WO2008038491A1 - Radiographic device - Google Patents

Radiographic device Download PDF

Info

Publication number
WO2008038491A1
WO2008038491A1 PCT/JP2007/066880 JP2007066880W WO2008038491A1 WO 2008038491 A1 WO2008038491 A1 WO 2008038491A1 JP 2007066880 W JP2007066880 W JP 2007066880W WO 2008038491 A1 WO2008038491 A1 WO 2008038491A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
subject
radiation source
distance
magnification
Prior art date
Application number
PCT/JP2007/066880
Other languages
French (fr)
Japanese (ja)
Inventor
Shintarou Muraoka
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Publication of WO2008038491A1 publication Critical patent/WO2008038491A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging

Definitions

  • the present invention relates to a radiographic image capturing apparatus, and more particularly, to a radiographic image capturing apparatus capable of capturing a phase contrast image.
  • a radiographic imaging apparatus that uses an action of radiation passing through a substance is widely used for medical diagnostic imaging, non-destructive inspection, and the like.
  • a method has been used in which a subject is fixed on a subject table integrated with a radiographic image detector.
  • this method does not increase the contrast of the image enough to capture the actual size of the subject, and medical imaging is used to interpret the fine structure of a specific part such as a diseased part of the breast. There was a problem that the image was not clear enough for the device.
  • a radiographic image capturing apparatus that captures a phase contrast image has been proposed.
  • a phase contrast image is also called a refraction contrast image.
  • Previously it was obtained by imaging with monochromatic parallel radiation obtained from a radiation source such as SPring-8, or with a microfocus radiation source having a focal spot size of about 10 m). Although it has been said that it can be obtained, it has been found that it can also be obtained with a radiation source (small focal radiation source with a focal size of 30 to 300 (11 m)) used in general medical facilities.
  • Patent Document 1 discloses a technique for obtaining an edge enhancement effect without using synchrotron radiation that requires a large device or an X-ray light source having a small X-ray focal point size until it can be regarded as a point light source.
  • the distance R1 from the X-ray tube as a radiation source to the subject is Rl ⁇ (D-7) / 200 (m). It is shown that an edge-enhanced image can be obtained when the distance R2 between the subject and the X-ray detector is 0.15 (m) or more.
  • the magnification ratio (R1 + R2) / R1.
  • the enlargement ratio is the ratio of the size of the subject in the radiographic image to the actual size of the subject, and is synonymous with the imaging magnification.
  • the enlargement ratio that is, imaging magnification
  • the above-described R1 is fixed. This is done by changing R2.
  • Patent Document 1 JP 2001-91479 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-173879
  • FIG. 9 shows a detector holding unit 12 that holds a radiation source 6, a subject H, and a radiation image detector (X-ray detector) when a breast is imaged by phase contrast imaging in a conventional radiographic imaging device.
  • the numbers in the figure indicate the magnification), and schematically shows the positional relationship between the floor and ceiling in the imaging room where phase contrast imaging is performed.
  • the distance R1 between the radiation source 6 and the subject H is fixed, so that the radiation source 6 is positioned vertically upward by the distance R1 of the subject H (Fig. 9 ( a)). That is, the top position of the radiation source 6 is increased according to the subject position (when the subject H is a breast, the height from the floor surface to the subject H).
  • R1 + R2 that is, the distance between the radiation source 6 and the detector holding unit 12 is constant, and according to the enlargement ratio.
  • the applicant of the present application has applied for a radiographic imaging device that adjusts the relative distance between the radiation source 6 and the detector holder 12 with respect to the subject H.
  • An object of the present invention is to prevent the image quality from changing depending on the imaging magnification in the radiographic image capturing apparatus.
  • the object of the present invention can be achieved by the following configurations.
  • Detector holding means for holding a radiation image detector for detecting radiation from the radiation source transmitted through the subject;
  • An object table disposed between the radiation source and the detector holding means and holding the subject
  • Magnification setting means for setting the shooting magnification
  • a radiographic imaging apparatus comprising: a control means for detecting an irradiation amount from the radiation source and controlling the radiation source!
  • the control means variably controls the radiation dose emitted from the radiation source in accordance with the imaging magnification set by the magnification setting means.
  • the focal size D of the radiation source is 30 (m) or more
  • the distance R1 from the radiation source to the subject is Rl ⁇ (D-7) / 200 (m),
  • the radiation that can prevent the image quality from changing according to the imaging magnification by variably controlling the radiation dose emitted from the radiation source according to the imaging magnification set by the magnification setting means.
  • An image capturing device can be provided.
  • FIG. 1 is a diagram showing a configuration example of a breast image photographing apparatus 1 according to the present invention.
  • FIG. 2 is a diagram schematically showing the internal configuration of the imaging device main body 2 of the breast image capturing device 1
  • FIG. 3 is a block diagram showing a functional configuration of breast image capturing apparatus 1.
  • FIG. 4 is a diagram for explaining the principle of phase contrast imaging.
  • FIG. 6 The results of visibility evaluation of each captured image when the distance L (R1 + R2) between the radiation source 6 and the detector holding unit 12 and the magnification rate are changed in the mammography apparatus 1 are shown.
  • (B) shows that Rl + R2 1140, and R when radiographing was performed at each magnification with the same radiation dose as the radiation irradiation stop condition.
  • FIG. 8 is a flowchart showing an irradiation dose control process executed by the control device 16.
  • FIG. 6 is a diagram schematically showing the positional relationship between the radiation source 6, the subject H, the detector holding unit 12, the floor surface, and the ceiling.
  • FIGS. 1 and 2 show a configuration example of the mammography apparatus 1.
  • FIG. 1 is a diagram illustrating an example of an external configuration of the breast imaging apparatus 1
  • FIG. 2 is a diagram schematically illustrating an internal configuration of the imaging apparatus main unit 2 of the breast imaging apparatus 1 illustrated in FIG. .
  • the radiation dose detection unit 13, the operation device 14, the power supply unit 15, the drive device 17 and the drive device 19 are connected to the control device 16 (shown in FIG. 3) of the main body 9! Power Not shown here! /
  • FIG. 3 the control device 16
  • a support base 3 is provided on a main body 9 so as to be movable up and down, and a support shaft 4 provided on the support base 3 is provided on the support base 3.
  • the imaging device main body 2 is supported via the.
  • the support base 3 is moved up and down by being driven by a drive device 17 constituted by a motor or the like.
  • the imaging device main body 2 can be raised and lowered by raising and lowering the support base 3 by the drive device 17, and can be rotated by the drive device 17 about the support shaft 4.
  • a radiation source 6 for radiating radiation is provided on the upper part of the imaging apparatus main body 2.
  • the radiation source 6 is connected to the main body 9 via the support shaft 4 and the support base 3. Is connected to the power supply 15
  • the radiation source 6 is applied with a tube voltage and a tube current by the power supply unit 15.
  • an aperture locus of an aperture device 7 as an irradiation field adjustment device for adjusting the radiation field is provided so as to be freely opened and closed.
  • the radiation source 6 is preferably a rotating anode X-ray tube.
  • X-rays are generated when an electron beam emitted from the cathode collides with the anode.
  • This is incoherent (incoherent) like natural light and is not divergent X-ray but divergent light. If the electron beam continues to hit the place where the anode is fixed, the anode will be damaged by the generation of heat. Therefore, in a normal X-ray tube, the anode is rotated to prevent a decrease in the life of the anode.
  • the electron beam is made to collide with a certain size plane of the anode, and the generated X-rays are emitted toward the subject H from the plane of the certain size anode.
  • This plane is called a focus.
  • the focus size D m) is the length of one side when the focus is square, the length of the short side when the focus is rectangular or polygonal, and the diameter when the focus is circular.
  • a detector holding a force set containing a stimulable phosphor sheet for example, as a radiation image detector (radiation detector) for detecting radiation transmitted through the subject H
  • the part 12 is attached to a position below the subject table 10 and extending substantially perpendicularly from the radiation source 6 so as to face the radiation source 6.
  • the uppermost surface of the radiation image detector held by the detector holding unit 12 coincides with the uppermost surface of the detector holding unit 12.
  • the radiation source 6 and the detector holding unit 12 are attached to the holding member 8, and the holding member 8 allows the distance L between the radiation source 6 and the detector holding unit 12 (R1 to be described later) + R2) is maintained at a certain distance.
  • the holding member 8 can be moved up and down by driving a driving device 19 composed of a motor or the like.
  • the raising and lowering of the holding member 8 by the driving device 19 keeps the radiation source 6 and the detector holding unit 12 at a certain distance. While going up and down.
  • the distance L between the radiation source 6 and the detector holding unit 12 is preferably set to L ⁇ 0.95 (m) from the viewpoint of visibility when outputting a photographed image as a result of intensive research! (See Figure 6).
  • a radiation image detector for example, a screen (intensifying screen) / film, an FPD (flat panel detector), or the like may be used in addition to the above-described force set containing the photostimulable phosphor sheet. Good.
  • the subject table 10 holding the subject H also with a lower force and A compression plate 11 is provided for pressing and fixing the subject H from above.
  • the subject table 10 is attached to the holder 5 of the photographing apparatus main body 2 and moves up and down in accordance with the raising and lowering of the photographing apparatus main body 2 by the driving device 17.
  • the compression plate 11 is configured to be movable up and down along a support shaft (not shown) provided in the photographing apparatus main body 2.
  • the position of the compression plate 11 is detected by a position detection unit 18 (shown in FIG. 3) and output to the control device 16 of the main body unit 9.
  • a position detection unit 18 shown in FIG. 3
  • the position detector 18 a method using photometry using infrared rays, a method in which a line resistance is provided on the rail of the support shaft that slides the compression plate 11, and a position is determined from the measured resistance value can be adopted.
  • a radiation dose detection unit 13 for detecting the radiation dose irradiated is provided on the surface of the detector holding unit 12 opposite to the surface facing the subject table 10.
  • the radiation dose detection unit 13 is, for example, a sensor composed of a semiconductor or the like.
  • the radiation dose detected by the radiation dose detection unit 13 is output to the control device 16 of the main body unit 9.
  • the main body 9 includes a control device 16 including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • FIG. 3 shows an example of the functional configuration of the breast image capturing apparatus 1.
  • the control device 16 includes a radiation dose detection unit 13 for detecting the irradiated radiation dose, a keyboard touch panel for setting imaging conditions such as an enlargement ratio (imaging magnification) and an imaging direction,
  • An input device 14a having a position adjustment switch (upward adjustment switch for adjusting upward, downward adjustment switch for adjusting downward) for adjusting the position of the subject table 10, and a display device 14b such as a CRT display or a liquid crystal display are provided.
  • a position detection unit 18 for detection and a drive device 19 for raising and lowering the holding member 8 are connected via a bus 20.
  • the ROM of the control device 16 stores a control program for controlling each part of the mammography apparatus 1, and the CPU controls the operation of each part of the mammography apparatus 1 in cooperation with this control program. To control phase contrast.
  • phase contrast imaging a certain distance R2 is provided between the subject H and the radiation image detector 12a, and as shown in FIG. Emphasis) to obtain an image.
  • the radiation from the radiation source 6 is refracted when passing through the subject H, and the radiation density Dr inside the boundary of the subject H becomes sparse, and the outside of the subject H passes through the object.
  • Radiation density Dr increases due to overlapping with radiation that does not.
  • the edge that is the boundary of the subject H is enhanced as an image. This is a phenomenon that arises from the difference in refractive index between subject H and air. This is an edge-enhanced image.
  • the boundary portion of the subject H is expressed as a boundary portion with a substance having a different refractive index with respect to radiation.
  • the starting point is the position of the focal point of the radiation source 6, and the location of the radiation source 6 is clearly shown in the normal commercial radiation source 6.
  • the end point is the center line of the subject H fixed by the subject table 10 that fixes the subject position.
  • the center line of the subject H is a position equidistant from the subject table 10 and the compression plate 11.
  • the starting point is the center line of the subject H
  • the end point is the uppermost surface of the plane that receives the radiation of the radiation image detector, that is, the uppermost surface of the detector holding unit 12.
  • the control device 16 sets the set shooting direction to a shooting direction that requires the rotation of the shooting device main body 2. If it is an imaging direction that requires rotation, for example, MLO (Medio- Lateral Oblique) for imaging the breast from an oblique direction force, the drive unit 17 uses the imaging device main body. 2 Rotate the entire body by a predetermined amount. When the position adjustment switch of the input device 14a is pressed, the control device 16 controls the drive device 17 accordingly to adjust the position of the object table 10.
  • MLO Medium- Lateral Oblique
  • the operator adjusts the position of the compression plate 11 by an operator such as a photography engineer, and the subject H is pressed and fixed by the compression plate 11, and an enlargement factor in phase contrast photographing by the input device 14a as a magnification setting means (this embodiment
  • the controller 16 selects the movement amount of the subject table 10 and the position information from the position detection unit 18.
  • the position of the subject H is specified according to the position of the subject table 10 and the holding device 8 is moved up and down by controlling the driving device 19 according to the positions of the subject table 10 and the compression plate 11 and the set enlargement ratio. Adjust the relative distance between the radiation source 6 and the detector holder 12 relative to.
  • the positions of the radiation source 6 and the detector holding unit 12 having an enlargement ratio set to (R1 + R2) / R1 are calculated so that the radiation source 6 and the detector holding unit 12 are obtained.
  • the holding member 8 is moved up and down.
  • the control device 16 applies a tube voltage and a tube current to the radiation source 6 from the power supply unit 15 to irradiate the subject H with radiation, and detects the radiation dose.
  • Unit 13 Force When the output radiation dose reaches the preset radiation dose, the power source unit 15 stops the radiation irradiation from the radiation source 6.
  • control device 16 controls the driving device 19 to raise and lower the holding member 8, thereby adjusting the relative distance between the radiation source 6 and the detector holding unit 12 with respect to the subject table 10. A stage is realized.
  • FIG. 5 shows a radiation source 6, a subject H, a detector holding unit 12 (numbers in the figure indicate an enlargement ratio), and a phase when a breast image is captured by the breast image capturing apparatus 1 according to the present embodiment.
  • the positional relationship of the floor surface and the ceiling in the imaging room which performs contrast imaging is schematically shown.
  • the distance L of R1 + R2 is constant even if the enlargement ratio changes, so that as the enlargement ratio increases, the floor surface and the detector holding unit 12 Therefore, if the subject position is low, it is not possible to secure the distance and the enlargement ratio that can be taken is not limited.
  • the range of subject positions where phase contrast imaging is possible can be expanded and applied to more patients. (Evaluation of visibility of breast imaging device 1)
  • FIG. 6 shows that R1 + R2, which is the distance L between the radiation source 6 and the detector holder 12, is 1555, 1140, 950, 750 (mm), and an enlarged skewer is provided for each Rl + R2.
  • R1 + R2 which is the distance L between the radiation source 6 and the detector holder 12, is 1555, 1140, 950, 750 (mm), and an enlarged skewer is provided for each Rl + R2.
  • the mammography apparatus 1 used was a prototype manufactured by Konica Minolta MG Co., Ltd., and the radiological image detector used was the company's Regius Plate RP-5PM and Regius Cascette RC-110M.
  • the radiographic image detector after mammography is read with a regius model 190 manufactured by Konica Minolta Co., Ltd. at a reading pixel pitch of 43.75 (111), and the read image is output at a writing pitch of 25 m) with a drypro model 793. did.
  • each pixel of the scanned image and each pixel of the output image are output without any interpolation processing corresponding to 1: 1, and an image with a magnification of 1.75 times has a life size (actual size) and a magnification of 1.
  • a 46x image was output at 0.83x actual size.
  • 1.25x enlargement interpolation processing was performed and output was performed at a writing pitch of 25 (am) using the enlarged interpolation image. And visibility There was no difference.
  • the factor contributing to the "output” item is the distance of R1.
  • a factor contributing to the "uniformity" item is the distance of R1. Generally, if R1 is too small, radiation cannot be irradiated on the entire surface of the radiation image detector, resulting in unevenness and low uniformity.
  • the factor that contributes to “sharpness” and “graininess” is the enlargement ratio. In general, the larger the enlargement ratio, the better the image.
  • the factor that contributes to the "scattered radiation content" is R2, and in general, the larger R2, the more the scattered radiation is removed and a better image is obtained.
  • phase contrast effect edge enhancement effect
  • enlargement ratio and R2 Factors contributing to the “phase contrast effect (edge enhancement effect)” are the enlargement ratio and R2, and the larger the enlargement ratio and R2, the more the phase contrast effect is obtained, and the better the image is.
  • the focal point size D ⁇ 30 (m) of the radiation source, the distance Rl ⁇ (D-7) / 200 (m) from the radiation source to the subject, the radiation Radiation image that can guarantee the phase contrast effect of the captured image by setting the source force to the distance L (m) 0.95 (m) to ⁇ ⁇ 14 (m).
  • the distance R2 ⁇ 0.15 (m) to the subject force detector holding means, the scattered radiation from the subject H that deteriorates the sharpness of the radiographic image is obtained. Since removal and edge enhancement can be easily recognized, it is possible to provide a radiographic image capturing apparatus that can guarantee the phase contrast effect of a captured image.
  • the average mammary gland dose is substantially inversely proportional to the square of the distance R1 between the radiation source 6 and the subject H as shown in FIGS. 6 and 7 (b). Therefore, if the magnification was 1.46 times and 2.63 times under the same radiation irradiation stop conditions as when the magnification rate was 1.75 times, the average mammary gland dose was 0.7 times and 2 times, respectively. Tripled. In other words, when taking an image at an enlargement ratio of 1.46 times under the same radiation irradiation stop conditions as when the enlargement ratio is 1.75 times, a sufficient average mammary dose cannot be obtained, and the image quality deteriorates.
  • control device 16 variably controls the radiation to be irradiated according to the enlargement ratio.
  • the control device 16 performs the irradiation radiation dose control process shown in FIG. 8, and controls the irradiation dose to be irradiated.
  • the irradiation radiation dose control process is a process realized by a software process in cooperation with the CPU of the control device 16 and a program stored in the ROM, and a control unit is realized by executing the process. Note that the start of this processing is when various settings and adjustments have been completed and the camera is in a shooting standby state. Various settings from the input device 14a, including the enlargement ratio, subject table 10, compression plate, etc. 11. Adjustment of the position of the radiation source 6 and detector holder 12 has been completed.
  • step S I when an instruction for photographing is given from the input device 14a (step S I; YES), the power supply unit
  • step S2 The tube voltage and tube current are applied to the radiation source 6 by 15 and radiation irradiation is started (step S2).
  • step S3 the set enlargement factor is determined, and if it is determined that it is 1.75 times the set value (step S3; YES), the radiation is output until the output value from the radiation dose detector 13 reaches V0. If irradiation is continued and it is determined that the output value SV0 from the radiation dose detector 13 has reached or exceeded (step S4; YES), radiation irradiation from the radiation source 6 is stopped (step S8), and this process Ends.
  • step S3 If it is determined in step S3 that the set enlargement ratio is not 1.75 times (step S3). (Step S3; NO), it is determined whether or not the set magnification is 2.63 times. 2. If it is determined that it is 63 times (Step S5; YES), the radiation dose detection unit 13 Irradiation is continued until the output value of 0.44 XV0 reaches 0.44 XV0, and if it is determined that the output value from the radiation dose detector 13 has reached 0.44 XV0 or more (step S4; YES), the radiation source Radiation from 6 is stopped (step S8), and this process ends.
  • step S5 determines that the set enlargement ratio is not 2.63 times (step S5; NO)
  • step S5 determines that the set enlargement ratio is not 2.63 times.
  • step S7 determines that the output value from the radiation dose detector 13 has reached 1.44 XV0 or higher.
  • the radiation irradiation stop condition can be controlled according to the distance of R1. It can.
  • the radiation irradiation stop condition (radiation dose) that gives the optimum image quality at the reference magnification rate X0 is V0
  • the radiation dose Vn that is the radiation irradiation stop condition for other magnification factors Xn is
  • Vn V0 X ⁇ (R1 when the magnification is Xn) / (R1 when the magnification is X0)
  • the radiation irradiation stop condition may be the same as the magnification factor of 1.75.
  • the distance of the force Rl + R2 determined to variably control the radiation dose irradiated from the radiation source 6 according to the magnification rate is determined.
  • the relationship between the magnification and the distance of R1 is 1: 1 (proportional relationship), so the radiation dose may be variably controlled by the distance of R1.
  • the amount of radiation from the radiation source is controlled so that the amount of radiation reaching the subject H is constant even when the imaging magnification is changed. It is possible to provide a radiographic imaging device that can prevent the image quality from changing due to the power S.
  • the imaging magnification is smaller! /, The amount of irradiation from the radiation source is increased, so that radiographic imaging that can prevent the image quality from changing depending on the imaging magnification can be prevented.
  • An apparatus can be provided.
  • the image quality can be adjusted according to the imaging magnification by variably controlling the radiation dose emitted from the radiation source in accordance with the imaging magnification set by the magnification setting means. It is possible to provide a radiographic image capturing apparatus that can prevent the change of the temperature.

Abstract

It is possible to provide a radiographic device capable of preventing image quality change caused by imaging magnification by controlling the radiation dose applied from a radiation source in accordance with the imaging magnification set by magnification setting means.

Description

明 細 書  Specification
放射線画像撮影装置  Radiation imaging equipment
技術分野  Technical field
[0001] 本発明は、放射線画像撮影装置に係り、特に、位相コントラスト画像を撮影すること が可能な放射線画像撮影装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a radiographic image capturing apparatus, and more particularly, to a radiographic image capturing apparatus capable of capturing a phase contrast image.
背景技術  Background art
[0002] 一般に、放射線が物質を透過する作用を利用する放射線画像撮影装置は、医療 用画像診断や非破壊検査等に広く利用されている。特に乳房撮影に用いられる放 射線画像撮影装置については、通常、放射線画像検出器と一体化した被写体台上 に被写体を固定し、撮影する方法が行われてきた。しかし、この方法によると被写体 が実寸大で撮影されることとなる力 画像のコントラストが十分に上がらず、乳房の病 変部分等の特定部位の微細な構造を判読するために用いられる医療用撮影装置と しては画像の鮮明さが不十分であるという問題があった。  [0002] Generally, a radiographic imaging apparatus that uses an action of radiation passing through a substance is widely used for medical diagnostic imaging, non-destructive inspection, and the like. In particular, for radiographic imaging devices used for mammography, a method has been used in which a subject is fixed on a subject table integrated with a radiographic image detector. However, this method does not increase the contrast of the image enough to capture the actual size of the subject, and medical imaging is used to interpret the fine structure of a specific part such as a diseased part of the breast. There was a problem that the image was not clear enough for the device.
[0003] そこで、近年、位相コントラスト画像を撮影する放射線画像撮影装置が提案されて いる。位相コントラスト画像とは、屈折コントラスト画像とも呼ばれるもので、以前は SPr ing— 8など放射線源から得る単色の平行放射線による撮影や、 10 m)程度の焦 点サイズをもつマイクロ焦点放射線源による撮影によって得られるものと言われてい たが、一般の医療施設等で用いられる放射線源(焦点サイズが 30〜300 ( 11 m)の小 焦点放射線源)でも得ることが可能であることが分かってきた。  [0003] Therefore, in recent years, a radiographic image capturing apparatus that captures a phase contrast image has been proposed. A phase contrast image is also called a refraction contrast image. Previously, it was obtained by imaging with monochromatic parallel radiation obtained from a radiation source such as SPring-8, or with a microfocus radiation source having a focal spot size of about 10 m). Although it has been said that it can be obtained, it has been found that it can also be obtained with a radiation source (small focal radiation source with a focal size of 30 to 300 (11 m)) used in general medical facilities.
[0004] 例えば、特許文献 1には、大型の装置を必要とするシンクロトロン放射光や、点光源 と見なせるまで X線焦点サイズの小さな X線光源を用いることなぐエッジ強調の効果 を得る技術が記載されている。この特許文献 1によれば、 X線焦点サイズ Dが 30 m)以上であるとき、放射線源である X線管から被写体までの距離 R1が Rl≥ (D— 7 ) /200 (m)の式を満足する領域であり、かつ被写体と X線検出器との距離 R2が 0. 15 (m)以上である場合に、エッジ強調画像が得られることが示されている。このとき、 拡大率 = (R1 +R2) /R1の拡大撮影となる。ここで、拡大率とは、被写体の実寸大 に対する放射線画像における被写体の大きさの比率であり、撮影倍率と同義である。 [0005] ところで、従来、位相コントラスト撮影を行う放射線画像撮影装置にお!/、て拡大率( 即ち、撮影倍率)を変更する場合、例えば、特許文献 2に示すように、上述の R1を固 定とし、 R2を変更することで行っている。 [0004] For example, Patent Document 1 discloses a technique for obtaining an edge enhancement effect without using synchrotron radiation that requires a large device or an X-ray light source having a small X-ray focal point size until it can be regarded as a point light source. Are listed. According to this patent document 1, when the X-ray focal spot size D is 30 m) or more, the distance R1 from the X-ray tube as a radiation source to the subject is Rl≥ (D-7) / 200 (m). It is shown that an edge-enhanced image can be obtained when the distance R2 between the subject and the X-ray detector is 0.15 (m) or more. At this time, the magnification ratio = (R1 + R2) / R1. Here, the enlargement ratio is the ratio of the size of the subject in the radiographic image to the actual size of the subject, and is synonymous with the imaging magnification. [0005] By the way, when changing the enlargement ratio (that is, imaging magnification) in a conventional radiographic imaging apparatus that performs phase contrast imaging, for example, as described in Patent Document 2, the above-described R1 is fixed. This is done by changing R2.
特許文献 1 :特開 2001— 91479号公報  Patent Document 1: JP 2001-91479 A
特許文献 2:特開 2004— 173879号公報  Patent Document 2: Japanese Patent Laid-Open No. 2004-173879
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 図 9に、従来の放射線画像撮影装置において位相コントラスト撮影により乳房を撮 影する際の放射線源 6、被写体 H、放射線画像検出器 (X線検出器)を保持する検出 器保持部 12 (図中の数字は拡大率を示す)、位相コントラスト撮影を行う撮影室にお ける床面(floor)及び天井 (ceiling)の位置関係を模式的に示す。従来の放射線画 像撮影装置においては放射線源 6と被写体 Hとの距離 R1が固定となっているため、 被写体 Hの位置力 R1の距離だけ垂直方向上方に放射線源 6が位置する(図 9 (a) )。即ち、被写体位置 (被写体 Hが乳房である場合、床面から被写体 Hまでの高さ)に 応じて放射線源 6のトップの位置が高くなる。一方、撮影室の空間には限度がある。 従って、身長が高い患者等、被写体 Hとなる乳房の位置が高ぐ被写体 Hの位置と天 井との距離が R1に満たない場合、撮影を行えないこととなる(図 9 (b) )。また、検出 器保持部 12の位置は、被写体 Hの位置と拡大率に基づき決まり、拡大率が大きくな るほど R2は大きくなる。そのため、身長が低い患者等、被写体 Hとなる乳房の位置が 低レ、と撮影可能な拡大率が制限される場合がある(図 9 (c) )。  FIG. 9 shows a detector holding unit 12 that holds a radiation source 6, a subject H, and a radiation image detector (X-ray detector) when a breast is imaged by phase contrast imaging in a conventional radiographic imaging device. (The numbers in the figure indicate the magnification), and schematically shows the positional relationship between the floor and ceiling in the imaging room where phase contrast imaging is performed. In the conventional radiographic imaging apparatus, the distance R1 between the radiation source 6 and the subject H is fixed, so that the radiation source 6 is positioned vertically upward by the distance R1 of the subject H (Fig. 9 ( a)). That is, the top position of the radiation source 6 is increased according to the subject position (when the subject H is a breast, the height from the floor surface to the subject H). On the other hand, there is a limit to the space in the shooting room. Therefore, imaging cannot be performed when the height of the breast that is subject H is high, such as a patient with a high height, and the distance between subject H and the ceiling is less than R1 (FIG. 9 (b)). Further, the position of the detector holding unit 12 is determined based on the position of the subject H and the enlargement ratio, and R2 increases as the enlargement ratio increases. For this reason, there are cases where the enlargement ratio that can be photographed is limited, such as a patient whose height is low and the position of the breast that is subject H is low (Fig. 9 (c)).
[0007] そこで、上述のような位相コントラスト撮影を行う上での制限を低減するため、 R1 + R2、即ち、放射線源 6と検出器保持部 12との距離を一定とし、拡大率に応じて被写 体 Hに対する放射線源 6及び検出器保持部 12の相対距離を調節する放射線画像 撮影装置を本願出願人は出願した。  [0007] Therefore, in order to reduce the restriction on performing the phase contrast imaging as described above, R1 + R2, that is, the distance between the radiation source 6 and the detector holding unit 12 is constant, and according to the enlargement ratio. The applicant of the present application has applied for a radiographic imaging device that adjusts the relative distance between the radiation source 6 and the detector holder 12 with respect to the subject H.
[0008] しかしながら、拡大率に応じて被写体 Hに対する放射線源 6及び検出器保持部 12 の相対距離を調節すると、拡大率によって放射線源 6と被写体 Hとの距離 R1が変化 するので被写体 Hへ到達する放射線量が変わってしまい、拡大率によっては、画質 が変化し、一定の画質が維持できな!/、問題がある。 [0009] 本発明の課題は、放射線画像撮影装置において、撮影倍率によって画質が変化 することを防止することである。 However, if the relative distance between the radiation source 6 and the detector holding unit 12 with respect to the subject H is adjusted according to the magnification rate, the distance R1 between the radiation source 6 and the subject H changes depending on the magnification rate, so that the subject H is reached. However, depending on the magnification rate, the image quality changes, and it is impossible to maintain a constant image quality. [0009] An object of the present invention is to prevent the image quality from changing depending on the imaging magnification in the radiographic image capturing apparatus.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の目的は、下記構成により達成することができる。 The object of the present invention can be achieved by the following configurations.
[0011] 1.被写体に放射線を照射する放射線源と、 [0011] 1. a radiation source for irradiating a subject;
被写体を透過した前記放射線源からの放射線を検出する放射線画像検出器を保持 する検出器保持手段と、  Detector holding means for holding a radiation image detector for detecting radiation from the radiation source transmitted through the subject;
前記放射線源と前記検出器保持手段との間に配置され、前記被写体を保持する被 写体台と、  An object table disposed between the radiation source and the detector holding means and holding the subject;
撮影倍率を設定する倍率設定手段と、  Magnification setting means for setting the shooting magnification;
前記設定された撮影倍率に応じて前記被写体台と前記検出器保持手段との相対距 離を調節する調節手段と、  Adjusting means for adjusting a relative distance between the subject table and the detector holding means according to the set photographing magnification;
前記放射線源からの照射量を検出し、前記放射線源を制御する制御手段と、 を備えた放射線画像撮影装置にお!/、て、  A radiographic imaging apparatus comprising: a control means for detecting an irradiation amount from the radiation source and controlling the radiation source!
前記制御手段は、前記倍率設定手段により設定された撮影倍率に応じて、前記放射 線源から照射される放射線量を可変制御することを特徴とする放射線画像撮影装置 The control means variably controls the radiation dose emitted from the radiation source in accordance with the imaging magnification set by the magnification setting means.
Yes
[0012] 2.前記放射線源の焦点サイズ Dが 30 ( m)以上、  [0012] 2. The focal size D of the radiation source is 30 (m) or more,
前記放射線源から前記被写体までの距離 R1が Rl≥(D- 7) /200 (m)、  The distance R1 from the radiation source to the subject is Rl≥ (D-7) / 200 (m),
前記放射線源から前記検出器保持手段までの距離 L (m)が 0. 95 (m)〜; 1. 14 (m) であることを特徴とする 1に記載の放射線画像撮影装置。  2. The radiographic imaging apparatus according to 1, wherein a distance L (m) from the radiation source to the detector holding means is 0.95 (m) to 1.14 (m).
[0013] 3.前記被写体から前記検出器保持手段までの距離 R2が R2≥0. 15 (m)であるこ とを特徴とする 1または 2に記載の放射線画像撮影装置。  [0013] 3. The radiographic imaging apparatus according to 1 or 2, wherein a distance R2 from the subject to the detector holding means is R2≥0.15 (m).
[0014] 4.前記放射線源力 前記被写体までの距離 Rl、前記被写体から前記検出器保 持手段までの距離 R2、  [0014] 4. Radiation source power distance Rl to the subject, distance R2 from the subject to the detector holding means,
前記放射線源から前記検出器保持手段までの距離 L ( = R1 +R2) (m)としたときに 、前記距離 Lを一定とし、前記被写体の位置を相対的に可変として撮影倍率( = L/ Rl)を変更することを特徴とする 1から 3のいずれ力、 1項に記載の放射線画像撮影装 置。 When the distance L (= R1 + R2) (m) from the radiation source to the detector holding means is set, the distance L is constant, the position of the subject is relatively variable, and the imaging magnification (= L / Rl) is changed. Place.
[0015] 5.前記制御手段は、撮影倍率が変更されても、前記被写体に到達する放射線量 が一定となるよう前記放射線源からの照射量を制御することを特徴とする 4に記載の 放射線画像撮影装置。  [0015] 5. The radiation according to 4, wherein the control means controls the radiation dose from the radiation source so that the radiation dose reaching the subject is constant even when the imaging magnification is changed. Image shooting device.
[0016] 6.前記制御手段は、撮影倍率が小さ!/、ほど、前記放射線源からの照射量を増加さ せることを特徴とする 4または 5に記載の放射線画像撮影装置。  [0016] 6. The radiographic imaging device according to 4 or 5, wherein the control means increases the amount of irradiation from the radiation source as the imaging magnification decreases!
発明の効果  The invention's effect
[0017] 本発明によれば、倍率設定手段により設定された撮影倍率に応じて、放射線源か ら照射される放射線量を可変制御することにより、撮影倍率によって画質が変化する ことを防止できる放射線画像撮影装置を提供することができる。  [0017] According to the present invention, the radiation that can prevent the image quality from changing according to the imaging magnification by variably controlling the radiation dose emitted from the radiation source according to the imaging magnification set by the magnification setting means. An image capturing device can be provided.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明に係る乳房画像撮影装置 1の構成例を示す図である。  FIG. 1 is a diagram showing a configuration example of a breast image photographing apparatus 1 according to the present invention.
[図 2]乳房画像撮影装置 1の撮影装置本体部 2の内部構成を模式的に示す図である FIG. 2 is a diagram schematically showing the internal configuration of the imaging device main body 2 of the breast image capturing device 1
Yes
[図 3]乳房画像撮影装置 1の機能的構成を示すブロック図である。  FIG. 3 is a block diagram showing a functional configuration of breast image capturing apparatus 1.
[図 4]位相コントラスト撮影の原理を説明するための図である。  FIG. 4 is a diagram for explaining the principle of phase contrast imaging.
[図 5]乳房画像撮影装置 1において乳房画像を撮影する際の、放射線源 6、被写体 [Fig. 5] Radiation source 6 and subject when breast image is taken with breast imaging device 1
H、検出器保持部 12、床面及び天井の位置関係を模式的に示す図である。 It is a figure which shows typically the positional relationship of H, the detector holding | maintenance part 12, a floor surface, and a ceiling.
[図 6]乳房画像撮影装置 1において放射線源 6と検出器保持部 12との距離 L (R1 + R2)及び拡大率を変化させて撮影を行ったときの各撮影画像の視認性評価結果を 示す図である。  [FIG. 6] The results of visibility evaluation of each captured image when the distance L (R1 + R2) between the radiation source 6 and the detector holding unit 12 and the magnification rate are changed in the mammography apparatus 1 are shown. FIG.
[図 7] (a)は、 Rl +R2 = 1140とした場合の、各拡大率(1. 75倍、 1. 46倍、 2. 63倍 )における R1、 R2の関係を模式的に示す図であり、(b)は、 Rl +R2 = 1140とし、放 射線照射の停止条件とする放射線量を全て同じにして各拡大率で撮影したときの R [Figure 7] (a) is a diagram schematically showing the relationship between R1 and R2 at each enlargement ratio (1.75 times, 1.46 times, 2.63 times) when Rl + R2 = 1140. (B) shows that Rl + R2 = 1140, and R when radiographing was performed at each magnification with the same radiation dose as the radiation irradiation stop condition.
I、 R2、平均乳腺線量及び画質の視認性評価結果を示す図である。 It is a figure which shows the visibility evaluation result of I, R2, average mammary gland dose, and image quality.
[図 8]制御装置 16により実行される照射放射線量制御処理を示すフローチャートであ  FIG. 8 is a flowchart showing an irradiation dose control process executed by the control device 16.
[図 9]従来の乳房撮影用の放射線画像撮影装置において乳房画像を撮影する際の 、放射線源 6、被写体 H、検出器保持部 12、床面及び天井の位置関係を模式的に 示す図である。 [Fig. 9] When a mammogram is taken with a conventional radiographic apparatus for mammography. FIG. 6 is a diagram schematically showing the positional relationship between the radiation source 6, the subject H, the detector holding unit 12, the floor surface, and the ceiling.
符号の説明  Explanation of symbols
[0019] 1 乳房画像撮影装置 [0019] 1 Breast imaging apparatus
2 撮影装置本体部  2 Camera unit
3 支持基台  3 Support base
4 支軸  4 Support shaft
6 放射線源  6 Radiation source
7 絞り装置  7 Aperture device
8 保持部材  8 Holding member
9 本体部  9 Main unit
10 被写体台  10 Subject table
11 圧迫板  11 Compression plate
12 検出器保持部  12 Detector holder
13 放射線量検出部  13 Radiation dose detector
14 操作装置  14 Operating device
14a 入力装置  14a input device
14b 表示装置  14b display
15 電源部  15 Power supply
16 制御装置  16 Control unit
17 駆動装置  17 Drive unit
18 位置検知部  18 Position detector
19 駆動装置  19 Drive unit
20 ノくス  20 Nox
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] (乳房画像撮影装置 1) [0020] (Breast imaging device 1)
本実施の形態に係る乳房画像撮影装置 1は、位相コントラスト撮影を行う放射線画 像撮影装置である。以下、図を参照して乳房画像撮影装置 1の構成について説明す [0021] 図 1、 2に、乳房画像撮影装置 1の構成例を示す。図 1は、乳房画像撮影装置 1の 外観構成例を示す図であり、図 2は、図 1に示す乳房画像撮影装置 1の撮影装置本 体部 2の内部構成を模式化して示す図である。なお、図 2において、放射線量検出 部 13、操作装置 14、電源部 15、駆動装置 17及び駆動装置 19は本体部 9の制御装 置 16 (図 3に図示)に接続されて!/、る力 ここでは図示しな!/、。図 1に示すように、乳 房画像撮影装置 1は、本体部 9に支持基台 3が昇降自在に設けられており、支持基 台 3には、支持基台 3に設けられた支軸 4を介して撮影装置本体部 2が支持されてい る。支持基台 3は、モータ等により構成される駆動装置 17に駆動されて昇降する。撮 影装置本体部 2は、駆動装置 17による支持基台 3の昇降により昇降可能となってお り、また、駆動装置 17により前記支軸 4を支点として回動可能となっている。 The breast image capturing apparatus 1 according to the present embodiment is a radiographic image capturing apparatus that performs phase contrast imaging. Hereinafter, the configuration of the breast imaging apparatus 1 will be described with reference to the drawings. FIGS. 1 and 2 show a configuration example of the mammography apparatus 1. FIG. 1 is a diagram illustrating an example of an external configuration of the breast imaging apparatus 1, and FIG. 2 is a diagram schematically illustrating an internal configuration of the imaging apparatus main unit 2 of the breast imaging apparatus 1 illustrated in FIG. . In FIG. 2, the radiation dose detection unit 13, the operation device 14, the power supply unit 15, the drive device 17 and the drive device 19 are connected to the control device 16 (shown in FIG. 3) of the main body 9! Power Not shown here! / As shown in FIG. 1, in the breast imaging apparatus 1, a support base 3 is provided on a main body 9 so as to be movable up and down, and a support shaft 4 provided on the support base 3 is provided on the support base 3. The imaging device main body 2 is supported via the. The support base 3 is moved up and down by being driven by a drive device 17 constituted by a motor or the like. The imaging device main body 2 can be raised and lowered by raising and lowering the support base 3 by the drive device 17, and can be rotated by the drive device 17 about the support shaft 4.
[0022] 撮影装置本体部 2の上部には放射線を放射するための放射線源 6が設けられ、こ の放射線源 6は、支軸 4及び支持基台 3を介して本体部 9と接続されている電源部 15 に接続されている。放射線源 6は、この電源部 15によって管電圧及び管電流を印加 されるようになつている。放射線源 6の放射線放射口には、放射線照射野を調節する 照射野調整装置としての絞り装置 7の絞りロカ 開閉自在に設けられている。  [0022] A radiation source 6 for radiating radiation is provided on the upper part of the imaging apparatus main body 2. The radiation source 6 is connected to the main body 9 via the support shaft 4 and the support base 3. Is connected to the power supply 15 The radiation source 6 is applied with a tube voltage and a tube current by the power supply unit 15. At the radiation outlet of the radiation source 6, an aperture locus of an aperture device 7 as an irradiation field adjustment device for adjusting the radiation field is provided so as to be freely opened and closed.
[0023] 放射線源 6としては、回転陽極 X線管とすることが好ましい。この回転陽極 X線管に おいては、陰極から放射される電子線が陽極に衝突することで X線が発生する。これ は自然光のようにインコヒーレント(非干渉性)であり、また平行光 X線でもなく発散光 である。電子線が陽極の固定した場所に当り続けると、熱の発生で陽極が傷むので、 通常用いられる X線管では陽極を回転して陽極の寿命の低下を防レ、で!/、る。電子線 を陽極の一定の大きさの平面に衝突させ、発生した X線はその一定の大きさ陽極の 平面から被写体 Hに向けて放射される。この平面を焦点(フォーカス)と呼ぶ。焦点サ ィズ D m)は、焦点が正方形の場合、その一辺の長さを、焦点が長方形や多角形 の場合、その短辺の長さを、焦点が円形の場合、その直径をさす。  [0023] The radiation source 6 is preferably a rotating anode X-ray tube. In this rotating anode X-ray tube, X-rays are generated when an electron beam emitted from the cathode collides with the anode. This is incoherent (incoherent) like natural light and is not divergent X-ray but divergent light. If the electron beam continues to hit the place where the anode is fixed, the anode will be damaged by the generation of heat. Therefore, in a normal X-ray tube, the anode is rotated to prevent a decrease in the life of the anode. The electron beam is made to collide with a certain size plane of the anode, and the generated X-rays are emitted toward the subject H from the plane of the certain size anode. This plane is called a focus. The focus size D m) is the length of one side when the focus is square, the length of the short side when the focus is rectangular or polygonal, and the diameter when the focus is circular.
[0024] 焦点サイズ Dが大きくなるほど照射される放射線量が多くなる。人体を透過するに は実用上一定以上の放射線量が必要であるため、乳房画像撮影装置 1では、人体 を撮影するのに必要な放射線量を照射可能な、焦点サイズ Dが D≥ 30 m)の放 射線源 6であることが好まし!/、。 [0024] The larger the focal spot size D, the more radiation is irradiated. Since a radiation dose of a certain level or more is practically required to penetrate the human body, the mammography apparatus 1 can irradiate the radiation dose necessary for photographing the human body, and the focal spot size D is D≥ 30 m) Release of It is preferable to have a ray source 6!
[0025] 撮影装置本体部 2の下部には、被写体 Hを透過した放射線を検出する放射線画像 検出器 (放射線検出器)として例えば輝尽性蛍光体シートを収納した力セッテを保持 する検出器保持部 12が被写体台 10の下方であって放射線源 6から略垂直に延在 する位置に、放射線源 6に対向するように取り付けられている。検出器保持部 12に保 持された放射線画像検出器の最上面は、検出器保持部 12の最上面と一致する。放 射線源 6と検出器保持部 12は、図 2に示すように保持部材 8に取り付けられており、こ の保持部材 8により放射線源 6と検出器保持部 12との距離 L (後述する R1 +R2)が 一定距離に維持されている。この保持部材 8は、モータ等により構成される駆動装置 19の駆動により昇降可能となっており、駆動装置 19による保持部材 8の昇降により放 射線源 6及び検出器保持部 12が一定距離を保ちつつ昇降するようになっている。こ の放射線源 6と検出器保持部 12との距離 Lは、鋭意研究の結果、撮影画像の出力 時の視認性の点から L≥ 0. 95 (m)とすることが好まし!/、ことがわかった(図 6参照)。  [0025] At the lower part of the imaging apparatus main body 2, a detector holding a force set containing a stimulable phosphor sheet, for example, as a radiation image detector (radiation detector) for detecting radiation transmitted through the subject H The part 12 is attached to a position below the subject table 10 and extending substantially perpendicularly from the radiation source 6 so as to face the radiation source 6. The uppermost surface of the radiation image detector held by the detector holding unit 12 coincides with the uppermost surface of the detector holding unit 12. As shown in FIG. 2, the radiation source 6 and the detector holding unit 12 are attached to the holding member 8, and the holding member 8 allows the distance L between the radiation source 6 and the detector holding unit 12 (R1 to be described later) + R2) is maintained at a certain distance. The holding member 8 can be moved up and down by driving a driving device 19 composed of a motor or the like. The raising and lowering of the holding member 8 by the driving device 19 keeps the radiation source 6 and the detector holding unit 12 at a certain distance. While going up and down. The distance L between the radiation source 6 and the detector holding unit 12 is preferably set to L≥ 0.95 (m) from the viewpoint of visibility when outputting a photographed image as a result of intensive research! (See Figure 6).
[0026] 放射線画像検出器としては、上述の輝尽性蛍光体シートを収納した力セッテの他、 例えば、スクリーン(増感紙)/フィルム、 FPD (flat panel detector)等を用いるこ ととしてあよい。  [0026] As a radiation image detector, for example, a screen (intensifying screen) / film, an FPD (flat panel detector), or the like may be used in addition to the above-described force set containing the photostimulable phosphor sheet. Good.
[0027] 撮影装置本体部 2における放射線源 6の下方及び検出器保持部 12の上方であつ て放射線源 6から略垂直に延在する位置には、被写体 Hを下力も保持する被写体台 10及び被写体 Hを上部から圧迫して固定するための圧迫板 11が配設されている。 被写体台 10は、図 2に示すように、撮影装置本体部 2のホルダー 5に取り付けられて おり、駆動装置 17による撮影装置本体部 2の昇降に応じて昇降する。これにより、被 写体 Hの位置 (乳房位置)に応じて被写体台 10の高さの調整が可能となっている。 圧迫板 11は、撮影装置本体部 2内に設けられた図示しない支持軸に沿って昇降可 能に構成されている。  [0027] At the position below the radiation source 6 and above the detector holding unit 12 in the imaging apparatus main body 2 and extending substantially perpendicularly from the radiation source 6, the subject table 10 holding the subject H also with a lower force and A compression plate 11 is provided for pressing and fixing the subject H from above. As shown in FIG. 2, the subject table 10 is attached to the holder 5 of the photographing apparatus main body 2 and moves up and down in accordance with the raising and lowering of the photographing apparatus main body 2 by the driving device 17. Thus, the height of the subject table 10 can be adjusted according to the position of the subject H (breast position). The compression plate 11 is configured to be movable up and down along a support shaft (not shown) provided in the photographing apparatus main body 2.
[0028] 圧迫板 11の位置は、位置検知部 18 (図 3に図示)により検知され、本体部 9の制御 装置 16に出力される。位置検知部 18としては、赤外線を用いた測光による方式、圧 迫板 11をスライドする支持軸のレールに線抵抗を設けて、その抵抗値測定から位置 判別する方式などが採用できる。 [0029] 検出器保持部 12の被写体台 10に対向する面と反対の面には、照射された放射線 量の検出を行う放射線量検出部 13が設けられている。放射線量検出部 13は、例え ば、半導体等により構成されるセンサである。この放射線量検出部 13により検出され た放射線量は本体部 9の制御装置 16に出力される。 The position of the compression plate 11 is detected by a position detection unit 18 (shown in FIG. 3) and output to the control device 16 of the main body unit 9. As the position detector 18, a method using photometry using infrared rays, a method in which a line resistance is provided on the rail of the support shaft that slides the compression plate 11, and a position is determined from the measured resistance value can be adopted. [0029] A radiation dose detection unit 13 for detecting the radiation dose irradiated is provided on the surface of the detector holding unit 12 opposite to the surface facing the subject table 10. The radiation dose detection unit 13 is, for example, a sensor composed of a semiconductor or the like. The radiation dose detected by the radiation dose detection unit 13 is output to the control device 16 of the main body unit 9.
[0030] 本体部 9は、 CPU (Central Processing Unit)、 ROM (Read Only Memor y) , RAM (Random Access Memory)により構成される制御装置 16を備えてい る。図 3に、乳房画像撮影装置 1の機能構成例を示す。図 3に示すように、制御装置 16には、照射された放射線量を検出する放射線量検出部 13、拡大率 (撮影倍率) や撮影方向等の撮影条件の設定を行うためのキーボードゃタツチパネル、被写体台 10の位置の調整を行うための位置調整スィッチ(上方に調整する上方調整スィッチ、 下方に調整する下方調整スィッチ)等を備える入力装置 14a、及び CRTディスプレイ や液晶ディスプレイ等の表示装置 14bを有する操作装置 14、装置の動力源である電 源部 15、支持基台 3の昇降による撮影装置本体部 2の昇降及び撮影装置本体部 2 の回転を行う駆動装置 17、圧迫板 11の位置を検知する位置検知部 18、及び保持 部材 8の昇降を行う駆動装置 19がバス 20を介して接続されている。制御装置 16の R OMには、乳房画像撮影装置 1各部を制御するための制御プログラムが記憶されて おり、 CPUは、この制御プログラムとの協働により乳房画像撮影装置 1各部の動作を 統括的に制御し、位相コントラスト撮影を行う。  [0030] The main body 9 includes a control device 16 including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). FIG. 3 shows an example of the functional configuration of the breast image capturing apparatus 1. As shown in FIG. 3, the control device 16 includes a radiation dose detection unit 13 for detecting the irradiated radiation dose, a keyboard touch panel for setting imaging conditions such as an enlargement ratio (imaging magnification) and an imaging direction, An input device 14a having a position adjustment switch (upward adjustment switch for adjusting upward, downward adjustment switch for adjusting downward) for adjusting the position of the subject table 10, and a display device 14b such as a CRT display or a liquid crystal display are provided. The operation device 14, the power source 15 that is the power source of the device, the drive device 17 that raises and lowers the imaging device main body 2 by rotating the support base 3 and rotates the imaging device main body 2, and the position of the compression plate 11 A position detection unit 18 for detection and a drive device 19 for raising and lowering the holding member 8 are connected via a bus 20. The ROM of the control device 16 stores a control program for controlling each part of the mammography apparatus 1, and the CPU controls the operation of each part of the mammography apparatus 1 in cooperation with this control program. To control phase contrast.
[0031] ここで、図 4を参照して位相コントラスト撮影の原理について説明する。位相コントラ スト撮影とは、被写体 Hと放射線画像検出器 12aとの間に一定の距離 R2を設けるこ とで、図 4に示すように被写体 Hによる放射線の屈折に起因するエッジ強調(屈折コ ントラスト強調)画像を得るものである。図 4に模式的に描くように、放射線源 6からの 放射線が被写体 Hを通過するときに屈折して被写体 Hの境界内側の放射線密度 Dr が疎になり、さらに被写体 Hの外側は物体を通過しない放射線と重なることから放射 線密度 Drが上昇する。このようにして被写体 Hの境界部分であるエッジが画像として 強調される。これは被写体 Hと空気との放射線に対する屈折率の差から生じる現象 である。これがエッジ強調画像である。  [0031] Here, the principle of phase contrast imaging will be described with reference to FIG. In the phase contrast imaging, a certain distance R2 is provided between the subject H and the radiation image detector 12a, and as shown in FIG. Emphasis) to obtain an image. As schematically shown in Fig. 4, the radiation from the radiation source 6 is refracted when passing through the subject H, and the radiation density Dr inside the boundary of the subject H becomes sparse, and the outside of the subject H passes through the object. Radiation density Dr increases due to overlapping with radiation that does not. In this way, the edge that is the boundary of the subject H is enhanced as an image. This is a phenomenon that arises from the difference in refractive index between subject H and air. This is an edge-enhanced image.
[0032] さらに図 4で原理的に示す空気と被写体との境界でのエッジ強調のみならず、被写 体 H内においても屈折率の異なる部分の境界部分も同様な効果が得られる。本発明 での被写体 Hの境界部分とは放射線に対する屈折率の異なる物質との境界部分と 表現すること力 Sでさる。 [0032] Further, in addition to edge enhancement at the boundary between air and the subject shown in principle in FIG. Even in the body H, the same effect can be obtained at the boundary part of the part having different refractive index. In the present invention, the boundary portion of the subject H is expressed as a boundary portion with a substance having a different refractive index with respect to radiation.
[0033] 医療施設における実用範囲の感度領域及び装置サイズでこのエッジ強調画像を 得るものとして、焦点サイズ D ( μ m)が 30 ( a m)以上であるとき、放射線源 6から被 写体 Hまでの距離 R1が Rl≥ (D— 7) /200 (m)の式を満足する領域であり、かつ 被写体 Hと放射線画像検出器との距離 R2が 0. 15m以上であることが好ましいことが わかって!/、る (特開 2001— 91479号公幸参照)。ここで、 Rl≥ (D— 7) /200 (m) の式において代入する Dは、焦点サイズを [I mを単位として表したときの数値であり、 例えば、焦点サイズ D = 30 m)であれば、 Rl≥ (30— 7) /200 = 0. 115 (m)と なる。  [0033] In order to obtain this edge-enhanced image with a sensitivity range and device size within the practical range in a medical facility, when the focus size D (μm) is 30 (am) or more, from the radiation source 6 to the subject H It is found that it is preferable that the distance R1 satisfies the equation Rl≥ (D—7) / 200 (m), and the distance R2 between the subject H and the radiation image detector is 0.15 m or more. Te! /, Ru (see Japanese Patent Publication No. 2001-91479). Here, D substituted in the equation Rl≥ (D—7) / 200 (m) is the numerical value when the focal spot size is expressed in terms of [I m, for example, focal spot size D = 30 m). If so, Rl≥ (30—7) / 200 = 0.115 (m).
[0034] Rl≥ (D— 7) /200 (m)の式で示す距離より R1が小さいときにはエッジ強調画像 を得られること力 S難しく、もしくは認識しに《なる。また、 R1は大きくなるにつれ、放射 線の強度が弱くなり、さらに広い空間を要するようになる。  [0034] When R1 is smaller than the distance represented by the equation Rl≥ (D-7) / 200 (m), the ability to obtain an edge-enhanced image is difficult or difficult to recognize. Also, as R1 becomes larger, the intensity of the radiation becomes weaker and more space is required.
[0035] 被写体 Hから放射線画像検出器までの距離 R2を 0. 15 (m)以上離す構成とするこ とにより放射線画像の鮮鋭性を劣化させる被写体 Hからの散乱線の除去を行うことや 、さらにエッジ強調を認識しやすくしている。  [0035] By removing the distance R2 from the subject H to the radiation image detector by 0.15 (m) or more, the scattered radiation from the subject H that deteriorates the sharpness of the radiation image can be removed. In addition, edge enhancement is easily recognized.
[0036] R2を 0. 15m以上とすれば、拡大率 = (Rl +R2) /R1の拡大撮影となる。ここで R 1については、その起点は放射線源 6の焦点の位置であり、通常の市販の放射線源 6にはその場所が明示されている。また終点は被写体位置を固定する被写体台 10に より固定された被写体 Hの中心線であり、ここでは被写体台 10と圧迫板 11から等距 離にある位置を被写体 Hの中心線としている。 R2については起点は被写体 Hの中 心線であり、終点は放射線画像検出器の放射線を受ける平面の最上面、即ち、検出 器保持部 12の最上面である。  [0036] When R2 is 0.15 m or more, enlargement ratio = (Rl + R2) / R1. Here, with respect to R 1, the starting point is the position of the focal point of the radiation source 6, and the location of the radiation source 6 is clearly shown in the normal commercial radiation source 6. The end point is the center line of the subject H fixed by the subject table 10 that fixes the subject position. Here, the center line of the subject H is a position equidistant from the subject table 10 and the compression plate 11. For R2, the starting point is the center line of the subject H, and the end point is the uppermost surface of the plane that receives the radiation of the radiation image detector, that is, the uppermost surface of the detector holding unit 12.
[0037] 乳房画像撮影装置 1は、上記位相コントラストとしての効果 (エッジ強調効果)を発 揮しうるよう、焦点サイズ D≥ 30 ( m)となっており、撮影時においては、制御装置 1 6により、放射線源 6から被写体 Hまでの距離 Rl≥ (D— 7) /200 (m)、被写体 Hと 放射線画像検出器との距離 R2≥0. 15 (m)を満たす範囲で、距離 L ( = R1 +R2) が一定となるように、被写体台 10に対する放射線源 6及び検出器保持部 12の位置 の調節が行われる。 [0037] The breast image capturing device 1 has a focal size D≥30 (m) so that the effect (edge enhancement effect) as the phase contrast can be exhibited. Therefore, the distance L (in the range satisfying the distance Rl≥ (D-7) / 200 (m) from the radiation source 6 to the subject H and the distance R2≥0.15 (m) between the subject H and the radiation image detector = R1 + R2) The positions of the radiation source 6 and the detector holding unit 12 with respect to the subject table 10 are adjusted so that is constant.
[0038] 即ち、撮影時において、入力装置 14aにより撮影方向を含む撮影条件が設定され ると、制御装置 16は、設定された撮影方向が撮影装置本体部 2の回転を必要とする 撮影方向であるか否かを判断し、回転を必要とする撮影方向である場合、例えば、 乳房を斜位方向力、ら撮影する MLO (Medio— Lateral Oblique)である場合、駆動 装置 17により撮影装置本体部 2全体を所定量回転させる。入力装置 14aの位置調 整スィッチが押下されると、制御装置 16は、これに応じて駆動装置 17を制御して被 写体台 10の位置を調整する。撮影技師等の操作者により圧迫板 11の位置が調整さ れて圧迫板 11により被写体 Hが押圧、固定され、倍率設定手段としての入力装置 14 aにより位相コントラスト撮影における拡大率 (本実施の形態においては、 1、46倍、 1 . 75倍、 2. 63倍のな力、から選択)が設定されると、制御装置 16は、被写体台 10の 移動量及び位置検知部 18からの位置情報に応じて被写体 Hの位置を特定し、被写 体台 10及び圧迫板 11の位置及び設定された拡大率に応じて駆動装置 19を制御し て保持部材 8を昇降させることにより、被写体台 10に対する放射線源 6及び検出器 保持部 12の相対的距離を調節する。このとき、(R1 +R2) /R1が設定された拡大 率となる放射線源 6及び検出器保持部 12の位置を演算し、放射線源 6及び検出器 保持部 12が求められた位置となるように保持部材 8を昇降させる。そして、入力装置 14aにより撮影が指示されると、制御装置 16は、電源部 15により、放射線源 6に管電 圧及び管電流を印加して被写体 Hに対して放射線を照射させ、放射線量検出部 13 力 出力された放射線量が予め設定された放射線量に達すると、電源部 15により放 射線源 6からの放射線の照射を停止させる。  That is, when shooting conditions including a shooting direction are set by the input device 14a at the time of shooting, the control device 16 sets the set shooting direction to a shooting direction that requires the rotation of the shooting device main body 2. If it is an imaging direction that requires rotation, for example, MLO (Medio- Lateral Oblique) for imaging the breast from an oblique direction force, the drive unit 17 uses the imaging device main body. 2 Rotate the entire body by a predetermined amount. When the position adjustment switch of the input device 14a is pressed, the control device 16 controls the drive device 17 accordingly to adjust the position of the object table 10. The operator adjusts the position of the compression plate 11 by an operator such as a photography engineer, and the subject H is pressed and fixed by the compression plate 11, and an enlargement factor in phase contrast photographing by the input device 14a as a magnification setting means (this embodiment In this case, the controller 16 selects the movement amount of the subject table 10 and the position information from the position detection unit 18. The position of the subject H is specified according to the position of the subject table 10 and the holding device 8 is moved up and down by controlling the driving device 19 according to the positions of the subject table 10 and the compression plate 11 and the set enlargement ratio. Adjust the relative distance between the radiation source 6 and the detector holder 12 relative to. At this time, the positions of the radiation source 6 and the detector holding unit 12 having an enlargement ratio set to (R1 + R2) / R1 are calculated so that the radiation source 6 and the detector holding unit 12 are obtained. The holding member 8 is moved up and down. When imaging is instructed by the input device 14a, the control device 16 applies a tube voltage and a tube current to the radiation source 6 from the power supply unit 15 to irradiate the subject H with radiation, and detects the radiation dose. Unit 13 Force When the output radiation dose reaches the preset radiation dose, the power source unit 15 stops the radiation irradiation from the radiation source 6.
[0039] なお、被写体台 10に対する放射線源 6及び検出器保持部 12の相対的距離の調 節は、 R1≥(D— 7) /200 (m)、R2≥0. 15 (m)を満たす範囲で行う。制御装置 16 は、入力された拡大率ではこの範囲を満たさなくなる場合、表示装置 14bにエラーメ ッセージを表示させる。  [0039] The adjustment of the relative distance between the radiation source 6 and the detector holder 12 with respect to the subject table 10 satisfies R1≥ (D-7) / 200 (m) and R2≥0.15 (m). Do in range. When the input enlargement ratio does not satisfy this range, the control device 16 displays an error message on the display device 14b.
[0040] このように、制御装置 16が駆動装置 19を制御して保持部材 8を昇降させることで、 被写体台 10に対する放射線源 6と検出器保持部 12の相対距離を調節する調節手 段が実現される。 As described above, the control device 16 controls the driving device 19 to raise and lower the holding member 8, thereby adjusting the relative distance between the radiation source 6 and the detector holding unit 12 with respect to the subject table 10. A stage is realized.
[0041] 図 5に、本実施の形態における乳房画像撮影装置 1において乳房画像を撮影する 際の放射線源 6、被写体 H、検出器保持部 12 (図中の数字は拡大率を示す)、位相 コントラスト撮影を行う撮影室における床面及び天井の位置関係を模式的に示す。 図 5に示すように、本実施の形態においては拡大率が変わっても R1 +R2の距離 L は一定であるので、従来のように、拡大率が大きくなるほど床面と検出器保持部 12と の間の距離が必要となり、被写体位置が低いとその距離が確保できずに撮影可能な 拡大率が制限されてしまうといったことがなくなる。その結果、位相コントラスト撮影が 可能となる被写体位置の範囲を拡大し、より多くの患者に適用することが可能となる。 (乳房画像撮影装置 1の視認性の評価)  FIG. 5 shows a radiation source 6, a subject H, a detector holding unit 12 (numbers in the figure indicate an enlargement ratio), and a phase when a breast image is captured by the breast image capturing apparatus 1 according to the present embodiment. The positional relationship of the floor surface and the ceiling in the imaging room which performs contrast imaging is schematically shown. As shown in FIG. 5, in the present embodiment, the distance L of R1 + R2 is constant even if the enlargement ratio changes, so that as the enlargement ratio increases, the floor surface and the detector holding unit 12 Therefore, if the subject position is low, it is not possible to secure the distance and the enlargement ratio that can be taken is not limited. As a result, the range of subject positions where phase contrast imaging is possible can be expanded and applied to more patients. (Evaluation of visibility of breast imaging device 1)
以下、放射線源 6と検出器保持部 12との距離 Lと撮影画像の視認性評価結果につ いて説明する。  Hereinafter, the distance L between the radiation source 6 and the detector holder 12 and the visibility evaluation result of the captured image will be described.
[0042] 図 6に、放射線源 6と検出器保持部 12との距離 Lである R1 +R2を 1555、 1140、 9 50、 750 (mm)とし、それぞれの Rl +R2に対して拡大串を 1. 75倍、 1. 46倍にし て乳房撮影を行ったときの各撮影画像の視認性の評価結果を示す。評価は目視に より 4段階評価により行い、◎:きわめて良い、〇:良い、△:普通、まあまあ (診断に許 容される程度と判断できる)、 X:悪い、とした。評価は、図 6に示す各項目別に行つ た。  [0042] Fig. 6 shows that R1 + R2, which is the distance L between the radiation source 6 and the detector holder 12, is 1555, 1140, 950, 750 (mm), and an enlarged skewer is provided for each Rl + R2. 1. Shows the visibility evaluation results of each captured image when mammography was performed at a magnification of 75 and 1.46. The evaluation was performed by visual evaluation based on a four-level evaluation. ◎: Very good, ○: Good, △: Normal, so-so (determined to be acceptable for diagnosis), X: Bad. The evaluation was performed for each item shown in Figure 6.
[0043] 評価にあたっては、乳房画像撮影装置 1はコニカミノルタエムジー株式会社で試作 したものを用い、放射線画像検出器は同社製レジウスプレート RP— 5PM及びレジゥ スカセッテ RC— 110Mを用いた。焦点サイズ Dは、 D= 100 m)とした。乳房撮影 後の放射線画像検出器は、コニカミノルタ株式会社製 regius model 190で 43. 7 5 ( 111)の読取画素ピッチで読み取り、読み取った画像は drypro model 793で 2 5 m)の書き込みピッチで出力した。このとき、読み取り画像の各画素と出力画像 の各画素を 1: 1に対応させて補間処理を行わずに出力し、拡大率 1. 75倍の画像は ライフサイズ (実寸大)で、拡大率 1. 46倍の画像は実寸の 0. 83倍で出力した。また 、拡大率 1. 46倍の撮影時に、 1. 25倍の拡大補間処理を行い、拡大補間された画 像を用いて書き込みピッチ 25 ( a m)で出力を行ったが、図 6に示す結果と視認性の 差異は見られなかった。 [0043] In the evaluation, the mammography apparatus 1 used was a prototype manufactured by Konica Minolta MG Co., Ltd., and the radiological image detector used was the company's Regius Plate RP-5PM and Regius Cascette RC-110M. The focal spot size D was D = 100 m). The radiographic image detector after mammography is read with a regius model 190 manufactured by Konica Minolta Co., Ltd. at a reading pixel pitch of 43.75 (111), and the read image is output at a writing pitch of 25 m) with a drypro model 793. did. At this time, each pixel of the scanned image and each pixel of the output image are output without any interpolation processing corresponding to 1: 1, and an image with a magnification of 1.75 times has a life size (actual size) and a magnification of 1. A 46x image was output at 0.83x actual size. In addition, when shooting at an enlargement ratio of 1.46 times, 1.25x enlargement interpolation processing was performed and output was performed at a writing pitch of 25 (am) using the enlarged interpolation image. And visibility There was no difference.
[0044] ここで、「出力」項目に寄与する因子は R1の距離である。一般的に、 R1が大きぐ 被写体 Hに到達する単位時間当たりの放射線量が少ないと十分な信号値 (SN比) が得られず、従いフィルム出力時の充分な濃度も得られない。ここで、「出力」項目内 の括弧内の数値は、 Rl +R2 = 1140、拡大率 1. 75倍としたときの平均乳腺線量( AGD)を 1としたときの各平均乳腺線量を示す値である。  [0044] Here, the factor contributing to the "output" item is the distance of R1. In general, if the amount of radiation per unit time that reaches the subject H where R1 is large is small, a sufficient signal value (SN ratio) cannot be obtained, and therefore a sufficient density at the time of film output cannot be obtained. Here, the numerical value in parentheses in the “Output” item is the value indicating each mammary gland dose when the average mammary gland dose (AGD) is 1 when Rl + R2 = 1140, magnification 1.75 times It is.
[0045] 「均一性」項目に寄与する因子は R1の距離である。一般的に、 R1が小さすぎると 放射線画像検出器全面に放射線を照射できないため、ムラが生じ、均一性が低くな  [0045] A factor contributing to the "uniformity" item is the distance of R1. Generally, if R1 is too small, radiation cannot be irradiated on the entire surface of the radiation image detector, resulting in unevenness and low uniformity.
[0046] 「鮮鋭性」「粒状性」に寄与する因子は拡大率であり、一般的に、拡大率が大きいほ ど良好な画像となる。 The factor that contributes to “sharpness” and “graininess” is the enlargement ratio. In general, the larger the enlargement ratio, the better the image.
[0047] 「散乱線含有率」に寄与する因子は R2であり、一般的に、 R2が大きいほど散乱線 が除去され良好な画像となる。  [0047] The factor that contributes to the "scattered radiation content" is R2, and in general, the larger R2, the more the scattered radiation is removed and a better image is obtained.
[0048] 「位相コントラスト効果 (エッジ強調効果)」に寄与する因子は拡大率及び R2であり、 拡大率及び R2をともに大きくするほど位相コントラスト効果が得られ、良好な画像とな [0048] Factors contributing to the “phase contrast effect (edge enhancement effect)” are the enlargement ratio and R2, and the larger the enlargement ratio and R2, the more the phase contrast effect is obtained, and the better the image is.
[0049] 「総合評価」は、画像全体の視認性の評価結果である。 “Comprehensive evaluation” is a result of evaluating the visibility of the entire image.
[0050] 視認性評価の結果、 R1 +R2≥950 (mm)の場合、位相コントラスト効果及び総合 評価の双方が診断に許容される評価が得られた。即ち、 Rl +R2≥950 (mm)とす れば、 Rl +R2を固定として位相コントラスト撮影を行う放射線画像撮影装置にぉレ、 て診断に許容される画像を得ることが確認された。更に、 1140≥R1 +R2≥950 (m m)とすれば、診断において良好な画像を得ることができることが確認された。  [0050] As a result of the visibility evaluation, in the case of R1 + R2 ≥ 950 (mm), both the phase contrast effect and the overall evaluation were evaluated to be acceptable for diagnosis. That is, when Rl + R2≥950 (mm), it was confirmed that an image acceptable for diagnosis could be obtained by comparing with a radiographic imaging device that performs phase contrast imaging with Rl + R2 fixed. Furthermore, it was confirmed that if 1140≥R1 + R2≥950 (mm), good images can be obtained in diagnosis.
[0051] なお、上記評価結果では、焦点サイズ D = 100 ( 11 m)の例を示したが、 Dは 30 ( μ m)以上であれば 100 ( m)以外でも効果を有する。  [0051] The above evaluation results show an example in which the focal spot size D = 100 (11 m). However, if D is 30 (µm) or more, it is effective even if it is not 100 (m).
[0052] 上述したように、本実施の形態によれば、放射線源の焦点サイズ D≥ 30 ( m)、放 射線源から被写体までの距離 Rl≥ (D— 7) /200 (m)、放射線源力も検出器保持 手段までの距離 L (m) =0. 95 (m)〜; ί · 14 (m)とすることで、撮影された画像の位 相コントラスト効果を保証することができる放射線画像撮影装置を提供することができ [0053] また、本実施の形態によれば、被写体力 検出器保持手段までの距離 R2≥0. 15 (m)とすることで、放射線画像の鮮鋭性を劣化させる被写体 Hからの散乱線の除去 やエッジ強調を認識しやすくできるので、撮影された画像の位相コントラスト効果を保 証することができる放射線画像撮影装置を提供することができる。 [0052] As described above, according to the present embodiment, the focal point size D≥ 30 (m) of the radiation source, the distance Rl≥ (D-7) / 200 (m) from the radiation source to the subject, the radiation Radiation image that can guarantee the phase contrast effect of the captured image by setting the source force to the distance L (m) = 0.95 (m) to ί · 14 (m). Can provide shooting equipment [0053] Also, according to the present embodiment, by setting the distance R2≥0.15 (m) to the subject force detector holding means, the scattered radiation from the subject H that deteriorates the sharpness of the radiographic image is obtained. Since removal and edge enhancement can be easily recognized, it is possible to provide a radiographic image capturing apparatus that can guarantee the phase contrast effect of a captured image.
[0054] さらに、本実施の形態によれば、放射線源から検出器保持手段までの距離 L ( = R 1 +R2)を一定とし、被写体の位置を相対的に可変として撮影倍率( = L/R1)を変 更することで、撮影を容易にし、撮影倍率によって画質が変化することを防止すること ができる放射線画像撮影装置を提供することができる。  Furthermore, according to the present embodiment, the distance L from the radiation source to the detector holding means is constant (= R 1 + R2), the position of the subject is relatively variable, and the imaging magnification (= L / By changing R1), it is possible to provide a radiographic imaging device that can facilitate imaging and prevent the image quality from changing depending on the imaging magnification.
(照射放射線量の制御)  (Control of radiation dose)
図 6に示す視認性の評価を行うにあたっては、放射線照射の停止条件とする放射 線量を全て同じにして撮影を行った力 乳房画像撮影装置 1のように、放射線源から 検出器保持手段までの距離 L ( = R1 +R2)を一定にする放射線画像撮影装置にお いては、拡大率が変化すると R1が変化するため、同じ放射線量を照射した場合、拡 大率の変化によって被写体 Hに到達する放射線量が変化し、その結果、平均乳腺 線量 (AGD)や被写体 Hの被爆量が変化する。ほとんどの乳癌は乳腺組織力も発生 するため、乳腺組織に最適な放射線量を照射する必要があり、平均乳腺線量が少な くなると、フィルム画像上で乳腺組織の濃度が十分に得られず、診断性能に影響す る。また、放射線量が多すぎると、被写体 Hの被爆量が増えるため、好ましくない。  In the evaluation of visibility shown in Fig. 6, the force that was taken with all the radiation doses used as the radiation irradiation stop condition being the same, like the mammography unit 1, from the radiation source to the detector holding means In a radiographic imaging device that keeps the distance L (= R1 + R2) constant, R1 changes when the enlargement ratio changes.Therefore, when the same radiation dose is irradiated, it reaches the subject H due to the change in the enlargement ratio. As a result, the average mammary dose (AGD) and the exposure dose to subject H change. Since most breast cancers also produce mammary tissue power, it is necessary to irradiate the mammary tissue with an optimal dose of radiation, and if the average mammary dose decreases, the density of the mammary tissue cannot be obtained on the film image, and diagnostic performance Affects. Also, if the radiation dose is too high, the exposure amount of the subject H increases, which is not preferable.
[0055] 図 7 (a)に、 Rl +R2 = 1140とした場合の、各拡大率(1. 75倍、 1. 46倍、 2. 63 倍)における R1、R2の関係を模式的に示す。また、図 7 (b)に、 Rl +R2 = 1140とし 、放射線照射の停止条件とする放射線量を全て同じにして各拡大率で撮影したとき の Rl、 R2、平均乳腺線量及び画質の視認性の評価結果を示す。なお、図 7 (b)に おいて視認性評価対象となった画像の撮影時、出力時における各種条件は、図 6の ときと同様である。  [0055] Fig. 7 (a) schematically shows the relationship between R1 and R2 at each enlargement ratio (1.75 times, 1.46 times, 2.63 times) when Rl + R2 = 1140. . Figure 7 (b) shows the visibility of Rl, R2, average mammary gland dose, and image quality when Rl + R2 = 1140 and all the radiation doses used as radiation stop conditions are taken at the same magnification. The evaluation result of is shown. Note that the various conditions at the time of shooting and outputting the image that was the object of visibility evaluation in FIG. 7 (b) are the same as those in FIG.
[0056] 平均乳腺線量は、図 6、図 7 (b)に示すように、放射線源 6—被写体 H間の距離 R1 の 2乗に略反比例する。そのため、拡大率が 1. 75倍のときと同じ放射線照射停止条 件で拡大率 1. 46倍、 2. 63倍の撮影を行うと、平均乳腺線量がそれぞれ 0. 7倍、 2 . 3倍となる。即ち、拡大率が 1. 75倍のときと同じ放射線照射停止条件で拡大率 1. 46倍で撮影を行ったときには十分な平均乳腺線量が得られず、画質が劣化する。 [0056] The average mammary gland dose is substantially inversely proportional to the square of the distance R1 between the radiation source 6 and the subject H as shown in FIGS. 6 and 7 (b). Therefore, if the magnification was 1.46 times and 2.63 times under the same radiation irradiation stop conditions as when the magnification rate was 1.75 times, the average mammary gland dose was 0.7 times and 2 times, respectively. Tripled. In other words, when taking an image at an enlargement ratio of 1.46 times under the same radiation irradiation stop conditions as when the enlargement ratio is 1.75 times, a sufficient average mammary dose cannot be obtained, and the image quality deteriorates.
[0057] そこで、制御装置 16にお!/、ては、拡大率に応じて、照射する放射線を可変制御す る。以下、放射線の照射制御について、 Rl +R2 = 1140とした場合を例にとり説明 する。 [0057] Therefore, the control device 16 variably controls the radiation to be irradiated according to the enlargement ratio. In the following, radiation control will be described by taking as an example the case where Rl + R2 = 1140.
[0058] 上述したように、平均乳腺線量は R1の 2乗に略反比例することから、拡大率 1. 75 倍のときに放射線照射停止条件とする放射線量 (又は、照射時間)を VOとすると、拡 大率 1. 46倍のときの放射線量 VIは、  [0058] As described above, since the average mammary gland dose is approximately inversely proportional to the square of R1, if VO is the radiation dose (or irradiation time) that is the radiation stop condition when the magnification is 1.75 times The radiation dose VI when the magnification factor is 1.46 is
Vl =VO X (780/650) ^2 = 1. 44 XVOとなるように制卸すれば、 1. 75倍で撮 影したときと同等の平均乳腺線量が得られる。拡大率 2. 63倍のときの放射線量 V2 は、  Vl = VO X (780/650) ^ 2 = 1. 44 If XVO is controlled, an average mammary gland dose equivalent to that obtained at 1.75 times is obtained. Radiation dose V2 when magnification is 2.63 times
V2=V0 X (430/650) ^2 = 0. 44 XV0となるように制卸すれば、 1. 75倍で撮 影したときと同等の平均乳腺線量が得られる。  If the control is done so that V2 = V0 X (430/650) ^ 2 = 0.44 XV0, the average mammary gland dose equivalent to that obtained at 1.75 times is obtained.
[0059] そこで、制御装置 16は、図 8に示す照射放射線量制御処理を行って、照射する放 射線量の制御を行う。当該照射放射線量制御処理は、制御装置 16の CPUと ROM に記憶されているプログラムとの協働によるソフトウェア処理により実現される処理で あり、当該処理の実行により制御手段が実現される。なお、当該処理の開始時は、各 種設定や調整が終了し撮影待機状態となったときであり、すでに拡大率をはじめとす る入力装置 14aからの各種設定、及び被写体台 10、圧迫板 11、放射線源 6、検出 器保持部 12の位置等の調整は終了している。  Therefore, the control device 16 performs the irradiation radiation dose control process shown in FIG. 8, and controls the irradiation dose to be irradiated. The irradiation radiation dose control process is a process realized by a software process in cooperation with the CPU of the control device 16 and a program stored in the ROM, and a control unit is realized by executing the process. Note that the start of this processing is when various settings and adjustments have been completed and the camera is in a shooting standby state. Various settings from the input device 14a, including the enlargement ratio, subject table 10, compression plate, etc. 11. Adjustment of the position of the radiation source 6 and detector holder 12 has been completed.
[0060] 図 8において、入力装置 14aから撮影が指示されると (ステップ S I ; YES)、電源部  [0060] In FIG. 8, when an instruction for photographing is given from the input device 14a (step S I; YES), the power supply unit
15により放射線源 6に管電圧及び管電流が印加され、放射線の照射が開始される( ステップ S2)。次いで、設定されている拡大率が判断され、設定されている 1. 75倍 であると判断されると(ステップ S3; YES)、放射線量検出部 13からの出力値が V0に 到達するまで放射線照射を継続し、放射線量検出部 13からの出力値力 SV0以上に 到達したと判断されると (ステップ S4; YES)、放射線源 6からの放射線照射が停止さ れ (ステップ S8)、本処理は終了する。  The tube voltage and tube current are applied to the radiation source 6 by 15 and radiation irradiation is started (step S2). Next, the set enlargement factor is determined, and if it is determined that it is 1.75 times the set value (step S3; YES), the radiation is output until the output value from the radiation dose detector 13 reaches V0. If irradiation is continued and it is determined that the output value SV0 from the radiation dose detector 13 has reached or exceeded (step S4; YES), radiation irradiation from the radiation source 6 is stopped (step S8), and this process Ends.
[0061] ステップ S3において、設定されている拡大率が 1. 75倍ではないと判断されると(ス テツプ S3 ; NO)、設定されている拡大率が 2. 63倍であるか否かが判断され、 2. 63 倍であると判断されると(ステップ S5; YES)、放射線量検出部 13からの出力値が 0. 44 XV0に到達するまで放射線照射を継続し、放射線量検出部 13からの出力値が 0 . 44 XV0以上に到達したと判断されると(ステップ S4 ; YES)、放射線源 6からの放 射線照射が停止され (ステップ S8)、本処理は終了する。 [0061] If it is determined in step S3 that the set enlargement ratio is not 1.75 times (step S3). (Step S3; NO), it is determined whether or not the set magnification is 2.63 times. 2. If it is determined that it is 63 times (Step S5; YES), the radiation dose detection unit 13 Irradiation is continued until the output value of 0.44 XV0 reaches 0.44 XV0, and if it is determined that the output value from the radiation dose detector 13 has reached 0.44 XV0 or more (step S4; YES), the radiation source Radiation from 6 is stopped (step S8), and this process ends.
[0062] 一方、ステップ S5において、設定されている拡大率が 2. 63倍ではないと判断され ると(ステップ S5 ; NO)、放射線量検出部 13からの出力値が 1. 44 XV0に到達する まで放射線照射を継続し、放射線量検出部 13からの出力値が 1. 44 XV0以上に到 達したと判断されると (ステップ S7; YES)、放射線源 6からの放射線照射が停止され (ステップ S 8)、本処理は終了する。  [0062] On the other hand, if it is determined in step S5 that the set enlargement ratio is not 2.63 times (step S5; NO), the output value from the radiation dose detector 13 reaches 1.44 XV0. Until it is determined that the output value from the radiation dose detector 13 has reached 1.44 XV0 or higher (step S7; YES), the radiation from the radiation source 6 is stopped ( Step S8), this process ends.
[0063] なお、図 8においては、 Rl +R2 = 1140とした場合を例にとり説明した力 R1 +R 2を他のものとしても、 R1の距離に応じて放射線照射停止条件を制御することができ る。即ち、基準となる拡大率 X0のときに最適な画質となる放射線照射停止条件 (放 射線量)を V0とした場合、他の拡大率 Xnの放射線照射停止条件とする放射線量 Vn が、  [0063] In FIG. 8, even when the force R1 + R2 described with reference to the case of Rl + R2 = 1140 is used as another example, the radiation irradiation stop condition can be controlled according to the distance of R1. it can. In other words, when the radiation irradiation stop condition (radiation dose) that gives the optimum image quality at the reference magnification rate X0 is V0, the radiation dose Vn that is the radiation irradiation stop condition for other magnification factors Xn is
Vn=V0 X { (拡大率 Xnのときの R1) / (拡大率 X0のときの R1) Γ2となるように放 射線源 6による放射線照射を制御することで、拡大率によって画質がばらつ!/、たり、 劣化が生じたりすることを防止することが可能となる。  Vn = V0 X {(R1 when the magnification is Xn) / (R1 when the magnification is X0) By controlling the irradiation of the radiation source 6 so that Γ2, the image quality varies depending on the magnification! It is possible to prevent / or deterioration.
[0064] また、拡大率 2. 63倍で得られた画像データを 1/1. 75に縮小し、 1. 5倍( = 2. 6 3/1. 75)の拡大スポット撮影として使用する場合は、被写体のごく一部の領域にし か放射線が照射されないため、放射線照射停止条件を拡大率 1. 75と同様としても よい。 [0064] In addition, when the image data obtained at an enlargement ratio of 2.63 is reduced to 1 / 1.75 and used as a 1.5x (= 2.6 3 / 1.75) enlarged spot shooting Because only a very small area of the subject is irradiated with radiation, the radiation irradiation stop condition may be the same as the magnification factor of 1.75.
[0065] また、上記照射放射線量制御処理にお!/、ては、拡大率に応じて放射線源 6から照 射する放射線量を可変制御することとした力 Rl +R2の距離が決まっている場合( 一定の場合)、拡大率と R1の距離の関係は 1: 1 (比例関係)となるので、 R1の距離 により放射線量を可変制御する構成としてもよい。  [0065] Further, in the irradiation radiation dose control process! /, The distance of the force Rl + R2 determined to variably control the radiation dose irradiated from the radiation source 6 according to the magnification rate is determined. In this case (constant), the relationship between the magnification and the distance of R1 is 1: 1 (proportional relationship), so the radiation dose may be variably controlled by the distance of R1.
[0066] 上述したように、本実施の形態によれば、撮影倍率が変更されても、被写体 Hに到 達する放射線量が一定となるよう放射線源からの照射量を制御するので、撮影倍率 によって画質が変化することを防止することができる放射線画像撮影装置を提供する こと力 Sでさる。 [0066] As described above, according to the present embodiment, the amount of radiation from the radiation source is controlled so that the amount of radiation reaching the subject H is constant even when the imaging magnification is changed. It is possible to provide a radiographic imaging device that can prevent the image quality from changing due to the power S.
[0067] また、本実施の形態によれば、撮影倍率が小さ!/、ほど放射線源からの照射量を増 カロさせるので、撮影倍率によって画質が変化することを防止することができる放射線 画像撮影装置を提供することができる。  [0067] Also, according to the present embodiment, since the imaging magnification is smaller! /, The amount of irradiation from the radiation source is increased, so that radiographic imaging that can prevent the image quality from changing depending on the imaging magnification can be prevented. An apparatus can be provided.
[0068] 以上に述べたように、本発明によれば、倍率設定手段により設定された撮影倍率に 応じて、放射線源から照射される放射線量を可変制御することにより、撮影倍率によ つて画質が変化することを防止できる放射線画像撮影装置を提供することができる。  [0068] As described above, according to the present invention, the image quality can be adjusted according to the imaging magnification by variably controlling the radiation dose emitted from the radiation source in accordance with the imaging magnification set by the magnification setting means. It is possible to provide a radiographic image capturing apparatus that can prevent the change of the temperature.
[0069] 以上、本実施の形態における乳房画像撮影装置 1について説明してきた力 上記 実施の形態における記述内容は、本発明に係る乳房画像撮影装置 1の好適な一例 であり、これに限定されるものではない。また、乳房画像撮影装置 1の細部構成及び 細部動作に関しても、本発明の趣旨を逸脱することのない範囲で適宜変更可能であ  [0069] The power described above for the mammography apparatus 1 in the present embodiment has been described above. The description in the embodiment is a preferred example of the mammography apparatus 1 according to the present invention, and is not limited thereto. It is not a thing. Further, the detailed configuration and detailed operation of the mammography apparatus 1 can be appropriately changed without departing from the spirit of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 被写体に放射線を照射する放射線源と、 [1] A radiation source that irradiates the subject with radiation,
被写体を透過した前記放射線源からの放射線を検出する放射線画像検出器を保持 する検出器保持手段と、  Detector holding means for holding a radiation image detector for detecting radiation from the radiation source transmitted through the subject;
前記放射線源と前記検出器保持手段との間に配置され、前記被写体を保持する被 写体台と、  An object table disposed between the radiation source and the detector holding means and holding the subject;
撮影倍率を設定する倍率設定手段と、  Magnification setting means for setting the shooting magnification;
前記設定された撮影倍率に応じて前記被写体台と前記検出器保持手段との相対距 離を調節する調節手段と、  Adjusting means for adjusting a relative distance between the subject table and the detector holding means according to the set photographing magnification;
前記放射線源からの照射量を検出し、前記放射線源を制御する制御手段とを備え た放射線画像撮影装置にお!/、て、  To a radiographic imaging apparatus comprising a control means for detecting an irradiation amount from the radiation source and controlling the radiation source!
前記制御手段は、前記倍率設定手段により設定された撮影倍率に応じて、前記放射 線源から照射される放射線量を可変制御することを特徴とする放射線画像撮影装置 The control means variably controls the radiation dose emitted from the radiation source in accordance with the imaging magnification set by the magnification setting means.
Yes
[2] 前記放射線源の焦点サイズ Dが 30 ( m)以上、  [2] The focal spot size D of the radiation source is 30 (m) or more,
前記放射線源から前記被写体までの距離 R1が Rl≥(D- 7) /200 (m)、  The distance R1 from the radiation source to the subject is Rl≥ (D-7) / 200 (m),
前記放射線源から前記検出器保持手段までの距離 L (m)が 0. 95 (m)〜; 1. 14 (m) であることを特徴とする請求の範囲第 1項に記載の放射線画像撮影装置。  The radiographic imaging according to claim 1, wherein a distance L (m) from the radiation source to the detector holding means is 0.95 (m) to; 1.14 (m). apparatus.
[3] 前記被写体から前記検出器保持手段までの距離 R2が R2≥0. 15 (m)であることを 特徴とする請求の範囲第 1項または第 2項に記載の放射線画像撮影装置。  [3] The radiographic imaging device according to claim 1 or 2, wherein a distance R2 from the subject to the detector holding means is R2≥0.15 (m).
[4] 前記放射線源から前記被写体までの距離 R1、前記被写体から前記検出器保持手 段までの距離 R2、  [4] A distance R1 from the radiation source to the subject, a distance R2 from the subject to the detector holding means,
前記放射線源から前記検出器保持手段までの距離 L ( = R1 +R2) (m)としたときに 、前記距離 Lを一定とし、前記被写体の位置を相対的に可変として撮影倍率( = L/ Rl)を変更することを特徴とする請求の範囲第 1項から第 3項のいずれか 1項に記載 の放射線画像撮影装置。  When the distance L (= R1 + R2) (m) from the radiation source to the detector holding means is set, the distance L is constant, the position of the subject is relatively variable, and the imaging magnification (= L / The radiographic image capturing apparatus according to any one of claims 1 to 3, wherein Rl) is changed.
[5] 前記制御手段は、撮影倍率が変更されても、前記被写体に到達する放射線量が一 定となるよう前記放射線源からの照射量を制御することを特徴とする請求の範囲第 4 項に記載の放射線画像撮影装置。 [5] The range of claim 4 wherein the control means controls the radiation dose from the radiation source so that the radiation dose reaching the subject is constant even when the imaging magnification is changed. The radiographic imaging device according to item.
[6] 前記制御手段は、撮影倍率が小さレ、ほど、前記放射線源からの照射量を増加させる ことを特徴とする請求の範囲第 4項または第 5項に記載の放射線画像撮影装置。 [6] The radiographic imaging device according to [4] or [5], wherein the control means increases the irradiation amount from the radiation source as the imaging magnification decreases.
PCT/JP2007/066880 2006-09-28 2007-08-30 Radiographic device WO2008038491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-264680 2006-09-28
JP2006264680 2006-09-28

Publications (1)

Publication Number Publication Date
WO2008038491A1 true WO2008038491A1 (en) 2008-04-03

Family

ID=39229930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066880 WO2008038491A1 (en) 2006-09-28 2007-08-30 Radiographic device

Country Status (1)

Country Link
WO (1) WO2008038491A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061456A1 (en) * 2016-09-27 2018-04-05 株式会社島津製作所 Radiation phase difference imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245721A (en) * 1999-02-25 2000-09-12 Konica Corp Radiographic image pickup device
JP2001091479A (en) * 1999-07-16 2001-04-06 Konica Corp X-ray image photographing method and device
JP2001238871A (en) * 2000-02-29 2001-09-04 Konica Corp Equipment for taking x-ray

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245721A (en) * 1999-02-25 2000-09-12 Konica Corp Radiographic image pickup device
JP2001091479A (en) * 1999-07-16 2001-04-06 Konica Corp X-ray image photographing method and device
JP2001238871A (en) * 2000-02-29 2001-09-04 Konica Corp Equipment for taking x-ray

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061456A1 (en) * 2016-09-27 2018-04-05 株式会社島津製作所 Radiation phase difference imaging device
JPWO2018061456A1 (en) * 2016-09-27 2019-04-18 株式会社島津製作所 Radiation phase contrast imaging device

Similar Documents

Publication Publication Date Title
JP4874755B2 (en) Radiation imaging equipment
JP2004208752A (en) Mammography apparatus
JP2013128585A (en) X-ray diagnostic apparatus
JP5194420B2 (en) Radiation imaging equipment
US7103140B2 (en) Radiation image radiographic apparatus
WO2007043329A1 (en) Radiographic imager
JP2010158257A (en) Device and system for picking up radiation image
JP2008259693A (en) X-ray imaging system and program
JP2008018060A (en) Diagnostic information generating system, diagnostic information generating method and diagnostic information display method
JP2006141904A (en) Radiographic apparatus
JP2008079923A (en) Radiographic photographing equipment
JP2011078612A (en) Radiographing apparatus and radiographing method
JP2007105146A (en) Radiographic imaging equipment
JP2010187812A (en) Medical bed apparatus
JP2007130058A (en) Radiation imaging apparatus
JP5538734B2 (en) Radiation imaging apparatus and processing method thereof
JP2010213729A (en) Radiographic imaging system
WO2008038491A1 (en) Radiographic device
JP2005296115A (en) Mammographic apparatus
JP2008036314A (en) Radiographic equipment
JP2006116038A (en) X-ray diagnostic apparatus and x-ray radiographing method
JP2004202119A (en) Mammographic apparatus
JP2008125576A (en) Radioactive image pickup device
JP4807031B2 (en) Radiation imaging equipment
JP2004229899A (en) Mammographic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP