WO2008037900A2 - Device for purifying gaseous media and method implementing said device - Google Patents

Device for purifying gaseous media and method implementing said device Download PDF

Info

Publication number
WO2008037900A2
WO2008037900A2 PCT/FR2007/001593 FR2007001593W WO2008037900A2 WO 2008037900 A2 WO2008037900 A2 WO 2008037900A2 FR 2007001593 W FR2007001593 W FR 2007001593W WO 2008037900 A2 WO2008037900 A2 WO 2008037900A2
Authority
WO
WIPO (PCT)
Prior art keywords
gaseous medium
bacteria
photocatalytic
reactor
biological
Prior art date
Application number
PCT/FR2007/001593
Other languages
French (fr)
Other versions
WO2008037900A3 (en
Inventor
Valéry BONNET
Nicolas Keller
Marc Jacques Ledoux
Marie-Claire Lett
Sébastien Josset
Jérôme TARANTO
Valérie KELLER-SPITZER
Original Assignee
Recyclanet
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Etablissement public à caractère scientifique et technologique
UNIVERSITE LOUIS PASTEUR Etablissement public à caractère culturel, scientifique et professionnel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Recyclanet, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Etablissement public à caractère scientifique et technologique, UNIVERSITE LOUIS PASTEUR Etablissement public à caractère culturel, scientifique et professionnel filed Critical Recyclanet
Publication of WO2008037900A2 publication Critical patent/WO2008037900A2/en
Publication of WO2008037900A3 publication Critical patent/WO2008037900A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • A61L9/205Ultra-violet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating

Definitions

  • the present invention relates to the purification of gaseous media; it relates to the decontamination, as defined hereinafter, of gaseous media comprising chemical and / or biological species, in particular, as regards the latter, bacteria, viruses and spores.
  • gas flows carrying chemical and / or biological species that can be harmful or toxic to more or less long term.
  • air conditioning systems or air from air-cooled towers which contain fine droplets of water in suspension (aerosols), which may contain harmful bacteria such as those of the genus Legionella, such as Legionella pne ⁇ mophila responsible for legionellosis.
  • air circulating in hospitals which is likely to carry viruses, bacteria and spores that can lead to nosocomial infections.
  • the air present in any confined or densely populated environment is likely to carry, in greater or lesser amounts, biological species of bacteria, virus or spore type, which it may be desirable to eliminate and / or chemical species that should be degraded into products that are harmless to human or animal health.
  • Filtration systems for such gas streams have been proposed. These filtration systems generally generate a significant cost, especially insofar as the chemical and / or biological species that one seeks to trap are generally of very small size. In addition, these systems generally require frequent maintenance, whether it is a replacement of consumables or a cleaning of the device.
  • photocatalysis is a process allowing the destruction of chemical and / or biological pollutants through the combined action a catalyst (generally titanium dioxide which is a metal semiconductor), also called photocatalyst, and an ultraviolet source whose role is to activate the catalyst on the surface of which will create charges (electrons and holes) which are the basis of pollutant destruction reactions.
  • a catalyst generally titanium dioxide which is a metal semiconductor
  • an ultraviolet source whose role is to activate the catalyst on the surface of which will create charges (electrons and holes) which are the basis of pollutant destruction reactions.
  • An object of the present invention is therefore to provide a device for the decontamination of gas flow which is compact, effective for a wide range of flow rates, inexpensive and simple to implement.
  • This device allows particularly effective degradation and inactivation of chemical and biological agents even for large airflows.
  • the element provided with a photocatalytic coating of the reactor is in motion.
  • This movement can be either induced by the gas flow, or directly or indirectly by a motor.
  • it may be in particular provided to articulate one or more elements provided with the photocatalytic coating on a drum driven in rotation by a motor.
  • the photocatalytic coating is deposited on all the faces of the mobile element. Indeed, the movement of the part then makes it possible to increase the exchange surface between the photocatalyst and the biological or chemical agents of the gaseous medium.
  • the illumination surface can increase substantially, and allow a better efficiency of the device.
  • the presence of the aforementioned movable parts makes it possible to put the gas stream in contact with the photocatalyst, in particular by inducing a non-laminar or even turbulent regime within the reactor, which increases the likelihood of encounter between the chemical agents and / or biological and photocatalytic coating.
  • the device according to the invention comprises a reactor of which at least a part of the surface is mobile and can change orientation.
  • the device allows controlled periodic illumination, the semiconductor being photoactivated each time this surface is exposed to radiation and the photocatalytic coating thus activated can then be effective against chemical and / or biological agents.
  • the mobile element or elements also ensure the suction of the gaseous medium in the reactor and its delivery.
  • This embodiment makes it possible to reduce the complexity of the device as well as the losses of loads since it is no longer necessary to add an auxiliary fan.
  • the device can operate close to its nominal rotation value, which reduces its wear.
  • the irradiation means activate a portion of the photocatalytic coating periodically and not continuously
  • This periodic irradiation mode is particularly advantageous because it ensures constant global photocatalytic activity while allowing the photocatalyst to periodically return to the base state.
  • Such periodic partial irradiation of the photocatalyst can be obtained by rotating a cylindrical support carrying elements provided with photocatalytic coatings facing one or more fixed UV sources.
  • a preferred embodiment of the invention consists of a device in which the movable elements are constituted by blades of a tangential fan, provided with said photocatalytic coating.
  • fan-induced turbulence ensures a high probability of encounter between the contaminants and the photocatalytic surface. Therefore, this device can effectively treat a gas flow having a high flow rate of at least 5 m 3 / h. Then, it is no longer necessary, unlike other devices, to provide separate conduction means of the gas stream, it follows that the device comprises fewer elements and is therefore more reliable. In addition, this device is economical and easy to manufacture since it is sufficient to deposit the semiconductor on the blades of a tangential fan and then to associate a radiation source to achieve the device according to the invention.
  • a device comprising:
  • a reactor comprising a drum that can be rotated by drive means, on which drum blades are provided on at least one of their faces with a photocatalytic coating, which drum forms with guiding an inlet adapted to the introduction of the gaseous medium and an outlet adapted to the evacuation of the gaseous medium, and
  • decontamination means for irradiating the photocatalytic coating arranged so as to at least partially irradiate the photocatalytic coating.
  • decontamination is meant a treatment for inactivating biological agents and / or degrading the chemical agents so as to lose all or part of their hazardous nature, resulting in a purification of the gaseous medium treated.
  • chemical agents is intended to mean gaseous or solid compounds presenting a danger for humans or the environment, in particular nitrogen compounds of the NO x type, in particular
  • biological agents is meant, within the meaning of the present description, entities of biological nature, generally of small size, typically between 0.01 ⁇ m (microns) and 10 ⁇ m (microns), and likely to be carried by a gas stream.
  • the biological agents to be inactivated according to the method of the invention may in particular be bacteria (Legionella bacteria, such as Legionella pneumophila for example), viruses, spores, fungi, or even a mixture of such entities.
  • inactivated biological agent refers for its part, within the meaning of the present description, an agent of the aforementioned type having lost a biological activity, and in particular having lost its capacity of replication (or reproduction).
  • inactivated bacteria a bacterium unable to develop a colony after culturing in a suitable medium.
  • inactivated bacteria are considered especially as “inactivated bacteria”:
  • semiconductor material is intended to mean a material in which the electronic states have a band spectrum comprising a valence band and a conduction band separated by a forbidden band, and where the necessary energy to pass an electron from said valence band to said conduction band is preferably between 1.5 eV and 4 eV.
  • semiconductor material there may be mentioned titanium dioxide TiO 2, or alternatively other metal oxides such as WO3, ZnO or SnO ⁇ or metal sulfides such as CdS, ZnS or WS 2 or still other compounds such as GaAs, GaP, CdSe or SiC.
  • titanium dioxide which leads to particularly satisfactory results. It is known that, in a semiconductor material of the aforementioned type, it is created, under the effect of appropriate radiation, electron / hole pairs (a "hole” being an electronic deficit in the valence layer left during the "jump” of an electron towards the conduction band), which gives the material pronounced oxidation-reduction properties which are used in photocatalytic applications.
  • the photocatalytic material such as titanium dioxide is sufficiently active to allow the degradation and / or inactivation of chemical and / or biological agents in a gaseous medium where said agents are however highly dispersed.
  • the device of the invention makes it possible, for example, effectively to treat highly diluted gaseous media, namely comprising less than 10 ⁇ 3 biological agents per cm 3 , or even less than 10 " 4 biological agents per cm 3 .
  • the activity of a photocatalytic material is also sufficient to effectively treat gaseous media having high levels of chemical and / or biological agents, for example gaseous media containing more than 1 biological agent per cm 3 , and even more than 100 biological agents per cm 3 in most cases, and this even with large flows of gaseous flow for example of the order of 1 to 10 m 3 per hour.
  • the device of the invention allows, as a rule, to effectively treat gaseous media typically containing between 10 "and 100 biological agents per cm 3 , for example between 5.10 " 3 and 5 biological agents per cm 3 , and in particular diluted media containing between 10 -4 and 0.1 biological agents per cm 3 or concentrated media containing between 0.1 and 100 biological agents per cm 3 It is assumed that the degradation and inactivation of the chemical and / or biological agents is induced by the strongly oxidizing nature of the photocatalytic material and is initiated when these agents come into contact with the surface of the photoactivated semiconductor.
  • materials based on a semiconductor such as titanium dioxide, which also contains compounds such as gold or silver in metallic form, for example in the form of particles. dispersed in the semiconductor material or deposited on its surface.
  • the mass ratio advantageously remains less than 5%, or even 3%, and it is typically between 0.5 and 2%.
  • additional oxidants is however not required, in the general case, to obtain an effective treatment.
  • the photocatalytic degradation is very selective, which means that any chemical agent and / or biological is in principle likely to be degraded by contacting a photoactivated semiconductor.
  • titanium dioxide for example has a very broad spectrum of decontamination.
  • Another advantage of the device is that the particularly effective photocatalytic degradation is obtained very simply and at low cost, insofar as it requires only irradiation with relatively low energy radiation.
  • a radiation energy of the order of 3 to 3.2 eV that is to say of lengths of the order of 380 to 400 nm.
  • the energy required for the photoactivation can be further reduced if the semiconductor material is doped (for example by metals such as chromium or by compounds based on N, S or C) or else by using agents chromophores (anthracenes or anthracins for example), in combination with the semiconductor material.
  • a very low activation energy may be sufficient to photoactivate the material, which may for example correspond to wavelengths greater than or equal to 500 nm, for example greater than or equal to 550 nm.
  • the irradiation of the semiconductor is generally carried out under radiation whose wavelength range is in the near ultraviolet range, for example by means of sunlight or else with the aid of sodium or mercury vapor, for example lamps called "black light".
  • the radiation used to photoactivate the semiconductor in the method of the invention is generally not, per se, sufficient energy radiation to provide a germicidal effect.
  • the radiation used to photoactivate the semiconductor materials according to the method of the invention thus generally have wavelengths greater than 254 nm, and typically greater than 320 nm, for example greater than or equal to 350 nm.
  • titanium dioxide for example, any commercial titanium dioxide can be used effectively in the process of the invention, which is still an advantage of the process.
  • the titanium dioxide used according to the process of the invention is anatase form, preferably at least 50%.
  • the titanium dioxide used may, for example, be essentially constituted (ie in general for at least 99% by weight, and preferably for at least 99.5% by weight, or even for at least 99.9% by weight) of anatase form.
  • the use of TiO 2 in rutile form is also interesting, insofar as the TiO 2 in this form is photoactivated by the spectrum of visible light.
  • the titanium dioxide used comprises a mixture of anatase form and of rutile form, with an anatase / rutile proportion preferably between 50/50 and 99/1, for example between 70/30 and 90/10, and typically of the order of 80/20.
  • an anatase / rutile proportion preferably between 50/50 and 99/1, for example between 70/30 and 90/10, and typically of the order of 80/20.
  • the semiconductor material used it is most often advantageous for the semiconductor material used to have a specific surface area of between 20 and 500.
  • the specific surface area referred to herein is the BET specific surface area measured by nitrogen adsorption according to the so-called Brunauer-Emmet-Teller technique.
  • a semiconductor having as such a high specific surface or else deposited on a finely divided or porous support (such as, for example, a silica support) having a high specific surface area.
  • titanium dioxide As particularly advantageous titanium dioxide, it will be possible to use titanium dioxide marketed by the company Degussa under the name T ⁇ O 2 type P25.
  • the photoactivated semiconductor material that is used according to the invention may be in various physical forms, depending on the gaseous medium treated, and in particular depending on the volume of this medium and the rate at which it is desired to perform the treatment.
  • the semiconductor material may be used in any form adapted to its irradiation by wavelength radiation for its photoactivation and allowing the contact with the gaseous medium to be decontaminated.
  • the semiconductor material used is implemented in the immobilized state on the surface of a mobile element of the reactor, the gaseous medium to be treated being brought into contact with this modified surface.
  • the surface on which the titanium dioxide semiconductor material is immobilized may be a surface on which a support of high specific surface area (for example a layer of silica) is deposited, the semiconductor material being immobilized on this support.
  • the semiconductor material can be implemented in the form of a deposit obtained by depositing a film of a dispersion (for example an aqueous dispersion) of particles based on said semiconductor, on a surface and then drying the resulting film.
  • the deposit based on semiconductor material is preferably a titanium dioxide deposit chosen from those preferred above.
  • a titanium dioxide of anatase form or a rutile / anatase mixture and having a specific surface of between 20 and 500 m 2 lg.
  • This deposit may for example be obtained by depositing a film of a dispersion (for example an aqueous dispersion) of particles based on titanium dioxide semiconductor material on the surface of the reactor element, then drying the obtained film.
  • This deposit can also be obtained by drying a film of a dispersion in a non-aqueous solvent or the semiconductor used is not soluble.
  • the photoactivated semiconductor used is titanium dioxide
  • a deposition of titanium dioxide on the surface can be carried out by depositing a solution of titanate and by thermally treating the deposit thus obtained, thereby obtaining the TiC * 2 formation from the titanate precursor.
  • the deposition of semiconductor material of the titanium dioxide type may be of a continuous or discontinuous nature, but it is preferably a continuous solid film distributed over the entire surface of the mobile element or elements of the reactor, in particular to optimize the exchange surface between the gas stream and the photoactivated titanium dioxide.
  • the deposit is present on all the faces of the mobile element that can be activated under the effect of the irradiation.
  • this deposit preferably has an average thickness of between 0.5 ⁇ m and 100 ⁇ m, for example between 1 and 20 ⁇ m, this thickness being typically of the order of 5 ⁇ m.
  • the irradiation means associated with the photocatalytic coating are generally radiation sources comprising photons of energy greater than 3 eV (preferably greater than 3.2 eV), for example one or more lamps emitting radiation comprising lengths of waves below 400 nm (for example below 300 nm), for example lamps with black light or visible light.
  • the radiation source used may be sunlight.
  • these radiation sources are located outside the reactor.
  • the reactor wall has openings or portions made of a material that is transparent to at least a portion of the effective radiation emitted by the sources, i.e. the reactor wall passes at least a portion of the radiation which has sufficient energy to activate the semiconductor.
  • the present invention also relates to a method adapted to the implementation of the aforementioned device.
  • the invention also relates to a method for decontaminating a gaseous medium, comprising the step of passing at least a portion of the gaseous medium to be decontaminated through the device as described.
  • a method for decontaminating a gaseous medium comprising the step of passing at least a portion of the gaseous medium to be decontaminated through the device as described.
  • the gaseous medium comprises biological agents, in particular bacteria and in particular Legionella bacteria such as Legionella pneumophila.
  • the gaseous medium is in the form of an aerosol.
  • the process of the invention is conducted on a gaseous medium comprising harmful and toxic chemical or biological agents and / or pathogens.
  • the inactivation most often consists of denuding the agents of their harmful, toxic or pathogenic nature, in particular by transforming the chemical agents or by inhibiting the replication capacity (reproduction) of the biological agents.
  • the "gaseous medium" in which the above-mentioned agents are dispersed is generally air, but it may possibly be another gas. Nevertheless, for optimum efficiency of the decontamination process, it is preferable that the gaseous medium contains oxygen.
  • the gaseous medium is in the form of an aerosol which comprises fine liquid droplets, generally droplets of water, dispersed within the gaseous medium. The chemical and / or biological agents may then be present, wholly or partly, within these droplets.
  • the treated gaseous medium may be an aerosol comprising air as dispersing gaseous medium and containing water droplets including aforementioned agents.
  • chemical and / or biological species can also be simply dispersed as such within the gaseous medium.
  • the decontamination process of the present invention is carried out by contacting the gaseous medium with a photocatalytic material.
  • a photocatalytic material Such a material exhibits catalytic activity when exposed to radiation.
  • These materials generally comprise a semiconductor.
  • the reactor 9 comprises a drum 4 rotatably mounted and connected to drive means (not shown).
  • the drum 4 is pierced with openings between which are articulated blades 5 bent and forming an angle with the surface of the drum when they are rotated.
  • the blades 5 are coated on one or preferably on both sides with a semiconductor material 6, for example titanium dioxide.
  • the blades 5 of the tangential fan form moving elements provided with a photocatalytic coating.
  • the reactor 9 further comprises an inlet 2 and an outlet 3 of the gas stream, formed by the drum 4 and the guide means 8.
  • the guide means 8 are composed of a guide plate 8a (also called "profile") and a vortex tongue 8b and on which the titanium dioxide can also advantageously be deposited.
  • the drum 4 being disposed in the inlet, and provided with openings, a part of the gas flow entering the device is sucked through the drum to be discharged at the outlet.
  • the positioning and the geometry of the guiding means induce a degree of turbulence in the gas flow.
  • the gas flow is thus strongly stirred in a turbulent flow near the semiconductor-coated blades 6. This stirring makes it possible to increase the probability of contact with a biological and / or chemical agent and makes it possible to reach a very high efficiency.
  • the guide means 8 are adjustable in order to allow the modification of the direction of suction and discharge of the gaseous flow of the reactor.
  • the device 1 also comprises irradiation means 7, in the illustrated embodiment composed of two lamps.
  • the lamps emit appropriate radiation to activate the photocatalyst, usually in the ultraviolet.
  • This may include UV-emitting lamps ("black light” type) or lamps with visible light emission.
  • the photocatalyst is activated under radiation in the UVA domain.
  • the irradiation means 7 are arranged to expose at least partially the radiation photocatalytic deposit.
  • the irradiation means comprise a lamp composed of two tubes (also called “U-shaped lamp” or “compact lamp”), but in practice, the number of lamps can vary as well as their power.
  • the irradiation means 7 are preferably arranged near the mobile element (s) provided with a photocatalytic coating, optionally inside or outside the reactor. Due to the design of some fan components and to avoid disturbance of the airflow, the positioning of the lamp outside the fan is however preferred as part of the illustrated design.
  • the drum 4 When the device 1 is turned on, the drum 4 is rotated, creating a suction zone at the inlet 2 of the device 1. The gas flow, illustrated by arrows in the figure, is then sucked by the inlet 2 and largely through the drum 4 before being discharged from the reactor through the outlet 3.
  • the design of the device described has a number of advantages.
  • the device allows controlled periodic illumination of the photocatalytic surfaces of the reactor. Indeed, the alternating operation of the photocatalyst, which is successively illuminated and unlit, ensures a periodic return of the semiconductor in the non-activated state, without the need to interrupt the lamp, which would cause wear premature of it. However, a part of the photocatalytic surface remains always lit and therefore in operation, thus ensuring a decontamination constant over time and reliable.
  • the rotation of the drum causes the blades successively in front of the lamp, a portion of the blades being at each moment illuminated and their photocatalytic coating thus activated.
  • the blade is driven away from the lamp, allowing the photocatalyst to return to the off state.
  • this alternation between the activated state and the deactivated state decreases the recombination rate of the electron / hole charges, which optimizes the use of photons that are useful for pollutant degradation reactions.
  • the presence of the photocatalyst on moving elements, in particular on the blades of a fan, makes it possible to increase the illumination area and thus the treatment efficiency of the device.
  • the movable elements and their arrangement also allow to ensure the intense mixing of the gas flow, and thus a good probability of contact between the agents and the photocatalytic surface.
  • the device 1 described is easy to manufacture. Indeed, tangential fans are commercially available. The impregnation is carried out directly without disassembling the fan.
  • the photocatalyst is suspended in a liquid, typically in water, and is sprayed at the surface of the blades and means of guiding the fan using a compressed gas spraying system, the spray gun type, and finally dried.
  • the deposition can be obtained by spraying with compressed air an aqueous dispersion of semiconductor particles, then drying the film obtained under compressed air only and possibly repeating these operations.
  • Spray deposition is particularly easy and ensures a reproducible and repeatable deposit on both sides of the blades and on the guide means.
  • the film typically has a thickness of the order of 5 ⁇ m (microns), this thickness being able to be modulated in particular by varying the initial concentration of the semiconductor particle dispersion and the number of deposition / drying cycles.
  • the device 1 can be used to decontaminate large gas flows, typically between 1 and 100 m 3 / h, and this with a very good efficiency, namely bactericidal activity greater than 90% as defined in the example in one example. single run.
  • a gas stream is generally recovered in which most of the biological and / or chemical agents are inactivated and / or degraded.
  • the device 1 may comprise, downstream of the outlet 3, means for diverting a part of the outgoing gas flow, associated with means of qualitative and / or quantitative analysis of the biological and / or chemical agents in the gas stream, similar to those that may be present upstream of entry 2.
  • the device may also comprise, downstream of the outlet 3, means allowing part or all of the outgoing gas flow to be redirected to the inlet 2 of the device, in order to further perfect the decontamination of the biological and / or chemical agents .
  • several devices may be arranged in series or in parallel, where the gas flow to be treated would be divided into several parts.
  • the device of the invention is particularly effective for the decontamination of gaseous medium containing harmful biological and / or chemical agents, toxic or pathogenic.
  • the aerosol treatment comprising Legionella pneumophila bacteria was carried out by means of a device as described in FIG. 1 having the following characteristics:
  • this device is known under the name “tangential blower with EC motor", type QG 030-303 / 12, marketed by the company EBM-PAPST.
  • TiO ⁇ P25 type marketed by Degussa titanium dioxide having a rutile ratio of forms / anatase 20/80 present in the reactor in the form of an average thickness of deposit approximately 5 ⁇ m and BET equal to 50 m 2 / g.
  • aerosol were formed from an aqueous suspension of Legionella pneumophila comprising 2 10 9 bacteria per ml of water, distributed between 1, 193 September 10 live bacteria per ml and about as dead bacteria (0.807 September 10 bacteria dead per ml). These aerosols were produced by injecting with a peristaltic pump the solution containing Legionella pneumophila in the flow through a Venturi type system.
  • the ratio of living bacteria to total bacteria was quantified. This quantification was performed by proceeding as follows. Legionella pneumophila bacteria, regardless of their state, are recovered, after passing through the photocatalytic device (or during the whites produced), in a bubble column with a volume of approximately 9000 ml containing a recovery liquid (sterile water which can contain glycerol), with a volume of 1000 ml. 30ml of solution are removed and then filtered on a 2 cm 2 surface filter, in order to recover all the bacteria. The bacteria on filters are then brought into contact with two dyes, a green dye (SYTO9 from Invitrogen) and a red dye (propidium iodide IP). Propidium iodide enters the bacterium only if the wall of the bacterium is damaged. The counting of bacteria on filters is carried out by the epifluorescence microscopy technique.
  • the bactericidal efficacy is then given by the ratio between the BV / BT value at the outlet and at the inlet of the reactor.

Abstract

The invention relates to a device for purifying a gaseous medium, said device comprising a reactor (9), at least one element (5) consisting of a tangential ventilator having blades provided with a photocatalytic coating (6) based on titanium oxide, for example, and associated irradiation means (7). The invention also relates to a method for purifying gaseous media using said device. The aim of the purification process is to inactivate and/or degrade chemical and/or biological species contained in the gaseous medium to be treated.

Description

DISPOSITIF DE PURIFICATION DE MILIEUX GAZEUX ET PROCEDE DEVICE FOR PURIFYING GASEOUS MEDIA AND METHOD
DE MISE EN OEUVREIMPLEMENTATION
La présente invention a trait à la purification de milieux gazeux ; elle concerne la décontamination, telle que définie ci-après, de milieux gazeux comportant des espèces chimiques et/ou biologiques, notamment, s'agissant de ces dernières, des bactéries, virus et spores.The present invention relates to the purification of gaseous media; it relates to the decontamination, as defined hereinafter, of gaseous media comprising chemical and / or biological species, in particular, as regards the latter, bacteria, viruses and spores.
On rencontre dans de nombreux domaines des flux gazeux véhiculant des espèces chimiques et/ou biologiques qui peuvent s'avérer nocives ou toxiques à plus ou moins long terme. A titre d'exemple, on peut en particulier citer l'air des systèmes de climatisation ou bien l'air issu de tours aéroréfrigérées, qui contiennent de fines gouttelettes d'eau en suspension (aérosols) qui peuvent renfermer des bactéries nocives telles que celles du genre Legionella, comme Legionella pneυmophila responsable de la légionellose. Un autre exemple de flux gazeux contaminé est celui de l'air circulant au sein des hôpitaux, qui est susceptible de véhiculer des virus, bactéries et spores pouvant induire des infections nosocomiales. De façon plus générale, l'air présent dans tout milieu confiné ou à forte densité de population est susceptible de véhiculer, en quantité plus ou moins importante, des espèces biologiques de type bactéries, virus ou spores, qu'il peut être souhaitable d'éliminer et/ou des espèces chimiques qu'il convient de dégrader en des produits inoffensifs pour la santé humaine ou animale.There are in many areas gas flows carrying chemical and / or biological species that can be harmful or toxic to more or less long term. By way of example, air conditioning systems or air from air-cooled towers, which contain fine droplets of water in suspension (aerosols), which may contain harmful bacteria such as those of the genus Legionella, such as Legionella pneυmophila responsible for legionellosis. Another example of a contaminated gas flow is that of air circulating in hospitals, which is likely to carry viruses, bacteria and spores that can lead to nosocomial infections. More generally, the air present in any confined or densely populated environment is likely to carry, in greater or lesser amounts, biological species of bacteria, virus or spore type, which it may be desirable to eliminate and / or chemical species that should be degraded into products that are harmless to human or animal health.
Il a été proposé des systèmes de filtration de tels flux gazeux. Ces systèmes de filtration engendrent en général un coût important, notamment dans la mesure où les espèces chimiques et/ou biologiques qu'on cherche à piéger sont généralement de taille très faible. De plus ces systèmes requièrent généralement une maintenance fréquente, qu'il s'agisse d'un remplacement de consommables ou d'un nettoyage de l'appareil.Filtration systems for such gas streams have been proposed. These filtration systems generally generate a significant cost, especially insofar as the chemical and / or biological species that one seeks to trap are generally of very small size. In addition, these systems generally require frequent maintenance, whether it is a replacement of consumables or a cleaning of the device.
D'autres systèmes ont été proposés basés sur le principe de la photocatalysβ. Brièvement, la photocatalyse est un procédé permettant la destruction de polluants chimiques et/ou biologiques grâce à l'action conjuguée d'un catalyseur (généralement du dioxyde de titane qui est un semi-conducteur métallique), également appelé photocatalyseur, et d'une source ultraviolette qui a pour rôle d'activer le catalyseur à la surface duquel vont se créer des charges (électrons et trous) qui sont à la base des réactions de destruction des polluants. II est important de noter qu'une fois ces paires de charges formées à la surface du catalyseur, plus de 95% d'entre elles se recombinent et seulement moins de 5% vont participer aux réactions de destruction des polluants, Parmi les systèmes dits photocatalytiques, certains utilisent un ventilateur dont les pales constituent le support sur lequel le photocatalyseur est déposé et irradié par une ou plusieurs sources lumineuses ultraviolettes. On citera par exemple le système décrit dans le brevet US 5 919422.Other systems have been proposed based on the principle of photocatalysb. Briefly, photocatalysis is a process allowing the destruction of chemical and / or biological pollutants through the combined action a catalyst (generally titanium dioxide which is a metal semiconductor), also called photocatalyst, and an ultraviolet source whose role is to activate the catalyst on the surface of which will create charges (electrons and holes) which are the basis of pollutant destruction reactions. It is important to note that once these pairs of charges formed on the surface of the catalyst, more than 95% of them recombine and only less than 5% will participate in the reactions of destruction of pollutants, among the so-called photocatalytic systems , some use a fan whose blades are the support on which the photocatalyst is deposited and irradiated by one or more ultraviolet light sources. For example, the system described in US Pat. No. 5,919,422.
A l'heure actuelle, pour réaliser la décontamination de tels milieux gazeux viciés, la plupart des solutions proposées sont toutefois relativement coûteuses et/ou complexes à mettre en œuvre, et leur l'efficacité n'est pas toujours satisfaisante.At present, to achieve the decontamination of such stale gaseous media, most of the solutions proposed are however relatively expensive and / or complex to implement, and their effectiveness is not always satisfactory.
Un but de la présente invention est donc de fournir un dispositif pour la décontamination de flux gazeux qui soit compact, efficace pour une large gamme de débits, peu onéreux et simple à mettre en oeuvre.An object of the present invention is therefore to provide a device for the decontamination of gas flow which is compact, effective for a wide range of flow rates, inexpensive and simple to implement.
Ce dispositif permet une dégradation et inactivation particulièrement efficace des agents chimiques et biologiques même pour des débits d'air importants.This device allows particularly effective degradation and inactivation of chemical and biological agents even for large airflows.
De préférence, l'élément muni d'un revêtement photocatalytique du réacteur est en mouvement. Ce mouvement peut être soit induit par le flux gazeux, soit directement ou indirectement par un moteur. Dans ce cadre, il peut être en particulier prévu d'articuler un ou plusieurs éléments munis du revêtement photocatalytique sur un tambour entraîné en rotation par un moteur. Préférentiellement, le revêtement photocatalytique est déposé sur toutes les faces de l'élément mobile. En effet, le mouvement de la pièce permet alors d'accroître la surface d'échange entre le photocatalyseur et les agents biologiques ou chimiques du milieu gazeux.Preferably, the element provided with a photocatalytic coating of the reactor is in motion. This movement can be either induced by the gas flow, or directly or indirectly by a motor. In this context, it may be in particular provided to articulate one or more elements provided with the photocatalytic coating on a drum driven in rotation by a motor. Preferably, the photocatalytic coating is deposited on all the faces of the mobile element. Indeed, the movement of the part then makes it possible to increase the exchange surface between the photocatalyst and the biological or chemical agents of the gaseous medium.
Dans le cadre du dispositif selon l'invention, et selon la géométrie et le positionnement des éléments mobiles, la surface d'éclairement peut augmenter sensiblement, et permettre une meilleure efficacité du dispositif. Par ailleurs, la présence des pièces mobiles précitées permet une bonne mise en contact du flux gazeux avec le photocatalyseur, notamment en induisant un régime non laminaire, voire turbulent au sein du réacteur, ce qui augmente les probabilités de rencontre entre les agents chimiques et/ou biologiques et le revêtement photocatalytique.In the context of the device according to the invention, and according to the geometry and the positioning of the moving elements, the illumination surface can increase substantially, and allow a better efficiency of the device. Moreover, the presence of the aforementioned movable parts makes it possible to put the gas stream in contact with the photocatalyst, in particular by inducing a non-laminar or even turbulent regime within the reactor, which increases the likelihood of encounter between the chemical agents and / or biological and photocatalytic coating.
De préférence, le dispositif selon l'invention comporte un réacteur dont au moins une partie de la surface est mobile et peut changer d'orientation. Dans ce cas, le dispositif permet une illumination périodique contrôlée, le semi-conducteur étant photoactivé chaque fois que cette surface est exposée au rayonnement et le revêtement photocatalytique ainsi activé peut alors être efficace contre les agents chimiques et/ou biologiques.Preferably, the device according to the invention comprises a reactor of which at least a part of the surface is mobile and can change orientation. In this case, the device allows controlled periodic illumination, the semiconductor being photoactivated each time this surface is exposed to radiation and the photocatalytic coating thus activated can then be effective against chemical and / or biological agents.
Selon un mode de réalisation préféré, le ou les éléments mobiles assurent également l'aspiration du milieu gazeux dans le réacteur puis son refoulement. Ce mode de réalisation permet de réduire la complexité du dispositif ainsi que les pertes de charges puisqu'il n'est plus nécessaire d'adjoindre de ventilateur annexe. Par ailleurs, le dispositif peut fonctionner proche de sa valeur nominale de rotation, ce qui réduit son usure.According to a preferred embodiment, the mobile element or elements also ensure the suction of the gaseous medium in the reactor and its delivery. This embodiment makes it possible to reduce the complexity of the device as well as the losses of loads since it is no longer necessary to add an auxiliary fan. Moreover, the device can operate close to its nominal rotation value, which reduces its wear.
Selon un mode de réalisation préféré, les moyens d'irradiation activent une partie du revêtement photocatalytique de manière périodique et non pas continueAccording to a preferred embodiment, the irradiation means activate a portion of the photocatalytic coating periodically and not continuously
(alors qu'il était logique de penser dans ce cas que la décontamination serait plus importante). Ce mode d'irradiation périodique est particulièrement avantageux car il assure une activité photocatalytique globale constante tout en permettant au photocatalyseur de revenir périodiquement à l'état de base. Une telle irradiation partielle périodique du photocatalyseur peut être obtenue en faisant tourner un support cylindrique portant des éléments munis de revêtements photocatalytiques face à une ou plusieurs sources UV fixes.(while it was logical to think in this case that the decontamination would be more important). This periodic irradiation mode is particularly advantageous because it ensures constant global photocatalytic activity while allowing the photocatalyst to periodically return to the base state. Such periodic partial irradiation of the photocatalyst can be obtained by rotating a cylindrical support carrying elements provided with photocatalytic coatings facing one or more fixed UV sources.
Aussi, une réalisation préférentielle de l'invention consiste en un dispositif dans lequel les éléments mobiles sont constitués par des pales d'un ventilateur tangentiel, munies dudit revêtement photocatalytique.Also, a preferred embodiment of the invention consists of a device in which the movable elements are constituted by blades of a tangential fan, provided with said photocatalytic coating.
Ce mode de réalisation présente plusieurs avantages. Tout d'abord, les turbulences induites par le ventilateur assurent une probabilité de rencontre élevée entre les agents contaminants et la surface photocatalytique. Par conséquent, ce dispositif permet de traiter de manière efficace un flux gazeux présentant un débit important, d'au moins 5 m3/h. Ensuite, il n'est plus nécessaire, contrairement aux autres dispositifs, de prévoir des moyens de conduction du flux gazeux séparés, tl s'ensuit que le dispositif comprend moins d'éléments et est donc plus fiable. En outre, ce dispositif est de fabrication économique et aisée puisqu'il suffit de déposer le semi-conducteur sur les pales d'un ventilateur tangentiel puis d'y associer une source de rayonnement pour aboutir au dispositif selon l'invention.This embodiment has several advantages. First, fan-induced turbulence ensures a high probability of encounter between the contaminants and the photocatalytic surface. Therefore, this device can effectively treat a gas flow having a high flow rate of at least 5 m 3 / h. Then, it is no longer necessary, unlike other devices, to provide separate conduction means of the gas stream, it follows that the device comprises fewer elements and is therefore more reliable. In addition, this device is economical and easy to manufacture since it is sufficient to deposit the semiconductor on the blades of a tangential fan and then to associate a radiation source to achieve the device according to the invention.
Particulièrement préféré est un dispositif comportant :Especially preferred is a device comprising:
- un réacteur comprenant un tambour susceptible d'être entraîné en rotation par des moyens d'entraînement, sur lequel tambour sont disposées des pales munies sur au moins l'une de leurs faces d'un revêtement photocatalytique, lequel tambour forme avec des moyens de guidage une entrée adaptée à l'introduction du milieu gazeux et une sortie adaptée à l'évacuation du milieu gazeux, eta reactor comprising a drum that can be rotated by drive means, on which drum blades are provided on at least one of their faces with a photocatalytic coating, which drum forms with guiding an inlet adapted to the introduction of the gaseous medium and an outlet adapted to the evacuation of the gaseous medium, and
- des moyens d'irradiation du revêtement photocatalytique disposés de manière à irradier au moins partiellement le revêtement photocatalytique. Par « décontamination », on entend un traitement permettant d'inactiver des agents biologiques et/ou dégrader les agents chimiques de manière à leur faire perdre tout ou partie de leur caractère dangereux, aboutissant ainsi à une purification du milieu gazeux traité.means for irradiating the photocatalytic coating arranged so as to at least partially irradiate the photocatalytic coating. By "decontamination" is meant a treatment for inactivating biological agents and / or degrading the chemical agents so as to lose all or part of their hazardous nature, resulting in a purification of the gaseous medium treated.
Par « agents chimiques », on entend, au sens de la présente description, des composés gazeux ou solides présentant un danger pour l'homme ou l'environnement, notamment des composés azotés de type NOx, en particulierFor the purposes of the present description, the term "chemical agents" is intended to mean gaseous or solid compounds presenting a danger for humans or the environment, in particular nitrogen compounds of the NO x type, in particular
NO∑, le monoxyde de carbone (CO), et les composés organiques volatils (aussi appelés « COV ») en particulier les composés aromatiques, (benzène, toluène, éthylbenzène, xylènes), les aldéhydes (formaldéhyde, acétaldéhyde) et/ou les composés halogènes (notamment les composés chlorés). Par "agents biologiques", on entend, au sens de la présente description, des entités de nature biologique, généralement de faible taille, typiquement entre 0,01 μm (microns) et 10 μm (microns), et susceptibles d'être véhiculés par un courant gazeux. Ainsi, les agents biologiques à inactiver selon le procédé de l'invention peuvent notamment être des bactéries (bactéries du genre Legionella, comme Legionella pneumophila par exemple), des virus, des spores, des champignons, ou bien encore un mélange de telles entités.NOΣ, carbon monoxide (CO), and volatile organic compounds (also called VOCs) especially aromatic compounds (benzene, toluene, ethylbenzene, xylenes), aldehydes (formaldehyde, acetaldehyde) and / or halogenated compounds (especially chlorinated compounds). By "biological agents" is meant, within the meaning of the present description, entities of biological nature, generally of small size, typically between 0.01 μm (microns) and 10 μm (microns), and likely to be carried by a gas stream. Thus, the biological agents to be inactivated according to the method of the invention may in particular be bacteria (Legionella bacteria, such as Legionella pneumophila for example), viruses, spores, fungi, or even a mixture of such entities.
Le terme "agent biologique inactivé" désigne quant à lui, au sens de la présente description, un agent du type précité ayant perdu une activité biologique, et notamment ayant perdu sa capacité de réplication (ou de reproduction).The term "inactivated biological agent" refers for its part, within the meaning of the present description, an agent of the aforementioned type having lost a biological activity, and in particular having lost its capacity of replication (or reproduction).
En particulier, on entend par "bactérie inactivée", au sens de la présente description, une bactérie incapable de développer une colonie après mise en culture dans un milieu adapté. Ainsi, sont notamment considérées comme des "bactéries inactivées" :In particular, the term "inactivated bacterium", as used herein, a bacterium unable to develop a colony after culturing in a suitable medium. Thus, are considered especially as "inactivated bacteria":
- des bactéries "mortes" (typiquement des bactéries au sein desquelles on ne détecte pas de phénomènes de respiration) ; et- "dead" bacteria (typically bacteria in which no breathing phenomena are detected); and
- des bactéries qui, bien que vivantes, ne se développent pas après mise en culture. Par "matériau semi-conducteur", on entend, au sens de la présente invention un matériau où les états électroniques ont un spectre de bande comprenant une bande de valence et une bande de conduction séparées par une bande interdite, et où l'énergie nécessaire pour faire passer un électron de ladite bande de valence à ladite bande de conduction est de préférence comprise entre 1 ,5 eV et 4 eV. A titre de tels matériaux semi-conducteurs, on peut notamment citer le dioxyde de titane TÏO2, ou bien encore d'autres oxydes métalliques tels que WO3, ZnO ou SnO ou bien des sulfures métalliques tels que CdS, ZnS ou WS2 ou encore d'autres composés tels que GaAs, GaP, CdSe ou SiC. Selon la présente invention, on utilise préférentiellement le dioxyde de titane qui conduit à des résultats particulièrement satisfaisants. II est connu que, dans un matériau semi-conducteur du type précité, il se crée, sous l'effet d'un rayonnement approprié, des paires électrons/trous (un "trou" étant un déficit électronique dans la couche de valence laissé lors du "saut" d'un électron vers la bande de conduction), ce qui confère au matériau des propriétés d'oxydo-réduction prononcées lesquelles sont mises à profit dans des applications photocatalytiques.- Bacteria that, although living, do not develop after culturing. For the purposes of the present invention, the term "semiconductor material" is intended to mean a material in which the electronic states have a band spectrum comprising a valence band and a conduction band separated by a forbidden band, and where the necessary energy to pass an electron from said valence band to said conduction band is preferably between 1.5 eV and 4 eV. As such semiconductor material, there may be mentioned titanium dioxide TiO 2, or alternatively other metal oxides such as WO3, ZnO or SnO Σ or metal sulfides such as CdS, ZnS or WS 2 or still other compounds such as GaAs, GaP, CdSe or SiC. According to the present invention, it is preferable to use titanium dioxide which leads to particularly satisfactory results. It is known that, in a semiconductor material of the aforementioned type, it is created, under the effect of appropriate radiation, electron / hole pairs (a "hole" being an electronic deficit in the valence layer left during the "jump" of an electron towards the conduction band), which gives the material pronounced oxidation-reduction properties which are used in photocatalytic applications.
Le matériau photocatalytique tel que le dioxyde de titane s'avère suffisamment actif pour permettre la dégradation et/ou l'inactivation d'agents chimiques et/ou biologiques dans un milieu gazeux où lesdits agents sont pourtant fortement dispersés. Dans ce cadre, il est notamment surprenant de constater que le dispositif de l'invention permet, par exemple, de traiter efficacement des milieux gazeux très dilués, à savoir comprenant moins de 10~3 agents biologiques par cm3, voire moins de 10"4 agents biologiques par cm3.The photocatalytic material such as titanium dioxide is sufficiently active to allow the degradation and / or inactivation of chemical and / or biological agents in a gaseous medium where said agents are however highly dispersed. In this context, it is particularly surprising to note that the device of the invention makes it possible, for example, effectively to treat highly diluted gaseous media, namely comprising less than 10 ~ 3 biological agents per cm 3 , or even less than 10 " 4 biological agents per cm 3 .
L'activité d'un matériau photocatalytique se révèle par ailleurs suffisante pour traiter efficacement des milieux gazeux ayant des teneurs élevées en agents chimiques et/ou biologiques, par exemple des milieux gazeux contenant plus de 1 agent biologique par cm3, et même plus de 100 agents biologiques par cm3 dans la plupart des cas, et ce même avec des débits importants de flux gazeux par exemple de l'ordre de 1 à 10 m3 par heure. Ainsi, le dispositif de l'invention permet, en règle générale, de traiter efficacement des milieux gazeux contenant typiquement entre 10"* et 100 agents biologiques par cm3, par exemple entre 5.10"3 et 5 agents biologiques par cm3, et notamment des milieux dilués contenant entre 10"4 et 0,1 agents biologiques par cm3 ou bien des milieux concentrés contenant entre 0,1 et 100 agents biologiques par cm3 On suppose que la dégradation et l'inactivation des agents chimiques et/ou biologiques est induite par le caractère fortement oxydant du matériau photocatalytique et est initiée lorsque ces agents viennent en contact avec la surface du semi-conducteur photoactivé.The activity of a photocatalytic material is also sufficient to effectively treat gaseous media having high levels of chemical and / or biological agents, for example gaseous media containing more than 1 biological agent per cm 3 , and even more than 100 biological agents per cm 3 in most cases, and this even with large flows of gaseous flow for example of the order of 1 to 10 m 3 per hour. Thus, the device of the invention allows, as a rule, to effectively treat gaseous media typically containing between 10 "and 100 biological agents per cm 3 , for example between 5.10 " 3 and 5 biological agents per cm 3 , and in particular diluted media containing between 10 -4 and 0.1 biological agents per cm 3 or concentrated media containing between 0.1 and 100 biological agents per cm 3 It is assumed that the degradation and inactivation of the chemical and / or biological agents is induced by the strongly oxidizing nature of the photocatalytic material and is initiated when these agents come into contact with the surface of the photoactivated semiconductor.
Dans la présente invention, pour augmenter encore l'efficacité des mécanismes d'oxydation précités, il peut être avantageux d'utiliser, conjointement au matériau photocatalytique, d'autres matériaux, notamment des matériaux présentant un caractère oxydant ou des matériaux sorbants, tels que le carbone ou la silice finement divisés ou les zéolithes.In the present invention, to further increase the efficiency of the aforementioned oxidation mechanisms, it may be advantageous to use, in conjunction with the photocatalytic material, other materials, especially materials having an oxidizing character or sorbent materials, such as finely divided carbon or silica or zeolites.
Dans ce cadre, on peut en particulier envisager des matériaux à base d'un semi-conducteur comme le dioxyde de titane contenant en outre des composés tels que de l'or ou de l'argent sous forme métallique, par exemple sous forme de particules dispersées dans le matériau semi-conducteur ou bien déposées sur sa surface.In this context, it is possible in particular to envisage materials based on a semiconductor such as titanium dioxide, which also contains compounds such as gold or silver in metallic form, for example in the form of particles. dispersed in the semiconductor material or deposited on its surface.
Selon ce mode de réalisation particulier, le rapport massique (oxydant additionnel/semi-conducteur) reste avantageusement inférieur à 5%, voire à 3%, et il est typiquement compris entre 0,5 et 2%. La présence de tels oxydants additionnels n'est toutefois pas requise, dans le cas général, pour obtenir un traitement efficace.According to this particular embodiment, the mass ratio (additional oxidant / semiconductor) advantageously remains less than 5%, or even 3%, and it is typically between 0.5 and 2%. The presence of such additional oxidants is however not required, in the general case, to obtain an effective treatment.
La dégradation photocatalytique est très peu sélective, ce qui signifie que tout agent chimique et/ou biologique est en principe susceptible d'être dégradé par une mise en contact avec un semi-conducteur photoactivé. En pratique, il s'avère que le dioxyde de titane par exemple présente un très large spectre de décontamination.The photocatalytic degradation is very selective, which means that any chemical agent and / or biological is in principle likely to be degraded by contacting a photoactivated semiconductor. In practice, it turns out that titanium dioxide for example has a very broad spectrum of decontamination.
Un autre avantage du dispositif est que la dégradation photocatalytique particulièrement efficace est obtenue très simplement et à coût réduit, dans la mesure où elle ne nécessite qu'une irradiation avec des rayonnements de relativement faible énergie. Ainsi, dans le cas du dioxyde de titane par exemple, seule une énergie de rayonnement de l'ordre de 3 à 3,2 eV, c'est-à-dire de longueurs de l'ordre de 380 à 400 nm, est requise. L'énergie requise pour la photoactivation peut encore être réduite si le matériau semi-conducteur est dopé (par exemple par des métaux tels que le chrome ou bien par des composés à base de N, S ou C) ou bien encore en utilisant des agents chromophores (anthracènes ou anthracines par exemple), en association avec le matériau semiconducteur. Dans ce cas, une énergie d'activation très faible peut être suffisante pour photoactiver le matériau, qui peut par exemple correspondre à des longueurs d'ondes supérieures ou égales à 500 nm, par exemple supérieures ou égales à 550 nm. L'irradiation du semi-conducteur est en général effectuée sous un rayonnement dont la gamme de longueur d'onde est dans le proche ultraviolet, par exemple à l'aide de la lumière solaire ou bien encore à l'aide de lampes à vapeur de sodium ou à vapeur de mercure, par exemple des lampes dites "à lumière noire".Another advantage of the device is that the particularly effective photocatalytic degradation is obtained very simply and at low cost, insofar as it requires only irradiation with relatively low energy radiation. Thus, in the case of titanium dioxide for example, only a radiation energy of the order of 3 to 3.2 eV, that is to say of lengths of the order of 380 to 400 nm, is required . The energy required for the photoactivation can be further reduced if the semiconductor material is doped (for example by metals such as chromium or by compounds based on N, S or C) or else by using agents chromophores (anthracenes or anthracins for example), in combination with the semiconductor material. In this case, a very low activation energy may be sufficient to photoactivate the material, which may for example correspond to wavelengths greater than or equal to 500 nm, for example greater than or equal to 550 nm. The irradiation of the semiconductor is generally carried out under radiation whose wavelength range is in the near ultraviolet range, for example by means of sunlight or else with the aid of sodium or mercury vapor, for example lamps called "black light".
Les rayonnements utilisés pour photoactiver le semi-conducteur dans le procédé de l'invention ne sont généralement pas, en soi, des rayonnements d'énergie suffisante pour assurer un effet germicide. Les rayonnements utilisés pour photoactiver les matériaux semi-conducteurs selon le procédé de l'invention ont ainsi, en général, des longueurs d'ondes supérieures à 254 nm, et typiquement supérieures à 320 nm, par exemple supérieures ou égales à 350 nm.The radiation used to photoactivate the semiconductor in the method of the invention is generally not, per se, sufficient energy radiation to provide a germicidal effect. The radiation used to photoactivate the semiconductor materials according to the method of the invention thus generally have wavelengths greater than 254 nm, and typically greater than 320 nm, for example greater than or equal to 350 nm.
Il est en outre à souligner qu'aucun chauffage n'est requis pour réaliser la photoactivation du semi-conducteur, ce qui permet d'effectuer le procédé de l'invention à température ambiante, par exemple entre 10 et 3O0C.It should also be emphasized that no heating is required to carry out the photoactivation of the semiconductor, which makes it possible to carry out the process of the invention at ambient temperature, for example between 10 and 30 ° C.
La nature exacte du matériau semi-conducteur utilisé selon l'invention n'est, en règle générale, pas déterminante pour obtenir l'effet recherché d'inactivation des agents biologiques.The exact nature of the semiconductor material used according to the invention is, as a rule, not decisive for obtaining the desired effect of inactivation of the biological agents.
Ainsi, dans le cas du dioxyde de titane, par exemple, tout dioxyde de titane commercial peut être utilisé efficacement dans le procédé de l'invention, ce qui constitue encore un avantage du procédé.Thus, in the case of titanium dioxide, for example, any commercial titanium dioxide can be used effectively in the process of the invention, which is still an advantage of the process.
Néanmoins, selon un mode de réalisation conduisant à de bons résultats en termes d'inactivation des agents biologiques, le dioxyde de titane utilisé selon le procédé de l'invention est de forme anatase, de préférence à raison d'au moins 50%. Ainsi, selon ce mode de réalisation, le dioxyde de titane utilisé peut par exemple être constitué pour l'essentiel (à savoir en général pour au moins 99% en masse, et de préférence pour au moins 99,5% en masse, voire pour au moins 99,9% en masse) de forme anatase.Nevertheless, according to one embodiment leading to good results in terms of inactivation of biological agents, the titanium dioxide used according to the process of the invention is anatase form, preferably at least 50%. Thus, according to this embodiment, the titanium dioxide used may, for example, be essentially constituted (ie in general for at least 99% by weight, and preferably for at least 99.5% by weight, or even for at least 99.9% by weight) of anatase form.
L'utilisation de TiO2 sous forme rutile se révèle également intéressante, dans la mesure où le TiO2 sous cette forme est photoactivée par le spectre de la lumière visible. Selon un autre mode de réalisation intéressant, le dioxyde de titane utilisé comprend un mélange de forme anatase et de forme rutile, avec une proportion d'anatase/rutile de préférence entre 50/50 et 99/1 , par exemple entre 70/30 et 90/10, et typiquement de l'ordre de 80/20. Par ailleurs, notamment pour optimiser les échanges entre le matériau semi-conducteur et les agents chimiques et/ou biologiques dispersés dans le flux gazeux, il est le plus souvent avantageux que le matériau semi-conducteur utilisé ait une surface spécifique comprise entre 20 et 500 m2/g, de préférence supérieure ou égale à 40 m2/g, et encore plus avantageusement au moins égale à 100 m2/g. La surface spécifique à laquelle il est fait référence ici est la surface spécifique BET mesurée par adsorption d'azote selon la technique dite de Brunauer-Emmet-Teller. A cet effet, on peut notamment utiliser un semiconducteur présentant en tant que tel une haute surface spécifique, ou bien déposé sur un support finement divisé ou poreux (tel que, par exemple, un support de silice) présentant une haute surface spécifique.The use of TiO 2 in rutile form is also interesting, insofar as the TiO 2 in this form is photoactivated by the spectrum of visible light. According to another advantageous embodiment, the titanium dioxide used comprises a mixture of anatase form and of rutile form, with an anatase / rutile proportion preferably between 50/50 and 99/1, for example between 70/30 and 90/10, and typically of the order of 80/20. Moreover, in particular to optimize the exchanges between the semiconductor material and the chemical and / or biological agents dispersed in the gas stream, it is most often advantageous for the semiconductor material used to have a specific surface area of between 20 and 500. m 2 / g, preferably greater than or equal to 40 m 2 / g, and still more advantageously at least equal to 100 m 2 / g. The specific surface area referred to herein is the BET specific surface area measured by nitrogen adsorption according to the so-called Brunauer-Emmet-Teller technique. For this purpose, it is especially possible to use a semiconductor having as such a high specific surface, or else deposited on a finely divided or porous support (such as, for example, a silica support) having a high specific surface area.
A titre de dioxyde de titane particulièrement avantageux, on pourra notamment utiliser le dioxyde de titane commercialisé par la société Degussa sous le nom de T\O2 de type P25.As particularly advantageous titanium dioxide, it will be possible to use titanium dioxide marketed by the company Degussa under the name T \ O 2 type P25.
Le matériau semi-conducteur photoactivé qui est utilisé selon l'invention peut se présenter sous différentes formes physiques, en fonction du milieu gazeux traité, et notamment en fonction du volume de ce milieu et de la vitesse à laquelle on souhaite effectuer le traitement. De façon générale, le matériau semiconducteur peut être utilisé sous toute forme adaptée à son irradiation par un rayonnement de longueur d'onde permettant sa photoactivation et permettant la mise en contact avec le milieu gazeux à décontaminer.The photoactivated semiconductor material that is used according to the invention may be in various physical forms, depending on the gaseous medium treated, and in particular depending on the volume of this medium and the rate at which it is desired to perform the treatment. In general, the semiconductor material may be used in any form adapted to its irradiation by wavelength radiation for its photoactivation and allowing the contact with the gaseous medium to be decontaminated.
Dans le dispositif de l'invention, le matériau semi-conducteur utilisé est mis en œuvre à l'état immobilisé sur la surface d'un élément mobile du réacteur, le milieu gazeux à traiter étant mis en contact avec cette surface modifiée. Selon un mode particulier, la surface sur laquelle est immobilisé le matériau semi- conducteur de type dioxyde de titane peut être une surface sur laquelle est déposé un support de haute surface spécifique (par exemple une couche de silice), le matériau semi-conducteur étant immobilisé sur ce support. Selon un autre mode de réalisation, le matériau semi-conducteur peut être mis en œuvre sous la forme d'un dépôt obtenu en déposant un film d'une dispersion (par exemple une dispersion aqueuse) de particules à base dudit semi-conducteur, sur une surface et en séchant ensuite le film obtenu. Le dépôt à base de matériau semi-conducteur est de préférence un dépôt de dioxyde de titane choisi parmi ceux préférentiels précités. Ainsi, il s'agit avantageusement d'un dioxyde de titane de forme anatase ou un mélange rutile/anatase et présentant une surface spécifique comprise entre 20 et 500 m2lg. Ce dépôt peut par exemple être obtenu en déposant un film d'une dispersion (par exemple une dispersion aqueuse) de particules à base de matériau semi-conducteur de type dioxyde de titane sur la surface de l'élément du réacteur, puis en séchant le film obtenu. Ce dépôt peut également être obtenu par séchage d'un film d'une dispersion dans un solvant non aqueux ou le semiconducteur utilisé n'est pas soluble. Dans le cas où le semi-conducteur photoactivé utilisé est de le dioxyde de titane, un dépôt de dioxyde de titane sur la surface peut être réalisé en déposant une solution de titanate et en traitant thermiquement le dépôt ainsi obtenu, ce par quoi on obtient la formation de TiC*2 à partir du précurseur titanate.In the device of the invention, the semiconductor material used is implemented in the immobilized state on the surface of a mobile element of the reactor, the gaseous medium to be treated being brought into contact with this modified surface. According to one particular embodiment, the surface on which the titanium dioxide semiconductor material is immobilized may be a surface on which a support of high specific surface area (for example a layer of silica) is deposited, the semiconductor material being immobilized on this support. According to one Another embodiment, the semiconductor material can be implemented in the form of a deposit obtained by depositing a film of a dispersion (for example an aqueous dispersion) of particles based on said semiconductor, on a surface and then drying the resulting film. The deposit based on semiconductor material is preferably a titanium dioxide deposit chosen from those preferred above. Thus, it is advantageously a titanium dioxide of anatase form or a rutile / anatase mixture and having a specific surface of between 20 and 500 m 2 lg. This deposit may for example be obtained by depositing a film of a dispersion (for example an aqueous dispersion) of particles based on titanium dioxide semiconductor material on the surface of the reactor element, then drying the obtained film. This deposit can also be obtained by drying a film of a dispersion in a non-aqueous solvent or the semiconductor used is not soluble. In the case where the photoactivated semiconductor used is titanium dioxide, a deposition of titanium dioxide on the surface can be carried out by depositing a solution of titanate and by thermally treating the deposit thus obtained, thereby obtaining the TiC * 2 formation from the titanate precursor.
Le dépôt de matériau semi-conducteur de type dioxyde de titane peut être de nature continue ou discontinue, mais il s'agit de préférence d'un film solide continu réparti sur la totalité de la surface de la ou les éléments mobiles du réacteur, notamment pour optimiser la surface d'échange entre le flux gazeux et le dioxyde de titane photoactivé. De préférence, le dépôt est présent sur toutes les faces de l'élément mobile susceptibles d'être activées sous l'effet de l'irradiation. Par ailleurs, ce dépôt a de préférence une épaisseur moyenne comprise entre 0,5 μm et 100 μm, par exemple entre 1 et 20 μm, cette épaisseur étant typiquement de l'ordre de 5 μm.The deposition of semiconductor material of the titanium dioxide type may be of a continuous or discontinuous nature, but it is preferably a continuous solid film distributed over the entire surface of the mobile element or elements of the reactor, in particular to optimize the exchange surface between the gas stream and the photoactivated titanium dioxide. Preferably, the deposit is present on all the faces of the mobile element that can be activated under the effect of the irradiation. Moreover, this deposit preferably has an average thickness of between 0.5 μm and 100 μm, for example between 1 and 20 μm, this thickness being typically of the order of 5 μm.
Les moyens d'irradiation associés au revêtement photocatalytique sont en général des sources de rayonnement comprenant des photons d'énergie supérieure à 3 eV (de préférence supérieure à 3,2 eV), par exemple une ou plusieurs lampes émettant des rayonnements comprenant des longueurs d'ondes inférieures à 400 nm (par exemple inférieures à 300 nm), par exemple des lampes à lumière noire ou à lumière visible. Selon un mode de réalisation particulier, la source de rayonnement utilisée peut être la lumière solaire.The irradiation means associated with the photocatalytic coating are generally radiation sources comprising photons of energy greater than 3 eV (preferably greater than 3.2 eV), for example one or more lamps emitting radiation comprising lengths of waves below 400 nm (for example below 300 nm), for example lamps with black light or visible light. According to a particular embodiment, the radiation source used may be sunlight.
Selon un mode de réalisation, ces sources de rayonnement sont localisées à l'extérieur du réacteur. Le cas échéant, pour permettre une activation du semi- conducteur, la paroi du réacteur comporte des ouvertures ou des parties constituées d'un matériau transparent à au moins une partie du rayonnement efficace émis par les sources, c'est-à-dire que la paroi du réacteur laisse passer au moins une partie des rayonnements qui ont une énergie suffisante pour activer le semi-conducteur. Selon un autre aspect particulier, la présente invention a également pour objet un procédé adapté à la mise en œuvre du dispositif précité.According to one embodiment, these radiation sources are located outside the reactor. Where appropriate, to enable activation of the semiconductor, the reactor wall has openings or portions made of a material that is transparent to at least a portion of the effective radiation emitted by the sources, i.e. the reactor wall passes at least a portion of the radiation which has sufficient energy to activate the semiconductor. According to another particular aspect, the present invention also relates to a method adapted to the implementation of the aforementioned device.
En particulier, l'invention vise également un procédé de décontamination d'un milieu gazeux, comportant l'étape consistant à faire passer au moins une partie du milieu gazeux à décontaminer à travers le dispositif tel que décrit. Un tel procédé est particulièrement intéressant lorsque le milieu gazeux comporte des agents biologiques, notamment des bactéries et en particulier des bactéries du genre Legionella tel que Legionella pneumophila .In particular, the invention also relates to a method for decontaminating a gaseous medium, comprising the step of passing at least a portion of the gaseous medium to be decontaminated through the device as described. Such a method is particularly advantageous when the gaseous medium comprises biological agents, in particular bacteria and in particular Legionella bacteria such as Legionella pneumophila.
Selon un mode de réalisation particulier de ce procédé, le milieu gazeux se présente sous la forme d'un aérosol. En général, le procédé de l'invention est conduit sur un milieu gazeux comprenant des agents chimiques et/ou biologiques nocifs, toxiques, ou pathogènes. Le cas échéant, l'inactivation consiste le plus souvent à dénuer les agents de leur caractère nocif, toxique, ou pathogène, notamment en transformant les agents chimiques ou en inhibant la capacité de réplication (reproduction) des agents biologiques.According to a particular embodiment of this process, the gaseous medium is in the form of an aerosol. In general, the process of the invention is conducted on a gaseous medium comprising harmful and toxic chemical or biological agents and / or pathogens. In this case, the inactivation most often consists of denuding the agents of their harmful, toxic or pathogenic nature, in particular by transforming the chemical agents or by inhibiting the replication capacity (reproduction) of the biological agents.
Le "milieu gazeux" au sein duquel sont dispersés les agents précités est en général de l'air, mais il peut éventuellement s'agir d'un autre gaz. Néanmoins, pour une efficacité optimale du procédé de décontamination, il est préférable que le milieu gazeux contienne du dioxygène. Selon un mode de réalisation particulier, le milieu gazeux se présente sous la forme d'un aérosol qui comprend de fines gouttelettes liquides, en général des gouttelettes d'eau, dispersées au sein du milieu gazeux. Les agents chimiques et/ou biologiques peuvent alors être présents, en tout ou partie, au sein de ces gouttelettes.The "gaseous medium" in which the above-mentioned agents are dispersed is generally air, but it may possibly be another gas. Nevertheless, for optimum efficiency of the decontamination process, it is preferable that the gaseous medium contains oxygen. According to a particular embodiment, the gaseous medium is in the form of an aerosol which comprises fine liquid droplets, generally droplets of water, dispersed within the gaseous medium. The chemical and / or biological agents may then be present, wholly or partly, within these droplets.
Ainsi, par exemple, le milieu gazeux traité peut être un aérosol comprenant de l'air à titre de milieu gazeux dispersant et contenant des gouttelettes d'eau incluant des agents précités.Thus, for example, the treated gaseous medium may be an aerosol comprising air as dispersing gaseous medium and containing water droplets including aforementioned agents.
Cependant, les espèces chimiques et/ou biologiques peuvent également être simplement dispersées en tant que telles au sein du milieu gazeux.However, the chemical and / or biological species can also be simply dispersed as such within the gaseous medium.
Quelle que soit la nature des agents chimiques et/ou biologiques et du milieu gazeux, le procédé de décontamination de la présente invention est effectué en mettant en contact le milieu gazeux avec un matériau photocatalytique. Un tel matériau présente une activité catalytique lorsqu'il est exposé à un rayonnement. Ces matériaux comprennent généralement un semiconducteur. Le dispositif et le procédé de l'invention vont maintenant être décrits plus en détail dans la description suivante, faite en référence au dessin ci-annexé, dans lequel : la figure unique représente une vue schématique de côté en coupe d'un dispositif selon un mode préférentiel de l'invention. Le dispositif 1 illustré dans la figure comporte un réacteur 9 formé par un ventilateur tangentiel, et des moyens d'irradiation 7. Les ventilateurs tangentiels sont connus en tant que tels et vendus par exemple par la société EBM-PAPST. Le réacteur 9 comporte un tambour 4 monté en rotation et relié à des moyens d'entraînement (non illustré). Le tambour 4 est percé d'ouvertures entre lesquelles sont articulées des pales 5 recourbées et formant un angle avec la surface du tambour lorsqu'elles sont entraînées en rotation. Les pales 5 sont revêtues, sur une ou de préférence sur leurs deux faces par un matériau semiconducteur 6, par exemple du dioxyde de titane. Dans la conception illustrée du dispositif, les pales 5 du ventilateur tangentiel forment des éléments mobiles munis d'un revêtement photocatalytique. Le réacteur 9 comporte par ailleurs une entrée 2 et une sortie 3 du flux gazeux, formée par le tambour 4 et les moyens de guidage 8. Les moyens de guidage 8 sont composés d'une plaque de guidage 8a (également appelé « profilé ») et d'une langue de vortex 8b et sur lesquels le dioxyde de titane peut aussi avantageusement être déposé. Le tambour 4 étant disposé dans l'entrée, et pourvu d'ouvertures, une partie du flux gazeux entrant dans le dispositif est aspiré à travers le tambour pour être refoulé à la sortie. Le positionnement et la géométrie des moyens de guidage induisent un degré de turbulence dans le flux gazeux. Le flux gazeux est ainsi fortement brassé dans un courant turbulent à proximité des pales 5 revêtues de semi-conducteur 6. Ce brassage permet d'augmenter la probabilité de contact avec un agent biologique et/ou chimique et permet d'atteindre une efficacité très élevée. Avantageusement, les moyens de guidage 8 sont réglables afin de permettre la modification de la direction d'aspiration et de refoulement du flux gazeux du réacteur. Le dispositif 1 comporte par ailleurs des moyens d'irradiation 7, dans le mode de réalisation illustré composés de deux lampes. Les lampes émettent un rayonnement approprié pour activer le photocatalyseur, généralement dans l'ultraviolet. Il peut s'agir notamment de lampes à émission UV (de type "lumière noire") ou bien de lampes à émission de lumière visible. Avantageusement, le photocatalyseur est activé sous rayonnement dans le domaine UVA. Les moyens d'irradiation 7 sont disposés de façon à exposer au moins partiellement le dépôt photocatalytique au rayonnement. Sur la figure, les moyens d'irradiation comprennent une lampe composée de deux tubes (également appelée « lampe en U » ou « lampe compacte »), mais en pratique, le nombre de lampes peut varier ainsi que leur puissance.Whatever the nature of the chemical and / or biological agents and the gaseous medium, the decontamination process of the present invention is carried out by contacting the gaseous medium with a photocatalytic material. Such a material exhibits catalytic activity when exposed to radiation. These materials generally comprise a semiconductor. The device and the method of the invention will now be described in more detail in the following description, made with reference to the accompanying drawing, in which: the single figure shows a schematic sectional side view of a device according to a preferred embodiment of the invention. The device 1 illustrated in the figure comprises a reactor 9 formed by a tangential fan, and irradiation means 7. The tangential fans are known as such and sold for example by the company EBM-PAPST. The reactor 9 comprises a drum 4 rotatably mounted and connected to drive means (not shown). The drum 4 is pierced with openings between which are articulated blades 5 bent and forming an angle with the surface of the drum when they are rotated. The blades 5 are coated on one or preferably on both sides with a semiconductor material 6, for example titanium dioxide. In the illustrated design of the device, the blades 5 of the tangential fan form moving elements provided with a photocatalytic coating. The reactor 9 further comprises an inlet 2 and an outlet 3 of the gas stream, formed by the drum 4 and the guide means 8. The guide means 8 are composed of a guide plate 8a (also called "profile") and a vortex tongue 8b and on which the titanium dioxide can also advantageously be deposited. The drum 4 being disposed in the inlet, and provided with openings, a part of the gas flow entering the device is sucked through the drum to be discharged at the outlet. The positioning and the geometry of the guiding means induce a degree of turbulence in the gas flow. The gas flow is thus strongly stirred in a turbulent flow near the semiconductor-coated blades 6. This stirring makes it possible to increase the probability of contact with a biological and / or chemical agent and makes it possible to reach a very high efficiency. . Advantageously, the guide means 8 are adjustable in order to allow the modification of the direction of suction and discharge of the gaseous flow of the reactor. The device 1 also comprises irradiation means 7, in the illustrated embodiment composed of two lamps. The lamps emit appropriate radiation to activate the photocatalyst, usually in the ultraviolet. This may include UV-emitting lamps ("black light" type) or lamps with visible light emission. Advantageously, the photocatalyst is activated under radiation in the UVA domain. The irradiation means 7 are arranged to expose at least partially the radiation photocatalytic deposit. In the figure, the irradiation means comprise a lamp composed of two tubes (also called "U-shaped lamp" or "compact lamp"), but in practice, the number of lamps can vary as well as their power.
Les moyens d'irradiation 7 sont de préférence disposés à proximité du ou des éléments mobiles munis d'un revêtement photocatalytique, au choix à l'intérieur ou à l'extérieur du réacteur. En raison de la conception de certains composants du ventilateur et afin d'éviter la perturbation du flux d'air, le positionnement de la lampe à l'extérieur du ventilateur est toutefois préféré dans le cadre de la conception illustrée. Lorsque le dispositif 1 est mis en marche, le tambour 4 est entraîné en rotation, créant une zone d'aspiration à l'entrée 2 du dispositif 1. Le flux gazeux, illustré par des flèches sur la figure, est alors aspiré par l'entrée 2 et en grande partie à travers le tambour 4 avant d'être refoulé du réacteur par la sortie 3. La conception du dispositif décrit présente un certain nombre d'avantages.The irradiation means 7 are preferably arranged near the mobile element (s) provided with a photocatalytic coating, optionally inside or outside the reactor. Due to the design of some fan components and to avoid disturbance of the airflow, the positioning of the lamp outside the fan is however preferred as part of the illustrated design. When the device 1 is turned on, the drum 4 is rotated, creating a suction zone at the inlet 2 of the device 1. The gas flow, illustrated by arrows in the figure, is then sucked by the inlet 2 and largely through the drum 4 before being discharged from the reactor through the outlet 3. The design of the device described has a number of advantages.
Tout d'abord, le dispositif permet une illumination périodique contrôlée des surfaces photocatalytiques du réacteur. En effet, le fonctionnement alterné du photocatalyseur, lequel est successivement éclairé et non-éclairé, assure un retour périodique du semi-conducteur à l'état non activé, sans qu'il soit nécessaire d'interrompre la lampe, ce qui entraînerait une usure prématurée de celle-ci. Cependant, une partie de la surface photocatalytique demeure toujours éclairée et donc en fonctionnement, assurant ainsi une décontamination constante dans le temps et fiable.First, the device allows controlled periodic illumination of the photocatalytic surfaces of the reactor. Indeed, the alternating operation of the photocatalyst, which is successively illuminated and unlit, ensures a periodic return of the semiconductor in the non-activated state, without the need to interrupt the lamp, which would cause wear premature of it. However, a part of the photocatalytic surface remains always lit and therefore in operation, thus ensuring a decontamination constant over time and reliable.
En effet, la rotation du tambour entraîne les pales successivement devant la lampe, une partie des pales étant à chaque instant illuminée et leur revêtement photocatalytique ainsi activé. Lorsque le tambour continue à tourner, la pale est alors entraînée loin de la lampe, permettant au photocatalyseur de retourner à l'état désactivé. Comme dit précédemment, cette alternance état activé / état désactivé diminue le taux de recombinaison des charge électrons / trous ce qui optimise l'utilisation des photons utiles aux réactions de dégradation des polluants.Indeed, the rotation of the drum causes the blades successively in front of the lamp, a portion of the blades being at each moment illuminated and their photocatalytic coating thus activated. As the drum continues to rotate, the blade is driven away from the lamp, allowing the photocatalyst to return to the off state. As said above, this alternation between the activated state and the deactivated state decreases the recombination rate of the electron / hole charges, which optimizes the use of photons that are useful for pollutant degradation reactions.
Par ailleurs, la présence du photocatalyseur sur des éléments mobiles, notamment sur des pales d'un ventilateur, permet d'augmenter la surface d'éclairement et de ce fait l'efficacité de traitement du dispositif. Enfin, dans le dispositif décrit, les éléments mobiles et leur disposition permettent par ailleurs d'assurer le brassage intense du flux gazeux, et de ce fait une bonne probabilité de contact entre les agents et la surface photocatalytique.Moreover, the presence of the photocatalyst on moving elements, in particular on the blades of a fan, makes it possible to increase the illumination area and thus the treatment efficiency of the device. Finally, in the device described, the movable elements and their arrangement also allow to ensure the intense mixing of the gas flow, and thus a good probability of contact between the agents and the photocatalytic surface.
Le dispositif 1 décrit est de fabrication aisée. En effet, les ventilateurs tangentiels sont disponibles dans le commerce. L'imprégnation est effectuée directement, sans démontage du ventilateur. Le photocatalyseur est mis en suspension dans un liquide, typiquement dans de l'eau, et est pulvérisé à la surface des pales et des moyens de guidage du ventilateur à l'aide d'un système de pulvérisation à gaz comprimé, du type pistolet à peinture, et enfin séché.The device 1 described is easy to manufacture. Indeed, tangential fans are commercially available. The impregnation is carried out directly without disassembling the fan. The photocatalyst is suspended in a liquid, typically in water, and is sprayed at the surface of the blades and means of guiding the fan using a compressed gas spraying system, the spray gun type, and finally dried.
Plus spécifiquement, le dépôt peut être obtenu par pulvérisation sous air comprimé d'une dispersion aqueuse de particules de semi-conducteur, puis séchage du film obtenu sous air comprimé uniquement et en répétant éventuellement ces opérations. Un dépôt par pulvérisation est particulièrement aisé et permet d'assurer un dépôt reproductible et répétable sur les deux faces des pales et sur les moyens de guidage. Le film a typiquement une épaisseur de l'ordre de 5 μm (microns), cette épaisseur pouvant être modulée notamment en jouant sur la concentration initiale de la dispersion de particules de semiconducteur et sur le nombre de cycles de dépôt/séchage.More specifically, the deposition can be obtained by spraying with compressed air an aqueous dispersion of semiconductor particles, then drying the film obtained under compressed air only and possibly repeating these operations. Spray deposition is particularly easy and ensures a reproducible and repeatable deposit on both sides of the blades and on the guide means. The film typically has a thickness of the order of 5 μm (microns), this thickness being able to be modulated in particular by varying the initial concentration of the semiconductor particle dispersion and the number of deposition / drying cycles.
Le dispositif 1 peut être utilisé pour décontaminer des débits gazeux importants, typiquement compris entre 1 et 100 m3/h, et ce avec une très bonne efficacité, à savoir une activité bactéricide supérieure à 90% telle que définie dans l'exemple en un seul passage.The device 1 can be used to decontaminate large gas flows, typically between 1 and 100 m 3 / h, and this with a very good efficiency, namely bactericidal activity greater than 90% as defined in the example in one example. single run.
Ainsi, à la sortie 2 du dispositif, on récupère en général un flux gazeux où la majeure partie des agents biologiques et/ou chimiques est inactivée et/ou dégradée.Thus, at the outlet 2 of the device, a gas stream is generally recovered in which most of the biological and / or chemical agents are inactivated and / or degraded.
Le dispositif 1 peut comprendre, en aval de la sortie 3, des moyens de dérivation d'une partie du flux gazeux sortant, associés à des moyens d'analyse qualitative et/ou quantitative des agents biologiques et/ou chimiques dans le flux gazeux, analogues à ceux qui peuvent être présents en amont de l'entrée 2.The device 1 may comprise, downstream of the outlet 3, means for diverting a part of the outgoing gas flow, associated with means of qualitative and / or quantitative analysis of the biological and / or chemical agents in the gas stream, similar to those that may be present upstream of entry 2.
Le dispositif peut également comprendre, en aval de la sortie 3, des moyens permettant à une partie ou tout du flux gazeux sortant d'être redirigé vers l'entrée 2 du dispositif, afin de parfaire encore la décontamination des agents biologiques et/ou chimiques. En alternative, plusieurs dispositifs peuvent être disposés en série ou en parallèle, où le flux gazeux à traiter serait divisé en plusieurs parties.The device may also comprise, downstream of the outlet 3, means allowing part or all of the outgoing gas flow to be redirected to the inlet 2 of the device, in order to further perfect the decontamination of the biological and / or chemical agents . Alternatively, several devices may be arranged in series or in parallel, where the gas flow to be treated would be divided into several parts.
Le dispositif de l'invention se révèle particulièrement efficace pour la décontamination de milieu gazeux contenant des agents biologiques et/ou chimiques nocifs, toxiques ou pathogènes. Différentes caractéristiques et avantages de l'invention ressortiront encore de l'exemple illustratif exposé ci-après.The device of the invention is particularly effective for the decontamination of gaseous medium containing harmful biological and / or chemical agents, toxic or pathogenic. Various features and advantages of the invention will become apparent from the illustrative example set out below.
EXEMPLEEXAMPLE
On a réalisé le traitement d'aérosols comprenant des bactéries Legionella pneumophila au moyen d'un dispositif tel que décrit à la figure 1 présentant les caractéristiques suivantes :The aerosol treatment comprising Legionella pneumophila bacteria was carried out by means of a device as described in FIG. 1 having the following characteristics:
- diamètre du ventilateur : 4,75 cm- diameter of the fan: 4.75 cm
- longueur totale du ventilateur : 36,3 cm- total length of the fan: 36.3 cm
- dimension des pales : 30,3 cm x 1 cm (curviligne) - 16 pales- blade size: 30.3 cm x 1 cm (curvilinear) - 16 blades
- ce dispositif est connu sous la dénomination de « tangential blower with EC motor », type QG 030-303/12, commercialisé par la société EBM- PAPST.this device is known under the name "tangential blower with EC motor", type QG 030-303 / 12, marketed by the company EBM-PAPST.
- dioxyde de titane utilisé : TiO de type P25, commercialisé par la société Degussa, (dioxyde de titane ayant un rapport des formes rutile/anatase de 20/80) présent dans le réacteur sous forme d'un dépôt d'épaisseur moyenne d'environ 5 μm et de BET égale à 50 m2/g.- titanium dioxide used: TiO Σ P25 type marketed by Degussa, (titanium dioxide having a rutile ratio of forms / anatase 20/80) present in the reactor in the form of an average thickness of deposit approximately 5 μm and BET equal to 50 m 2 / g.
- lampe utilisée : 1 lampe compacte mono-culot à rayonnement UV (lampe actinique de poudrage 10 selon le fabricant) d'une puissance électrique de 24 W PLL24W-10 (modèle en forme de U)1 commercialisée par la société Philips, disposée à proximité du réacteur à une distance de moins de 1 cm des bords des pales les plus proches.- lamp used: 1 single-base compact lamp with UV radiation (actinic powder coating lamp 10 according to the manufacturer) with an electric power of 24 W PLL24W-10 (U-shaped model) 1 sold by the Philips company, willing to near the reactor at a distance of less than 1 cm from the nearest blade edges.
Des d'aérosols ont été formés à partir d'une suspension aqueuse de Legionella pneumophila comprenant 2 109 bactéries par ml d'eau, réparties entre 1 ,193 109 bactéries vivantes par ml et environ autant de bactéries mortes (0,807 109 bactéries mortes par ml). Ces aérosols ont été produits en injectant à l'aide d'une pompe péristaltique la solution contenant Legionella pneumophila dans le flux au travers d'un système de type Venturi.Of aerosol were formed from an aqueous suspension of Legionella pneumophila comprising 2 10 9 bacteria per ml of water, distributed between 1, 193 September 10 live bacteria per ml and about as dead bacteria (0.807 September 10 bacteria dead per ml). These aerosols were produced by injecting with a peristaltic pump the solution containing Legionella pneumophila in the flow through a Venturi type system.
Dans chaque cas, on a quantifié le rapport bactéries vivantes / bactéries totales (BV/BT). Cette quantification a été réalisée en procédant comme suit. Les bactéries Legionella pneumophila quel que soit leur état sont récupérées, après passage dans le dispositif photocatalytique (ou lors des blancs réalisés), dans une colonne à bulles d'un volume d'environ 9000 ml contenant un liquide de récupération (eau stérile pouvant contenir du glycérol), de volume 1000 ml. 30ml de solution sont prélevées puis filtrées sur un filtre de surface 2 cm2, afin de récupérer l'ensemble des bactéries. Les bactéries sur filtres sont alors mises au contact de deux colorants, un colorant vert (SYTO9 de Invitrogen) et un colorant rouge (l'iodure de propidium IP). L'iodure de propidium ne pénètre dans la bactérie que si la paroi de celle-ci est abîmée. Le comptage des bactéries sur filtres est effectué par la technique de microscopie à épifluorescence.In each case, the ratio of living bacteria to total bacteria (BV / BT) was quantified. This quantification was performed by proceeding as follows. Legionella pneumophila bacteria, regardless of their state, are recovered, after passing through the photocatalytic device (or during the whites produced), in a bubble column with a volume of approximately 9000 ml containing a recovery liquid (sterile water which can contain glycerol), with a volume of 1000 ml. 30ml of solution are removed and then filtered on a 2 cm 2 surface filter, in order to recover all the bacteria. The bacteria on filters are then brought into contact with two dyes, a green dye (SYTO9 from Invitrogen) and a red dye (propidium iodide IP). Propidium iodide enters the bacterium only if the wall of the bacterium is damaged. The counting of bacteria on filters is carried out by the epifluorescence microscopy technique.
L'efficacité bactéricide est alors donnée par le rapport entre la valeur BV/BT à la sortie et à l'entrée du réacteur.The bactericidal efficacy is then given by the ratio between the BV / BT value at the outlet and at the inlet of the reactor.
Les conditions des essais réalisés et les résultats obtenus sont reportés dans le tableau I ci-après. The conditions of the tests carried out and the results obtained are reported in Table I below.
Tableau I : inactivation de bactéries Legionella pneumophila contenues dans un aérosol
Figure imgf000020_0001
Table I: inactivation of Legionella pneumophila bacteria contained in an aerosol
Figure imgf000020_0001

Claims

REVENDICATIONS
1. Dispositif de purification d'un milieu gazeux, comprenant un réacteur (9), au moins un élément (5) muni d'un revêtement photocatalytique (6) et des moyens d'irradiation (7) associés, caractérisé en ce que ledit élément (5) est formé par les pales d'un ventilateur tangentiel.1. Device for purifying a gaseous medium, comprising a reactor (9), at least one element (5) provided with a photocatalytic coating (6) and irradiation means (7) associated, characterized in that said element (5) is formed by the blades of a tangential fan.
2. Dispositif selon la revendication 1 , dans lequel les moyens d'irradiation (7) activent une partie du revêtement photocatalytique de manière périodique. 2. Device according to claim 1, wherein the irradiation means (7) activate a portion of the photocatalytic coating periodically.
3. Dispositif selon l'une des revendications 1 ou 2, comportant :3. Device according to one of claims 1 or 2, comprising:
- un réacteur (9) comprenant un tambour (4) susceptible d'être entraîné en rotation par des moyens d'entraînement, sur lequel tambour sont disposées des pales (5) munies sur au moins l'une de leurs faces d'un revêtement photocatalytique (6), lequel tambour forme avec des moyens de guidage (8) une entrée (2) adaptée à l'introduction du milieu gazeux et une sortie (3) adaptée à l'évacuation du milieu gazeux, et- a reactor (9) comprising a drum (4) capable of being rotated by drive means, on which drum are arranged blades (5) provided on at least one of their faces with a coating photocatalytic device (6), which drum forms with guiding means (8) an inlet (2) adapted to the introduction of the gaseous medium and an outlet (3) adapted to the evacuation of the gaseous medium, and
- des moyens d'irradiation (7) du revêtement photocatalytique disposés de manière à irradier au moins partiellement le revêtement photocatalytique. - Irradiation means (7) of the photocatalytic coating arranged to irradiate at least partially the photocatalytic coating.
4. Procédé de purification d'un milieu gazeux, comportant l'étape consistant à faire passer au moins une partie du milieu gazeux à purifier à travers le dispositif selon l'une des revendications 1 à 3.4. Process for purifying a gaseous medium, comprising the step of passing at least a portion of the gaseous medium to be purified through the device according to one of claims 1 to 3.
5. Procédé selon la revendication 4, dans lequel le milieu gazeux comporte des agents biologiques. 5. The method of claim 4, wherein the gaseous medium comprises biological agents.
6. Procédé selon la revendication 5, dans lequel le milieu gazeux comporte des bactéries.6. The method of claim 5, wherein the gaseous medium comprises bacteria.
7. Procédé selon la revendication 6, dans lequel les bactéries sont du genre Legionella.The method of claim 6, wherein the bacteria are of the genus Legionella.
8. Procédé selon la revendication 7, dans lequel les bactéries sont du genre Legionella pneumophila. The method of claim 7, wherein the bacteria are of the genus Legionella pneumophila.
9. Procédé selon la revendication 4, dans lequel le milieu gazeux comporte des espèces chimiques.9. The method of claim 4, wherein the gaseous medium comprises chemical species.
10. Procédé selon l'une quelconque des revendications 4 à 9, dans lequel le milieu gazeux se présente sous la forme d'un aérosol. 10. Process according to any one of claims 4 to 9, wherein the gaseous medium is in the form of an aerosol.
PCT/FR2007/001593 2006-09-28 2007-09-28 Device for purifying gaseous media and method implementing said device WO2008037900A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0608533A FR2906473B1 (en) 2006-09-28 2006-09-28 DECONTAMINATION OF A GASEOUS MEDIA BY A PHOTOACTIVE SEMICONDUCTOR
FR0608533 2006-09-28

Publications (2)

Publication Number Publication Date
WO2008037900A2 true WO2008037900A2 (en) 2008-04-03
WO2008037900A3 WO2008037900A3 (en) 2008-05-08

Family

ID=38005720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001593 WO2008037900A2 (en) 2006-09-28 2007-09-28 Device for purifying gaseous media and method implementing said device

Country Status (2)

Country Link
FR (1) FR2906473B1 (en)
WO (1) WO2008037900A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929521A1 (en) * 2008-04-07 2009-10-09 Marie-Charlotte Bernard Air purifying method for e.g. meeting room of building in hospital medium, involves circulating air for driving liquid mass to create vortex, and exposing liquid mass to irradiation by radiation destructing pollutants trapped in liquid mass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315137A (en) * 1987-06-16 1988-12-22 Matsushita Electric Ind Co Ltd Air cleaning apparatus
US5919422A (en) * 1995-07-28 1999-07-06 Toyoda Gosei Co., Ltd. Titanium dioxide photo-catalyzer
JP2001087361A (en) * 1999-09-27 2001-04-03 Max Co Ltd Photocatalyst type air cleaner
US20030143133A1 (en) * 2002-01-31 2003-07-31 Liu Wei Ju Air cleaning apparatus
WO2004016296A2 (en) * 2002-08-17 2004-02-26 The University Of Nottingham Apparatus for catalysing a reaction in a fluid material
WO2006043124A1 (en) * 2004-10-21 2006-04-27 Carrier Corporation Fan units

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073991A (en) * 1998-08-31 2000-03-07 Nippon Kobunshi Kk Blowing fan capable of deodorizing and deodorant air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315137A (en) * 1987-06-16 1988-12-22 Matsushita Electric Ind Co Ltd Air cleaning apparatus
US5919422A (en) * 1995-07-28 1999-07-06 Toyoda Gosei Co., Ltd. Titanium dioxide photo-catalyzer
JP2001087361A (en) * 1999-09-27 2001-04-03 Max Co Ltd Photocatalyst type air cleaner
US20030143133A1 (en) * 2002-01-31 2003-07-31 Liu Wei Ju Air cleaning apparatus
WO2004016296A2 (en) * 2002-08-17 2004-02-26 The University Of Nottingham Apparatus for catalysing a reaction in a fluid material
WO2006043124A1 (en) * 2004-10-21 2006-04-27 Carrier Corporation Fan units

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200024 Derwent Publications Ltd., London, GB; AN 2000-276296 XP002433306 & JP 2000 073991 A (NIPPON KOBUNSHI KK) 7 mars 2000 (2000-03-07) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929521A1 (en) * 2008-04-07 2009-10-09 Marie-Charlotte Bernard Air purifying method for e.g. meeting room of building in hospital medium, involves circulating air for driving liquid mass to create vortex, and exposing liquid mass to irradiation by radiation destructing pollutants trapped in liquid mass

Also Published As

Publication number Publication date
FR2906473B1 (en) 2011-03-04
FR2906473A1 (en) 2008-04-04
WO2008037900A3 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
EP2771282B1 (en) Process for treating effluents in a bed of microbeads by cold plasma and photocatalysis
US9408937B2 (en) Photo-catalyzing fluid mobilizing system and method
EP1601916B1 (en) Unit for filtering and treatment of organic compounds, method for production thereof and air-conditioning unit provided with such a unit
CN1362886A (en) Process and apparatus for purification of oxygen-containing gas
EP1341595B1 (en) Device and method for purifying a gas effluent
WO2013009321A1 (en) Gas purification using photocatalytic vortex-suspended particles
KR102210086B1 (en) A sterilizing apparatus for ozone decomposition
RU48815U1 (en) DEVICE FOR CLEANING AND DISINFECTION OF AIR (OPTIONS)
EP3866865A1 (en) Air purification device for large spaces
EP1819369B1 (en) Inactivating biological agents dispersed in gaseous medium with a photoactivated semiconductor
KR20180031185A (en) Photocatalyst unit and air cleaning apparatus comprising the same
EP1439909B1 (en) Photocatalyst and a method of purifying gaseous effluents
WO2011138569A1 (en) Unit for purifying air by photocatalysis
EP2181720A1 (en) Air purifier
WO2008037900A2 (en) Device for purifying gaseous media and method implementing said device
EP3830492B1 (en) Assembly for purifying and for air pollution control and method for controlling such an assembly
CH717554A2 (en) Filter element for the purification and disinfection of air and water.
EP2429596A1 (en) Air purification device
FR2923733A1 (en) Photocatalytic filter unit, for removing organic components from air or liquid, includes filter medium containing activated carbon and titanium dioxide and UV source for photolysis
FR2892951A1 (en) Photocatalytic gas treatment device comprises cylindrical catalyst-coated support that extends along longitudinal axis of device and faces towards light sources
EP3705797B1 (en) Device for purifying air by photocatalysis comprising optical fibres
WO2021259951A1 (en) Apparatus for treating air and interior surfaces of premises, comprising a turbine and a tank of decontaminating liquid composition for mixing with the air to be treated that is drawn in by the turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858390

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07858390

Country of ref document: EP

Kind code of ref document: A2