WO2008035463A1 - Antibody class switching method - Google Patents

Antibody class switching method Download PDF

Info

Publication number
WO2008035463A1
WO2008035463A1 PCT/JP2007/001029 JP2007001029W WO2008035463A1 WO 2008035463 A1 WO2008035463 A1 WO 2008035463A1 JP 2007001029 W JP2007001029 W JP 2007001029W WO 2008035463 A1 WO2008035463 A1 WO 2008035463A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
gene
producing
cell
cells
Prior art date
Application number
PCT/JP2007/001029
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetaka Seo
Original Assignee
Chiome Bioscience Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiome Bioscience Inc. filed Critical Chiome Bioscience Inc.
Publication of WO2008035463A1 publication Critical patent/WO2008035463A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0635B lymphocytes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Definitions

  • the present invention relates to a method for converting a class of an antibody.
  • Antibodies recognize specific antigens, cause various in vivo phenomena, and play an important role as in-vivo defense players.
  • antibody-dependent cell — mediated cytotoxicity (ADCC) activity and complement-dependent cell I (CDC) activity are effective in removing cancer cells. It is used as an anticancer agent. Focusing on the action of such antibodies, many antibody preparations have been put to practical use, and many preparations have good therapeutic effects. In addition to its use as a pharmaceutical formulation, it is widely used as, for example, various diagnostic tests or effective tools for research and development. Therefore, a technique for easily providing a large amount of various antibodies according to each application is required.
  • Non-Patent Document 2 As a technique for easily and easily producing a large amount of an antibody having high specificity for an arbitrary antigen, a method called AD Lib system is attracting attention (Patent Document 1, Non-Patent Document 2). See). According to this method, an antibody having the desired specificity and affinity can be provided by a simple method.
  • the antibody produced by this method is mainly IgM, but other classes (IgG, IgA, IgD, other than IgM) can be used for various applications of the antibody described above. It will also be necessary to prepare antibodies of IgE).
  • Patent Document 2 As a method for converting the class of an antibody, a method of expressing an IgA class with high efficiency by stimulating B cells with a specific composition (Patent Document 2), using a transgenic non-human animal Various methods have been reported, such as a method for producing a desired isotype (Patent Document 3). Few things have been put to practical use. Since B cells are essentially floating cells that produce antibodies, they have advantages over other animal cell expression systems in terms of high-concentration antibody production, high-density culture, etc., and B cells produce the desired class of antibodies. It will be possible to improve the efficiency of antibody production. However, no effective method has been developed to transduce antibody heavy chain constant region genes into monoclonal antibody-producing B cells that have already been screened to convert the produced monoclonal antibodies to other classes.
  • Non-Patent Document 1 Seo et al., Nature Biotec h. 23: 731-735, 2005
  • Patent Document 1 International Publication Gazette WO 2004/01 1 644
  • Patent Document 2 International Publication WO 96/27390
  • Patent Document 3 International Publication WO 99/03991
  • the present inventors have conducted intensive research on a method for easily converting antibody classes, and as a result, the antibody heavy chain variable region genes produced from antibody-producing B cells and By simply transducing a chimeric heavy chain gene with a heavy chain constant region gene of a desired class mainly into the antibody-producing B cell, an antibody retaining the desired class of the constant region is converted into the antibody-producing B cell. It was revealed that it can be produced from Although it was unclear whether the modified chimeric antibody heavy chain and the already existing antibody light chain would be assembled in the cell by such a method alone, the results of the analysis unexpectedly retain effective functions. The production of chimera IgG was confirmed.
  • the present invention relates to the following (1) to (9).
  • a first aspect of the present invention is a method for improving or preparing an antibody-producing B cell that produces an antibody of a class different from the class of a monoclonal antibody originally produced, comprising the following (a) and ( A method comprising the step of b).
  • step (b) a step of inserting the chimeric gene prepared in step (a) into an expression vector so as to allow expression and transducing the antibody-producing B cell ”.
  • a second aspect of the present invention is “the method according to (1) above, wherein the class of antibody originally produced from the monoclonal antibody-producing B cell is IgM”.
  • a third aspect of the present invention is “the method according to (1) or (2) above, wherein the other class is IgG”.
  • a fourth aspect of the present invention is “the method according to any one of (1) to (3) above, wherein the antibody-producing B cells are DT40 cells”.
  • the fifth aspect of the present invention is the above (1) to (4), wherein the antibody-producing B cell has lost the function of all antibody heavy chain genes present in the cell.
  • a sixth aspect of the present invention is “the method according to any one of (1) to (5) above, wherein the constant region gene is derived from a mouse”.
  • a seventh aspect of the present invention is “the method according to any one of (1) to (5) above, wherein the constant region gene is derived from human”.
  • the eighth aspect of the present invention is “the method according to any one of (1) to (5) above, wherein the constant region gene is derived from a rabbit.”
  • a ninth aspect of the present invention is as described in any one of (1) to (8) above. “Class-changed antibodies obtained from cells prepared by the method”. The invention's effect
  • IgM antibody producing B cells can be readily converted to B cells producing antibodies with the desired class of properties.
  • Fig. 1 shows the results of confirming the presence or absence of production of a chimeric antibody of anti-FITC antibody produced by DT40 cells and mouse IgG2a.
  • FIG. 2 shows the results of E L ISA for a purified chimeric antibody using an HRP-labeled anti-mouse IgG secondary antibody.
  • FIG. 3 shows the results of Western blotting for a purified chimeric antibody using an HRP-labeled anti-mouse IgG secondary antibody.
  • Fig. 4 shows the presence or absence of production of a chimeric antibody between anti-FITC antibody and mouse Ig G 2a produced by DT 40 cells into which the chimeric antibody gene has been introduced using a single retrovirus vector. Results are shown.
  • FIG. 5 shows the results of confirming the presence or absence of the production of a chimeric antibody of anti-EG FR antibody and mouse Ig G 2a.
  • FIG. 6 shows the results of confirming the presence or absence of production of a chimeric antibody of anti-EG FR antibody and human IgG1.
  • Figure 7 shows the F ACS analysis by staining A 43 1 cells and HEK 293 T cells with avian anti-EG FR antibody, anti-EG FR mouse chimeric antibody, and anti-EG FR human one-trichimeric antibody. The results are shown.
  • the cells used in the present invention can be any B cells that produce antibodies, and the type of animal from which they are derived may be any animal.
  • cells that are established or not established can be used, but preferably, established cells are used, particularly preferably derived from chickens. It is DT 40 cell which is a cell culture cell line of B cell.
  • antibody-producing cells also include derivative strains and sublines in which some modification to the chromosome (for example, recombination, insertion, deletion, etc. of specific genes) has been made.
  • it may be a cell that has been modified to reduce or lose the function of the antibody heavy chain gene that was originally retained.
  • a method of reducing or losing the function of an antibody heavy chain gene can be easily carried out based on the common general technical knowledge.
  • a method of introducing a mutation into an antibody heavy chain gene originally present in an antibody-producing cell Methods known to those skilled in the art can be used, such as a method of destroying the entire target gene, a method using RNA interference (RNA i), a method of introducing antisense to the target gene into cells.
  • RNA interference RNA interference
  • a method for introducing a mutation into a target gene a method for destroying the entire target gene, or a method using RNA interference (RNA i), more preferably a method for destroying the entire target gene or RNA It is a method using interference (RNA i), and most preferably a method of destroying the entire target gene.
  • RNA interference RNA interference
  • the culture conditions of the cells used in the present invention are carried out by methods well known in the art.
  • Medium and culture conditions suitable for the antibody-producing B cells to be selected (culture temperature, CO 2 concentration) Needless to say, it is done below.
  • the antibody-producing cells selected are DT 40 cells, for example, the medium is IMDM (Invitrogen), and the culture temperature is 39.5 ° C, 5% CO. 2 Perform under concentration conditions. Culturing is carried out while keeping the cell concentration constant, and the class of antibodies produced from the target cells is checked at appropriate intervals (for example, every day or every week).
  • the heavy chain gene of an antibody originally produced from a target antibody-producing B cell can be prepared based on common general technical knowledge in the technical field.
  • the target antibody heavy chain gene region can be amplified from the target antibody-producing B cells using RT_PCR and cloned into an appropriate vector or the like.
  • the primer used for R T_PC R is The sequence information of the antibody heavy chain gene can be obtained from a known database related to the gene possessed by the antibody-producing cell, and designed easily based on this information.
  • a gene encoding the constant region of another class In addition, in order to replace the constant region of the heavy chain gene of the originally produced antibody with the constant region of another class, it is necessary to prepare a gene encoding the constant region of another class.
  • This gene can be obtained from a library such as a cell from which the constant region of the other class is derived, or based on known gene sequence information, the gene of interest can be obtained from an appropriate cDNA library. It can be amplified by PCR.
  • variable region gene and other classes of constant region genes must be operably linked.
  • “being able to act” means that when a variable region gene and a constant region gene of another class are linked, the constant region gene can express a desired polypeptide.
  • the gene reading frame (frame) is linked with the variable region gene reading frame.
  • the variable region gene and the other region of the constant region gene may be directly linked, or an amino acid sequence that serves as a spacer may be inserted. Even when a spacer is inserted, it goes without saying that the reading frame (frame) must be adjusted so that the constant region gene can express the desired polypeptide.
  • other classes of constant region genes encode additional genes, for example, peptides that serve as tags for easy purification (for example, epitope tags such as His tags, peptide tags, GST, etc.) Genes to be operably linked may be linked.
  • the chimeric gene prepared as described above is a polypeptide that codes for the variable region gene of the antibody heavy chain gene derived from antibody-producing B cells, and a gene that codes for the other region of the constant region gene.
  • a chimeric antibody heavy chain polypeptide linked with peptides is coded.
  • the expression vector preferably has a component such as a plug motor or an enhancer that allows the target protein to be expressed in the antibody-producing B cells used.
  • Introducing the prepared expression vector into antibody-producing B cells uses known methods such as the DEAE dextran method, electrorevolution method, calcium phosphate method, cationic lipid method, infection using retroviral vectors, etc. It can be done easily. In particular, a method using a retroviral vector that can reduce the total number of steps is most desirable.
  • the plasmids p L PCX_F I TC_m I g G 2a and p L PCX-EG FR-h I gG 1 prepared in the examples of the present invention represent the sequence of the variable region of the avian antibody in the gene common to the region. By converting by an engineering method, it can be easily used to create chimeric genes of different types of avian antibodies. This makes it possible to shorten the total process.
  • Cell culture of DT 40 cells was basically performed by the following method.
  • the incubator was a C02 thermostatic chamber and cultured at 39.5 ° C in the presence of 5% C02.
  • the medium is IMMD medium (Invitrogen), 10% FBS, 1% chicken serum, penicillin 100 units / mI, streptomycin 100 g I, 2_mercaptoethanol 55 M Used in addition.
  • Trichostatin A (Wako Pure Chemical Industries) is dissolved in DMSO 2 mg / m I as stock, and diluted appropriately in the medium so that the final concentrations are 1.25 ng / mL and m2.5 ng / mL. Used.
  • Antibody producing cells were obtained by the AD Lib system using FITC-conjugated BS A as an antigen. Specifically, the following experimental process was taken. 2-1. Preparation of FITC-conjugated BSA magnetic beads:
  • buffer D 0.2 MT ris-HCI pH 8.5, 0.1% BSA
  • 200 ⁇ I were added, and the mixture was allowed to react at 37 ° C for 4 hours with rotation and stirring, followed by blocking. It was. After washing twice with 500 I buffer C, the suspension was suspended in 200 I buffer containing 0.02 ⁇ 1 ⁇ 2 sodium azide.
  • ELISA was performed as follows. Six days after step 2_2 above, dispense 1 00 L each into 9 6-hole immunoplate U— 9 6 M axisorp (Nunc) at 1 g of F 1 ⁇ 0 conjugate ⁇ 38 2.5 g / m L I left it. In order to examine the specificity of the antibody, BSA not labeled with FITC was also immobilized on the plate as a control. Discard the contents the next day and block the buffer (PBS containing 0.5% skim milk) 200 UL was added and incubated for 2 hours at room temperature. ELISA wash buffer
  • RNeasyPluin Minik QIAGEN
  • QIA shr d der QIA AG
  • RT_PCR was Invitrogen's One Step RT-PCR.
  • I Tal RNA 1 I was in a saddle type, and two types of primers_ (VH_F1: self-sequence number 1, VH—R: SEQ ID NO: 2) were used.
  • the reaction conditions are as follows. 5 After 5 min at 30 ° C, treatment for 2 min at 94 ° C, 9 4 ° C for 15 sec, 60 ° C for 30 sec, 68 min for 1 min 28 cycles It was. The mixture was then incubated for 5 minutes at 68 ° C.
  • the heavy chain fragment obtained by RT_PCR was obtained using the DH5 strain.
  • TA cloning to pCR 2.1—TOPO vector (Invitrogen) gave pANTI_FIT C_HC.
  • the sequence was confirmed using an ABI prism 377 sequencer.
  • Mouse IgG2a cloning uses Mouse Spleen BD Ma ratho n-Re adyc DNA (Clontech) as a saddle, and two primers (mIgG2aF-1: SEQ ID NO: 3, mlg G 2 a R-1: ⁇ ⁇ ⁇ 1 J number 4) was used for PCR with Pyrobestpolylase (SSia).
  • the reaction conditions are as follows. After 98 ° C for 2 minutes, 98 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 2 minutes were reacted for 30 minutes at 72 ° C for 5 minutes.
  • the mouse I g G 2 a F c region fragment obtained here was added with “A” by adding E x T aq (Takara Shuzo) and reacting at 72 ° C for 15 minutes, and then using the DH 5 strain.
  • PCR2. 1 TOPO vector (Invitrogen) was TA-cloned to obtain pM IgG2a. The sequence was confirmed using AB I prism 377 sequencer.
  • pAN TI _F I TC—HC is of a saddle type
  • the primer is VH—F 1 and Gd I gM-CH 1 + m I g G 2 a -R: a combination of SEQ ID NO: 5
  • pM I g G 2 a is a saddle type
  • Primer was performed with Gd I gM-CH 1 + m I g G 2 a-F: SEQ ID NO: 6 and m I g G 2 a R-1: SEQ ID NO: 4 .
  • the conditions were 98 ° C for 2 minutes, 98 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 1 minute after 15 cycles, followed by reaction at 72 ° C for 5 minutes.
  • the band amplified in (i) and (ii) was purified by Qiaquick Gel Extraction Minikit (QI AGEN), and the mixture of fragments 1 L each was used as a saddle type, and (i), (ii PCR was carried out under the same reaction conditions as in). Note that the primer is V H_ F 1 and , Ml gG2 a R_1 was used under the following conditions.
  • the obtained chimera gene fragment is added with “A” by adding E x T aq (Takara Shuzo) and reacting at 72 ° C for 15 min, and using DH 5 strain, p CR 2.1 vector Cloned and obtained pANTI-FIT C-mG 2a.
  • the sequence was confirmed by ABI AB I pri sm377 sequencer.
  • P EG FP—C 1 (Clontech) was used as the expression vector.
  • p EG F PC 1 is digested with the restriction enzymes N he I and B am H I, and the end of the vector is smoothed with Klenow Fragment (Takara Shuzo) and then removed with BAP (Takara Shuzo). Phosphorylated.
  • the chimeric gene to be inserted was obtained by blunting the EcoR I fragment derived from pAN T I — F I TC — mG2a.
  • Both the vector 1 and the insert were purified by Q i aq u i c k G e l e x t r a c t i o n k i t (Q i a g e n company), and then subjected to ligation using L i gat i o n k i t v e r 2 (Takara Shuzo). Transformation was performed on DH 5 strains.
  • the expression construct of the chimeric antibody obtained in 4_1 above was introduced into an anti-FITC antibody production strain. Gene transfer was performed using electroporation. About 20 g equivalent is digested with the restriction enzyme M I u I to make a single strand, and after purification, PBS, 500! Dissolved in _. About 107 anti-FITC antibody-producing strains were electroporated under conditions of about 550 V and 25 F, then left on ice for 10 minutes, transferred to 20 mL of medium, and cultured at 37 ° C for 1 hour. .
  • the culture solution is centrifuged (190 xg, 10 min), and the cells are collected in a pellet and then suspended in 80 mL of medium containing 2 mg / mL G41 8 (Invitrogen). After dispensing at 200 L / well, the cells were cultured at 39.5 ° C.
  • the chimeric antibody was purified from the No. 3 clone prepared in 5 above, and the characteristics were further examined in detail.
  • Centrifugation was performed at 500 X g, and 10 ml of chicken serum (In Vitrogen) from which the precipitate was removed was added to 10 ml of saturated ammonium sulfate solution, and ammonium sulfate precipitation was performed at 4 ° C. The next day, the mixture was centrifuged at 9100 xg for 15 minutes, and the supernatant was collected. The mixture was centrifuged again at 91 00 X g for 15 minutes, and the supernatant was collected.
  • the supernatant was filtered through a 0.45 m filter (Zartorius), transferred to a dialysis tube (Spectrapore, MWCO: 3 500, 9.3 mL / cm), and 3 times against 1 L of PBS. (Of which 2 times Dialysis was performed at 4 ° C for 4 hours once.
  • the sample was taken out from the dialysis tube the next day and concentrated to 1 OmL at 2330 xg with Centrip Ius YM3 (Mii II ipore). After concentration, the solution was sterilized with a 0.22 m filter (Sartorius), dispensed in appropriate amounts, and stored frozen at 30 ° C.
  • Cells diluted with semi-serum-free medium to 2 X 106 L were prepared in 50 mL (total 200 mL) for four 14 cm dishes (Nunc Corporation). This was cultured in a CO 2 incubator at 39.5 ° C and 5% CO 2 for 5 days.
  • the obtained culture solution was centrifuged at 2330 X g for 15 minutes, and the supernatant was collected.
  • the supernatant was again centrifuged at 2330 Xg for 15 minutes and used as the culture supernatant.
  • the chimeric antibody was purified using MabTra ap kit (GE Healthcare) according to the manual. Using a peristaltic pump, almost the entire culture supernatant was applied to M ab T r a p (only 10 mL was collected for control). 10 ml_ of b i n d i n g b u f f er scrambled and eluted with 5 ml_ of e l u t i o n b u f f e r. At that time, 1 mL each was collected in 5 fractions. The elution fraction (N o. 2) with the highest protein concentration was dialyzed against PBS using S I id e -A-L i z e r (10 K) (P I E RC E).
  • the purified chimeric antibody was analyzed by Western plot. Electrophoresed on 4% polyacrylamide gel (Bio R ad), transferred to nylon membrane (M i II ipore), blocked with 5% skim milk, reacted with HRP-labeled anti-mouse IgG secondary antibody I let you. It was washed 3 times for 15 minutes each with ⁇ 3 containing 0.1% T ween 20 and a signal was obtained by chemiluminescence with EC L p lus (GE Healthcare). The signal was detected with LAS-1 000 (Fuji Photo Film). The results are shown in Figure 3. The purified chimeric antibody reacts with the anti-mouse IgG secondary antibody to produce a specific band.
  • the chimera antibody band has a higher mobility than that of the purified chimera antibody. This is because the amount of protein in the AI M_V medium that has a molecular weight close to that of the heavy chain is very large. it is conceivable that.
  • the amplified DNA fragment was treated with NotI and CIaI, separated by agarose electrophoresis, and purified by Qiaquick ⁇ IExtrtactiot ⁇ agen).
  • p L PCX and the chimeric antibody gene fragment were used for lysation with a ligation kit (Niibon Scene). The transformation was performed on the DH5 strain.
  • the plasmid thus prepared was pLP CX— FIT Cm I g G 2 a
  • FIG. 4 shows the result of confirming the expression of the chimeric antibody according to the technique of “5. Confirmation of expression and antigen recognition of the chimeric antibody”.
  • anti-FI TC chimeric antibody gene expression vector prepared by the technique described in “7_ 1. Insertion of anti-FI TC chimeric antibody gene into expression vector” above contains a restriction enzyme recognition sequence that is common to all tri-antibody sequences. It can be used for other specific antibody sequences with few operations.
  • p LPC XF IT Cm Ig G2a was treated with restriction enzymes NotI and PmaCI.
  • An antibody gene was obtained from the anti-EG FR antibody-producing strain by PCR in the same manner as in “3. Preparation of anti-FITC chicken I gM and mouse Ig G 2a chimeric antibody gene”.
  • VH—F 1—Not I — Xho I — B g III (SEQ ID NO: 9) and c Ig MCH 1 + h Ig G 1 hinge R (SEQ ID NO: 10) were used.
  • the obtained DNA fragment was treated with Not I and Pma CI.
  • Each DNA fragment was isolated by agarose electrolysis and purified by Qiaquick Gel Extraction kit (Qiagen).
  • Production of retrovirus and infection with D ⁇ 40 are carried out in the same manner as described in “7—2. Production of retrovirus and infection with D ⁇ 40” p L PCX—FIT Cm I g G 2 a instead of p L This was done using PCX_EG FR_I g G 2 a.
  • FIG. 5 shows the result of confirming the expression of the chimeric antibody according to the technique of “5. Confirmation of expression and antigen recognition of the chimeric antibody”.
  • the gene of the constant region of human Ig G 1 can be cloned from human RNA by a method common in the art.
  • P FUS E_h I g G 1 vector (Invivogen) has obtained the human Ig G 1 constant region gene from the p FUS E-h I g G 1 vector by PCR. Amplified.
  • hIgG1 + hinge15bp (SEQ ID NO: 1 1)
  • hIgG1-3—C Ia1 SEQ ID NO: 12
  • This DNA fragment was separated by agarose electrophoresis and purified by Q i aq u i ck G e l E xt r a c t i o n k i t. Let this DNA fragment be h i n g i G 1.
  • the gene for the anti-EG FR avian I gM and human I gG 1 chimeric antibody (hereinafter referred to as human trichimeric antibody) is the same as in “3-4.
  • p G EM— EGFR is a saddle type and the primer is VH— F 1— Not I _ X ho I _B g III (SEQ ID NO: 9) and c I g MCH 1 + h I g G 1
  • the combination of hinge R (SEQ ID NO: 10), and (ii) hinge G 1 DNA fragment prepared in 9_1 as a saddle type primer is G d I g M_C H 1 + h I g G 1 -F (SEQ ID NO: 1 3) and h I g G 1 -3_C I a 1 (SEQ ID NO: 1 2) were used.
  • the conditions were 98 ° C. for 2 minutes, 98 ° C. for 30 seconds, 58 ° C.
  • pAN TI—EG FR—hl gG I and p 1_ ⁇ ⁇ were treated with 1 ⁇ 10 0 1 and ⁇ 1 3 I, each DNA fragment was separated by agarose electrophoresis, and Q iaquick ⁇ e IE xtractionkit Made / Second. After that, Ligation was performed with pG EM_T (Promega) using Ligation kit (Nibonbon Gene). In this way, pLPCX—EGFR-hIgG1 was obtained.
  • Retrovirus production and infection with DT 40 are carried out in the same manner as described in “7—2. Retrovirus production and infection with DT 40” above.
  • P L PCX—FIT I g G 1 was used.
  • ELISA was performed as follows. Anti-avian IgM antibody (Bethy I) was dispensed at 50 g each into 96-well immunoplate U-96 Maxisorp (Nunc) at 10 g / ml and left to stand. Discard the contents of the plate the next day Put 200 L of blocking buffer (PBS containing 1% BSA) and incubate at room temperature for 1 hour. Washed 3 times with ELISA wash buffer (PBS containing 0.05% Tween 20) 200 1_. Thereafter, 100 L of each culture supernatant derived from the chimeric antibody-producing cells was added, and incubated at room temperature for 1 hour.
  • blocking buffer PBS containing 1% BSA
  • ELISA wash buffer PBS containing 0.05% Tween 20
  • the cell line A 43 1 derived from squamous cell carcinoma is known to express EGFR.
  • the mouse chimeric antibody treated with FITC-conjugated anti-mouse IgG antibody eBioscience
  • the human one-trichimeric antibody treated with FITC-conjugated anti-human Ig Staining was performed with G antibody (Southern Biotech). The stained cells were washed three times and then analyzed by FACSort (Beeton Dickin Son). The results are shown in Fig. 7.
  • the present invention can change the class of antibodies produced by antibody-producing cells to a desired class according to the application, the field of antibody preparations, antibody diagnostics, etc. Is widely available as a research tool.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed is a method for switching an antibody class. Specifically disclosed is a means for transforming a given B cell capable of producing a monoclonal antibody into a B cell capable of producing an antibody having a class switched to a desired different one by preparing a chimeric heavy chain antibody gene wherein a heavy chain constant region gene of a monoclonal antibody produced by the antibody-producing B cell is substituted by a heavy chain constant region gene of a desired different class, and transforming the original antibody-producing cell with the chimeric gene. Also disclosed is an antibody having a class switched to a desired different one, which is produced by the means.

Description

明 細 書  Specification
抗体のクラスを変換する方法  How to convert antibody classes
技術分野  Technical field
[0001] 本発明は、 抗体のクラスを変換する方法に関する。  [0001] The present invention relates to a method for converting a class of an antibody.
背景技術  Background art
[0002] 抗体は特定の抗原を認識することで、 様々な生体内現象を惹起し、 生体内 防御の担い手として重要な役割を果たしている。 特に、 抗体による抗体依存 性細胞障害 (ADCC ; a n t i b o d y d e p e n d e n t c e l l — m e d i a t e d c y t o t o x i c i t y) 活性や、 補体依存性細胞 I卑害 (CDC ; c om p l em e n t d e p e n d e n t c y t o t o x i c i t y) 活性は、 ガン細胞などの除去に有効であることから制ガン剤 としての用途に用いられている。 このような抗体の作用に着目し、 実用化さ れた抗体製剤も多く、 良好な治療効果を示す製剤も少なくない。 さらに、 医 薬製剤としての用途以外においても、 例えば、 種々の診断検査薬、 あるいは 、 研究開発上の有効なツールとして広く使用されている。 従って、 各用途に 応じた種々の抗体を多量かつ容易に提供する技術が必要となってくる。  [0002] Antibodies recognize specific antigens, cause various in vivo phenomena, and play an important role as in-vivo defense players. In particular, antibody-dependent cell — mediated cytotoxicity (ADCC) activity and complement-dependent cell I (CDC) activity are effective in removing cancer cells. It is used as an anticancer agent. Focusing on the action of such antibodies, many antibody preparations have been put to practical use, and many preparations have good therapeutic effects. In addition to its use as a pharmaceutical formulation, it is widely used as, for example, various diagnostic tests or effective tools for research and development. Therefore, a technique for easily providing a large amount of various antibodies according to each application is required.
[0003] 任意の抗原に対して高い特異性を持つ抗体を多量かつ容易に生産する技術 として、 AD L i bシステムと称される方法が注目を浴びつつある (特許文 献 1、 非特許文献 2参照) 。 この方法によると、 所望の特異性及び親和性を 有する抗体を簡便な方法により提供することができる。 この方法により生産 される抗体は、 主として I gMであるが、 上述した抗体の様々な用途に対応 するためには、 I gM以外の他のクラス ( I g G, I g A, I g D, I g E ) の抗体を調製する必要も生じてくる。  [0003] As a technique for easily and easily producing a large amount of an antibody having high specificity for an arbitrary antigen, a method called AD Lib system is attracting attention (Patent Document 1, Non-Patent Document 2). See). According to this method, an antibody having the desired specificity and affinity can be provided by a simple method. The antibody produced by this method is mainly IgM, but other classes (IgG, IgA, IgD, other than IgM) can be used for various applications of the antibody described above. It will also be necessary to prepare antibodies of IgE).
[0004] 抗体のクラスを変換する方法としては、 B細胞を特定の組成物で刺激する ことにより高い効率で I g Aクラスを発現させる方法 (特許文献 2) 、 トラ ンスジエニック非ヒト動物を用いて所望のアイソタイプを産生させる方法 ( 特許文献 3) など、 様々な方法が報告されているが、 現在のところ、 有効に 実用化されるに至ったものは少ない。 B細胞は本来抗体を産生する浮遊細胞 であるため、 高濃度の抗体産生、 高密度培養などの点で、 他の動物細胞発現 系に無い長所があり、 B細胞で所望のクラスの抗体産生が可能になることで 、 抗体産生の効率を向上することが可能になる。 しかしながら、 既にスクリ 一二ングされたモノクローナル抗体産生 B細胞に、 抗体重鎖の定常領域遺伝 子を形質導入し、 産生モノクローナル抗体を他のクラスに変換する有効な手 法は開発されていなかった。 [0004] As a method for converting the class of an antibody, a method of expressing an IgA class with high efficiency by stimulating B cells with a specific composition (Patent Document 2), using a transgenic non-human animal Various methods have been reported, such as a method for producing a desired isotype (Patent Document 3). Few things have been put to practical use. Since B cells are essentially floating cells that produce antibodies, they have advantages over other animal cell expression systems in terms of high-concentration antibody production, high-density culture, etc., and B cells produce the desired class of antibodies. It will be possible to improve the efficiency of antibody production. However, no effective method has been developed to transduce antibody heavy chain constant region genes into monoclonal antibody-producing B cells that have already been screened to convert the produced monoclonal antibodies to other classes.
[0005] 非特許文献 1 : S e oら, N a t u r e B i o t e c h. 23 : 731 - 735, 2005 [0005] Non-Patent Document 1: Seo et al., Nature Biotec h. 23: 731-735, 2005
特許文献 1 : 国際公開公報 WO 2004/01 1 644  Patent Document 1: International Publication Gazette WO 2004/01 1 644
特許文献 2: 国際公開公報 WO 96/27390  Patent Document 2: International Publication WO 96/27390
特許文献 3: 国際公開公報 WO 99/03991  Patent Document 3: International Publication WO 99/03991
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明者らは、 上記事情に鑑み、 抗体のクラスを簡便に変換する方法に関 し鋭意研究を行った結果、 抗体産生 B細胞から産生される抗体の重鎖可変領 域遺伝子と所望のクラスの重鎖定常領域遺伝子とのキメラ重鎖遺伝子を、 主 として該抗体産生 B細胞に形質導入することのみで、 所望のクラスの定常領 域を保持した抗体を、 該抗体産生 B細胞から産生させ得ることを明らかにし た。 このような手法だけでは、 細胞内で改変型キメラ抗体重鎖と既に存在す る抗体軽鎖がアセンブリーするかどうかは不明であつたが、 解析の結果、 意 外にも有効な機能を保持するキメラ I gGの生成が確認された。 この手法に よれば、 C H O細胞などで行われているように軽鎖と重鎖の双方を形質転換 する必要がないため、 キメラ抗体の作製の手順が少なくとも 1 /2となる。 また、 本来抗体を産生している浮遊性の B細胞を用いるため、 抗体の大量発 現などに適した細胞株が容易に入手できるなどの利点があることが判明した よって、 本発明は、 産生する抗体のクラスが変換した抗体産生 B細胞の調 製方法の提供を目的とする。 [0006] In view of the above circumstances, the present inventors have conducted intensive research on a method for easily converting antibody classes, and as a result, the antibody heavy chain variable region genes produced from antibody-producing B cells and By simply transducing a chimeric heavy chain gene with a heavy chain constant region gene of a desired class mainly into the antibody-producing B cell, an antibody retaining the desired class of the constant region is converted into the antibody-producing B cell. It was revealed that it can be produced from Although it was unclear whether the modified chimeric antibody heavy chain and the already existing antibody light chain would be assembled in the cell by such a method alone, the results of the analysis unexpectedly retain effective functions. The production of chimera IgG was confirmed. According to this technique, it is not necessary to transform both the light chain and the heavy chain as is done in CHO cells and the like, so the procedure for producing a chimeric antibody is at least 1/2. In addition, since floating B cells that originally produce antibodies are used, it has been found that there are advantages such as easy availability of cell lines suitable for the production of large amounts of antibodies. Of antibody-producing B cells converted by different antibody classes The purpose is to provide a manufacturing method.
課題を解決するための手段 Means for solving the problem
すなわち、 本発明は以下の (1 ) 〜 (9) に関する。  That is, the present invention relates to the following (1) to (9).
(1 ) 本発明の第 1の態様は、 「元来産生するモノクローナル抗体のクラス と異なるクラスの抗体を産生する抗体産生 B細胞を改良又は調製する方法で あって、 以下の (a) 及び (b) の工程を含む方法。  (1) A first aspect of the present invention is a method for improving or preparing an antibody-producing B cell that produces an antibody of a class different from the class of a monoclonal antibody originally produced, comprising the following (a) and ( A method comprising the step of b).
(a) 抗体産生 B細胞が元来産生するモノクローナル抗体の重鎖遺伝子の可 変領域遺伝子と、 他のクラスの定常領域遺伝子とを作用可能に連結したキメ ラ遺伝子を作製する工程、  (a) producing a chimeric gene operatively linking a variable region gene of a heavy chain gene of a monoclonal antibody originally produced by an B cell and a constant region gene of another class;
( b) 工程 (a) で作製したキメラ遺伝子を発現ベクターに発現可能に挿入 し、 該発現ベクターを該抗体産生 B細胞に形質導入する工程」 である。  (b) a step of inserting the chimeric gene prepared in step (a) into an expression vector so as to allow expression and transducing the antibody-producing B cell ”.
(2) 本発明の第 2の態様は、 「前記モノクローナル抗体産生 B細胞から元 来産生される抗体のクラスが I gMである上記 (1 ) に記載の方法」 である  (2) A second aspect of the present invention is “the method according to (1) above, wherein the class of antibody originally produced from the monoclonal antibody-producing B cell is IgM”.
(3) 本発明の第 3の態様は、 「前記他のクラスが I gGである上記 (1 ) 又は (2) に記載の方法」 である。 (3) A third aspect of the present invention is “the method according to (1) or (2) above, wherein the other class is IgG”.
(4) 本発明の第 4の態様は、 「前記抗体産生 B細胞が、 DT 40細胞であ る上記 (1 ) 乃至 (3) のいずれかに記載の方法」 である。  (4) A fourth aspect of the present invention is “the method according to any one of (1) to (3) above, wherein the antibody-producing B cells are DT40 cells”.
(5) 本発明の第 5の態様は、 「前記抗体産生 B細胞が、 該細胞中に存在す る全ての抗体重鎖遺伝子の機能を喪失しているものである上記 (1 ) 乃至 ( 4) のいずれかに記載の方法」 である。  (5) The fifth aspect of the present invention is the above (1) to (4), wherein the antibody-producing B cell has lost the function of all antibody heavy chain genes present in the cell. The method according to any one of the above).
(6) 本発明の第 6の態様は、 「前記定常領域遺伝子が、 マウス由来である 上記 (1 ) 乃至 (5) のいずれかに記載の方法」 である。  (6) A sixth aspect of the present invention is “the method according to any one of (1) to (5) above, wherein the constant region gene is derived from a mouse”.
(7) 本発明の第 7の態様は、 「前記定常領域遺伝子が、 ヒト由来である上 記 (1 ) 乃至 (5) のいずれかに記載の方法」 である。  (7) A seventh aspect of the present invention is “the method according to any one of (1) to (5) above, wherein the constant region gene is derived from human”.
(8) 本発明の第 8の態様は、 「前記定常領域遺伝子が、 ゥサギ由来である 上記 (1 ) 乃至 (5) のいずれかに記載の方法」 である。  (8) The eighth aspect of the present invention is “the method according to any one of (1) to (5) above, wherein the constant region gene is derived from a rabbit.”
(9) 本発明の第 9の態様は、 「上記 (1 ) 乃至 (8) のいずれかに記載の 方法により調製された細胞から取得した、 クラスが変化した抗体」 である。 発明の効果 (9) A ninth aspect of the present invention is as described in any one of (1) to (8) above. “Class-changed antibodies obtained from cells prepared by the method”. The invention's effect
[0008] 本発明に係る方法を用いることにより、 目的抗原に対するモノクローナル  [0008] By using the method according to the present invention, a monoclonal antibody against a target antigen is obtained.
I gM抗体産生 B細胞を、 所望のクラスの特性を有する抗体を産生する B細 胞に容易に転換することが可能になる。  IgM antibody producing B cells can be readily converted to B cells producing antibodies with the desired class of properties.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、 D T 40細胞が産生する抗 F I T C抗体とマウス I g G 2 aと のキメラ抗体の産生の有無を確認した結果を示す。  [0009] Fig. 1 shows the results of confirming the presence or absence of production of a chimeric antibody of anti-FITC antibody produced by DT40 cells and mouse IgG2a.
[図 2]図 2は、 H RP標識抗マウス I g G二次抗体を用いた精製したキメラ抗 体に対する E L I S Aの結果を示す。  [FIG. 2] FIG. 2 shows the results of E L ISA for a purified chimeric antibody using an HRP-labeled anti-mouse IgG secondary antibody.
[図 3]図 3は、 H RP標識抗マウス I g G二次抗体を用いた精製したキメラ抗 体に対するウェスタンブト口ティングの結果を示す。  [FIG. 3] FIG. 3 shows the results of Western blotting for a purified chimeric antibody using an HRP-labeled anti-mouse IgG secondary antibody.
[図 4]図 4は、 レトロウイルスベクタ一を用いてキメラ抗体遺伝子を導入した D T 40細胞が産生する、 抗 F I T C抗体とマウス I g G 2 aとのキメラ抗 体の産生の有無を確認した結果を示す。  [Fig. 4] Fig. 4 shows the presence or absence of production of a chimeric antibody between anti-FITC antibody and mouse Ig G 2a produced by DT 40 cells into which the chimeric antibody gene has been introduced using a single retrovirus vector. Results are shown.
[図 5]図 5は、 抗 EG F R抗体とマウス I g G 2 aのキメラ抗体の産生の有無 を確認した結果を示す。  [FIG. 5] FIG. 5 shows the results of confirming the presence or absence of the production of a chimeric antibody of anti-EG FR antibody and mouse Ig G 2a.
[図 6]図 6は、 抗 EG F R抗体とヒト I g G 1のキメラ抗体の産生の有無を確 認した結果を示す。  FIG. 6 shows the results of confirming the presence or absence of production of a chimeric antibody of anti-EG FR antibody and human IgG1.
[図 7]図 7は、 トリ抗 EG F R抗体、 および抗 EG F Rマウスキメラ抗体、 抗 EG F Rヒト一トリキメラ抗体を用いて、 A 43 1細胞および H E K 293 T細胞を染色し、 F ACS解析を行った結果を示す。  [Figure 7] Figure 7 shows the F ACS analysis by staining A 43 1 cells and HEK 293 T cells with avian anti-EG FR antibody, anti-EG FR mouse chimeric antibody, and anti-EG FR human one-trichimeric antibody. The results are shown.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 1. 抗体産生細胞  [0010] 1. Antibody-producing cells
本発明において使用する細胞は、 抗体を産生する B細胞であればいかなる ものでも使用することができ、 由来する動物の種類も、 いかなる動物であつ てもよい。 また、 株化されたものでも、 されていないものでも使用できるが 、 好ましくは、 株化された細胞が使用され、 特に好ましくは、 ニヮトリ由来 B細胞の株化培養細胞である D T 40細胞である。 The cells used in the present invention can be any B cells that produce antibodies, and the type of animal from which they are derived may be any animal. In addition, cells that are established or not established can be used, but preferably, established cells are used, particularly preferably derived from chickens. It is DT 40 cell which is a cell culture cell line of B cell.
さらに、 抗体産生細胞は、 染色体に何らかの修飾 (例えば、 特定の遺伝子 の組換え、 挿入、 削除等) が加えられた、 誘導体株、 サブラインも含む。 例 えば、 元来保持していた抗体重鎖遺伝子の機能を低下又は喪失させるために 修飾を加えた細胞であってもよい。 抗体重鎖遺伝子の機能を低下又は喪失さ せる方法は、 当該技術常識に基づいて容易に実施可能であるが、 例えば、 元 来抗体産生細胞に内在する抗体重鎖遺伝子に突然変異を導入する方法、 目的 遺伝子全体を破壊する方法、 RNA干渉 (RNA i ) を利用する方法、 目的 遺伝子に対するアンチセンスを細胞内に導入する方法等、 当業者にとって周 知の方法が使用可能である。 好ましくは、 目的遺伝子に突然変異を導入する 方法、 目的遺伝子全体を破壊する方法又は RN A干渉 (RNA i ) を利用す る方法であり、 より好ましくは、 目的遺伝子全体を破壊する方法又は RN A 干渉 (RNA i ) を利用する方法であり、 最も好ましくは、 目的遺伝子全体 を破壊する方法である。  In addition, antibody-producing cells also include derivative strains and sublines in which some modification to the chromosome (for example, recombination, insertion, deletion, etc. of specific genes) has been made. For example, it may be a cell that has been modified to reduce or lose the function of the antibody heavy chain gene that was originally retained. A method of reducing or losing the function of an antibody heavy chain gene can be easily carried out based on the common general technical knowledge. For example, a method of introducing a mutation into an antibody heavy chain gene originally present in an antibody-producing cell. Methods known to those skilled in the art can be used, such as a method of destroying the entire target gene, a method using RNA interference (RNA i), a method of introducing antisense to the target gene into cells. Preferably, a method for introducing a mutation into a target gene, a method for destroying the entire target gene, or a method using RNA interference (RNA i), more preferably a method for destroying the entire target gene or RNA It is a method using interference (RNA i), and most preferably a method of destroying the entire target gene.
[0011] 本発明で用いる細胞の培養条件は当該技術分野において周知の方法によつ て行われるが、 選択される抗体産生 B細胞に適した培地、 培養条件 (培養温 度、 CO 2濃度) 下で行われることは言うまでもない。 し力、して、 選択され る抗体産生細胞が D T 40細胞である場合、 例えば、 培地は I MDM ( I n V i t r o g e n社) を用い、 培養温度は例えば 39. 5°C、 5 %の C O 2 濃度条件下で行う。 培養は、 細胞濃度を一定に保ちながら行い、 適当な期間 毎 (例えば、 日毎、 週毎) に目的の細胞から産生される抗体のクラスのチェ ックを行う。  [0011] The culture conditions of the cells used in the present invention are carried out by methods well known in the art. Medium and culture conditions suitable for the antibody-producing B cells to be selected (culture temperature, CO 2 concentration) Needless to say, it is done below. However, when the antibody-producing cells selected are DT 40 cells, for example, the medium is IMDM (Invitrogen), and the culture temperature is 39.5 ° C, 5% CO. 2 Perform under concentration conditions. Culturing is carried out while keeping the cell concentration constant, and the class of antibodies produced from the target cells is checked at appropriate intervals (for example, every day or every week).
[0012] 2. キメラ抗体重鎖遺伝子の調製  [0012] 2. Preparation of chimeric antibody heavy chain gene
本発明を実施するにあたり、 目的の抗体産生 B細胞から元来産生される抗 体の重鎖遺伝子の調製は、 当該技術分野における通常の技術常識に基づいて 行うことができる。 例えば、 目的の抗体産生 B細胞から R T _ P C R法など を用いて、 目的の抗体重鎖遺伝子領域を増幅し、 適当なベクター等にクロー ニングすることができる。 この場合、 R T_ PC Rに用いるプライマ一は、 抗体産生細胞の所持する遺伝子に関する公知のデータベースなどから、 抗体 重鎖遺伝子の配列情報を取得し、 この情報に基づいて容易に設計することが できる。 In practicing the present invention, the heavy chain gene of an antibody originally produced from a target antibody-producing B cell can be prepared based on common general technical knowledge in the technical field. For example, the target antibody heavy chain gene region can be amplified from the target antibody-producing B cells using RT_PCR and cloned into an appropriate vector or the like. In this case, the primer used for R T_PC R is The sequence information of the antibody heavy chain gene can be obtained from a known database related to the gene possessed by the antibody-producing cell, and designed easily based on this information.
また、 元来産生している抗体の重鎖遺伝子の定常領域を他のクラスの定常 領域と置き換えるためには、 他のクラスの定常領域をコードする遺伝子を調 製する必要がある。 この遺伝子は、 当該他のクラスの定常領域が由来する細 胞などのライブラリ一などから取得するか、 または、 公知の遺伝子配列情報 に基づいて、 適当な c D N Aライブラリ一などから、 目的の遺伝子を P C R 法により増幅することができる。  In addition, in order to replace the constant region of the heavy chain gene of the originally produced antibody with the constant region of another class, it is necessary to prepare a gene encoding the constant region of another class. This gene can be obtained from a library such as a cell from which the constant region of the other class is derived, or based on known gene sequence information, the gene of interest can be obtained from an appropriate cDNA library. It can be amplified by PCR.
[0013] 取得した抗体産生 B細胞由来の抗体重鎖遺伝子の可変領域遺伝子と、 他の クラスの定常領域遺伝子を作用可能に連結する必要がある。 ここで、 「作用 可能に」 とは、 可変領域遺伝子と他のクラスの定常領域遺伝子とを連結した 場合に、 定常領域遺伝子が所望のポリペプチドを発現し得るように、 すなわ ち、 定常領域遺伝子の読み枠 (フレーム) を可変領域遺伝子の読み枠と一致 させた状態で連結させることを意味する。 可変領域遺伝子と他のクラスの定 常領域遺伝子とは直接結合されても、 又は、 スぺーサ一となるアミノ酸配列 が挿入されていてもよい。 スぺーサ一が挿入される場合でも、 定常領域遺伝 子が所望のポリペプチドを発現し得るように、 その読み枠 (フレーム) を調 整する必要があることは言うまでもない。 また、 他のクラスの定常領域遺伝 子に、 さらなる遺伝子、 例えば、 精製を容易にするためのタグとなるような ペプチド (例えば、 H i sタグなどのェピ! プタグペプチド、 G S Tなど ) をコードする遺伝子などが作用可能に連結させてもよい。  [0013] The obtained antibody production B cell-derived antibody heavy chain gene variable region gene and other classes of constant region genes must be operably linked. Here, “being able to act” means that when a variable region gene and a constant region gene of another class are linked, the constant region gene can express a desired polypeptide. This means that the gene reading frame (frame) is linked with the variable region gene reading frame. The variable region gene and the other region of the constant region gene may be directly linked, or an amino acid sequence that serves as a spacer may be inserted. Even when a spacer is inserted, it goes without saying that the reading frame (frame) must be adjusted so that the constant region gene can express the desired polypeptide. In addition, other classes of constant region genes encode additional genes, for example, peptides that serve as tags for easy purification (for example, epitope tags such as His tags, peptide tags, GST, etc.) Genes to be operably linked may be linked.
上記のように作製したキメラ遺伝子は、 抗体産生 B細胞由来の抗体重鎖遺 伝子の可変領域遺伝子がコ一ドするポリべプチドに、 他のクラスの定常領域 遺伝子がコ一ドするポリべプチドが連結されたキメラ状態の抗体重鎖ポリべ プチドをコ一ドする。  The chimeric gene prepared as described above is a polypeptide that codes for the variable region gene of the antibody heavy chain gene derived from antibody-producing B cells, and a gene that codes for the other region of the constant region gene. A chimeric antibody heavy chain polypeptide linked with peptides is coded.
[0014] 3 . キメラ抗体遺伝子発現ベクターの細胞内への導入  [0014] 3. Introduction of chimeric antibody gene expression vector into cells
作製したキメラ遺伝子を、 適当な発現ベクターに組み込むことにより、 キ メラ状態の抗体重鎖ポリべプチドを発現させることができる。 発現ベクター としては、 用いた抗体産生 B細胞内で目的タンパク質を発現可能にする、 プ 口モータ一、 ェンサンサ一などの構成要素を有するものがよい。 By incorporating the prepared chimeric gene into an appropriate expression vector, Mela-state antibody heavy chain polypeptides can be expressed. The expression vector preferably has a component such as a plug motor or an enhancer that allows the target protein to be expressed in the antibody-producing B cells used.
作製した発現ベクターの抗体産生 B細胞への導入は、 DEAEデキストラ ン法、 エレク トロボレ一シヨン法、 リン酸カルシウム法、 カチオン性脂質に よる方法等、 レトロウイルスベクターを用いた感染等、 公知の方法を使用し て容易に行うことができる。 特に、 総工程を減らすことが可能であるレトロ ウィルスベクタ一を用いる方法が、 最も望ましい。  Introducing the prepared expression vector into antibody-producing B cells uses known methods such as the DEAE dextran method, electrorevolution method, calcium phosphate method, cationic lipid method, infection using retroviral vectors, etc. It can be done easily. In particular, a method using a retroviral vector that can reduce the total number of steps is most desirable.
[0015] 4. キメラ抗体遺伝子のカセットベクタ一への導入  [0015] 4. Introduction of chimeric antibody gene into cassette vector
本発明の実施例において作成したプラスミ ド p L PCX_F I TC_m I g G 2 aおよび p L PCX-EG FR-h I gG 1は、 そのトリ抗体の可変 領域の配列を当該領域で一般的な遺伝子工学的方法により変換することで、 容易に異なる種類のトリ抗体のキメラ遺伝子作成に用いることが可能である 。 このことにより総工程の短縮が可能である。  The plasmids p L PCX_F I TC_m I g G 2a and p L PCX-EG FR-h I gG 1 prepared in the examples of the present invention represent the sequence of the variable region of the avian antibody in the gene common to the region. By converting by an engineering method, it can be easily used to create chimeric genes of different types of avian antibodies. This makes it possible to shorten the total process.
[0016] 以下に実施例を示すが、 本発明はこれに限定されるものではない。  [0016] Examples are shown below, but the present invention is not limited thereto.
実施例  Example
[0017] 1. 細胞培養  [0017] 1. Cell culture
DT 40細胞の細胞培養は、 基本的には、 以下の方法で行った。 培養機は C02恒温槽を用い、 5%の C02存在下、 39. 5°Cで培養した。 培地は 、 I MD M培地 ( I n V i t r o g e n社) を用い、 1 0 % F B S、 1 %二 ヮトリ血清、 ぺニシリン 1 00単位/ m I、 ストレプトマイシン 1 00 g I、 2_メルカプトエタノール 55 Mを加えて使用した。 また、 ト リコスタチン A (和光純薬) は、 DMSO 2mg/m I に溶解したものを ストックとし、 最終濃度が 1. 25 n g/mL、 m2. 5 n g/mLとなる ように、 適宜培地で希釈して用いた。  Cell culture of DT 40 cells was basically performed by the following method. The incubator was a C02 thermostatic chamber and cultured at 39.5 ° C in the presence of 5% C02. The medium is IMMD medium (Invitrogen), 10% FBS, 1% chicken serum, penicillin 100 units / mI, streptomycin 100 g I, 2_mercaptoethanol 55 M Used in addition. Trichostatin A (Wako Pure Chemical Industries) is dissolved in DMSO 2 mg / m I as stock, and diluted appropriately in the medium so that the final concentrations are 1.25 ng / mL and m2.5 ng / mL. Used.
[0018] 2. 抗 F I TC抗体産生 B細胞取得 [0018] 2. Obtain anti-F I TC antibody-producing B cells
F I TC共役 BS Aを抗原とし、 AD L i bシステムにより抗体産生細胞 を得た。 具体的には以下の実験プロセスをとつた。 2 - 1 . F I T C共役 B S A磁気ビーズの作製: Antibody producing cells were obtained by the AD Lib system using FITC-conjugated BS A as an antigen. Specifically, the following experimental process was taken. 2-1. Preparation of FITC-conjugated BSA magnetic beads:
兹気ビ一ズは D y n a b e a d s M— 2 80 T o s y l a c t i v a t e d (D y n a I社) を、 また磁気スタンドは D y n a I M P C (D y n a I社) を用いた。 ビーズ 200 U I を 500 Iのバッファ一 A (0. 1 M N a - P h o s p h a t e p H 7. 4 ) で 3回洗った後、 バッファ — A 200 U I 中で 1 の F I T C共役 B S A (S I GMA社) と 3 7°Cで一晚、 回転により攪拌しながら反応させた。 次にビーズをバッファ一 C (P B S + 0. 1 % B S A) 200 U Iで 2回洗浄した。 その後バッ ファー D (0. 2 M T r i s - H C I p H 8. 5、 0. 1 % B S A) 、 200 μ I を加え、 3 7°Cで 4時間、 回転により攪拌しながら反応させ、 ブロッキングを行った。 その後 500 Iのバッファ一 Cで 2回洗浄した後 、 0. 02<½アジ化ナトリウムを含むバッファ一〇 200 I に懸濁した。  Dy na b e a d s M—280 Tos y l a c t i va a t e d (D y n a I company) was used for the mirage and D y n a I M PC (D y n a I company) was used for the magnetic stand. Wash the beads 200 UI three times with 500 I buffer A (0. 1 MN a-Phosphatep H 7.4) and then buffer — A 200 UI with 1 FITC-conjugated BSA (SI GMA) and 3 The reaction was carried out at 7 ° C while stirring by rotation. The beads were then washed twice with buffer C (P B S + 0.1% B S A) 200 U I. Then buffer D (0.2 MT ris-HCI pH 8.5, 0.1% BSA) and 200 μI were added, and the mixture was allowed to react at 37 ° C for 4 hours with rotation and stirring, followed by blocking. It was. After washing twice with 500 I buffer C, the suspension was suspended in 200 I buffer containing 0.02 <½ sodium azide.
[0019] 2 - 2. F I T C共役 B S A磁気ビーズによる抗体産生クローンの選択 トリコスタチン A、 2. 5 n g/m Iで処理した野生型 D T 40細胞約 1 X 1 08個を洗浄バッファ一 ( 1 %83八を含む 83) 1 Om Iで 1回、 さらに 1 m Iで一回洗浄したのち、 1 m Iの洗浄バッファ一中で F I T C共 役 B S A磁気ビーズ 5 X 1 06個と混合し、 4 °Cで 30分間、 穩やかに回転 させつつインキュベ一トした。 その後 1 m Iの洗浄バッファ一で 5回洗浄し た。 最後に、 磁気ビーズに結合した細胞を 500 I に懸濁し、 これを 30 m Iの培地に加えたのち、 9 6穴プレートに 300 Iずつ分注し、 3 9. 5 °Cで培養した。 [0019] 2-2. Selection of antibody-producing clones using FITC-conjugated BSA magnetic beads About 1 X 10 8 wild-type DT 40 cells treated with trichostatin A, 2.5 ng / m I were washed with a buffer (1% 83) Including 83) After washing once with 1 Om I and once with 1 m I, mix with 5 times 106 FITC-shared BSA magnetic beads in 1 m I wash buffer, 4 ° Incubate at C for 30 minutes with gentle rotation. The plate was then washed 5 times with 1 ml wash buffer. Finally, the cells bound to the magnetic beads were suspended in 500 I, added to 30 m I medium, dispensed 300 I each into a 96-well plate, and cultured at 39.5 ° C.
[0020] 2 - 3. 抗 F I T C抗体産生クローンのスクリーニング  [0020] 2-3. Screening for anti-FITC antibody producing clones
E L I S Aは以下のとおりに行った。 上記 2 _ 2のステップの 6日後、 F 1 丁〇共役曰3八 2. 5 g/m Lで 9 6穴ィムノプレート U— 9 6 M a x i s o r p (N u n c社) に 1 00 Lずつ分注し一晚放置した。 な お、 抗体の特異性を検討するために、 コントロールとして F I T Cラベルし ていない、 B S Aも同様にプレートに固定した。 翌日プレートの中身を捨て 、 ブロッキングバッファ一 (0. 5% スキムミルクを含む P B S) 200 ; U Lを入れ、 室温で 2時間インキュベートした。 E L I S A洗浄バッファ一ELISA was performed as follows. Six days after step 2_2 above, dispense 1 00 L each into 9 6-hole immunoplate U— 9 6 M axisorp (Nunc) at 1 g of F 1 〇0 conjugate 曰 38 2.5 g / m L I left it. In order to examine the specificity of the antibody, BSA not labeled with FITC was also immobilized on the plate as a control. Discard the contents the next day and block the buffer (PBS containing 0.5% skim milk) 200 UL was added and incubated for 2 hours at room temperature. ELISA wash buffer
( 0. 0 5% T w e e n 2 0を含む P B S) 2 0 0 Lで 3回洗浄した。 上記 2— 2で選別して生じたコロニー由来の培養上清それぞれ 1 0 0 Lを 入れ、 室温で 1時間インキュベートした。 E L I S A洗浄バッファ一 2 0 0 U Lで 5回洗浄したのち、 二次抗体を P B Sで 2 0 0 0倍に希釈したものを Λ 0 0 U L入れ、 室温で 4 5分ィンキュベ一卜した。 なお二次抗体は抗ニヮ トリ I g M_ H R P ( B E T H Y L社) を使用した。 E L I S A洗浄バッフ ァ一 2 0 0 Lで 5回洗浄したのち、 T M B+ ( D a k o社) 1 0 0 1_入 れ、 1 0分インキュベートした。 その後反応を 1 Nの硫酸 1 0 0 1_で停止 し、 6 5 0 n m (又は 4 5 0 n m) ( * 4 5 0 n mを削除してしまうと、 先 の出願との整合性がとれていないとの判断により不利益な扱いを受ける可能 性がありますので、 もし問題がないようでしたら 4 5 0 n mの記載も残して おければと思います。 ご判断をお願いします) の吸光度を測定した。 (P B S containing 0.05% T ween 2 0) Washed 3 times with 2 0 0 L. 100 L of each culture supernatant derived from the colonies generated by the above selection in 2-2 was added and incubated at room temperature for 1 hour. After washing 5 times with 200 mL of ELISA wash buffer, Λ 00 UL was diluted with the secondary antibody diluted 20 times with PBS, and incubated at room temperature for 45 minutes. As the secondary antibody, anti-chicken IgM_HRP (BET HYL) was used. After washing 5 times with 200 liters of ELISA wash buffer, TMB + (Dako Ltd.) was added and incubated for 10 minutes. After that, the reaction is stopped with 1 N sulfuric acid 1 00 1 1_ and 6 5 0 nm (or 4 5 0 nm) (* 4 5 50 nm is deleted, which is consistent with the previous application. If there seems to be no problem, you should leave the description of 45 nm as well. It was measured.
3. 抗 F I T Cニヮトリ I g Mとマウス I g G 2 aキメラ抗体 (以下、 キメ ラ抗体) 遺伝子の作製 3. Preparation of anti-FITC chicken IgM and mouse IgG2a chimeric antibody (hereinafter, chimeric antibody) gene
3 - 1 . I タル R N A抽出  3-1. I Tar R N A Extraction
抗 F I T C抗体産生細胞からの I タル R N A抽出には、 R N e a s y P l u s M i n i k i t (Q I A G E N社) を使用し、 キッ卜に添付の マニュアルに従って抽出作業を行った。 なお、 その際、 細胞ライセ一卜の調 製には Q I A s h r e d d e r (Q I A G E N社) を使用した。  For extraction of Ital RNA from anti-FITC antibody-producing cells, RNeasyPluin Minik (QIAGEN) was used, and extraction was performed according to the manual attached to the kit. At that time, QIA shr d der (QIA AG) was used to prepare a cell lysate.
3 - 2. ?^丁— じ?^にょる抗 I T Cニヮトリ I g M重鎖遺伝子の単離 抗 F I T C抗体重鎖遺伝子は、 R T _ P C Rにより単離した。 R T _ P C Rは I n v i t r o g e n社の O n e S t e p R T— P C Rを用いた。 I タル R N A 1 I を錶型とし、 2種のプライマ _ (V H _ F 1 :酉己列 番号 1 、 V H— R :配列番号 2 ) を用いた。 反応条件は以下の通りである。 5 5°C、 3 0 m i nの後、 9 4 °Cで 2 m i n処理し、 9 4°C 1 5秒、 6 0°C で 3 0秒、 6 8 °Cで 1分を 2 8サイクル行った。 その後 6 8 °Cで 5分インキ ュベ一卜した。 R T _ P C Rにより得られた重鎖断片は D H 5ひ株を用いて p C R 2. 1— T O P Oベクタ一 ( I n v i t r o g e n社) に TAクロ一 ニングし、 p A N T I _ F I T C_ H Cを得た。 シークェンスの確認は A B I社 A B I p r i s m 377シーケンサ一により行った。 3-2.? ^ -Don’t you? ^ Isolation of anti-ITC chicken IgM heavy chain gene Anti-FITC antibody heavy chain gene was isolated by RT_PCR. RT_PCR was Invitrogen's One Step RT-PCR. I Tal RNA 1 I was in a saddle type, and two types of primers_ (VH_F1: self-sequence number 1, VH—R: SEQ ID NO: 2) were used. The reaction conditions are as follows. 5 After 5 min at 30 ° C, treatment for 2 min at 94 ° C, 9 4 ° C for 15 sec, 60 ° C for 30 sec, 68 min for 1 min 28 cycles It was. The mixture was then incubated for 5 minutes at 68 ° C. The heavy chain fragment obtained by RT_PCR was obtained using the DH5 strain. TA cloning to pCR 2.1—TOPO vector (Invitrogen) gave pANTI_FIT C_HC. The sequence was confirmed using an ABI prism 377 sequencer.
[0022] 3-3. マウス I gG2 aの単離 [0022] 3-3. Isolation of mouse I gG2 a
マウス I g G 2 aクローニングは M o u s e S p l e e n B D Ma r a t h o n-Re a d y c DNA (C l o n t e c h社) を錶型とし、 2 種のプライマ一 (m I g G 2 a F— 1 :配列番号 3、 m l g G 2 a R- 1 : 酉己歹1 J番号 4 ) を用しゝて P y r o b e s t p o l yme r a s e (SSia) により PCRにて行った。 反応条件は以下の通りである。 98°C2分の後、 98°C30秒、 55°C30秒、 72 °C 2分を 30サイクルの後、 72°Cで 5 分反応させた。 ここで得られたマウス I g G 2 aの F c領域断片は、 E x T a q (宝酒造) を加えて 72°C1 5分反応させることで 「A」 を付加し、 D H 5ひ株を用いて p CR2. 1— TOPOベクタ一 ( I n v i t r o g e n 社) に T Aクロ一ニングし、 pM I gG2 aを得た。 なお、 シークェンスの 確認は AB I社 AB I p r i s m 377シーケンサ一により行った。 Mouse IgG2a cloning uses Mouse Spleen BD Ma ratho n-Re adyc DNA (Clontech) as a saddle, and two primers (mIgG2aF-1: SEQ ID NO: 3, mlg G 2 a R-1: 酉 自 歹1 J number 4) was used for PCR with Pyrobestpolylase (SSia). The reaction conditions are as follows. After 98 ° C for 2 minutes, 98 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 2 minutes were reacted for 30 minutes at 72 ° C for 5 minutes. The mouse I g G 2 a F c region fragment obtained here was added with “A” by adding E x T aq (Takara Shuzo) and reacting at 72 ° C for 15 minutes, and then using the DH 5 strain. PCR2. 1— TOPO vector (Invitrogen) was TA-cloned to obtain pM IgG2a. The sequence was confirmed using AB I prism 377 sequencer.
[0023] 3-4. 抗 F T I Cニヮトリ I gM_マウス I g G 2 a融合遺伝子作製 抗 F I TCニヮトリ I gMとマウス I gG2 aキメラ抗体 (以下、 キメラ ナ几体) 退伝子は、 P y r o b e s t p o I y m e r a s eにより PCRを 用いて作成した。 はじめに、 ( i ) pAN T I _F I TC—HCを錶型 とし、 プライマ一は VH— F 1および Gd I gM-CH 1 +m I g G 2 a - R :配列番号 5の組み合わせ、 さらに ( i i ) pM I g G 2 aを錶型として プライマ一は Gd I gM-CH 1 +m I g G 2 a - F :配列番号 6および m I g G 2 a R- 1 :配列番号 4で行った。 なお、 条件は 98°C2分の後、 9 8°C30秒、 55°C30秒、 72 °C 1分を 1 5サイクルの後、 72°Cで 5分 反応させた。 ( i ) および ( i i ) で増幅されたバンドを Q i a q u i c k G e l E x t r a c t i o n M i n i k i t (Q I AGEN社) に より精製し、 断片を 1 Lずつ混合したものを錶型とし、 ( i ) 、 ( i i ) と同様の反応条件で P C Rを行った。 なお、 プライマ一は V H_ F 1および 、 m l gG2 a R_ 1を用い、 以下の条件で行った。 得られたキメラ遺伝子 断片は E x T a q (宝酒造) を加えて 72 °C 1 5分反応させることで 「 A」 を付加し、 D H 5ひ株を用いて p C R 2. 1ベクタ一に T Aクロ一ニングし 、 p A N T I - F I T C-mG 2 aを得た。 シークェンスの確認は A B I社 AB I p r i sm377シーケンサ一により行った。 [0023] 3-4. Preparation of anti-FTIC chicken I gM_mouse I g G 2 a fusion gene Anti-FI TC chicken I gM and mouse I gG2 a chimeric antibody (hereinafter referred to as chimera rod) Regressor is P yrobestpo It was prepared by PCR using I ymerase. First, (i) pAN TI _F I TC—HC is of a saddle type, and the primer is VH—F 1 and Gd I gM-CH 1 + m I g G 2 a -R: a combination of SEQ ID NO: 5 and (ii ) pM I g G 2 a is a saddle type Primer was performed with Gd I gM-CH 1 + m I g G 2 a-F: SEQ ID NO: 6 and m I g G 2 a R-1: SEQ ID NO: 4 . The conditions were 98 ° C for 2 minutes, 98 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 1 minute after 15 cycles, followed by reaction at 72 ° C for 5 minutes. The band amplified in (i) and (ii) was purified by Qiaquick Gel Extraction Minikit (QI AGEN), and the mixture of fragments 1 L each was used as a saddle type, and (i), (ii PCR was carried out under the same reaction conditions as in). Note that the primer is V H_ F 1 and , Ml gG2 a R_1 was used under the following conditions. The obtained chimera gene fragment is added with “A” by adding E x T aq (Takara Shuzo) and reacting at 72 ° C for 15 min, and using DH 5 strain, p CR 2.1 vector Cloned and obtained pANTI-FIT C-mG 2a. The sequence was confirmed by ABI AB I pri sm377 sequencer.
[0024] 4. キメラ抗体遺伝子発現コンストラク ト作製およびその導入 [0024] 4. Construction of chimeric antibody gene expression construct and its introduction
4- 1. キメラ抗体発現コンストラク トの作製  4- 1. Construction of chimeric antibody expression construct
発現べクタ一は p EG FP— C 1 (C l o n t e c h社) を使用した。 p EG F P-C 1を制限酵素 N h e I及び B amH Iで消化し、 クレノウフラ グメント (K l e n ow f r a gme n t ) (宝酒造) によりべクタ一の 末端を平滑化したのち、 BAP (宝酒造) により脱リン酸化処理した。 イン サ一トとなるキメラ遺伝子は、 pAN T I _F I TC_mG2 a由来の E c o R I断片を平滑化して得た。 ベクタ一、 インサートともに Q i a q u i c k G e l E x t r a c t i o n k i t (Q i a g e n社) により精製 したのち、 L i g a t i o n k i t v e r 2 (宝酒造) によりライゲ一 シヨンを行った。 トランスフォーメーションは D H 5ひ株に行った。  P EG FP—C 1 (Clontech) was used as the expression vector. p EG F PC 1 is digested with the restriction enzymes N he I and B am H I, and the end of the vector is smoothed with Klenow Fragment (Takara Shuzo) and then removed with BAP (Takara Shuzo). Phosphorylated. The chimeric gene to be inserted was obtained by blunting the EcoR I fragment derived from pAN T I — F I TC — mG2a. Both the vector 1 and the insert were purified by Q i aq u i c k G e l e x t r a c t i o n k i t (Q i a g e n company), and then subjected to ligation using L i gat i o n k i t v e r 2 (Takara Shuzo). Transformation was performed on DH 5 strains.
[0025] 4-2. 遺伝子導入 [0025] 4-2. Gene transfer
上記 4 _ 1で得られたキメラ抗体の発現コンストラク トを、 抗 F I TC抗 体産生株に遺伝子導入した。 遺伝子導入は、 エレク トロポレーシヨンを用い て行った。 約 20 g相当を制限酵素 M I u Iにより消化して一本鎖にし、 精製後、 PBS、 500 !_に溶解した。 抗 F I T C抗体産生株約 1 07個 に対し、 約 550 V、 25 Fの条件でエレク トロポレーシヨンを行ったの ち氷上で 1 0分放置し、 20mLの培地に移し、 37°Cで一晚培養した。 翌 日培養液を遠心 (1 90 x g、 1 0分) し、 細胞をペレットに回収後、 2 m g/mLの G41 8 ( I n v i t r o g e n社) を含む培地 80 m Lに懸濁 し、 96穴プレートに、 200 L/穴で分注した後、 39. 5°Cで培養し た。  The expression construct of the chimeric antibody obtained in 4_1 above was introduced into an anti-FITC antibody production strain. Gene transfer was performed using electroporation. About 20 g equivalent is digested with the restriction enzyme M I u I to make a single strand, and after purification, PBS, 500! Dissolved in _. About 107 anti-FITC antibody-producing strains were electroporated under conditions of about 550 V and 25 F, then left on ice for 10 minutes, transferred to 20 mL of medium, and cultured at 37 ° C for 1 hour. . The next day, the culture solution is centrifuged (190 xg, 10 min), and the cells are collected in a pellet and then suspended in 80 mL of medium containing 2 mg / mL G41 8 (Invitrogen). After dispensing at 200 L / well, the cells were cultured at 39.5 ° C.
[0026] 5. キメラ抗体の発現および抗原認識の確認 E L I S Aは以下のとおりに行った。 F I TC共役 BS A 1 0 U g/m L で 96穴ィムノプレート U— 96 Ma x i s o r p (N u n c社) に 1 0 0 Lずつ分注し一晚放置した。 なお、 抗体の特異性を検討するために、 コ ントロールとして F I TCラベルしていない、 BS Aも同様にプレー卜に固 定した。 翌日プレートの中身を捨て、 ブロッキングバッファ一 (0. 5% スキムミルクを含む P BS) 200 1_を入れ、 室温で 2時間インキュベ一 卜した。 E L I S A洗浄バッファ一 (0. 05% 丁\^ 6 6 门 20を含む BS) 200 Lで 3回洗浄した。 その後キメラ抗体産生候補クローン 1 8 クローン由来の培養上清それぞれ 1 00 Lを入れ、 室温で 1時間インキュ ベ一卜した。 E L I S A洗浄バッファ一 200 Lで 5回洗浄したのち、 二 次抗体を P BSで 2000倍に希釈したものを 1 00 L入れ、 室温で 45 分インキュベートした。 なお二次抗体は抗マウス I gG_HRP (BETH Y L社) を使用した。 E L I S A洗浄バッファ一 200 Lで 5回洗浄した のち、 TMB+ (D a k o社) 1 00 1_入れ、 1 0分インキュベートした 。 その後反応を 1 Nの硫酸 1 00 Lで停止し、 650 n mの吸光度を測定 した。 結果を図 1に示す。 ナンバー 3のクローンが、 マウス I g G 2 aとの キメラ抗体を発現していることが確認できた。 [0026] 5. Confirmation of chimeric antibody expression and antigen recognition ELISA was performed as follows. FI TC conjugated BS A 10 U L / 96 L was dispensed into a 96-well immunoplate U—96 Maxisorp (Nunc) in 100 L portions and allowed to stand for a while. In addition, in order to examine the specificity of the antibody, BSA not labeled with FITC as a control was similarly fixed to the plate. The next day, the contents of the plate were discarded, and blocking buffer (PBS containing 0.5% skim milk) 200 1_ was added and incubated at room temperature for 2 hours. Washed 3 times with 200 L of ELISA wash buffer (BS containing 0.05% Ding 6 ^ 20). Thereafter, 100 L of each culture supernatant derived from the chimeric antibody production candidate clone 18 clone was added and incubated at room temperature for 1 hour. After washing 5 times with 200 L of ELISA wash buffer, 100 L of secondary antibody diluted 2000 times with PBS was added and incubated at room temperature for 45 minutes. As the secondary antibody, anti-mouse IgG_HRP (BETH YL) was used. After washing 5 times with 200 L of ELISA wash buffer, 100 ml of TMB + (Dako) was added and incubated for 10 minutes. Thereafter, the reaction was stopped with 100 L of 1 N sulfuric acid, and the absorbance at 650 nm was measured. The results are shown in Figure 1. It was confirmed that the number 3 clone expressed a chimeric antibody with mouse Ig 2a.
6. 精製キメラ抗体の生化学的検証 6. Biochemical verification of purified chimeric antibody
上記 5で調製したナンバー 3のクローンからキメラ抗体を精製し、 その特 性についてさらに詳細な検討を加えた。  The chimeric antibody was purified from the No. 3 clone prepared in 5 above, and the characteristics were further examined in detail.
6- 1. 精製キメラ抗体の調製  6- 1. Preparation of purified chimeric antibody
6— 1— 1. ニヮトリ血清成分の調製  6— 1— 1. Preparation of chicken serum components
500 X gで遠心し、 沈殿物を除去したニヮトリ血清 ( I n V i t r o g e n社) 1 0 m Lに飽和硫安溶液 1 0 m Lを加え、 4 °Cで一晚硫安沈殿を行 つた。 翌日 91 00 x gで 1 5分間遠心し、 上清をとつた。 再度 91 00 X gで 1 5分間遠心し、 上清をとつた。 上清は 0. 45 mのフィルタ一 (ザ ルトリウス社) でろ過し、 透析チューブ (スぺク トラポア社、 MWCO : 3 500, 9. 3mL/cm) に移し、 1 Lの PBSに対し 3回 (うち 2回は 4時間、 1回は一晚) 、 4°Cで透析した。 翌日透析チューブからサンプルを 取り出し、 C e n t r i p I u s YM 3 (M i I I i p o r e社) により 、 2330 x gで 1 Om Lになるように濃縮した。 濃縮後、 0. 22 mの フィルタ一 (ザルトリウス社) により滅菌し、 適量ずつ分注して一 30°Cに て凍結保存した。 Centrifugation was performed at 500 X g, and 10 ml of chicken serum (In Vitrogen) from which the precipitate was removed was added to 10 ml of saturated ammonium sulfate solution, and ammonium sulfate precipitation was performed at 4 ° C. The next day, the mixture was centrifuged at 9100 xg for 15 minutes, and the supernatant was collected. The mixture was centrifuged again at 91 00 X g for 15 minutes, and the supernatant was collected. The supernatant was filtered through a 0.45 m filter (Zartorius), transferred to a dialysis tube (Spectrapore, MWCO: 3 500, 9.3 mL / cm), and 3 times against 1 L of PBS. (Of which 2 times Dialysis was performed at 4 ° C for 4 hours once. The sample was taken out from the dialysis tube the next day and concentrated to 1 OmL at 2330 xg with Centrip Ius YM3 (Mii II ipore). After concentration, the solution was sterilized with a 0.22 m filter (Sartorius), dispensed in appropriate amounts, and stored frozen at 30 ° C.
[0028] 6- 1 -2. 培養上製の作製  [0028] 6- 1 -2. Production on culture
抗 F I T Cのキメラ抗体産生ナンバー 3のクローンを、 無血清培地 A I M _V ( I n V i t r o g e n社) に、 ニヮトリ血清成分を 5 %添加して作製 した培地 (以下、 「準無血清培地」 と呼ぶ) で培養した。 細胞を 2 X 1 06 Lになるように準無血清培地で希釈したものを 1 4 cmシャーレ (N u n c社) 4枚分にそれぞれ 50m L (計 200m L) ずつ準備した。 これを CO 2インキュベータで 39. 5°C、 5 %CO 2で 5日間培養した。 ここで 得られた培養液を 2330 X gで 1 5分間遠心し、 上清を回収した。 上清は 再度 2330 X gで 1 5分間遠心し、 これを培養上清とした。  A medium prepared by adding the anti-FITC chimeric antibody production number 3 clone to serum-free medium AIM _V (In Vitrogen) with 5% chicken serum component (hereinafter referred to as “quasi-serum free medium”) In culture. Cells diluted with semi-serum-free medium to 2 X 106 L were prepared in 50 mL (total 200 mL) for four 14 cm dishes (Nunc Corporation). This was cultured in a CO 2 incubator at 39.5 ° C and 5% CO 2 for 5 days. The obtained culture solution was centrifuged at 2330 X g for 15 minutes, and the supernatant was collected. The supernatant was again centrifuged at 2330 Xg for 15 minutes and used as the culture supernatant.
[0029] 6- 1 -3. キメラ抗体の精製  [0029] 6- 1 -3. Purification of chimeric antibody
Ma b T r a p k i t (G Eヘルスケア社) を用い、 マニュアルに従つ てキメラ抗体を精製した。 ペリスタポンプを用い、 ほぼ全量の培養上清を M a b T r a pにかけた (コントロール用に 1 0 m Lだけ分取した) 。 1 0m l_の b i n d i n g b u f f e rで '争し、 5ml_の e l u t i o n b u f f e rで溶出した。 その際、 1 m Lずつ 5本のフラクションで回収した 。 タンパク濃度が最大の溶出フラクション (N o. 2) を S I i d e -A- L i z e r ( 1 0 K) (P I E RC E社) により P BSに透析した。  The chimeric antibody was purified using MabTra ap kit (GE Healthcare) according to the manual. Using a peristaltic pump, almost the entire culture supernatant was applied to M ab T r a p (only 10 mL was collected for control). 10 ml_ of b i n d i n g b u f f er scrambled and eluted with 5 ml_ of e l u t i o n b u f f e r. At that time, 1 mL each was collected in 5 fractions. The elution fraction (N o. 2) with the highest protein concentration was dialyzed against PBS using S I id e -A-L i z e r (10 K) (P I E RC E).
[0030] 6-2. 精製キメラ抗体を用いた E L I S Aによる検討  [0030] 6-2. Examination by ELISA using purified chimeric antibody
精製キメラ抗体を x 5, X 25, X 1 25, x 625, x 31 25, x 1 5625倍希釈したもので H RP標識抗マウス I gG二次抗体を用いて、 F I TCに対して E L I S Aを行った。 なお、 E L I SAは 「5. キメラ抗体 の発現および抗原認識の確認」 と同様に行った。 結果を図 2に示す。 精製キ メラ抗体が E L I S Aレベルで F I T Cに反応していることを示している。 [0031] 6-3. ウェスタンプロット法による精製キメラ抗体のキャラクタリゼ一 シヨン Purified chimeric antibody diluted with x5, x25, x125, x625, x3125, x1 5625 times with HRP labeled anti-mouse Ig g secondary antibody and ELISA against FITC went. ELI SA was performed in the same manner as “5. Confirmation of expression and antigen recognition of chimeric antibody”. The result is shown in figure 2. It shows that the purified chimeric antibody reacts with FITC at the ELISA level. [0031] 6-3. Purification of chimeric antibody by Western plot method
精製キメラ抗体をウェスタンプロットで解析した。 4% ポリアクリルァ ミ ドゲル (B i o R a d社) で電気泳動し、 ナイロンメンブレン (M i I I i p o r e社) に転写後、 5%スキムミルクでブロッキングし、 HRP標識 した抗マウス I g G二次抗体を反応させた。 0. 1 %T w e e n 20を含む 曰3で1 5分ずつ 3回洗浄し、 EC L p l u s (GEヘルスケア社) に よる化学発光でシグナルを得た。 なおシグナルは、 LAS— 1 000 (富士 写真フィルム) により検出した。 結果を図 3に示す。 精製キメラ抗体は抗マ ウス I gG二次抗体に反応し、 特異的なバンドが生じている。 なお培養上清 のレーンにおいて、 キメラ抗体のバンドが精製キメラ抗体のそれよりも移動 度が大きいが、 これは A I M_V培地に含まれる、 重鎖に分子量の近いタン パク質の量が極めて多いためと考えられる。  The purified chimeric antibody was analyzed by Western plot. Electrophoresed on 4% polyacrylamide gel (Bio R ad), transferred to nylon membrane (M i II ipore), blocked with 5% skim milk, reacted with HRP-labeled anti-mouse IgG secondary antibody I let you. It was washed 3 times for 15 minutes each with 曰 3 containing 0.1% T ween 20 and a signal was obtained by chemiluminescence with EC L p lus (GE Healthcare). The signal was detected with LAS-1 000 (Fuji Photo Film). The results are shown in Figure 3. The purified chimeric antibody reacts with the anti-mouse IgG secondary antibody to produce a specific band. In the lane of the culture supernatant, the chimera antibody band has a higher mobility than that of the purified chimera antibody. This is because the amount of protein in the AI M_V medium that has a molecular weight close to that of the heavy chain is very large. it is conceivable that.
[0032] 7. 抗 F I TCキメラ抗体のレトロウイルス発現べクタ一による発現  [0032] 7. Expression of anti-FITC chimeric antibody by retrovirus expression vector
7 - 1. 抗 F I TCキメラ抗体遺伝子の発現ベクターへの挿入 発現べクタ一は p L PCX (タカラバイオ社) を使用した。 p L PCXを 制限酵素 N o t Iおよび C I a Iで処理し、 C I A P処理を行った。 一方キ メラ抗体遺伝子は、 p A N T I _ F I T C-mG 2 aから P C Rで増幅した 。 プライマ一としては、 VH_F 1_N o t 1 (配列番号 7) 、 および mT g G 2 a R- 1 _C I a I (配列番号 8) の二つを用いた。 増幅した D N A 断片を N o t Iおよび C I a Iで処理し、 ァガロース電気泳動により分離し 、 Q i a q u i c k ^ e I E x t r a c t i o n k i t \ a g e n社) により精製した。 p L PCXとキメラ抗体遺伝子断片を用いて、 L i g a t i o n k i t (二ツボンシーン) によりライ 7 "—シヨンを行った。 トランスフォーメーションは D H 5ひ株に行った。 こうして作成したプラス ミ ドは p L P CX— F I T C-m I g G 2 aとする。  7-1. Insertion of anti-FITC chimeric antibody gene into expression vector pL PCX (Takara Bio Inc.) was used as the expression vector. pL PCX was treated with restriction enzymes Not I and C I a I and treated with C I A P. On the other hand, the chimeric antibody gene was amplified by pCR from pATNTI_FITC-mG2a. Two primers, VH_F 1_N o t 1 (SEQ ID NO: 7) and mT g G 2 a R-1 _C I a I (SEQ ID NO: 8), were used as primers. The amplified DNA fragment was treated with NotI and CIaI, separated by agarose electrophoresis, and purified by Qiaquick ^ IExtrtactiot \ agen). p L PCX and the chimeric antibody gene fragment were used for lysation with a ligation kit (Niibon Scene). The transformation was performed on the DH5 strain. The plasmid thus prepared was pLP CX— FIT Cm I g G 2 a
[0033] 7-2. レトロウイルスの産生および D T 40への感染  [0033] 7-2. Production of retrovirus and infection with D T 40
p L P C X- F I T C- m I g G 2 aを、 F u GEN E6 (ロシュディアグ ノステイクス社) をもちいたリポフエクシヨン法により、 p C L_amp h 。プラスミ ド (タカラバイオ社) と共に 293 T細胞に導入した。 2日後に 培養上清を回収し、 抗 F I T C抗体産生 DT 40細胞株をこの培養上清中で 2日間処理した。 処理した細胞をピューロマイシン (0. 5 g/m l ) を 含む培地中で培養することにより、 ベクタ一が導入した細胞のみを選別した p LPC X- FIT C- m I g G 2 a, Fu GEN E6 (Roche Diag P C L_amp h by the lipofusion method using Nostax. It was introduced into 293 T cells together with Plasmid (Takara Bio). Two days later, the culture supernatant was collected, and the anti-FITC antibody-producing DT 40 cell line was treated in this culture supernatant for 2 days. By treating the treated cells in a medium containing puromycin (0.5 g / ml), only those cells into which Vector I had been introduced were selected.
7- 3. キメラ抗体の発現の確認 7- 3. Confirmation of chimeric antibody expression
前記 「5. キメラ抗体の発現および抗原認識の確認」 の手法に従って、 キ メラ抗体の発現を確認した結果を図 4に示す。  FIG. 4 shows the result of confirming the expression of the chimeric antibody according to the technique of “5. Confirmation of expression and antigen recognition of the chimeric antibody”.
8. EG F受容体 (EG FR) に対するキメラ抗体遺伝子発現ベクターの作 製 8. Production of chimeric antibody gene expression vector for EG F receptor (EG FR)
8- 1. 抗 E G F R抗体遺伝子の発現べクタ一への揷入  8- 1. Insertion of anti-EGFR antibody gene into expression vector
前記 「7_ 1. 抗 F I TCキメラ抗体遺伝子の発現ベクターへの挿入」 の 手法により作製した抗 F I TCキメラ抗体遺伝子発現ベクターは、 全てのト リ抗体配列が共通にもつ制限酵素認識配列を含むため、 少ない操作で他の特 異性の抗体配列にも利用することが可能である。  The anti-FI TC chimeric antibody gene expression vector prepared by the technique described in “7_ 1. Insertion of anti-FI TC chimeric antibody gene into expression vector” above contains a restriction enzyme recognition sequence that is common to all tri-antibody sequences. It can be used for other specific antibody sequences with few operations.
p L P C X-F I T C-m I g G 2 aを制限酵素 N o t Iおよび Pm a C I により処理した。 前記 「3. 抗 F I T Cニヮトリ I gMとマウス I g G 2 a キメラ抗体遺伝子の作製」 と同様の手法により、 抗 EG FR抗体産生株から 抗体遺伝子を PC Rにより得た。 プライマ一としては VH—F 1— N o t I _X h o I _B g I I I (配列番号 9) および c I g M C H 1 + h I g G 1 h i n g e R (配列番号 1 0) を用いた。 得られた DN A断片を N o t I と Pm a C Iによる処理を行った。 おのおのの D N A断片をァガロース電気 Ϊ永動により分離し、 Q i a q u i c k G e l E x t r a c t i o n k i t (Q i a g e n社) により精製した。 その後 L i g a t i o n k i t (二ツボンジーン) によりライゲ一シヨンを行い、 トランスフォーメ一ショ ンは D H 5ひ株に行った。 これにより p L P C X-E G F R-m I g G 2 aを 得た。 [0035] 8-2. レトロウイルスの産生および D T 40への感染 p LPC XF IT Cm Ig G2a was treated with restriction enzymes NotI and PmaCI. An antibody gene was obtained from the anti-EG FR antibody-producing strain by PCR in the same manner as in “3. Preparation of anti-FITC chicken I gM and mouse Ig G 2a chimeric antibody gene”. As the primers, VH—F 1—Not I — Xho I — B g III (SEQ ID NO: 9) and c Ig MCH 1 + h Ig G 1 hinge R (SEQ ID NO: 10) were used. The obtained DNA fragment was treated with Not I and Pma CI. Each DNA fragment was isolated by agarose electrolysis and purified by Qiaquick Gel Extraction kit (Qiagen). Subsequently, Ligation was performed using a Ligation kit (Nibonbon Gene), and the transformation was performed on the DH5 strain. As a result, pLPCXEGFRmIgG2a was obtained. [0035] 8-2. Retrovirus production and DT 40 infection
レトロウイルスの産生および D Τ 40への感染は前記 「7— 2. レトロゥ ィルスの産生および D Τ 40への感染」 と同じ手法において p L PCX—F I T C-m I g G 2 aのかわりに p L PCX_EG FR_ I g G 2 aを用い ることで行った。  Production of retrovirus and infection with D は 40 are carried out in the same manner as described in “7—2. Production of retrovirus and infection with D Τ 40” p L PCX—FIT Cm I g G 2 a instead of p L This was done using PCX_EG FR_I g G 2 a.
8- 3. キメラ抗体の発現の確認  8- 3. Confirmation of expression of chimeric antibody
前記 「5. キメラ抗体の発現および抗原認識の確認」 の手法に従って、 キ メラ抗体の発現を確認した結果を図 5に示す。  FIG. 5 shows the result of confirming the expression of the chimeric antibody according to the technique of “5. Confirmation of expression and antigen recognition of the chimeric antibody”.
[0036] 9. 抗 EG FRヒト一トリキメラ抗体の発現 [0036] 9. Expression of anti-EG FR human one-trichimeric antibody
9- 1. ヒト I g G 1定常領域遺伝子の調製  9- 1. Preparation of human Ig G 1 constant region gene
ヒト I g G 1の定常領域の遺伝子は、 当該分野で常識的な方法によりヒト R N Aよりクロ一ニングを行うことが可能である。 このようにして作成したベ クタ一として p FUS E_h I g G 1ベクタ一 ( I n v i v o g e n社) が p F U S E- h I g G 1ベクタ一から P C Rによりヒト I g G 1定常領域遺 伝子を増幅した。 プライマ一としては、 h I gG 1 +h i n g e 1 5 b p ( 配列番号 1 1 ) および h I g G 1 - 3— C I a 1 (配列番号 1 2) を用いた 。 この D N A断片をァガロース電気泳動により分離し、 Q i a q u i c k G e l E x t r a c t i o n k i tにより精製した。 この D N A断片を h i n g i G 1 とする。  The gene of the constant region of human Ig G 1 can be cloned from human RNA by a method common in the art. P FUS E_h I g G 1 vector (Invivogen) has obtained the human Ig G 1 constant region gene from the p FUS E-h I g G 1 vector by PCR. Amplified. As primers, hIgG1 + hinge15bp (SEQ ID NO: 1 1) and hIgG1-3—C Ia1 (SEQ ID NO: 12) were used. This DNA fragment was separated by agarose electrophoresis and purified by Q i aq u i ck G e l E xt r a c t i o n k i t. Let this DNA fragment be h i n g i G 1.
[0037] 9-2. 抗 EG FRトリ I gMとヒト I gG 1キメラ抗体遺伝子の作製 [0037] 9-2. Preparation of anti-EG FR avian I gM and human I gG 1 chimeric antibody genes
抗 EG FRトリ I gMとヒト I gG 1のキメラ抗体 (以下、 ヒト一トリキ メラ抗体) の遺伝子は、 前記 「3— 4. 抗 FT I Cニヮトリ I gM—マウス I gG2 a融合遺伝子作製」 と同様の手法を用いて作製した。 はじめに ( i ) p G EM— E G F Rを錶型とし、 プライマ一は、 VH— F 1— N o t I _ X h o I _B g I I I (配列番号 9) および c I g M C H 1 + h I g G 1 h i n g e R (配列番号 1 0) の組み合わせ、 さらに ( i i ) 9_ 1で作成 した h i n g e G 1 D N A断片を錶型としてプライマ一は G d I g M_C H 1 + h I g G 1 - F (配列番号 1 3) および h I g G 1 - 3_C I a 1 (配 列番号 1 2 ) で行つた。 なお、 条件は 98 °C 2分の後、 98 °C 30秒、 58 °C30秒、 72°C 1分を 1 5サイクルの後、 72°Cで 8分反応させた。 ( i ) および ( i i ) で増幅されたバンドを Q i a q u i c k G e l E x t r a c t i o n M i n i k i t (Q I AG E N社) により精製し、 断片 を 1 Lずつ混合したものを錶型とし、 ( i ) 、 ( i i ) と同様の反応条件 で P C Rを行った。 なお、 プライマ一は V H_ F 1 _N o t I _X h o I _ Bg I I I (配列番号 9) および h I g G 1 _3— C I a 1 (配列番号 1 2 ) を用いた。 得られたキメラ遺伝子断片は E x T a q (宝酒造) を加えて 7The gene for the anti-EG FR avian I gM and human I gG 1 chimeric antibody (hereinafter referred to as human trichimeric antibody) is the same as in “3-4. Preparation of anti-FT IC chicken I gM—mouse I gG2 a fusion gene”. It produced using the method of. 1. Introduction (i) p G EM— EGFR is a saddle type and the primer is VH— F 1— Not I _ X ho I _B g III (SEQ ID NO: 9) and c I g MCH 1 + h I g G 1 The combination of hinge R (SEQ ID NO: 10), and (ii) hinge G 1 DNA fragment prepared in 9_1 as a saddle type primer is G d I g M_C H 1 + h I g G 1 -F (SEQ ID NO: 1 3) and h I g G 1 -3_C I a 1 (SEQ ID NO: 1 2) were used. The conditions were 98 ° C. for 2 minutes, 98 ° C. for 30 seconds, 58 ° C. for 30 seconds, 72 ° C. for 1 minute, 15 cycles, and then reacted at 72 ° C. for 8 minutes. The band amplified in (i) and (ii) was purified by Qiaquick Gel Extraction Minikit (QI AG EN), and the mixture of fragments 1 L each was used as a saddle, and (i), (ii PCR was carried out under the same reaction conditions as in). As the primers, VH_F1_NotI_XhoI_BgIII (SEQ ID NO: 9) and hIgG1_3—CIa1 (SEQ ID NO: 12) were used. The resulting chimeric gene fragment was added with E x T aq (Takara Shuzo) 7
2°C 1 5分反応させることで 「A」 を付加し、 D H 5ひ株を用いて p G EM _ Tベクタ一に T Aクロ一ニングし、 pAN T I _EG FR_h I gG 1を 得た。 シークェンスの確認は A B I社 A B I p r i sm377シーケンサ一 により行った。 “A” was added by reacting at 2 ° C. for 15 minutes, and TA cloning was performed on the pGEM_T vector using DH5 strain to obtain pANTI_EGFR_hIgG1. The sequence was confirmed by ABI Company A B I pri sm377 sequencer.
pAN T I— EG FR— h l gG Iおよび p 1_ 〇乂を1\10 セ 1 と〇 1 3 Iで処理し、 各々の DN A断片をァガロース電気泳動により分離し、 Q i a q u i c k ^ e I E x t r a c t i o n k i tにより 製し/二。 その 後 L i g a t i o n k i t (二ツボンジーン) により p G EM_T (プロメ ガ社)とともにライゲ一シヨンを行った。 このようにして p L PCX— EG F R- h I g G 1を得た。 pAN TI—EG FR—hl gG I and p 1_ ○ 乂 were treated with 1 \ 10 0 1 and ○ 1 3 I, each DNA fragment was separated by agarose electrophoresis, and Q iaquick ^ e IE xtractionkit Made / Second. After that, Ligation was performed with pG EM_T (Promega) using Ligation kit (Nibonbon Gene). In this way, pLPCX—EGFR-hIgG1 was obtained.
9-3. レトロウイルスの産生および D T 40への感染  9-3. Retrovirus production and D T 40 infection
レトロウイルスの産生および D T 40への感染は前記 「7— 2. レトロゥ ィルスの産生および D T 40への感染」 と同じ手法において p L PCX—F I T C-m I g G 2 aのかわりに p L PCX_EG FR_h I g G 1を用い ることで行った。  Retrovirus production and infection with DT 40 are carried out in the same manner as described in “7—2. Retrovirus production and infection with DT 40” above. P L PCX—FIT I g G 1 was used.
9-4. ヒト一トリキメラ抗体の発現の確認  9-4. Confirmation of human atrichimeric antibody expression
E L I S Aは以下のとおりに行った。 抗トリ I g M抗体 ( B e t h y I社 ) を 1 0 g/m Lで 96穴ィムノプレート U— 96 Ma x i s o r p ( N u n c社) に 50 Lずつ分注し一晚放置した。 翌日プレートの中身を捨 て、 ブロッキングバッファ一 ( 1 %B S Aを含む P B S) 200 Lを入れ 、 室温で 1時間インキュベートした。 E L I S A洗浄バッファ一 (0. 05 % T w e e n 20を含む P B S) 200 1_で 3回洗浄した。 その後キメ ラ抗体産生細胞由来の培養上清それぞれ 1 00 Lを入れ、 室温で 1時間ィ ンキュベ一トした。 E L I S A洗浄バッファ一 200 U Lで 5回洗浄したの ち、 ニ次抗体を 曰3で2 5, 000倍に希釈したものを 1 00 L入れ、 室温で 45分インキュベートした。 なお二次抗体は抗ヒト I g G_ H R P ( B E T H Y L社) を使用した。 E L I S A洗浄バッファ一 200 Lで 5回 洗浄したのち、 TMB+ (D a k o社) を 1 00 1_入れ、 5分インキュべ —卜した。 その後反応を 1 Nの硫酸 1 00 Lで停止し、 450 n mの吸光 度を測定した。 結果を図 6に示す。 二次抗体として抗ヒト I g G抗体を使つ たときにシグナルが出ていることは、 キメラ抗体を発現していることを示し ている。 ELISA was performed as follows. Anti-avian IgM antibody (Bethy I) was dispensed at 50 g each into 96-well immunoplate U-96 Maxisorp (Nunc) at 10 g / ml and left to stand. Discard the contents of the plate the next day Put 200 L of blocking buffer (PBS containing 1% BSA) and incubate at room temperature for 1 hour. Washed 3 times with ELISA wash buffer (PBS containing 0.05% Tween 20) 200 1_. Thereafter, 100 L of each culture supernatant derived from the chimeric antibody-producing cells was added, and incubated at room temperature for 1 hour. After washing 5 times with 200 μl of ELISA wash buffer, 100 L of secondary antibody diluted 25,000 times with 曰 3 was added and incubated at room temperature for 45 minutes. As the secondary antibody, anti-human Ig G_HRP (BETHYL) was used. After washing 5 times with 200 L of ELISA wash buffer, add 1 00 1_ of TMB + (Dako) and incubate for 5 minutes. Thereafter, the reaction was stopped with 100 L of 1 N sulfuric acid, and the absorbance at 450 nm was measured. The result is shown in FIG. The signal output when using anti-human IgG antibody as a secondary antibody indicates that the chimeric antibody is expressed.
[0039] 1 0. マウスキメラ抗体、 ヒト一トリキメラ抗体の抗原結合性の FA C Sに よる確認  [0039] 1 0. Confirmation of antigen-binding properties of mouse chimeric antibody and human one-trichimeric antibody by FA C S
扁平上皮がん由来の細胞株 A 43 1は E G F Rを発現していることが知ら れている。 1 0 c mプラスチックシャーレで培養している A 43 1細胞、 お よび E G F Rを発現しないことが知られている H E K 2 9 3 T細胞を 0. 2 5%トリプシンによる 1 5分の処理によって回収した後、 マウスキメラ抗体 、 ヒト一トリキメラ抗体を含む溶液中で 30分処理した。 細胞を 3回洗浄後 、 マウスキメラ抗体で処理したものは F I T Cを結合した抗マウス I g G抗 体 ( e B i o s c i e n c e社) 、 ヒト一トリキメラ抗体で処理したものは F I T Cを結合した抗ヒト I g G抗体 (S o u t h e r n B i o t e c h社 ) で染色を行った。 染色した細胞を 3回洗浄後、 FA C S o r t (B e e t o n D i c k i n s o n社) により解析した。 その結果を図 7に示す。  The cell line A 43 1 derived from squamous cell carcinoma is known to express EGFR. After recovering A 43 1 cells cultured in 10 cm plastic dishes and HEK 29 3 T cells known not to express EGFR by treatment with 0.25% trypsin for 15 minutes This was treated for 30 minutes in a solution containing mouse chimeric antibody and human one-trichimeric antibody. After washing the cells three times, the mouse chimeric antibody treated with FITC-conjugated anti-mouse IgG antibody (eBioscience), the human one-trichimeric antibody treated with FITC-conjugated anti-human Ig Staining was performed with G antibody (Southern Biotech). The stained cells were washed three times and then analyzed by FACSort (Beeton Dickin Son). The results are shown in Fig. 7.
産業上の利用可能性  Industrial applicability
[0040] 本発明は、 抗体産生細胞が産生する抗体のクラスを用途に応じた所望のク ラスに変更させることができるため、 抗体製剤、 抗体診断薬等の分野、 また は、 研究上のツールとして広く利用可能である。 [0040] Since the present invention can change the class of antibodies produced by antibody-producing cells to a desired class according to the application, the field of antibody preparations, antibody diagnostics, etc. Is widely available as a research tool.

Claims

請求の範囲 The scope of the claims
[1 ] 元来産生するモノクローナル抗体のクラスと異なるクラスの抗体を産生す る抗体産生 B細胞を改良又は調製する方法であって、 以下の (a ) 及び (b ) の工程を含む方法。  [1] A method for improving or preparing an antibody-producing B cell that produces an antibody of a class different from that of the originally produced monoclonal antibody, the method comprising the following steps (a) and (b):
( a ) 抗体産生 B細胞が元来産生するモノクローナル抗体の重鎖遺伝子の可 変領域遺伝子と、 他のクラスの定常領域遺伝子とを作用可能に連結したキメ ラ遺伝子を作製する工程、  (a) producing a chimeric gene operatively linking a variable region gene of a heavy chain gene of a monoclonal antibody originally produced by an antibody-producing B cell and a constant region gene of another class;
( b ) 工程 (a ) で作製したキメラ遺伝子を発現ベクターに発現可能に挿入 し、 該発現ベクターを該抗体産生 B細胞に形質導入する工程  (b) a step of inserting the chimeric gene prepared in step (a) into an expression vector so as to allow expression, and transducing the expression vector into the antibody-producing B cell.
[2] 前記モノクローナル抗体産生 B細胞から元来産生される抗体のクラスが I g Mである請求項 1に記載の方法。  [2] The method according to claim 1, wherein the class of the antibody originally produced from the monoclonal antibody-producing B cell is IgM.
[3] 前記他のクラスが I g Gである請求項 1又は 2に記載の方法。 [3] The method according to claim 1 or 2, wherein the other class is IgG.
[4] 前記抗体産生 B細胞が、 D T 4 0細胞である請求項 1乃至 3のいずれかに 記載の方法。 [4] The method according to any one of claims 1 to 3, wherein the antibody-producing B cell is a DT40 cell.
[5] 前記抗体産生 B細胞が、 該細胞中に存在する抗体重鎖遺伝子の機能を喪失 しているものである請求項 1乃至 4のいずれかに記載の方法。  [5] The method according to any one of [1] to [4], wherein the antibody-producing B cell has lost the function of an antibody heavy chain gene present in the cell.
[6] 前記定常領域遺伝子が、 マウス由来である請求項 1乃至 5のいずれかに記 載の方法。  6. The method according to any one of claims 1 to 5, wherein the constant region gene is derived from a mouse.
[7] 前記定常領域遺伝子が、 ヒト由来である請求項 1乃至 5のいずれかに記載 の方法。  7. The method according to any one of claims 1 to 5, wherein the constant region gene is derived from a human.
[8] 前記定常領域遺伝子が、 ゥサギ由来である請求項 1乃至 5のいずれかに記 載の方法。  [8] The method according to any one of [1] to [5], wherein the constant region gene is derived from a rabbit.
[9] 請求項 1乃至 8のいずれかに記載の方法により調製された細胞から取得し た、 クラスが変化した抗体。  [9] An antibody with an altered class, obtained from a cell prepared by the method according to any one of claims 1 to 8.
PCT/JP2007/001029 2006-09-22 2007-09-21 Antibody class switching method WO2008035463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006256757A JP2009291073A (en) 2006-09-22 2006-09-22 Method for switching antibody class
JP2006-256757 2006-09-22

Publications (1)

Publication Number Publication Date
WO2008035463A1 true WO2008035463A1 (en) 2008-03-27

Family

ID=39200294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001029 WO2008035463A1 (en) 2006-09-22 2007-09-21 Antibody class switching method

Country Status (2)

Country Link
JP (1) JP2009291073A (en)
WO (1) WO2008035463A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103876A (en) * 2009-10-19 2011-06-02 Univ Of Tokyo One-step method for production of chimeric antibody
US8679845B2 (en) 2007-05-31 2014-03-25 University Of Washington B cells modified to reversibly induce accelerated mutagenesis of target genes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011644A1 (en) * 2002-07-30 2004-02-05 Riken Method of promoting homologous recombination of somatic cells and method of constructing specific antibody

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011644A1 (en) * 2002-07-30 2004-02-05 Riken Method of promoting homologous recombination of somatic cells and method of constructing specific antibody

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OWENS R.J. ET AL.: "The genetic engineering of monoclonal antibodies", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 168, no. 2, 1994, pages 149 - 165, XP002914829 *
SEO H. ET AL.: "Rapid generation of specific antibodies by enhanced homologous recombination", NATURE BIOTECHNOLOGY, vol. 23, no. 6, 2005, pages 731 - 735, XP002377926 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679845B2 (en) 2007-05-31 2014-03-25 University Of Washington B cells modified to reversibly induce accelerated mutagenesis of target genes
US9273119B2 (en) 2007-05-31 2016-03-01 University Of Washington Inducible mutagenesis of target genes
US9815885B2 (en) 2007-05-31 2017-11-14 University Of Washington Inducible mutagenesis of target genes
JP2011103876A (en) * 2009-10-19 2011-06-02 Univ Of Tokyo One-step method for production of chimeric antibody

Also Published As

Publication number Publication date
JP2009291073A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
EP3037525B1 (en) Method for producing antigen-binding molecule using modified helper phage
TWI359028B (en) Bivalent, bispecific antibodies
JP3444885B2 (en) Light chain deficient immunoglobulin
JP7001474B2 (en) Non-immunogenic single domain antibody
JP2015524404A (en) Antibodies containing sequences from camelids against highly conserved targets
KR102180660B1 (en) Expression process
CN111518214A (en) Bispecific antibody targeting CLDN18.2 and preparation method and application thereof
TW200932269A (en) Bivalent, bispecific antibodies
AU2016309738A1 (en) Antibody or antibody fragment or non-Ig scaffold binding to a binding region of an anti-NMDARI-D-aspartate (NMDA) receptor antibody
AU2022287551A1 (en) Mixed binding domains
CN110642947B (en) Anti-human CD147 monoclonal antibody, expression vector, cell strain and application thereof
WO2010064454A1 (en) Method for producing antibody directed against protein expressed on cell surface
WO2008035463A1 (en) Antibody class switching method
US9850317B2 (en) Anti-dog IgE monoclonal antibody, and light-chain variable region and heavy-chain variable region of anti-dog IgE monoclonal antibody
KR20240130125A (en) Anti-GPRC5D antibodies and their applications
US20230235039A1 (en) Il-5 binding molecule, preparation method therefor, and use thereof
JP2004533264A (en) Expression vector encoding bacteriophage signal peptide
CN118063606B (en) Anti-THSD 7A monoclonal antibody, and preparation method and application thereof
CN117384290B (en) Human ROBO1 binding molecules and uses thereof
JP7446342B2 (en) Method for generating cells expressing trivalent antibodies by targeted incorporation of multiple expression cassettes in a predetermined configuration
CN112279913B (en) Anti-human IL-6 monoclonal antibody and application
KR20190075071A (en) Fragment Antibody and Method of Crystallizing Protein Using the Fragment Antibody
WO2010097435A1 (en) Method for producing antibodies
CN112079928A (en) anti-PD-L1 monoclonal antibody

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07827808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07827808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP