WO2008037697A1 - Novel organogel particles, method for the preparation thereof and cosmetic uses thereof - Google Patents
Novel organogel particles, method for the preparation thereof and cosmetic uses thereof Download PDFInfo
- Publication number
- WO2008037697A1 WO2008037697A1 PCT/EP2007/060126 EP2007060126W WO2008037697A1 WO 2008037697 A1 WO2008037697 A1 WO 2008037697A1 EP 2007060126 W EP2007060126 W EP 2007060126W WO 2008037697 A1 WO2008037697 A1 WO 2008037697A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanospheres
- organogel
- cosmetic
- active ingredient
- agent
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/042—Gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0241—Containing particulates characterized by their shape and/or structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/044—Suspensions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/11—Encapsulated compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/36—Carboxylic acids; Salts or anhydrides thereof
- A61K8/365—Hydroxycarboxylic acids; Ketocarboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/41—Particular ingredients further characterized by their size
- A61K2800/412—Microsized, i.e. having sizes between 0.1 and 100 microns
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/41—Particular ingredients further characterized by their size
- A61K2800/413—Nanosized, i.e. having sizes below 100 nm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/60—Particulates further characterized by their structure or composition
- A61K2800/65—Characterized by the composition of the particulate/core
- A61K2800/652—The particulate/core comprising organic material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
Definitions
- the present invention relates to new organogel particles, their process of preparation, and their uses, in particular in cosmetics.
- Gels widely used in cosmetics and in the food or petroleum industry, are generally diluted solutions of polymers, proteins, inorganic substances such as silica or clays in water or body fluids. Gelling agents are necessary for the formation and maintenance of these gels.
- the gelling agent forms a three-dimensional continuous network that immobilizes the liquid and prevents it from flowing.
- the architecture of the network results from the self-assembly of low molecular weight organogelifiers by non-covalent forces, such as ⁇ - ⁇ interactions, hydrogen bonds, Van Der Walls forces. or else donor-acceptor interactions.
- the three-dimensional network consists of an assembly of organo-fibrillating molecules into fibrils, and these fibrils self-assemble into fibers and intersecting fiber bundles.
- the organogels have the advantage of being able to contain active ingredients or ingredients to facilitate the introduction and the stability of said ingredients or active ingredients in compositions.
- these nanoparticles of organogels may have many advantages over liposome solutions or nanocapsule dispersions.
- organogel nanoparticles Firstly they have a better rate of encapsulation of lipophilic or amphiphilic active ingredients with a homogeneous distribution within the particles.
- the originality of these organogel nanoparticles is also due to the fact that the liquid active principle can be directly gelled and thus be the main component whose consistency can easily be modulated by varying the proportion of organogelling agent.
- a stabilizing agent polymer or surfactant
- the present invention therefore relates to organogel nanospheres comprising a low molecular weight organogelling agent capable of gelling a cosmetic or pharmaceutical active ingredient, lipophilic or amphiphilic, nonvolatile and liquid at room temperature.
- the nanospheres according to the present invention are of nanometric size, and more particularly have a diameter of between 50 and 5000 nm, and preferably between 100 and 5000 nm.
- the nanospheres according to the present invention are of substantially spherical, uniform shape, preferably with a smooth surface.
- substantially spherical in the sense of the present invention means a shape very close to the sphere. More particularly, “substantially spherical” means that when a cross section is made, the difference found between the larger average diameter and the smallest average diameter is less than 20% and better still less than 10%.
- the nanospheres of the invention may have a consistency ranging from a highly viscous liquid to a compact solid and this depending on the proportion of organogelling.
- the proportion of the organogelling agent is between 0.1% and 50% by weight relative to the total weight of the organogelling agent and the cosmetic or pharmaceutical active ingredient.
- the low molecular weight organogelling agent corresponds to a small organic molecule capable of gelling a wide range of organic liquids in small proportions.
- low molecular weight in the sense of the present invention means a molecular weight of less than 1000 g / mol, and more particularly less than 500 g / mol.
- the organogelling agent will be chosen from fatty acid esters, fatty acids and their monovalent, divalent or trivalent metal derivatives or derivatives, steroids and their derivatives, polyaromatic derivatives, macrocycles, sugar derivatives, fluorinated compounds, fatty amines, long-chain alkanes, long-chain ammonium carbamates, cholesterol and its derivatives, amides, bis-ureas, and mixtures of these derivatives.
- long-chain alkanes or long-chain ammonium carbamates are understood to mean compounds as designated which have a carbon chain containing between 8 and 36 carbon atoms.
- long chain alkane hexatriacontane may be mentioned.
- the organogelling agent is preferably chosen from optionally substituted fatty acid derivatives as well as their monovalent metal salts, or their esters.
- an organogelling agent particularly suitable for the implementation of the present invention is 12-hydroxystearic acid.
- the cosmetic or pharmaceutical active ingredient (s) that can be gelled are liquid at ambient temperature, that is to say at 25 ° C. They have a lipophilic or amphiphilic character, preferentially lipophilic.
- the maintenance of the particle is related to the formation of a three-dimensional network consisting of an assembly of organogelling molecules into fibrils which self-assemble fibers and intersecting fiber bundles that immobilize the organic liquid. within the particle. Stabilization is thus ensured.
- the nanospheres may further comprise at least one dispersing agent and stabilizer. In particular, this or these dispersing agents and stabilizers are incorporated in all or part of the surface of the nanospheres.
- the dispersing agent and stabilizer will advantageously be selected from surfactants, cosurfactants, polymers, mineral particles and all combinations of these agents.
- fluorinated or hydrogenated nonionic, cationic, anionic and zwitterionic amphiphilic molecules for example sodium cholate, sodium deoxycholate, sodium glycocholate, sodium taurocholate, sodium taurodeoxycholate, Lecithins, phospholipids, Tween 20, Tween 40, Tween 60, Tween 80, Span 20, Span 40, Span 60, Span 80, sodium dodecyl sulphate, hexadecyltrimethylammonium bromide and all combinations thereof molecules.
- cosurfactants include bile acid salts such as sodium taurocholate, alcohols and glycols of low molecular weight such as butanol, hexanediol, propylene glycol and hexanol, amines or ketones short chain, low molecular weight acids such as butyric acid and caproic acid, esters of phosphoric acid, benzyl alcohol, butyl lactate, and all combinations of these molecules.
- the polymers that are well suited to the practice of the present invention may be chosen from macromolecules of natural or synthetic origin, homopolymers or copolymers, filled homopolymers or charged copolymers, amphiphilic homopolymers or amphiphilic copolymers, hyperbranched polymers or copolymers, dendrimers, polysaccharides as well as all combinations of these macromolecules, emulsifiers such as gelatin, as well as all combinations of these polymers.
- mineral particles used for the implementation of the invention there may be mentioned silicas, clays, aluminas, talc, metal oxides and all combinations of these particles.
- nanospheres of the present invention Another major advantage of the nanospheres of the present invention is the distribution of the cosmetic or pharmaceutical active ingredient and the organogelling agent homogeneously within said nanospheres, from the center of the particles to the periphery.
- the present invention also relates to a process for the preparation of aqueous dispersions of organogel nanospheres comprising the steps of:
- the organogel is thus prepared by heating the gelling agent with a cosmetic or liquid pharmaceutical active ingredient until a liquid solution ("sol") is obtained.
- a gel is formed from a certain temperature which freezes the organic liquid. This temperature corresponds to the transition temperature sol-gel (Tgel) which is a physical characteristic of the organogelling / liquid active ingredient pair.
- the emulsification or microemulsification step is preferably carried out in water with vigorous stirring or sonication. Depending on the nature of the nanospheres that are to be obtained, this emulsification or microemulsification step is optionally carried out in the presence of at least one dispersing and stabilizing agent, in particular chosen from those defined above. In this case, they will be present in the water or the immiscible aqueous solvent added in step b).
- step a) is carried out at a temperature of between 30 and 150 ° C.
- Another advantageous aspect of the invention relates to a process as defined above, characterized in that the proportion of organogelling agent in step a) is between 0.1% and 50% by weight relative to the total weight of the organogelling agent and the cosmetic or pharmaceutical active ingredient.
- the process for preparing the aqueous dispersions of organogel nanospheres is carried out as follows.
- the mixture is stirred while hot at a temperature above T gel by "ultraturax" or sonication, preferably by sonication, over a period of 5 to 20 minutes, preferably 10 minutes, in steps of 5 minutes.
- the mixture is cooled to ambient temperature (close to 25 ° C., T ⁇ T gel).
- the surfactants, the cosurfactant or the polymers are chosen as follows: the surfactants are cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) or polyoxyethylene (20) sorbitan monooleate ( Tween 80).
- CTAB cetyltrimethylammonium bromide
- SDS sodium dodecyl sulphate
- Tween 80 polyoxyethylene (20) sorbitan monooleate
- the cosurfactant is sodium taurocholate
- the invention also relates to aqueous dispersions of nanospheres that can be obtained according to the method described above.
- dispersions have the advantage of having a better stability than the corresponding emulsions which are in the form of oil droplets without organogelling agent.
- the organogelling content (HSA), the viscosity of the organic liquid to be gelled and the type of stabilizer used (surfactant or polymer) play a vital role in the stabilization process and makes it possible to obtain stable dispersions over several months.
- the synergy between the gelation and the viscosity of the oil in the development of a dispersion of nanospheres also determines the choice of the stabilizer.
- An ionic surfactant will be preferred for stabilizing dispersions of semi-solid particles made from a low viscosity oil.
- the nanospheres become very rigid and close to a solid, and in this case their steric stabilization with a polymer will be preferred.
- the aqueous dispersions of nanospheres obtained according to the invention exhibit non-Newtonian behavior.
- the apparent viscosity of these systems varies non-linearly, it decreases with the increase in the shear rate, which corresponds to the rheofluidizing or pseudoplastic behavior characteristic of very concentrated emulsions or dispersions.
- This rheological behavior can be very interesting in the case of the spreading of a cosmetic cream.
- aqueous dispersions of nanospheres according to the invention are in particular characterized by modulus values of elasticity G 'of between 10 Pa and 10,000 Pa, and viscosity modulus values G' of between 10 Pa and 1000 Pa.
- the rheological behavior of the aqueous dispersions of corresponding nanospheres is studied by following the viscoelastic modules G 'and G "and the tangent ⁇ as a function of the shear frequency in the linear viscoelastic domain (determined by scanning the shear stress). results obtained it can be concluded that the viscosity of the constituent oil, as well as the in HSA strongly increase the elasticity of the aqueous dispersions of organogel nanospheres. This results in the existence of strong interactions between nanospheres, hence a rheological behavior characteristic of gels or solid materials of cosmetological interest.
- the nanosphere preparation process further comprises a final lyophilization step to isolate them from the aqueous medium.
- the present invention also relates to the nanospheres that can be obtained according to the process above.
- the nanospheres according to the present invention are intended to be used for the preparation of compositions whose utility depends on the nature of the active principle contained in said nanospheres.
- the present invention therefore relates to cosmetic or pharmaceutical compositions comprising the nanospheres or aqueous dispersions of nanospheres as defined above, and a physiologically acceptable excipient.
- the amount of nanospheres varies from 5% to 50% by weight relative to the total mass of the composition.
- the gel is prepared from a 3% by weight solution of 12-hydroxystearic acid (HSA), ie 0.15 g in 5 g of dicapryl carbonate.
- HSA 12-hydroxystearic acid
- the mixture is homogenized at a temperature of 75 ° C under ultrasound before being cooled to room temperature to form a compact and translucent gel.
- the mixture is heated at 75 ° C (T °> T ° gel) in an oven for 20 minutes.
- the liquefied organogel rises to the surface forming an oily layer (20% by mass).
- the mixture is then dispersed while hot (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
- the dispersion thus formed is cooled to room temperature to form organogel nanospheres.
- Size and size distribution the gelosomes have a mean diameter of 3000 nm and a polydispersity index of 0.8 (light scattering).
- the gel is prepared from a 3% by weight solution of HSA, ie 0.15 g in 5 g of dicapryl carbonate. In order to completely dissolve the HSA in the oil, the mixture is homogenized at a temperature of 75 ° C under ultrasound before being cooled to room temperature to form a compact and translucent gel.
- Hot Emulsification to the organogel thus obtained are added 20g of a 2% by weight aqueous solution of cetyltrimethylammonium bromide (CTAB). The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then emulsified while hot (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
- CAB cetyltrimethylammonium bromide
- Cooling at room temperature the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
- the gelosomes have an average diameter of 300 nm and a polydispersity index of 0.15 (light scattering).
- the gel is prepared from a 3% by weight solution of HSA, ie 0.15 g in 5 g of dicapryl carbonate. In order to completely dissolve the HSA in the oil, the mixture is homogenized at a temperature of 75 ° C under ultrasound before being cooled to room temperature to form a compact and translucent gel.
- Hot emulsification to the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of polyoxyethylene (20) sorbitan monooleate (Tween 80) . The mixture is heated at 75 ° C. (T> T gel) to oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The The mixture is then emulsified while hot (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
- Tween 80 polyoxyethylene
- Cooling at room temperature the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
- the gelosomes have an average diameter of 360 nm and a polydispersity index of 0.22 (light scattering).
- the aqueous phase is prepared by dissolving 3% by weight of deoiled soy lecithin. The solution is then homogenized hot (75 ° C) by sonication (2OkHz, 600W), 2 times 10 minutes.
- Hot Emulsification to the organogel thus obtained are added 20 g of the 3% aqueous solution of soy lecithin. The mixture is heated at 75 ° C. (T> T gel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then emulsified while hot (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
- Cooling at room temperature the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
- the gelosomes have a mean diameter of 100 nm and a polydispersity index of 0.15 (light scattering).
- Hot microemulsification the organogel thus obtained is supplemented with 20 g of an aqueous solution containing 12% by weight of sodium taurocholate (co-surfactant) and 2% by weight of Tween 80 (surfactant). The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then hot-micemulsified (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
- the microemulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
- the resulting gelosomes have an average diameter of 200 nm and a polydispersity index of 0.3 (light scattering).
- UVB + UVA solar filters a mixture of UVB + UVA solar filters is prepared by dissolving butylmethoxydibenzoylmethane (17% by mass) in hot (60 ° C.) in octylmethoxycinnamate (UVB). The mixture thus obtained is then cooled to room temperature.
- the gel is prepared from a 6% by weight solution of HSA, ie 0.3 g in 5 g of sunscreen.
- HSA hydroxybenzoic acid
- Hot Emulsification to the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of PVA hydrolyzed to 80%. The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then heat-emulsified (75 ° C.) by sonication (20 kHz, 600W), twice 5 minutes.
- Cooling at room temperature the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
- the gelosomes are dehydrated by lyophilization for 24 hours. These can then be dispersed by simple agitation. Size and Size Distribution: The resulting gelosomes have an average diameter of 1000 nm and a polydispersity index of 0.5 (light scattering).
- UVB + UVA solar filters a mixture of UVB + UVA solar filters is prepared by dissolving butylmethoxydibenzoylmethane (17% by mass) in hot (60 ° C.) in octylmethoxycinnamate (UVB). The mixture thus obtained is then cooled to room temperature.
- the gel is prepared from a 6% by weight solution of HSA, ie 0.3 g in 5 g of sunscreen.
- HSA hydroxybenzoic acid
- Hot Emulsification to the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of hydroxypropylmethyl cellulose. The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then emulsified while hot (75 ° C.) by sonication (20 kHz, 600W), twice 5 minutes.
- Cooling at room temperature the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
- Dehydration by lyophilization the gelosomes are dehydrated by lyophilization for 24 hours. The latter can then be dispersed in water by simple agitation.
- the resulting gelosomes have an average diameter of 750 nm and a polydispersity index of 0.35 (light scattering).
- Hot Emulsification To the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of cetyltrimethylammonium bromide (CTAB). The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then heat-emulsified (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
- CAB cetyltrimethylammonium bromide
- Cooling at room temperature the emulsion thus formed is left at room temperature to form organogel nanoparticles.
- the gelosomes have a mean diameter of 900 nm and a polydispersity index of 0.8 (light scattering).
- Hot Emulsification To the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of sodium dodecyl sulphate (SDS). The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then heat-emulsified (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
- SDS sodium dodecyl sulphate
- Cooling at room temperature the emulsion thus formed is left at room temperature to form organogel nanoparticles.
- the gelosomes have a mean diameter of 400 nm and a polydispersity index of 0.7 (light scattering).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Nanotechnology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Emergency Medicine (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
- Medicinal Preparation (AREA)
Abstract
The present invention relates to nanospheres of organogel comprising a low-molecular-weight organogelling agent capable of gelling a cosmetic or pharmaceutical active ingredient which is lipophilic or amphiphilic, non-volatile and liquid at ambient temperature. The low-molecular-weight organogelling agent is in particular 12-hydroxystearic acid. The invention also relates to a method for preparing aqueous dispersions of organogel nanospheres comprising, in particular, a step of hot emulsification or micro emulsification of an organogel, followed by cooling to ambient temperature. The invention also relates to the nanospheres and the aqueous dispersions of nanospheres obtained by the method according to the invention, and to the cosmetic or pharmaceutical compositions comprising them.
Description
NOUVELLES PARTICULES D ORGANOGEL, LEUR PROCEDE DE PREPARATION, ET LEURS UTILISATIONS EN COSMETIQUE NOVEL ORGANOGEL PARTICLES, PROCESS FOR THEIR PREPARATION, AND USES THEREOF IN COSMETICS
La présente invention concerne des nouvelles particules d'organogel, leur procédé de préparation, et leurs utilisations, notamment en cosmétique.The present invention relates to new organogel particles, their process of preparation, and their uses, in particular in cosmetics.
Les gels, largement utilisés en cosmétique et dans l'industrie alimentaire ou pétrolière, sont généralement des solutions diluées de polymères, de protéines, de substances inorganiques comme de la silice ou les argiles dans l'eau ou des liquides organiques. Les gélifiants sont nécessaires à la formation et au maintien des ces gels.Gels, widely used in cosmetics and in the food or petroleum industry, are generally diluted solutions of polymers, proteins, inorganic substances such as silica or clays in water or body fluids. Gelling agents are necessary for the formation and maintenance of these gels.
Récemment, un intérêt croissant s'est développé pour les organogélifïants de faible masse moléculaire. Cette situation est motivée non seulement par les nombreuses applications potentielles des organogels obtenus à partir de ces gélifiants particuliers, mais également par le fait que ces systèmes présentent d'intéressantes propriétés d'auto assemblage. Dans ces organogels, tout comme pour les autres systèmes gélifiés, l'agent gélifiant forme un réseau continu tridimensionnel qui immobilise le liquide et l'empêche de couler. Contrairement à leurs analogues polymériques ou inorganiques, l'architecture du réseau résulte de l'auto-assemblage des organogélifïants de faible masse moléculaire par des forces non covalentes, telles que des interactions π-π, des liaisons hydrogènes, des forces de Van Der Walls ou encore des interactions donneur- accepteur. Généralement le réseau tridimensionnel est constitué d'un assemblage de molécules d'organogélifîant en fibrilles, puis ces fibrilles s'auto-assemblent en fibres et faisceaux de fibres entrecroisées.Recently, there has been a growing interest in low molecular weight organogelifiers. This situation is motivated not only by the many potential applications of the organogels obtained from these particular gelling agents, but also by the fact that these systems have interesting self-assembly properties. In these organogels, as for other gelled systems, the gelling agent forms a three-dimensional continuous network that immobilizes the liquid and prevents it from flowing. In contrast to their polymeric or inorganic analogues, the architecture of the network results from the self-assembly of low molecular weight organogelifiers by non-covalent forces, such as π-π interactions, hydrogen bonds, Van Der Walls forces. or else donor-acceptor interactions. Generally, the three-dimensional network consists of an assembly of organo-fibrillating molecules into fibrils, and these fibrils self-assemble into fibers and intersecting fiber bundles.
Dans les domaines cosmétique, pharmaceutique ou alimentaire les organogels présentent l'avantage de pouvoir contenir des ingrédients ou principes actifs pour faciliter l'introduction, et la stabilité desdits ingrédients ou principes actifs dans des compositions.In the cosmetic, pharmaceutical or food fields, the organogels have the advantage of being able to contain active ingredients or ingredients to facilitate the introduction and the stability of said ingredients or active ingredients in compositions.
Plus particulièrement dans le domaine cosmétique, plusieurs solutions ont été envisagées afin d'introduire, de protéger, et même de vectoriser certains ingrédients lorsque leur stabilité pouvait être remise en cause par le milieu de formulation, le procédé de fabrication, ou lorsqu'il est préférable que le principe actif ne soit libéré qu'à
un endroit donné. La pénétration des principes actifs à travers les différentes couches de la peau peut également être améliorée.More particularly in the cosmetic field, several solutions have been envisaged to introduce, protect, and even vectorize certain ingredients when their stability could be questioned by the formulation medium, the manufacturing process, or when it is preferable that the active ingredient be released only a given place. The penetration of the active ingredients through the different layers of the skin can also be improved.
De nombreux systèmes envisagés font appel à l'incorporation ou l'encapsulation du principe actif au sein de particules de tailles et de constitution variables en fonction de la nature du principe actif et de la finalité de son utilisation.Many contemplated systems involve the incorporation or encapsulation of the active ingredient in particles of varying sizes and constitution depending on the nature of the active ingredient and the purpose of its use.
La Demanderesse a mis en évidence qu'il était possible d'obtenir de nouvelles particules sphériques à partir d'organogélifîant de faible masse moléculaire. Ces particules seront désignées dans toute la demande de brevet par le terme nanosphères.The Applicant has shown that it is possible to obtain new spherical particles from low molecular weight organogelling components. These particles will be designated throughout the patent application by the term nanospheres.
Dans le domaine de l'encapsulation de principes actifs, ces nanoparticules d'organogels pourront présenter de nombreux avantages par rapport à des solutions de liposomes ou des dispersions de nanocapsules.In the field of the encapsulation of active principles, these nanoparticles of organogels may have many advantages over liposome solutions or nanocapsule dispersions.
Tout d'abord elles présentent un meilleur taux d'encapsulation de principes actifs lipophiles ou amphiphiles avec une répartition homogène au sein des particules. L'originalité de ces nanoparticules d'organogel tient également au fait que le principe actif liquide peut directement être gélifié et ainsi être le principal constituant dont on pourra aisément moduler la consistance en jouant sur la proportion d'organogélifîant. Enfin, l'éventuelle incorporation d'un agent stabilisant (polymère ou tensioactif) à la surface des nanoparticules d'organogel pourra permettre une fonctionnalisation aisée pour une meilleure vectorisation.Firstly they have a better rate of encapsulation of lipophilic or amphiphilic active ingredients with a homogeneous distribution within the particles. The originality of these organogel nanoparticles is also due to the fact that the liquid active principle can be directly gelled and thus be the main component whose consistency can easily be modulated by varying the proportion of organogelling agent. Finally, the possible incorporation of a stabilizing agent (polymer or surfactant) on the surface of the organogel nanoparticles may allow easy functionalization for better vectorization.
La présente invention concerne donc des nanosphères d'organogel comprenant un organogélifîant de faible masse moléculaire capable de gélifier un principe actif cosmétique ou pharmaceutique, lipophile ou amphiphile, non volatil et liquide à température ambiante.The present invention therefore relates to organogel nanospheres comprising a low molecular weight organogelling agent capable of gelling a cosmetic or pharmaceutical active ingredient, lipophilic or amphiphilic, nonvolatile and liquid at room temperature.
Les nanosphères selon la présente invention sont de taille nanométrique, et plus particulièrement possèdent un diamètre compris entre 50 et 5000 nm, et préférentiellement compris entre 100 et 5000 nm.The nanospheres according to the present invention are of nanometric size, and more particularly have a diameter of between 50 and 5000 nm, and preferably between 100 and 5000 nm.
De façon avantageuse, les nanosphères selon la présente invention sont de forme substantiellement sphérique, uniforme, préférentiellement avec une surface lisse. Par « substantiellement sphérique » au sens de la présente invention, on entend une forme très proche de la sphère. Plus particulièrement, « substantiellement sphérique » signifie que lorsqu'une coupe transversale est réalisée, la différence constatée entre le
plus grand diamètre moyen et le plus petit diamètre moyen est inférieure à 20 % et mieux inférieure à 10%.Advantageously, the nanospheres according to the present invention are of substantially spherical, uniform shape, preferably with a smooth surface. By "substantially spherical" in the sense of the present invention means a shape very close to the sphere. More particularly, "substantially spherical" means that when a cross section is made, the difference found between the larger average diameter and the smallest average diameter is less than 20% and better still less than 10%.
Les nanosphères de l'invention pourront présenter une consistance allant d'un liquide très visqueux à un solide compact et ce en fonction de la proportion d'organogélifïant.The nanospheres of the invention may have a consistency ranging from a highly viscous liquid to a compact solid and this depending on the proportion of organogelling.
Dans un aspect avantageux, la proportion de l'organogélifiant est comprise entre 0,1 % et 50 % en poids par rapport au poids total de l'organogélifiant et du principe actif cosmétique ou pharmaceutique.In an advantageous aspect, the proportion of the organogelling agent is between 0.1% and 50% by weight relative to the total weight of the organogelling agent and the cosmetic or pharmaceutical active ingredient.
Selon l'invention, l'organogélifiant de faible masse moléculaire correspond à une petite molécule organique capable de gélifier à de faibles proportions une large gamme de liquides organiques. Par faible masse moléculaire au sens de la présente invention, on entend une masse moléculaire inférieure à 1000 g/mol, et plus particulièrement inférieure à 500 g/mol.According to the invention, the low molecular weight organogelling agent corresponds to a small organic molecule capable of gelling a wide range of organic liquids in small proportions. By low molecular weight in the sense of the present invention means a molecular weight of less than 1000 g / mol, and more particularly less than 500 g / mol.
Dans un aspect avantageux de l'invention, l'organogélifiant sera choisi parmi les esters d'acides gras, les acide gras et leurs dérivés ou sels métalliques monovalents, divalents ou trivalents, les stéroïdes et leurs dérivés, les dérivés polyaromatiques, les macrocycles, les dérivés de sucres, les composés fluorés, les aminés grasses, les alcanes à longue chaîne, les carbamates d'ammonium à longue chaîne, le cholestérol et ses dérivés, les amides, les bis-urées, et les mélanges de ces dérivés.In an advantageous aspect of the invention, the organogelling agent will be chosen from fatty acid esters, fatty acids and their monovalent, divalent or trivalent metal derivatives or derivatives, steroids and their derivatives, polyaromatic derivatives, macrocycles, sugar derivatives, fluorinated compounds, fatty amines, long-chain alkanes, long-chain ammonium carbamates, cholesterol and its derivatives, amides, bis-ureas, and mixtures of these derivatives.
Au sens de la présente invention par alcanes à longue chaîne ou par carbamates d'ammonium à longue chaîne, on entend des composés tels que désignés qui possèdent une chaîne carbonée comportant entre 8 et 36 atomes de carbones. Comme alcane à longue chaîne on peut citer l'hexatriacontane.For the purposes of the present invention, long-chain alkanes or long-chain ammonium carbamates are understood to mean compounds as designated which have a carbon chain containing between 8 and 36 carbon atoms. As the long chain alkane hexatriacontane may be mentioned.
Parmi les amides utilisables pour la mise en œuvre de la présente invention, on préférera les alkylglutamides, N-hydroxyalkylamides, alkylidènediamides, les peptides, les polypeptides.Among the amides that can be used for the implementation of the present invention, preference will be given to alkylglutamides, N-hydroxyalkylamides, alkylidenediamides, peptides and polypeptides.
Selon la présente invention, l'organogélifiant est préférentiellement choisi parmi les dérivés d'acides gras éventuellement substitués ainsi que leurs sels métalliques monovalents, ou leurs esters.According to the present invention, the organogelling agent is preferably chosen from optionally substituted fatty acid derivatives as well as their monovalent metal salts, or their esters.
Un organogélifïant convenant particulièrement bien à la mise en œuvre de la présente invention est l'acide 12-hydroxystéarique.
Dans le cadre de la présente invention, le ou les principes actifs cosmétiques ou pharmaceutiques susceptibles d'être gélifiés sont liquides à température ambiante, c'est- à-dire à 25°C. Ils présentent un caractère lipophile ou amphiphile, préférentiellement lipophile. Ainsi, et de manière non exhaustive on peut citer les huiles végétales, les huiles minérales, les huiles émollientes, les huiles siliconées, les huiles fluorées, les huiles essentielles, les filtres solaires, ainsi que tout ingrédient ou principe actif non volatil et liquide à température ambiante et pression atmosphérique, de même que toutes les combinaisons de ces liquides organiques.An organogelling agent particularly suitable for the implementation of the present invention is 12-hydroxystearic acid. In the context of the present invention, the cosmetic or pharmaceutical active ingredient (s) that can be gelled are liquid at ambient temperature, that is to say at 25 ° C. They have a lipophilic or amphiphilic character, preferentially lipophilic. Thus, and in a non-exhaustive manner, mention may be made of vegetable oils, mineral oils, emollient oils, silicone oils, fluorinated oils, essential oils, sunscreens, as well as any ingredient or active ingredient which is non-volatile and liquid to ambient temperature and atmospheric pressure, as well as all combinations of these organic liquids.
Selon l'invention, le maintien de la particule est lié à la formation d'un réseau tridimensionnel constitué d'un assemblage de molécules d'organogélifïant en fibrilles qui s'auto-assemblent en fibres et faisceaux de fibres entrecroisées qui immobilisent le liquide organique au sein de la particule. La stabilisation est ainsi assurée. Toutefois dans le cadre de la mise en oeuvre de la présente invention, les nanosphères pourront en outre comprendre au moins agent dispersant et stabilisateur. De façon particulière, ce ou ces agents dispersants et stabilisateurs sont incorporés en tout ou partie à la surface des nanosphères.According to the invention, the maintenance of the particle is related to the formation of a three-dimensional network consisting of an assembly of organogelling molecules into fibrils which self-assemble fibers and intersecting fiber bundles that immobilize the organic liquid. within the particle. Stabilization is thus ensured. However, in the context of the implementation of the present invention, the nanospheres may further comprise at least one dispersing agent and stabilizer. In particular, this or these dispersing agents and stabilizers are incorporated in all or part of the surface of the nanospheres.
L'agent dispersant et stabilisateur sera avantageusement choisi parmi les tensioactifs, les cotensioactifs, les polymères, les particules minérales ainsi que toutes les combinaisons de ces agents.The dispersing agent and stabilizer will advantageously be selected from surfactants, cosurfactants, polymers, mineral particles and all combinations of these agents.
Parmi les tensioactifs on peut mentionner les molécules amphiphiles fluorées ou hydrogénées non-ioniques, cationiques, anioniques, zwitterioniques, comme par exemple le cholate de sodium, le déoxycholate de sodium, le glycocholate de sodium, le taurocholate de sodium, le taurodéoxycholate de sodium, les lécithines, les phospho lipides, le Tween 20, Tween 40, Tween 60, Tween 80, Span 20, Span 40, Span 60, Span 80, le dodécylsulfate de sodium, le bromure d'héxadécytrimethylammonium, ainsi que toutes les combinaisons de ces molécules.Among the surfactants, mention may be made of fluorinated or hydrogenated nonionic, cationic, anionic and zwitterionic amphiphilic molecules, for example sodium cholate, sodium deoxycholate, sodium glycocholate, sodium taurocholate, sodium taurodeoxycholate, Lecithins, phospholipids, Tween 20, Tween 40, Tween 60, Tween 80, Span 20, Span 40, Span 60, Span 80, sodium dodecyl sulphate, hexadecyltrimethylammonium bromide and all combinations thereof molecules.
Parmi les cotensioactifs on peut citer les sels d'acides biliaires comme le taurocholate de sodium, les alcools et les glycols de faible masse moléculaire comme par exemple le butanol, l'hexanediol, le propylène glycol et l'hexanol, des aminés ou des cétones à courte chaîne, des acides de faible masse moléculaire comme par exemple
l'acide butyrique et l'acide caproïque, des esters d'acide phosphorique, l'alcool benzylique, le lactate de butyle, ainsi que toutes les combinaisons de ces molécules.Among the cosurfactants include bile acid salts such as sodium taurocholate, alcohols and glycols of low molecular weight such as butanol, hexanediol, propylene glycol and hexanol, amines or ketones short chain, low molecular weight acids such as butyric acid and caproic acid, esters of phosphoric acid, benzyl alcohol, butyl lactate, and all combinations of these molecules.
Les polymères convenant bien à la mise en œuvre de la présente invention peuvent être choisis parmi les macromolécules d'origine naturelle ou synthétique, homopolymères ou copolymères, homopolymères chargés ou copolymères chargés, homopolymères amphiphiles ou copolymères amphiphiles, polymères ou copolymères hyperramifïés, dendrimères, polysaccharides ainsi que toutes les combinaisons de ces macromolécules, les émulsifîants comme la gélatine, ainsi que toutes les combinaisons de ces polymères.The polymers that are well suited to the practice of the present invention may be chosen from macromolecules of natural or synthetic origin, homopolymers or copolymers, filled homopolymers or charged copolymers, amphiphilic homopolymers or amphiphilic copolymers, hyperbranched polymers or copolymers, dendrimers, polysaccharides as well as all combinations of these macromolecules, emulsifiers such as gelatin, as well as all combinations of these polymers.
Parmi les particules minérales utilisées pour la mise en œuvre de l'invention, on peut mentionner les silices, les argiles, les alumines, le talc, les oxydes métalliques ainsi que toutes les combinaisons de ces particules.Among the mineral particles used for the implementation of the invention, there may be mentioned silicas, clays, aluminas, talc, metal oxides and all combinations of these particles.
Un autre avantage majeur des nanosphères de la présente invention, est la répartition du principe actif cosmétique ou pharmaceutique et de l'organogélifiant de façon homogène à l'intérieur desdites nanosphères, depuis le centre des particules jusqu'à la périphérie.Another major advantage of the nanospheres of the present invention is the distribution of the cosmetic or pharmaceutical active ingredient and the organogelling agent homogeneously within said nanospheres, from the center of the particles to the periphery.
La présente invention concerne également un procédé de préparation de dispersions aqueuses de nanosphères d'organogel comprenant les étapes de :The present invention also relates to a process for the preparation of aqueous dispersions of organogel nanospheres comprising the steps of:
(a) formation d'un organogel par mélange d'un organogélifîant de faible masse moléculaire avec un principe actif cosmétique ou pharmaceutique, lipophile ou amphiphile, non volatil et liquide à température ambiante,(a) forming an organogel by mixing a low molecular weight organogelling agent with a cosmetic or pharmaceutical active ingredient, lipophilic or amphiphilic, nonvolatile and liquid at room temperature,
(b) addition à l'organogel ainsi obtenu d'eau ou d'un solvant aqueux non miscible avec ledit organogel,(b) adding to the organogel thus obtained water or an aqueous solvent immiscible with said organogel,
(c) émulsifïcation ou microémulsifïcation du mélange ainsi obtenu à une température supérieure à la température de transition liquide-gel de l'organogel,(c) emulsification or microemulsification of the mixture thus obtained at a temperature above the liquid-gel transition temperature of the organogel,
(d) refroidissement à température ambiante de l'émulsion ou de la microémulsion ainsi formée pour conduire à une suspension de nanosphères d'organogel.(d) cooling at room temperature the emulsion or microemulsion thus formed to give a suspension of organogel nanospheres.
L'organogel est ainsi préparé en chauffant le gélifiant avec un principe actif cosmétique ou pharmaceutique liquide jusqu'à obtention d'une solution liquide ("sol"). Lorsque la solution refroidie, il se forme à partir d'une certaine température un gel qui fige le liquide organique. Cette température correspond à la température de transition
sol-gel (Tgel) qui est une caractéristique physique du couple organogélifîant / principe actif liquide.The organogel is thus prepared by heating the gelling agent with a cosmetic or liquid pharmaceutical active ingredient until a liquid solution ("sol") is obtained. When the solution is cooled, a gel is formed from a certain temperature which freezes the organic liquid. This temperature corresponds to the transition temperature sol-gel (Tgel) which is a physical characteristic of the organogelling / liquid active ingredient pair.
Après addition du solvant, l'étape d'émulsifïcation ou de microémulsification sera de préférence réalisée dans l'eau sous forte agitation ou sonication. En fonction de la nature des nanosphères que l'on cherche à obtenir, cette étape d'émulsifïcation ou de microémulsification est réalisée éventuellement en présence d'au moins un agent dispersant et stabilisateur, en particuliers choisis parmi ceux définis précédemment. Ils seront dans ce cas présents dans l'eau ou le solvant aqueux non miscible additionné à l'étape b).After addition of the solvent, the emulsification or microemulsification step is preferably carried out in water with vigorous stirring or sonication. Depending on the nature of the nanospheres that are to be obtained, this emulsification or microemulsification step is optionally carried out in the presence of at least one dispersing and stabilizing agent, in particular chosen from those defined above. In this case, they will be present in the water or the immiscible aqueous solvent added in step b).
Dans un aspect avantageux de l'invention, l'étape a) est réalisée à une température comprise entre 30 et 150 0C.In an advantageous aspect of the invention, step a) is carried out at a temperature of between 30 and 150 ° C.
Un autre aspect avantageux de l'invention concerne un procédé tel que défini ci- dessus caractérisé en ce que la proportion de l' organogélifîant à l'étape a) est comprise entre 0,1 % et 50 % en poids par rapport au poids total de l' organogélifîant et du principe actif cosmétique ou pharmaceutique.Another advantageous aspect of the invention relates to a process as defined above, characterized in that the proportion of organogelling agent in step a) is between 0.1% and 50% by weight relative to the total weight of the organogelling agent and the cosmetic or pharmaceutical active ingredient.
Dans une mise en œuvre particulièrement avantageuse de l'invention, le procédé de préparation des dispersions aqueuses de nanosphères d'organogel est effectué de la façon suivante.In a particularly advantageous embodiment of the invention, the process for preparing the aqueous dispersions of organogel nanospheres is carried out as follows.
Une solution aqueuse d'un tensioactif ou d'un polymère de 0,025 à 10% massique, en tant qu'agent dispersant et stabilisateur est versée, sur l'organogel liquéfié pour atteindre une proportion massique en liquide organique de 1% à 50%, et de préférence 20%. Le mélange est agité à chaud à une température supérieure à Tgel par "ultraturax" ou sonication, préférentiellement par sonication, sur une durée de 5 à 20 minutes, préférentiellement 10 minutes, par étapes de 5 minutes. Une fois l'émulsion ou la microémulsion réalisée, le mélange est refroidi à température ambiante, (voisine de 25 0C, T<Tgel). Selon des mises en œuvres préférentielles du procédé, on choisit les tensioactifs, le cotensioactif ou les polymères comme suit : les tensioactifs sont le bromure de cétyltriméthylammonium (CTAB), le dodécyle sulfate de sodium (SDS) ou le polyoxyéthylène(20) sorbitan monooléate (Tween 80). le cotensioactif est le taurocholate de sodium
- les polymères sont l'alcool polyvinylique (PVA) hydrolyse à 80%, masse moléculaire moyenne Mw = 10000 ou rhydroxypropylméthyle cellulose.An aqueous solution of a surfactant or a polymer of 0.025 to 10% by weight, as dispersing agent and stabilizer, is poured on the liquefied organogel to reach a mass proportion of organic liquid of 1% to 50%, and preferably 20%. The mixture is stirred while hot at a temperature above T gel by "ultraturax" or sonication, preferably by sonication, over a period of 5 to 20 minutes, preferably 10 minutes, in steps of 5 minutes. Once the emulsion or microemulsion has been carried out, the mixture is cooled to ambient temperature (close to 25 ° C., T <T gel). According to preferential implementations of the process, the surfactants, the cosurfactant or the polymers are chosen as follows: the surfactants are cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) or polyoxyethylene (20) sorbitan monooleate ( Tween 80). the cosurfactant is sodium taurocholate the polymers are polyvinyl alcohol (PVA) hydrolyzed to 80%, average molecular weight M w = 10,000 or hydroxypropylmethyl cellulose.
L'invention concerne aussi les dispersions aqueuses de nanosphères susceptibles d'être obtenues selon le procédé décrit précédemment.The invention also relates to aqueous dispersions of nanospheres that can be obtained according to the method described above.
Ces dispersions présentent l'avantage d'avoir une meilleure stabilité que les émulsions correspondantes qui se présentent sous la forme de gouttelettes d'huile sans organogélifïant. La teneur en organogélifïant (HSA), la viscosité du liquide organique à gélifier et le type de stabilisant utilisé (tensioactif ou polymère) jouent un rôle primordial dans le processus de stabilisation et permet d'obtenir des dispersions stables sur plusieurs mois. La synergie entre la gélifîcation et la viscosité de l'huile dans l'élaboration d'une dispersion de nanosphères conditionne également le choix du stabilisant. Un tensioactif ionique sera préféré pour stabiliser des dispersions de particules semi-solides, constituées à partir d'une huile de faible viscosité. Par contre pour des systèmes très visqueux et à forte teneur en organogélifïant, les nanosphères deviennent très rigides et proches d'un solide, aussi dans ce cas leur stabilisation stérique par un polymère sera préférée.These dispersions have the advantage of having a better stability than the corresponding emulsions which are in the form of oil droplets without organogelling agent. The organogelling content (HSA), the viscosity of the organic liquid to be gelled and the type of stabilizer used (surfactant or polymer) play a vital role in the stabilization process and makes it possible to obtain stable dispersions over several months. The synergy between the gelation and the viscosity of the oil in the development of a dispersion of nanospheres also determines the choice of the stabilizer. An ionic surfactant will be preferred for stabilizing dispersions of semi-solid particles made from a low viscosity oil. On the other hand, for highly viscous systems with a high content of organogelling agent, the nanospheres become very rigid and close to a solid, and in this case their steric stabilization with a polymer will be preferred.
En particulier les dispersions aqueuses de nanosphères obtenues selon l'invention présentent un comportement non Newtonien. La viscosité apparente de ces systèmes varie de manière non linéaire, elle diminue avec l'élévation du taux de cisaillement ce qui correspond au comportement rhéofluidifïant ou pseudoplastique caractéristique des émulsions ou des dispersions très concentrées. Ce comportement rhéologique peut être très intéressant dans le cas de l'étalement d'une crème cosmétique.In particular, the aqueous dispersions of nanospheres obtained according to the invention exhibit non-Newtonian behavior. The apparent viscosity of these systems varies non-linearly, it decreases with the increase in the shear rate, which corresponds to the rheofluidizing or pseudoplastic behavior characteristic of very concentrated emulsions or dispersions. This rheological behavior can be very interesting in the case of the spreading of a cosmetic cream.
Les dispersions aqueuses de nanosphères selon l'invention sont notamment caractérisée par des valeurs de module d'élasticité G' comprises entre 10 Pa et 10000 Pa, et des valeurs de module de viscosité G" comprises entre 10 Pa et 1000 Pa.The aqueous dispersions of nanospheres according to the invention are in particular characterized by modulus values of elasticity G 'of between 10 Pa and 10,000 Pa, and viscosity modulus values G' of between 10 Pa and 1000 Pa.
Le comportement rhéologique des dispersions aqueuses de nanosphères correspondantes est étudié en suivant les modules viscoélastiques G' et G" et la tangente γ en fonction de la fréquence de cisaillement dans le domaine viscoélastique linéaire (déterminé en balayant la contrainte de cisaillement). Compte tenu des résultats obtenus on peut en conclure que la viscosité de l'huile constitutive, ainsi que la teneur
en HSA augmentent fortement l'élasticité des dispersions aqueuses de nanosphères d'organogel. Cela se traduit par l'existence d'interactions fortes entre nanosphères, d'où un comportement rhéo logique caractéristique de gels ou de matériaux solides d'intérêt cosmétologique.The rheological behavior of the aqueous dispersions of corresponding nanospheres is studied by following the viscoelastic modules G 'and G "and the tangent γ as a function of the shear frequency in the linear viscoelastic domain (determined by scanning the shear stress). results obtained it can be concluded that the viscosity of the constituent oil, as well as the in HSA strongly increase the elasticity of the aqueous dispersions of organogel nanospheres. This results in the existence of strong interactions between nanospheres, hence a rheological behavior characteristic of gels or solid materials of cosmetological interest.
Dans un autre aspect de l'invention, le procédé de préparation des nanosphères comprend en outre une étape finale de lyophiliation afin de les isoler du milieu aqueux.In another aspect of the invention, the nanosphere preparation process further comprises a final lyophilization step to isolate them from the aqueous medium.
Ainsi avantageusement, la présente invention concerne également les nanosphères susceptibles d'être obtenues selon le procédé ci-dessus.Thus, advantageously, the present invention also relates to the nanospheres that can be obtained according to the process above.
Les nanosphères selon la présente invention sont destinées à être utilisées pour la préparation de compositions dont l'utilité dépend de la nature du principe actif contenu dans lesdites nanosphères. Dans un autre aspect, la présente invention concerne donc les compositions cosmétiques ou pharmaceutiques comprenant les nanosphères ou les dispersions aqueuses de nanosphères telles que définies ci-dessus, et un excipient physio logiquement acceptable. Préférentiellement la quantité de nanosphères varie de 5 % à 50 % en masse par rapport à la masse totale de la composition.The nanospheres according to the present invention are intended to be used for the preparation of compositions whose utility depends on the nature of the active principle contained in said nanospheres. In another aspect, the present invention therefore relates to cosmetic or pharmaceutical compositions comprising the nanospheres or aqueous dispersions of nanospheres as defined above, and a physiologically acceptable excipient. Preferably, the amount of nanospheres varies from 5% to 50% by weight relative to the total mass of the composition.
Les exemples qui suivent servent à illustrer l'invention, mais ne la limitent en aucune manière. Exemple A :The following examples serve to illustrate the invention, but do not limit it in any way. Example A
Préparation de l'organogel : le gel est préparé à partir d'une solution à 3% massique d'acide 12-hydroxystéarique (HSA), soit 0,15g dans 5g de carbonate de dicapryle. Afin de dissoudre totalement le HSA dans l'huile, le mélange est homogénéisé à une température de 75°C, sous ultrasons avant d'être refroidi à température ambiante pour former un gel compact et translucide.Preparation of the organogel: the gel is prepared from a 3% by weight solution of 12-hydroxystearic acid (HSA), ie 0.15 g in 5 g of dicapryl carbonate. In order to completely dissolve the HSA in the oil, the mixture is homogenized at a temperature of 75 ° C under ultrasound before being cooled to room temperature to form a compact and translucent gel.
Dispersion à chaud sans stabilisant : à l'organogel ainsi obtenu sont additionnés 20g d'eau.Hot dispersion without stabilizer: 20g of water are added to the organogel thus obtained.
Le mélange est chauffé à 75°C (T°>T°gel) à l'étuve pendant 20 minutes. L'organogel liquéfié remonte à la surface en formant une couche huileuse (20% massique). Le mélange est ensuite dispersé à chaud (75°C) par sonication (2OkHz, 600W), 2 fois 5 minutes.The mixture is heated at 75 ° C (T °> T ° gel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then dispersed while hot (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
Refroidissement à température ambiante : la dispersion ainsi formée est refroidie à température ambiante pour former des nanosphères d'organogel.
Taille et distribution de taille : les gélosomes ont un diamètre moyen de 3000 nm et un indice de polydispersité de 0,8 (diffusion de la lumière).Cooling at room temperature: the dispersion thus formed is cooled to room temperature to form organogel nanospheres. Size and size distribution: the gelosomes have a mean diameter of 3000 nm and a polydispersity index of 0.8 (light scattering).
Exemple B :Example B:
Préparation de l'organogel : le gel est préparé à partir d'une solution à 3% massique de HSA, soit 0,15g dans 5g de carbonate de dicapryle. Afin de dissoudre totalement le HSA dans l'huile, le mélange est homogénéisé à une température de 75°C, sous ultrasons avant d'être refroidi à température ambiante pour former un gel compact et translucide.Preparation of the organogel: the gel is prepared from a 3% by weight solution of HSA, ie 0.15 g in 5 g of dicapryl carbonate. In order to completely dissolve the HSA in the oil, the mixture is homogenized at a temperature of 75 ° C under ultrasound before being cooled to room temperature to form a compact and translucent gel.
Emulsifîcation à chaud : à l'organogel ainsi obtenu sont additionnés 20g d'une solution aqueuse à 2% massique de bromure de cétyltrimétylammonium (CTAB). Le mélange est chauffé à 75°C (T>Tgel) à l'étuve pendant 20 minutes. L'organogel liquéfié remonte à la surface en formant une couche huileuse (20% massique). Le mélange est ensuite émulsifié à chaud (75°C) par sonication (2OkHz, 600W), 2 fois 5 minutes.Hot Emulsification: to the organogel thus obtained are added 20g of a 2% by weight aqueous solution of cetyltrimethylammonium bromide (CTAB). The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then emulsified while hot (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
Refroidissement à température ambiante : l'émulsion ainsi formée est laissée à température ambiante pour former une dispersion stable de gélosomes.Cooling at room temperature: the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
Taille et distribution de taille : les gélosomes ont un diamètre moyen de 300 nm et un indice de polydispersité de 0,15 (diffusion de la lumière).Size and size distribution: the gelosomes have an average diameter of 300 nm and a polydispersity index of 0.15 (light scattering).
Exemple C:Example C
Préparation de l'organogel : le gel est préparé à partir d'une solution à 3% massique de HSA, soit 0,15g dans 5g de carbonate de dicapryle. Afin de dissoudre totalement le HSA dans l'huile, le mélange est homogénéisé à une température de 75°C sous ultrasons avant d'être refroidi à température ambiante pour former un gel compact et translucide.Preparation of the organogel: the gel is prepared from a 3% by weight solution of HSA, ie 0.15 g in 5 g of dicapryl carbonate. In order to completely dissolve the HSA in the oil, the mixture is homogenized at a temperature of 75 ° C under ultrasound before being cooled to room temperature to form a compact and translucent gel.
Emulsifîcation à chaud : à l'organogel ainsi obtenu sont additionnés 20g d'une solution aqueuse à 2% massique de polyoxyéthylène (20) sorbitan monooléate (Tween 80).Le mélange est chauffé à 75°C (T>Tgel) à l'étuve pendant 20 minutes. L'organogel liquéfié remonte à la surface en formant une couche huileuse (20% massique). Le
mélange est ensuite émulsifié à chaud (75°C) par sonication (2OkHz, 600W), 2 fois 5 minutes.Hot emulsification: to the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of polyoxyethylene (20) sorbitan monooleate (Tween 80) .The mixture is heated at 75 ° C. (T> T gel) to oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The The mixture is then emulsified while hot (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
Refroidissement à température ambiante : l'émulsion ainsi formée est laissée à température ambiante pour former une dispersion stable de gélosomes.Cooling at room temperature: the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
Taille et distribution de taille : les gélosomes ont un diamètre moyen de 360 nm et un indice de polydispersité de 0,22 (diffusion de la lumière).Size and size distribution: the gelosomes have an average diameter of 360 nm and a polydispersity index of 0.22 (light scattering).
Exemple D :Example D:
Préparation de l'organogel : le gel est obtenu en dissolvant 0,15g de HSA (3% massique) dans 5g de myristate d'isopropyle. La solution est homogénéisée à chaud (T=75°C) sous ultrasons afin de dissoudre totalement le HSA dans l'huile. Après refroidissement à température ambiante, un gel compact et translucide est formé.Preparation of the organogel: the gel is obtained by dissolving 0.15 g of HSA (3% by mass) in 5 g of isopropyl myristate. The solution is homogenized hot (T = 75 ° C) under ultrasound in order to completely dissolve the HSA in the oil. After cooling to room temperature, a compact and translucent gel is formed.
Préparation de la phase aqueuse : la phase aqueuse est préparée en dissolvant 3% massique de lécithine de soja déshuilée. La solution est ensuite homogénéisée à chaud (75°C) par sonication (2OkHz, 600W), 2 fois 10 minutes.Preparation of the aqueous phase: the aqueous phase is prepared by dissolving 3% by weight of deoiled soy lecithin. The solution is then homogenized hot (75 ° C) by sonication (2OkHz, 600W), 2 times 10 minutes.
Emulsification à chaud : à l'organogel ainsi obtenu sont additionnés 20g de la solution aqueuse à 3% massique de lécithine de soja. Le mélange est chauffé à 750C (T>Tgel) à l'étuve pendant 20 minutes. L'organogel liquéfié remonte à la surface en formant une couche huileuse (20% massique). Le mélange est ensuite émulsifié à chaud (75°C) par sonication (2OkHz, 600W), 2 fois 5 minutes.Hot Emulsification: to the organogel thus obtained are added 20 g of the 3% aqueous solution of soy lecithin. The mixture is heated at 75 ° C. (T> T gel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then emulsified while hot (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
Refroidissement à température ambiante : l'émulsion ainsi formée est laissée à température ambiante pour former une dispersion stable de gélosomes.Cooling at room temperature: the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
Taille et distribution de taille : les gélosomes ont un diamètre moyen de 100 nm et un indice de polydispersité de 0,15 (diffusion de la lumière).Size and size distribution: the gelosomes have a mean diameter of 100 nm and a polydispersity index of 0.15 (light scattering).
Exemple E :Example E:
Préparation de l'organogel : le gel est préparé à partir d'une solution à 3% massique de HSA, soit 0,15g dans 5g de myristate d'isopropyle. Afin de dissoudre totalement le HSA dans l'huile, le mélange est homogénéisé à chaud (T=75°C) sous ultrasons avant d'être refroidi à température ambiante pour former un gel compact et translucide.
Microémulsifïcation à chaud : à l'organogel ainsi obtenu sont additionnés 20g d'une solution aqueuse à 12% massique de taurocholate de sodium (co-tensioactif) et 2% massique de Tween 80 (tensioactif). Le mélange est chauffé à 75°C (T>Tgel) à l'étuve pendant 20 minutes. L'organogel liquéfié remonte à la surface en formant une couche huileuse (20% massique). Le mélange est ensuite microémulsifïé à chaud (75°C) par sonication (2OkHz, 600W), 2 fois 5 minutes.Preparation of the organogel: the gel is prepared from a 3% by weight solution of HSA, ie 0.15 g in 5 g of isopropyl myristate. In order to completely dissolve the HSA in the oil, the mixture is homogenized while hot (T = 75 ° C.) under ultrasound before being cooled to ambient temperature to form a compact and translucent gel. Hot microemulsification: the organogel thus obtained is supplemented with 20 g of an aqueous solution containing 12% by weight of sodium taurocholate (co-surfactant) and 2% by weight of Tween 80 (surfactant). The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then hot-micemulsified (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
Refroidissement à température ambiante : la microémulsion ainsi formée est laissée à température ambiante pour former une dispersion stable de gélosomes.Cooling at room temperature: the microemulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
Taille et distribution de taille : les gélosomes ainsi obtenus ont un diamètre moyen de 200 nm et un indice de polydispersité de 0,3 (diffusion de la lumière).Size and Size Distribution: The resulting gelosomes have an average diameter of 200 nm and a polydispersity index of 0.3 (light scattering).
Exemple F :Example F
Préparation de l'huile : on réalise un mélange de filtres solaires UVB+UVA en dissolvant à chaud (600C) le butylméthoxydibenzoylméthane (17% massique) dans l'octylmethoxycinnamate (UVB). Le mélange ainsi obtenu est ensuite refroidi à température ambiante.Preparation of the oil: a mixture of UVB + UVA solar filters is prepared by dissolving butylmethoxydibenzoylmethane (17% by mass) in hot (60 ° C.) in octylmethoxycinnamate (UVB). The mixture thus obtained is then cooled to room temperature.
Préparation de l'organogel : le gel est préparé à partir d'une solution à 6% massique de HSA, soit 0,3g dans 5g de filtre solaire. Afin de dissoudre totalement le HSA dans l'huile, le mélange est homogénéisé à chaud (T=75°C) sous ultrasons avant d'être refroidi à température ambiante pour former un gel compact et légèrement diffusant.Preparation of the organogel: the gel is prepared from a 6% by weight solution of HSA, ie 0.3 g in 5 g of sunscreen. In order to completely dissolve the HSA in the oil, the mixture is homogenized while hot (T = 75 ° C.) under ultrasound before being cooled to ambient temperature to form a compact and slightly diffusing gel.
Emulsification à chaud : à l'organogel ainsi obtenu sont additionnés 20g d'une solution aqueuse à 2% massique de PVA hydrolyse à 80%. Le mélange est chauffé à 75°C (T>Tgel) à l'étuve pendant 20 minutes. L'organogel liquéfié remonte à la surface en formant une couche huileuse (20% massique). Le mélange est ensuite émulsifîé à chaud (75°C) par sonication (20 kHz, 600W), 2 fois 5 minutes.Hot Emulsification: to the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of PVA hydrolyzed to 80%. The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then heat-emulsified (75 ° C.) by sonication (20 kHz, 600W), twice 5 minutes.
Refroidissement à température ambiante : l'émulsion ainsi formée est laissée à température ambiante pour former une dispersion stable de gélosomes.Cooling at room temperature: the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
Déshydration par lyophilisation : les gélosomes sont déshydratés par lyophilisation pendant 24 heures. Ces derniers pourront être ensuite dispersés par simple agitation.
Taille et distribution de taille : les gélosomes ainsi obtenus ont un diamètre moyen de 1000 nm et un indice de polydispersité de 0,5 (diffusion de la lumière).Dehydration by lyophilization: the gelosomes are dehydrated by lyophilization for 24 hours. These can then be dispersed by simple agitation. Size and Size Distribution: The resulting gelosomes have an average diameter of 1000 nm and a polydispersity index of 0.5 (light scattering).
Exemple G :Example G:
Préparation de l'huile : on réalise un mélange de filtres solaires UVB+UVA en dissolvant à chaud (600C) le butylméthoxydibenzoylméthane (17% massique) dans l'octylmethoxycinnamate (UVB). Le mélange ainsi obtenu est ensuite refroidi à température ambiante.Preparation of the oil: a mixture of UVB + UVA solar filters is prepared by dissolving butylmethoxydibenzoylmethane (17% by mass) in hot (60 ° C.) in octylmethoxycinnamate (UVB). The mixture thus obtained is then cooled to room temperature.
Préparation de l'organogel : le gel est préparé à partir d'une solution à 6% massique de HSA, soit 0,3g dans 5g de filtre solaire. Afin de dissoudre totalement le HSA dans l'huile, le mélange est homogénéisé à chaud (T=75°C) sous ultrasons avant d'être refroidi à température ambiante pour former un gel compact et légèrement diffusant.Preparation of the organogel: the gel is prepared from a 6% by weight solution of HSA, ie 0.3 g in 5 g of sunscreen. In order to completely dissolve the HSA in the oil, the mixture is homogenized while hot (T = 75 ° C.) under ultrasound before being cooled to ambient temperature to form a compact and slightly diffusing gel.
Emulsifîcation à chaud : à l'organogel ainsi obtenu sont additionnés 20g d'une solution aqueuse à 2% massique de hydroxypropylméthyle cellulose. Le mélange est chauffé à 75°C (T>Tgel) à l'étuve pendant 20 minutes. L'organogel liquéfié remonte à la surface en formant une couche huileuse (20% massique). Le mélange est ensuite émulsifié à chaud (75°C) par sonication (20 kHz, 600W), 2 fois 5 minutes.Hot Emulsification: to the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of hydroxypropylmethyl cellulose. The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then emulsified while hot (75 ° C.) by sonication (20 kHz, 600W), twice 5 minutes.
Refroidissement à température ambiante : l'émulsion ainsi formée est laissée à température ambiante pour former une dispersion stable de gélosomes.Cooling at room temperature: the emulsion thus formed is left at room temperature to form a stable dispersion of gelosomes.
Déshydratation par lyophilisation : les gélosomes sont déshydratés par lyophilisation pendant 24 heures. Ces derniers pourront ensuite être dispersés dans l'eau par simple agitation.Dehydration by lyophilization: the gelosomes are dehydrated by lyophilization for 24 hours. The latter can then be dispersed in water by simple agitation.
Taille et distribution de taille : les gélosomes ainsi obtenus ont un diamètre moyen de 750 nm et un indice de polydispersité de 0,35 (diffusion de la lumière).Size and Size Distribution: The resulting gelosomes have an average diameter of 750 nm and a polydispersity index of 0.35 (light scattering).
Exemple H :Example H:
Préparation de l'organogel : le gel est préparé à partir d'une solution à 3% massique de dibenzylidène sorbitol (DBS), soit 0,13g dans 4,33g de toluène. Afin de dissoudre totalement le DBS dans l'huile, le mélange est homogénéisé à chaud (T=60°C) sous ultrasons pour former un gel compact et opaque.
Emulsifïcation à chaud : à l'organogel ainsi obtenu sont additionnés 20g d'une solution aqueuse à 2% massique de bromure de cétyltrimétylammonium (CTAB). Le mélange est chauffé à 75°C (T>Tgel) à l'étuve pendant 20 minutes. L'organogel liquéfié remonte à la surface en formant une couche huileuse (20% massique). Le mélange est ensuite émulsifîé à chaud (75°C) par sonication (2OkHz, 600W), 2 fois 5 minutes.Preparation of the organogel: the gel is prepared from a 3% by weight solution of dibenzylidene sorbitol (DBS), ie 0.13 g in 4.33 g of toluene. In order to completely dissolve the DBS in the oil, the mixture is homogenized while hot (T = 60 ° C.) under ultrasound to form a compact and opaque gel. Hot Emulsification: To the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of cetyltrimethylammonium bromide (CTAB). The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then heat-emulsified (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
Refroidissement à température ambiante : l'émulsion ainsi formée est laissée à température ambiante pour former des nanoparticules d'organogel.Cooling at room temperature: the emulsion thus formed is left at room temperature to form organogel nanoparticles.
Taille et distribution de taille : les gélosomes ont un diamètre moyen de 900 nm et un indice de polydispersité de 0,8 (diffusion de la lumière).Size and size distribution: the gelosomes have a mean diameter of 900 nm and a polydispersity index of 0.8 (light scattering).
Exemple I :Example I:
Préparation de l'organogel : le gel est préparé à partir d'une solution à 3% massique de DBS, soit 0,13g dans 4,33g de toluène. Afin de dissoudre totalement le DBS dans l'huile, le mélange est homogénéisé à chaud (T=60°C) sous ultrasons pour former un gel compact et opaque.Preparation of the organogel: the gel is prepared from a solution containing 3% by weight of DBS, ie 0.13 g in 4.33 g of toluene. In order to completely dissolve the DBS in the oil, the mixture is homogenized while hot (T = 60 ° C.) under ultrasound to form a compact and opaque gel.
Emulsifïcation à chaud : à l'organogel ainsi obtenu sont additionnés 20g d'une solution aqueuse à 2% massique de dodécyle sulfate de sodium (SDS). Le mélange est chauffé à 75°C (T>Tgel) à l'étuve pendant 20 minutes. L'organogel liquéfié remonte à la surface en formant une couche huileuse (20% massique). Le mélange est ensuite émulsifîé à chaud (75°C) par sonication (2OkHz, 600W), 2 fois 5 minutes.Hot Emulsification: To the organogel thus obtained are added 20 g of a 2% by weight aqueous solution of sodium dodecyl sulphate (SDS). The mixture is heated at 75 ° C (T> Tgel) in an oven for 20 minutes. The liquefied organogel rises to the surface forming an oily layer (20% by mass). The mixture is then heat-emulsified (75 ° C.) by sonication (20kHz, 600W), twice 5 minutes.
Refroidissement à température ambiante : l'émulsion ainsi formée est laissée à température ambiante pour former des nanoparticules d'organogel.Cooling at room temperature: the emulsion thus formed is left at room temperature to form organogel nanoparticles.
Taille et distribution de taille : les gélosomes ont un diamètre moyen de 400 nm et un indice de polydispersité de 0,7 (diffusion de la lumière).
Size and size distribution: the gelosomes have a mean diameter of 400 nm and a polydispersity index of 0.7 (light scattering).
Claims
1. Nanosphères d'organogel comprenant un organogélifïant de faible masse moléculaire capable de gélifier un principe actif cosmétique ou pharmaceutique, lipophile ou amphiphile, non volatil et liquide à température ambiante.1. Organogel nanospheres comprising a low molecular weight organogelling agent capable of gelling a cosmetic or pharmaceutical active ingredient, lipophilic or amphiphilic, nonvolatile and liquid at room temperature.
2. Nanosphères selon la revendication 1, caractérisées en ce qu'elles sont substantiellement sphériques et que leur diamètre est compris entre 50 et 5000 nm.2. Nanospheres according to claim 1, characterized in that they are substantially spherical and their diameter is between 50 and 5000 nm.
3. Nanosphères selon l'une des revendications 1 ou 2, caractérisées en ce que l'organogélifïant possède une masse moléculaire inférieure à 1000 g/mol.3. Nanospheres according to one of claims 1 or 2, characterized in that the organogelling agent has a molecular weight of less than 1000 g / mol.
4. Nanosphères selon l'une des revendications 1 à 3, caractérisées en ce que la proportion de l' organogélifïant est comprise entre 0,1 % et 50 % en poids par rapport au poids total de l' organogélifïant et du principe actif cosmétique ou pharmaceutique.4. Nanospheres according to one of claims 1 to 3, characterized in that the proportion of organogélifïant is between 0.1% and 50% by weight relative to the total weight of the organogélifïant and the active ingredient cosmetic or pharmaceutical.
5. Nanosphères selon l'une des revendications 1 à 4, caractérisées en ce que l'organogélifïant de faible masse moléculaire est choisi parmi les esters d'acides gras, les acide gras et leurs dérivés ou sels métalliques monovalents, divalents ou trivalents, les stéroïdes et leurs dérivés, les dérivés polyaromatiques, les macrocycles, les dérivés de sucres, les composés fluorés, les aminés grasses, les alcanes à longue chaîne, les carbamates d'ammonium à longue chaîne, le cholestérol et ses dérivés, les amides, les bis-urées, et les mélanges de ces dérivés.Nanospheres according to one of claims 1 to 4, characterized in that the low molecular weight organogelling agent is chosen from fatty acid esters, fatty acids and their monovalent, divalent or trivalent metal derivatives or salts, steroids and their derivatives, polyaromatic derivatives, macrocycles, sugar derivatives, fluorinated compounds, fatty amines, long-chain alkanes, long-chain ammonium carbamates, cholesterol and its derivatives, amides, bis-ureas, and mixtures of these derivatives.
6. Nanosphères selon l'une des revendications 1 à 5, caractérisées en ce que l'organogélifïant est l'acide 12-hydroxystéarique.6. Nanospheres according to one of claims 1 to 5, characterized in that the organogelling agent is 12-hydroxystearic acid.
7. Nanosphères selon l'une des revendications 1 à 6, caractérisées en ce que le principe actif cosmétique ou pharmaceutique, lipophile ou amphiphile, non volatil et liquide à température ambiante est choisi parmi les huiles végétales, les huiles minérales, les huiles émollientes, les huiles siliconées, les huiles fluorées, les huiles essentielles, les filtres solaires, et leurs mélanges.7. Nanospheres according to one of claims 1 to 6, characterized in that the active ingredient cosmetic or pharmaceutical, lipophilic or amphiphilic, nonvolatile and liquid at room temperature is selected from vegetable oils, oils and the like. mineral oils, emollient oils, silicone oils, fluorinated oils, essential oils, sunscreens, and mixtures thereof.
8. Nanosphères selon l'une des revendications 1 à 7, caractérisées en ce qu'elles comprennent en outre au moins un agent dispersant et stabilisateur.8. Nanospheres according to one of claims 1 to 7, characterized in that they further comprise at least one dispersing agent and stabilizer.
9. Nanosphères selon la revendication 8, caractérisées en ce que l'agent dispersant et stabilisateur est choisi parmi les tensioactifs, les cotensioactifs, les polymères, les particules minérales et les combinaisons de ceux-ci.9. Nanospheres according to claim 8, characterized in that the dispersing agent and stabilizer is selected from surfactants, cosurfactants, polymers, mineral particles and combinations thereof.
10. Nanosphères selon l'une des revendications 7 ou 8, caractérisées en ce que l'agent dispersant et stabilisateur est incorporé en tout ou partie à la surface des nanosphères.10. Nanospheres according to one of claims 7 or 8, characterized in that the dispersing agent and stabilizer is incorporated in all or part of the surface of the nanospheres.
11. Nanosphères selon l'une des revendications 1 à 10, caractérisées en ce que le principe actif cosmétique ou pharmaceutique et l'organogélifiant sont répartis de façon homogène à l'intérieur desdites nanosphères, depuis le centre des particules jusqu'à la périphérie.11. Nanospheres according to one of claims 1 to 10, characterized in that the cosmetic or pharmaceutical active ingredient and the organogelling agent are distributed homogeneously within said nanospheres, from the center of the particles to the periphery.
12. Procédé de préparation de dispersions aqueuses de nanosphères d'organogel comprenant :A process for preparing aqueous dispersions of organogel nanospheres comprising:
(a) la formation d'un organogel par mélange d'un organogélifiant de faible masse moléculaire avec un principe actif cosmétique ou pharmaceutique, lipophile ou amphiphile, non volatil et liquide à température ambiante,(a) forming an organogel by mixing a low molecular weight organogelling agent with a cosmetic or pharmaceutical active ingredient, lipophilic or amphiphilic, nonvolatile and liquid at room temperature,
(b) l'addition à l'organogel ainsi obtenu d'eau ou d'un solvant aqueux non miscible avec ledit organogel,(b) adding to the organogel thus obtained water or an aqueous solvent immiscible with said organogel,
(c) l'émulsification ou la microémulsification du mélange ainsi obtenu à une température supérieure à la température de transition liquide-gel de l'organogel,(c) emulsification or microemulsification of the mixture thus obtained at a temperature above the liquid-gel transition temperature of the organogel,
(d) le refroidissement à température ambiante de l'émulsion ou de la microémulsion ainsi formée pour conduire à une suspension de nanosphères d'organogel. (d) cooling at room temperature the emulsion or microemulsion thus formed to give a suspension of organogel nanospheres.
13. Procédé de préparation selon la revendication 12, caractérisé en ce que l'étape d'émulsifîcation ou de microémulsifïcation est réalisée dans l'eau sous forte agitation ou par sonication.13. Preparation process according to claim 12, characterized in that the emulsification or microemulsification step is carried out in water with vigorous stirring or by sonication.
14. Procédé de préparation selon l'une des revendications 12 ou 13, caractérisé en ce que l'étape d'émulsifîcation ou de microémulsifïcation est réalisée en présence d'au moins un agent dispersant et stabilisateur.14. A method of preparation according to one of claims 12 or 13, characterized in that the emulsification or microemulsification step is carried out in the presence of at least one dispersing agent and stabilizer.
15. Procédé de préparation selon la revendication 12, caractérisé en ce que l'étape a) est réalisée à une température comprise entre 30 et 150 0C.15. Preparation process according to claim 12, characterized in that step a) is carried out at a temperature between 30 and 150 ° C.
16. Procédé de préparation selon l'une des revendications 12 à 15, caractérisé en ce que la proportion de l'organogélifiant à l'étape a) est comprise entre 0,1 % et 50 % en poids par rapport au poids total de l'organogélifiant et du principe actif cosmétique ou pharmaceutique .16. Preparation process according to one of claims 12 to 15, characterized in that the proportion of the organogelling agent in step a) is between 0.1% and 50% by weight relative to the total weight of the organogelling agent and the cosmetic or pharmaceutical active ingredient.
17. Dispersions aqueuses de nanosphères d'organogel susceptibles d'être obtenues par un procédé selon l'une quelconque des revendications 12 à 16.17. Aqueous dispersions of organogel nanospheres obtainable by a process according to any one of claims 12 to 16.
18. Dispersions aqueuses de nanosphères selon la revendication 17, caractérisées en ce qu'elles sont obtenues sous une forme présentant une viscosité apparente variant de manière non linéaire.18. Aqueous dispersions of nanospheres according to claim 17, characterized in that they are obtained in a form having an apparent viscosity that varies non-linearly.
19. Dispersions aqueuses de nanosphères selon l'une quelconque des revendications 17 ou 18, caractérisées en ce qu'elles présentent des valeurs de module d'élasticité G' comprises entre 10 Pa et 10000 Pa, et des valeurs de module de viscosité G" comprises entre 10 Pa et 1000 Pa.19. Aqueous dispersions of nanospheres according to claim 17, characterized in that they have elastic modulus values G 'between 10 Pa and 10,000 Pa, and viscosity modulus values G ". between 10 Pa and 1000 Pa.
20. Procédé de préparation selon l'une des revendications 12 à 16, caractérisé en ce qu'il comprend en outre une étape finale de lyophilisation permettant d'isoler les nanosphères du milieu aqueux. 20. Preparation process according to one of claims 12 to 16, characterized in that it further comprises a final lyophilization step for isolating the nanospheres of the aqueous medium.
21. Nanosphères susceptibles d'être obtenue par le procédé selon la revendication 20.21. Nanospheres obtainable by the process according to claim 20.
22. Composition cosmétique ou pharmaceutique comprenant les nanosphères selon l'une des revendications 1 à 11 ou une dispersion aqueuse de nanosphères selon l'une des revendications 17 à 19, et un excipient physio logiquement acceptable.22. Cosmetic or pharmaceutical composition comprising the nanospheres according to one of claims 1 to 11 or an aqueous dispersion of nanospheres according to one of claims 17 to 19, and a physiologically acceptable excipient.
23. Composition selon la revendication 22, caractérisée en que la quantité de nanosphères varie de 5 % à 50 % en masse par rapport à la masse totale de la composition. 23. Composition according to claim 22, characterized in that the amount of nanospheres varies from 5% to 50% by weight relative to the total mass of the composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07820532A EP2066284A1 (en) | 2006-09-25 | 2007-09-24 | Novel organogel particles, method for the preparation thereof and cosmetic uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0608371A FR2906134A1 (en) | 2006-09-25 | 2006-09-25 | NOVEL ORGANOGEL PARTICLES, PROCESS FOR THEIR PREPARATION, AND USES THEREOF IN COSMETICS |
FR06/08371 | 2006-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008037697A1 true WO2008037697A1 (en) | 2008-04-03 |
Family
ID=37964319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/060126 WO2008037697A1 (en) | 2006-09-25 | 2007-09-24 | Novel organogel particles, method for the preparation thereof and cosmetic uses thereof |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2066284A1 (en) |
FR (1) | FR2906134A1 (en) |
WO (1) | WO2008037697A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013068345A2 (en) | 2011-11-11 | 2013-05-16 | Unilever Plc | Organogel structured with 12-hsa and a selected copolymer |
DE102013018193A1 (en) * | 2013-10-30 | 2015-05-13 | Martin-Luther-Universität Halle-Wittenberg, Körperschaft des öffentlichen Rechts | Injectable depot formulations for controlled release of active ingredient |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12070516B2 (en) | 2022-12-12 | 2024-08-27 | L'oreal | Hair styling compositions |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6420286A (en) * | 1987-07-13 | 1989-01-24 | Lion Corp | Fragrant gel composition |
EP0711540A1 (en) * | 1994-11-10 | 1996-05-15 | L'oreal | Cosmetic or dermatologic oil/water dispersion stabilized with cubic gel particles and method of preparation |
WO2000009652A2 (en) * | 1998-08-13 | 2000-02-24 | Sol-Gel Technologies Ltd. | Method for the preparation of oxide microcapsules loaded with functional molecules and the products obtained thereof |
EP1063007A1 (en) * | 1999-06-21 | 2000-12-27 | L'oreal | Organogels and their uses, especially in cosmetics |
US20030165681A1 (en) * | 2002-03-04 | 2003-09-04 | Aveka, Inc. | Organogel particles |
-
2006
- 2006-09-25 FR FR0608371A patent/FR2906134A1/en active Pending
-
2007
- 2007-09-24 WO PCT/EP2007/060126 patent/WO2008037697A1/en active Application Filing
- 2007-09-24 EP EP07820532A patent/EP2066284A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6420286A (en) * | 1987-07-13 | 1989-01-24 | Lion Corp | Fragrant gel composition |
EP0711540A1 (en) * | 1994-11-10 | 1996-05-15 | L'oreal | Cosmetic or dermatologic oil/water dispersion stabilized with cubic gel particles and method of preparation |
WO2000009652A2 (en) * | 1998-08-13 | 2000-02-24 | Sol-Gel Technologies Ltd. | Method for the preparation of oxide microcapsules loaded with functional molecules and the products obtained thereof |
EP1063007A1 (en) * | 1999-06-21 | 2000-12-27 | L'oreal | Organogels and their uses, especially in cosmetics |
US20030165681A1 (en) * | 2002-03-04 | 2003-09-04 | Aveka, Inc. | Organogel particles |
Non-Patent Citations (3)
Title |
---|
DATABASE WPI Week 198909, Derwent World Patents Index; AN 1989-066614, XP002432350 * |
TERECH P ET AL: "LOW MOLECULAR MASS GELATORS OF ORGANIC LIQUIDS AND THE PROPERTIES OF THEIR GELS", CHEMICAL REVIEWS, ACS,WASHINGTON, DC, US, vol. 97, 1997, pages 3133 - 3159, XP002127859, ISSN: 0009-2665 * |
TRIVEDI D R ET AL: "Structure-Property Correlation of a New Family of Organogelators Based on Organic Salts and Their selective Gelation of Oil from Oil/Water Mixtures", CHEMISTRY - A EUROPEAN JOURNAL, VCH PUBLISHERS, US, vol. 10, 5 November 2004 (2004-11-05), pages 5311 - 5322, XP002387420, ISSN: 0947-6539 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013068345A2 (en) | 2011-11-11 | 2013-05-16 | Unilever Plc | Organogel structured with 12-hsa and a selected copolymer |
WO2013068345A3 (en) * | 2011-11-11 | 2013-08-22 | Unilever Plc | Organogel structured with 12-hsa and a selected copolymer |
EA027562B1 (en) * | 2011-11-11 | 2017-08-31 | Унилевер Н.В. | Organogel structured with 12-hsa and a selected copolymer |
DE102013018193A1 (en) * | 2013-10-30 | 2015-05-13 | Martin-Luther-Universität Halle-Wittenberg, Körperschaft des öffentlichen Rechts | Injectable depot formulations for controlled release of active ingredient |
Also Published As
Publication number | Publication date |
---|---|
FR2906134A1 (en) | 2008-03-28 |
EP2066284A1 (en) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kirilov et al. | Aqueous dispersions of organogel nanoparticles–potential systems for cosmetic and dermo‐cosmetic applications | |
Zhang et al. | Inverse Pickering emulsions stabilized by cinnamate modified cellulose nanocrystals as templates to prepare silica colloidosomes | |
Nikiforidis et al. | High internal phase emulsion gels (HIPE-gels) created through assembly of natural oil bodies | |
EP3548529B1 (en) | Process for preparing microcapsules of controlled size comprising a photopolymerization step | |
JP4873795B2 (en) | Stable water-oil-water multiple emulsion system by hydrodynamic double stabilization and method for producing the same | |
Lapasin et al. | Effects of polymer addition on the rheology of o/w microemulsions | |
Zhao et al. | Properties and microstructure of pickering emulsion synergistically stabilized by silica particles and soy hull polysaccharides | |
CA2341580A1 (en) | Cosmetic or dermopharmaceutical composition in the form of beads and methods for preparing same | |
FR2811565A1 (en) | WATER-IN-OIL EMULSION AND ITS USES, PARTICULARLY IN THE COSMETIC FIELD | |
FR2766090A1 (en) | Microparticles for encapsulation of cosmetics, pharmaceuticals etc | |
Wang et al. | Development and characterization of high internal phase pickering emulsions stabilized by heat-induced electrostatic complexes particles: Growth nucleation mechanism and interface architecture | |
Moradi et al. | Preparation and characterization of α-tocopherol nanocapsules based on gum Arabic-stabilized nanoemulsions | |
EP0938892A1 (en) | Cosmetic and/or dermatological powder, its process for manufacturing and its use. | |
Wang et al. | Preparation, characterization and in vitro digestive behaviors of emulsions synergistically stabilized by γ-cyclodextrin/sodium caseinate/alginate | |
WO2008037697A1 (en) | Novel organogel particles, method for the preparation thereof and cosmetic uses thereof | |
EP1590077A2 (en) | Microencapsulation systems and applications of same | |
Chuesiang et al. | Observation of curcumin-loaded hydroxypropyl methylcellulose (HPMC) oleogels under in vitro lipid digestion and in situ intestinal absorption in rats | |
JPH03293024A (en) | Water-in-oil type emulsion with lecithin dispersed in water phase | |
Salminen et al. | Formation and stability of emulsions stabilized by Quillaja saponin–egg lecithin mixtures | |
CN108992476A (en) | Amphipathic chitose-macadimia nut oil capsule of nano and the preparation method and application thereof | |
Ji et al. | Preparation of submicron capsules containing fragrance and their application as emulsifier | |
Cheng et al. | β-Cyclodextrin based Pickering emulsions for α-tocopherol delivery: Antioxidation stability and bioaccessibility | |
CA2345326A1 (en) | Use of essentially amorphous cellulose nanofibrils as emulsifying and/or stabilising agent | |
Kirilov et al. | A new type of colloidal dispersions based on nanoparticles of gelled oil | |
EP3033152A1 (en) | Aqueous suspension of nanocapsules encapsulating sunscreen agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07820532 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007820532 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |