calculate an emulation model of a complicated algorithm in real time, which can bring the operability and sense of operation much closer to those of the hydraulic drive system. Because of this, the control model is complicated, long and requires computation time, and the response time of the control is long, and there is a problem that fine control can not be performed. It also has a very high performance to incorporate emulation models of complex algorithms There is also a problem that requires a controller.
[0013] そこで、本発明の課題は、簡単なアルゴリズムに基づく制御で、油圧駆動方式と同 様の操作性と操作感覚を得ることができる電動機の制御装置を提供することである。 課題を解決するための手段  Therefore, an object of the present invention is to provide a control device of a motor that can obtain the same operability and sense of operation as a hydraulic drive system by control based on a simple algorithm. Means to solve the problem
[0014] 上記の課題を解決するために、本発明は、慣性体を動作させる電動機の回転駆動 を少なくとも操作量を可変とする操作端の操作によって制御し、前記操作端の操作 量を検出する操作検出手段と、前記電動機の回転方向と回転速度を検出する回転 検出手段と、これらの操作検出手段と回転検出手段の各検出値に基づいて、前記電 動機が負担すべき目標トルクを演算する演算手段と、前記電動機の出力トルクを前 記目標トルクの方向と大きさに制御する電動機制御手段とを備え、前記出力トルクが 電動機の電動機機能としてのカ行トルクと発電機機能としての回生トルクからなる電 動機の制御装置において、前記演算手段に、前記カ行トルクが、前記操作端の操作 量の絶対値が大きくなると大きくなり、操作端の操作量が一定であっても、前記電動 機の回転速度の絶対値が大きくなると小さくなるアルゴリズムとを組み込んだ構成を 採用した。 In order to solve the above-mentioned problems, the present invention controls the rotational drive of a motor for operating an inertial body by at least the operation of an operating end for varying the operating amount, and detects the operating amount of the operating end. Based on the operation detection means, the rotation detection means for detecting the rotation direction and the rotation speed of the electric motor, and the detection values of the operation detection means and the rotation detection means, the target torque to be borne by the motor is calculated. The motor control means controls the output torque of the electric motor to the direction and the magnitude of the target torque, and the output torque corresponds to a fly torque as the electric motor function of the electric motor and a regenerative torque as the electric generator function. In the control device for the motor according to the present invention, when the absolute value of the amount of operation of the operating end increases, the amount of operation of the operation end of the operating end is constant. And it employs a configuration that incorporates the algorithms absolute value of the rotational speed is reduced becomes larger of the electric motor.
[0015] すなわち、目標トルクを演算する演算手段に、カ行トルクが、操作端の操作量の絶 対値が大きくなると大きくなり、操作端の操作量が一定であっても、電動機の回転速 度の絶対値が大きくなると小さくなるアルゴリズムとを組み込むことにより、以下に説明 するように、油圧駆動方式におけるブリードオフ圧力の制御と同様の制御特性を持た せて、オペレータが目標とする動作速度に制御しやすくし、簡単なアルゴリズムに基 づく制御で、油圧駆動方式と同様の操作性と操作感覚を得ることができるようにした。  [0015] That is, in the calculation means for calculating the target torque, the torque to be applied increases as the absolute value of the operation amount at the operation end increases, and the rotational speed of the motor is increased even if the operation amount at the operation end is constant. By incorporating an algorithm that decreases as the absolute value of the degree increases, as described below, the control characteristic similar to the bleed-off pressure control in the hydraulic drive system is provided, and the operating speed targeted by the operator is set. We made it easy to control and made it possible to obtain the same operability and feel as the hydraulic drive system by control based on a simple algorithm.
[0016] 図 7に示すような、スプール弁 51を操作することにより油圧ポンプ 52で油圧モータ 5 3を駆動する油圧駆動装置では、油圧モータ 53のメータイン圧力 Pとメータアウト圧 力 Pとの有効差圧が油圧モータトルクとなる。メータイン圧力 Pの方が高い場合は油 As shown in FIG. 7, in the hydraulic drive system in which the hydraulic motor 52 is driven by the hydraulic pump 52 by operating the spool valve 51, the meter-in pressure P and the meter-out pressure P of the hydraulic motor 53 are effective. The differential pressure is the hydraulic motor torque. If meter-in pressure P is higher, oil
2 1 twenty one
圧モータ 53を駆動する駆動圧力、メータアウト圧力 Pの方が高い場合は油圧モータ  Drive pressure for driving the pressure motor 53, hydraulic motor if the meter out pressure P is higher
2  2
53を制動する制動圧力となる。  This is the braking pressure for braking 53.
[0017] 図 8に示すように、操作端の操作量が大きくなると、前記油圧駆動装置のスプール 弁 51のブリードオフ制御絞り 51aの開口面積が小さくなり、ブリードオフ圧力 Pが高く なるとともにメータイン圧力 が高くなつて油圧モータ 53の駆動圧力が大きくなり、同 じ操作量でも油圧モータ 53の回転速度が大きいほど、メータイン圧力 Pが低くなつて 駆動圧力が小さくなるように制御される。したがって、油圧モータ 53の回転速度が上 昇すると駆動圧力が次第に小さくなり、駆動系の摩擦または油圧配管系統やスプー ル弁 51の圧損による駆動抵抗と見合う値で慣性体の加速がなくなって、オペレータ が目標とする動作速度に制御される。よって、上記アルゴリズムを組み込むことにより 、このような油圧駆動方式のブリードオフ制御絞り 51aによるメータイン圧力 Pの制御 と同様の制御特性を持たせることができる。 As shown in FIG. 8, when the operation amount at the operation end increases, the opening area of the bleed-off control throttle 51a of the spool valve 51 of the hydraulic drive device decreases, and the bleed-off pressure P becomes high. At the same time, the meter-in pressure P is controlled so that the meter-in pressure P becomes lower and the drive pressure becomes smaller as the rotational speed of the hydraulic motor 53 becomes larger. . Therefore, as the rotational speed of the hydraulic motor 53 increases, the drive pressure gradually decreases, and the inertia of the inertia body is not accelerated at a value commensurate with the drive resistance due to the friction of the drive system or the pressure loss of the hydraulic piping system or the spool valve 51. Is controlled to the target operating speed. Therefore, by incorporating the above algorithm, it is possible to have the same control characteristic as the control of the meter-in pressure P by such a hydraulic drive type bleed-off control throttle 51a.
[0018] なお、図 7に示したスプール弁 51のメータイン制御絞り 51bは、同一の油圧ポンプ 5 2で他のァクチユエータを作動させる場合に、油圧モータ 53のメータイン圧力 Pを制 御するためや、油圧モータ 53の駆動圧力に抵抗をつけるためのものであり、油圧駆 動方式はブリードオフ制御絞り 51aによるメータイン圧力 Pの制御によって駆動圧力 を制御することが基本制御特性となって 、る。  The meter-in control throttle 51b of the spool valve 51 shown in FIG. 7 controls the meter-in pressure P of the hydraulic motor 53 when the other actuator is operated by the same hydraulic pump 52. The resistance of the driving pressure of the hydraulic motor 53 is intended. The hydraulic driving system has a basic control characteristic in which the driving pressure is controlled by controlling the meter-in pressure P by the bleed-off control throttle 51a.
[0019] 前記演算手段に、前記回生トルクが、前記操作端の操作量の絶対値が小さくなると 大きくなり、操作端の操作量が一定であっても、前記電動機の回転速度の絶対値が 小さくなると小さくなるアルゴリズムを組み込むことにより、油圧駆動方式のメータァゥ ト圧力の制御と同様の制御特性を持たせて、さらに油圧駆動方式と同様の操作性と 操作感覚を得られるようにすることができる。  In the calculation means, the regenerative torque increases as the absolute value of the operation amount at the operating end decreases, and the absolute value of the rotational speed of the motor decreases even if the operation amount at the operating end is constant. By incorporating an algorithm that becomes smaller as it becomes, it is possible to provide control characteristics similar to the control of the hydraulic drive meter pressure, and to obtain the operability and the sense of operation similar to the hydraulic drive.
[0020] すなわち、図 7に示したような油圧駆動装置では、図 9に示すように、スプール弁 51 のメータアウト制御絞り 51cは、操作端の操作量が零力もある値になると開口し始め て、操作量の増加に伴って開口面積が大きくなる。この状態で操作量を小さくするよ うに戻すと、メータアウト圧力 Pが高くなり、同じ操作量では、油圧モータ 53の回転速  That is, in the hydraulic drive as shown in FIG. 7, as shown in FIG. 9, the meter out control throttle 51 c of the spool valve 51 starts to open when the operation amount of the operating end also reaches a value with zero force. Therefore, the opening area increases with the increase of the operation amount. If the operating amount is returned to a smaller value in this state, the meter-out pressure P is increased, and the rotational speed of the hydraulic motor 53 is increased with the same operating amount.
2  2
度が小さくなるとメータアウト圧力 Pは低くなるように制御される。したがって、油圧モ  As the degree decreases, the meter-out pressure P is controlled to be lower. Therefore, the hydraulic
2  2
ータ 53のある回転速度から操作端の操作量を戻すと、回転速度が大きな時点では 制動圧力が大きぐ回転速度が低下するにつれて制動圧力が小さくなり、制動抵抗 や駆動系の摩擦が駆動圧力と見合う値で慣性体の減速がなくなって、オペレータが 目標とする動作速度に制御される。よって、上記アルゴリズムを組み込むことにより、 このような油圧駆動方式のメータアウト圧力 Pの制御と同様の制御特性を持たせるこ とがでさる。 If the amount of operation at the operating end is returned from a certain rotational speed of the motor 53, the braking pressure decreases as the braking pressure increases when the rotational speed increases, and the braking pressure and friction of the drive system become less At the value corresponding to, the deceleration of the inertial body is lost and the operator is controlled to the target operating speed. Therefore, by incorporating the above algorithm, the control characteristic similar to that of the control of the meter-out pressure P of such a hydraulic drive system can be obtained. He is happy.
[0021] 前記操作端が操作量のほかに操作方向をプラスマイナス両方向に可変として、前 記電動機をプラスマイナス両方向に回転駆動するものである場合は、前記操作検出 手段を前記操作端の操作量とプラスマイナスの操作方向を検出するものとし、前記 演算手段に、前記操作端の操作量が零を含む中立範囲のとき、または前記操作端 の操作方向と前記電動機の回転方向とが逆方向のときに、前記カ行トルクを零、前 記回生トルクを最大値とするアルゴリズムを組み込むことにより、ホイールローダの走 行制御のように、操作端としてのペダルの操作で電動機を一方向に回転させるもの だけでなぐショベルやクレーンの旋回制御のように、操作端としてのレバーの操作で 電動機をプラスマイナス両方向に回転駆動させるものにも適用することができ、油圧 駆動方式と同様に、操作端の操作量が中立範囲にあるときに、停止保持用の中立ブ レーキ機能を持たせるとともに、操作端の操作方向が電動機の回転方向とが逆方向 のときに、慣性体を大きな制動トルクで減速して停止させ、例えば、慣性体を坂道発 進させたり、慣性体を傾斜地で上向き旋回させたりする際に、パーキングブレーキが 外れたときの慣性体の下降を防止することができる。なお、慣性体が停止して電動機 自体も停止すると、電動機は操作端の逆方向への操作量に応じた駆動トルクを出力 して、慣性体を逆回転方向へ加速する。  [0021] In the case where the operating end has the operating direction variable in both plus and minus directions in addition to the operating amount, and the motor is driven to rotate in both plus and minus directions, the operation detecting means is the operating amount of the operating end. The operation direction of the operation end is detected in the neutral range including zero, or the operation direction of the operation end and the rotation direction of the electric motor are opposite to each other. At the same time, by incorporating an algorithm that sets the torque to zero and the regenerative torque to the maximum value, the motor is rotated in one direction by the operation of the pedal as the operation end like the wheel loader travel control. It also applies to the one that drives the motor to rotate in both positive and negative directions by the operation of the lever as the operation end, such as the swing control of a shovel or a crane, which is only by itself. Similarly to the hydraulic drive system, when the operation amount of the operation end is in the neutral range, the neutral brake function for stopping and holding is given, and the operation direction of the operation end is reverse to the rotation direction of the motor. In this case, the inertia body is decelerated and stopped with a large braking torque, for example, when the parking brake is released when the inertia body is advanced on a slope or the inertia body is turned upward on a slope, Can be prevented. When the inertial body stops and the motor itself also stops, the motor outputs a driving torque according to the amount of operation in the reverse direction of the operating end to accelerate the inertial body in the reverse rotation direction.
[0022] すなわち、図 7に示したような油圧駆動装置では、スプール弁 51が中立のときにメ 一タイン制御絞り 5 lbとメータアウト制御絞り 51cが全閉でモータポートがブロックされ 、油圧モータ 53はいわゆる中立状態で停止保持されるとともに、慣性体の旋回中に 、油圧モータ 53の回転方向と逆方向に操作端を操作して、減速のための制動圧力 を大きくすることがある。このとき、油圧モータ 53はブレーキ弁(図示省略)によって最 高圧力で慣性体を制動し、慣性体が停止して油圧モータ自体も停止すると、操作端 の逆方向への操作量に応じた駆動圧力を出力して、慣性体を逆回転方向へ加速す るようになっている。  That is, in the hydraulic drive as shown in FIG. 7, when the spool valve 51 is neutral, the motor control block 5 lb and the meter out control throttle 51 c are fully closed to block the motor port. 53 is stopped and held in a so-called neutral state, and the operating end may be operated in the direction opposite to the rotational direction of the hydraulic motor 53 while turning the inertia body to increase the braking pressure for deceleration. At this time, the hydraulic motor 53 brakes the inertia body at the maximum pressure by a brake valve (not shown), and when the inertia body stops and the hydraulic motor itself stops, the drive according to the operation amount in the reverse direction of the operation end The pressure is output to accelerate the inertial body in the reverse rotation direction.
[0023] 前記操作端が操作量のほかに操作方向をプラスマイナス両方向に可変として、前 記電動機をプラスマイナス両方向に回転駆動するものである場合は、前記操作検出 手段を前記操作端の操作量とプラスマイナスの操作方向を検出するものとし、前記 演算手段に、前記操作端の操作量が零を含む中立範囲のとき、または前記操作端 の操作方向と前記電動機の回転方向とが逆方向のときに、前記電動機の回転速度 の絶対値が零近傍の小さい範囲で、前記回生トルクの絶対値を前記電動機の回転 速度の絶対値の大きさに応じて大きくするアルゴリズムを組み込むことにより、慣性体 を坂道発進させたり、慣性体を傾斜地で上向き旋回させたりするときに、慣性体の下 降後退や下向き戻り旋回を抑制して、スムーズに坂道発進や上向き旋回を行うことが できる。 [0023] In the case where the operating end has the operating direction variable in both plus and minus directions in addition to the operating amount, and the motor is driven to rotate in both plus and minus directions, the operation detecting means is used as the operating amount of the operating end. And positive or negative operation direction shall be detected. In the calculation means, when the operation amount of the operating end is in the neutral range including zero, or when the operating direction of the operating end and the rotational direction of the motor are in opposite directions, the absolute value of the rotational speed of the motor is zero. By incorporating an algorithm that increases the absolute value of the regenerative torque in accordance with the absolute value of the rotational speed of the motor in a small range in the vicinity, the inertial body can be slope-started or the inertial body is turned upward on a slope At the same time, it is possible to smoothly carry out slope start and upward turn by suppressing the downward and backward movement and downward turning of the inertial body.
[0024] すなわち、坂道や傾斜地では、油圧モータにかかる負荷トルクによって、油圧モー タの内部リークが発生し、いわゆるスリップ回転が生じる。このスリップ回転は微少な 値であり、その回転速度は油圧モータの圧力に応じて増大する。このため、油圧駆動 方式で慣性体を坂道発進させたり、上向き旋回させたりするときは、油圧モータの駆 動圧力による油圧モータトルクが傾斜による負荷トルクよりも小さ 、場合は、図 7に示 したロードチェック弁 51dによって油圧モータの下降方向への逆転が抑制され、駆動 圧力による油圧モータトルクが傾斜による負荷トルクよりも大きくなると、スムーズに坂 道発進や上向き旋回を始めるようになって!/、る。  That is, on slopes and slopes, load torque applied to the hydraulic motor causes internal leakage of the hydraulic motor and so-called slip rotation occurs. This slip rotation is a minute value, and its rotation speed increases with the pressure of the hydraulic motor. For this reason, when making the inertial body start on a slope or turn upward in the hydraulic drive system, the hydraulic motor torque by the hydraulic motor drive pressure is smaller than the load torque by the inclination. Reverse check in the descent direction of the hydraulic motor is suppressed by the load check valve 51d, and when the hydraulic motor torque by the driving pressure becomes larger than the load torque by the inclination, the slope start and upward turning starts smoothly. Ru.
[0025] これに対して、従来の電動駆動方式では、図 10に示すように、電動機の出力トルク が傾斜による負荷トルクよりも小さい場合は、電動機が少しでも下降方向へ逆転する と、最大トルクで回生状態となり、出力トルクが負荷トルクよりも大きくなるとカ行状態と なる。このため、回転速度の絶対値が零近傍における電動機の動きが振動的なもの となり、スムーズに坂道発進や上向き旋回を行うことができない。したがって、後の図 6に示すように、電動機の回転速度の絶対値が零近傍の小さい範囲で、回生トルクの 絶対値を電動機の回転速度の絶対値の大きさに応じて大きくするアルゴリズムを組 み込むことにより、出力トルクが負荷トルクよりも大きくなつたときに電動機を回生から カ行に切り換え、油圧駆動方式と同様に、スムーズに坂道発進や上向き旋回を行う ことができる。  On the other hand, in the conventional electric drive system, as shown in FIG. 10, when the output torque of the motor is smaller than the load torque due to the inclination, the maximum torque is obtained if the motor reverses even in the downward direction. When the output torque becomes larger than the load torque, it will be in the critical state. For this reason, the movement of the motor when the absolute value of the rotational speed is near zero becomes vibrational, and it is not possible to smoothly start a slope or turn upward. Therefore, as shown in FIG. 6 later, an algorithm for increasing the absolute value of the regenerative torque in accordance with the magnitude of the absolute value of the rotational speed of the motor within a small range where the absolute value of the rotational speed of the motor is near zero. By taking in the motor, it is possible to switch the motor from regeneration to power when the output torque becomes larger than the load torque, and to perform slope start and upward turning smoothly as in the hydraulic drive system.
[0026] 前記演算手段を、予め記憶された演算アルゴリズムにより、前記目標トルクを、前記 電動機によって慣性体を駆動する駆動トルクと、前記慣性体によって電動機が駆動 される被駆動トルクとに分け、これらの駆動トルクと被駆動トルクの和として演算するも のとし、この演算アルゴリズムに、前記駆動トルクの絶対値が、前記操作端の操作量 の絶対値が大きくなると大きくなり、操作端の操作量が一定であっても、前記電動機 の回転速度の絶対値が大きくなると小さくなる駆動トルク演算アルゴリズムと、前記被 駆動トルクの絶対値が、前記操作端の操作量の絶対値が小さくなると大きくなり、操 作端の操作量が一定であっても、前記電動機の回転速度の絶対値が小さくなると小 さくなる被駆動トルク演算アルゴリズムとのうち、少なくとも前記駆動トルク演算アルゴ リズムを組み込むことにより、電動機の出力トルクの制御設計を、制御弁の制御絞り による油圧モータトルクの制御の場合と同様に行うことができる。そのため、電動機ト ルク特性の設計や調整を従来の知見に基づ 、て容易に行うことができるようになる。 すなわち、油圧モータトルクは、ブリードオフ制御絞りによるメータイン圧力とメータァ ゥト制御絞りによるメータアウト圧力との有効差圧によって制御されている力 ブリード オフ制御絞りとメータアウト制御絞りは特性を独立して設計することが可能であり、両 特性の和 (圧力の計算としては差)として、モータトルクの制御特性が決定される。電 動機出力トルクの制御の場合も、油圧モータのブリードオフ制御絞りによるメータイン 圧力に対比させて駆動トルクを、メータアウト制御絞りによるメータアウト圧力に対比さ せて被駆動トルクを設計することにより、両特性の和として目標トルクを設計すること が可能となる。 The calculation means is divided into a drive torque for driving the inertial body by the electric motor and a driven torque for driving the electric motor by the inertial body using an arithmetic algorithm stored in advance. Also calculated as the sum of the drive torque and the driven torque In this arithmetic algorithm, the absolute value of the driving torque increases as the absolute value of the operating amount of the operating end increases, and the absolute value of the rotational speed of the motor is increased even if the operating amount of the operating end is constant. The driving torque calculation algorithm decreases as the value increases, and the absolute value of the driven torque increases as the absolute value of the operating amount of the operating end decreases, and the operating amount of the operating end is constant even if the operating amount of the operating end is constant. Among the driven torque calculation algorithms that become smaller as the absolute value of the rotational speed of the motor becomes smaller, at least the drive torque calculation algorithm is incorporated to control design of the output torque of the motor. It can carry out similarly to the case of control of motor torque. Therefore, design and adjustment of motor torque characteristics can be easily performed based on conventional knowledge. That is, the hydraulic motor torque is controlled by the effective differential pressure between the meter-in pressure by the bleed-off control throttle and the meter-out pressure by the metering control throttle. The characteristics of the bleed-off control throttle and the meter-out control throttle are independent. It is possible to design, and the control characteristic of the motor torque is determined as the sum of the two characteristics (difference as calculation of pressure). In the case of motor output torque control, too, the drive torque is designed against the meter-in pressure by the bleed-off control throttle of the hydraulic motor, and the drive torque is designed against the meter-out pressure by the meter-out control throttle. The target torque can be designed as the sum of both characteristics.
[0027] 前記演算アルゴリズムに、前記目標トルクを減らす抵抗トルクの演算を加え、この抵 抗トルクの絶対値が、前記電動機の回転速度の絶対値が増加すると大きくなり、前記 駆動トルクの絶対値を減らすアルゴリズム、および前記被駆動トルクの絶対値を増加 させるアルゴリズムの 、ずれか一方または両方を組み込むことにより、メカ-カルな駆 動系の抵抗に加えて、油圧駆動方式における圧損に相当する抵抗トルク要素を制御 系に加えることで、電動機の実際の出力トルクと負荷トルクがバランスする点がより一 層安定し、オペレータが意図する目標速度になるように安定して制御することができ る。なお、油圧駆動方式における圧損はエネルギ損失となる力 この抵抗トルクは仮 想のものであるので、エネノレギ損失とはならな!、。  An arithmetic operation of resistance torque for reducing the target torque is added to the arithmetic algorithm, and the absolute value of the resistance torque becomes larger as the absolute value of the rotational speed of the motor increases. In addition to the resistance of the mechanical drive system, the resistance torque equivalent to the pressure loss in the hydraulic drive system can be obtained by incorporating one or both of the algorithm to reduce and the algorithm to increase the absolute value of the driven torque. By adding elements to the control system, the point at which the motor's actual output torque and load torque are balanced becomes more stable, and stable control can be performed to achieve the operator's intended target speed. The pressure loss in the hydraulic drive system is an energy loss. This resistance torque is a hypothetical one, so it does not become an energy loss!
[0028] すなわち、図 7に示したような油圧駆動装置では、油圧ポンプ 52から油圧モータ 53 に到る配管系統の圧損や、スプール弁 51のメータイン制御絞り 5 lbやメータアウト制 御絞り 51cによる圧損がある。これらの圧損は、油圧ポンプ 52からの吐出油の流量が 大きくなると、いずれも流量の 2乗程度に比例して増加し、これらの圧損の存在によつ て、油圧モータ 53の出力トルクと負荷トルクがバランスする点が安定し、オペレータが 目標速度になるように制御しやすくなつて 、る。 That is, in the hydraulic drive system as shown in FIG. 7, the pressure loss of the piping system from the hydraulic pump 52 to the hydraulic motor 53, the meter-in control diaphragm 5 lb of the spool valve 51, and the meter-out control There is a pressure loss due to the throttle 51c. These pressure losses increase in proportion to the square of the flow rate as the flow rate of the discharged oil from the hydraulic pump 52 increases, and due to the presence of these pressure losses, the output torque and the load of the hydraulic motor 53 are increased. The point at which the torque balance is stable stabilizes and makes it easy for the operator to achieve the target speed.
[0029] 上述した各電動機で動作する慣性体は、建設機械の旋回動作または走行動作す る慣性体とすることができる。 [0029] The inertial body operating with each of the above-described motors can be an inertial body that performs turning operation or traveling operation of the construction machine.
発明の効果  Effect of the invention
[0030] 本発明の電動機の制御装置は、目標トルクを演算する演算手段に、カ行トルクが、 操作端の操作量の絶対値が大きくなると大きくなり、操作端の操作量が一定であって も、電動機の回転速度の絶対値が大きくなると小さくなるアルゴリズムとを組み込むこ とにより、油圧駆動方式におけるブリードオフ圧力の制御と同様の制御特性を持たせ て、オペレータが目標とする動作速度に制御しやすくしたので、簡単なアルゴリズム に基づく制御で、油圧駆動方式と同様の操作性と操作感覚を得ることができる。  [0030] In the motor control device of the present invention, the steering torque increases as the absolute value of the operation amount of the operation end increases, and the operation amount of the operation end is constant. Also, by incorporating an algorithm that decreases as the absolute value of the rotational speed of the motor increases, the control characteristic similar to that of bleed-off pressure control in the hydraulic drive system is provided to control the operating speed targeted by the operator. Since it has been made easy, it is possible to obtain the same operability and sense of operation as the hydraulic drive system by control based on a simple algorithm.
[0031] 前記演算手段に、回生トルクが、操作端の操作量の絶対値が小さくなると大きくなり 、操作端の操作量が一定であっても、電動機の回転速度の絶対値が小さくなると小さ くなるアルゴリズムを組み込むことにより、油圧駆動方式のメータアウト圧力の制御と 同様の制御特性を持たせて、さらに油圧駆動方式と同様の操作性と操作感覚を得ら れるようにすることができる。  In the calculation means, the regenerative torque increases as the absolute value of the operating amount at the operating end decreases, and decreases as the absolute value of the rotational speed of the motor decreases, even if the operating amount at the operating end is constant. By incorporating the above algorithm, the control characteristic similar to that of the hydraulic drive type meter-out pressure control can be obtained, and furthermore, the operability and sense of operation similar to the hydraulic drive type can be obtained.
[0032] 前記操作端が操作量のほかに操作方向をプラスマイナス両方向に可変として、電 動機をプラスマイナス両方向に回転駆動するものである場合は、操作検出手段を操 作端の操作量とプラスマイナスの操作方向を検出するものとし、前記演算手段に、操 作端の操作量が零を含む中立範囲のとき、または操作端の操作方向と電動機の回 転方向とが逆方向のときに、カ行トルクを零、回生トルクを最大値とするアルゴリズム を組み込むことにより、ホイールローダの走行制御のように、操作端としてのペダルの 操作で電動機を一方向に回転させるものだけでなぐショベルやクレーンの旋回制御 のように、操作端としてのレバーの操作で電動機をプラスマイナス両方向に回転駆動 させるものにも適用することができ、油圧駆動方式と同様に、操作端の操作量が中立 範囲にあるときに、停止保持用の中立ブレーキ機能を持たせるとともに、操作端の操 作方向が電動機の回転方向とが逆方向のときに、慣性体を大きな制動トルクで減速 して停止させ、例えば、慣性体を坂道発進させたり、慣性体を傾斜地で上向き旋回さ せたりする際に、パーキングブレーキが外れたときの慣性体の下降を防止することが できる。 In addition to the operation amount, in the case where the operation terminal rotates the motor in both directions by changing the operation direction to plus or minus direction in addition to the operation amount, the operation detection means includes the operation amount of the operation end and the plus. It is assumed that a negative operation direction is detected, and when the operation amount of the operation end is in the neutral range including zero, or when the operation direction of the operation end and the rotation direction of the motor are opposite to each other, By incorporating an algorithm that sets the torque to zero and the regenerative torque to the maximum value, such as traveling control of a wheel loader, shovels and cranes can be operated only by rotating the motor in one direction by operating the pedal as the operating end. The invention can be applied to rotation control of the motor in both directions plus and minus by operation of the lever as the operation end, as in the case of turning control of When the operation amount of the work end is in the neutral range, to have a neutral braking function for stopping and holding, Misao operation ends When the direction of movement is opposite to the direction of rotation of the motor, the inertial body is decelerated and stopped with a large braking torque, for example, when the inertial body is started on a slope or the inertial body is turned upward on a slope. In addition, it is possible to prevent the lowering of the inertia body when the parking brake is released.
[0033] 前記操作端が操作量のほかに操作方向をプラスマイナス両方向に可変として、電 動機をプラスマイナス両方向に回転駆動するものである場合は、操作検出手段を操 作端の操作量とプラスマイナスの操作方向を検出するものとし、前記演算手段に、操 作端の操作量が零を含む中立範囲のとき、または操作端の操作方向と電動機の回 転方向とが逆方向のときに、電動機の回転速度の絶対値が零近傍の小さい範囲で、 回生トルクの絶対値を電動機の回転速度の絶対値の大きさに応じて大きくするアル ゴリズムを組み込むことにより、慣性体を坂道発進させたり、慣性体を傾斜地で上向 き旋回させたりするときに、慣性体の下降後退や下向き戻り旋回を抑制して、スムー ズに坂道発進や上向き旋回を行うことができる。  [0033] In addition to the operation amount, when the operation end has the operation direction variable in both plus and minus directions, and the motor is rotationally driven in both directions, the operation detection means includes the operation amount of the operation end and the plus. It is assumed that a negative operation direction is detected, and when the operation amount of the operation end is in the neutral range including zero, or when the operation direction of the operation end and the rotation direction of the motor are opposite to each other, Incorporating an algorithm that increases the absolute value of the regenerative torque according to the absolute value of the motor's rotational speed within a small range where the absolute value of the motor's rotational speed is near zero, or allows the inertial body to start on a hill When the inertial body is turned upward on a slope, it is possible to smoothly start a slope or turn upward by suppressing the downward and backward movement and downward turning of the inertial body.
[0034] 前記演算手段を、予め記憶された演算アルゴリズムにより、目標トルクを、電動機に よって慣性体を駆動する駆動トルクと、慣性体によって電動機が駆動される被駆動ト ルクとに分け、これらの駆動トルクと被駆動トルクの和として演算するものとし、この演 算アルゴリズムに、駆動トルクの絶対値が、操作端の操作量の絶対値が大きくなると 大きくなり、操作端の操作量が一定であっても、電動機の回転速度の絶対値が大きく なると小さくなる駆動トルク演算アルゴリズムと、被駆動トルクの絶対値が、操作端の 操作量の絶対値が小さくなると大きくなり、操作端の操作量が一定であっても、電動 機の回転速度の絶対値が小さくなると小さくなる被駆動トルク演算アルゴリズムとのう ち、少なくとも駆動トルク演算アルゴリズムを組み込むことにより、電動機の出力トルク の制御設計を、制御弁の制御絞りによる油圧モータトルクの制御の場合と同様に行う ことができ、電動機のカ行と回生について、それぞれ異なったトルクの制御特性を持 たせて慣性体を動作させることができるとともに、油圧駆動方式と同様に、電動機の 加速力 減速への変更や減速から加速への変更を連続的にスムーズに行うことがで きる。  The calculation means is divided into a target torque, a drive torque for driving the inertia body by the motor, and a driven torque for driving the motor by the inertia body, using a calculation algorithm stored in advance. In this arithmetic algorithm, the absolute value of the drive torque increases as the absolute value of the operation amount at the operating end increases, and the operation amount at the operation end is constant. Even if the absolute value of the rotational speed of the motor increases, the drive torque calculation algorithm decreases, and the absolute value of the driven torque increases as the absolute value of the operation amount of the operation end decreases, and the operation amount of the operation end becomes constant. Even if the absolute value of the rotational speed of the motor decreases, at least the drive torque calculation algorithm among the driven torque calculation algorithms becomes smaller. By incorporating it, the control design of the output torque of the motor can be performed in the same manner as in the case of the control of the hydraulic motor torque by the control throttle of the control valve. As well as being able to operate the inertial body by holding it, as with the hydraulic drive system, it is possible to change the acceleration force of the motor to deceleration and change from deceleration to acceleration continuously and smoothly.
[0035] 前記演算アルゴリズムに、目標トルクを減らす抵抗トルクの演算を加え、この抵抗ト ルクの絶対値力 電動機の回転速度の絶対値が増加すると大きくなり、駆動トルクの 絶対値を減らすアルゴリズム、および被駆動トルクの絶対値を増加させるアルゴリズム のいずれか一方または両方を組み込むことにより、メカ-カルな駆動系の抵抗に加え て、油圧駆動方式における圧損に相当する抵抗トルク要素を制御系に加えることで、 電動機の実際の出力トルクと負荷トルクがバランスする点がより一層安定し、ォペレ ータが意図する目標速度になるように安定して制御することができる。 [0035] The above calculation algorithm is added with the calculation of the resistance torque to reduce the target torque, The absolute value of torque increases as the absolute value of the rotational speed of the motor increases, and by incorporating one or both of an algorithm for reducing the absolute value of the drive torque and an algorithm for increasing the absolute value of the driven torque. By adding to the control system a resistance torque element equivalent to the pressure loss in the hydraulic drive system in addition to the resistance of the common drive system, the balance between the actual output torque of the motor and the load torque is further stabilized. Can be stably controlled to achieve the intended target speed.
図面の簡単な説明  Brief description of the drawings
[0036] [図 1]本発明に係る電動機の制御装置を組み込んだ油圧ショベルを示す側面図 FIG. 1 is a side view showing a hydraulic shovel incorporating a control device for an electric motor according to the present invention.
[図 2]図 1の油圧ショベルに組み込まれた電動機の制御装置の構成を示すブロック図 [図 3]図 2の演算アルゴリズムの基本マップを示すグラフ [FIG. 2] A block diagram showing a configuration of a control device of a motor incorporated in the hydraulic shovel of FIG. 1. [FIG. 3] A graph showing a basic map of the calculation algorithm of FIG.
[図 4]図 3のグラフの第 1象限と第 4象限における目標トルクを駆動トルクと被駆動トル クとに分解して示すグラフ  [FIG. 4] A graph showing the target torque in the first quadrant and the fourth quadrant of the graph of FIG. 3 disassembled into a driving torque and a driven torque.
[図 5]図 2の演算アルゴリズムで演算される抵抗トルクを示すグラフ  [Figure 5] A graph showing the resistance torque computed by the computation algorithm of Figure 2
[図 6]図 2の演算アルゴリズムで回転速度の絶対値が零近傍の小さい範囲で演算さ れる被駆動トルクを示すグラフ  [Fig. 6] A graph showing the driven torque calculated in the range where the absolute value of the rotational speed is near zero with the operation algorithm of Fig. 2
[図 7]従来の油圧駆動装置の配管系統図  [Figure 7] Piping system diagram of conventional hydraulic drive
[図 8]図 7の油圧駆動装置におけるブリードオフ圧力の制御特性を示すグラフ  [FIG. 8] A graph showing control characteristics of bleed off pressure in the hydraulic drive system of FIG.
[図 9]図 7の油圧駆動装置におけるメータアウト圧力の制御特性を示すグラフ  [FIG. 9] A graph showing control characteristics of meter-out pressure in the hydraulic drive system of FIG.
[図 10]従来の電動駆動方式における回転速度の絶対値が零近傍の制御特性を示 すグラフ  [Figure 10] Graph showing the control characteristics in which the absolute value of the rotational speed is near zero in the conventional electric drive system
符号の説明  Explanation of sign
[0037] 1 電動機 [0037] 1 Motor
la 回転検出手段  la rotation detection means
2 操作レバー  2 Control lever
2a 操作検出手段  2a Operation detection means
3 コントローラ  3 controller
3a メモリ  3a memory
3b 演算アルゴリズム 4 インバータ 3b arithmetic algorithm 4 inverter
4a 信号変換回路  4a Signal conversion circuit
4b 電流制御回路  4b current control circuit
20 走行体  20 running body
21 走行油圧モータ  21 Traveling hydraulic motor
22 減速機  22 Speed reducer
30 旋回体  30 swiveling body
31 エンジン  31 engine
32 油圧ポンプ  32 hydraulic pumps
33 発電機  33 Generator
34 蓄電装置  34 Power storage device
35 減速機  35 reducer
36 コンバータ  36 converter
40 掘削アタッチメント  40 Drilling attachment
41 ブーム  41 boom
41a ブームシリンダ  41a Boom cylinder
42 アーム  42 arm
42a アームシリンダ  42a arm cylinder
43 ノ ケッ卜  43 Nocket
43a バケツトシリンダ  43a bucket cylinder
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面に基づき、本発明の実施形態を説明する。図 1は、本発明に係る電動 機の制御装置を組み込んだ油圧ショベルを示す。この油圧ショベルは、クローラ式の 下部走行体 20と、下部走行体 20の上で左右に旋回動作する慣性体としての上部旋 回体 30と、この旋回体 30の前部に装着された掘削アタッチメント 40とから成る。下部 走行体 20は、走行用油圧モータ 21と減速機 22で左右のクローラ 23が個別に駆動さ れて走行する。また、掘削アタッチメント 40は、ブーム 41、アーム 42およびパケット 4 3と、これらを作動させるブームシリンダ 41a、アームシリンダ 42aおよびバケツトシリン ダ 43aを具備している。 Hereinafter, embodiments of the present invention will be described based on the drawings. FIG. 1 shows a hydraulic shovel incorporating the motor control device according to the present invention. This hydraulic shovel includes a crawler type lower traveling body 20, an upper rotating body 30 as an inertial body which pivots left and right on the lower traveling body 20, and an excavating attachment attached to a front portion of the rotating body 30. And 40. The lower traveling body 20 travels by driving the left and right crawlers 23 separately by the traveling hydraulic motor 21 and the reduction gear 22. The drilling attachment 40 includes a boom 41, an arm 42 and a packet 43, a boom cylinder 41a for operating them, an arm cylinder 42a and a bucket cylinder. Da 43a is equipped.
[0039] 前記旋回体 30には、エンジン 31、エンジン 31によって駆動される油圧ポンプ 32と 発電機 33、ノ ッテリやキャパシタ等の蓄電装置 34、および、旋回体 30を旋回動作さ せる電動機 1と減速機 35が搭載されている。油圧ポンプ 32の吐出油は、走行用油圧 モータ 21とブーム 41、アーム 42およびノケッ卜 43の各シリンダ 41a、 42a、 43aに、 それぞれ制御弁を介して供給される。また、発電機 33の電力は、コンバータ 36で電 圧、電流が制御されて蓄電装置 34に蓄えられるとともに、後述するインバータ 4を介 して電動機 1に供給される。電動機 1は永久磁石を回転子とする永久磁石式モータ であり、本発明に係る電動機の制御装置は、この電動機 1を制御して、旋回体 30を 旋回動作させるものである。  The revolving unit 30 includes an engine 31, a hydraulic pump 32 and a generator 33 driven by the engine 31, a power storage device 34 such as a notch or a capacitor, and a motor 1 for causing the revolving unit 30 to swing. A reduction gear 35 is mounted. The discharge oil of the hydraulic pump 32 is supplied to the traveling hydraulic motor 21 and the boom 41, the arm 42, and the cylinders 41a of the notch 43 via control valves. The power of the generator 33 is controlled by the converter 36 so that the voltage and current are controlled and stored in the storage device 34, and is also supplied to the motor 1 through the inverter 4 described later. The electric motor 1 is a permanent magnet type motor having a permanent magnet as a rotor, and the control device of the electric motor according to the present invention controls the electric motor 1 to cause the turning body 30 to perform a turning operation.
[0040] 図 2は、前記電動機 1の制御装置の構成を示すブロック図である。この制御装置は 、操作端としての操作レバー 2のプラスマイナス両方向の操作量 Xを検出する操作検 出手段 2aと、両方向に回転する電動機 1のプラスマイナスの回転速度 Nを検出する 回転検出手段 laと、これらの検出された操作レバー 2の操作量 Xと電動機 1の回転 速度 Nから、電動機 1が負担すべき目標トルク Toの方向と大きさを演算する演算手 段としてのコントローラ 3と、発電機 33または蓄電装置 34から供給される電力に対し て、電動機 1の出力トルク Tをコントローラ 3で演算された目標トルク Toの方向と大きさ に制御する電動機制御手段としてのインバータ 4とで構成されている。  FIG. 2 is a block diagram showing a configuration of a control device of the motor 1. This control device comprises an operation detection means 2a for detecting the operation amount X of the operation lever 2 as plus and minus in both directions as an operation end, and a rotation detection means la for detecting the plus and minus rotational speed N of the motor 1 rotating in both directions. The controller 3 as a computing means for computing the direction and magnitude of the target torque To to be borne by the motor 1 from the detected operation amount X of the control lever 2 and the rotational speed N of the motor 1 And the inverter 4 as motor control means for controlling the output torque T of the motor 1 to the direction and magnitude of the target torque To calculated by the controller 3 with respect to the power supplied from the motor 33 or the storage device 34 ing.
[0041] 前記コントローラ 3にはメモリ 3aが設けられ、油圧駆動方式の制御特性を表現する ように、目標トルク Toを駆動トルク Taと被駆動トルク Tbとに分けて演算する演算アル ゴリズム 3bが、予めメモリ 3aに記憶されている。目標トルク Toは駆動トルク Taと被駆 動トルク Tbの和として演算され、演算された目標トルク Toは、操作レバー 2の操作方 向と同方向に出力されるものとなる場合はカ行トルクとなり、操作方向と逆方向に出 力されるものとなる場合は回生トルクとなる。また、インバータ 4は、信号変換回路 4aと 電流制御回路 4bを備え、信号変換回路 4aでコントローラ 3から入力される目標トルク Toを目標電流 Ioに変換し、電流制御回路 4bで電動機 1への出力電流 Iを目標電流 I oとするようにフィードバック制御する。  The controller 3 is provided with a memory 3a, and an arithmetic algorithm 3b for dividing the target torque To into a driving torque Ta and a driven torque Tb so as to express the control characteristic of the hydraulic driving system, It is stored in advance in the memory 3a. The target torque To is calculated as the sum of the driving torque Ta and the driven torque Tb, and the calculated target torque To is a torque in the case where it is output in the same direction as the operation direction of the control lever 2. If it is output in the direction opposite to the operation direction, it is the regenerative torque. In addition, the inverter 4 includes a signal conversion circuit 4a and a current control circuit 4b. The signal conversion circuit 4a converts the target torque To input from the controller 3 into a target current Io, and the current control circuit 4b outputs an output to the motor 1 Feedback control is performed to set the current I to the target current Io.
[0042] 図 3は、前記演算アルゴリズム 3bで目標トルク Toを演算する基本マップを示す。こ の基本マップは、横軸を操作レバー 2のプラスマイナスの操作量 X、縦軸を目標トル ク Toとし、これらの関係を、電動機 1のプラスマイナスの回転速度 Nをパラメータとし た特性曲線で表したものであり、操作量 Xと目標トルク Toが同符号となる第 1象限と 第 3象限では、目標トルク Toがカ行トルクとなり、操作量 Xと目標トルク Toが異符号と なる第 2象限と第 4象限では、目標トルク Toが回生トルクとなる。すなわち、第 1象限 では右旋回カ行、第 2象限では左旋回回生、第 3象限では左旋回カ行、第 4象限で は右旋回回生となる。なお、図 3のグラフでは、マップを見やすくするために、パラメ ータの回転速度 N = 0、 1/2, 1 (最大速度)の場合についてのみ、各特性曲線を表 示している。 FIG. 3 shows a basic map for calculating the target torque To by the calculation algorithm 3b. This In the basic map, the horizontal axis is the plus / minus manipulated variable X of the control lever 2 and the vertical axis is the target torque To, and the relationship between them is a characteristic curve with the plus or minus rotational speed N of the motor 1 as a parameter. In the first and third quadrants in which the manipulated variable X and the target torque To have the same sign, the target torque To is a positive torque, and the manipulated variable X and the target torque To have a different sign in the second quadrant In the fourth quadrant, the target torque To is the regenerative torque. That is, in the first quadrant, it is right turn regeneration, in the second quadrant it is left turn regeneration, in the third quadrant it is left turn clearance, and in the fourth quadrant it is right turn regeneration. In the graph of FIG. 3, in order to make the map easy to see, the characteristic curves are shown only in the case of the parameter rotation speed N = 0, 1/2, 1 (maximum speed).
[0043] 前記基本マップの第 1象限と第 3象限では、カ行トルクとなる目標トルク Toの絶対 値が、操作レバー 2の操作量 Xの絶対値が大きくなると大きくなり、操作量 Xが一定で あっても、電動機 1の回転速度 Nの絶対値が大きくなると小さくなるように演算され、 油圧駆動方式のブリードオフ圧力の制御と同様の制御特性が得られるようになって いる。また、基本マップの第 2象限と第 4象限では、回生トルクとなる目標トルク Toの 絶対値が、操作量 Xの絶対値が小さくなると大きくなり、操作量 Xが一定であっても、 回転速度 Nの絶対値力 S小さくなると小さくなるように演算され、油圧駆動方式におけ るメータアウト圧力の制御と同様の制御特性が得られるようになつている。  In the first quadrant and the third quadrant of the basic map, the absolute value of the target torque To, which is the torque to be applied, increases as the absolute value of the operation amount X of the operation lever 2 increases, and the operation amount X becomes constant. Even in this case, the absolute value of the rotational speed N of the motor 1 is calculated so as to decrease as the absolute value of the rotational speed N increases, and the same control characteristic as the control of the bleed-off pressure of the hydraulic drive system can be obtained. Also, in the second and fourth quadrants of the basic map, the absolute value of the target torque To, which is the regenerative torque, increases as the absolute value of the manipulated variable X decreases, and even if the manipulated variable X is constant, the rotational speed It is calculated so as to become smaller as the absolute value force S of N becomes smaller, and a control characteristic similar to that of the meter-out pressure control in the hydraulic drive system can be obtained.
[0044] さら〖こ、図 3に示した基本マップでは、操作量 Xが零を含む中立範囲のときと、操作 レバー 2の操作方向と電動機 1の回転方向が逆方向のときに、カ行トルクが零、回生 トルクの絶対値が最大値 Tmaxに設定されている。したがって、例えば、第 4象限の状 態で回転速度 N= 1Z2 (Q点)のときに、図中に矢印で示すように、操作レバー 2の 操作量 Xを Xから Xへ電動機 1の回転方向と逆方向に操作すると、回転速度 Nが  Further, in the basic map shown in FIG. 3, when the operation amount X is in the neutral range including zero and when the operation direction of the operation lever 2 and the rotation direction of the motor 1 are in the opposite direction, The torque is zero, and the absolute value of the regenerative torque is set to the maximum value Tmax. Therefore, for example, when the rotational speed N = 1Z2 (point Q) in the fourth quadrant, as indicated by the arrow in the figure, the operation amount X of the control lever 2 from X to X the direction of rotation of the motor 1 When operating in the opposite direction, the rotational speed N is
1 2  1 2
零になるまでの間、回生トルクが Tmaxで出力されて右旋回が減速され、回転速度 N が零になると、第 3象限で操作量 Xを— Xとしたときの回転速度 N = 0 (Q点)に相当  Until it reaches zero, the regenerative torque is output at Tmax and the right turn is decelerated, and the rotational speed N becomes zero, the rotational speed when the manipulated variable X is −X in the third quadrant N = 0 ( Equivalent to point Q)
2 2 するカ行トルクが出力されて、旋回体 30を左旋回させるように加速開始する。なお、 この実施形態では、カ行トルクの絶対値も、回生トルクと同じ最大値 Tmaxに設定され ている。  The torque to move 2 2 is output, and acceleration is started to turn the swing body 30 to the left. Note that, in this embodiment, the absolute value of the steering torque is also set to the same maximum value Tmax as the regenerative torque.
[0045] 図 4は、図 3で右旋回となる第 1象限と第 4象限について、目標トルク Toを実線で示 す駆動トルク Taと、点線で示す被駆動トルク Tbとに分解して示したものである。駆動 トルク Taは油圧モータのメータイン圧力によるトルクに相当し、被駆動トルク Tbは油 圧モータのメータアウト圧力によるトルクに相当する。第 1象限における駆動トルク Ta の絶対値は、操作量 Xの絶対値が大きくなると大きくなり、操作量 Xが一定であっても 、回転速度 Nの絶対値が大きくなると小さくなるように演算され、最大値 Tamaxが設定 されている。また、第 4象限における被駆動トルク Tbの絶対値は、操作量 Xの絶対値 力 、さくなると大きくなり、操作量 Xが一定であっても、回転速度 Nの絶対値が小さく なると小さくなるように演算され、操作量 Xが零を含む中立範囲と、操作レバー 2の操 作方向と電動機 1の回転方向が逆方向となる第 3象限では、最大値 Tbmaxに設定さ れるようになっている。図 3の第 1象限と第 4象限に示した目標トルク Toは、このように 演算された駆動トルク Taと被駆動トルク Tbの和として求めたものである。図示は省略 するが、左旋回となる図 3の第 2象限と第 3象限における目標トルク Toも、同様に演算 された駆動トルク Taと被駆動トルク Tbの和として求めたものである。 [0045] FIG. 4 shows the target torque To as a solid line for the first quadrant and the fourth quadrant that turn to the right in FIG. The driving torque Ta and the driven torque Tb indicated by a dotted line are shown in the form of a disassembly. The driving torque Ta corresponds to the torque due to the meter-in pressure of the hydraulic motor, and the driven torque Tb corresponds to the torque due to the meter-out pressure of the hydraulic motor. The absolute value of the driving torque Ta in the first quadrant increases as the absolute value of the manipulated variable X increases, and is calculated so as to decrease as the absolute value of the rotational speed N increases, even if the manipulated variable X is constant. Maximum value Tamax is set. Also, the absolute value of the driven torque Tb in the fourth quadrant increases as the absolute value of the manipulated variable X decreases, and decreases as the absolute value of the rotational speed N decreases, even if the manipulated variable X is constant. In the third quadrant where the operation amount X is zero and the operating direction of the control lever 2 and the rotation direction of the motor 1 are opposite, the maximum value Tbmax is set. . The target torque To shown in the first quadrant and the fourth quadrant of FIG. 3 is obtained as the sum of the driving torque Ta and the driven torque Tb thus calculated. Although illustration is omitted, the target torque To in the second and third quadrants of FIG. 3 which turns left is also obtained as the sum of the drive torque Ta and the driven torque Tb which are similarly calculated.
[0046] 図 5のグラフは、前記演算アルゴリズム 3bで演算された目標トルク Toを減らす抵抗 トルク ΔΤを示す。この抵抗トルク ΔΤは、その絶対値が電動機 1の回転速度 Nの絶 対値が増加すると大きくなり、第 1象限と第 3象限では演算された駆動トルク Taの絶 対値を減らすように、第 2象限と第 4象限では演算された被駆動トルク Tbの絶対値を 増加させるように加算されるものであり、油圧駆動方式における圧損のように、実際の 出力トルクと負荷トルクがバランスする点を安定させ、オペレータが意図する目標速 度になるように安定して制御できるようにする。抵抗トルク ΔΤの絶対値は、電動機 1 の回転速度 Nの絶対値に対して、 1次から 2次程度に比例して増加する。  The graph of FIG. 5 shows a resistance torque ΔΤ that reduces the target torque To calculated by the calculation algorithm 3b. The resistance torque ΔΤ increases as the absolute value of the rotational speed N of the motor 1 increases, and decreases the absolute value of the drive torque Ta calculated in the first and third quadrants. The second and fourth quadrants are added so as to increase the absolute value of the calculated driven torque Tb, and a point at which the actual output torque and load torque are balanced, as in the pressure loss in the hydraulic drive system. Stabilize and allow stable control to achieve the operator's intended target speed. The absolute value of the resistance torque ΔΤ increases in proportion to the first to second orders relative to the absolute value of the rotational speed N of the motor 1.
[0047] 図 6のグラフは、前記操作レバー 2の操作量 Xが中立範囲にあるとき、または操作レ バー 2の操作方向と電動機 1の回転方向とが逆方向のときに、演算アルゴリズム 3bで 演算される、電動機 1の回転速度 Nの絶対値が零近傍の小さい範囲での被駆動トル ク Tbを示す。この被駆動トルク Tbは、回転速度 Nの絶対値が零近傍の小さい範囲で 、回転速度 Nの絶対値の大きさに応じて大きくなるように演算され、旋回体 30を傾斜 地で上向き旋回させるときに、駆動トルク Taが傾斜による負荷トルクよりも小さい場合 に、電動機 1の下降方向への逆転を抑制する。駆動トルク Taが負荷トルクよりも大きく なれば、この駆動トルク Taによって、旋回体 30はスムーズに上向き旋回を始める。こ の図の場合は、上向きに右旋回する。 In the graph of FIG. 6, when the operation amount X of the operation lever 2 is in the neutral range, or when the operation direction of the operation lever 2 and the rotation direction of the motor 1 are in the opposite direction, the arithmetic algorithm 3b is used. The calculated driven torque Tb in the small range near zero of the absolute value of the rotational speed N of the motor 1 is shown. The driven torque Tb is calculated so as to increase in accordance with the magnitude of the absolute value of the rotational speed N in a range where the absolute value of the rotational speed N is small near zero, and turns the revolving unit 30 upward on a slope. When the driving torque Ta is smaller than the load torque due to the inclination, reverse rotation of the motor 1 in the downward direction is suppressed. Drive torque Ta is larger than load torque Then, the rotating body 30 smoothly starts turning upward by the driving torque Ta. In this case, turn right upward.
[0048] 上述した実施形態では、発電機と蓄電装置を電力源として、油圧ショベルの上部旋 回体を左右に旋回動作させる電動機を制御するものとしたが、本発明に係る電動機 の制御装置は、例えば、ホイールローダを走行動作させるもののように、慣性体を一 方向のみに動作させる電動機を制御するものにも適用できる。また、電動機の電力 源も発電機や蓄電装置に限定されることはなぐ例えば、工場等に定置される装置の 慣性体を動作させる電動機を制御する場合は、電力会社等から供給される電力を電 力源とすることができる。  In the embodiment described above, the generator and the storage device are used as an electric power source to control the electric motor that turns the upper turning body of the hydraulic shovel left and right, but the control device of the electric motor according to the present invention For example, the present invention can be applied to one that controls a motor that operates an inertial body in only one direction, such as one that drives a wheel loader. Also, the power source of the motor is not limited to the generator or the storage device. For example, in the case of controlling the motor that operates the inertia body of the device fixed in a factory, the power supplied from the power company or the like It can be a power source.
[0049] さらに、上述した実施形態では、駆動トルクと被駆動トルクの演算アルゴリズムを、マ ップで表現した特性曲線としてコントローラに記憶するようにしたが、駆動トルクと被駆 動トルクの演算アルゴリズムは、操作端の操作量と電動機の回転速度をパラメータと する数式として記憶するようにしてもょ 、。  Furthermore, in the above-described embodiment, the calculation algorithm of the drive torque and the drive torque is stored in the controller as the characteristic curve represented by the map, but the calculation algorithm of the drive torque and the drive torque is Let's store it as a mathematical expression with the operation amount of the operation end and the rotational speed of the motor as parameters.

Claims

請求の範囲 The scope of the claims
[1] 慣性体を動作させる電動機の回転駆動を少なくとも操作量を可変とする操作端の 操作によって制御し、前記操作端の操作量を検出する操作検出手段と、前記電動機 の回転方向と回転速度を検出する回転検出手段と、これらの操作検出手段と回転検 出手段の各検出値に基づいて、前記電動機が負担すべき目標トルクを演算する演 算手段と、前記電動機の出力トルクを前記目標トルクの方向と大きさに制御する電動 機制御手段とを備え、前記出力トルクが電動機の電動機機能としてのカ行トルクと発 電機機能としての回生トルクからなる電動機の制御装置において、前記演算手段に 、前記カ行トルクが、前記操作端の操作量の絶対値が大きくなると大きくなり、操作端 の操作量が一定であっても、前記電動機の回転速度の絶対値が大きくなると小さくな るアルゴリズムとを組み込んだことを特徴とする電動機の制御装置。  [1] Operation detection means for controlling the rotational drive of the motor for operating the inertial body by the operation of the operating end at least making the operating amount variable, and detecting the operating amount of the operating end, the rotational direction and rotational speed of the motor And calculating means for calculating a target torque to be borne by the motor based on the detection values of the operation detecting means and the rotation detecting means, and the output torque of the motor as the target torque. A control device for a motor comprising: motor control means for controlling in a direction and a magnitude of torque, wherein the output torque is composed of a momentary torque as a motor function of the motor and a regenerative torque as a generator function. When the absolute value of the amount of operation of the operating end increases, the torque of the motor increases, and even if the amount of operation of the operating end is constant, the absolute value of the rotational speed of the motor is large That the control unit for an electric motor, characterized in that incorporates a small and that algorithm.
[2] 前記演算手段に、前記回生トルクが、前記操作端の操作量の絶対値が小さくなると 大きくなり、操作端の操作量が一定であっても、前記電動機の回転速度の絶対値が 小さくなると小さくなるアルゴリズムを組み込んだ請求項 1に記載の電動機の制御装 置。  [2] In the calculation means, the regenerative torque increases as the absolute value of the operating amount at the operating end decreases, and the absolute value of the rotational speed of the motor decreases even if the operating amount at the operating end is constant. The control device for a motor according to claim 1, which incorporates an algorithm that becomes smaller.
[3] 前記操作端が操作量のほかに操作方向をプラスマイナス両方向に可変として、前 記電動機をプラスマイナス両方向に回転駆動するものであり、前記操作検出手段を 前記操作端の操作量とプラスマイナスの操作方向を検出するものとし、前記演算手 段に、前記操作端の操作量が零を含む中立範囲のとき、または前記操作端の操作 方向と前記電動機の回転方向とが逆方向のときに、前記カ行トルクを零、前記回生ト ルクを最大値とするアルゴリズムを組み込んだ請求項 1または 2に記載の電動機の制 御装置。  [3] The operation end is capable of rotating the electric motor in both plus and minus directions by setting the operation direction variable in plus and minus directions in addition to the operation amount, and the operation detection means comprises the operation amount and plus of the operation end. A negative operating direction is to be detected, and when the operating amount of the operating end is in the neutral range including zero, or when the operating direction of the operating end and the rotational direction of the electric motor are in the opposite direction. 3. The control device of the motor according to claim 1, further comprising an algorithm for setting the feed torque to zero and the regenerative torque to a maximum value.
[4] 前記操作端が操作量のほかに操作方向をプラスマイナス両方向に可変として、前 記電動機をプラスマイナス両方向に回転駆動するものであり、前記操作検出手段を 前記操作端の操作量とプラスマイナスの操作方向を検出するものとし、前記演算手 段に、前記操作端の操作量が零を含む中立範囲のとき、または前記操作端の操作 方向と前記電動機の回転方向とが逆方向のときに、前記電動機の回転速度の絶対 値が零近傍の小さい範囲で、前記回生トルクの絶対値を前記電動機の回転速度の 絶対値の大きさに応じて大きくするアルゴリズムを組み込んだ請求項 1乃至 3のいず れかに記載の電動機の制御装置。 [4] The operation end is capable of rotating the electric motor in both plus and minus directions by setting the operation direction variable in plus and minus directions in addition to the operation amount, and the operation detection means comprises the operation amount and plus of the operation end. A negative operating direction is to be detected, and when the operating amount of the operating end is in the neutral range including zero, or when the operating direction of the operating end and the rotational direction of the electric motor are in the opposite direction. The absolute value of the regenerative torque is set to a value within the range where the absolute value of the rotational speed of the motor is close to zero. 4. A control device of a motor according to any one of claims 1 to 3, wherein an algorithm for increasing the magnitude according to the magnitude of the absolute value is incorporated.
[5] 前記演算手段が、予め記憶された演算アルゴリズムにより、前記目標トルクを、前記 電動機によって慣性体を駆動する駆動トルクと、前記慣性体によって電動機が駆動 される被駆動トルクとに分け、これらの駆動トルクと被駆動トルクの和として演算するも のとし、この演算アルゴリズムに、前記駆動トルクの絶対値が、前記操作端の操作量 の絶対値が大きくなると大きくなり、操作端の操作量が一定であっても、前記電動機 の回転速度の絶対値が大きくなると小さくなる駆動トルク演算アルゴリズムと、前記被 駆動トルクの絶対値が、前記操作端の操作量の絶対値が小さくなると大きくなり、操 作端の操作量が一定であっても、前記電動機の回転速度の絶対値が小さくなると小 さくなる被駆動トルク演算アルゴリズムとのうち、少なくとも前記駆動トルク演算アルゴ リズムを組み込んだ請求項 1乃至 4のいずれかに記載の電動機の制御装置。  [5] The computing means divides the target torque into a driving torque for driving the inertial body by the motor and a driven torque for driving the motor by the inertial body according to an arithmetic algorithm stored in advance. In the calculation algorithm, the absolute value of the drive torque increases as the absolute value of the operation amount of the operation end increases, and the operation amount of the operation end increases. Even if it is constant, the drive torque calculation algorithm decreases as the absolute value of the rotation speed of the motor increases, and the absolute value of the drive torque increases as the absolute value of the operation amount of the operating terminal decreases. Even if the operation amount of the cutting edge is constant, a smaller one of the driven torque calculation algorithm becomes smaller as the absolute value of the rotational speed of the motor becomes smaller. The motor controller according to any one of Kutomo claims 1 to 4 incorporating the driving torque calculation algorithm.
[6] 前記演算アルゴリズムに、前記目標トルクを減らす抵抗トルクの演算を加え、この抵 抗トルクの絶対値が、前記電動機の回転速度の絶対値が増加すると大きくなり、前記 駆動トルクの絶対値を減らすアルゴリズム、および前記被駆動トルクの絶対値を増加 させるアルゴリズムのいずれか一方または両方を組み込んだ請求項 5に記載の電動 機の制御装置。  [6] The calculation of the resistance torque for reducing the target torque is added to the calculation algorithm, and the absolute value of the resistance torque becomes larger as the absolute value of the rotation speed of the motor increases. The control device for a motor according to claim 5, wherein one or both of an algorithm to reduce and an algorithm to increase the absolute value of the driven torque are incorporated.
[7] 前記電動機で動作する慣性体を、建設機械の旋回動作または走行動作する慣性 体とした請求項 1乃至 6のいずれかに記載の電動機の制御装置。  [7] The control device for a motor according to any one of claims 1 to 6, wherein the inertia body operated by the electric motor is an inertia body operated by a turning operation or a traveling operation of a construction machine.
PCT/JP2007/062232 2006-10-03 2007-06-18 Motor controller WO2008041395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008537420A JP4294086B2 (en) 2006-10-03 2007-06-18 Electric motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2006/319759 2006-10-03
JP2006319759 2006-10-03

Publications (1)

Publication Number Publication Date
WO2008041395A1 true WO2008041395A1 (en) 2008-04-10

Family

ID=39268260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062232 WO2008041395A1 (en) 2006-10-03 2007-06-18 Motor controller

Country Status (2)

Country Link
JP (1) JP4294086B2 (en)
WO (1) WO2008041395A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133161A (en) * 2007-11-30 2009-06-18 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Rotation driving control device, and construction equipment having the same
JP2009232673A (en) * 2008-02-29 2009-10-08 Hy:Kk Controller of electric motor
JP2009268344A (en) * 2008-03-31 2009-11-12 Hy:Kk Controller for motor
JP2010001713A (en) * 2008-06-23 2010-01-07 Sumitomo (Shi) Construction Machinery Co Ltd Drive control unit and construction machinery including the same
JP2010001714A (en) * 2008-06-23 2010-01-07 Sumitomo (Shi) Construction Machinery Co Ltd Drive control device and construction machinery including the same
EP2518219A4 (en) * 2009-12-25 2016-10-26 Takeuchi Mfg Device for driving/controlling ac motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811330B (en) * 2019-11-15 2023-06-23 湖南沃森电气科技有限公司 Control method and system for slewing mechanism of tower crane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033063A (en) * 2001-07-11 2003-01-31 Hitachi Constr Mach Co Ltd Construction machine, driver and driving program therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033063A (en) * 2001-07-11 2003-01-31 Hitachi Constr Mach Co Ltd Construction machine, driver and driving program therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133161A (en) * 2007-11-30 2009-06-18 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Rotation driving control device, and construction equipment having the same
JP2009232673A (en) * 2008-02-29 2009-10-08 Hy:Kk Controller of electric motor
JP2009268344A (en) * 2008-03-31 2009-11-12 Hy:Kk Controller for motor
JP2010001713A (en) * 2008-06-23 2010-01-07 Sumitomo (Shi) Construction Machinery Co Ltd Drive control unit and construction machinery including the same
JP2010001714A (en) * 2008-06-23 2010-01-07 Sumitomo (Shi) Construction Machinery Co Ltd Drive control device and construction machinery including the same
EP2518219A4 (en) * 2009-12-25 2016-10-26 Takeuchi Mfg Device for driving/controlling ac motor

Also Published As

Publication number Publication date
JP4294086B2 (en) 2009-07-08
JPWO2008041395A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
KR100674516B1 (en) Rotation control device of working machine
JP4851802B2 (en) Swivel drive device for construction machinery
JP4946733B2 (en) Swivel control device and work machine equipped with the same
KR101317631B1 (en) Turning drive control device, and construction machine having the device
WO2008041395A1 (en) Motor controller
WO2012050028A1 (en) Construction machine having rotary element
JP4002369B2 (en) Swing control device for swivel work machine
JP5969437B2 (en) Construction machinery
JP2003333876A (en) Rotary driving device for construction equipment
KR101897830B1 (en) Hybrid construction machine
JP2004036303A (en) Turning control device for working machine
JP6072303B2 (en) Construction machinery
JP2004036304A (en) Turning control device for working machine
JP4557187B2 (en) Electric motor control device
JP4770807B2 (en) Rotating body drive control device
JP5139257B2 (en) Swivel drive control device and construction machine including the same
JP2011001736A (en) Turning control device for construction machine
JP4725903B2 (en) Electric motor control device
JP4990212B2 (en) Electric / hydraulic drive for construction machinery
JP5814835B2 (en) Excavator
JP4609736B2 (en) Electric motor control device
JP2009221664A (en) Revolving superstructure control unit
JP2009261231A (en) Controller for motor
JP2010150897A (en) Swivelling drive controller and construction machine including the same
JP6708969B2 (en) Turning control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767134

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008537420

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07767134

Country of ref document: EP

Kind code of ref document: A1