WO2008038354A1 - Small antenna unit - Google Patents

Small antenna unit Download PDF

Info

Publication number
WO2008038354A1
WO2008038354A1 PCT/JP2006/319197 JP2006319197W WO2008038354A1 WO 2008038354 A1 WO2008038354 A1 WO 2008038354A1 JP 2006319197 W JP2006319197 W JP 2006319197W WO 2008038354 A1 WO2008038354 A1 WO 2008038354A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna element
resistance film
antenna
high resistance
current
Prior art date
Application number
PCT/JP2006/319197
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiteru Hayashi
Yoshio Koyanagi
Nobuaki Tanaka
Yutaka Saito
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to PCT/JP2006/319197 priority Critical patent/WO2008038354A1/en
Publication of WO2008038354A1 publication Critical patent/WO2008038354A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/528Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the re-radiation of a support structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the present invention relates to a small antenna device used for a terminal device such as a cellular phone, and more particularly to a small antenna device that improves directivity gain in electromagnetic waves.
  • a mobile phone in which an antenna is mounted on a metal casing, a dipole antenna of ⁇ / 2 ( ⁇ is a wavelength) is formed by the antenna and the metal casing, and an antenna device provided with a reflector is mounted.
  • is a wavelength
  • the antenna housing can be miniaturized because the metal casing acts as an auxiliary antenna, and the radiation efficiency of electromagnetic waves is improved by providing a reflector.
  • the directivity gain in a predetermined direction can be improved.
  • Patent Document 1 JP 2000-323921 A
  • FIG. 1 is a conceptual diagram showing an example of an arrangement configuration of an antenna element and a metal casing mounted on a terminal device or the like. As shown in FIG. 1, the antenna element 1 is arranged in parallel and close to the surface of the metal casing 2, and the connection point between the antenna element 1 and the metal casing 2 is a feeding point 3.
  • the upper surface (upward direction of the figure) of the antenna element 1 is the main direction of the antenna directivity.
  • a part or all of the antenna element is almost parallel to adjacent components. Any other antenna may be used as long as it is configured as described above.
  • FIG. 2 is a conceptual diagram showing the operation of the antenna in the arrangement configuration of the antenna element and the metal housing shown in FIG. As shown in FIG. 2, the antenna current i flowing on the antenna element 1 by the feeding point 3 and the negative phase current i are excited in the metal housing 2 arranged close to the antenna element 1.
  • the antenna performance is lowered to suppress the directivity gain G of the antenna element 1.
  • the reverse phase current i increases more and more.
  • the directivity gain G of the antenna element 1 further decreases.
  • the present invention has been made in view of the above-described problems, and directivity is achieved even when the antenna element and a mounting part or a metal surface in the terminal such as a metal part or an electronic part are arranged close to each other. It is an object of the present invention to provide such a small antenna device without reducing the gain.
  • the small antenna device of the present invention is a small antenna device used in the electronic device in which at least a part of the antenna element is arranged substantially parallel to a mounting part or a metal surface of the electronic device, A configuration is adopted in which a high resistance film having a resistance value higher than that of at least the mounting component or the metal surface is formed on the surface of the mounting component or the metal surface from the antenna element.
  • the anti-phase current is excited on the surface of the mounting component and the metal surface on the side facing the antenna element by the antenna current flowing on the antenna element. Suppressed by the high resistance film formed on the surface of the mounted component or metal surface. Therefore, the apparent antenna current increases as the negative-phase current that cancels the antenna current decreases, and as a result, the directivity gain of the antenna element improves. Furthermore, when the mounted component in the vicinity is an electronic component, the malfunction of the electronic component can be suppressed by reducing the reverse-phase current flowing on the surface of the electronic component.
  • the directivity gain is further improved if the length of the high resistance film is substantially the same as the length of the antenna element in the region facing the antenna element. If the width of the housing is wider than the width of the antenna element, If the width is wider than the width of the antenna element in the region facing the antenna element, the directivity gain is further improved. The most preferred form is that the width of the high resistance film is the same as the width of the housing.
  • the small antenna device of the present invention when the mounting component and the metal surface close to the antenna element are arranged substantially in parallel, the surface of the mounting component and the metal surface facing the antenna element is high.
  • the resistance film By forming the resistance film, the negative phase current excited by the antenna current can be reduced, so that the directivity gain of the antenna element can be improved. Furthermore, since the reverse-phase current flowing on the surface of the electronic component can be reduced, malfunction of the electronic component can be suppressed.
  • the high resistance film can be easily formed by mixing or vapor-depositing or applying graphite particles with a volatile solvent, so that the directivity gain of the antenna element can be improved inexpensively and easily. .
  • FIG. 1 A conceptual diagram showing an example of an arrangement configuration of an antenna element and a metal casing mounted on a terminal device or the like.
  • FIG. 2 Conceptual diagram showing antenna operation in the arrangement configuration of the antenna element and metal casing shown in FIG.
  • FIG. 3 is a conceptual diagram showing an arrangement configuration of an antenna element and a metal casing in the small antenna device of the present invention.
  • FIG. 4 is a conceptual diagram showing the operation of the antenna in the small antenna device shown in FIG.
  • FIG. 5 is a conceptual diagram showing the arrangement configuration of the small antenna device and the operation of the antenna in the first embodiment of the present invention.
  • FIG. 6 is a performance evaluation diagram showing an improvement in directivity gain realized by the arrangement configuration of the small antenna device shown in FIG.
  • FIG. 7 Schematic diagram showing current distribution when a metal housing is made longer than the length of a conventional antenna element and no high resistance film is used.
  • FIG. 8 is a conceptual diagram showing the current distribution when a high resistance film is formed over the entire surface of the metal housing in Fig. 7.
  • FIG. 9 is a conceptual diagram showing the current distribution in FIG. 7 when a high resistance film is formed on the surface of the metal casing by the same length as the antenna element.
  • FIG. 11 is a conceptual diagram showing the current distribution when a high resistance film having the same length and width as the antenna element is formed on the metal substrate in FIG.
  • FIG. 7 a conceptual diagram showing the current distribution when a high-resistance film is formed to be the same length as the antenna element and wider than the antenna element.
  • a high resistance film is formed on the surface of a proximity component (that is, a metal housing or an electronic component) arranged in the vicinity of the antenna element so that the surface resistance of the proximity component is increased. It is configured.
  • the reverse-phase current flowing on the surface of the adjacent component can be suppressed to a small level, so that the ratio of the antenna current and the reverse-phase current canceling each other can be reduced. Since the antenna current increases, the directivity gain of the antenna element can be improved.
  • FIG. 3 is a conceptual diagram showing an arrangement configuration of an antenna element and a metal casing in the small antenna device of the present invention.
  • the small antenna device has a configuration in which the antenna element 101 and the metal casing 102 are arranged substantially parallel to each other in the vicinity of the metal casing 102.
  • the connection point between the antenna element 101 and the metal casing 102 is a feeding point 103 of the antenna element 101.
  • a high resistance film 104 having a resistance value higher than that of the metal casing is formed on the surface of the metal casing 102 facing the antenna element 101 by vapor deposition or coating. In this way, the surface resistance of the metal casing 102 adjacent to the antenna element 101 is increased.
  • FIG. 4 is a conceptual diagram showing the operation of the antenna in the small antenna device shown in FIG.
  • the antenna current i flows from the feeding point 103 to the antenna element 101
  • the antenna element 10 A reverse-phase current i flows through the high resistance film 104 on the surface of the metal casing 102 facing 1.
  • the negative-phase current i is suppressed by the current component depending on the resistance value of the high-resistance film 104.
  • the negative phase current i is smaller than that in the case. In this way
  • the antenna current i 101 becomes smaller than the negative phase current i 102, the apparent antenna current i 101 becomes a large value, and as a result, the antenna performance improves as the directivity gain G increases.
  • the negative phase current i is consumed by the product (1) of the resistance component of the high resistance film 104 (1).
  • the antenna element and the metal casing are all arranged in the same manner, and the directivity gain of the antenna element depends on the size of the region of the high resistance film formed on the surface of the metal casing. It will be explained how it can be improved. Note that, in the drawings used in each embodiment, the same constituent elements are denoted by the same reference numerals, and redundant description is omitted as much as possible.
  • FIG. 5 is a conceptual diagram showing the configuration and antenna operation of the small antenna device according to Embodiment 1 of the present invention.
  • a high resistance film 104 is deposited or applied over the entire surface of the metal casing 102 arranged in parallel in the vicinity of the antenna element 101.
  • the high resistance film 104 is not formed in the vicinity of the feeding point 103 where the metal casing 102 and the antenna element 101 are connected.
  • Examples of the high resistance film 104 include an Atchison conductive paint.
  • This Athison conductive coating is formed by mixing a volatile solvent containing acrylic resin as a binder and graphite as conductive particles, and its resistance value is 25 microns. It is about 50 Q Zsq. Therefore, the application of the Atchison conductive paint is used as an antistatic part in a part that is easily touched by humans, and as a shield coating for preventing electromagnetic interference in mobile phones and electronic devices.
  • the antenna current i becomes high.
  • the anti-film 104 is excited by the reverse-phase current i.
  • the antenna current i Since it is suppressed depending on the resistance value, the antenna current i
  • the high-resistance film 104 formed on the surface of the electronic component causes a reverse phase to flow on the surface of the electronic component.
  • the malfunction of the electronic component is suppressed by reducing the current i.
  • the noise margin of the electronic component can be improved.
  • FIG. 6 is a performance evaluation diagram showing the improvement of the directivity gain realized by the configuration of the small antenna device shown in FIG. 5.
  • the horizontal axis shows the types with and without the high resistance film.
  • the vertical axis shows the directivity gain (dBi).
  • the directivity gain without the high resistance film 104 on the surface of the metal housing 102 is 3.015 dBi, whereas the entire surface of the metal housing 102 (however, the feed point 103
  • the directivity gain when the high-resistance film 104 is formed on (except the portion) is 3.366 dBi. Therefore, the directivity gain is improved by about 0.3 dBi by forming the high resistance film 104 over the entire surface of the metal casing 102. This improvement can be said to be a significant improvement for mobile phones that receive signals with a directivity gain of several dBi.
  • the high resistance film 104 may be formed by coating that has a relatively thick film thickness rather than vapor deposition.
  • the directivity pattern of the antenna element 101 does not change between the case where the high resistance film 104 is formed on the surface of the metal casing 102 and the case where the high resistance film 104 is not formed, the high resistance film 104 is formed on the surface of the metal casing 102. This is considered to have no effect on the antenna characteristics.
  • Fig. 7 is a conceptual diagram showing the current distribution when a high-resistance film is not used in the proximity portion facing the conventional antenna element. As shown in FIG. 7, when an antenna current i flows from the feed point 103 onto the antenna element 101, the surface of the metal casing 102 facing the antenna element 101 is reversed. Phase current i flows, and the surface area force facing the antenna element 101 in a chained manner is also separated.
  • Such common-mode currents i and i contribute to improving the directivity gain of the antenna element 101.
  • FIG. 8 is a conceptual diagram showing a current distribution when the high resistance film is formed over the entire surface of the metal casing 102 of FIG. That is, as shown in FIG. 7, when the length of the metal casing 102 is made longer than the length of the antenna element 101, the metal casing 102 has a reverse phase current i.
  • FIG. 9 is a conceptual diagram showing a current distribution when a high resistance film is formed on the surface of the metal casing 102 by the same length as the antenna element in the metal casing 102 of FIG. In this case, as shown in FIG. 9, the reverse-phase current i flowing through the region of the high-resistance film 104 decreases, but the common-mode current
  • I is the current that contributes to the improvement of the directivity gain of the antenna element 101.
  • the directivity gain of the antenna element 101 is improved.
  • FIG. 10 is a performance evaluation diagram comparing the magnitude of the effect of improving the directivity gain due to the difference in the length of the high resistance film 104 formed on the surface of the metal casing 102.
  • 10A shows the difference in the length of the high-resistance film formed on the surface of the metal housing, and length A shows the case where the high-resistance film is formed by half the length of the antenna element.
  • B shows the case where the high resistance film is formed by the same length as the length of the antenna element, and length C shows the case where the high resistance film is formed in the region facing the antenna element and in the entire region in front of it.
  • the length D indicates the case where a high resistance film is formed over the entire surface of the metal housing!
  • FIG. 10B shows the directivity gain with respect to the length of each high resistance film 104 in FIG. 10A.
  • the horizontal axis represents the length of the high-resistance film A, B, C, and D, and the vertical axis represents the directivity gain.
  • V indicates that the high resistance film is not formed on the surface of the metal casing 102, and the magnitude of the directivity gain is also shown.
  • the directivity gain in (D) is 3.366 dBi
  • the high resistance film 104 is formed on the surface of the metal casing 102.
  • the directivity gain is larger than the directivity gain (3.015 dBi) in the case of not doing so, the effect of forming the high-resistance film 104 is the lowest.
  • the directivity gain in (A) is 3.498 dBi
  • the high-resistance film 104 extends over the entire surface of the metal housing 102.
  • the effect of improving the directivity gain is slightly greater than when (D) is formed.
  • the directivity gain in (C) is 3.556 dBi, which is more directional than in (A).
  • the effect of improving the sex gain is great.
  • the effect of improving the directivity gain is greatest when the high resistance film 104 is formed by the same length as the antenna element 101 (B), and the directivity gain is 3.651 dBi. That is, when the high resistance film 104 is formed by the same length as the length of the antenna element 101 (B), the directivity gain is improved to about 0.6 dBi compared to the case where the high resistance film 104 is not provided.
  • the length of the high resistance film 104 formed on the surface of the metal casing 102 is the same as that of the antenna element 101, which contributes to the improvement of the directivity gain.
  • the high resistance film 104 is formed on the surface of the metal casing 102 by focusing on the region where the reverse phase current i flows.
  • the directivity gain is most improved by suppressing only the reverse phase current.
  • the high resistance film 104 is formed on the surface of the electronic component that is close to the antenna element 101 by the same length, thereby flowing on the surface of the electronic component. Since only the reverse phase current can be suppressed, it is possible to suppress malfunction of the corresponding electronic component.
  • Fig. 1 1 shows a high-resistance film 104 of the same length and the same width as the antenna element in Fig. 7.
  • 2 is a conceptual diagram showing a current distribution when formed in FIG. As shown in FIG. 11, when an antenna current i flows from the feed point 103 to the antenna element 101, the antenna element 101 faces the antenna element 101.
  • the reverse phase current i flows through the region of the high resistance film 104 that
  • the width of the high resistance film 104 is the same as the width of the antenna element 101, the reverse phase currents i and i leak out on the surfaces of both side portions protruding from the width of the high resistance film 104.
  • the directivity gain of the N element 101 is reduced.
  • FIG. 12 is a conceptual diagram showing a current distribution when the length of the high resistance film 104 is the same as that of the antenna element 101 and the width is wider than the width of the antenna element 101 in FIG. That is, as shown in FIG. 12, when the width of the high-resistance film 104 of the metal casing 102 is wide, the high-resistance film 104 suppresses all of the reverse-phase current i generated by the opposing antenna element 101.
  • the directivity gain of the antenna element 101 is improved.
  • the directivity gain of the antenna element 101 acts in the direction of improvement.
  • FIG. 13 is a performance evaluation diagram comparing the magnitude of the directivity gain improvement effect due to the difference in the width of the high resistance film 104 formed on the surface of the metal casing. That is, FIG. 13A shows the difference in the width of the high resistance film formed on the surface of the metal casing 102, the width E shows the case where the high resistance film is formed by the same width as the width of the antenna element 101, and the width F is The case where a high resistance film is formed wider than the width of the antenna element is shown!
  • FIG. 13B shows the magnitude of the directivity gain with respect to the width of each high resistance film 104 in FIG. 13A.
  • the horizontal axis represents the types of widths E and F of the high resistance film 104, and the vertical axis represents Table of sex gain I am.
  • the directivity gain when the high resistance film is not formed on the surface of the metal casing 102 is also shown.
  • the directivity gain of (E) is 3.651 dBi, and the direction when the high resistance film is not formed on the surface of the metal housing 102
  • the directivity gain is larger than the directivity gain (3.015 dBi).
  • the directivity gain in (F) is 4.163 dBi, which is about 1. ldBi compared to the case without the high resistance film. Will improve. That is, when the width of the metal casing 102 is wider than the width of the antenna element 101, the directivity gain is improved to the maximum by increasing the width of the high-resistance film 104.
  • the directivity gain is most improved by forming a high resistance film over the entire width of the metal casing 102 and suppressing only the reverse phase current.
  • a high-resistance film is formed on the surface of the electronic component with a width wider than that of the antenna element, so that only the reverse phase current flowing on the surface of the electronic component can be obtained. Since it can be suppressed, it is possible to suppress malfunction of the corresponding electronic component.
  • the directivity gain is greatly improved by forming a high-resistance film with an appropriate length and width on a mounting component close to the antenna element or a surface close to the metal surface. Therefore, it can be used effectively for mopile terminals such as mobile phones and mobile terminals.

Abstract

A small antenna unit in which directivity gain does not deteriorate even if an antenna element and a mounting component are arranged in close proximity to a metal surface. When an antenna element (101) is arranged in close proximity to a metal housing (102) substantially in parallel therewith, a high resistance film (104) is formed, by vapor deposition, on the surface of the metal housing (102) opposing the antenna element (101) in order to increase the surface resistance of the metal housing (102). When an antenna current i101 flows through the antenna element (101), a negative-phase current i102 flows through the high resistance film (104) on the surface of the opposing metal housing (102), but the negative-phase current i102 is dependent on the resistance of the high resistance film (104) and thereby the current component is suppressed to have a relatively small value. Since the apparent antenna current i101 has a large value, directivity gain G101 of the antenna element (101) is increased, thereby enhancing antenna performance.

Description

明 細 書  Specification
小型アンテナ装置  Small antenna device
技術分野  Technical field
[0001] 本発明は、携帯電話機などの端末機器に用いられる小型アンテナ装置に関し、特 に、電磁波における指向性利得の改善を図った小型アンテナ装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a small antenna device used for a terminal device such as a cellular phone, and more particularly to a small antenna device that improves directivity gain in electromagnetic waves.
背景技術  Background art
[0002] 近年、携帯電話機などの端末機器は、小さな部品を使用したり各部品の収納スぺ ースを工夫したりしてさらなる小型化へと改善が図られている。したがって、アンテナ につ 、ても指向性利得を低下させな 、ようにしながら小型化と配置方法に工夫がな されている。例えば、アンテナを金属筐体に取り付け、アンテナと金属筐体とによって λ /2 ( λは波長)のダイポールアンテナを構成すると共に反射板を設けたアンテナ装 置を搭載した携帯電話機が開示されている (特許文献 1参照)。アンテナ装置をこの ような構成にすることにより、金属筐体が補助アンテナとしての作用を呈するのでアン テナ装置を小型化することができると共に、反射板を設けることによって電磁波の放 射効率を改善して所定の方向への指向性利得を向上させることができる。  [0002] In recent years, terminal devices such as mobile phones have been improved to be further miniaturized by using small parts or devising a storage space for each part. Therefore, the antenna has been devised in terms of miniaturization and arrangement method while not reducing the directivity gain. For example, a mobile phone is disclosed in which an antenna is mounted on a metal casing, a dipole antenna of λ / 2 (λ is a wavelength) is formed by the antenna and the metal casing, and an antenna device provided with a reflector is mounted. (See Patent Document 1). By configuring the antenna device in such a manner, the antenna housing can be miniaturized because the metal casing acts as an auxiliary antenna, and the radiation efficiency of electromagnetic waves is improved by providing a reflector. Thus, the directivity gain in a predetermined direction can be improved.
特許文献 1 :特開 2000— 323921号公報  Patent Document 1: JP 2000-323921 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、小型アンテナを金属部品の表面(以下、金属面と称する。 )や電子部 品など端末機器に実装される電子部品に近づけて配置すると、アンテナ素子と近接 部品の相互に流れる電流成分が打ち消し合うように作用するため、アンテナ性能を 低下させてしまう。その理由について図面を用いて説明する。図 1は、端末機器など に搭載されるアンテナ素子と金属筐体との配置構成の一例を示す概念図である。図 1に示すように、アンテナ素子 1は金属筐体 2の表面に平行に近接して配置され、ァ ンテナ素子 1と金属筐体 2との接続点が給電点 3となっている。図の例では、アンテナ 素子 1の上面(図の上方向)がアンテナ指向 ¾の主方向となる。なお、アンテナ素子 1 の逆 Lアンテナの代わりに、アンテナ素子の一部または全部が近接部品とほぼ平行 に配置される構成であれば、他のどのようなアンテナでもよい。 [0003] However, if a small antenna is placed close to an electronic component mounted on a terminal device such as a metal component surface (hereinafter referred to as a metal surface) or an electronic component, the antenna element and the adjacent component are mutually connected. Since the current components that flow through the channel act to cancel each other, the antenna performance is degraded. The reason will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing an example of an arrangement configuration of an antenna element and a metal casing mounted on a terminal device or the like. As shown in FIG. 1, the antenna element 1 is arranged in parallel and close to the surface of the metal casing 2, and the connection point between the antenna element 1 and the metal casing 2 is a feeding point 3. In the example of the figure, the upper surface (upward direction of the figure) of the antenna element 1 is the main direction of the antenna directivity. In place of the inverted L antenna of antenna element 1, a part or all of the antenna element is almost parallel to adjacent components. Any other antenna may be used as long as it is configured as described above.
[0004] 図 2は、図 1に示すアンテナ素子と金属筐体の配置構成におけるアンテナの動作を 示す概念図である。図 2に示すように、給電点 3によりアンテナ素子 1上を流れるアン テナ電流 iと、アンテナ素子 1に近接して配置された金属筐体 2には逆相電流 iが励  FIG. 2 is a conceptual diagram showing the operation of the antenna in the arrangement configuration of the antenna element and the metal housing shown in FIG. As shown in FIG. 2, the antenna current i flowing on the antenna element 1 by the feeding point 3 and the negative phase current i are excited in the metal housing 2 arranged close to the antenna element 1.
1 2 起される。アンテナ電流 iと逆相電流 iは互いに異なる方向へ作用するために打ち消  1 2 Wake up. Since antenna current i and reverse-phase current i act in different directions, they cancel each other.
1 2  1 2
し合い、アンテナ素子 1の指向性利得 Gを抑制するためにアンテナ性能が低下する 。アンテナ素子 1と金属筐体 2との距離がさらに短くなれば、逆相電流 iは益々増加  On the other hand, the antenna performance is lowered to suppress the directivity gain G of the antenna element 1. As the distance between the antenna element 1 and the metal housing 2 becomes shorter, the reverse phase current i increases more and more.
2  2
するので、アンテナ素子 1の指向性利得 Gはさらに低下する。  Therefore, the directivity gain G of the antenna element 1 further decreases.
[0005] 本発明は以上のような問題点に鑑みてなされたものであり、アンテナ素子と金属部 品や電子部品など端末内の実装部品や金属面が近接して配置されていても指向性 利得を低下させな 、ような小型アンテナ装置を提供することを目的とする。 [0005] The present invention has been made in view of the above-described problems, and directivity is achieved even when the antenna element and a mounting part or a metal surface in the terminal such as a metal part or an electronic part are arranged close to each other. It is an object of the present invention to provide such a small antenna device without reducing the gain.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の小型アンテナ装置は、アンテナ素子の少なくとも一部が電子機器の実装 部品または金属面に近接してほぼ平行に配置された前記電子機器に用いられる小 型アンテナ装置であって、前記アンテナ素子から前記実装部品または前記金属面の 表面に少なくとも前記実装部品または前記金属面よりも抵抗値が高い高抵抗膜が形 成される構成を採る。 [0006] The small antenna device of the present invention is a small antenna device used in the electronic device in which at least a part of the antenna element is arranged substantially parallel to a mounting part or a metal surface of the electronic device, A configuration is adopted in which a high resistance film having a resistance value higher than that of at least the mounting component or the metal surface is formed on the surface of the mounting component or the metal surface from the antenna element.
[0007] このような構成によれば、アンテナ素子上を流れるアンテナ電流によってアンテナ 素子と対向する側の近接した実装部品や金属面の表面には逆相電流が励起される 力 この逆相電流は実装部品や金属面の表面に形成された高抵抗膜によって抑制 される。したがって、アンテナ電流と打ち消し合う逆相電流が減少することによって見 掛け上のアンテナ電流は増加するので、結果的にアンテナ素子の指向性利得は向 上する。さらに、近接する実装部品が電子部品である場合は、その電子部品の表面 に流れる逆相電流が減少することによって電子部品の誤動作を抑制することができる  [0007] According to such a configuration, the anti-phase current is excited on the surface of the mounting component and the metal surface on the side facing the antenna element by the antenna current flowing on the antenna element. Suppressed by the high resistance film formed on the surface of the mounted component or metal surface. Therefore, the apparent antenna current increases as the negative-phase current that cancels the antenna current decreases, and as a result, the directivity gain of the antenna element improves. Furthermore, when the mounted component in the vicinity is an electronic component, the malfunction of the electronic component can be suppressed by reducing the reverse-phase current flowing on the surface of the electronic component.
[0008] 本発明の小型アンテナ装置の好適な実施形態としては、高抵抗膜の長さがアンテ ナ素子と対向する領域においてアンテナ素子の長さとほぼ同じであれば指向性利得 はさらに向上する。また、筐体の幅がアンテナ素子の幅より広いときは、高抵抗膜の 幅がアンテナ素子と対向する領域においてアンテナ素子の幅より広ければ指向性利 得はさらに向上する。最も好ましい形態は高抵抗膜の幅は筐体の幅と同じであること である。 In a preferred embodiment of the small antenna device of the present invention, the directivity gain is further improved if the length of the high resistance film is substantially the same as the length of the antenna element in the region facing the antenna element. If the width of the housing is wider than the width of the antenna element, If the width is wider than the width of the antenna element in the region facing the antenna element, the directivity gain is further improved. The most preferred form is that the width of the high resistance film is the same as the width of the housing.
発明の効果  The invention's effect
[0009] 本発明の小型アンテナ装置によれば、アンテナ素子と近接した実装部品や金属面 がほぼ平行に配置されている場合、アンテナ素子に対向する近接した実装部品や金 属面の表面に高抵抗膜を形成することにより、アンテナ電流によって励起される逆相 電流を減少させることができるのでアンテナ素子の指向性利得を向上させることがで きる。さらには、電子部品の表面に流れる逆相電流が減少させることができるので電 子部品の誤動作を抑制することができる。しかも、高抵抗膜は、黒鉛粒子を揮発性溶 剤で混合して蒸着または塗布することによって容易に形成することができるので、安 価かつ容易にアンテナ素子の指向性利得を向上させることができる。  [0009] According to the small antenna device of the present invention, when the mounting component and the metal surface close to the antenna element are arranged substantially in parallel, the surface of the mounting component and the metal surface facing the antenna element is high. By forming the resistance film, the negative phase current excited by the antenna current can be reduced, so that the directivity gain of the antenna element can be improved. Furthermore, since the reverse-phase current flowing on the surface of the electronic component can be reduced, malfunction of the electronic component can be suppressed. In addition, the high resistance film can be easily formed by mixing or vapor-depositing or applying graphite particles with a volatile solvent, so that the directivity gain of the antenna element can be improved inexpensively and easily. .
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]端末機器などに搭載されるアンテナ素子と金属筐体との配置構成の一例を示 す概念図  [0010] [FIG. 1] A conceptual diagram showing an example of an arrangement configuration of an antenna element and a metal casing mounted on a terminal device or the like.
[図 2]図 1に示すアンテナ素子と金属筐体の配置構成におけるアンテナの動作を示 す概念図  [Fig. 2] Conceptual diagram showing antenna operation in the arrangement configuration of the antenna element and metal casing shown in FIG.
[図 3]本発明の小型アンテナ装置におけるアンテナ素子と金属筐体との配置構成を 示す概念図  FIG. 3 is a conceptual diagram showing an arrangement configuration of an antenna element and a metal casing in the small antenna device of the present invention.
[図 4]図 3に示す小型アンテナ装置におけるアンテナの動作を示す概念図  FIG. 4 is a conceptual diagram showing the operation of the antenna in the small antenna device shown in FIG.
[図 5]本発明の実施の形態 1における小型アンテナ装置の配置構成及びアンテナの 動作を示す概念図  FIG. 5 is a conceptual diagram showing the arrangement configuration of the small antenna device and the operation of the antenna in the first embodiment of the present invention.
[図 6]図 5に示す小型アンテナ装置の配置構成によって実現された指向性利得の向 上を示す性能評価図  FIG. 6 is a performance evaluation diagram showing an improvement in directivity gain realized by the arrangement configuration of the small antenna device shown in FIG.
[図 7]従来のアンテナ素子の長さより金属筐体の長さを長くした場合において、高抵 抗膜を用いな 、ときの電流分布を示す概念図  [Fig. 7] Schematic diagram showing current distribution when a metal housing is made longer than the length of a conventional antenna element and no high resistance film is used.
[図 8]図 7において、高抵抗膜を金属筐体の表面全域に亘つて形成したときの電流分 布を示す概念図 [図 9]図 7において、アンテナ素子と同じ長さだけ金属筐体の表面に高抵抗膜を形成 したときの電流分布を示す概念図 [Fig. 8] Fig. 8 is a conceptual diagram showing the current distribution when a high resistance film is formed over the entire surface of the metal housing in Fig. 7. FIG. 9 is a conceptual diagram showing the current distribution in FIG. 7 when a high resistance film is formed on the surface of the metal casing by the same length as the antenna element.
[図 10]金属筐体の表面に形成する高抵抗膜の長さの違いによる指向性利得の改善 効果の大きさを比較した性能評価図  [Figure 10] Performance evaluation diagram comparing the magnitude of the effect of improving the directivity gain due to the difference in the length of the high-resistance film formed on the surface of the metal housing
[図 11]図 7において、アンテナ素子と同じ長さで同じ幅の高抵抗膜を金属基板に形 成したときの電流分布を示す概念図  FIG. 11 is a conceptual diagram showing the current distribution when a high resistance film having the same length and width as the antenna element is formed on the metal substrate in FIG.
[図 12]図 7において、高抵抗膜をアンテナ素子と同じ長さで,アンテナ素子より広い 幅に形成したときの電流分布を示す概念図  [FIG. 12] In FIG. 7, a conceptual diagram showing the current distribution when a high-resistance film is formed to be the same length as the antenna element and wider than the antenna element.
[図 13]金属筐体の表面に形成する高抵抗膜の幅の違いによる指向性利得の改善効 果の大きさを比較した性能評価図  [Figure 13] Performance evaluation diagram comparing the effects of directivity gain improvement due to differences in the width of the high-resistance film formed on the surface of the metal housing
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 〈発明の概要〉  <Summary of Invention>
本発明の小型アンテナ装置は、アンテナ素子の近傍に配置された近接部品(つま り、金属筐体や電子部品)の表面に高抵抗膜を形成して、近接部品の表面抵抗が高 くなるように構成されている。これによつて、近接部品の表面に流れる逆相電流を小さ く抑制することができるので、アンテナ電流と前記逆相電流の相互で打ち消しあう割 合を少なくすることが可能となり、結果的に、アンテナ電流が増加するためアンテナ 素子の指向性利得を向上させることができる。  In the small antenna device of the present invention, a high resistance film is formed on the surface of a proximity component (that is, a metal housing or an electronic component) arranged in the vicinity of the antenna element so that the surface resistance of the proximity component is increased. It is configured. As a result, the reverse-phase current flowing on the surface of the adjacent component can be suppressed to a small level, so that the ratio of the antenna current and the reverse-phase current canceling each other can be reduced. Since the antenna current increases, the directivity gain of the antenna element can be improved.
[0012] 図 3は、本発明の小型アンテナ装置におけるアンテナ素子と金属筐体との配置構 成を示す概念図である。図 3において、小型アンテナ装置は、金属筐体 102に近接 し,アンテナ素子 101と金属筐体 102がほぼ平行に配置された構成となっている。ま た、アンテナ素子 101と金属筐体 102との接続点は、アンテナ素子 101の給電点 10 3となっている。さらに、アンテナ素子 101と対向する金属筐体 102の表面には、少な くとも金属筐体よりも抵抗値が高い高抵抗膜 104が蒸着または塗布によって形成され ている。このようにして、アンテナ素子 101に近接する金属筐体 102の表面抵抗を高 くしている。  FIG. 3 is a conceptual diagram showing an arrangement configuration of an antenna element and a metal casing in the small antenna device of the present invention. In FIG. 3, the small antenna device has a configuration in which the antenna element 101 and the metal casing 102 are arranged substantially parallel to each other in the vicinity of the metal casing 102. Further, the connection point between the antenna element 101 and the metal casing 102 is a feeding point 103 of the antenna element 101. Furthermore, a high resistance film 104 having a resistance value higher than that of the metal casing is formed on the surface of the metal casing 102 facing the antenna element 101 by vapor deposition or coating. In this way, the surface resistance of the metal casing 102 adjacent to the antenna element 101 is increased.
[0013] 図 4は、図 3に示す小型アンテナ装置におけるアンテナの動作を示す概念図である 。給電点 103からアンテナ素子 101へアンテナ電流 i が流れると、アンテナ素子 10 1と対向する金属筐体 102の表面の高抵抗膜 104には逆相電流 i が流れる。このと FIG. 4 is a conceptual diagram showing the operation of the antenna in the small antenna device shown in FIG. When the antenna current i flows from the feeding point 103 to the antenna element 101, the antenna element 10 A reverse-phase current i flows through the high resistance film 104 on the surface of the metal casing 102 facing 1. This
102  102
き、逆相電流 i は、高抵抗膜 104の抵抗値に依存して電流成分が抑制されることで  The negative-phase current i is suppressed by the current component depending on the resistance value of the high-resistance film 104.
102  102
、高抵抗膜 104がな 、場合と比べて逆相電流 i は小さな値となる。このようにしてァ  If the high resistance film 104 is not provided, the negative phase current i is smaller than that in the case. In this way
102  102
ンテナ電流 i 101は逆相電流 i 102力 、さくなるので、見掛け上のアンテナ電流 i 101は大き な値となり、結果的に、指向性利得 G が大きくなつてアンテナ性能が向上する。な  Since the antenna current i 101 becomes smaller than the negative phase current i 102, the apparent antenna current i 101 becomes a large value, and as a result, the antenna performance improves as the directivity gain G increases. Na
101  101
お、逆相電流 i は高抵抗膜 104の抵抗分との積 (1 )によって熱消費される。  The negative phase current i is consumed by the product (1) of the resistance component of the high resistance film 104 (1).
102  102
[0014] 次に、本発明に係る小型アンテナ装置の具体的な実施の形態の幾つかについて 詳細に説明する。以下の各実施の形態では、アンテナ素子と金属筐体との配置構成 は全て同じとして、金属筐体の表面に形成される高抵抗膜の領域の大きさによってァ ンテナ素子の指向性利得がどのように改善されるかについて説明する。なお、各実 施の形態で用いる図面において、同一の構成要素は同一の符号を付し、かつ重複 する説明は可能な限り省略する。  [0014] Next, some specific embodiments of the small antenna device according to the present invention will be described in detail. In each of the following embodiments, the antenna element and the metal casing are all arranged in the same manner, and the directivity gain of the antenna element depends on the size of the region of the high resistance film formed on the surface of the metal casing. It will be explained how it can be improved. Note that, in the drawings used in each embodiment, the same constituent elements are denoted by the same reference numerals, and redundant description is omitted as much as possible.
[0015] 〈実施の形態 1〉 <Embodiment 1>
図 5は、本発明の実施の形態 1における小型アンテナ装置の構成及びアンテナ動 作を示す概念図である。図 5に示すように、アンテナ素子 101に近接して平行に配置 された金属筐体 102の表面全域に亘つて高抵抗膜 104を蒸着または塗布する。但し 、金属筐体 102とアンテナ素子 101が接続される給電点 103の付近には高抵抗膜 1 04を形成しない。  FIG. 5 is a conceptual diagram showing the configuration and antenna operation of the small antenna device according to Embodiment 1 of the present invention. As shown in FIG. 5, a high resistance film 104 is deposited or applied over the entire surface of the metal casing 102 arranged in parallel in the vicinity of the antenna element 101. However, the high resistance film 104 is not formed in the vicinity of the feeding point 103 where the metal casing 102 and the antenna element 101 are connected.
[0016] 高抵抗膜 104の例としてはアチソン導電性塗料などがある。このアチソン導電性塗 料は、アクリル榭脂などを含む揮発性溶剤をバインダーとし、黒鉛を導電性粒子とし て混合して形成されたものであり、その抵抗値は、膜厚が 25ミクロンの場合において 50 Q Zsq程度である。したがって、アチソン導電性塗料の用途としては、人が触れ やすい部分に帯電防止部用として、また携帯電話機や電子機器などの電磁波障害 防止用のシールドコーティングとして使われて 、る。  [0016] Examples of the high resistance film 104 include an Atchison conductive paint. This Athison conductive coating is formed by mixing a volatile solvent containing acrylic resin as a binder and graphite as conductive particles, and its resistance value is 25 microns. It is about 50 Q Zsq. Therefore, the application of the Atchison conductive paint is used as an antistatic part in a part that is easily touched by humans, and as a shield coating for preventing electromagnetic interference in mobile phones and electronic devices.
[0017] 図 5に示すように、給電点 103の部分を除く金属筐体 102の表面全域に亘つて、膜 厚を約 25ミクロンとして高抵抗膜 104を形成すると、アンテナ電流 i に対して高抵  As shown in FIG. 5, when the high resistance film 104 is formed with a film thickness of about 25 microns across the entire surface of the metal casing 102 excluding the feeding point 103, the antenna current i becomes high. Resistance
101  101
抗膜 104には逆相電流 i が励起される力 逆相電流 i の成分は高抵抗膜 104の  The anti-film 104 is excited by the reverse-phase current i. The component of the reverse-phase current i
102 102  102 102
抵抗値に依存して抑制されるので、アンテナ電流 i  Since it is suppressed depending on the resistance value, the antenna current i
101が増加し、その結果、アンテナ 素子 101の指向性利得 G は向上する。 101 increased, resulting in antenna The directivity gain G of the element 101 is improved.
101  101
[0018] また、アンテナ素子 101に近接する部品が金属筐体 102ではなく電子部品である 場合は、電子部品の表面に形成された高抵抗膜 104によって、その電子部品の表 面に流れる逆相電流 i が低減されることにより電子部品の誤動作が抑制される。つ  [0018] When the component close to the antenna element 101 is not the metal casing 102 but an electronic component, the high-resistance film 104 formed on the surface of the electronic component causes a reverse phase to flow on the surface of the electronic component. The malfunction of the electronic component is suppressed by reducing the current i. One
102  102
まり、アンテナ素子 101に近接する電子部品の表面に高抵抗膜 104を形成すること によって、その電子部品のノイズマージンを向上させることができる。  In other words, by forming the high resistance film 104 on the surface of the electronic component adjacent to the antenna element 101, the noise margin of the electronic component can be improved.
[0019] 図 6は、図 5に示す小型アンテナ装置の構成によって実現された指向性利得の向 上を示す性能評価図であり、横軸には高抵抗膜がある場合とない場合のタイプを示 し、縦軸には指向性利得 (dBi)を示している。図 6に示すように、金属筐体 102の表 面に高抵抗膜 104がない場合の指向性利得は 3. 015dBiであるのに対し、金属筐 体 102の表面全域 (但し、給電点 103の部分を除く)に高抵抗膜 104を形成した場合 の指向性利得は 3. 366dBiである。したがって、金属筐体 102の表面全域に高抵抗 膜 104を形成することによって、指向性利得は 0. 3dBi程度改善される。この程度の 改善値は、数 dBi程度の指向性利得で受信して ヽる携帯電話機などにぉ ヽてはかな りの改善があつたといえる。  FIG. 6 is a performance evaluation diagram showing the improvement of the directivity gain realized by the configuration of the small antenna device shown in FIG. 5. The horizontal axis shows the types with and without the high resistance film. The vertical axis shows the directivity gain (dBi). As shown in Fig. 6, the directivity gain without the high resistance film 104 on the surface of the metal housing 102 is 3.015 dBi, whereas the entire surface of the metal housing 102 (however, the feed point 103 The directivity gain when the high-resistance film 104 is formed on (except the portion) is 3.366 dBi. Therefore, the directivity gain is improved by about 0.3 dBi by forming the high resistance film 104 over the entire surface of the metal casing 102. This improvement can be said to be a significant improvement for mobile phones that receive signals with a directivity gain of several dBi.
[0020] なお、金属筐体 102の表面に形成する高抵抗膜 104 (つまり、アチソン導電性塗料 )の膜厚の違いによる指向性利得の改善効果の差違は殆んどない。したがって、高 抵抗膜 104の膜厚には殆んど影響されないので、蒸着ではなぐ比較的膜厚が厚く なる塗布によって高抵抗膜 104を形成しても構わない。また、金属筐体 102の表面 に高抵抗膜 104を形成した場合と形成しない場合において、アンテナ素子 101の指 向性パターンは変化しないので、金属筐体 102の表面に高抵抗膜 104を形成するこ とによるアンテナ特性の影響はないものと考えられる。  [0020] It should be noted that there is almost no difference in the effect of improving the directivity gain due to the difference in the film thickness of the high resistance film 104 (that is, Acheson conductive paint) formed on the surface of the metal casing 102. Therefore, since the film thickness of the high resistance film 104 is hardly affected, the high resistance film 104 may be formed by coating that has a relatively thick film thickness rather than vapor deposition. In addition, since the directivity pattern of the antenna element 101 does not change between the case where the high resistance film 104 is formed on the surface of the metal casing 102 and the case where the high resistance film 104 is not formed, the high resistance film 104 is formed on the surface of the metal casing 102. This is considered to have no effect on the antenna characteristics.
[0021] 〈実施の形態 2〉  <Embodiment 2>
実施の形態 2では、金属筐体 102の表面に形成する高抵抗膜の長さの違いによる 指向性利得の改善効果の相違を検討し、高抵抗膜の最適な長さについて説明する 。図 7は、従来のアンテナ素子と対向する近接部に高抵抗膜を用いないときの電流 分布を示す概念図である。図 7に示すように、給電点 103からアンテナ素子 101上に アンテナ電流 i が流れると、アンテナ素子 101と対向する金属筐体 102の表面に逆 相電流 i が流れ、連鎖的にアンテナ素子 101に対向する表面エリア力も離れた位In the second embodiment, the difference in the directivity gain improvement effect due to the difference in the length of the high resistance film formed on the surface of the metal casing 102 will be examined, and the optimum length of the high resistance film will be described. Fig. 7 is a conceptual diagram showing the current distribution when a high-resistance film is not used in the proximity portion facing the conventional antenna element. As shown in FIG. 7, when an antenna current i flows from the feed point 103 onto the antenna element 101, the surface of the metal casing 102 facing the antenna element 101 is reversed. Phase current i flows, and the surface area force facing the antenna element 101 in a chained manner is also separated.
102 102
置にある金属筐体 102から離れた位置の表面には同相電流 i 及び同相電流 i が  Common-mode current i and common-mode current i
103 104 流れる。このような同相電流 i , i はアンテナ素子 101の指向性利得の向上に寄  103 104 Flowing. Such common-mode currents i and i contribute to improving the directivity gain of the antenna element 101.
103 104  103 104
与する。  Give.
[0022] 図 8は、図 7の金属筐体 102において、高抵抗膜を表面全域に亘つて形成したとき の電流分布を示す概念図である。すなわち、図 7で示したように、アンテナ素子 101 の長さより金属筐体 102の長さを長くした場合には、金属筐体 102には逆相電流 i  FIG. 8 is a conceptual diagram showing a current distribution when the high resistance film is formed over the entire surface of the metal casing 102 of FIG. That is, as shown in FIG. 7, when the length of the metal casing 102 is made longer than the length of the antenna element 101, the metal casing 102 has a reverse phase current i.
102 が流れる領域と同相電流 i 、i が流れる領域が存在するので、図 8に示すように金  As shown in Fig. 8, there is a region where in-phase currents i and i flow as well as a region where 102 flows.
103 104  103 104
属筐体 102の表面全域に亘つて高抵抗膜 104を形成したときには、高抵抗膜 104を 流れる逆相電流 i i この  When the high resistance film 104 is formed over the entire surface of the metal housing 102, the reverse phase current i i that flows through the high resistance film 104
102が減少する力 同時に同相電流 i 、  The force by which 102 is reduced
103 104も減少してしまう。 こ とはアンテナ素子 101の指向性利得を低下させる要因となる。つまり、アンテナ素子 1 01の長さより高抵抗膜 104の長さを長くするとアンテナ素子 101の指向性利得は低 下する。  103 104 will also decrease. This is a factor that decreases the directivity gain of the antenna element 101. That is, when the length of the high resistance film 104 is made longer than the length of the antenna element 101, the directivity gain of the antenna element 101 is lowered.
[0023] 図 9は、図 7の金属筐体 102において、アンテナ素子と同じ長さだけ金属筐体 102 の表面に高抵抗膜を形成したときの電流分布を示す概念図である。この場合は、図 9に示すように、高抵抗膜 104の領域を流れる逆相電流 i は減少するが、同相電流  FIG. 9 is a conceptual diagram showing a current distribution when a high resistance film is formed on the surface of the metal casing 102 by the same length as the antenna element in the metal casing 102 of FIG. In this case, as shown in FIG. 9, the reverse-phase current i flowing through the region of the high-resistance film 104 decreases, but the common-mode current
102  102
i 、i は高抵抗膜 104が形成されていないため減少しない。つまり、同相電流 i i and i do not decrease because the high resistance film 104 is not formed. That is, the common-mode current i
103 104 103103 104 103
、 i はアンテナ素子 101の指向性利得の向上に寄与する電流であるため、アンテナ, I is the current that contributes to the improvement of the directivity gain of the antenna element 101.
104 104
素子の長さと高抵抗膜 104の長さを同じにすることでアンテナ素子 101の指向性利 得は向上する方向に作用する。  By making the length of the element and the length of the high-resistance film 104 the same, the directivity gain of the antenna element 101 is improved.
[0024] 図 10は、金属筐体 102の表面に形成する高抵抗膜 104の長さの違いによる指向 性利得の改善効果の大きさを比較した性能評価図である。すなわち、図 10Aは、金 属筐体の表面に形成した高抵抗膜の長さの違いを示し、長さ Aはアンテナ素子の長 さの半分だけ高抵抗膜を形成した場合を示し、長さ Bはアンテナ素子の長さと同じ長 さだけ高抵抗膜を形成した場合を示し、長さ Cはアンテナ素子と対向する領域及び それより前部の全領域に高抵抗膜を形成した場合を示し、長さ Dは金属筐体の表面 全域に亘つて高抵抗膜を形成した場合を示して!/、る。  FIG. 10 is a performance evaluation diagram comparing the magnitude of the effect of improving the directivity gain due to the difference in the length of the high resistance film 104 formed on the surface of the metal casing 102. 10A shows the difference in the length of the high-resistance film formed on the surface of the metal housing, and length A shows the case where the high-resistance film is formed by half the length of the antenna element. B shows the case where the high resistance film is formed by the same length as the length of the antenna element, and length C shows the case where the high resistance film is formed in the region facing the antenna element and in the entire region in front of it. The length D indicates the case where a high resistance film is formed over the entire surface of the metal housing!
[0025] また、図 10Bは、図 10Aのそれぞれの高抵抗膜 104の長さに対する指向性利得の 大きさを示し、横軸は高抵抗膜の長さ A、 B、 C、 Dの種別、縦軸は指向性利得の大き さを表わしている。なお、参考のために、金属筐体 102の表面に高抵抗膜を形成しな V、場合の指向性利得の大きさも示して 、る。 FIG. 10B shows the directivity gain with respect to the length of each high resistance film 104 in FIG. 10A. The horizontal axis represents the length of the high-resistance film A, B, C, and D, and the vertical axis represents the directivity gain. For reference, V indicates that the high resistance film is not formed on the surface of the metal casing 102, and the magnitude of the directivity gain is also shown.
[0026] すなわち、金属筐体 102の表面全域に亘つて高抵抗膜 104を形成した場合 (D)の 指向性利得は 3. 366dBiであり、金属筐体 102の表面に高抵抗膜 104を形成しない 場合の指向性利得 (3. 015dBi)よりは指向性利得が大きいが、高抵抗膜 104を形 成した効果としては最も低い。次に、アンテナ素子 101の長さの半分だけ高抵抗膜 1 04を形成した場合 (A)の指向性利得は 3. 498dBiであって、金属筐体 102の表面 全域に亘つて高抵抗膜 104を形成した場合 (D)より指向性利得の向上効果はやや 大きい。また、アンテナ素子 101と対向する領域及びそれより前部の全領域に高抵 抗膜 104を形成した場合 (C)の指向性利得は 3. 556dBiであって、(A)の場合より さらに指向性利得の向上効果は大きい。最も指向性利得の向上効果が大きいのは、 アンテナ素子 101の長さと同じ長さだけ高抵抗膜 104を形成した場合 (B)であり、そ の指向性利得は 3. 651dBiである。つまり、アンテナ素子 101の長さと同じ長さだけ 高抵抗膜 104を形成した場合 (B)は高抵抗膜 104がない場合と比較して、 0. 6dBi 程度まで指向性利得が改善される。  That is, when the high resistance film 104 is formed over the entire surface of the metal casing 102, the directivity gain in (D) is 3.366 dBi, and the high resistance film 104 is formed on the surface of the metal casing 102. Although the directivity gain is larger than the directivity gain (3.015 dBi) in the case of not doing so, the effect of forming the high-resistance film 104 is the lowest. Next, when the high-resistance film 104 is formed by half the length of the antenna element 101, the directivity gain in (A) is 3.498 dBi, and the high-resistance film 104 extends over the entire surface of the metal housing 102. The effect of improving the directivity gain is slightly greater than when (D) is formed. In addition, when the high resistance film 104 is formed in the region facing the antenna element 101 and in the entire region in front of it, the directivity gain in (C) is 3.556 dBi, which is more directional than in (A). The effect of improving the sex gain is great. The effect of improving the directivity gain is greatest when the high resistance film 104 is formed by the same length as the antenna element 101 (B), and the directivity gain is 3.651 dBi. That is, when the high resistance film 104 is formed by the same length as the length of the antenna element 101 (B), the directivity gain is improved to about 0.6 dBi compared to the case where the high resistance film 104 is not provided.
[0027] すなわち、金属筐体 102の表面に形成する高抵抗膜 104の長さはアンテナ素子 1 01と同じ程度の長さであることが最も指向性利得の向上に寄与する。言い換えると、 逆相電流 i が流れる領域に絞って金属筐体 102の表面に高抵抗膜 104を形成し  That is, the length of the high resistance film 104 formed on the surface of the metal casing 102 is the same as that of the antenna element 101, which contributes to the improvement of the directivity gain. In other words, the high resistance film 104 is formed on the surface of the metal casing 102 by focusing on the region where the reverse phase current i flows.
102  102
て逆相電流分のみを抑制することにより指向性利得は最も向上する。このことは、金 属筐体 102を電子部品に置き換えた場合は、アンテナ素子 101と同じ長さだけ近接 する電子部品の表面に高抵抗膜 104を形成することにより、その電子部品の表面を 流れる逆相電流分のみを抑制することができるので、該当する電子部品の誤動作を 抑制することが可能となる。  Thus, the directivity gain is most improved by suppressing only the reverse phase current. This means that when the metal casing 102 is replaced with an electronic component, the high resistance film 104 is formed on the surface of the electronic component that is close to the antenna element 101 by the same length, thereby flowing on the surface of the electronic component. Since only the reverse phase current can be suppressed, it is possible to suppress malfunction of the corresponding electronic component.
[0028] 〈実施の形態 3〉 <Embodiment 3>
実施の形態 3では、金属筐体 102の表面に形成する高抵抗膜の幅の違いによる指 向性利得の改善効果の相違を検討し、高抵抗膜の最適な幅について説明する。図 1 1は、図 7において、アンテナ素子と同じ長さで同じ幅の高抵抗膜 104を金属筐体 10 2に形成したときの電流分布を示す概念図である。図 11に示すように、給電点 103か らアンテナ素子 101に対してアンテナ電流 i が流れると、アンテナ素子 101と対向 In Embodiment 3, the difference in the effect of improving the directional gain due to the difference in the width of the high resistance film formed on the surface of the metal casing 102 will be examined, and the optimum width of the high resistance film will be described. Fig. 1 1 shows a high-resistance film 104 of the same length and the same width as the antenna element in Fig. 7. 2 is a conceptual diagram showing a current distribution when formed in FIG. As shown in FIG. 11, when an antenna current i flows from the feed point 103 to the antenna element 101, the antenna element 101 faces the antenna element 101.
101  101
する高抵抗膜 104の領域には逆相電流 i が流れるが、その逆相電流 i は高抵抗  The reverse phase current i flows through the region of the high resistance film 104 that
102 102 膜 104の抵抗値に依存して小さな値になる。  102 102 A small value depending on the resistance value of the film 104.
[0029] しかし、高抵抗膜 104の幅はアンテナ素子 101の幅と同じであるので、高抵抗膜 10 4の幅からはみ出た両側部分の表面において、逆相電流 i 、i が漏れ出した形 However, since the width of the high resistance film 104 is the same as the width of the antenna element 101, the reverse phase currents i and i leak out on the surfaces of both side portions protruding from the width of the high resistance film 104.
102a 102b  102a 102b
で流れる。そのため、アンテナ電流 i 力も相殺される高抵抗膜 104上の逆相電流 i  It flows in. Therefore, the anti-phase current i on the high-resistance film 104 where the antenna current i force is also canceled
101 10 101 10
2は小さくなつても、両側部分の逆相電流 i 、 i 2 is small, but the opposite phase currents i and i on both sides
102a 102bが存在するため、アンテナ電流 i  102a 102b exists, so the antenna current i
10 と打ち消し合い、結果的に、見掛け上のアンテナ電流 i は小さくなるので、アンテ As a result, the apparent antenna current i becomes smaller.
1 101 1 101
ナ素子 101の指向性利得を低下させる。なお、アンテナ素子 101の対向エリアから 前後に離れた位置にある金属筐体 102のエリアには同相電流 i 及び同相電流 i  The directivity gain of the N element 101 is reduced. The common-mode current i and the common-mode current i
103 104 が流れ、この同相電流 i , i はアンテナ素子 101の指向性利得の向上に寄与する  103 104 flows, and this common-mode current i, i contributes to the improvement of the directivity gain of the antenna element 101.
103 104  103 104
ことは実施の形態 2で述べたのと同じである。  This is the same as described in the second embodiment.
[0030] 図 12は、図 7において、高抵抗膜 104の長さをアンテナ素子 101と同じ長さで、幅 をアンテナ素子 101の幅より広く形成したときの電流分布を示す概念図である。すな わち、図 12に示すように金属筐体 102の高抵抗膜 104の幅を広く形成したときには、 アンテナ素子 101の対抗で発生する逆相電流 i を高抵抗膜 104で全て抑制するこ FIG. 12 is a conceptual diagram showing a current distribution when the length of the high resistance film 104 is the same as that of the antenna element 101 and the width is wider than the width of the antenna element 101 in FIG. That is, as shown in FIG. 12, when the width of the high-resistance film 104 of the metal casing 102 is wide, the high-resistance film 104 suppresses all of the reverse-phase current i generated by the opposing antenna element 101.
102  102
とに逆相電流 i  And negative phase current i
102が減少し、よって見掛け上のアンテナ電流 i  102 decreases, so the apparent antenna current i
101が大きくなる。その結 果、アンテナ素子 101の指向性利得を向上させる。つまり、高抵抗膜 104の幅力 ァ ンテナ素子 101の幅より広い金属筐体 102の幅一杯まで広くなると、アンテナ素子 1 01の指向性利得は向上する方向に作用する。  101 gets bigger. As a result, the directivity gain of the antenna element 101 is improved. In other words, when the width of the metal casing 102 wider than the width force antenna element 101 of the high resistance film 104 is increased to the full width, the directivity gain of the antenna element 101 acts in the direction of improvement.
[0031] 図 13は、金属筐体の表面に形成する高抵抗膜 104の幅の違いによる指向性利得 の改善効果の大きさを比較した性能評価図である。すなわち、図 13Aは、金属筐体 102の表面に形成した高抵抗膜の幅の違いを示し、幅 Eはアンテナ素子 101の幅と 同じ幅だけ高抵抗膜を形成した場合を示し、幅 Fはアンテナ素子の幅より広く高抵抗 膜を形成した場合を示して!/ヽる。  FIG. 13 is a performance evaluation diagram comparing the magnitude of the directivity gain improvement effect due to the difference in the width of the high resistance film 104 formed on the surface of the metal casing. That is, FIG. 13A shows the difference in the width of the high resistance film formed on the surface of the metal casing 102, the width E shows the case where the high resistance film is formed by the same width as the width of the antenna element 101, and the width F is The case where a high resistance film is formed wider than the width of the antenna element is shown!
[0032] また、図 13Bは、図 13Aのそれぞれの高抵抗膜 104の幅に対する指向性利得の大 きさを示し、横軸は高抵抗膜 104の幅 E、 Fの種別、縦軸は指向性利得の大きさを表 わしている。なお、参考のために、金属筐体 102の表面に高抵抗膜を形成しない場 合の指向性利得の大きさも示している。 [0032] FIG. 13B shows the magnitude of the directivity gain with respect to the width of each high resistance film 104 in FIG. 13A. The horizontal axis represents the types of widths E and F of the high resistance film 104, and the vertical axis represents Table of sex gain I am. For reference, the directivity gain when the high resistance film is not formed on the surface of the metal casing 102 is also shown.
[0033] すなわち、アンテナ素子 101と同じ幅だけ高抵抗膜を形成した場合 (E)の指向性 利得は 3. 651dBiであり、金属筐体 102の表面に高抵抗膜を形成しない場合の指 向性利得(3. 015dBi)より指向性利得が大きい。しかし、金属筐体 102の幅より広く 高抵抗膜 104を形成した場合 (F)の指向性利得は 4. 163dBiであって、高抵抗膜が ない場合に比べて 1. ldBi程度まで指向性利得が向上する。つまり、アンテナ素子 1 01の幅より金属筐体 102の幅の方が広い場合は、高抵抗膜 104の幅を広くすること によって指向性利得は最大に改善される。  That is, when the high resistance film having the same width as the antenna element 101 is formed, the directivity gain of (E) is 3.651 dBi, and the direction when the high resistance film is not formed on the surface of the metal housing 102 The directivity gain is larger than the directivity gain (3.015 dBi). However, when the high resistance film 104 is formed wider than the width of the metal housing 102, the directivity gain in (F) is 4.163 dBi, which is about 1. ldBi compared to the case without the high resistance film. Will improve. That is, when the width of the metal casing 102 is wider than the width of the antenna element 101, the directivity gain is improved to the maximum by increasing the width of the high-resistance film 104.
[0034] すなわち、逆相電流が流れる領域においては、金属筐体 102の幅全域に亘つて高 抵抗膜を形成して逆相電流分のみを抑制することにより指向性利得が最も向上する 。このことは、金属筐体 102を電子部品に置き換えた場合は、電子部品の表面には アンテナ素子より広い幅で高抵抗膜を形成することにより、電子部品の表面を流れる 逆相電流分のみを抑制することができるので、該当する電子部品の誤動作を抑制す ることがでさる。  That is, in the region where the reverse phase current flows, the directivity gain is most improved by forming a high resistance film over the entire width of the metal casing 102 and suppressing only the reverse phase current. This means that when the metal housing 102 is replaced with an electronic component, a high-resistance film is formed on the surface of the electronic component with a width wider than that of the antenna element, so that only the reverse phase current flowing on the surface of the electronic component can be obtained. Since it can be suppressed, it is possible to suppress malfunction of the corresponding electronic component.
産業上の利用可能性  Industrial applicability
[0035] 本発明の小型アンテナ装置によれば、アンテナ素子に近接する実装部品や金属 面の近接する表面に適切な長さと幅で高抵抗膜を形成することによりに指向性利得 を大幅に向上させることができるので、携帯電話機や携帯端末などのモパイル端末 に有効に利用することができる。 [0035] According to the small antenna device of the present invention, the directivity gain is greatly improved by forming a high-resistance film with an appropriate length and width on a mounting component close to the antenna element or a surface close to the metal surface. Therefore, it can be used effectively for mopile terminals such as mobile phones and mobile terminals.

Claims

請求の範囲 The scope of the claims
[1] アンテナ素子の少なくとも一部が電子機器の実装部品または金属面に近接してほ ぼ平行に配置された前記電子機器に用いられる小型アンテナ装置であって、 前記アンテナ素子力 前記実装部品または前記金属面の表面に少なくとも前記実 装部品または前記金属面よりも抵抗値が高い高抵抗膜が形成される小型アンテナ装 置。  [1] A small antenna device used in the electronic device in which at least a part of the antenna element is arranged in parallel with a mounting part of an electronic device or a metal surface, and the antenna element force, the mounting component or A small antenna device in which a high resistance film having a resistance value higher than that of at least the mounting component or the metal surface is formed on a surface of the metal surface.
[2] 前記高抵抗膜の長さは、前記アンテナ素子と対向する領域において該アンテナ素 子の長さとほぼ同じである請求項 1に記載の小型アンテナ装置。  [2] The small antenna device according to [1], wherein the length of the high-resistance film is substantially the same as the length of the antenna element in a region facing the antenna element.
[3] 前記実装部品または前記金属面の幅が前記アンテナ素子の幅より広いとき、前記 高抵抗膜の幅は、前記アンテナ素子と対向する領域にぉ 、て該アンテナ素子の幅よ り広 、請求項 1に記載の小型アンテナ装置。 [3] When the width of the mounting component or the metal surface is wider than the width of the antenna element, the width of the high resistance film is wider than the width of the antenna element in a region facing the antenna element. The small antenna device according to claim 1.
[4] 前記高抵抗膜の幅は、前記実装部品または前記金属面の幅と同じである請求項 3 に記載の小型アンテナ装置。 4. The small antenna device according to claim 3, wherein a width of the high resistance film is the same as a width of the mounting component or the metal surface.
[5] 前記高抵抗膜は、蒸着または塗布によって前記実装部品または前記金属面の表 面に形成されて ヽる請求項 1に記載の小型アンテナ装置。 5. The small antenna device according to claim 1, wherein the high resistance film is formed on a surface of the mounting component or the metal surface by vapor deposition or coating.
PCT/JP2006/319197 2006-09-27 2006-09-27 Small antenna unit WO2008038354A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319197 WO2008038354A1 (en) 2006-09-27 2006-09-27 Small antenna unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319197 WO2008038354A1 (en) 2006-09-27 2006-09-27 Small antenna unit

Publications (1)

Publication Number Publication Date
WO2008038354A1 true WO2008038354A1 (en) 2008-04-03

Family

ID=39229801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319197 WO2008038354A1 (en) 2006-09-27 2006-09-27 Small antenna unit

Country Status (1)

Country Link
WO (1) WO2008038354A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258611A (en) * 2009-04-22 2010-11-11 Mitsubishi Cable Ind Ltd Planar antenna
JP2013183596A (en) * 2012-03-05 2013-09-12 Nagasaki Univ Wireless power transmission device and wireless power transmission system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103732U (en) * 1977-12-29 1979-07-21
JP2000188510A (en) * 1998-12-22 2000-07-04 Toshiba Corp Antenna device
JP2004104502A (en) * 2002-09-10 2004-04-02 Toshiba Corp Mobile communication terminal
JP2005005883A (en) * 2003-06-10 2005-01-06 Murata Mfg Co Ltd Directional antenna, radio communication device using the same, and method of improving directivity of antenna
JP2005309811A (en) * 2004-04-22 2005-11-04 Mitsubishi Materials Corp Rfid tag and rfid system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103732U (en) * 1977-12-29 1979-07-21
JP2000188510A (en) * 1998-12-22 2000-07-04 Toshiba Corp Antenna device
JP2004104502A (en) * 2002-09-10 2004-04-02 Toshiba Corp Mobile communication terminal
JP2005005883A (en) * 2003-06-10 2005-01-06 Murata Mfg Co Ltd Directional antenna, radio communication device using the same, and method of improving directivity of antenna
JP2005309811A (en) * 2004-04-22 2005-11-04 Mitsubishi Materials Corp Rfid tag and rfid system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258611A (en) * 2009-04-22 2010-11-11 Mitsubishi Cable Ind Ltd Planar antenna
JP2013183596A (en) * 2012-03-05 2013-09-12 Nagasaki Univ Wireless power transmission device and wireless power transmission system

Similar Documents

Publication Publication Date Title
US6791500B2 (en) Antenna with near-field radiation control
US9780450B2 (en) Antenna device and electronic appliance
US6980173B2 (en) Floating conductor pad for antenna performance stabilization and noise reduction
US9293827B2 (en) Communication terminal and antenna apparatus thereof
WO2010047032A1 (en) Antenna device
JP5403059B2 (en) Flexible substrate antenna and antenna device
JP5170233B2 (en) Double resonance antenna
JP2007329962A (en) Communication terminal
WO2008038354A1 (en) Small antenna unit
JP2011130280A (en) Antenna and radio communication method
JP2005269301A (en) Built-in antenna and electronic equipment having the same
CN110858513B (en) Inductor(s)
JP5995059B2 (en) Antenna device
CA2414124C (en) Antenna with near-field radiation control
JP5878366B2 (en) In-vehicle antenna device and in-vehicle antenna
JPWO2019017322A1 (en) Multi-band compatible antenna and wireless communication device
JP4922845B2 (en) Loop antenna mounting device
JP2009065060A (en) Solid electrolytic capacitor, and connection structure of the solid electrolytic capacitor to mounting substrate
JP2006019842A (en) Mobile wireless unit
WO2014007087A1 (en) Antenna apparatus
JP2012119953A (en) Antenna for portable radio device
JP4669234B2 (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP