WO2008040835A1 - Bipolar plate for uniform flow distribution in fuel cells - Google Patents
Bipolar plate for uniform flow distribution in fuel cells Download PDFInfo
- Publication number
- WO2008040835A1 WO2008040835A1 PCT/ES2007/070167 ES2007070167W WO2008040835A1 WO 2008040835 A1 WO2008040835 A1 WO 2008040835A1 ES 2007070167 W ES2007070167 W ES 2007070167W WO 2008040835 A1 WO2008040835 A1 WO 2008040835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bipolar plate
- flow
- plate according
- geometry
- bipolar
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 45
- 238000009826 distribution Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000013461 design Methods 0.000 claims abstract description 16
- 230000008569 process Effects 0.000 claims abstract description 10
- 239000000376 reactant Substances 0.000 claims abstract description 10
- 210000005036 nerve Anatomy 0.000 claims description 28
- 239000012530 fluid Substances 0.000 claims description 27
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 5
- 230000002051 biphasic effect Effects 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000005188 flotation Methods 0.000 claims 1
- 238000013022 venting Methods 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 10
- 230000003197 catalytic effect Effects 0.000 abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000012528 membrane Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/026—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/08—Fuel cells with aqueous electrolytes
- H01M8/083—Alkaline fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
- H01M8/1011—Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- Fuel cells first proposed by Sir William R. Grove in 1839, are devices capable of generating electricity from chemical reactions. Its principle of operation is based on the decomposition of the fuel in the anode, thanks to the presence of a catalyst, in electrons and ions. An electrolytic layer separates the anode from the cathode, and allows only the passage of ions through it, preventing electrons from passing through it. When the electronic current is circulated outside the battery, the device acts as an electricity generator.
- bipolar plate which distributes the flow of fuel and oxidant over the catalyst, provides rigidity to the whole battery, and can act as an outlet for the generated current and dissipate part of the heat produced.
- the fluids that circulate through the bipolar plates react in the electrodes with catalyst, after passing through a diffuser layer, generally formed by carbon paper or carbon cloth. It is understood that for the cell to function efficiently, the distribution of gases over the catalytic layer must be as homogeneous as possible. Hopefully if the Speed field (and the same can be said for pressure) is not uniform and stagnations or dead zones occur, the battery will not work properly, and its performance will be significantly reduced. Hence the importance of the design of the flow geometry of bipolar plates.
- Suitable materials such as plate constituents: metals [Douglas, DL, Cairns, EJ., Fuel battery, US Pattent 3,134,696, May 26, 1964], metal oxides [May, B., Hodgson, DR, Bipolar piate for fuel cells, International Patent WO 00/22689, April 20, 2000], carbon / polymer compounds [Lawrence RJ. , Low cost bipolar current collector-separator for electrochemical cells, US Patent 4,214,969, Juy 29, 1980], graphite [Wilkinson, DP, Lamont, GJ., Voss, HH, Schwab, C, Embossed flow field piate for electrochemical fuel cells, International Patent WO 95/16287, June 15, 1995].
- the device object of this invention is a bipolar plate for distribution of reagent flow over the diffuser layers of a fuel cell, characterized by a specific design of its geometry in which the fluid is distributed over the active area in a cascade distribution .
- the flow geometry consists of an input channel that branches into different passages by means of a series of ribs arranged in parallel lines separated from each other with the appropriate distance for each application, and in turn formed by a series of obstacles in a row of variable width in general greater than its thickness ( Figure 2) and a separation between them also dependent on each application.
- the process is reversed, the number of obstacles in each nerve decreases and the different passages are grouped together to converge in a single exit channel, all encompassed within an area defined by a quadrilateral with diagonals equal or of different dimensions, or by a curved perimeter surface.
- the inlet and outlet ducts shall be arranged at both ends of a diagonal.
- the flow direction of the fluid as well as the angle defined by the nerves with the horizontal can be any and will be set according to the specific applications.
- the device can be manufactured by machining, molding or stamping, using metal plates, polymeric compounds (composites), graphite or any other of the materials that are typically used in the manufacture of bipolar plates .
- the present invention responds to the need to adequately and homogeneously distribute, under typical operating conditions, reactant fluids on the catalytic layers of a fuel cell, which, according to the inventors, does not it is achieved with the elements currently available in the market.
- the invention is based on the fact that the inventors have observed that the design of the plate of the invention with a cascade geometry allows an extremely homogeneous distribution of reactant fluids over the diffusion or catalytic layers of a fuel cell (see Figures 1 and 2) .
- the flow in the plate has a field of speeds and pressures of high uniformity thanks to the novel design, in which the inlet channel is cascaded by parallel ribs, separated from each other by a suitable distance for each application.
- Each nerve is formed by a row of obstacles of varying width, generally greater than its thickness (see Figure 2), aligned and spaced apart by openings of varying width.
- the device object of the present invention consists of a bipolar plate to be used in fuel cells preferably type PEM.
- cascade geometry means the geometry described in the previous paragraph.
- reactant fluids are meant the oxidant (oxygen or air), and the fuel that can be gaseous (for example, hydrogen) or liquid (for example, methanol in aqueous solution).
- Operating conditions means the pressures and flow rates of both the fuel fluid and the oxidizing fluid, as well as the way the battery operates.
- the bipolar plates used in the cathodes usually work in an open or intermittent regime.
- the gas outlet duct In the case of an "open” regime, the gas outlet duct is always open, allowing fresh oxygen to enter the plate at all times.
- the outlet duct In the case of the "intermittent" regime, by means of a control system, the outlet duct is closed for a given time, causing the cathode to be slightly overpressured, thus allowing the gas to be dragged by the drainage valve The chemical reaction more efficiently.
- the fuel used is hydrogen
- anode pressures ranging between 2-3 bar.
- the entry of fuel to the anode is regulated by a control system that checks the value of the pressure, which decreases when hydrogen is consumed by the electrochemical reaction.
- a control system that checks the value of the pressure, which decreases when hydrogen is consumed by the electrochemical reaction.
- an object of the present invention is a bipolar plate with cascade flow geometry ( Figures 1 and 2) that allows the distribution of reactant fluid flow over the diffuser layers or electrodes (anode and cathode) of a cell of fuel, preferably PEM type, hereinafter bipolar plate of the invention, and comprising: a) a flow area of the plate, which coincides with the active area of the electrode, which includes a series of ribs (1), in turn formed by a row of aligned obstacles (2), of varying width (b) generally greater than their thickness ( ⁇ ), separated from each other by a suitable distance that may be such that all obstacles are equally equally spaced, such that adding the section of total passage in each nerve the result is constant, or any other separation that is considered convenient, depending on the geometry and the specific application, which are arranged within a defined area to by a geometry with diagonals of equal or different dimensions and straight or curved sides, b) an input channel (3) that initially branches into different flow channels or passages (4) by means of the described ribs arranged
- the relationship between the input and output channels is designed in one way or another depending on the geometry of the plate so that the active area is divided symmetrically.
- the direction of circulation of the reactant fluids will be set according to the specific applications, as well as the angle defined by the direction of the nerves with the horizontal, which in principle can be any, and where the inlet and outlet ducts are arranged perpendicularly to the nerves of the plaque.
- a particular object is the bipolar plate of the invention with a geometry of its square or rectangular transverse active area, where the inlet (3) and outlet (5) ducts will be arranged at the two opposite ends of the same diagonal (see Figure X).
- Another particular object is a bipolar plate of the invention with a geometry of its curved perimeter active area, preferably an elliptical or round bipolar plate (see Figure 3), where the inlet and outlet ducts will be located in the line perpendicular to the nerves, so that it divides the active area symmetrically.
- Another particular object is a bipolar plate of the invention in which the outlet ducts comprise a control valve to be able to work in an intermittent opening and closing mode.
- an alternative is a PEM type fuel cell where the fuel is a liquid, for example, methanol in aqueous solution.
- the fuel is a liquid, for example, methanol in aqueous solution.
- the bipolar plate of the invention used in these electrodes should be designed in such a way as to allow optimum extraction of these bubbles.
- This new variant would include a channel that acts as a collector where CO 2 bubbles will migrate due to the difference in densities. Therefore, the width of this channel will be sized by the flow rate to be handled and the battery power, which defines the amount of gas produced.
- a particular object of the invention is a bipolar plate in which there is an upper channel (6) that surrounds the horizontally located flow area with respect to the inlet conduit and small gas evacuation holes (9) that communicate the upper channel (6) with an additional manifold (10) that will have a gas vent valve (11) with pressure control, as shown in Figure 4 a).
- a particular embodiment is a bipolar plate in which the entire flow area of the bipolar plate is rotated at any angle ( ⁇ ), preferably between 5-25 °, with respect to the outer edges of the plate, as shown in the Figure 4 b).
- the ribs that define the passage channels will form an angle (45- ⁇ ) ° with respect to the horizontal edge and the upper channel an angle ⁇ with respect to the same edge.
- methanol will enter the plate through the lower hole (3) and out through the upper one so that if CO 2 bubbles are formed, these will float to the highest point, which is the exit hole (5), facilitating the extraction of biphasic flow through it.
- a particular object of the invention is a bipolar plate in which there is a lower channel (7) with a series of channels (12) that surrounds the horizontally located flow area with respect to the outlet duct and acts as a collector where they will migrate, due to the difference in densities, the drops of water generated by chemical reaction and will be extracted when dragged by the flow of air or oxygen (see Figure 5 a).
- Another particular embodiment is a bipolar plate in which the entire flow area of the bipolar plate is inclined at any angle ( ⁇ ), preferably between 5-25 °, with respect to the outer edges of the plate, as can be seen in Figure 5 b), and where a flow of oxygen or descending air will be imposed on the plate.
- ⁇ any angle
- the water drainage flow facilitated by gravity, is It will produce through the outlet duct itself (5) which, obviously, will be conveniently sized to allow water and oxygen / air to escape.
- a particular object of the present invention is a bipolar plate that presents the design of cascading channels on one of its faces, while the opposite face has the same design in which the rows of obstacles are aligned perpendicularly to those arranged on the first face so that the input and output channels corresponding to the first face and those corresponding to the second face are located at the ends of the opposite diagonals of the plate ( Figure 6 a).
- another particular embodiment of the present invention is a bipolar plate with flow geometries on both sides where the arrangement of the inlet and outlet ducts have any angle ( ⁇ ), preferably between 5-40 ° with respect to the plane It contains the active surface of the plate, as shown in Figures 6 a) and 6 b).
- ⁇ any angle
- the definition of the value of this angle will also depend on the depth of the nerves, so that the diameter of the inlet (3) and outlet (5) ducts within the active area is less than or equal to the depth of the channels.
- bipolar plate of the invention if used as end plates ("end-plates", according to English literature). These plates will have flow geometries on only one of the faces, serving as an anode or cathode, respectively, similar to those used in monocells.
- these plates are characterized in that they can have an opening in the central plane, parallel to the faces of the flow geometries by which they can (or not) circulate a fluid (air, water, etc.) that will be used as a method of cooling the system, helping to extract heat.
- a fluid air, water, etc.
- bipolar plate of the invention can be manufactured, by way of illustration and without limiting the scope of the invention. , by machining, molding or stamping; using different starting materials such as metals, metal oxides, polymeric compounds (composites), graphite or any other of the materials.
- Another object of the invention is the use of the bipolar plate of the invention for the manufacture of a fuel cell, preferably a PEM type battery, which can also be used in flat oxide-solid batteries and alkaline batteries.
- the active area is 49 cm 2 , with the plate counting 32 nerves 1 mm thick and 2 mm deep.
- Figure 2. Diagram of a front view of a bipolar plate with cascade flow geometry and with a square cross section.
- Figure 3. Front view of a bipolar plate with cascade flow geometry and circular cross section. In this configuration, the inlet and outlet ducts will be placed perpendicular to the nerves that make up the fluid passageways.
- Figure 4. Two configurations of bipolar plates with cascade flow geometry to be used in anodes of PEM type batteries that use direct methanol as fuel: a) without rotating, b) rotated an angle ⁇ with respect to the horizontal outer edge. The numbers 3) to 8) represent the same elements of Figure 2; 9) gas evacuation holes, 10) additional manifold, 11) vent valve with pressure regulation.
- Figure 5. Two configurations of bipolar plates with cascade flow geometry to be used in the cathodes of PEM type batteries: a) without rotating, b) rotated an angle ⁇ with respect to the horizontal outer edge.
- the numbers 3) to 7) represent the same elements of Figure 2; 12) water drain holes.
- Figure 6 Bipolar plate to be used in case of stacked monocells in a stack, which shows the flow geometry (nerves) on both sides, as well as the angle ( ⁇ ) of the input and output channels: a) isometric; b) lateral views corresponding to the cuts in the planes of the two main diagonals in a): A-A anode face, B-B cathode face.
- Figure 7. Results of the numerical simulation of the flow distribution in the bipolar plate with cascade geometry: a) velocity field and b) pressure field.
- Figure 8. Temporal evolution of the diffusion of gases behind the Toray TM paper (diffuser layer): a) 0.5 seconds after starting the experiment, b) 2 seconds, c) 4 seconds, and d) stationary condition (t »5 s after the experiment started).
- the bipolar plate of the present invention described in this example has external dimensions of 70 x 70 mm.
- the active area is 49 cm and has 32 nerves 1 mm thick and 2 mm deep. It has been carried out in methacrylate by machining, and polishing with abrasive polishing liquid to facilitate its study.
- the input and output channels, located at opposite vertices as seen in Figure 1, have an internal diameter of 2 mm.
- the four lateral channels parallel to the sides of the rhombus that delimits the surface on which the nerves are located have a width of 2 mm, the same as the separation between the parallel rows of nerves. Within each nerve the obstacles have been separated so that the total fluid passage section is constant and equal to that of the inlet channel, thus preventing local fluid acceleration. All channels have a depth of 1 mm.
- the bipolar plate has been covered with a sheet of carbon paper (Toray TM), which is one of the diffusion layers most used in commercial PEM batteries.
- Toray TM sheet of carbon paper
- the laser-induced planar fluorescence technique has been used.
- a stream of air seeded with acetone vapor has been circulated through the plate. Sowing has been done by previously passing the air through a bubbler containing liquid acetone.
- Nd: YAG Nd
- Fluorescent emission has been recorded with a CCD camera with a 1024x1024 pixel matrix. Sequences of 10 images separated from each other 0.5 seconds have been acquired.
- the plane of light 8 cm high and 0.5 mm thick in the image area was formed using three cylindrical lenses of amorphous quartz.
- the results of Figure 8 show a sequence of images of the diffusion through the diffuser layer during the process of filling the bipolar plate with the mixture of air and 20% acetone vapor, with a flow rate of 1 , 5 1 / min.
- the images shown correspond to time intervals of 0.5, 2, 4 and much greater than 5 seconds (stationary condition) after the fluid circulation has begun, respectively.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
The invention relates to a bipolar plate for distributing the reactant flow over the diffusion layers of a fuel cell, having a cascade geometry (see Figure 1) designed specifically to produce an extremely uniform flow distribution over the catalytic layer. The device enables the flow in the plate to have a velocity and pressure field with high uniformity owing to the novel design in which the inlet channel is branched in the form of a cascade by means of ribs formed by obstacles generally having a greater width than thickness (Figure 2) and separated from one another by a suitable distance. The branching process is inverted from the largest part of the plate and the different flow sections meet to form a single outlet channel.
Description
TITULO TITLE
PLACA BIPOLAR PARA DISTRIBUCIÓN HOMOGÉNEA DEL FLUJO EN PILAS DE COMBUSTIBLE.BIPOLAR PLATE FOR HOMOGENIC DISTRIBUTION OF FLOW IN FUEL BATTERIES.
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
Sectores energético y eléctrico. Placas bipolares para pilas de combustible con aplicaciones en instalaciones domésticas y la industria de la automoción, entre otros.Energy and electrical sectors. Bipolar plates for fuel cells with applications in domestic installations and the automotive industry, among others.
ESTADO DE LA TÉCNICA La creciente escasez de combustibles fósiles junto con las recientes y estrictas limitaciones en las emisiones de gases de efecto invernadero impuestas por los compromisos internacionales vigentes, está obligando a buscar métodos de producción de energía alternativos a la combustión. Como es bien sabido, una posibilidad interesante dentro de este escenario energético es el uso de pilas de combustible. Las pilas de combustible, propuestas por primera vez por Sir William R. Grove en 1839, son dispositivos capaces de generar electricidad a partir de reacciones químicas. Su principio de funcionamiento se basa en la descomposición del combustible en el ánodo, gracias a la presencia de un catalizador, en electrones y iones. Una capa electrolítica separa el ánodo del cátodo, y permite únicamente el paso de los iones a través de ella, impidiendo que los electrones puedan atravesarla. Cuando la corriente electrónica se hace circular por el exterior de la pila, el dispositivo actúa como generador de electricidad. Finalmente, electrones y iones se recombinan en el cátodo. En el caso de que el combustible sea hidrógeno y el agente oxidante sea oxígeno, la reacción que se produce en el cátodo es la recombinación del oxígeno, protones y electrones, con lo que los únicos productos de la reacción son agua y calor. Dentro de las ventajas de las pilas de combustible destacan su bajo nivel de contaminación ambiental, su alta eficiencia y su bajo nivel de ruido. Un tipo de pila muy útil para aplicaciones portátiles (ordenadores portátiles, teléfonos móviles, etc.) y el transporte automotor, ya que tiene un tamaño reducido y trabaja a bajas temperaturas, es el caracterizado por tener una membrana de intercambio de protones como electrolito. Son las pilas denominadas como de tipo PEM, según las siglas provenientes del idioma inglés.STATE OF THE TECHNIQUE The increasing scarcity of fossil fuels, together with the recent and strict limitations on greenhouse gas emissions imposed by current international commitments, is forcing the search for alternative energy production methods to combustion. As is well known, an interesting possibility in this energy scenario is the use of fuel cells. Fuel cells, first proposed by Sir William R. Grove in 1839, are devices capable of generating electricity from chemical reactions. Its principle of operation is based on the decomposition of the fuel in the anode, thanks to the presence of a catalyst, in electrons and ions. An electrolytic layer separates the anode from the cathode, and allows only the passage of ions through it, preventing electrons from passing through it. When the electronic current is circulated outside the battery, the device acts as an electricity generator. Finally, electrons and ions recombine at the cathode. In the case that the fuel is hydrogen and the oxidizing agent is oxygen, the reaction that occurs in the cathode is the recombination of oxygen, protons and electrons, so that the only products of the reaction are water and heat. Among the advantages of fuel cells, its low level of environmental pollution, its high efficiency and its low noise level stand out. A very useful type of battery for portable applications (laptops, mobile phones, etc.) and automotive transport, since it has a small size and works at low temperatures, is characterized by having a proton exchange membrane as an electrolyte. They are the batteries denominated like of type PEM, according to the acronym coming from the English language.
En una pila tipo PEM, el combustible (hidrógeno o metanol) y el oxígeno reaccionan electro-químicamente produciendo energía eléctrica y calor, y agua como
único subproducto resultante. Para que esta transformación tenga lugar se requiere la concurrencia de una serie de procesos fluidodinámicos fuertemente acoplados como la dinámica del flujo bifásico, y las transferencias de calor y masa, los cuales influyen en el funcionamiento de la pila. Resulta obvio que la optimización del funcionamiento de una pila PEM es un estudio complejo que requiere un conocimiento profundo del comportamiento de la distribución de corriente en la pila en función del diseño de los diferentes elementos de que se compone la misma y las condiciones de operación. Con este objetivo, desde finales de la década de los años 90, se ha desarrollado una gran cantidad de trabajos, tanto mediante simulaciones numéricas [Gurau, V., Liu, H., Kakac, S., Two-dimensional model for protón exchange membrane fuel cells, AIChE Journal, vol. 44 (11): 2410-2422, 1998; Costamagna, P., Transport phenomena in polymeric membrane fuel cells, Chemical Engineering Science, vol. 56: 323-332, 2001; Wang, L., Húsar, A., Zhou, T., Liu,H., A parametric study of PEMFC performance, Int. J. of Hydrogen Energy, vol. 28: 1263-1272, 2003] como experimentales [Geiger,A.B., Tsukada, A., Lehmann, E., Vontobel, P., Scherer, G.G., In situ investigation of two- phase flow patterns in flow fields of PEFCs using neutrón radiography, Fuel Cells, vol. 2 (2): 92-98, 2002; Bender, G., Wilson, M.S., Zawodzinski, T.A., Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells, J. of Power Science, vol. 123: 163-171, 2003; Tüber, K., Pócza, D., Hebling, Ch., Visualization of water buildup in the cathode of a transparent pem fuel cell, J. of Power Science, vol. 124 (2): 403-414, 2003; Mench, M.M., Dong, Q.L., Wang, C.Y., In situ water distribution measurements in a polymer electrolyte fuel cell, J. of Power Science, vol. 124 (1): 90-98, 2003], destacando el esfuerzo que se ha realizado para entender la influencia del flujo de agua en el transporte de masa de la pila y su producción de energía eléctrica.In a PEM type battery, the fuel (hydrogen or methanol) and oxygen react electrochemically producing electrical energy and heat, and water as Only resulting byproduct. For this transformation to take place, the concurrence of a series of strongly coupled fluid dynamics processes such as biphasic flow dynamics, and heat and mass transfers, which influence the operation of the battery, is required. It is obvious that the optimization of the operation of a PEM battery is a complex study that requires a thorough knowledge of the behavior of the current distribution in the battery depending on the design of the different elements of which it is composed and the operating conditions. With this objective, since the end of the decade of the 90s, a large number of works have been developed, both through numerical simulations [Gurau, V., Liu, H., Kakac, S., Two-dimensional model for proton exchange membrane fuel cells, AIChE Journal, vol. 44 (11): 2410-2422, 1998; Costamagna, P., Transport phenomena in polymeric membrane fuel cells, Chemical Engineering Science, vol. 56: 323-332, 2001; Wang, L., Húsar, A., Zhou, T., Liu, H., A parametric study of PEMFC performance, Int. J. of Hydrogen Energy, vol. 28: 1263-1272, 2003] as experimental [Geiger, AB, Tsukada, A., Lehmann, E., Vontobel, P., Scherer, GG, In situ investigation of two-phase flow patterns in flow fields of PEFCs using neutron radiography, Fuel Cells, vol. 2 (2): 92-98, 2002; Bender, G., Wilson, MS, Zawodzinski, TA, Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells, J. of Power Science, vol. 123: 163-171, 2003; Tüber, K., Pócza, D., Hebling, Ch., Visualization of water buildup in the cathode of a transparent pem fuel cell, J. of Power Science, vol. 124 (2): 403-414, 2003; Mench, MM, Dong, QL, Wang, CY, In situ water distribution measurements in a polymer electrolyte fuel cell, J. of Power Science, vol. 124 (1): 90-98, 2003], highlighting the effort that has been made to understand the influence of water flow on the mass transport of the cell and its production of electrical energy.
Un elemento importante de las pilas de membrana de intercambio de protones es la placa bipolar, que distribuye el flujo de combustible y oxidante sobre el catalizador, proporciona rigidez al conjunto de la pila, y puede actuar como vía de salida de la corriente generada y disipar parte del calor producido. Los fluidos que circulan por las placas bipolares reaccionan en los electrodos con catalizador, después de atravesar una capa difusora, generalmente formada por papel de carbón o tela carbonosa. Se comprende que para que la pila funcione de forma eficiente, la distribución de gases sobre la capa catalítica debe de ser lo más homogénea posible. Es de esperar que si el
campo de velocidades (y lo mismo se puede decir del de presiones) no es uniforme y se producen estancamientos o zonas muertas, la pila no funcionará adecuadamente, y su rendimiento se verá sensiblemente reducido. De ahí la importancia del diseño de la geometría de flujo de las placas bipolares. Durante la última década se han ensayado geometrías muy variadas (de puntos cuadrados, interdigitadas, de serpentín, espirales, en bloques serpentín-paralelo, etc.), e incluso se ha probado el uso de placas porosas. Un estudio comparativo de diversas tipologías con sus ventajas e inconvenientes puede encontrarse en varios artículos de revisión [Carrette, L., Friedrich, K.A., Stimming, U., Fuel cells-fundamentals and applications, Fuel Cells, 1 (1), 5-39, 2001]. Recientemente se han realizado estudios mediante simulaciones numéricas de la interacción de la capa difusora y el flujo circulando por una placa bipolar de canal serpenteante [Dohle, H., Jung, R., Kimiaie, N., Mergel, J., Müller, M., Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells - experiments and numerical simulations, /. of Power Source, 124 (2), 371-384, 2003], y se ha concluido que, en efecto, la distribución no era homogénea. También recientemente, se ha estudiado numérica y experimentalmente [Barreras, F., Lozano, A., Valiño, L., Marín, C, Pascau, A., Flow distribution in a bipolar píate of a protón exchange membrane fuel cell: experiments and numerical simulation studies, / of Power Sources, 144, 54-66, 2005] la estructura del flujo en el interior de una placa bipolar comercial sin difusión. Dada la complejidad del problema en cuestión, normalmente el campo fluido se obtiene a través de estudios que no consideran la difusión de los gases a través de la capa difusora porosa. Sin embargo, los resultados que se obtengan a través de estos estudios pueden no ser suficientes para asegurar el buen diseño de la geometría de flujo de la placa bipolar. En particular, una geometría que genere un perfil de velocidades aparentemente homogéneo, pero que introduzca unas caídas de presiones muy grandes en el flujo circulante (como es el caso de las geometrías de serpentín simple o serpentín-paralelo) puede dar lugar a una difusión no homogénea y, consecuentemente, a una mala distribución de gases sobre el catalizador. Por todos estos motivos, los ingenieros e investigadores han ensayado muchos diseños particulares de geometrías de flujo para las placas bipolares, y han analizado cuidadosamente los mejores materiales para su construcción y los diversos procesos posibles para su fabricación. Diversas patentes describen materiales adecuados como
constituyentes de las placas: metales [Douglas, D.L., Cairns, EJ., Fuel battery, US Pattent 3.134.696, May 26, 1964], óxidos metálicos [May, B., Hodgson, D.R., Bipolar píate for fuel cells, International Patent WO 00/22689, April 20, 2000], compuestos de carbono/polímero [Lawrence RJ. , Low cost bipolar current collector-separator for electrochemical cells, US Patent 4.214.969, JuIy 29, 1980], grafito [Wilkinson, D.P., Lamont, GJ., Voss, H. H., Schwab, C, Embossed flow field píate for electrochemical fuel cells, International Patent WO 95/16287, June 15, 1995]. Otras patentes reclaman diseños específicos: canales en paralelo o serpentín [Tawfik, H., Hung, Y., Bipolar píate for electrolyte application, International Patent WO 2006/029318 A2, March 16, 2006], dispositivos con canales en ambas caras [Hanlon, G. A., Henderson, G., Electrochemical cell bipolar píate, US Patent US 2006/0068265 Al, March 30, 2006], diseños con líneas paralelas de obstáculos preferentemente en forma de diamante [Steidle, B., Rensink, D., Bipolar píate channel structure with knobs for the improvement of water management in particular on the cathode side of a fuel cell, US Patent US 2006/0054221 Al, March 16, 2006], etc. Sin embargo, y a diferencia de nuestra invención, ninguna de ellas analiza en detalle y mucho menos garantiza que el flujo de reactantes se distribuya de forma homogénea sobre los electrodos de la pila.An important element of the proton exchange membrane batteries is the bipolar plate, which distributes the flow of fuel and oxidant over the catalyst, provides rigidity to the whole battery, and can act as an outlet for the generated current and dissipate part of the heat produced. The fluids that circulate through the bipolar plates react in the electrodes with catalyst, after passing through a diffuser layer, generally formed by carbon paper or carbon cloth. It is understood that for the cell to function efficiently, the distribution of gases over the catalytic layer must be as homogeneous as possible. Hopefully if the Speed field (and the same can be said for pressure) is not uniform and stagnations or dead zones occur, the battery will not work properly, and its performance will be significantly reduced. Hence the importance of the design of the flow geometry of bipolar plates. Very varied geometries have been tested over the last decade (square, interdigitated, coil, spiral, coil-parallel, etc.), and even the use of porous plates has been tested. A comparative study of various typologies with their advantages and disadvantages can be found in several review articles [Carrette, L., Friedrich, KA, Stimming, U., Fuel cells-fundamentals and applications, Fuel Cells, 1 (1), 5- 39, 2001]. Recently, studies have been carried out using numerical simulations of the interaction of the diffuser layer and the flow circulating through a bipolar plate of meandering channel [Dohle, H., Jung, R., Kimiaie, N., Mergel, J., Müller, M ., Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells - experiments and numerical simulations, /. of Power Source, 124 (2), 371-384, 2003], and it has been concluded that, in effect, the distribution was not homogeneous. Also recently, it has been studied numerically and experimentally [Barreras, F., Lozano, A., Valiño, L., Marín, C, Pascau, A., Flow distribution in a bipolar piate of a proton exchange membrane fuel cell: experiments and numerical simulation studies, / of Power Sources, 144, 54-66, 2005] the flow structure inside a commercial bipolar plate without diffusion. Given the complexity of the problem in question, normally the fluid field is obtained through studies that do not consider the diffusion of gases through the porous diffuser layer. However, the results obtained through these studies may not be sufficient to ensure the good design of the flow geometry of the bipolar plate. In particular, a geometry that generates a seemingly homogeneous velocity profile, but that introduces very large pressure drops in the circulating flow (as is the case with the geometries of simple or parallel-serpentine coils) can lead to diffusion not homogeneous and, consequently, a bad distribution of gases on the catalyst. For all these reasons, engineers and researchers have tested many particular designs of flow geometries for bipolar plates, and have carefully analyzed the best materials for their construction and the various possible processes for their manufacture. Various patents describe suitable materials such as plate constituents: metals [Douglas, DL, Cairns, EJ., Fuel battery, US Pattent 3,134,696, May 26, 1964], metal oxides [May, B., Hodgson, DR, Bipolar piate for fuel cells, International Patent WO 00/22689, April 20, 2000], carbon / polymer compounds [Lawrence RJ. , Low cost bipolar current collector-separator for electrochemical cells, US Patent 4,214,969, Juy 29, 1980], graphite [Wilkinson, DP, Lamont, GJ., Voss, HH, Schwab, C, Embossed flow field piate for electrochemical fuel cells, International Patent WO 95/16287, June 15, 1995]. Other patents claim specific designs: channels in parallel or coil [Tawfik, H., Hung, Y., Bipolar piate for electrolyte application, International Patent WO 2006/029318 A2, March 16, 2006], devices with channels on both sides [Hanlon , GA, Henderson, G., Electrochemical cell bipolar píate, US Patent US 2006/0068265 Al, March 30, 2006], designs with parallel lines of obstacles preferably in the form of a diamond [Steidle, B., Rensink, D., Bipolar píate channel structure with knobs for the improvement of water management in particular on the cathode side of a fuel cell, US Patent US 2006/0054221 Al, March 16, 2006], etc. However, unlike our invention, none of them analyzes in detail and much less guarantees that the flow of reactants is distributed homogeneously over the electrodes of the cell.
DESCRIPCIÓN DE LA INVENCIÓN Breve descripción de la invenciónDESCRIPTION OF THE INVENTION Brief description of the invention
El dispositivo objeto de esta invención es una placa bipolar para distribución de flujo de reactivos sobre las capas difusoras de una pila de combustible, caracterizada por un diseño específico de su geometría en el cual el fluido se distribuye sobre el área activa en una distribución en cascada. La geometría de flujo consiste en un canal de entrada que se ramifica en distintos pasajes por medio de una serie de nervios dispuestos en líneas paralelas separadas entre sí con la distancia adecuada para cada aplicación, y a su vez formados por una serie de obstáculos en hilera de anchura variable en general superior a su espesor (Figura 2) y una separación entre ellos también dependiente de cada aplicación. Una vez que se alcanza la diagonal central del área activa el proceso se invierte, el número de obstáculos en cada nervio disminuye y los distintos pasajes se agrupan hasta converger en un único canal de salida, englobado todo dentro de un área definida por un cuadrilátero con diagonales iguales o de diferentes dimensiones, o por una superficie de perímetro curvo. En el caso de placas bipolares
cuadradas, los conductos de entrada y salida se dispondrán en los dos extremos de una diagonal. El sentido de circulación del fluido así como el ángulo definido por los nervios con la horizontal podrá ser cualquiera y se fijará de acuerdo con las aplicaciones específicas. De acuerdo a los criterios de diseño y construcción, el dispositivo se puede fabricar por mecanizado, moldeado o estampado, empleando placas de metal, compuestos poliméricos (composites), grafito o cualquier otro de los materiales que típicamente se utilizan en la fabricación de placas bipolares.The device object of this invention is a bipolar plate for distribution of reagent flow over the diffuser layers of a fuel cell, characterized by a specific design of its geometry in which the fluid is distributed over the active area in a cascade distribution . The flow geometry consists of an input channel that branches into different passages by means of a series of ribs arranged in parallel lines separated from each other with the appropriate distance for each application, and in turn formed by a series of obstacles in a row of variable width in general greater than its thickness (Figure 2) and a separation between them also dependent on each application. Once the central diagonal of the active area is reached, the process is reversed, the number of obstacles in each nerve decreases and the different passages are grouped together to converge in a single exit channel, all encompassed within an area defined by a quadrilateral with diagonals equal or of different dimensions, or by a curved perimeter surface. In the case of bipolar plates square, the inlet and outlet ducts shall be arranged at both ends of a diagonal. The flow direction of the fluid as well as the angle defined by the nerves with the horizontal can be any and will be set according to the specific applications. According to the design and construction criteria, the device can be manufactured by machining, molding or stamping, using metal plates, polymeric compounds (composites), graphite or any other of the materials that are typically used in the manufacture of bipolar plates .
Descripción detallada de la invención La presente invención responde a la necesidad de distribuir de forma adecuada y homogéneamente, con las condiciones de explotación típicas, los fluidos reactantes sobre las capas catalíticas de una pila de combustible, objetivo que, a juicio de los inventores, no se consigue con los elementos actualmente disponibles en el mercado.DETAILED DESCRIPTION OF THE INVENTION The present invention responds to the need to adequately and homogeneously distribute, under typical operating conditions, reactant fluids on the catalytic layers of a fuel cell, which, according to the inventors, does not it is achieved with the elements currently available in the market.
La invención se basa en que los inventores han observado que el diseño de la placa de la invención con una geometría en cascada permite una distribución de fluidos reactantes extremadamente homogénea sobre las capas difusoras o catalíticas de una pila de combustible (ver Figuras 1 y 2). De esta manera, el flujo en la placa presenta un campo de velocidades y presiones de elevada uniformidad gracias al novedoso diseño, en el que el canal de entrada se ramifica en cascada mediante nervios paralelos, separados entre sí por una distancia adecuada para cada aplicación. Cada nervio está formado por una hilera de obstáculos de anchura variable, en general mayor que su espesor (ver Figura 2), alineados y espaciados entre sí por aberturas de anchura también variable. Una vez que se alcanza la diagonal central del área activa se invierte el proceso de ramificación desde la sección de mayor área de la placa, y el número de obstáculos en cada nervio disminuye confluyendo las distintas secciones de paso para dar lugar a un único canal de salida. Toda esta geometría se engloba dentro de un área definida por un cuadrilátero con diagonales iguales o de diferentes dimensiones, o por una superficie de perímetro curvo.The invention is based on the fact that the inventors have observed that the design of the plate of the invention with a cascade geometry allows an extremely homogeneous distribution of reactant fluids over the diffusion or catalytic layers of a fuel cell (see Figures 1 and 2) . In this way, the flow in the plate has a field of speeds and pressures of high uniformity thanks to the novel design, in which the inlet channel is cascaded by parallel ribs, separated from each other by a suitable distance for each application. Each nerve is formed by a row of obstacles of varying width, generally greater than its thickness (see Figure 2), aligned and spaced apart by openings of varying width. Once the central diagonal of the active area is reached, the branching process is reversed from the section of greater area of the plate, and the number of obstacles in each nerve decreases, converging the different sections of passage to give rise to a single channel of exit. All this geometry is encompassed within an area defined by a quadrilateral with equal diagonals or different dimensions, or by a curved perimeter surface.
El dispositivo objeto de la presente invención consiste en una placa bipolar para ser utilizada en pilas de combustible preferentemente tipo PEM. Los siguientes conceptos se entienden dentro de este marco de referencia. Así por "geometría en cascada" se entiende la geometría descrita en el párrafo anterior.
Por "fluidos reactantes" se entienden el oxidante (oxígeno o aire), y el combustible que puede ser gaseoso (por ejemplo, hidrógeno) o líquido (por ejemplo, metanol en disolución acuosa).The device object of the present invention consists of a bipolar plate to be used in fuel cells preferably type PEM. The following concepts are understood within this frame of reference. Thus, "cascade geometry" means the geometry described in the previous paragraph. By "reactant fluids" are meant the oxidant (oxygen or air), and the fuel that can be gaseous (for example, hydrogen) or liquid (for example, methanol in aqueous solution).
Por "condiciones de explotación" se entiende las presiones y caudales tanto del fluido combustible como del fluido oxidante, así como la forma de operar de la pila."Operating conditions" means the pressures and flow rates of both the fuel fluid and the oxidizing fluid, as well as the way the battery operates.
Normalmente las placas bipolares que se emplean en los cátodos suelen trabajar en régimen abierto o intermitente. En el caso de régimen "abierto" el conducto de salida del gas está siempre abierto, permitiendo la entrada de oxígeno fresco en todo momento a la placa. En el caso del régimen "intermitente", mediante un sistema de control el conducto de salida se cierra un tiempo dado, haciendo que se sobrepresione ligeramente el cátodo, permitiendo así que al abrirse la válvula de drenaje el gas arrastre las gotas de agua generadas por la reacción química de forma más eficiente. En el caso del ánodo, si el combustible que se emplea es el hidrógeno, en las aplicaciones prácticas se trabaja siempre en régimen "cerrado" con presiones en el ánodo que oscilan entre 2-3 bar. La entrada de combustible al ánodo viene regulada por un sistema de control que chequea el valor de la presión, la cual disminuye al consumirse el hidrógeno por la reacción electroquímica. Por otro lado, al emplear hidrógeno como combustible se suele trabajar en régimen "abierto" sólo en condiciones de laboratorio, aunque sí es común esta forma de operar, además del modo "cerrado", cuando se utiliza metanol en disolución acuosa como combustible.Normally the bipolar plates used in the cathodes usually work in an open or intermittent regime. In the case of an "open" regime, the gas outlet duct is always open, allowing fresh oxygen to enter the plate at all times. In the case of the "intermittent" regime, by means of a control system, the outlet duct is closed for a given time, causing the cathode to be slightly overpressured, thus allowing the gas to be dragged by the drainage valve The chemical reaction more efficiently. In the case of the anode, if the fuel used is hydrogen, in practical applications always work in a "closed" regime with anode pressures ranging between 2-3 bar. The entry of fuel to the anode is regulated by a control system that checks the value of the pressure, which decreases when hydrogen is consumed by the electrochemical reaction. On the other hand, when using hydrogen as a fuel, it is usually work in an "open" regime only in laboratory conditions, although this way of operating is common, in addition to the "closed" mode, when methanol is used in aqueous solution as fuel.
Por lo tanto, un objeto de la presente invención lo constituye una placa bipolar con geometría de flujo en cascada (Figuras 1 y 2) que permite la distribución de flujo de fluidos reactantes sobre las capas difusoras o electrodos (ánodo y cátodo) de una pila de combustible, preferentemente de tipo PEM, en adelante placa bipolar de la invención, y que comprende: a) un área de flujo de la placa, la cual coincide con el área activa del electrodo, que incluye una serie de nervios (1), a su vez formados por una hilera de obstáculos alineados (2), de anchura (b) variable en general superior a su espesor (δ), separados entre sí por una distancia adecuada que podrá ser tal que todos los obstáculos estén igualmente equiespaciados, tal que sumando la sección de paso total en cada nervio el resultado sea constante, o cualquier otra separación que se estime conveniente, en función de la geometría y la aplicación específica, los cuales están dispuestos dentro de un área definida
por una geometría con diagonales de iguales o de diferentes dimensiones y lados rectos o curvos, b) un canal de entrada (3) que inicialmente se ramifica en distintos canales de flujo o pasajes (4) por medio de los descritos nervios dispuestos en líneas paralelas, y que una vez que se alcanza la diagonal central del área activa el proceso se invierte, es decir, el número de obstáculos en cada nervio disminuye y los distintos pasajes se agrupan hasta converger en un único canal de salida (5), c) Unos canales superior (6), inferior (7) y laterales (8) que delimitan el área activa.Therefore, an object of the present invention is a bipolar plate with cascade flow geometry (Figures 1 and 2) that allows the distribution of reactant fluid flow over the diffuser layers or electrodes (anode and cathode) of a cell of fuel, preferably PEM type, hereinafter bipolar plate of the invention, and comprising: a) a flow area of the plate, which coincides with the active area of the electrode, which includes a series of ribs (1), in turn formed by a row of aligned obstacles (2), of varying width (b) generally greater than their thickness (δ), separated from each other by a suitable distance that may be such that all obstacles are equally equally spaced, such that adding the section of total passage in each nerve the result is constant, or any other separation that is considered convenient, depending on the geometry and the specific application, which are arranged within a defined area to by a geometry with diagonals of equal or different dimensions and straight or curved sides, b) an input channel (3) that initially branches into different flow channels or passages (4) by means of the described ribs arranged in parallel lines , and that once the central diagonal of the active area is reached the process is reversed, that is, the number of obstacles in each nerve decreases and the different passages are grouped until they converge in a single exit channel (5), c) Upper (6), lower (7) and lateral (8) channels that delimit the active area.
En esta placa bipolar la relación entre los canales de entrada y salida se diseña de una manera u otra dependiendo de la geometría de la placa para que el área activa esté dividida de forma simétrica. El sentido de circulación de los fluidos reactantes se fijará de acuerdo con las aplicaciones específicas, al igual que el ángulo definido por la dirección de los nervios con la horizontal, que en principio, puede ser cualquiera, y donde los conductos de entrada y salida se disponen perpendicularmente a los nervios de la placa.In this bipolar plate the relationship between the input and output channels is designed in one way or another depending on the geometry of the plate so that the active area is divided symmetrically. The direction of circulation of the reactant fluids will be set according to the specific applications, as well as the angle defined by the direction of the nerves with the horizontal, which in principle can be any, and where the inlet and outlet ducts are arranged perpendicularly to the nerves of the plaque.
Un objeto particular lo constituye la placa bipolar de la invención con una geometría de su área activa transversal cuadrada o rectangular, donde los conductos de entrada (3) y salida (5) se dispondrán en los dos extremos opuestos de una misma diagonal (ver Figura X).A particular object is the bipolar plate of the invention with a geometry of its square or rectangular transverse active area, where the inlet (3) and outlet (5) ducts will be arranged at the two opposite ends of the same diagonal (see Figure X).
Otro objeto particular lo constituye una placa bipolar de la invención con una geometría de su área activa de perímetro curvo, preferentemente una placa bipolar elíptica o redonda (ver Figura 3), donde los conductos de entrada y salida se situarán en la línea perpendicular a los nervios, de modo que divida el área activa de forma simétrica.Another particular object is a bipolar plate of the invention with a geometry of its curved perimeter active area, preferably an elliptical or round bipolar plate (see Figure 3), where the inlet and outlet ducts will be located in the line perpendicular to the nerves, so that it divides the active area symmetrically.
Otro objeto particular lo constituye una placa bipolar de la invención en la que los conductos de salida comprenden una válvula de control para poder trabajar en régimen intermitente de apertura y cierre.Another particular object is a bipolar plate of the invention in which the outlet ducts comprise a control valve to be able to work in an intermittent opening and closing mode.
Como se ha descrito anteriormente, una alternativa es una pila de combustible tipo PEM donde el combustible es un líquido, por ejemplo, metanol en disolución acuosa. En este caso y debido a la generación de burbujas de CO2 por reacción química
en la capa catalítica del ánodo, la placa bipolar de la invención que se utilice en estos electrodos se debe diseñar de tal forma que permita la extracción óptima de estas burbujas. Esta nueva variante incluiría un canal que actúa como colector donde migrarán las burbujas de CO2 debido a la diferencia de densidades. Por lo tanto, el ancho de este canal vendrá dimensionado por el caudal de flujo a manejar y por la potencia de la pila, la cual define la cantidad de gas producido.As described above, an alternative is a PEM type fuel cell where the fuel is a liquid, for example, methanol in aqueous solution. In this case and due to the generation of CO 2 bubbles by chemical reaction In the catalytic layer of the anode, the bipolar plate of the invention used in these electrodes should be designed in such a way as to allow optimum extraction of these bubbles. This new variant would include a channel that acts as a collector where CO 2 bubbles will migrate due to the difference in densities. Therefore, the width of this channel will be sized by the flow rate to be handled and the battery power, which defines the amount of gas produced.
Así, un objeto particular de la invención lo constituye una placa bipolar en el que existe un canal superior (6) que circunda el área de flujo situado horizontalmente con respecto al conducto de entrada y unos pequeños orificios de evacuación de gases (9) que comunican el canal superior (6) con un colector adicional (10) que tendrá una válvula para el venteo de gases (11) con control de presión, como se muestra en la Figura 4 a). Una realización particular lo constituye una placa bipolar en la que toda el área de flujo de la placa bipolar esté rotada un ángulo cualquiera (α), preferentemente entre 5-25°, respecto de los bordes exteriores de la placa, como se muestra en la Figura 4 b). En este caso, los nervios que definen los canales de paso formarán un ángulo (45- α)° respecto del borde horizontal y el canal superior un ángulo α respecto del mismo borde. A su vez, el metanol entrará a la placa por el orificio inferior (3) y saldrá por el superior de modo que si se forman burbujas de CO2, éstas por flotación tenderán a acudir al punto más alto, que es el orificio de salida (5), facilitando la extracción del flujo bifásico a través del mismo.Thus, a particular object of the invention is a bipolar plate in which there is an upper channel (6) that surrounds the horizontally located flow area with respect to the inlet conduit and small gas evacuation holes (9) that communicate the upper channel (6) with an additional manifold (10) that will have a gas vent valve (11) with pressure control, as shown in Figure 4 a). A particular embodiment is a bipolar plate in which the entire flow area of the bipolar plate is rotated at any angle (α), preferably between 5-25 °, with respect to the outer edges of the plate, as shown in the Figure 4 b). In this case, the ribs that define the passage channels will form an angle (45-α) ° with respect to the horizontal edge and the upper channel an angle α with respect to the same edge. In turn, methanol will enter the plate through the lower hole (3) and out through the upper one so that if CO 2 bubbles are formed, these will float to the highest point, which is the exit hole (5), facilitating the extraction of biphasic flow through it.
En caso de emplearse placas bipolares con esta geometría de flujo en cascada en los cátodos la situación será análoga, es decir, se producen gotas de agua que deben ser eliminadas de la pila. Así, un objeto particular de la invención lo constituye una placa bipolar en el que existe un canal inferior (7) con una serie de canales (12) que circunda el área de flujo situado horizontalmente con respecto al conducto de salida y que actúa como colector donde migrarán, debido a la diferencia de densidades, las gotas de agua generadas por reacción química y se extraerán al ser arrastradas por el flujo de aire o de oxígeno (ver Figura 5 a). Otra realización particular lo constituye una placa bipolar en la que toda el área de flujo de la placa bipolar está inclinada un ángulo cualquiera (β), preferentemente entre 5-25°, respecto de los bordes externos de la placa, como se puede observar en la Figura 5 b), y donde se impondrá un flujo de oxígeno o aire descendente en la placa. De esta manera, el flujo de drenaje del agua, facilitado por la gravedad, se
producirá por el propio conducto de salida (5) el cual, evidentemente, será convenientemente dimensionado para permitir la salida del agua y el oxígeno/aire.If bipolar plates with this cascade flow geometry are used in the cathodes, the situation will be analogous, that is, drops of water are produced that must be removed from the battery. Thus, a particular object of the invention is a bipolar plate in which there is a lower channel (7) with a series of channels (12) that surrounds the horizontally located flow area with respect to the outlet duct and acts as a collector where they will migrate, due to the difference in densities, the drops of water generated by chemical reaction and will be extracted when dragged by the flow of air or oxygen (see Figure 5 a). Another particular embodiment is a bipolar plate in which the entire flow area of the bipolar plate is inclined at any angle (β), preferably between 5-25 °, with respect to the outer edges of the plate, as can be seen in Figure 5 b), and where a flow of oxygen or descending air will be imposed on the plate. In this way, the water drainage flow, facilitated by gravity, is It will produce through the outlet duct itself (5) which, obviously, will be conveniently sized to allow water and oxygen / air to escape.
Como se sabe, de forma general en la mayoría de las aplicaciones prácticas varias monoceldas se suelen agrupar entre sí formando un stack para aumentar la potencia entregada por el dispositivo y para lo que la disposición de la placa bipolar de la invención debe adaptarse de manera que la placa bipolar tenga geometrías de flujo en ambas caras, una para el cátodo de una de las monoceldas y otra para el ánodo de la siguiente. Así, un objeto particular de la presente invención lo constituye una placa bipolar que presenta el diseño de canales en cascada en una de sus caras, mientras que la cara opuesta presenta el mismo diseño en el que las hileras de obstáculos se alinean perpendicularmente a las dispuestas en la primera cara de modo que los canales de entrada y salida correspondientes a la primera cara y los correspondientes a la segunda se sitúan en los extremos de las diagonales opuestas de la placa (Figura 6 a).As is known, in general in most practical applications several monocells are usually grouped together forming a stack to increase the power delivered by the device and for which the arrangement of the bipolar plate of the invention must be adapted so that The bipolar plate has flow geometries on both sides, one for the cathode of one of the monocells and another for the anode of the next. Thus, a particular object of the present invention is a bipolar plate that presents the design of cascading channels on one of its faces, while the opposite face has the same design in which the rows of obstacles are aligned perpendicularly to those arranged on the first face so that the input and output channels corresponding to the first face and those corresponding to the second face are located at the ends of the opposite diagonals of the plate (Figure 6 a).
También, y para el caso de que varias monoceldas se agrupen en serie formando un stack, los fluidos se suministran de forma centralizada a todas las placas bipolares de las diferentes monoceldas a través de un colector único. Por tanto, otra realización particular de la presente invención lo constituye una placa bipolar con geometrías de flujo en ambas caras donde la disposición de los conductos de entrada y salida tienen un ángulo cualquiera (γ), preferentemente entre 5-40° respecto del plano que contiene a la superficie activa de la placa, como muestran las Figuras 6 a) y 6 b). La definición del valor de este ángulo dependerá también de la profundidad de los nervios, de forma que el diámetro de los conductos de entrada (3) y salida (5) dentro del área activa sea inferior o igual a la profundidad de los canales.Also, and in the case that several monocells are grouped in series forming a stack, the fluids are supplied centrally to all bipolar plates of the different monocells through a single collector. Therefore, another particular embodiment of the present invention is a bipolar plate with flow geometries on both sides where the arrangement of the inlet and outlet ducts have any angle (γ), preferably between 5-40 ° with respect to the plane It contains the active surface of the plate, as shown in Figures 6 a) and 6 b). The definition of the value of this angle will also depend on the depth of the nerves, so that the diameter of the inlet (3) and outlet (5) ducts within the active area is less than or equal to the depth of the channels.
Otra realización particular de la presente invención lo constituye la placa bipolar de la invención en caso de utilizarse como placas terminales ("end-plates", según la literatura inglesa). Estas placas presentarán geometrías de flujo en una sola de las caras, sirviendo de ánodo o cátodo, respectivamente de forma similar a las que se emplean en monoceldas.Another particular embodiment of the present invention is the bipolar plate of the invention if used as end plates ("end-plates", according to English literature). These plates will have flow geometries on only one of the faces, serving as an anode or cathode, respectively, similar to those used in monocells.
También, estas placas se caracterizan porque puede tener una apertura en el plano central, paralelo a las caras de las geometrías de flujo por la cual puede (o no)
circular un fluido (aire, agua, etc.) que se empleará como método de refrigeración del sistema, ayudando a la extracción del calor.Also, these plates are characterized in that they can have an opening in the central plane, parallel to the faces of the flow geometries by which they can (or not) circulate a fluid (air, water, etc.) that will be used as a method of cooling the system, helping to extract heat.
Como se ha comentado anteriormente las técnicas de fabricación de una placa bipolar para pilas de combustible está bien establecida en el estado del arte, por lo que la placa bipolar de la invención puede fabricarse, a título ilustrativo y sin que limite el alcance de la invención, mediante mecanizado, moldeado o estampado; empleando distintos materiales de partida como metales, óxidos metálicos, compuestos poliméricos (composites), grafito o cualquier otro de los materiales.As previously mentioned, the manufacturing techniques of a bipolar plate for fuel cells is well established in the state of the art, whereby the bipolar plate of the invention can be manufactured, by way of illustration and without limiting the scope of the invention. , by machining, molding or stamping; using different starting materials such as metals, metal oxides, polymeric compounds (composites), graphite or any other of the materials.
Finalmente, otro objeto de la invención lo constituye el uso de la placa bipolar de la invención para la fabricación de una pila de combustible, preferentemente una pila tipo PEM, pudiéndose utilizar también en pilas óxido-sólido planas y en pilas alcalinas.Finally, another object of the invention is the use of the bipolar plate of the invention for the manufacture of a fuel cell, preferably a PEM type battery, which can also be used in flat oxide-solid batteries and alkaline batteries.
BREVE DESCRIPCIÓN DEL CONTENIDO DE LAS FIGURASBRIEF DESCRIPTION OF THE CONTENT OF THE FIGURES
Figura L- Foto de un prototipo de placa bipolar mecanizada con geometría en cascada en metacrilato y pulido para facilitar su estudio. En este caso práctico el área activa es de 49 cm2, contando la placa con 32 nervios de 1 mm de grosor y 2 mm de profundidad.Figure L- Photo of a prototype of bipolar machined plate with cascade geometry in methacrylate and polished to facilitate its study. In this case study, the active area is 49 cm 2 , with the plate counting 32 nerves 1 mm thick and 2 mm deep.
Figura 2.- Esquema de una vista frontal de una placa bipolar con geometría de flujo en cascada y con sección traversal cuadricular. (1) nervios de longitud variable, (2) obstáculos de longitud variable, (3) canal de entrada del fluido, (4) canales de paso de anchura variable, (5) canal de salida, (6) canal (colector) superior, (7) canal inferior, (8) canales laterales, (b) anchura de los nervios y (δ) espesor de los nervios.Figure 2.- Diagram of a front view of a bipolar plate with cascade flow geometry and with a square cross section. (1) nerves of variable length, (2) obstacles of variable length, (3) fluid inlet channel, (4) variable width passage channels, (5) output channel, (6) upper channel (manifold) , (7) lower channel, (8) lateral channels, (b) width of the nerves and (δ) thickness of the nerves.
Figura 3.- Vista frontal de una placa bipolar con geometría de flujo en cascada y con sección transversal circular. En esta configuración, los conductos de entrada y salida se colocarán perpendiculares a los nervios que conforman los canales de paso del fluido.
Figura 4.- Dos configuraciones de placas bipolares con geometría de flujo en cascada para ser empleadas en los ánodos de pilas tipo PEM que emplean metanol directo como combustible: a) sin rotar, b) rotada un ángulo α respecto del borde exterior horizontal. Los números del 3) al 8) representan los mismos elementos de la Figura 2; 9) orificios de evacuación de gases, 10) colector adicional, 11) válvula de venteo con regulación de presión.Figure 3.- Front view of a bipolar plate with cascade flow geometry and circular cross section. In this configuration, the inlet and outlet ducts will be placed perpendicular to the nerves that make up the fluid passageways. Figure 4.- Two configurations of bipolar plates with cascade flow geometry to be used in anodes of PEM type batteries that use direct methanol as fuel: a) without rotating, b) rotated an angle α with respect to the horizontal outer edge. The numbers 3) to 8) represent the same elements of Figure 2; 9) gas evacuation holes, 10) additional manifold, 11) vent valve with pressure regulation.
Figura 5.- Dos configuraciones de placas bipolares con geometría de flujo en cascada para ser empleadas en los cátodos de pilas tipo PEM: a) sin rotar, b) rotada un ángulo β respecto del borde exterior horizontal. Los números del 3) al 7) representan los mismos elementos de la Figura 2; 12) orificios de drenaje de agua.Figure 5.- Two configurations of bipolar plates with cascade flow geometry to be used in the cathodes of PEM type batteries: a) without rotating, b) rotated an angle β with respect to the horizontal outer edge. The numbers 3) to 7) represent the same elements of Figure 2; 12) water drain holes.
Figura 6.- Placa bipolar para ser empleada en caso de monoceldas apiladas en un stack, en el que se muestra la geometría de flujo (nervios) en las dos caras, así como el ángulo (γ) de los canales de entrada y salida: a) isométrico; b) vistas laterales correspondientes a los cortes en los planos de las dos diagonales principales en a): A-A cara ánodo, B-B cara cátodo.Figure 6.- Bipolar plate to be used in case of stacked monocells in a stack, which shows the flow geometry (nerves) on both sides, as well as the angle (γ) of the input and output channels: a) isometric; b) lateral views corresponding to the cuts in the planes of the two main diagonals in a): A-A anode face, B-B cathode face.
Figura 7.- Resultados de la simulación numérica de la distribución del flujo en la placa bipolar con geometría en cascada: a) campo de velocidades y b) campo de presiones.Figure 7.- Results of the numerical simulation of the flow distribution in the bipolar plate with cascade geometry: a) velocity field and b) pressure field.
Figura 8.- Evolución temporal de la difusión de gases detrás del papel Toray™ (capa difusora): a) 0.5 segundos después de comenzar el experimento, b) 2 segundos, c) 4 segundos, y d) condición estacionaria (t » 5 s después de comenzado el experimento).Figure 8.- Temporal evolution of the diffusion of gases behind the Toray ™ paper (diffuser layer): a) 0.5 seconds after starting the experiment, b) 2 seconds, c) 4 seconds, and d) stationary condition (t »5 s after the experiment started).
EJEMPLO DE REALIZACIÓN DEL OBJETO DE INVENCIÓNEXAMPLE OF REALIZATION OF THE OBJECT OF THE INVENTION
El ejemplo que a continuación se describe, no debe entenderse sólo como una limitación del alcance de la invención. Por el contrario, la presente invención trata de cubrir todas las alternativas, variantes, modificaciones y equivalencias que puedan incluirse dentro del espíritu y el alcance del objeto de invención.
La placa bipolar de la presente invención que se describe en este ejemplo tiene unas dimensiones externas de 70 x 70 mm. El área activa es de 49 cm y posee 32 nervios de 1 mm de grosor y 2 mm de profundidad. Se ha llevado a cabo en metacrilato mediante mecanizado, y pulido con líquido pulimento abrasivo para facilitar su estudio. Los canales de entrada y salida, situados en vértices opuestos tal y como se observa en la Figura 1, tienen un diámetro interior de 2 mm. Los cuatro canales laterales paralelos a los lados del rombo que delimita la superficie en la que se localizan los nervios tienen una anchura de 2 mm, la misma que la separación entre las hileras paralelas de nervios. Dentro de cada nervio los obstáculos se han separado de modo que la sección total de paso del fluido sea constante e igual a la del canal de entrada, evitando así la aceleración local del fluido. Todos los canales tienen una profundidad de 1 mm.The example described below should not be understood only as a limitation of the scope of the invention. On the contrary, the present invention seeks to cover all alternatives, variants, modifications and equivalences that may be included within the spirit and scope of the object of the invention. The bipolar plate of the present invention described in this example has external dimensions of 70 x 70 mm. The active area is 49 cm and has 32 nerves 1 mm thick and 2 mm deep. It has been carried out in methacrylate by machining, and polishing with abrasive polishing liquid to facilitate its study. The input and output channels, located at opposite vertices as seen in Figure 1, have an internal diameter of 2 mm. The four lateral channels parallel to the sides of the rhombus that delimits the surface on which the nerves are located have a width of 2 mm, the same as the separation between the parallel rows of nerves. Within each nerve the obstacles have been separated so that the total fluid passage section is constant and equal to that of the inlet channel, thus preventing local fluid acceleration. All channels have a depth of 1 mm.
Las características del flujo cuando un fluido circula en esta placa se han estudiado experimentalmente y mediante simulaciones numéricas. La geometría específica de este diseño debe asegurar que, además de una distribución homogénea del campo de velocidades, la caída de presiones producida por la disposición de los canales sea también homogénea.The characteristics of the flow when a fluid circulates in this plate have been studied experimentally and by numerical simulations. The specific geometry of this design must ensure that, in addition to a homogeneous distribution of the velocity field, the pressure drop produced by the arrangement of the channels is also homogeneous.
Durante el estudio mediante simulaciones computacionales se ha considerado un flujo isotérmico, incompresible y laminar, obteniéndose una solución final de estado estacionario, condiciones éstas que coinciden con las condiciones experimentales reales en el laboratorio, cuando se considera flujo en exceso. Las ecuaciones empleadas para simular el proceso son las de Navier-Stokes para la conservación de la masa y la cantidad de movimiento. Dada la geometría simple del problema, la solución de las mismas se ha obtenido discretizándolas empleando el método de volúmenes finitos. Para mejorar el acoplamiento velocidad-presión en estas ecuaciones, se ha empleado una malla cartesiana decalada, la cual se implemento numéricamente utilizando el algoritmo SIMPLE. Finalmente, para realizar la solución iterativa del sistema de ecuaciones lineales resultante se ha aplicado una técnica de gradiente conjugado. Pese a que el flujo real es estacionario, el esquema numérico requiere una condición inicial para comenzar la simulación. Por ello, se ha impuesto una velocidad constante muy pequeña (en modulo) e igual para todos los canales como condición inicial del proceso. Este valor numérico se ha seleccionado de forma que la condición de conservación de la masa fuese satisfecha.
Los resultados obtenidos se muestran en las Figuras 7 a) y 7 b). En efecto, se puede apreciar que la distribución de velocidades que se obtiene en toda el área activa es muy homogénea sin que existan además grandes gradientes de presiones. Con estos resultados, es predecible que la distribución de gases sobre las capas catalíticas sea también muy homogénea, garantizando así el correcto funcionamiento de la pila de combustible.During the study using computational simulations, an isothermal, incompressible and laminar flow has been considered, obtaining a final steady-state solution, conditions that coincide with the real experimental conditions in the laboratory, when it is considered excess flow. The equations used to simulate the process are those of Navier-Stokes for the conservation of mass and the amount of movement. Given the simple geometry of the problem, their solution has been obtained by discretizing them using the finite volume method. To improve the speed-pressure coupling in these equations, a decayed Cartesian mesh has been used, which was implemented numerically using the SIMPLE algorithm. Finally, to perform the iterative solution of the resulting linear equation system, a conjugate gradient technique has been applied. Although the actual flow is stationary, the numerical scheme requires an initial condition to begin the simulation. Therefore, a very small constant speed (in module) and equal for all channels has been imposed as the initial condition of the process. This numerical value has been selected so that the condition of conservation of the mass was satisfied. The results obtained are shown in Figures 7 a) and 7 b). Indeed, it can be seen that the distribution of velocities that is obtained throughout the active area is very homogeneous without there being also large pressure gradients. With these results, it is predictable that the distribution of gases over the catalytic layers is also very homogeneous, thus guaranteeing the proper functioning of the fuel cell.
Para verificar que, efectivamente, el fluido se distribuye homogéneamente tras atravesar una capa difusora, se ha cubierto la placa bipolar con una lámina del papel carbonoso (Toray™), que es una de las capas difusoras más empleada en las pilas PEM comerciales. Para poder visualizar la difusión del flujo a través de la capa difusora, se ha utilizado la técnica de fluorescencia planar inducida por láser. Para aplicarla se ha hecho circular a través de la placa una corriente de aire sembrado con vapor de acetona. El sembrado se ha realizado haciendo pasar el aire previamente a través de un burbujeador que contenía acetona líquida. Para inducir la fluorescencia, se ha iluminado el flujo emergente a través de la capa difusora con la radiación ultravioleta (λ=266 nm) de un láser pulsado de Nd: YAG, con una energía de unos 70 mJ/pulso, conformada en un plano paralelo a la capa difusora y separado de la misma a una distancia de 2 mm. La emisión fluorescente se ha registrado con una cámara de CCD con una matriz de 1024x1024 píxeles. Se han adquirido secuencias de 10 imágenes separadas entre sí 0.5 segundos. El plano de luz de 8 cm de alto y 0.5 mm de espesor en el área de imagen se formó utilizando tres lentes cilindricas de cuarzo amorfo.To verify that, indeed, the fluid is distributed homogeneously after passing through a diffuser layer, the bipolar plate has been covered with a sheet of carbon paper (Toray ™), which is one of the diffusion layers most used in commercial PEM batteries. In order to visualize the diffusion of the flow through the diffuser layer, the laser-induced planar fluorescence technique has been used. To apply it, a stream of air seeded with acetone vapor has been circulated through the plate. Sowing has been done by previously passing the air through a bubbler containing liquid acetone. To induce fluorescence, the emergent flow through the diffuser layer has been illuminated with ultraviolet radiation (λ = 266 nm) of a pulsed laser of Nd: YAG, with an energy of about 70 mJ / pulse, formed in a plane parallel to the diffuser layer and separated from it at a distance of 2 mm. Fluorescent emission has been recorded with a CCD camera with a 1024x1024 pixel matrix. Sequences of 10 images separated from each other 0.5 seconds have been acquired. The plane of light 8 cm high and 0.5 mm thick in the image area was formed using three cylindrical lenses of amorphous quartz.
Los resultados de la Figura 8 muestran una secuencia de imágenes de la difusión a través de la capa difusora durante el proceso de llenado de la placa bipolar con la mezcla de aire y un 20% de vapor de acetona, con un caudal de circulación de 1,5 1/min. En particular, las imágenes mostradas corresponden a intervalos temporales de 0.5, 2, 4 y mucho mayor de 5 segundos (condición estacionaria) después de comenzada la circulación del fluido, respectivamente.The results of Figure 8 show a sequence of images of the diffusion through the diffuser layer during the process of filling the bipolar plate with the mixture of air and 20% acetone vapor, with a flow rate of 1 , 5 1 / min. In particular, the images shown correspond to time intervals of 0.5, 2, 4 and much greater than 5 seconds (stationary condition) after the fluid circulation has begun, respectively.
Como se puede ver, a medida que se va llenando el área de la placa con el fluido éste se distribuye con un frente muy plano y homogéneo (a). Posteriormente el flujo cubre toda el área activa sin que se observen zonas de iluminación más intensa lo cual denotaría un gradiente de presiones excesivo en esa región (b, c). Finalmente, una vez que se alcanza el estado estacionario (d) y se garantiza que toda el área de la placa está
llena de fluido, se observa una distribución completamente homogénea del gas que se difunde detrás de la capa difusora.As you can see, as the area of the plate is filled with the fluid, it is distributed with a very flat and homogeneous front (a). Subsequently, the flow covers the entire active area without observing more intense lighting zones which would denote an excessive pressure gradient in that region (b, c). Finally, once the steady state (d) is reached and it is guaranteed that the entire plate area is full of fluid, a completely homogeneous distribution of the gas diffuses behind the diffuser layer.
Se confirma con estos estudios que el diseño particular de la placa, objeto de la presente invención, produce una distribución homogénea de reactivos sobre la capa catalítica de una pila PEM, tal y como se reclama.
It is confirmed with these studies that the particular design of the plate, object of the present invention, produces a homogeneous distribution of reagents on the catalytic layer of a PEM cell, as claimed.
Claims
1. Placa bipolar con geometría de flujo en cascada (Figuras 1 y 2) que permite la distribución de flujo de fluidos reactantes sobre las capas difusoras o electrodos (ánodo y el electrodo) de una pila de combustible, preferentemente de tipo PEM, en adelante placa bipolar de la invención, y que comprende: a) un área de flujo de la placa, la cual coincide con el área activa del electrodo, que incluye una serie de nervios (1), a su vez formados por una hilera de obstáculos alineados (2), de anchura (b) variable, en general superior a su espesor (δ), separados entre sí por una distancia adecuada que podrá ser tal que todos los obstáculos estén igualmente equiespaciados, tal que sumando la sección de paso total en cada nervio el resultado sea constante, o cualquier otra separación que se estime conveniente, en función de la geometría y la aplicación específica, los cuales están dispuestos dentro de un área definida por una geometría con diagonales de iguales o de diferentes dimensiones y lados rectos o curvos, b) un canal de entrada (3) que inicialmente se ramifica en distintos canales de flujo o pasajes (4) por medio de los descritos nervios dispuestos en líneas paralelas, y que una vez que se alcanza la diagonal central del área activa el proceso se invierte, es decir, el número de obstáculos en cada nervio disminuye y los distintos pasajes se agrupan hasta converger en un único canal de salida (5), c) Unos canales superior (6), inferior (7) y laterales (8) que delimitan el área activa.1. Bipolar plate with cascade flow geometry (Figures 1 and 2) that allows the distribution of reactant fluid flow over the diffuser layers or electrodes (anode and electrode) of a fuel cell, preferably PEM type, hereinafter bipolar plate of the invention, and comprising: a) a flow area of the plate, which coincides with the active area of the electrode, which includes a series of ribs (1), in turn formed by a row of aligned obstacles (2), of variable width (b), generally greater than its thickness (δ), separated from each other by a suitable distance that may be such that all obstacles are equally equally spaced, such that by adding the total passage section in each nerve the result is constant, or any other separation that is considered convenient, depending on the specific geometry and application, which are arranged within an area defined by a geometry with diagonals of equals or differ The dimensions and sides are straight or curved, b) an input channel (3) that initially branches into different flow channels or passages (4) by means of the described ribs arranged in parallel lines, and that once the The central diagonal of the active area the process is reversed, that is, the number of obstacles in each nerve decreases and the different passages are grouped together to converge into a single exit channel (5), c) Some upper (6), lower ( 7) and lateral (8) that delimit the active area.
El diseño de los canales de entrada y salida dependen de la geometría de la placa, para que el área activa sea simétrica. La geometría puede ser transversal cuadrada, rectangular o de perímetro curvo.The design of the input and output channels depends on the geometry of the plate, so that the active area is symmetrical. The geometry can be transverse square, rectangular or curved perimeter.
El sentido de circulación de los fluidos reactantes y el ángulo definido por la dirección de los nervios con la horizontal pueden ser cualesquiera y se fijarán en función de las aplicaciones específicas de uso de la placa y donde además, los canales de entrada y salida se dispondrán perpendicularmente a los nervios que conforman los canales de flujo. The direction of circulation of the reactant fluids and the angle defined by the direction of the nerves with the horizontal can be any and will be set according to the specific applications of use of the plate and where in addition, the input and output channels will be arranged perpendicular to the nerves that make up the flow channels.
2. Placa bipolar según reivindicación 1 caracterizada porque la geometría transversal de su área activa es cuadrada o rectangular y porque los conductos de entrada y salida están situados en las diagonales opuestas coincidiendo sobre una misma línea.2. Bipolar plate according to claim 1 characterized in that the transverse geometry of its active area is square or rectangular and that the inlet and outlet ducts are located on opposite diagonals coinciding on the same line.
3. Placa bipolar según reivindicación 1 caracterizada porque la geometría de su área activa es de perímetro curvo, preferentemente redonda o elíptica, (Figura 3) y porque los conductos de entrada y salida se sitúan perpendicularmente a los nervios.3. Bipolar plate according to claim 1 characterized in that the geometry of its active area is curved perimeter, preferably round or elliptical, (Figure 3) and because the inlet and outlet ducts are located perpendicular to the nerves.
4. Placa bipolar según reivindicaciones 1 a 3 caracterizada porque en el caso de utilizarse en los ánodos que empleen metanol directo como combustible, el canal superior (6) que circunda el área de flujo y situado horizontalmente con respecto al conducto de entrada, tiene unos pequeños orificios para la evacuación de gases (9) comunicados con un colector adicional (10) que tendrá una válvula para el venteo de gases (11) con control de presión para evacuar el CO2 generado por reacción (Figura 4 a).4. Bipolar plate according to claims 1 to 3, characterized in that in the case of being used in anodes using direct methanol as fuel, the upper channel (6) that surrounds the flow area and located horizontally with respect to the inlet duct, has about small holes for evacuation of gases (9) communicated with an additional manifold (10) have a valve for venting gases (11) with pressure control to evacuate the CO2 generated by the reaction (Figure 4).
5. Placa bipolar según reivindicaciones 1 a 4 caracterizada porque toda el área de flujo estará rotada un ángulo cualquiera (α), preferentemente entre 5-25°, respecto de los bordes externos de la placa (Figura 4 b), de modo que los nervios que definen los canales de paso formarán un ángulo (45-α)° respecto del borde horizontal, y en la que el metanol entrará a la placa por el orificio inferior (3) y saldrá por el superior (5) de forma que arrastre las burbujas de CO2 depositadas por flotación en el canal superior (6), facilitando así la extracción del flujo bifásico.5. Bipolar plate according to claims 1 to 4 characterized in that the entire flow area will be rotated at any angle (α), preferably between 5-25 °, with respect to the outer edges of the plate (Figure 4b), so that the nerves that define the passage channels will form an angle (45-α) ° with respect to the horizontal edge, and in which methanol will enter the plate through the lower hole (3) and exit through the upper one (5) so that it drags CO 2 bubbles deposited by flotation in the upper channel (6), thus facilitating the extraction of the biphasic flow.
6. Placa bipolar según reivindicaciones 1 a 3 caracterizada porque en el caso de emplearse en los cátodos, el canal inferior (7) actúa como colector donde migrarán, debido a la diferencia de densidades, las gotas de agua generadas por reacción química y que serán extraídas a través de una serie de canales (12), al ser arrastradas por el flujo de aire de aire o de O2 (Figura 5 a).6. Bipolar plate according to claims 1 to 3 characterized in that in the case of being used in the cathodes, the lower channel (7) acts as a collector where the water droplets generated by chemical reaction will migrate due to the difference in densities and which will be extracted through a series of channels (12), when carried by the air flow of air or O 2 (Figure 5 a).
7. Placa bipolar según reivindicaciones 1, 2, 3 y 6 caracterizado porque toda el área de flujo estará rotada un ángulo cualquiera (β), preferentemente entre 5-25°, respecto de los bordes externos de la placa (Figura 5 b) de modo que los nervios que definen los canales de paso formarán un ángulo (45-β)° respecto del borde horizontal, y en la que el gas entrará a la placa por el orificio superior (3) y saldrá por el inferior de modo que el agua formada tenderá a acudir al punto más bajo (5), facilitando la extracción del flujo bifásico a través del mismo.7. Bipolar plate according to claims 1, 2, 3 and 6 characterized in that the entire flow area will be rotated at any angle (β), preferably between 5-25 °, with respect to the outer edges of the plate (Figure 5 b) of so that the nerves that define the passageways will form an angle (45-β) ° with respect to the horizontal edge, and in which the gas will enter the plate through the upper hole (3) and out through the lower one so that the water formed will tend to go to the point lower (5), facilitating the extraction of biphasic flow through it.
8. Placa bipolar según reivindicaciones 1 a 7 caracterizada porque en caso de agruparse formando un stack, tendrá geometrías de flujo en ambas caras, una para el cátodo de una de las monoceldas y otra para el ánodo de la siguiente (Figuras 6 a) y 6 b).8. Bipolar plate according to claims 1 to 7 characterized in that in case of grouping together forming a stack, it will have flow geometries on both sides, one for the cathode of one of the monocells and another for the anode of the next (Figures 6 a) and 6 b).
9. Placa bipolar según reivindicaciones 1 a 8 caracterizada porque las hileras de obstáculos de una cara están orientadas perpendicularmente a las de la cara opuesta y, con los orificios de entrada y salida correspondientes situados en cada cara en la diagonal perpendicular a los nervios.9. Bipolar plate according to claims 1 to 8, characterized in that the rows of obstacles of one face are oriented perpendicularly to those of the opposite face and, with the corresponding entry and exit holes located on each face on the diagonal perpendicular to the ribs.
10. Placa bipolar según reivindicaciones 1 a 9 caracterizada porque los fluidos reactantes se suministran de forma centralizada a través de un colector único a todas las placas bipolares de las distintas monoceldas.10. Bipolar plate according to claims 1 to 9 characterized in that the reactant fluids are supplied centrally through a single collector to all bipolar plates of the different monocells.
11. Placa bipolar según reivindicaciones 1 a 10 caracterizada porque los conductos de entrada y salida tienen un ángulo cualquiera (γ), preferentemente entre 5-40° respecto del plano que contiene a la superficie activa de la placa que dependerá de la profundidad de los nervios, de forma que el diámetro de los conductos dentro del área activa (5, 6) sea igual o inferior a la profundidad de los canales.11. Bipolar plate according to claims 1 to 10 characterized in that the inlet and outlet ducts have any angle (γ), preferably between 5-40 ° with respect to the plane containing the active surface of the plate that will depend on the depth of the nerves, so that the diameter of the ducts within the active area (5, 6) is equal to or less than the depth of the channels.
12. Placa bipolar según reivindicaciones 1 a 11 caracterizada porque en caso de ser placas terminales ("end-plates") tendrán geometrías de flujo en una sola de las caras, sirviendo de ánodo o cátodo respectivamente, de forma similar a las que se emplean en monoceldas.12. Bipolar plate according to claims 1 to 11, characterized in that in the case of end-plates, they will have flow geometries on only one of the faces, serving as an anode or cathode respectively, similar to those used in monocells.
13. Placa bipolar según reivindicaciones 1 a 12 caracterizada porque puede tener una apertura en el plano central paralelo a las caras de la geometría de flujo, por la cual puede (o no) circular un fluido (aire, agua, etc.) que se empleará como método de refrigeración del sistema ayudando a la extracción del calor. 13. Bipolar plate according to claims 1 to 12 characterized in that it can have an opening in the central plane parallel to the faces of the flow geometry, through which a fluid (air, water, etc.) that can be circulated (or not) It will be used as a method of cooling the system, helping to extract heat.
14. Placa bipolar según reivindicaciones 1 a 13 caracterizada porque comprende una válvula de control para poder trabajar en régimen intermitente de apertura y cierre.14. Bipolar plate according to claims 1 to 13 characterized in that it comprises a control valve to be able to work in intermittent opening and closing regime.
15. Uso de la placa bipolar según reivindicaciones 1 a 14 para la fabricación de una pila de combustible, preferentemente una pila PEM, y también, pilas de óxido- sólido planas y alcalinas. 15. Use of the bipolar plate according to claims 1 to 14 for the manufacture of a fuel cell, preferably a PEM cell, and also flat and alkaline solid oxide batteries.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP200602547 | 2006-10-06 | ||
ES200602547A ES2315126B1 (en) | 2006-10-06 | 2006-10-06 | BIPOLAR PLATE FOR HOMOGENIC DISTRIBUTION OF FLOW IN FUEL BATTERIES. |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008040835A1 true WO2008040835A1 (en) | 2008-04-10 |
WO2008040835B1 WO2008040835B1 (en) | 2008-05-22 |
Family
ID=39268122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2007/070167 WO2008040835A1 (en) | 2006-10-06 | 2007-10-03 | Bipolar plate for uniform flow distribution in fuel cells |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2315126B1 (en) |
WO (1) | WO2008040835A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008151591A1 (en) * | 2007-06-11 | 2008-12-18 | Staxera Gmbh | Repeater unit for a fuel cell stack |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4910100A (en) * | 1989-07-21 | 1990-03-20 | Fuji Electric Co., Ltd. | Solid electrolyte fuel cell |
EP0924785A2 (en) * | 1997-12-18 | 1999-06-23 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and bipolar separator for the same |
US20040038114A1 (en) * | 2002-08-21 | 2004-02-26 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell and method of operating the same |
WO2006097658A2 (en) * | 2005-03-18 | 2006-09-21 | Commissariat A L'energie Atomique | Bipolar plate for fuel cell with deformed metal distribution plate metal |
-
2006
- 2006-10-06 ES ES200602547A patent/ES2315126B1/en not_active Expired - Fee Related
-
2007
- 2007-10-03 WO PCT/ES2007/070167 patent/WO2008040835A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4910100A (en) * | 1989-07-21 | 1990-03-20 | Fuji Electric Co., Ltd. | Solid electrolyte fuel cell |
EP0924785A2 (en) * | 1997-12-18 | 1999-06-23 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and bipolar separator for the same |
US20040038114A1 (en) * | 2002-08-21 | 2004-02-26 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell and method of operating the same |
WO2006097658A2 (en) * | 2005-03-18 | 2006-09-21 | Commissariat A L'energie Atomique | Bipolar plate for fuel cell with deformed metal distribution plate metal |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008151591A1 (en) * | 2007-06-11 | 2008-12-18 | Staxera Gmbh | Repeater unit for a fuel cell stack |
US8293424B2 (en) | 2007-06-11 | 2012-10-23 | Staxera Gmbh | Flow field unit for a fuel cell stack |
Also Published As
Publication number | Publication date |
---|---|
ES2315126B1 (en) | 2010-01-08 |
WO2008040835B1 (en) | 2008-05-22 |
ES2315126A1 (en) | 2009-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fan et al. | Optimization design of the cathode flow channel for proton exchange membrane fuel cells | |
Kurnia et al. | Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions | |
Qiu et al. | Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels | |
ES2678599T3 (en) | Gas distribution element for a fuel cell | |
Gundlapalli et al. | Performance characteristics of several variants of interdigitated flow fields for flow battery applications | |
US20200099066A1 (en) | Fuel cell anode flow field design configurations for achieving increased fuel utilization | |
RU2628104C2 (en) | Solid oxide fuel cell | |
Wang et al. | A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel | |
Hamrang et al. | Numerical simulation of the PEM fuel cell performance enhancement by various blockage arrangement of the cathode serpentine gas flow channel outlets/inlets | |
JP2011134505A (en) | Power generator | |
Muthukumar et al. | Performance studies on PEM fuel cell with 2, 3 and 4 pass serpentine flow field designs | |
ES2315126B1 (en) | BIPOLAR PLATE FOR HOMOGENIC DISTRIBUTION OF FLOW IN FUEL BATTERIES. | |
KR20190100531A (en) | Anode supporter with flat tubular solid oxide and cell stack using the same and method for manufacturing the anode supporter | |
US9847546B2 (en) | Separator for fuel cell and fuel cell including the same | |
KR20110030900A (en) | Manifold and solid oxide fuel cell module having the same | |
Currie | Biomimetic design applied to the redesign of a PEM fuel cell flow field | |
ES2395300B1 (en) | FUEL BATTERY PLATE WITH REAGENT DISTRIBUTION CHAMBER | |
KR102601882B1 (en) | Manifolds for fuel cell and fuel cell comprising the same | |
JP4177291B2 (en) | Fuel cell system | |
JP2011175880A (en) | Fuel cell | |
Jia et al. | Improved thermal uniformity by introducing tree-like flowing channels in a pemfc flow-field plate | |
JP2017183137A (en) | Solid oxide fuel cell device | |
Praveenkumar et al. | Effects of flow channel geometry on the performance of PEM fuel cell | |
ES2397144B1 (en) | FUEL BATTERY PLATE WITH FLOW GEOMETRY IN THE FORM OF "FISH SPINE". | |
Chen | Efficient PEM fuel cells for portable applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07823061 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07823061 Country of ref document: EP Kind code of ref document: A1 |