JP4609736B2 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
JP4609736B2
JP4609736B2 JP2008125271A JP2008125271A JP4609736B2 JP 4609736 B2 JP4609736 B2 JP 4609736B2 JP 2008125271 A JP2008125271 A JP 2008125271A JP 2008125271 A JP2008125271 A JP 2008125271A JP 4609736 B2 JP4609736 B2 JP 4609736B2
Authority
JP
Japan
Prior art keywords
motor
torque
absolute value
electric motor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008125271A
Other languages
Japanese (ja)
Other versions
JP2009254224A (en
Inventor
英昭 吉松
Original Assignee
有限会社エイチワイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社エイチワイ filed Critical 有限会社エイチワイ
Priority to JP2008125271A priority Critical patent/JP4609736B2/en
Publication of JP2009254224A publication Critical patent/JP2009254224A/en
Application granted granted Critical
Publication of JP4609736B2 publication Critical patent/JP4609736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、負荷を動作させる電動機を操作端の操作に基づいて制御する電動機の制御装置に関する。  The present invention relates to an electric motor control device that controls an electric motor that operates a load based on an operation of an operation end.

油圧ショベル、油圧クレーンの旋回動作、ホイールローダの走行動作を始めとして、建設機械等の作業装置や吊荷、土砂などの質量や慣性など(以下、負荷という)を動作させる駆動装置には、油圧ポンプや油圧モータを用いた油圧駆動装置が多く採用されている。近年、油圧エネルギを制御弁で絞り捨てるためにエネルギ損失が大きい油圧駆動装置を用いた油圧駆動方式に替えて、エネルギ損失の少ない電動機で負荷を駆動する電動駆動方式が採用されつつある。電動駆動方式は、重力方向に負荷を下降するときや負荷を減速させるときに、電動機を発電機として制動エネルギを回生できる利点もある。  For hydraulic excavators, hydraulic crane swiveling operations, wheel loader traveling operations, construction equipment, etc., and driving devices that operate mass and inertia (hereinafter referred to as loads) such as suspended loads and earth and sand (hereinafter referred to as loads) Many hydraulic drive devices using a pump or a hydraulic motor are employed. In recent years, instead of a hydraulic drive system using a hydraulic drive apparatus with a large energy loss in order to throttling hydraulic energy with a control valve, an electric drive system that drives a load with an electric motor with a small energy loss is being adopted. The electric drive system also has an advantage that braking energy can be regenerated using the electric motor as a generator when the load is lowered in the direction of gravity or when the load is decelerated.

しかしながら、従来の油圧駆動装置を用いた油圧駆動方式は、オペレータがレバーやペダル等の操作端を操作して負荷の動作を制御する操作性が、人間の操作感覚に適合するように操作しやすく設計されているのに対して、電動機を用いた電動駆動方式は、油圧駆動方式のような操作性と操作感覚を実現することができず、オペレータが操作し難いという問題が生じている。  However, the hydraulic drive system using the conventional hydraulic drive device is easy to operate so that the operability of the operator controlling the operation of the load by operating the operation end such as a lever or a pedal fits the human operation sense. In contrast to the design, the electric drive system using an electric motor cannot realize the operability and operation feeling like the hydraulic drive system, and there is a problem that it is difficult for the operator to operate.

すなわち、油圧駆動方式では、操作端の操作でスプール弁のブリードオフ制御絞りやメータアウト制御絞りの開口面積を制御することにより、操作端の操作量と各々の制御絞りを流れる流量によって制御絞り前後の差圧が制御される。その差圧によって油圧モータの出力トルクが制御され、スムーズな負荷の加速と減速および停止が行われる。走行の坂道発進あるいは旋回の坂路上昇旋回など、重力に抗して負荷を駆動する場合には、ロードチェック弁によって逆転が防止され、油圧モータの出力トルクが負荷のトルクよりもおおきくなると力行動作を開始する。一方、電動駆動方式の場合は、電動機の回転速度を制御すると、出力トルクを最大値として速度制御が行われるので、負荷の加速や減速が急峻になり、油圧駆動方式のようなスムーズな操作性が得られず、オペレータの操作感覚も油圧駆動方式とかけ離れたものとなる問題がある。また、操作端の操作量に応じて電動機の出力トルクの制御を行うと、操作端の操作量が小さくて出力トルクが負荷の重力によるトルクよりも小さいと、電動機の力行動作ができずに回生動作となって、操作端の操作方向と逆方向に回転するという問題がある。  In other words, in the hydraulic drive system, the opening area of the bleed-off control throttle and meter-out control throttle of the spool valve is controlled by the operation of the operation end, so that the amount of operation at the operation end and the flow rate through each control throttle The differential pressure is controlled. The output pressure of the hydraulic motor is controlled by the differential pressure, and smooth load acceleration, deceleration and stop are performed. When driving a load against gravity, such as when starting a running hill or turning up a turning hill, reverse rotation is prevented by the load check valve, and if the output torque of the hydraulic motor becomes larger than the load torque, power running operation is performed. Start. On the other hand, in the case of the electric drive system, when the rotation speed of the motor is controlled, the speed control is performed with the output torque as the maximum value, so the acceleration and deceleration of the load become steep and smooth operability like the hydraulic drive system. There is a problem that the operational feeling of the operator is far from the hydraulic drive system. In addition, when the output torque of the motor is controlled according to the operation amount at the operation end, if the operation amount at the operation end is small and the output torque is smaller than the torque due to the gravity of the load, the power running operation of the motor cannot be performed and regeneration is performed. There is a problem that the operation rotates in the direction opposite to the operation direction of the operation end.

このような問題を解消するために、本件出願人は、電動駆動方式で建設機械等の慣性体を動作させるときの操作性や操作感覚を油圧駆動方式と同等にする技術を特許出願している(PCT/JP2007/062232:以下、前記出願という)。  In order to solve such a problem, the present applicant has applied for a patent for a technique for making the operability and operation feeling when operating an inertial body such as a construction machine by an electric drive system equivalent to that of a hydraulic drive system. (PCT / JP2007 / 062232: hereinafter referred to as the application).

前記出願は、慣性体を動作させる電動機の回転駆動を少なくとも操作量を可変とする操作端の操作によって制御し、操作端の操作量を検出する操作検出手段と、電動機の回転方向と回転速度を検出する回転検出手段と、これらの操作検出手段と回転検出手段の各検出値に基づいて、電動機が負担すべき目標トルクを演算する演算手段と、電動機の出力トルクを前記目標トルクの方向と大きさに制御する電動機制御手段とを備え、出力トルクが電動機の電動機機能としての力行トルクと発電機機能としての回生トルクからなる電動機の制御装置において、演算手段に、力行トルクが、操作端の操作量と前記電動機の回転速度の絶対値で一義的に定まって、操作端の操作量の絶対値が大きくなると大きくなり、操作端の操作量が一定であっても、電動機の回転速度の絶対値が大きくなると小さくなるアルゴリズムとを組み込むことにより、油圧駆動方式におけるブリードオフ圧力の制御と同様の制御特性を持たせて、オペレータが目標とする動作速度に制御しやすくし、簡単なアルゴリズムに基づく制御で、油圧駆動方式と同様の操作性と操作感覚を得ることができるようにしている。  In the above application, the rotational drive of the electric motor that operates the inertial body is controlled by the operation of the operation end that makes at least the operation amount variable, the operation detection means that detects the operation amount of the operation end, the rotation direction and the rotation speed of the motor. Rotation detecting means for detecting, calculating means for calculating a target torque to be borne by the electric motor based on detection values of the operation detecting means and the rotation detecting means, and the output torque of the electric motor in the direction and magnitude of the target torque. An electric motor control means for controlling the power, and the output torque is a power running torque as a motor function of the motor and a regenerative torque as a generator function. The amount and the absolute value of the rotation speed of the electric motor are uniquely determined, and the absolute value of the operation amount at the operation end increases, and even if the operation amount at the operation end is constant, By incorporating an algorithm that decreases as the absolute value of the rotational speed of the motive increases, it has the same control characteristics as the control of the bleed-off pressure in the hydraulic drive system, making it easier for the operator to control the target operating speed. The control based on a simple algorithm makes it possible to obtain the same operability and operation feeling as the hydraulic drive system.

また、前記出願は、演算手段に、回生トルクが、操作端の操作量の絶対値が小さくなると大きくなり、操作端の操作量が一定であっても、電動機の回転速度の絶対値が小さくなると小さくなるアルゴリズムを組み込むことにより、油圧駆動方式のメータアウト圧力の制御と同様の制御特性を持たせて、さらに油圧駆動方式と同様の操作性と操作感覚を得られるようにしている。  Further, in the above application, when the absolute value of the manipulated variable at the operating end becomes small, the regenerative torque becomes large when the absolute value of the rotational speed of the electric motor becomes small even if the manipulated value at the operating end is constant. By incorporating a smaller algorithm, the same control characteristics as the meter-out pressure control of the hydraulic drive system are provided, and the operability and operation feeling similar to those of the hydraulic drive system can be obtained.

さらに、前記出願は、操作端が操作量のほかに操作方向をプラスマイナス両方向に可変として、電動機をプラスマイナス両方向に回転駆動するものであり、操作検出手段を操作端の操作量とプラスマイナスの操作方向を検出するものとし、演算手段に、操作端の操作量が零を含む中立範囲のとき、または操作端の操作方向と電動機の回転方向とが逆方向のときに、電動機の回転速度の絶対値が零近傍の小さい範囲で、回生トルクの絶対値を電動機の回転速度の絶対値の大きさに応じて大きくするアルゴリズムを組み込むことにより、慣性体を坂道発進させたり、慣性体を傾斜地で上向き旋回させたりするときに、慣性体の下降後退や下向き戻り旋回を抑制して、スムーズに坂道発進や上向き旋回を行うことができるようにしている。  Further, in the application, the operation end is variable in both plus and minus directions in addition to the operation amount, and the electric motor is driven to rotate in both plus and minus directions. The operation direction is to be detected, and when the operation amount of the operation end is in a neutral range including zero, or when the operation direction of the operation end is opposite to the rotation direction of the motor, By incorporating an algorithm that increases the absolute value of the regenerative torque according to the magnitude of the absolute value of the rotation speed of the motor in a small range where the absolute value is close to zero, the inertial body starts on a slope, or the inertial body is moved on a sloping ground. When turning upwards, the inertial body is prevented from descending and retreating and returning downward, so that it is possible to smoothly start the slope and turn upward.

前記出願は、操作端の操作量が中立範囲にあるとき、または操作端の操作方向と電動機の回転方向とが逆方向のときに、電動機の回転速度の絶対値が零近傍の小さい範囲で、回転速度の絶対値の大きさに応じて回生トルクが大きくなるように演算され、旋回体を傾斜地で上向き旋回させるときに、力行トルクが傾斜による負荷トルクよりも小さい場合に、電動機の下降方向への逆転を抑制し、力行トルクが負荷トルクよりも大きくなれば、この力行トルクによって、旋回体をスムーズに上向き旋回し始めるようにしている。しかし、負荷による回生トルクが大きくて電動機が回生動作している際に、力行トルクが負荷によるトルクよりも小さい間は、負荷によるトルクの大きさに応じた回転速度で回生動作していたのに、力行トルクが負荷によるトルクよりも大きくなった途端に力行動作を始めたのでは、いくら電動機が零近傍の低速回転で動作しているとはいえ、速度の変化が不連続的になって操作性が悪いという問題がある。さらに、このような問題は、慣性負荷の駆動の際だけではなく、重力に抗して質量を駆動する際に一般的に生じる問題である。  In the application, when the operation amount of the operation end is in the neutral range, or when the operation direction of the operation end and the rotation direction of the motor are opposite directions, the absolute value of the rotation speed of the motor is a small range near zero, The regenerative torque is calculated to increase according to the magnitude of the absolute value of the rotation speed, and when the turning body is turned upward on an inclined ground, the power running torque is smaller than the load torque due to the inclination. When the power running torque is larger than the load torque, the turning body starts to turn upward smoothly by this power running torque. However, when the regenerative torque due to the load is large and the motor is performing regenerative operation, while the power running torque is smaller than the torque due to the load, the regenerative operation was performed at the rotational speed corresponding to the magnitude of the torque due to the load. As soon as the power running torque becomes larger than the torque due to the load, the speed change becomes discontinuous even though the motor is operating at low speed near zero. There is a problem of poor operability. Furthermore, such a problem is a problem that generally arises not only when driving an inertial load but also when driving a mass against gravity.

そこで、本発明の課題は、簡単なアルゴリズムに基づく制御で、登坂路で走行体を発進させたり(坂道発進)、旋回体を傾斜地で上向き旋回させたりするときに、負荷の下降後退や下降旋回を抑制して、速度の不連続的な変化もなく、スムーズに坂道発進、上向き旋回を行うことができる電動機の制御装置を提供することである。  Therefore, an object of the present invention is to control the operation based on a simple algorithm, when starting a traveling body on an uphill road (starting on a slope), or turning a turning body upward on a sloping ground, lowering or retreating a load or turning down a load. It is an object of the present invention to provide an electric motor control device that can smoothly start a slope and turn upward without a discontinuous change in speed.

上記の課題を解決するために、負荷を動作させる電動機の回転駆動を、操作量を可変とする操作端の操作によって制御し、前記操作端の操作量を検出する操作検出手段と、前記電動機の回転速度を検出する回転検出手段と、前記電動機の出力トルクを検出する出力トルク検出手段を備えた電動機の制御装置において、前記操作検出手段と前記回転検出手段の各検出値に基づいて前記電動機が負担すべき目標トルクの方向と大きさを演算する演算手段と、前記電動機を制御する電動機制御手段とを備え、前記目標トルクの方向と大きさを前記電動機制御手段に入力して、前記電動機の出力トルクを前記目標トルクの方向と大きさに制御し、前記目標トルクが前記電動機によって前記負荷を駆動する力行トルクと前記負荷によって前記電動機が駆動される回生トルクとからなり、前記演算手段に、前記操作端の操作量が零を含む中立範囲のとき、または前記操作端の操作方向と前記電動機の回転方向とが逆方向のときに、前記力行トルクを零、前記回生トルクの絶対値を最大値とし、前記電動機の回転速度が極低速の範囲で回生動作する場合に、前記電動機の出力トルクの絶対値と前記電動機の力行動作時の目標トルクの差の大きさに応じて前記電動機の回転速度を制御するアルゴリズムを組み込んだことを特徴とする構成を採用した。
In order to solve the above-described problem, the rotation drive of the electric motor that operates the load is controlled by the operation of the operation end that makes the operation amount variable, and the operation detection unit that detects the operation amount of the operation end; An electric motor control device comprising: a rotation detecting means for detecting a rotation speed; and an output torque detecting means for detecting an output torque of the electric motor. The electric motor is controlled based on detection values of the operation detecting means and the rotation detecting means. Computation means for computing the direction and magnitude of the target torque to be borne, and electric motor control means for controlling the electric motor, the direction and magnitude of the target torque being input to the electric motor control means, The output torque is controlled in the direction and magnitude of the target torque, and the target torque drives the electric motor by the power running torque that drives the load by the electric motor and the load. When the operation amount of the operation end is in a neutral range including zero, or when the operation direction of the operation end and the rotation direction of the electric motor are opposite to each other, When the power running torque is zero, the absolute value of the regenerative torque is the maximum value, and the regenerative operation is performed in a range where the rotation speed of the motor is extremely low, the absolute value of the output torque of the motor and the target during the power running operation of the motor A configuration was adopted in which an algorithm for controlling the rotational speed of the electric motor according to the magnitude of the difference in torque was incorporated.

すなわち、操作端の操作量を検出する操作検出手段と、電動機の回転速度を検出する回転検出手段の各検出値から、演算手段によって電動機が負担すべき目標トルクの方向と大きさを演算し、電動機のトルクを目標トルクの方向と大きさに制御し、操作端の操作量が零を含む中立範囲のとき、または前記操作端の操作方向と前記電動機の回転方向とが逆方向のときに、目標トルクのうちの負荷を駆動する力行トルクが零で、負荷によって駆動される回生トルクの絶対値が最大値であり、前記電動機の回転速度が極低速の範囲で回生動作する場合に、前記電動機の出力トルクの絶対値と前記電動機の力行動作時の目標トルクの差の大きさに応じて前記電動機の回転速度を制御することにより、負荷を坂道発進させたり傾斜地で上向き旋回させたりするときに、負荷の下降後退や下降旋回を抑制して、回転速度の不連続的な変化もなくスムーズに坂道発進や上向き旋回を行うことができるようにした。
That is, from the detection values of the operation detection means for detecting the operation amount of the operation end and the rotation detection means for detecting the rotation speed of the electric motor, the direction and the magnitude of the target torque to be borne by the electric motor are calculated by the calculation means, When the torque of the electric motor is controlled to the direction and magnitude of the target torque and the operation amount of the operation end is in a neutral range including zero, or when the operation direction of the operation end and the rotation direction of the electric motor are opposite directions, When the power running torque for driving the load of the target torque is zero, the absolute value of the regenerative torque driven by the load is the maximum value, and the regenerative operation is performed in a range where the rotational speed of the motor is extremely low, the motor by the controlling the rotational speed of the motor according to the magnitude of the absolute value and the difference between the target torque during power running operation of the motor output torque, it was upward pivot sloping ground or to hill start load When, by suppressing the lowering recession and downward rotational loads, which make it possible to perform hill start or upward pivoting smoothly without discontinuous change in rotational speed.

図7に示すような、スプール弁51を操作することにより油圧ポンプ52で油圧モータ53を駆動する油圧駆動装置では、操作端が操作されると、油圧モータ53の駆動軸に作用する図示しない機械式ブレーキが解除され、油圧モータ53自体が負荷の重力によるトルクを負担する。スプール弁51のブリードオフ制御絞り51aの開口面積が大きくて、ブリードオフ圧力P0が負荷の重力による圧力よりも低圧であっても、ロードチェック弁51dによって油圧モータ53が操作端の操作方向と逆に回転すること(逆転)は防止されるが、油圧モータ53の内部リークによって油圧モータ53自体は極低速で逆転する。ブリードオフ圧力P0が負荷の重力による圧力よりも高圧になると、油圧モータ53は操作端の操作方向に回転(正転)を開始する。その場合、逆転の速度は負荷の重力による圧力の大きさで決まり、ブリードオフ圧力P0が負荷の重力による圧力よりも高圧になると急に正転するので、油圧モータ53の回転が不連続的になる。電動機の回転速度が極低速の範囲で回生動作する場合に、負荷の重力によるトルクの絶対値と力行トルクの差の大きさに応じて電動機の回転速度を制御することにより、回転速度の不連続的な変化もなくスムーズに坂道発進や上向き旋回を行うことができ、油圧駆動装置を上回る性能を実現することができる。  In a hydraulic drive apparatus that drives the hydraulic motor 53 with the hydraulic pump 52 by operating the spool valve 51 as shown in FIG. 7, a machine (not shown) that acts on the drive shaft of the hydraulic motor 53 when the operation end is operated. The brake is released, and the hydraulic motor 53 itself bears the torque due to the gravity of the load. Even if the opening area of the bleed-off control throttle 51a of the spool valve 51 is large and the bleed-off pressure P0 is lower than the pressure due to the gravity of the load, the load check valve 51d causes the hydraulic motor 53 to reverse the operation direction of the operation end. However, the hydraulic motor 53 itself reverses at a very low speed due to internal leakage of the hydraulic motor 53. When the bleed-off pressure P0 becomes higher than the pressure due to the gravity of the load, the hydraulic motor 53 starts to rotate (forward rotation) in the operation direction of the operation end. In this case, the speed of reverse rotation is determined by the magnitude of the pressure due to the gravity of the load, and when the bleed-off pressure P0 becomes higher than the pressure due to the gravity of the load, it suddenly rotates forward, so the rotation of the hydraulic motor 53 is discontinuous. Become. When regenerative operation is performed within the range of extremely low speeds of the motor, the rotational speed is discontinuous by controlling the rotational speed of the motor according to the magnitude of the difference between the absolute value of torque due to the gravity of the load and the power running torque. The vehicle can smoothly start on a slope and turn upward without any change, and can achieve performance superior to that of a hydraulic drive.

前記電動機の制御装置に、前記力行動作時の目標トルクが前記操作端の操作量と前記電動機の回転速度の絶対値で一義的に定まり、前記操作端の操作量の絶対値が大きくなると大きくなり、前記電動機の回転速度の絶対値が大きくなると小さくなる演算アルゴリズムを組み込む構成を採用した。
In the motor control device, the target torque during the power running operation is uniquely determined by the operation amount of the operation end and the absolute value of the rotation speed of the motor, and increases as the absolute value of the operation amount of the operation end increases. A configuration is adopted in which a calculation algorithm that decreases as the absolute value of the rotational speed of the electric motor increases is incorporated.

すなわち、力行動作時の目標トルクが操作端の操作量と電動機の回転速度の絶対値で一義的に定まり、操作端の操作量の絶対値が大きくなると大きくなり、電動機の回転速度の絶対値が大きくなると小さくなる演算アルゴリズムを組み込むことにより、油圧駆動方式におけるブリードオフ圧力の制御と同様の制御特性を持たせて、オペレータが目標とする動作速度に制御しやすくすると共に、操作端の操作量を大きくするに応じて力行トルクが大きくなり、負荷の重力によるトルクの絶対値との差の大きさに応じて、極低速での電動機の回生動作の回転速度が制御され、力行トルクの目標値が負荷トルクよりも大きくなると力行動作が始まってスムーズに加速を開始することができる。
That is, the target torque during powering operation is uniquely determined by the operation amount at the operating end and the absolute value of the rotation speed of the motor, and increases as the absolute value of the operation amount at the operating end increases, and the absolute value of the rotation speed of the motor becomes By incorporating a calculation algorithm that becomes smaller as it becomes larger, it has the same control characteristics as the bleed-off pressure control in the hydraulic drive system, making it easier for the operator to control the target operating speed and reducing the amount of operation at the operating end. The power running torque increases as the value increases, and the rotational speed of the regenerative operation of the motor at extremely low speed is controlled according to the magnitude of the difference from the absolute torque value due to the gravity of the load. When it becomes larger than the load torque, the power running operation starts and acceleration can be started smoothly.

図7に示すような、スプール弁51を操作することにより油圧ポンプ52で油圧モータ53を駆動する油圧駆動装置では、図8に示すように、操作端の操作量が大きくなると、スプール弁51のブリードオフ制御絞り51aの開口面積が小さくなり、ブリードオフ圧力P0が高くなって、油圧モータ53の駆動トルクが大きくなるとともに、油圧モータ53の回転速度が大きくなるほどブリードオフ流量が少なくなり、同じ操作量でブリードオフ制御絞り51aの開口面積が一定であっても、ブリードオフ圧力P0が低くなって駆動トルクが小さくなるように制御される。したがって、油圧モータ53の回転速度が上昇すると駆動トルクが次第に小さくなり、駆動系の摩擦または油圧配管系統やスプール弁51の圧損による駆動抵抗と見合う値で慣性体の加速がなくなって、オペレータが目標とする動作速度に制御される。よって、上記アルゴリズムを組み込むことにより、このような油圧駆動方式のブリードオフ圧力P0の制御と同様の制御特性を持たせることができる。  As shown in FIG. 8, in the hydraulic drive apparatus that drives the hydraulic motor 53 with the hydraulic pump 52 by operating the spool valve 51 as shown in FIG. The opening area of the bleed-off control throttle 51a is reduced, the bleed-off pressure P0 is increased, the driving torque of the hydraulic motor 53 is increased, and the bleed-off flow rate is decreased as the rotational speed of the hydraulic motor 53 is increased. Even if the opening area of the bleed-off control throttle 51a is constant, the bleed-off pressure P0 is lowered and the driving torque is controlled to be reduced. Therefore, when the rotational speed of the hydraulic motor 53 increases, the driving torque gradually decreases, and the acceleration of the inertial body disappears at a value commensurate with the driving resistance due to friction of the driving system or pressure loss of the hydraulic piping system or the spool valve 51, and the operator can The operation speed is controlled as follows. Therefore, by incorporating the above algorithm, it is possible to have the same control characteristics as the control of the bleed-off pressure P0 of such a hydraulic drive system.

前記電動機を建設機械の旋回または走行を駆動する電動機とすることができる。  The electric motor may be an electric motor that drives turning or traveling of a construction machine.

本発明の電動機の制御装置は、操作端の操作量を検出する操作検出手段と、電動機の回転速度を検出する回転検出手段の各検出値から、演算手段によって電動機が負担すべき目標トルクの方向と大きさを演算し、電動機のトルクを目標トルクの方向と大きさに制御し、操作端の操作量が零を含む中立範囲のとき、または操作端の操作方向と電動機の回転方向とが逆方向のときに、目標トルクのうちの負荷を駆動する力行トルクが零で、負荷によって駆動される回生トルクの絶対値が最大値であり、電動機の回転速度が極低速の範囲で回生動作する場合に、電動機の出力トルクの絶対値と力行動作時の目標トルクの差の大きさに応じて電動機の回転速度を制御することにより、負荷を坂道発進させたり傾斜地で上向き旋回させたりするときに、負荷の下降後退や下降旋回を抑制して、回転速度の不連続的な変化もなくスムーズに坂道発進や上向き旋回を行うことができるようにした。
The motor control device according to the present invention includes a direction of a target torque to be borne by the motor by the calculation means based on the detection values of the operation detection means for detecting the operation amount of the operation end and the rotation detection means for detecting the rotation speed of the motor. And the motor torque is controlled to the direction and magnitude of the target torque, and when the operation amount at the operation end is in the neutral range including zero, or the operation direction of the operation end and the rotation direction of the motor are reversed. Of the target torque, the power running torque that drives the load is zero, the absolute value of the regenerative torque driven by the load is the maximum value, and the regenerative operation is performed in the range where the rotation speed of the motor is extremely low to, by controlling the rotational speed of the motor in accordance with the magnitude of the difference between the target torque when the absolute value and the power running operation of the output torque of the electric motor, when or to upward pivoting in sloping ground or to a hill start the load, By suppressing the lowering recession and downward rotational of the load, and to be able to perform hill start or upward pivoting smoothly without discontinuous change in rotational speed.

前記力行動作時の目標トルクが前記操作端の操作量と前記電動機の回転速度の絶対値で一義的に定まり、前記操作端の操作量の絶対値が大きくなると大きくなり、前記電動機の回転速度の絶対値が大きくなると小さくなる演算アルゴリズムを組み込むことにより、油圧駆動方式におけるブリードオフ圧力の制御と同様の制御特性を持たせて、オペレータが目標とする動作速度に制御しやすくすると共に、前記操作端の操作量を大きくするに応じて前記力行動作時の目標トルクが大きくなり、負荷の重力によるトルクの絶対値との差の大きさに応じて、極低速での前記電動機の回生動作の回転速度が制御され、前記力行トルクの目標値が負荷トルクよりも大きくなると力行動作が始まってスムーズに加速を開始することができる。
The target torque during the power running operation is uniquely determined by the operation amount of the operation end and the absolute value of the rotation speed of the electric motor, and increases as the absolute value of the operation amount of the operation end increases. By incorporating a calculation algorithm that becomes smaller as the absolute value becomes larger, it has control characteristics similar to the control of the bleed-off pressure in the hydraulic drive system, making it easy for the operator to control the target operating speed, and the operation terminal The target torque during the power running operation increases as the operation amount increases, and the rotational speed of the regenerative operation of the motor at a very low speed according to the magnitude of the difference from the absolute value of the torque due to the gravity of the load When the target value of the power running torque becomes larger than the load torque, the power running operation starts and acceleration can be started smoothly.

上述のような電動機の制御装置を、前記電動機を建設機械の旋回または走行を駆動する電動機の制御装置として使用することで、油圧駆動方式と同様な制御特性を有した装置として非常に操作しやすい装置とすることができる。  By using the motor control device as described above as the motor control device for driving the turning or running of the construction machine, it is very easy to operate as a device having the same control characteristics as the hydraulic drive system. It can be a device.

以下、図面に基づき、本発明の実施形態を説明する。図1は、本発明に係る電動機の制御装置を組み込んだ油圧ショベルを示す。この油圧ショベルは、クローラ式の下部走行体20と、下部走行体20の上で左右に旋回動作する慣性体としての上部旋回体30と、この旋回体30の前部に装着された掘削アタッチメント40とから成る。下部走行体20は、走行用油圧モータ21と減速機22で左右のクローラ23が個別に駆動されて走行する。また、掘削アタッチメント40は、ブーム41、アーム42およびバケット43と、これらを作動させるブームシリンダ41a、アームシリンダ42aおよびバケットシリンダ43aを具備している。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a hydraulic excavator incorporating an electric motor control device according to the present invention. The hydraulic excavator includes a crawler type lower traveling body 20, an upper revolving body 30 as an inertial body that pivots left and right on the lower traveling body 20, and an excavation attachment 40 attached to the front portion of the revolving body 30. It consists of. The lower traveling body 20 travels by the left and right crawlers 23 being individually driven by the traveling hydraulic motor 21 and the speed reducer 22. The excavation attachment 40 includes a boom 41, an arm 42, and a bucket 43, and a boom cylinder 41a, an arm cylinder 42a, and a bucket cylinder 43a for operating them.

前記旋回体30には、エンジン31、エンジン31によって駆動される油圧ポンプ32と発電機33、バッテリやキャパシタ等の蓄電装置34、および、旋回体30を旋回動作させる電動機1と減速機35が搭載されている。油圧ポンプ32の吐出油は、走行用油圧モータ21とブーム41、アーム42およびバケット43の各シリンダ41a、42a、43aに、それぞれ制御弁を介して供給される。また、発電機33の電力は、図2に示すようにコンバータ37で電圧、電流が制御されて蓄電装置34に蓄えられるとともに、後述するインバータ4を介して電動機1に供給される。電動機1は永久磁石を回転子とする永久磁石式モータであり、本発明に係る電動機の制御装置は、この電動機1を制御して、旋回体30を旋回動作させるものである。  The revolving body 30 is equipped with an engine 31, a hydraulic pump 32 and a generator 33 driven by the engine 31, a power storage device 34 such as a battery and a capacitor, and an electric motor 1 and a speed reducer 35 that rotate the revolving body 30. Has been. The oil discharged from the hydraulic pump 32 is supplied to the traveling hydraulic motor 21, the boom 41, the arm 42, and the cylinders 41 a, 43 a of the bucket 43 via control valves. Further, as shown in FIG. 2, the electric power of the generator 33 is stored in the power storage device 34 with the voltage and current controlled by the converter 37 and supplied to the electric motor 1 via the inverter 4 described later. The electric motor 1 is a permanent magnet type motor having a permanent magnet as a rotor, and the electric motor control device according to the present invention controls the electric motor 1 to rotate the revolving body 30.

図2は、前記電動機1の制御装置の構成を示すブロック図である。この制御装置は、操作端としての操作レバー2のプラスマイナス両方向の操作量Xを検出する操作検出手段2aと、電動機の速度制限値Yを設定する速度制限値設定手段5と、両方向に回転する電動機1のプラスマイナスの回転速度Nを検出する回転検出手段1aと、これらの検出された操作レバー2の操作量Xと速度制限値Yおよび電動機1の回転速度Nから、電動機1が負担すべき目標トルクToの方向と大きさを演算し、また、電動機の回転速度が極低速の範囲で回生動作する場合に、電動機の出力トルクの絶対値と力行動作時の目標トルクの差の大きさに応じて電動機の速度を演算する演算手段としてのコントローラ3と、発電機33または蓄電装置34から供給される電力に対して、電動機1の出力トルクTをコントローラ3で演算された目標トルクToの方向と大きさに制御し、あるいは電動機1の回転速度を極低速の範囲で目標速度に制御する電動機制御手段としてのインバータ4とで構成されている。
FIG. 2 is a block diagram showing the configuration of the control device of the electric motor 1. This control device rotates in both directions, an operation detection means 2a for detecting an operation amount X in both plus and minus directions of the operation lever 2 as an operation end, a speed limit value setting means 5 for setting a speed limit value Y of the motor. The motor 1 should bear from the rotation detection means 1a for detecting the plus / minus rotation speed N of the electric motor 1, the detected operation amount X of the operation lever 2, the speed limit value Y, and the rotation speed N of the electric motor 1. The direction and magnitude of the target torque To is calculated, and when the regenerative operation is performed in the range where the rotation speed of the motor is extremely low, the difference between the absolute value of the output torque of the motor and the target torque during the power running operation is calculated. Accordingly, the controller 3 outputs the output torque T of the motor 1 with respect to the power supplied from the generator 33 or the power storage device 34 as a calculation means for calculating the speed of the motor. And an inverter 4 as a motor control means for controlling the target speed has been controlled in the direction and magnitude of the target torque To, or range extremely low in the rotational speed of the motor 1.

前記コントローラ3にはメモリ3aが設けられ、油圧駆動方式の制御特性を表現するように、目標トルクToを演算する演算アルゴリズム3bが、予めメモリ3aに記憶されている。目標トルクToは、操作レバー2の操作方向と同方向に出力されるものとなる場合は力行トルクとなり、操作方向と逆方向に出力されるものとなる場合は回生トルクとなる。また、インバータ4は、信号変換回路4aと電流制御回路4b、電流検出回路4dを備え、信号変換回路4aでコントローラ3から入力される目標トルクToを目標電流Ioに変換し、電流制御回路4bと電流検出回路4dによって、電動機1への出力電流Iを目標電流Ioとするようにフィードバック制御する。  The controller 3 is provided with a memory 3a, and a calculation algorithm 3b for calculating the target torque To is expressed in advance in the memory 3a so as to express the control characteristics of the hydraulic drive system. The target torque To is a power running torque when it is output in the same direction as the operation direction of the operation lever 2, and is a regenerative torque when it is output in the direction opposite to the operation direction. The inverter 4 includes a signal conversion circuit 4a, a current control circuit 4b, and a current detection circuit 4d. The signal conversion circuit 4a converts the target torque To input from the controller 3 into the target current Io, and the current control circuit 4b. The current detection circuit 4d performs feedback control so that the output current I to the motor 1 becomes the target current Io.

さらに、電流検出回路4dと信号変換回路4cによって電動機の出力トルクを検出する出力トルク検出手段が構成される。電動機の出力トルクとTと電流Iは比例関係にあるので、インバータ4の電流フィードバック回路の電流1を検出することにより、電動機の出力トルクを演算することができる。電動機1が操作レバー2の操作方向と逆方向に極低速で回生動作している場合には、電動機の出力トルクTが負荷の重力によるトルクのTLと等しくなっている。電流検出回路4dの検出値は、信号変換回路4cによって電動機1の出力トルクTLとして信号変換されてコントローラに入力される。  Further, the current detection circuit 4d and the signal conversion circuit 4c constitute output torque detection means for detecting the output torque of the electric motor. Since the output torque of the motor, T, and current I are in a proportional relationship, the output torque of the motor can be calculated by detecting the current 1 of the current feedback circuit of the inverter 4. When the electric motor 1 is regenerating at a very low speed in the direction opposite to the operation direction of the operation lever 2, the output torque T of the electric motor is equal to the torque TL due to the gravity of the load. The detection value of the current detection circuit 4d is signal-converted as the output torque TL of the electric motor 1 by the signal conversion circuit 4c and input to the controller.

図3は、前記演算アルゴリズム3bで目標トルクToを演算するマップを示す。このマップは、横軸を操作レバー2のプラスマイナスの操作量X、縦軸を目標トルクToとし、これらの関係を、電動機1のプラスマイナスの回転速度Nをパラメータとした特性曲線で表したものであり、操作量Xと目標トルクToが同符号となる第1象限と第3象限では、目標トルクToが力行トルクとなり、操作量Xと目標トルクToが異符号となる第2象限と第4象限では、目標トルクToが回生トルクとなる。すなわち、第1象限では右旋回力行、第2象限では左旋回回生、第3象限では左旋回力行、第4象限では右旋回回生となる。なお、図3のグラフでは、マップを見やすくするために、パラメータの回転速度N=0、1/2、1(最大速度)の場合についてのみ、各特性曲線を表示している。  FIG. 3 shows a map for calculating the target torque To by the calculation algorithm 3b. In this map, the horizontal axis is the plus / minus operation amount X of the control lever 2, the vertical axis is the target torque To, and these relationships are represented by a characteristic curve with the plus / minus rotational speed N of the motor 1 as a parameter. In the first quadrant and the third quadrant in which the operation amount X and the target torque To have the same sign, the target torque To becomes the power running torque, and the second quadrant and the fourth quadrant in which the operation amount X and the target torque To have different signs. In the quadrant, the target torque To is the regenerative torque. That is, in the first quadrant, the right turning power running, in the second quadrant, the left turning regeneration, in the third quadrant, the left turning power running, and in the fourth quadrant, the right turning regeneration. In the graph of FIG. 3, in order to make the map easy to see, each characteristic curve is displayed only when the parameter rotation speed N = 0, 1/2, 1 (maximum speed).

図3の第1象限と第3象限では、力行トルクとなる目標トルクToの絶対値が、操作レバー2の操作量Xの絶対値が大きくなると大きくなり、操作量Xが一定であっても、電動機1の回転速度Nの絶対値が大きくなると小さくなるように演算され、油圧駆動方式のブリードオフ圧力の制御と同様の制御特性が得られるようになっている。また、第2象限と第4象限では、回生トルクとなる目標トルクToの絶対値が、操作量Xの絶対値が小さくなると大きくなり、操作量Xが一定であっても、回転速度Nの絶対値が小さくなると小さくなるように演算され、油圧駆動方式におけるメータアウト圧力の制御と同様の制御特性が得られるようになっている。  In the first quadrant and the third quadrant of FIG. 3, the absolute value of the target torque To that becomes the power running torque increases as the absolute value of the operation amount X of the operation lever 2 increases, and even if the operation amount X is constant, When the absolute value of the rotational speed N of the electric motor 1 is increased, the calculation is performed so that the absolute value of the rotation speed N decreases, and control characteristics similar to the control of the bleed-off pressure in the hydraulic drive system can be obtained. In the second quadrant and the fourth quadrant, the absolute value of the target torque To, which is the regenerative torque, increases as the absolute value of the manipulated variable X decreases. Even if the manipulated variable X is constant, the absolute value of the rotational speed N The value is calculated so as to decrease as the value decreases, and control characteristics similar to the meter-out pressure control in the hydraulic drive system can be obtained.

さらに、図3に示したマップでは、操作量Xが零を含む中立範囲のときと、操作レバー2の操作方向と電動機1の回転方向が逆方向のときに、力行トルクが零、回生トルクの絶対値が最大値Tmaxに設定されている。したがって、例えば、第4象限の状態で回転速度N=1/2(Q1点)のときに、図中に矢印で示すように、操作レバー2の操作量XをX1から−X2へ電動機1の回転方向と逆方向に操作すると、回転速度Nが零になるまでの間、回生トルクがTmaxで出力されて右旋回が減速され、回転速度Nが零になると、第3象限で操作量Xを−X2としたときの回転速度N=0(Q2点)に相当する力行トルクが出力されて、旋回体30を左旋回させるように加速開始する。なお、この実施形態では、力行トルクの絶対値も、回生トルクと同じ最大値Tmaxに設定されている。  Further, in the map shown in FIG. 3, when the operation amount X is in a neutral range including zero, and when the operation direction of the operation lever 2 and the rotation direction of the electric motor 1 are opposite directions, the power running torque is zero and the regenerative torque is The absolute value is set to the maximum value Tmax. Therefore, for example, when the rotational speed N is 1/2 (Q1 point) in the fourth quadrant, the operation amount X of the operation lever 2 is changed from X1 to -X2, as indicated by an arrow in the figure. When operating in the direction opposite to the rotational direction, the regenerative torque is output at Tmax until the rotational speed N becomes zero, the right turn is decelerated, and when the rotational speed N becomes zero, the manipulated variable X in the third quadrant The power running torque corresponding to the rotational speed N = 0 (Q2 point) when the power is set to −X2 is output, and acceleration is started so as to turn the revolving body 30 to the left. In this embodiment, the absolute value of the power running torque is also set to the same maximum value Tmax as the regenerative torque.

図4は、図3のマップを別の見方で表現した図である。目標トルクToが操作端の操作量Xと前記電動機の回転速度の絶対値Nで一義的に定まるので、To=f(X,N)として示される所定の関係式を、Nをパラメータとして図3のように、あるいはXをパラメータとして図4のように、いずれの図のようにも表現することができる。その特性の、電動機1の回転速度Nが小さい範囲のみを示している。操作量Xが0から最大へと大きくなるに応じて力行トルクの絶対値が大きくなり、回転速度Nの絶対値が大きくなると、力行トルクは小さくなり回生トルクの絶対値は大きくなる。負荷の重力によるトルクTLよりも力行動作時の目標トルクが小さい場合には、電動機1は極低速の回転速度で回生動作する。図4の実施形態では、操作レバー2の操作量が0の場合には、NLの回転速度で電動機が回生動作する。
FIG. 4 is a diagram expressing the map of FIG. 3 in another way. Since the target torque To is uniquely determined by the operation amount X at the operating end and the absolute value N of the rotational speed of the electric motor, a predetermined relational expression expressed as To = f (X, N) is used, with N as a parameter. As shown in FIG. 4, or with X as a parameter, it can be expressed as shown in FIG. Only the range where the rotational speed N of the electric motor 1 is small is shown. As the operation amount X increases from 0 to the maximum, the absolute value of the power running torque increases. When the absolute value of the rotational speed N increases, the power running torque decreases and the absolute value of the regenerative torque increases. When the target torque during the power running operation is smaller than the torque TL due to the gravity of the load, the electric motor 1 performs a regenerative operation at an extremely low rotational speed. In the embodiment of FIG. 4, when the operation amount of the operation lever 2 is 0, the electric motor performs a regenerative operation at a rotation speed of NL.

図5は、電動機の回転速度が極低速の範囲で回生動作する場合の、負荷の重力によるトルクの絶対値と力行動作時の目標トルクの差の大きさに応じた電動機の回転速度の関係である。負荷の重力によるトルクの絶対値TLと力行動作時の目標トルクToの差ΔT(ΔT=TL−To)の大きさに応じて、電動機の回転速度が極低速で制御される。
FIG. 5 shows the relationship between the rotational speed of the motor in accordance with the magnitude of the difference between the absolute value of the torque due to the gravity of the load and the target torque during the power running operation when the rotational speed of the motor is regeneratively operated. is there. The rotational speed of the electric motor is controlled at a very low speed according to the magnitude of the difference ΔT (ΔT = TL−To) between the absolute value TL of the torque due to the gravity of the load and the target torque To during the power running operation .

図6は、前記演算アルゴリズム3bで、電動機の回転速度が極低速の範囲で回生動作する場合に、負荷の重力によるトルクの絶対値と前記力行動作時の目標トルクの差の大きさに応じて電動機の速度を制御するアルゴリズムのフローチャートである。ステップ1(S1)で操作量Xを演算する。ステップ2(S2)で電動機の回転速度Nを演算する。S1とS2で演算した操作量Xと電動機の回転速度Nから、ステップ3(S3)で電動機の目標トルクToを演算する。ステップ4(S4)で電動機の目標トルクToを出力して、インバータ4で電動機の出力トルクがToになるように制御する。ステップ5(S5)で電動機の回転速度Nを演算する。ステップ6(S6)で電動機の回転方向が操作レバーの操作方向と同じ(N≧0)どうかを判断する。YESであれば元に戻って同じ演算と制御を行う。S6でNOであれば、ステップ7(S7)で電動機の回転速度の絶対値が所定の極低速(α)の値より大きいかを判断する。YESであれば元に戻って同じ演算と制御を行う。S7でNOであれば、ステップ8(S8)で負荷の重力によるトルクTL、即ち、電動機の出力トルクTを演算する。ステップ9(S9)で負荷の重力によるトルクの絶対値TLと力行動作時の目標トルクToの差ΔT(ΔT=TL−To)を演算する。ステップ10(S10)で、負荷の重力によるトルクの絶対値TLと力行動作時の目標トルクToの差ΔTから電動機の回転速度Nを演算する。ステップ12(S12)で電動機の回転速度Nを出力して、インバータ4で電動機の回転速度がNになるように制御する。
FIG. 6 shows the calculation algorithm 3b according to the magnitude of the difference between the absolute value of the torque due to the gravity of the load and the target torque during the power running operation when the regenerative operation is performed in a range where the rotation speed of the motor is extremely low. It is a flowchart of the algorithm which controls the speed of an electric motor. In step 1 (S1), the operation amount X is calculated. In step 2 (S2), the rotational speed N of the electric motor is calculated. In step 3 (S3), the target torque To of the motor is calculated from the operation amount X calculated in S1 and S2 and the rotational speed N of the motor. In step 4 (S4), the target torque To of the motor is output, and the inverter 4 is controlled so that the output torque of the motor becomes To. In step 5 (S5), the rotational speed N of the electric motor is calculated. In step 6 (S6), it is determined whether the rotation direction of the electric motor is the same as the operation direction of the operation lever (N ≧ 0). If YES, return to the original and perform the same calculation and control. If NO in S6, it is determined in step 7 (S7) whether or not the absolute value of the rotational speed of the motor is greater than a predetermined extremely low speed (α). If YES, return to the original and perform the same calculation and control. If NO in S7, the torque TL due to the gravity of the load, that is, the output torque T of the motor is calculated in Step 8 (S8). In step 9 (S9), a difference ΔT (ΔT = TL−To) between the absolute value TL of the torque due to the gravity of the load and the target torque To during the power running operation is calculated. In step 10 (S10), the rotational speed N of the motor is calculated from the difference ΔT between the absolute value TL of the torque due to the gravity of the load and the target torque To during the power running operation . In step 12 (S12), the rotational speed N of the electric motor is output, and the inverter 4 controls the rotational speed of the electric motor to be N.

上述した実施形態では、発電機と蓄電装置を電力源として、油圧ショベルの上部旋回体を左右に旋回動作させる電動機を制御するものとしたが、本発明に係る電動機の制御装置は、例えば、ホイールローダを走行動作させるもののように、負荷を一方向のみに動作させる電動機を制御するものにも適用できる。また、電動機の電力源も発電機や蓄電装置に限定されることはなく、例えば、工場等に定置される装置を動作させる電動機を制御する場合は、電力会社等から供給される電力を電力源とすることができる。  In the above-described embodiment, the generator and the power storage device are used as power sources to control the electric motor that swings the upper swing body of the excavator left and right. However, the motor control device according to the present invention includes, for example, a wheel The present invention can also be applied to an apparatus that controls an electric motor that operates a load in only one direction, such as an apparatus that runs a loader. Also, the power source of the motor is not limited to a generator or a power storage device. For example, when controlling a motor that operates a device installed in a factory or the like, power supplied from a power company or the like is used as the power source. It can be.

さらに、上述した実施形態では、目標トルクの演算アルゴリズムをマップで表現した特性曲線としてコントローラに記憶するようにしたが、目標トルクの演算アルゴリズムは、操作端の操作量と電動機の回転速度をパラメータとする数式として記憶するようにしてもよい。  Further, in the above-described embodiment, the target torque calculation algorithm is stored in the controller as a characteristic curve represented by a map. However, the target torque calculation algorithm uses the operation amount at the operation end and the rotation speed of the motor as parameters. You may make it memorize | store as a numerical formula to do.

本発明に係る電動機の制御装置を組み込んだ油圧ショベルを示す側面図The side view which shows the hydraulic excavator incorporating the control apparatus of the electric motor which concerns on this invention 図1の油圧ショベルに組み込まれた電動機の制御装置の構成を示すブロック図The block diagram which shows the structure of the control apparatus of the electric motor integrated in the hydraulic shovel of FIG. 目標トルクの演算マップを示すグラフGraph showing target torque calculation map 電動機の回転速度が極低速での目標トルクと回転速度の演算マップを示すグラフGraph showing calculation map of target torque and rotation speed when motor rotation speed is extremely low 負荷の重力によるトルクの絶対値と力行動作時の目標トルクの差と電動機回転速度の関係を示すグラフA graph showing the relationship between the absolute value of the torque due to the gravity of the load and the target torque difference during power running and the motor rotation speed 負荷の重力によるトルクの絶対値と力行動作時の目標トルクの差の大きさに応じて電動機の速度を制御するアルゴリズムのフローチャートFlowchart of algorithm for controlling the speed of the motor according to the magnitude of the difference between the absolute value of torque due to the gravity of the load and the target torque during powering operation 従来の油圧駆動装置の油圧回路図Hydraulic circuit diagram of conventional hydraulic drive 図7の油圧駆動装置におけるブリードオフ圧力の制御特性を示すグラフThe graph which shows the control characteristic of the bleed-off pressure in the hydraulic drive unit of FIG.

符号の説明Explanation of symbols

1 電動機
1a 回転検出手段
2 操作レバー
2a 操作検出手段
3 コントローラ
3a メモリ
3b 目標トルクを演算する演算アルゴリズム
4 インバータ
4a 信号変換回路
4b 電流制御回路
4c 信号変換回路
4d 電流検出回路
5 速度制限値設定手段
20 走行体
21 走行油圧モータ
22 減速機
30 旋回体
31 エンジン
32 油圧ポンプ
33 発電機
34 蓄電装置
35 減速機
36 コンバータ
40 掘削アタッチメント
41 ブーム
41a ブームシリンダ
42 アーム
42a アームシリンダ
43 バケット
43a バケットシリンダ
DESCRIPTION OF SYMBOLS 1 Electric motor 1a Rotation detection means 2 Operation lever 2a Operation detection means 3 Controller 3a Memory 3b Arithmetic algorithm which calculates target torque 4 Inverter 4a Signal conversion circuit 4b Current control circuit 4c Signal conversion circuit 4d Current detection circuit 5 Speed limit value setting means 20 Traveling body 21 Traveling hydraulic motor 22 Reducer 30 Revolving body 31 Engine 32 Hydraulic pump 33 Generator 34 Power storage device 35 Reducer 36 Converter 40 Excavation attachment 41 Boom 41a Boom cylinder 42 Arm 42a Arm cylinder 43 Bucket 43a Bucket cylinder

Claims (3)

負荷を動作させる電動機の回転駆動を、操作量を可変とする操作端の操作によって制御し、前記操作端の操作量を検出する操作検出手段と、前記電動機の回転速度を検出する回転検出手段と、前記電動機の出力トルクを検出する出力トルク検出手段を備えた電動機の制御装置において、前記操作検出手段と前記回転検出手段の各検出値に基づいて前記電動機が負担すべき目標トルクの方向と大きさを演算する演算手段と、前記電動機を制御する電動機制御手段とを備え、前記目標トルクの方向と大きさを前記電動機制御手段に入力して、前記電動機の出力トルクを前記目標トルクの方向と大きさに制御し、前記目標トルクが前記電動機によって前記負荷を駆動する力行トルクと前記負荷によって前記電動機が駆動される回生トルクとからなり、前記演算手段に、前記操作端の操作量が零を含む中立範囲のとき、または前記操作端の操作方向と前記電動機の回転方向とが逆方向のときに、前記力行トルクを零、前記回生トルクの絶対値を最大値とし、前記電動機の回転速度が極低速の範囲で回生動作する場合に、前記電動機の出力トルクの絶対値と前記電動機の力行動作時の目標トルクの差の大きさに応じて前記電動機の回転速度を制御するアルゴリズムを組み込んだことを特徴とする電動機の制御装置。
Operation detection means for controlling rotation driving of the electric motor for operating the load by operation of an operation end with variable operation amount, and detecting the operation amount of the operation end; and rotation detection means for detecting the rotation speed of the electric motor; In the motor control device comprising output torque detection means for detecting the output torque of the motor, the direction and magnitude of the target torque that the motor should bear based on the detection values of the operation detection means and the rotation detection means And a motor control unit for controlling the motor. The direction and magnitude of the target torque are input to the motor control unit, and the output torque of the motor is set as the direction of the target torque. The target torque is composed of a power running torque that drives the load by the motor and a regenerative torque that drives the motor by the load. When the operation amount of the operation end is in a neutral range including zero, or when the operation direction of the operation end and the rotation direction of the motor are opposite to each other, the powering torque is set to zero and the regenerative torque When the regenerative operation is performed in a range where the rotational speed of the motor is extremely low, the absolute value of the motor is a maximum value, and the magnitude of the difference between the absolute value of the output torque of the motor and the target torque during the power running operation of the motor And an algorithm for controlling the rotational speed of the motor.
前記力行動作時の目標トルクが前記操作端の操作量と前記電動機の回転速度の絶対値で一義的に定まり、前記操作端の操作量の絶対値が大きくなると大きくなり、前記電動機の回転速度の絶対値が大きくなると小さくなる演算アルゴリズムを組み込んだことを特徴とする請求項1に記載の電動機の制御装置。
The target torque during the power running operation is uniquely determined by the operation amount of the operation end and the absolute value of the rotation speed of the electric motor, and increases as the absolute value of the operation amount of the operation end increases. The motor control device according to claim 1, wherein an arithmetic algorithm that decreases as the absolute value increases is incorporated.
前記電動機が、建設機械の旋回または走行を駆動する電動機であることを特徴とする請求項1から2のいずれかに記載の電動機の制御装置。  The motor control device according to claim 1, wherein the motor is a motor that drives turning or traveling of a construction machine.
JP2008125271A 2008-04-10 2008-04-10 Electric motor control device Expired - Fee Related JP4609736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125271A JP4609736B2 (en) 2008-04-10 2008-04-10 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125271A JP4609736B2 (en) 2008-04-10 2008-04-10 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2009254224A JP2009254224A (en) 2009-10-29
JP4609736B2 true JP4609736B2 (en) 2011-01-12

Family

ID=41314345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125271A Expired - Fee Related JP4609736B2 (en) 2008-04-10 2008-04-10 Electric motor control device

Country Status (1)

Country Link
JP (1) JP4609736B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841395A (en) * 1994-07-28 1996-02-13 Mitsubishi Chem Corp Preparation of coloring substance dispersion for use as ink jet recording liquid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041395A (en) * 2006-08-04 2008-02-21 Toyota Motor Corp Fuel cell system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841395A (en) * 1994-07-28 1996-02-13 Mitsubishi Chem Corp Preparation of coloring substance dispersion for use as ink jet recording liquid

Also Published As

Publication number Publication date
JP2009254224A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5913592B2 (en) Construction machinery
KR100674516B1 (en) Rotation control device of working machine
JP4946733B2 (en) Swivel control device and work machine equipped with the same
JP5667830B2 (en) Construction machine having a rotating body
EP1961869B1 (en) Rotation control device and working machine therewith
JP5356427B2 (en) Hybrid construction machine
JP5174952B2 (en) Fuel saving control device for work vehicle and fuel saving control method for work vehicle
JP5000430B2 (en) Operation control method for hybrid type work machine and work machine using the method
JP5562893B2 (en) Excavator
JP4294086B2 (en) Electric motor control device
JP2008115640A (en) Revolving control device of work machine
JP2004036303A (en) Turning control device for working machine
JP6214327B2 (en) Hybrid construction machine
JP4557187B2 (en) Electric motor control device
JP3977697B2 (en) Swing control device for work machine
JP4609736B2 (en) Electric motor control device
JP4990212B2 (en) Electric / hydraulic drive for construction machinery
JP4725903B2 (en) Electric motor control device
JP5814835B2 (en) Excavator
JP5723947B2 (en) Construction machine having a rotating body
JP2009261231A (en) Controller for motor
JP2011163106A (en) Control device of motor
JP2003184806A (en) Electrohydraulic circuit and construction machinery equipped with the same

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees