WO2008034158A2 - Method for producing 2-o-glyceryl-alpha-d-glucopyranoside - Google Patents

Method for producing 2-o-glyceryl-alpha-d-glucopyranoside Download PDF

Info

Publication number
WO2008034158A2
WO2008034158A2 PCT/AT2007/000448 AT2007000448W WO2008034158A2 WO 2008034158 A2 WO2008034158 A2 WO 2008034158A2 AT 2007000448 W AT2007000448 W AT 2007000448W WO 2008034158 A2 WO2008034158 A2 WO 2008034158A2
Authority
WO
WIPO (PCT)
Prior art keywords
glucosylglycerol
product
sucrose
αgg
glucosyl
Prior art date
Application number
PCT/AT2007/000448
Other languages
French (fr)
Other versions
WO2008034158A3 (en
WO2008034158A8 (en
Inventor
Christiane GÖDL
Thornthan Sawangwan
Bernd Nidetzky
Mario MÜLLER
Original Assignee
Technische Universität Graz
Forschungsholding Tu Graz Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Graz, Forschungsholding Tu Graz Gmbh filed Critical Technische Universität Graz
Priority to DE602007005496T priority Critical patent/DE602007005496D1/en
Priority to EP07800190A priority patent/EP2069519B1/en
Priority to AT07800190T priority patent/ATE462012T1/en
Priority to US12/442,288 priority patent/US20090318372A1/en
Priority to JP2009528546A priority patent/JP2010504082A/en
Publication of WO2008034158A2 publication Critical patent/WO2008034158A2/en
Publication of WO2008034158A8 publication Critical patent/WO2008034158A8/en
Publication of WO2008034158A3 publication Critical patent/WO2008034158A3/en
Priority to US15/985,777 priority patent/US10683525B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7032Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a polyol, i.e. compounds having two or more free or esterified hydroxy groups, including the hydroxy group involved in the glycosidic linkage, e.g. monoglucosyldiacylglycerides, lactobionic acid, gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/602Glycosides, e.g. rutin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations

Definitions

  • the present invention relates to methods for producing ⁇ -D- glucosylglycerol (2-0-glyceryl- ⁇ -D-glucopyranoside) .
  • GTs Glycosyl- transferases
  • GHs glycosylhydrolases
  • GPs glycoside phosphorylases
  • GPs catalyze the phosphorolysis of ⁇ - and ⁇ -D-glycosides, mainly glucosides (GIc-OR) including disaccharides and oligo- or polysaccharides of varying degree of polymerisation.
  • Glucosyl transfer to phosphate (Pi) is favoured thermodynamically in vivo because phosphate is usually present in large excess over (X-D- glucose 1-phosphate (GIc 1-P) .
  • thermodynamic equilibrium constants (K eq ) of GP-catalysed reactions are intermediate of K eq values for the reaction of GTs (K eq « 1) and GHs (K eq » 1) .
  • ⁇ -D-glucosides in particular ⁇ -D-glucosylglycerol (2-O-gly- ceryl- ⁇ -D-glucopyranoside; ⁇ GG) for which several applications are presently being developed.
  • ⁇ GG functions as a compatible solute in microorganisms, providing some protection against stresses due to high salt concentrations, heat, and UV-radi- ation.
  • ⁇ GG is purportedly useful as an alternative sweetener in food stuffs because of its low cariogenicity and caloric value in comparison to sucrose.
  • ⁇ GG and derivates thereof are studied as therapeutics in diseases caused by protein mis- folding and in cancer therapy.
  • ⁇ GG may be used as an anti-aging agent and moisture-regulating compound.
  • ⁇ GG can be produced by chemical as well as by enzymatic methods. Chemical methods may involve various start compounds like maltitol, isomaltose, trehalulose etc. (see e.g. Takenaka F. et al. Biosci. Biotechnol. Biochem. (2000) 64:378-385). Enzymes which catalyze the synthesis of ⁇ GG may involve ⁇ -glucosi- dase (Takenaka F. and Uchiyama H. Biosci. Biotechnol. Biochem.
  • JP 2001/245690 A relates to a method for producing glycosides and oligosaccharides by using a glucosidase, in particular ⁇ -galactosidase.
  • the present invention relates to a method for producing 2-0-glyceryl- ⁇ -D-glucopyranoside ( ⁇ GG; Figure 1) from a glucosyl donor and a glucosyl acceptor comprising the steps :
  • sucrose phosphorylase (EC 2.4.1.7), incubating said sucrose phosphorylase with a mixture comprising a glucosyl donor and glycerol as glucosyl acceptor and
  • SPase Sucrose phosphorylase
  • EC 2.4.1.7 Sucrose phosphorylase
  • SPase has been isolated from a number of bacterial sources. Genes encoding SPase have been cloned from different bacteria and expressed heterologously (Kawasaki H et al., Biosci. Biotech. Biochem. (1996) 60:322-324; Kitao S and Nakano E, J. Ferment. Bioeng. (1992) 73:179-184; van den Broek LAM et al., Appl. Microbiol. Biotechnol. (2004) 65:219-227).
  • GH glycosylhydro- lases
  • GT glycosyltransferases
  • the reaction of SPase proceeds with net retention of the anomeric configuration and occurs through a double displacement mechanism involving two configurationally inverting steps: cleavage of the carbon-oxygen bond of the glucosyl donor and formation of a covalent ⁇ -glucosyl-enzyme ( ⁇ -Glc-E) intermediate; and reaction of the intermediate with phosphate to yield GIc 1-P.
  • ⁇ -Glc-E covalent ⁇ -glucosyl-enzyme
  • the ⁇ -Glc-E intermediate may be in ⁇ tercepted by water, leading to hydrolysis. Hydrolytic conversion of sucrose is irreversible but proceeds nearly two orders of magnitude slower than the phosphorolytic reaction.
  • SPase also catalyzes transglucosylation reactions which occur in competi- tion with hydrolysis and whereby the ⁇ -Glc-E intermediate is attacked by external nucleophiles and new ⁇ -D-glucosides are produced.
  • SPase is strictly specific for transferring a glucosyl moiety and does not tolerate structural modifications on the glucopyranosyl ring including epimerisation and deoxygenation.
  • the list of known glucosyl donors for SPase is therefore short: sucrose, GIc 1-P and ⁇ -D- glucose 1-fluoride.
  • sucrose sucrose
  • GIc 1-P sucrose
  • ⁇ -D- glucose 1-fluoride sucrose
  • the selectivity of SPase which forms only natural ⁇ GG in a high quantitative yield (> 95%) are crucial points of the method according to the present invention.
  • the method of the present invention may use very cheap substrates (which are both available from large-scale industrial processing) without any chemical derivatisation (required in chemical synthesis) and is characterized by an extremely high atom efficiency because all substrate converted goes quantitatively into product.
  • substrates which are both available from large-scale industrial processing
  • chemical derivatisation reactive in chemical synthesis
  • all substrate converted goes quantitatively into product.
  • most of the substrate is used for growth and maintenance energy and only a small part of it is used for ⁇ GG production.
  • only one enzyme is required and this may be of natural or recombinant preparation, used as free or immobilized, as isolated enzyme or in another catalyst form (permeabilized or resting cells) .
  • the method of the present invention is preferably performed in vitro with purified enzyme or an enzyme extract, whereby the SPase employed may be obtained from at least one source, which means that also SPases of more than one type (origin) may be employed.
  • Synthesis of ⁇ GG is preferably performed using a protein concentration of sucrose phosphorylase delivering an activity of between 1,000 and 1,000,000 units/litre (one unit is defined as the enzyme activity that converts 1 ⁇ mol of substrate per min under standard reaction conditions, typically 30 0 C, reported in the literature.)
  • sucrose phosphorylase refers not only to enzymes of the EC 2.4.1.7 class but also to molecules which exhibit the same properties in relation to its substrates and products. Such molecules include also fusion proteins of sucrose phosphorylase with other peptides, polypeptides or proteins, which exhibit potentially also enzymatic or binding activities.
  • the glucosyl donor is selected from the group consisting of sucrose and analogues of sucrose in which the fructosyl moiety- has been modified or substituted by another ketosyl residue, GIc 1-P, ⁇ -D-glucose-1-fluoride, further stable, activated glucosyl donors such as ⁇ -D-glucose-1-azide, and mixtures thereof.
  • the glucosyl donor to be employed in the method of the present invention can be any one which serves as substrate for the transglycosylation reaction catalysed by the SPase.
  • sucrose a disaccharide consisting of glucose and fructose
  • substrates like GIc 1-P or ⁇ -D-glucose-1-fluoride are employed, phosphate or fluoride will be products formed in addition to ⁇ GG.
  • achievable yield will depend on the energy content of the glucosyl donor and is greater than 30%, preferably greater than 50%, and in particular greater than 90%.
  • the sucrose phosphorylase used in a method according to the present invention is preferably of microbial, preferably bacterial origin.
  • microbial SPases The advantage of using microbial SPases is the simple production and isolation and stability of these enzymes. They can be obtained from microorganisms naturally or recombinantly expressing SPase.
  • the bacterial sucrose phosphorylase is obtained from Agrobac- terium vitis (NCBI P33910) , Bifidobacterium adolescentis (Q84HQ2) , Bifidobacterium longum (Q84BY1), Escherichia coli (P76041), Escherichia coli 06 (Q8FHS2), Lactobacillus acidophilus (Q7WWP8, Q7WWQ5) , Lactobacillus delbrueckii subsp.
  • Agrobac- terium vitis NCBI P33910
  • Bifidobacterium adolescentis Q84HQ2
  • Bifidobacterium longum Q84BY1
  • Escherichia coli P76041
  • Escherichia coli 06 Q8FHS2
  • Lactobacillus acidophilus Q7WWP8, Q7WWQ5
  • Lactobacillus delbrueckii subsp Lacto
  • lactis (Q71I99) , Leuconostoc mesenteroides (Q59495, Q9R5Q3) , Listeria monocytogenes (Q4ENE7, Q4EQR2, Q4ETN7, Q4EHA0, Q4EJW2, Q4ELY7), Pseudomonas putrefaciens, Pseudomonas saccharophila (AAD40317), Rhodopirellula baltica (Q7UIS9) , Shewanella baltica (Q3Q4P1) , Shewanella frigidimarina (Q3NMD1) , Solibacter usitatus (Q43TL5) , Streptococcus mutans (P10249) and/or Synechococcus sp. (068858, Q7U3J7) .
  • At least one SPase de- rived from Leuconostoc mesenteroides is particularly preferred.
  • the SPase is preferably recombinantly produced as a full- length protein or a catalytically active fragment thereof or a fusion protein.
  • SPase directly from the organism which naturally produces said SPase.
  • Methods for the recombinant production of SPase are known to the person skilled in the art (e.g. Sambrook J. et al. Molecular cloning: a laboratory manual. ISBN 0-87969-309-6) .
  • full-length protein refers to SPase encoded by a gene derived from an organism as, for instance, listed above. Said naturally occuring gene, in particular the SPase encoding region of said gene, is directly employed for the recombinant production of SPase.
  • a catalytically active fragment of SPase refers to protein fragments of SPase which have the same or substantially the same activity and substrate specificity as native SPase.
  • the length of the fragments is not crucial provided that the fragments will have the same or similar substrate specificity and catalyse the formation of the same products as native SPase.
  • a fusion protein refers to SPase or catalytically active fragments thereof recombinantly fused to at least one further protein, polypeptide or peptide.
  • Said at least one further protein, polypeptide or peptide may be of any kind (e.g. enzyme) .
  • variants i.e. mutations including deletions, substitutions and insertions
  • these variants have the same or substantially the same (e.g. increased catalytical activity) activity as native SPase.
  • the SPase may be employed in the incubation step as either a cell-free enzyme, which may but need not be partially purified, a whole-cell system pre- treated physically or chemically for improved permeability of the cell membrane (permeabilisation) and mechanical stability, encapsulated catalyst in which said free enzyme or whole-cell system are entrapped, preferably in gel-like structures, or immobilized on a carrier.
  • a cell-free enzyme which may but need not be partially purified
  • permeabilisation cell membrane
  • encapsulated catalyst in which said free enzyme or whole-cell system are entrapped, preferably in gel-like structures, or immobilized on a carrier.
  • the SPase is immobilised on a carrier which preferably is
  • any material that binds said SPase noncovalently preferably natural or nonnatural polymers with anion exchange properties, or covalently, preferably a polymer, more preferably an acrylic polymer, in particular a copolymer of methacrylamide, N, N ' -methylen-bis (acrylamide) and a monomer carrying oxirane groups.
  • the carrier is preferably a chromatography resin, preferably selected from the group consisting of anion exchange chromatography resin, cation exchange chromatography resin, affinity chromatography resin (e.g. comprising immobilised SPase specific antibodies) and hydrophobic interaction chromatography resin.
  • a chromatography resin preferably selected from the group consisting of anion exchange chromatography resin, cation exchange chromatography resin, affinity chromatography resin (e.g. comprising immobilised SPase specific antibodies) and hydrophobic interaction chromatography resin.
  • the SPase of the present invention may be immobilised (temporarily or covalently) on any carrier, preferably particles (e.g. beads), in particular chromatography resin, provided that the enzymatic activity of the enzyme is not affected in a way to change its substrate specificity or to reduce its activity to low conversion rates.
  • any carrier preferably particles (e.g. beads), in particular chromatography resin, provided that the enzymatic activity of the enzyme is not affected in a way to change its substrate specificity or to reduce its activity to low conversion rates.
  • the carrier may comprise functional groups which require - in order to bind the SPase on the resin - that also the enzyme carries corresponding binding partners (e.g. streptavidin - bi- otin, chelated metal ions - Hisg-tag) .
  • binding partners e.g. streptavidin - bi- otin, chelated metal ions - Hisg-tag
  • SPase may be recombinantly produced as a fusion protein harboring a binding peptide, preferably one showing ion-exchange properties, or a binding domain, preferably a polysaccharide binding domain, in particular a cellulose binding domain.
  • insoluble immobilized enzymes carrier-bound, encapsulated, whole-cell systems
  • the immobilized enzyme is easily recovered from the reaction mixture at the conclusion of the reaction for reuse, whereas the soluble enzyme is only recovered with difficulty and loss of activity;
  • the immobilized enzyme is more stable than the soluble enzyme, both for the number of enzyme turnovers obtained versus the soluble enzyme, as well as for recovered enzyme activity at the conclusion of a reaction or after prolonged storage in aqueous buffer.
  • No specific method of immobilization can be chosen for a particular enzyme with the expectation that the immobilization will be successful.
  • the expectation for successful co-immobilization of more than one enzyme is even less predictable. It is generally agreed by those skilled in the art that a successful immobilization of any enzyme must be discovered by screening a variety of methods, and an optimal result obtained by trial and error.
  • the immobilization of SPase on a carrier stabilizes the enzyme activity.
  • Literature shows that entrapment of the enzyme also improves the stability (Soetaert W.
  • the immobilization of enzymes can be performed using a variety of techniques, including: (1) binding of the enzyme to a carrier or support, via co- valent attachment, physical adsorption, electrostatic binding, or affinity binding, (2) crosslinking with bifunctional or multifunctional reagents, (3) entrapment in gel matrices, polymers, emulsions, or some form of membrane, and (4) a combination of any of these methods.
  • the immobilized SPase used in the reaction should be present in an effective concentration, usually a concentration of about 0.001 to about 100.0 IU/ml, preferably about 10 to about 50 IU/ml.
  • An IU International Unit is defined as the amount of enzyme that will catalyze the transformation of one micromole of substrate per minute.
  • the SPase bound to a carrier may be removed by filtration or centrifugation. If the immobilized SPase is packed in a column (e.g. chromatographic column) the production of ⁇ GG can be achieved in a continuous way without the necessity of removing the immobilized SPase from the reaction mixture.
  • a column e.g. chromatographic column
  • the incubation of the SPase with the substrates is performed at a pH value of 4 to 10, preferably of 5 to 9, more preferably of 6 to 8, in particular of 7.
  • the pH value in the method according to the present invention is preferably selected from the ranges identified above, which allows an efficient conversion of the substrates into ⁇ GG.
  • the incubation is performed for at least 15 min, preferably for at least 60 min, more preferably for at least 3 hours, even more preferably for at least 5 hours.
  • the incubation of the substrates with the immobilised or unbound SPase may be performed for at least 15 minutes. However it is especially preferred to select the incubation time between 1 and 48 or between 5 and 24 hours.
  • the incubation time depends also on the incubation temperature chosen. This means if the incubation temperature is below the optimal temperature of the enzyme the incubation time may be extended.
  • the incubation is performed at a temperature range of 10 to 50 0 C, preferably of 15 to 40 0 C, more preferably at a temperature of 30°C.
  • the mixture which according to the present invention is incubated with the SPase comprises the glucosyl donor, in particular sucrose, in a concentration of 0.01 to 3 mol/1, preferably of 0.05 to 2 mol/1, more preferably of 0.1 to 1.5 mol/1. It turned out that the activity of the SPase and its substrate turnover leading to ⁇ GG is optimal in the glucosyl donor concentrations disclosed herein.
  • the substrate mixture comprises glycerol in a concentration of 0.01 to 10 mol/1, preferably of 0.05 to 5 mol/1, more preferably of 0.1 to 3 mol/1, even more preferably of 0.1 to 1.5 mol/1.
  • the ratio of glycerol to glucosyl donor in the mixture ranges preferably from 0.1:1 to 10:1, preferably from 0.5:1 to 5:1, more preferably from 1:1 to 3:1.
  • the ⁇ GG ⁇ -D-glucosylglycerol obtainable by the method according to the present invention can be isolated by different chromatographic methods, preferably by elution chromatography on activated charcoal combined with celite as a filter aid.
  • the product mixture obtainable by the method according to the present invention is loaded on a column of said material equilibrated in water, and elution of bound ⁇ GG is achieved with 2% ethanol.
  • Fractions containing ⁇ GG are free of residual glycerol and product resulting from cleavage of glucosyl donor.
  • the ⁇ GG is obtained in a yield of greater 70%, preferably greater 80%, in particular greater 90%.
  • the purity of the product after chromatography is greater 80%, preferably greater 90%, in particular greater 95%.
  • solid ⁇ GG is preferably obtained by drying, preferably by lyo- philisation.
  • Charcoal may preferably be used as suspension or more preferably packed in a column (e.g. chromatographic column).
  • the reaction mixture potentially comprising the enzyme or residual enzyme and substrate is contacted with the charcoal (e.g. applied on a charcoal column) and successively eluted.
  • This eluate or even the reaction mixture itself can be (further) purified using an ion exchange resin, for instance.
  • the sucrose phosphorylase is obtained from Leuconostoc mesenteroides (Q59495, Q9R5Q3) and used as free or preferably immobilised enzyme preparation, preferably immobilised on an acrylic polymer, in particular a copolymer of methacrylamide, N,N'-methylen-bis (acrylamide) and a polymer carrying oxirane groups, wherein the immobilised sucrose phosphorylase is incubated with sucrose as glucosyl donor.
  • an SPase derived from Leuconostoc mesen- teroides immobilised on polmyer particles (or gels) carrying ox- irane groups was exceptionally stable and well suited for continuous reactions, for example.
  • Another aspect of the present invention relates to ⁇ -D-gluc- osylglycerol ( ⁇ GG) or a product comprising ⁇ -D-glucosylglycerol ( ⁇ GG) obtainable by a method according to the present invention.
  • the ⁇ GG or the product comprising ⁇ GG which may be obtained by the method of the present invention, comprises the natural occurring ⁇ GG (2-0-glyceryl- ⁇ -D-glucopyranoside) in high amounts because SPase is able to specifically catalyze the formation of said ⁇ GG without significant formation of by-products resulting from transglucosylation. It is therefore of particular importance that no regioisomer mixture is contained in addition to the desired 2-O-glyceryl- ⁇ -D-glucopyranoside also 1-O-glyceryl- ⁇ -D- glucopyranoside. Separation of these two products would be exceedingly difficult.
  • hydrolysis product is prevented efficiently such that more than 90%, preferably more than 95%, more preferably more than 98% of the glucosyl moiety of the converted donor is transferred into the desired product.
  • sucrose is used as glucosyl donor a product comprising natural ⁇ GG and fructose is obtained.
  • GIc 1-P is used as glucosyl donor a product comprising natural ⁇ GG and phosphate is obtained.
  • a product obtainable by the method of the present invention may further comprise fructose, preferably in an equimolar amount to ⁇ GG ⁇ -D-glucosylglycerol.
  • ⁇ GG is a naturally occurring molecule (a glycoside; a carbohydrate derivative) which serves the function of an osmoprotect- ive substance and stabilizer in various microorganisms.
  • Several publications have shown that isolated ⁇ GG has a range of outstanding properties which are of substantial interest for technological application. Uses of ⁇ GG and derivatives thereof include but are not limited to the fields of medicine (cancer therapy) , cosmetics (moisturizing and stabilizing additive to a range of products), and food products (antidiabetics).
  • ⁇ GG is a very efficient stabilizer of biomolecules (proteins, lipids) and microorganisms.
  • Another aspect of the present invention relates to a cosmetic preparation comprising ⁇ GG according to the present invention.
  • the cosmetic products of the present invention are especially characterised by the fact that they only comprise natural ⁇ GG, which may be obtained by the method of the present invention.
  • Another aspect of the present invention relates to a pharmaceutical preparation comprising ⁇ GG according to the present invention.
  • Another aspect of the present invention relates to a food supplement comprising ⁇ GG or a product comprising ⁇ GG according to the present invention.
  • Another aspect of the present invention relates to the use of ⁇ GG or product comprising ⁇ GG according to the present invention as sweetener.
  • a particular aspect is the use as sweetener of mixtures of ⁇ GG and fructose obtainable by the method of the present invention.
  • ⁇ GG can serve as a stabilizer of living microorganisms, proteins and lipid-derived structures. It can stabilize protein preparations, for example without being restricted thereto, antibodies, antibody fragments, and enzymes, against denaturation and loss of biological activity.
  • ⁇ GG may be in particular used as skin cleanser
  • JP 2004/331583 water-based cosmetic (JP 2004/331582), accumulation inhibitor of neutral fat (JP 2004/331580), production promoter of corium matrix (JP 2004/331579), cell activator (JP 2004/331578) and antibacterial agent (JP 2004/331577).
  • Fig. 1 shows the chemical structure of ⁇ GG.
  • Table 1 shows NMR data for ⁇ GG produced and purified according to the method of the present invention and demonstrate un- equivocally the chemical structure in Fig. 1.
  • Fig. 2 shows the production of ⁇ GG from sucrose and glycerol using free SPase from Leuconostoc mesenteroides.
  • the enzymatic reaction was performed in a stirred batch system.
  • a 50 mM MES buffer (pH 7) was used which contained 300 mM sucrose and 2 M glycerol as the substrates.
  • the enzyme concentration was 20 IU/ml.
  • the reaction mixture containing 300 mM sucrose, 2 M glycerol and 20 IU/ml SPase in 50 mM MES buffer (pH 7), was incubated at 30 ° C and 550 rpm for 7.5 hr. Under these optimum conditions selected, the yield of ⁇ GG was higher than 95%.
  • the amount of released glucose was subtracted from the amount of released fructose to define the product.
  • Fig. 3 shows the operational stability of SPase from Leuconostoc mesenteroides immobilized on a polymer carrying oxirane groups. Results of continuous conversion of sucrose in a packed bed enzyme reactor are shown.
  • the substrate solution contained 600 mM of each, sucrose and phosphate, in 20 mM MES buffer, pH 7.0.
  • the reaction was carried out at 30 0 C and a constant flow rate of 6 ml-h-1, corresponding to an average residence time of 8.8 h (53 ml, •) and 18.5 h (111 ml, o) , respectively.
  • Fig. 3 shows the operational stability of SPase from Leuconostoc mesenteroides immobilized on a polymer carrying oxirane groups.
  • the reaction mixture contained 0.1 M GIc 1-P, 3 M glycerol and 3 IU/ml SPase in 40 mM MES buffer (pH 6.0, 6.5, 7.0) and 40 mM TES buffer (pH 7.5, 8.0), respectively. Conversions were performed at 30°C and an agitation rate of 550 rpm. The amount of released glucose (cglc) was subtracted from the amount of released phosphate (cP) to define the productivity.
  • Fig. 5 shows the nucleophilic competition in the hydrolysis of sucrose by SPase leading to the synthesis of novel ⁇ -D-gluc- osides .
  • SPase can be obtained as a native enzyme or as a recombinant enzyme (for example but not restricted thereto, produced in Escherichia coli) according to reports in literature (Guibert A and Monsan P, Ann. N. Y. Acad. Sci. (1988) 504:307-311; Vandamme EJ et al., Adv. Appl. Microbiol. (1987) 32:163-201; Kawasaki H et al., Biosci. Biotech. Biochem. (1996) 60:322-324; Kitao S and Nakano E, J. Ferment. Bioeng. (1992) 73:179-184; van den Broek LAM et al., Appl. Microbiol.
  • Biotechnol. (2004) 65:219-227) can of course be produced in various scales represented by shaken flask cultures of a suitable microorganism and bioreact- ors, preferably an aerated or nonaerated stirred tank reactor or a column reactor such as a bubble column or an airlift reactor. Partial purification or isolation of the enzyme is done using procedures described for SPase or by adopting general protocols of protein purification according to state of the art.
  • Immobilization procedures such as, for example but not restricted thereto, covalent and noncovalent binding to insoluble carriers, encapsulation, and whole-cell systems, is done using protocols already developed for SPase or by adopting general protocols according to state of the art (Pimentel MCB and Ferreira MSS, Appl. Biochem. Biotechnol. (1991) 27:37-43; Soetaert W. et al., Progress in Biotechnology Vol. 10 (Petersen S. B., Svensson, B., Pederesen, S., Eds), Elsevier, Amsterdam; Vandamme EJ et al., Adv. Appl. Microbiol. (1987) 32:163-201).
  • Example 2 Enzyme assays SPase activity was determined at 30 0 C using a continuous coupled enzymatic assay, in which production of GIc 1-P from sucrose and inorganic phosphate is coupled to the reduction of NAD + in the presence of phosphoglucomutase (PGM) and glucose 6- phosphate dehydrogenase (G6P-DH) .
  • PGM phosphoglucomutase
  • G6P-DH glucose 6- phosphate dehydrogenase
  • the standard assay was performed essentially as described elsewhere in 50 mM potassium phosphate buffer, pH 7.0, containing 10 mM EDTA, 10 mM MgCl 2 and 10 ⁇ M ⁇ -D-glucose 1, 6-bisphosphate.
  • the reaction mixture contained 250 mM sucrose, 2.5 mM NAD + , 3 U -ml "1 PGM, 3.4 U -ml "1 NAD + - dependent G6P-DH and the enzyme solution in appropriate dilution.
  • the formation of NADH with time was monitored spectropho- tometrically at 340 nm.
  • One unit of SPase activity corresponds to the amount of enzyme that caused the reduction of 1 ⁇ mol of NAD+ per minute under the conditions described above.
  • Protein concentrations were determined using the BioRad dye-binding method with bovine serum albumin as standard. Phosphate was determined colorimetrically at 850 nm and GIc 1-P was assayed in a coupled enzymatic system with PGM and G6P-DH.
  • Example 3 Immobilization of LmSPase onto a polymer containing oxirane groups
  • a total amount of 700 U of a preparation of crude SPase with a specific SPase activity of 50 U-mg "1 was incubated at 4 0 C with 10 g of Eupergit C in 0.7 M potassium phosphate buffer, pH 7.0, for 14 h. The agitation rate was 250 rpm. The immobilisate was washed several times with 20 mM MES buffer, pH 7.0. The binding efficiency, given by the ratio of the residual activity measured in the supernatant after the immobilisation and the total activity employed (U), was 0.5.
  • Eupergit C onto which SPase was attached, was packed in a GE Healthcare XK26/40 glass column (2.6 cm; 53 ml or 111 ml, 34 U-g Eupergit C), equipped with a thermostatic jacket.
  • the column was equilibrated with 20 mM MES buffer, pH 7.0.
  • the substrate solution contained 600 mM of each, sucrose and phosphate in the same buffer, and was brought to reaction temperature (30°C) by incubation in a water bath.
  • the solution was pumped through the packed bed at a constant flow rate of 6 ml • h delivered from a GE Healthcare piston pump (model P-500) .
  • the tern- perature at the outlet of the reactor was monitored continuously. At certain times, 1-ml samples were taken and used for further analysis.
  • Fig. 3 shows the time course of GIc 1-P production in a continuous fixed bed reactor operated at a constant axial flow rate of 1.13 cm-h " .
  • the conversion of sucrose (600 inM) was 68% and 91% respectively.
  • the corresponding productivities, calculated as g*l -1 product x reciprocal residence time, were 15.4 g ⁇ l'h) '1 and 10.9 g-(l'h) "1 . Note that the conversion rate remained constant up to extended reaction times of 650 h, emphasising the excellent stability of immobilised SPase under the operational conditions.
  • the reaction mixture contained 0.1 M GIc 1-P, 3 M glycerol and 3 IU-ml "1 LmSPase in 40 mM MES buffer (pH 6.0, 6.5, 7.0) or 40 mM TES buffer (pH 7.5, 8.0).
  • the enzymatic conversion was followed over time at 30 0 C and an agitation rate of 550 rpm.
  • the concentrations of released phosphate (cP) and glucose (cglc) were determined.
  • the amount of transglucosylation product formed corresponds to cP - cglc. Results are shown in Fig. 4.
  • the protein of interest e.g. mannitol dehydrogenase, MDH
  • MDH mannitol dehydrogenase
  • the samples were lyophilized over-night and dissolved in the same buffer again.
  • the specific enzyme activity was determined, using appropriate assays for the corresponding enzyme as described elsewhere (Slatner M. et al . , Biochemistry 38: 10489-10498), before and after freeze drying. Without any stabilizer added the enzymatic activity of MDH dropped down to 2% after freeze drying, whereas ⁇ GG is able to maintain enzymatic activity up to 48% irrespective of the added ⁇ GG concentration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Dermatology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Birds (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Cosmetics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Seasonings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a method for producing 2-O-glyceryl-α-D-glucopyranoside (αGG; Figure 1) from a glucosyl donor and a glucosyl acceptor comprising the steps: - providing a sucrose phosphorylase (EC 2.4.1.7), incubating said sucrose phosphorylase with a mixture comprising a glucosyl donor and glycerol as glucosyl acceptor and isolating and/or purifying 2-O-glyceryl-α-D-glucopyranoside.

Description

Method for producing glucose derivatives
The present invention relates to methods for producing α-D- glucosylglycerol (2-0-glyceryl-α-D-glucopyranoside) .
Simple and complex carbohydrates govern a diverse range of cellular functions, including energy storage, cell-wall structure, cell-cell interaction and signalling, host-pathogen interactions and protein glycosylation. They also serve a function as osmolytes and small molecules of extreme lifestyles. Glycosyl- transferases (GTs) are the enzymes responsible for the synthesis of glycosides in nature whereas, glycosylhydrolases (GHs) have been evolved to degrade them. Among GT and GH classes, the glycoside phosphorylases (GPs) are special in several respects. GPs catalyze the phosphorolysis of α- and β-D-glycosides, mainly glucosides (GIc-OR) including disaccharides and oligo- or polysaccharides of varying degree of polymerisation. Glucosyl transfer to phosphate (Pi) is favoured thermodynamically in vivo because phosphate is usually present in large excess over (X-D- glucose 1-phosphate (GIc 1-P) . However, thermodynamic equilibrium constants (Keq) of GP-catalysed reactions are intermediate of Keq values for the reaction of GTs (Keq « 1) and GHs (Keq » 1) . The relatively favourable Keq values and the fact that phospho- activated sugars are less expensive than nucleotide-activated ones, which are required by most GTs, make GPs interesting biocatalysts for the stereo- and regiospecific synthesis of glucosides .
Increased attention has recently been directed towards novel α-D-glucosides, in particular α-D-glucosylglycerol (2-O-gly- ceryl-α-D-glucopyranoside; αGG) for which several applications are presently being developed. αGG functions as a compatible solute in microorganisms, providing some protection against stresses due to high salt concentrations, heat, and UV-radi- ation. αGG is purportedly useful as an alternative sweetener in food stuffs because of its low cariogenicity and caloric value in comparison to sucrose. Furthermore, αGG and derivates thereof are studied as therapeutics in diseases caused by protein mis- folding and in cancer therapy. In cosmetics, αGG may be used as an anti-aging agent and moisture-regulating compound. αGG can be produced by chemical as well as by enzymatic methods. Chemical methods may involve various start compounds like maltitol, isomaltose, trehalulose etc. (see e.g. Takenaka F. et al. Biosci. Biotechnol. Biochem. (2000) 64:378-385). Enzymes which catalyze the synthesis of αGG may involve α-glucosi- dase (Takenaka F. and Uchiyama H. Biosci. Biotechnol. Biochem. (2000) 64:1821-1826), cyclodextrin glucanotransferase (Nakano H. et al. J. Biosci. Bioeng. (2003) 95:583-588), glucosyl-glycerol- phosphate synthase (Marin K. et al. J. Bacteriol. (1998) 180:4843-4849) and plant glucosidase II (Kaushal GP et al. Arch. Biochem. Biophys. (1989) 272:481-487). All current procedures for the synthesis of αGG exhibit one or more of the following crucial disadvantages: multiple steps of reaction (including activation, protection and deprotection) ; labor-intensive synthesis and work-up; low yield and productivity; low atom economy; long reaction times. Consequently, no industrial process for production of αGG has been developed and the product is not available on the market.
The chemical synthesis of stereochemical pure natural αGG is technically not feasible due to extremely laborious procedures and low yield. Microbial synthesis of αGG has been shown but the productivity is poor. Enzymatic synthesis of αGG using trans- glucosylation by α-glucosidases is a possibility which has been described but the main drawback of the process is the wrong re- gioselectivity of the known enzymes which prefer the primary rather than the secondary hydroxy group of glycerol. The product mixture synthesized by α-glucosidases contains only 30% of the correct natural αGG, requiring a substantial effort in the product isolation.
The microbial synthesis of αGG is presently not a mature process, especially when the yield of αGG is taken into account, because it does not allow to produce αGG as a bulk chemical. The attainable product concentrations are very low (e.g. 29 mg/1; Roder et al. FEMS Microbiol. Lett. (2005) 243: 219-226) and also the productivity (≥ 3 days of production) is not advantageous for the industrial production.
JP 2001/245690 A relates to a method for producing glycosides and oligosaccharides by using a glucosidase, in particular β-galactosidase.
It is an object of the present invention to provide an enzymatic method for the production of stereochemical pure αGG in high yield overcoming the drawbacks of the methods known in the art. Furthermore the method should preferably allow the use of economic substrates.
Therefore, the present invention relates to a method for producing 2-0-glyceryl-α-D-glucopyranoside (αGG; Figure 1) from a glucosyl donor and a glucosyl acceptor comprising the steps :
- providing a sucrose phosphorylase (EC 2.4.1.7), incubating said sucrose phosphorylase with a mixture comprising a glucosyl donor and glycerol as glucosyl acceptor and
- isolating and/or purifying 2-0-glyceryl-α-D-gluc- opyranoside .
Sucrose phosphorylase (SPase; EC 2.4.1.7) catalyzes the conversion of sucrose and phosphate into D-fructose and GIc 1-P. SPase has been isolated from a number of bacterial sources. Genes encoding SPase have been cloned from different bacteria and expressed heterologously (Kawasaki H et al., Biosci. Biotech. Biochem. (1996) 60:322-324; Kitao S and Nakano E, J. Ferment. Bioeng. (1992) 73:179-184; van den Broek LAM et al., Appl. Microbiol. Biotechnol. (2004) 65:219-227). According to the systematic sequence-based classification of glycosylhydro- lases (GH) and glycosyltransferases (GT) (Coutinho PM et al. J. MoI. Biol. (2003) 328:307-317; Henrissat B. Biochem. J. (1999) 280:309-316) SPase belongs to family GH13 (Clan GH-H), often referred to as the α-amylase family. The three-dimensional structure of SPase from Bifidobacterium adolescentis has been solved recently, revealing an (β/α)8 barrel fold and a catalytic site in which two carboxylate groups probably fulfill the role of a nucleophile (Aspl92) and a general acid/base (Glu232) .
The reaction of SPase proceeds with net retention of the anomeric configuration and occurs through a double displacement mechanism involving two configurationally inverting steps: cleavage of the carbon-oxygen bond of the glucosyl donor and formation of a covalent β-glucosyl-enzyme (β-Glc-E) intermediate; and reaction of the intermediate with phosphate to yield GIc 1-P. In a side reaction, the β-Glc-E intermediate may be in¬ tercepted by water, leading to hydrolysis. Hydrolytic conversion of sucrose is irreversible but proceeds nearly two orders of magnitude slower than the phosphorolytic reaction. SPase also catalyzes transglucosylation reactions which occur in competi- tion with hydrolysis and whereby the β-Glc-E intermediate is attacked by external nucleophiles and new α-D-glucosides are produced.
Biochemical studies have shown that SPase is strictly specific for transferring a glucosyl moiety and does not tolerate structural modifications on the glucopyranosyl ring including epimerisation and deoxygenation. The list of known glucosyl donors for SPase is therefore short: sucrose, GIc 1-P and α-D- glucose 1-fluoride. By contrast, the specificity of SPase for glucosyl acceptors is comparably relaxed.
The selectivity of SPase which forms only natural αGG in a high quantitative yield (> 95%) are crucial points of the method according to the present invention. The method of the present invention may use very cheap substrates (which are both available from large-scale industrial processing) without any chemical derivatisation (required in chemical synthesis) and is characterized by an extremely high atom efficiency because all substrate converted goes quantitatively into product. During microbial fermentation, for example, most of the substrate is used for growth and maintenance energy and only a small part of it is used for αGG production. In the method of the present invention only one enzyme is required and this may be of natural or recombinant preparation, used as free or immobilized, as isolated enzyme or in another catalyst form (permeabilized or resting cells) .
The method of the present invention is preferably performed in vitro with purified enzyme or an enzyme extract, whereby the SPase employed may be obtained from at least one source, which means that also SPases of more than one type (origin) may be employed.
Synthesis of αGG is preferably performed using a protein concentration of sucrose phosphorylase delivering an activity of between 1,000 and 1,000,000 units/litre (one unit is defined as the enzyme activity that converts 1 μmol of substrate per min under standard reaction conditions, typically 30 0C, reported in the literature.)
"Sucrose phosphorylase" as used herein refers not only to enzymes of the EC 2.4.1.7 class but also to molecules which exhibit the same properties in relation to its substrates and products. Such molecules include also fusion proteins of sucrose phosphorylase with other peptides, polypeptides or proteins, which exhibit potentially also enzymatic or binding activities.
According to a preferred embodiment of the present invention the glucosyl donor is selected from the group consisting of sucrose and analogues of sucrose in which the fructosyl moiety- has been modified or substituted by another ketosyl residue, GIc 1-P, α-D-glucose-1-fluoride, further stable, activated glucosyl donors such as α-D-glucose-1-azide, and mixtures thereof.
The glucosyl donor to be employed in the method of the present invention can be any one which serves as substrate for the transglycosylation reaction catalysed by the SPase.
The use of sucrose (a disaccharide consisting of glucose and fructose) in the method of the present invention will lead not only to the formation of αGG but also to the formation of fructose. If substrates like GIc 1-P or α-D-glucose-1-fluoride are employed, phosphate or fluoride will be products formed in addition to αGG. The achievable yield will depend on the energy content of the glucosyl donor and is greater than 30%, preferably greater than 50%, and in particular greater than 90%.
The sucrose phosphorylase used in a method according to the present invention is preferably of microbial, preferably bacterial origin.
The advantage of using microbial SPases is the simple production and isolation and stability of these enzymes. They can be obtained from microorganisms naturally or recombinantly expressing SPase.
According to a preferred embodiment of the present invention the bacterial sucrose phosphorylase is obtained from Agrobac- terium vitis (NCBI P33910) , Bifidobacterium adolescentis (Q84HQ2) , Bifidobacterium longum (Q84BY1), Escherichia coli (P76041), Escherichia coli 06 (Q8FHS2), Lactobacillus acidophilus (Q7WWP8, Q7WWQ5) , Lactobacillus delbrueckii subsp. lactis (Q71I99) , Leuconostoc mesenteroides (Q59495, Q9R5Q3) , Listeria monocytogenes (Q4ENE7, Q4EQR2, Q4ETN7, Q4EHA0, Q4EJW2, Q4ELY7), Pseudomonas putrefaciens, Pseudomonas saccharophila (AAD40317), Rhodopirellula baltica (Q7UIS9) , Shewanella baltica (Q3Q4P1) , Shewanella frigidimarina (Q3NMD1) , Solibacter usitatus (Q43TL5) , Streptococcus mutans (P10249) and/or Synechococcus sp. (068858, Q7U3J7) .
It is particularly preferred to use at least one SPase de- rived from Leuconostoc mesenteroides .
The SPase is preferably recombinantly produced as a full- length protein or a catalytically active fragment thereof or a fusion protein. However, it is of course also possible to use SPase directly from the organism which naturally produces said SPase. Methods for the recombinant production of SPase are known to the person skilled in the art (e.g. Sambrook J. et al. Molecular cloning: a laboratory manual. ISBN 0-87969-309-6) .
As used herein, "full-length protein" refers to SPase encoded by a gene derived from an organism as, for instance, listed above. Said naturally occuring gene, in particular the SPase encoding region of said gene, is directly employed for the recombinant production of SPase.
"A catalytically active fragment" of SPase refers to protein fragments of SPase which have the same or substantially the same activity and substrate specificity as native SPase. The length of the fragments is not crucial provided that the fragments will have the same or similar substrate specificity and catalyse the formation of the same products as native SPase.
As used herein, "a fusion protein" refers to SPase or catalytically active fragments thereof recombinantly fused to at least one further protein, polypeptide or peptide. Said at least one further protein, polypeptide or peptide may be of any kind (e.g. enzyme) .
It is noted that within the scope of the invention also variants (i.e. mutations including deletions, substitutions and insertions) of SPase are summarised, provided that these variants have the same or substantially the same (e.g. increased catalytical activity) activity as native SPase.
According to the present invention the SPase may be employed in the incubation step as either a cell-free enzyme, which may but need not be partially purified, a whole-cell system pre- treated physically or chemically for improved permeability of the cell membrane (permeabilisation) and mechanical stability, encapsulated catalyst in which said free enzyme or whole-cell system are entrapped, preferably in gel-like structures, or immobilized on a carrier. A recent comprehensive summary of methods of enzyme immobilisation, including the permeabilisation of cells is given by Cao L., Carrier-bound Immobilized Enzymes (2005) Wiley-VCH, Weinheim. Advantageously the SPase is immobilised on a carrier which preferably is a solid support. Any material that binds said SPase noncovalently, preferably natural or nonnatural polymers with anion exchange properties, or covalently, preferably a polymer, more preferably an acrylic polymer, in particular a copolymer of methacrylamide, N, N ' -methylen-bis (acrylamide) and a monomer carrying oxirane groups.
The carrier is preferably a chromatography resin, preferably selected from the group consisting of anion exchange chromatography resin, cation exchange chromatography resin, affinity chromatography resin (e.g. comprising immobilised SPase specific antibodies) and hydrophobic interaction chromatography resin.
The SPase of the present invention may be immobilised (temporarily or covalently) on any carrier, preferably particles (e.g. beads), in particular chromatography resin, provided that the enzymatic activity of the enzyme is not affected in a way to change its substrate specificity or to reduce its activity to low conversion rates.
The carrier may comprise functional groups which require - in order to bind the SPase on the resin - that also the enzyme carries corresponding binding partners (e.g. streptavidin - bi- otin, chelated metal ions - Hisg-tag) .
To improve the affinity of the enzyme to carriers lacking said functional groups, SPase may be recombinantly produced as a fusion protein harboring a binding peptide, preferably one showing ion-exchange properties, or a binding domain, preferably a polysaccharide binding domain, in particular a cellulose binding domain.
Several advantages are offered by the use of insoluble immobilized enzymes (carrier-bound, encapsulated, whole-cell systems) in the method of the present invention:
1. the immobilized enzyme is easily recovered from the reaction mixture at the conclusion of the reaction for reuse, whereas the soluble enzyme is only recovered with difficulty and loss of activity;
2. the immobilized enzyme is more stable than the soluble enzyme, both for the number of enzyme turnovers obtained versus the soluble enzyme, as well as for recovered enzyme activity at the conclusion of a reaction or after prolonged storage in aqueous buffer. No specific method of immobilization can be chosen for a particular enzyme with the expectation that the immobilization will be successful. Furthermore, the expectation for successful co-immobilization of more than one enzyme is even less predictable. It is generally agreed by those skilled in the art that a successful immobilization of any enzyme must be discovered by screening a variety of methods, and an optimal result obtained by trial and error. The immobilization of SPase on a carrier stabilizes the enzyme activity. Literature shows that entrapment of the enzyme also improves the stability (Soetaert W. et al . , Progress in Biotechnology Vol. 10 (Petersen S. B., Svensson, B., Pederesen, S., Eds), Elsevier, Amsterdam). The immobilization of enzymes can be performed using a variety of techniques, including: (1) binding of the enzyme to a carrier or support, via co- valent attachment, physical adsorption, electrostatic binding, or affinity binding, (2) crosslinking with bifunctional or multifunctional reagents, (3) entrapment in gel matrices, polymers, emulsions, or some form of membrane, and (4) a combination of any of these methods. Detailed descriptions of many of these methods of enzyme immobilization, and the various factors affecting the choice of a method of immobilization, are collected in the following volumes of Methods in Enzymology, K. Mosbach (ed.)f Academic Press, New York: Vol. 44 (1976), Vol. 135 (1987), Vol. 136 (1987), Vol. 137 (1988), and the references therein.
The immobilization of SPase on oxirane acrylic beads Euper- git C and Eupergit C-250L (Rohm Pharma) resulted in a catalyst (enzyme + carrier) which was particularly stable to the reaction conditions and had a sufficiently high specific activity (units of enzyme activity/gram of catalyst). However, to be useful in the method of the present invention, both free and immobilized preparations of SPase can be used.
However, many of the deficiencies of the soluble enzymes can be eliminated by employing the immobilized enzyme catalyst. The stability of immobilized SPase in aqueous buffers is much greater than the soluble enzyme. Recovery and reuse of the immobilized catalyst was easily performed by simply filtering the catalyst away from the reaction mixture and recycling it to fresh reaction mixture; in this manner for immobilized SPase a high number of turnovers (i.e., the number of substrate mo- lecules that are converted to product molecules per catalyst molecule before inactivation of the enzyme) can be achieved.
The immobilized SPase used in the reaction should be present in an effective concentration, usually a concentration of about 0.001 to about 100.0 IU/ml, preferably about 10 to about 50 IU/ml. An IU (International Unit) is defined as the amount of enzyme that will catalyze the transformation of one micromole of substrate per minute.
Upon completion of the reaction the SPase bound to a carrier may be removed by filtration or centrifugation. If the immobilized SPase is packed in a column (e.g. chromatographic column) the production of αGG can be achieved in a continuous way without the necessity of removing the immobilized SPase from the reaction mixture.
According to a preferred embodiment of the present invention the incubation of the SPase with the substrates is performed at a pH value of 4 to 10, preferably of 5 to 9, more preferably of 6 to 8, in particular of 7.
The pH value in the method according to the present invention is preferably selected from the ranges identified above, which allows an efficient conversion of the substrates into αGG.
According to another preferred embodiment of the present invention the incubation is performed for at least 15 min, preferably for at least 60 min, more preferably for at least 3 hours, even more preferably for at least 5 hours.
The incubation of the substrates with the immobilised or unbound SPase may be performed for at least 15 minutes. However it is especially preferred to select the incubation time between 1 and 48 or between 5 and 24 hours. The incubation time depends also on the incubation temperature chosen. This means if the incubation temperature is below the optimal temperature of the enzyme the incubation time may be extended.
According to a preferred embodiment of the present invention the incubation is performed at a temperature range of 10 to 500C, preferably of 15 to 400C, more preferably at a temperature of 30°C.
The mixture which according to the present invention is incubated with the SPase comprises the glucosyl donor, in particular sucrose, in a concentration of 0.01 to 3 mol/1, preferably of 0.05 to 2 mol/1, more preferably of 0.1 to 1.5 mol/1. It turned out that the activity of the SPase and its substrate turnover leading to αGG is optimal in the glucosyl donor concentrations disclosed herein.
According to a preferred embodiment of the present invention the substrate mixture comprises glycerol in a concentration of 0.01 to 10 mol/1, preferably of 0.05 to 5 mol/1, more preferably of 0.1 to 3 mol/1, even more preferably of 0.1 to 1.5 mol/1.
The ratio of glycerol to glucosyl donor in the mixture ranges preferably from 0.1:1 to 10:1, preferably from 0.5:1 to 5:1, more preferably from 1:1 to 3:1.
The αGG α-D-glucosylglycerol obtainable by the method according to the present invention can be isolated by different chromatographic methods, preferably by elution chromatography on activated charcoal combined with celite as a filter aid. The product mixture obtainable by the method according to the present invention is loaded on a column of said material equilibrated in water, and elution of bound αGG is achieved with 2% ethanol. Fractions containing αGG are free of residual glycerol and product resulting from cleavage of glucosyl donor. The αGG is obtained in a yield of greater 70%, preferably greater 80%, in particular greater 90%. The purity of the product after chromatography is greater 80%, preferably greater 90%, in particular greater 95%. Following concentration under reduced pressure, solid αGG is preferably obtained by drying, preferably by lyo- philisation.
Charcoal may preferably be used as suspension or more preferably packed in a column (e.g. chromatographic column). The reaction mixture potentially comprising the enzyme or residual enzyme and substrate is contacted with the charcoal (e.g. applied on a charcoal column) and successively eluted. This eluate or even the reaction mixture itself can be (further) purified using an ion exchange resin, for instance.
According to another preferred embodiment of the present invention the sucrose phosphorylase is obtained from Leuconostoc mesenteroides (Q59495, Q9R5Q3) and used as free or preferably immobilised enzyme preparation, preferably immobilised on an acrylic polymer, in particular a copolymer of methacrylamide, N,N'-methylen-bis (acrylamide) and a polymer carrying oxirane groups, wherein the immobilised sucrose phosphorylase is incubated with sucrose as glucosyl donor. In particular an SPase derived from Leuconostoc mesen- teroides immobilised on polmyer particles (or gels) carrying ox- irane groups was exceptionally stable and well suited for continuous reactions, for example.
Another aspect of the present invention relates to α-D-gluc- osylglycerol (αGG) or a product comprising α-D-glucosylglycerol (αGG) obtainable by a method according to the present invention.
The αGG or the product comprising αGG, which may be obtained by the method of the present invention, comprises the natural occurring αGG (2-0-glyceryl-α-D-glucopyranoside) in high amounts because SPase is able to specifically catalyze the formation of said αGG without significant formation of by-products resulting from transglucosylation. It is therefore of particular importance that no regioisomer mixture is contained in addition to the desired 2-O-glyceryl-α-D-glucopyranoside also 1-O-glyceryl-α-D- glucopyranoside. Separation of these two products would be exceedingly difficult. It is also of particular importance that under the reaction conditions of the method of the present invention the formation of hydrolysis product is prevented efficiently such that more than 90%, preferably more than 95%, more preferably more than 98% of the glucosyl moiety of the converted donor is transferred into the desired product.
If, for instance, sucrose is used as glucosyl donor a product comprising natural αGG and fructose is obtained. If GIc 1-P is used as glucosyl donor a product comprising natural αGG and phosphate is obtained.
Therefore a product obtainable by the method of the present invention may further comprise fructose, preferably in an equimolar amount to αGG α-D-glucosylglycerol. αGG is a naturally occurring molecule (a glycoside; a carbohydrate derivative) which serves the function of an osmoprotect- ive substance and stabilizer in various microorganisms. Several publications have shown that isolated αGG has a range of outstanding properties which are of substantial interest for technological application. Uses of αGG and derivatives thereof include but are not limited to the fields of medicine (cancer therapy) , cosmetics (moisturizing and stabilizing additive to a range of products), and food products (antidiabetics). Furthermore αGG is a very efficient stabilizer of biomolecules (proteins, lipids) and microorganisms. Another aspect of the present invention relates to a cosmetic preparation comprising αGG according to the present invention.
The cosmetic products of the present invention are especially characterised by the fact that they only comprise natural αGG, which may be obtained by the method of the present invention.
Another aspect of the present invention relates to a pharmaceutical preparation comprising αGG according to the present invention.
Another aspect of the present invention relates to a food supplement comprising αGG or a product comprising αGG according to the present invention.
Another aspect of the present invention relates to the use of αGG or product comprising αGG according to the present invention as sweetener. A particular aspect is the use as sweetener of mixtures of αGG and fructose obtainable by the method of the present invention.
Another aspect of the present invention relates to the use of αGG as a stabilizing additive to preparations of biomolecules during storage or processing, in particular during drying. In particular, αGG can serve as a stabilizer of living microorganisms, proteins and lipid-derived structures. It can stabilize protein preparations, for example without being restricted thereto, antibodies, antibody fragments, and enzymes, against denaturation and loss of biological activity.
Another aspect of the present invention relates to the use of αGG as an additive that can facilitate protein folding, in particular that of recombinant proteins, under conditions in vitro as well as in vivo. αGG may be in particular used as skin cleanser
(JP 2004/331583), water-based cosmetic (JP 2004/331582), accumulation inhibitor of neutral fat (JP 2004/331580), production promoter of corium matrix (JP 2004/331579), cell activator (JP 2004/331578) and antibacterial agent (JP 2004/331577).
The present invention is further illustrated by the following figures and examples without being restricted thereto. Fig. 1 shows the chemical structure of αGG.
Table 1 shows NMR data for αGG produced and purified according to the method of the present invention and demonstrate un- equivocally the chemical structure in Fig. 1.
Table 1: NMR shift assignments in 2-O-glyceryl-α-D-glucopyranos- ide ((XGG) , measured directly from reaction mixture in D2O at 300 K using external calibration with acetone (2.22 ppm 1H; 31.5 ppm 13C) .
Koppl . 13C
Position 1H [ppm] Mult Int [Hz] [ppm]
1 5.21 d 3.8 IH 98.2
2 3.66 m IH 72.4
3 3.84 m IH 73.3
4 3.52 m IH 69.9
5 3.93 m IH 71.9 βa 3.95 m IH βb 3.83 m IH 61.0 lNa 3.80 m 2H l*b 3.75 m 2H 63.8
2^ 3.91 m IH 79.2
Suhr, R.; Scheel, 0.; Thiem, J. J. Carbohydr. Chem. (1998) 17: 937-968
Fig. 2 shows the production of αGG from sucrose and glycerol using free SPase from Leuconostoc mesenteroides. The enzymatic reaction was performed in a stirred batch system. A 50 mM MES buffer (pH 7) was used which contained 300 mM sucrose and 2 M glycerol as the substrates. The enzyme concentration was 20 IU/ml. In detail, the reaction mixture, containing 300 mM sucrose, 2 M glycerol and 20 IU/ml SPase in 50 mM MES buffer (pH 7), was incubated at 30°C and 550 rpm for 7.5 hr. Under these optimum conditions selected, the yield of αGG was higher than 95%. The amount of released glucose was subtracted from the amount of released fructose to define the product.
Fig. 3 shows the operational stability of SPase from Leuconostoc mesenteroides immobilized on a polymer carrying oxirane groups. Results of continuous conversion of sucrose in a packed bed enzyme reactor are shown. The substrate solution contained 600 mM of each, sucrose and phosphate, in 20 mM MES buffer, pH 7.0. The reaction was carried out at 300C and a constant flow rate of 6 ml-h-1, corresponding to an average residence time of 8.8 h (53 ml, •) and 18.5 h (111 ml, o) , respectively. Fig. 4 shows the synthesis of αGG by enzymatic glucosylation of glycerol using SPase from Leuconostoc mesenteroides at different pH values. The reaction mixture contained 0.1 M GIc 1-P, 3 M glycerol and 3 IU/ml SPase in 40 mM MES buffer (pH 6.0, 6.5, 7.0) and 40 mM TES buffer (pH 7.5, 8.0), respectively. Conversions were performed at 30°C and an agitation rate of 550 rpm. The amount of released glucose (cglc) was subtracted from the amount of released phosphate (cP) to define the productivity.
Fig. 5 shows the nucleophilic competition in the hydrolysis of sucrose by SPase leading to the synthesis of novel α-D-gluc- osides .
EXAMPLES :
Example 1: Production of SPase
SPase can be obtained as a native enzyme or as a recombinant enzyme (for example but not restricted thereto, produced in Escherichia coli) according to reports in literature (Guibert A and Monsan P, Ann. N. Y. Acad. Sci. (1988) 504:307-311; Vandamme EJ et al., Adv. Appl. Microbiol. (1987) 32:163-201; Kawasaki H et al., Biosci. Biotech. Biochem. (1996) 60:322-324; Kitao S and Nakano E, J. Ferment. Bioeng. (1992) 73:179-184; van den Broek LAM et al., Appl. Microbiol. Biotechnol. (2004) 65:219-227). It can of course be produced in various scales represented by shaken flask cultures of a suitable microorganism and bioreact- ors, preferably an aerated or nonaerated stirred tank reactor or a column reactor such as a bubble column or an airlift reactor. Partial purification or isolation of the enzyme is done using procedures described for SPase or by adopting general protocols of protein purification according to state of the art. Immobilization procedures such as, for example but not restricted thereto, covalent and noncovalent binding to insoluble carriers, encapsulation, and whole-cell systems, is done using protocols already developed for SPase or by adopting general protocols according to state of the art (Pimentel MCB and Ferreira MSS, Appl. Biochem. Biotechnol. (1991) 27:37-43; Soetaert W. et al., Progress in Biotechnology Vol. 10 (Petersen S. B., Svensson, B., Pederesen, S., Eds), Elsevier, Amsterdam; Vandamme EJ et al., Adv. Appl. Microbiol. (1987) 32:163-201).
Example 2: Enzyme assays SPase activity was determined at 300C using a continuous coupled enzymatic assay, in which production of GIc 1-P from sucrose and inorganic phosphate is coupled to the reduction of NAD+ in the presence of phosphoglucomutase (PGM) and glucose 6- phosphate dehydrogenase (G6P-DH) . The standard assay was performed essentially as described elsewhere in 50 mM potassium phosphate buffer, pH 7.0, containing 10 mM EDTA, 10 mM MgCl2 and 10 μM α-D-glucose 1, 6-bisphosphate. The reaction mixture contained 250 mM sucrose, 2.5 mM NAD+, 3 U -ml"1 PGM, 3.4 U -ml"1 NAD+- dependent G6P-DH and the enzyme solution in appropriate dilution. The formation of NADH with time was monitored spectropho- tometrically at 340 nm. One unit of SPase activity corresponds to the amount of enzyme that caused the reduction of 1 μmol of NAD+ per minute under the conditions described above. Protein concentrations were determined using the BioRad dye-binding method with bovine serum albumin as standard. Phosphate was determined colorimetrically at 850 nm and GIc 1-P was assayed in a coupled enzymatic system with PGM and G6P-DH.
Example 3: Immobilization of LmSPase onto a polymer containing oxirane groups
A total amount of 700 U of a preparation of crude SPase with a specific SPase activity of 50 U-mg"1 was incubated at 40C with 10 g of Eupergit C in 0.7 M potassium phosphate buffer, pH 7.0, for 14 h. The agitation rate was 250 rpm. The immobilisate was washed several times with 20 mM MES buffer, pH 7.0. The binding efficiency, given by the ratio of the residual activity measured in the supernatant after the immobilisation and the total activity employed (U), was 0.5.
Example 4: Operational stability of immobilized SPase
Eupergit C, onto which SPase was attached, was packed in a GE Healthcare XK26/40 glass column (2.6 cm; 53 ml or 111 ml, 34 U-g Eupergit C), equipped with a thermostatic jacket. The column was equilibrated with 20 mM MES buffer, pH 7.0. The substrate solution contained 600 mM of each, sucrose and phosphate in the same buffer, and was brought to reaction temperature (30°C) by incubation in a water bath. The solution was pumped through the packed bed at a constant flow rate of 6 ml h delivered from a GE Healthcare piston pump (model P-500) . The tern- perature at the outlet of the reactor was monitored continuously. At certain times, 1-ml samples were taken and used for further analysis.
Fig. 3 shows the time course of GIc 1-P production in a continuous fixed bed reactor operated at a constant axial flow rate of 1.13 cm-h" . Depending on the average residence time determined by the bed height, 8.8 h or 18.5 h, the conversion of sucrose (600 inM) was 68% and 91% respectively. The corresponding productivities, calculated as g*l-1 product x reciprocal residence time, were 15.4 g^l'h)'1 and 10.9 g-(l'h)"1. Note that the conversion rate remained constant up to extended reaction times of 650 h, emphasising the excellent stability of immobilised SPase under the operational conditions.
Example 5: Synthesis of ocGG using GIc 1-P as the donor
The reaction mixture contained 0.1 M GIc 1-P, 3 M glycerol and 3 IU-ml"1 LmSPase in 40 mM MES buffer (pH 6.0, 6.5, 7.0) or 40 mM TES buffer (pH 7.5, 8.0). The enzymatic conversion was followed over time at 300C and an agitation rate of 550 rpm. The concentrations of released phosphate (cP) and glucose (cglc) were determined. The amount of transglucosylation product formed corresponds to cP - cglc. Results are shown in Fig. 4.
Example 6: Synthesis of ccGG using sucrose as the donor
The reaction mixture, containing 300 mM sucrose, 2 M glycerol and 20 U/ml SPase in 50 mM MES buffer (pH 7), was incubated at 30°C and 550 rpm for 7.5 hr. Under these optimum conditions selected, the yield of ocGG was higher than 95% (Figure 2) . Product analysis was done using HPLC employing a BioRad HPX-87C column and-reflection index detection. The column was kept at 85 0C and deionized water was used as eluent at a flow rate of 0.6 ml/min. The amount of released glucose was measured using state- of-the-art glucose oxidase / peroxidase assay. NMR analyses, shown in Table 1, confirmed the correct structure of αGG and the composition of the product mixture. Note that hydrolysis (i.e. formation of glucose) is prevented efficiently under the conditions used in Examples 10a and lOb. Example 7: Purification of αGG
About 90 ml of product, obtained as in example 6 except that 800 mM sucrose was used, were loaded onto a column (XK 50/60, GE Healtcare) packed with about 1 litre of a 1:1 mixture of activated charcoal Norit® (Type Norit SX Ultra) and celite® 501 (Fil¬ ter Aid, calcined) . The column was equilibrated with water. The product solution contained 16.3 g αGG, 12.4 g fructose, 2.2 g sucrose, 13.1 g glycerol and 0.8 g glucose. Elution was performed using a step-gradient of ethanol in water, using 4 litres of water, followed by 4 litres of 2% ethanol, and finally 2 litres of 15% ethanol. αGG elutes at 2% ethanol, separated from unreacted sucrose as well as fructose. Glycerol is present in the water fraction. The yield of recovered αGG is 56%, and the purity of αGG assessed by HPLC is greater than 98%.
Example 8: Stabilization of proteins during freeze drying
The protein of interest (e.g. mannitol dehydrogenase, MDH) was incubated at a concentration of 0.8 mg/ml in the presence of 0, 20, 50, 100, 500, 1000 or 1500 mM αGG in 100 mM Tris/HCl buffer, pH 7.0. The samples were lyophilized over-night and dissolved in the same buffer again. The specific enzyme activity was determined, using appropriate assays for the corresponding enzyme as described elsewhere (Slatner M. et al . , Biochemistry 38: 10489-10498), before and after freeze drying. Without any stabilizer added the enzymatic activity of MDH dropped down to 2% after freeze drying, whereas αGG is able to maintain enzymatic activity up to 48% irrespective of the added αGG concentration.

Claims

Claims :
1. Method for producing 2-0-glyceryl-α-D-glucopyranoside (αGG) from a glucosyl donor and a glucosyl acceptor comprising the steps :
- providing a sucrose phosphorylase (EC 2.4.1.1),
- incubating said sucrose phosphorylase with a mixture comprising a glucosyl donor and glycerol as glucosyl acceptor and
- isolating and/or purifying 2-0-glyceryl-α-D-gluc- opyranoside.
2. Method according to claim 1, characterised in that the glucosyl donor is selected from the group consisting of sucrose and analogues of sucrose in which the fructosyl moiety has been modified or substituted by another ketosyl residue, α-D-glucose-1- phosphate, α-D-glucose-1-fluoride, further stable, activated glucosyl donors such as α-D-glucose-1-azide, and mixtures thereof.
3. Method according to claim 1 or 2, characterized in that the sucrose phosphorylase is of microbial, preferably bacterial origin.
4. Method according to claim 3, characterised in that the bacterial sucrose phosphorylase is obtained from Agrobacterium vit- is (NCBI P33910), Bifidobacterium adolescentis (Q84HQ2), Bifidobacterium longum (Q84BY1) , Escherichia coli (P76041) , Escherichia coli 06 (Q8FHS2), Lactobacillus acidophilus (Q7WWP8, Q7WWQ5), Lactobacillus delbrueckii subsp. lactis (Q71I99) , Leu- conostoc mesenteroides (Q59495, Q9R5Q3) , Listeria monocytogenes (Q4ENE7, Q4EQR2, Q4ETN7, Q4EHA0, Q4EJW2, Q4ELY7), Pseudomonas putrefaciens, Pseudomonas saccharophila (AAD40317), Rhodopirellula baltica (Q7UIS9) , Shewanella baltica (Q3Q4P1) , Shewanella frigidimarina (Q3NMD1), Solibacter usitatus (Q43TL5) , Streptococcus mutans (P10249) and/or Synechococcus sp. (068858, Q7U3J7) .
5. Method according to any one of claims 1 to 4, characterized in that the sucrose phosphorylase is recombinantly produced as full-length protein or a catalytically active fragment thereof, or a fusion protein.
6. Method according to any one of claims 1 to 5, characterized in that the sucrose phosphorylase is prior the incubation step immobilized on a carrier.
7. Method according to claim 6, characterized in that said carrier is a solid support, preferably a polymer, more preferably an acrylic polymer, in particular a copolymer of methacrylamide, N, N' -methylen-bis (acrylamide) and a monomer carrying oxirane groups .
8. Method according to any one of claims 1 to 6, characterized in that the carrier is a chromatography resin, preferably selected from the group consisting of anion exchange chromatography resin, cation exchange chromatography resin, affinity chromatography resin and hydrophobic interaction chromatography resin.
9. Method according to any one of claims 1 to 8, characterized in that the incubation is performed at a pH value of 4 to 10, preferably of 5 to 9, more preferably of 6 to 8, in particular of 7.
10. Method according to any one of claims 1 to 9, characterized in that the incubation is performed for at least 15 min, preferably for at least 60 min, more preferably for at least 3 hours, even more preferably for at least 5 hours .
11. Method according to any one of claims 1 to 10, characterized in that the incubation is performed at a temperature range of 10 to 50°C, preferably of 15 to 400C, more preferably at a temperature of 300C.
12. Method according to any one of claims 1 to 11, characterized in that the mixture comprises the glucosyl donor in a concentration of 0.01 to 3 mol/1, preferably of 0.05 to 2 mol/1, more preferably of 0.1 to 1.5 mol/1.
13. Method according to any one of claims 1 to 12, characterized in that the mixture comprises glycerol in a concentration of 0.01 to 10 mol/1, preferably of 0.05 to 5 mol/1, more preferably of 0.1 to 3 mol/1, even more preferably of 0.1 to 1.5 mol/1.
14. Method according to any one of claims 1 to 13, characterized in that the ratio of glycerol to glucosyl donor in the mixture ranges from 0.1:1 to 10:1, preferably from 0.5:1 to 5:1, more preferably from 1:1 to 3:1.
15. Method according to any one of claims 1 to 14, characterized in that the α-D-glucosylglycerol is isolated by elution chromatography on activated charcoal in a yield of 55%, preferably 70%, more preferably 85%.
16. Method according to any one of claims 1 to 15, characterized in that the sucrose phosphorylase is obtained from Leuconostoc mesenteroides (Q59495, Q9R5Q3) and immobilised on an acrylic polymer, in particular a copolymer of methacrylamide,
N, N ' -methylen-bis (acrylamide) and a polymer carrying oxirane groups, wherein the immobilized sucrose phosphorylase is incubated with sucrose as glucosyl donor.
17. Method according to claim 1 for producing a mixture containing α-D-glucosylglycerol and fructose comprising the steps:
- providing a sucrose phosphorylase (EC 2.4.1.7),
- incubating said sucrose phosphorylase with a mixture comprising sucrose and glycerol as glucosyl acceptor and
- isolating and/or purifying the α-D-glucosylglycerol and fructose mixture.
18. α-D-glucosylglycerol or product comprising α-D-glucosylglycerol obtainable by a method according to any one of claims 1 to 17.
19. Product according to claim 18, characterised in that it further comprises fructose, preferably in an equimolar amount to α- D-glucosylglycerol .
20. Cosmetic preparation comprising α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18.
21. Pharmaceutical preparation comprising α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18.
22. Food supplement comprising α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18.
23. Use of α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18 as sweetener.
24. Use of α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18 as a stabilizer of bio- molecules, in particular proteins or protein fragments and lip- id-derived structures during processing and storage.
25. Use of α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18 as a stabilizer of living microorganisms during processing and storage.
26. Use of α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18 as a stabilizer of proteins during drying, in particular during lyophilisation.
27. Use of α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18 as an additive assisting protein refolding from inclusion bodies and preventing protein mis- folding and aggregation in vivo, in particular in Escherichia coli.
28. Use of α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18 as an additive improving cell viability during recombinant protein production, in particular in Escherichia coli.
29. Use of α-D-glucosylglycerol or product comprising α-D-glucosylglycerol according to claim 18 as an additive improving the stability of enzymes under reaction conditions.
PCT/AT2007/000448 2006-09-21 2007-09-21 Method for producing 2-o-glyceryl-alpha-d-glucopyranoside WO2008034158A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE602007005496T DE602007005496D1 (en) 2006-09-21 2007-09-21 ECYMATIC PROCESS FOR THE PREPARATION OF 2-O-GLYCERYL-ALPHA-D-GLUCOPYRANOSIDE
EP07800190A EP2069519B1 (en) 2006-09-21 2007-09-21 Enzymatic method for producing 2-o-glyceryl-alpha-d-glucopyranoside
AT07800190T ATE462012T1 (en) 2006-09-21 2007-09-21 EZYMATIC PROCESS FOR PRODUCING 2-O-GLYCERYL-ALPHA-D-GLUCOPYRANOSIDE
US12/442,288 US20090318372A1 (en) 2006-09-21 2007-09-21 Method For Producing 2-O-Glyceryl-Alpha-D-Glucopyranoside
JP2009528546A JP2010504082A (en) 2006-09-21 2007-09-21 Method for producing 2-O-glyceryl-α-D-glucopyranoside
US15/985,777 US10683525B2 (en) 2006-09-21 2018-05-22 Method for producing 2-O-glyceryl-alpha-D-glucopyranoside

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0157706A AT504347B8 (en) 2006-09-21 2006-09-21 PROCESS FOR THE PREPARATION OF GLUCOSE DERIVATIVES
ATA1577/2006 2006-09-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/442,288 A-371-Of-International US20090318372A1 (en) 2006-09-21 2007-09-21 Method For Producing 2-O-Glyceryl-Alpha-D-Glucopyranoside
US15/985,777 Division US10683525B2 (en) 2006-09-21 2018-05-22 Method for producing 2-O-glyceryl-alpha-D-glucopyranoside

Publications (3)

Publication Number Publication Date
WO2008034158A2 true WO2008034158A2 (en) 2008-03-27
WO2008034158A8 WO2008034158A8 (en) 2008-06-05
WO2008034158A3 WO2008034158A3 (en) 2008-07-17

Family

ID=38896025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2007/000448 WO2008034158A2 (en) 2006-09-21 2007-09-21 Method for producing 2-o-glyceryl-alpha-d-glucopyranoside

Country Status (7)

Country Link
US (2) US20090318372A1 (en)
EP (1) EP2069519B1 (en)
JP (1) JP2010504082A (en)
AT (2) AT504347B8 (en)
DE (1) DE602007005496D1 (en)
ES (1) ES2340888T3 (en)
WO (1) WO2008034158A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039231A1 (en) 2008-08-22 2010-02-25 Bitop Ag Use of glucosylglycerol
DE102008053549A1 (en) 2008-10-28 2010-04-29 Bitop Ag Glucosylglycerol containing composition
EP2186904A1 (en) * 2008-11-14 2010-05-19 Technische Universität Graz Method for producing glucose derivatives
EP2332426A1 (en) * 2009-12-11 2011-06-15 Technische Universität Graz Prebiotic
WO2011124538A1 (en) 2010-04-06 2011-10-13 Universiteit Gent A thermostable sucrose phosphorylase
WO2013077433A1 (en) 2011-11-24 2013-05-30 東洋精糖株式会社 Keratoconjunctival protecting agent, or keratoconjunctival disorder inhibiting agent
US9701992B2 (en) 2010-07-12 2017-07-11 Universiteit Gent Metabolically engineered organisms for the production of added value bio-products
CN107252427A (en) * 2012-07-09 2017-10-17 比托普股份公司 For the composition for including active material for the bodily tissue regeneration for promoting damage
KR20180135425A (en) * 2017-06-12 2018-12-20 씨제이제일제당 (주) Novel polypeptides having glucosylglycerol productivity and a method for producing glucosylglycerol using the same
CN110804553A (en) * 2019-11-21 2020-02-18 华南农业大学 Culture medium for improving preservation survival rate of lactic acid bacteria and application thereof
CN111172127A (en) * 2020-01-17 2020-05-19 浙江工业大学 Application of sucrose phosphorylase in preparation of glycerol glucoside
CN113801177A (en) * 2021-09-10 2021-12-17 珠海市柏瑞医药科技有限公司 Synthetic method of alpha-glycerol glucoside

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058472A (en) * 2012-09-18 2014-04-03 Toyo Seito Kk Cosmetics for preventing skin aging
JP6468650B2 (en) * 2015-05-25 2019-02-13 関西酵素株式会社 Oil-based cleansing cosmetic
CN109576239B (en) * 2018-12-17 2022-06-28 清华大学 Heat-resistant phosphorylase and application thereof
CN109988799B (en) * 2019-01-24 2021-02-02 浙江工业大学 Application of glycerol-2-alpha-glucosylation enzyme in preparation of 2-alpha-glycerol glucoside
CN109762033B (en) * 2019-01-25 2020-10-27 浙江工业大学 Preparation method of glycerol glucoside crystal
CN110452845B (en) * 2019-08-15 2021-03-02 江南大学 Escherichia coli for producing sucrose phosphorylase
IT202100008174A1 (en) * 2021-04-01 2022-10-01 Roelmi Hpc S R L GLYCERYL GLUCOSIDE PREPARATION AND ITS COSMETIC APPLICATIONS
CN114736942B (en) * 2022-03-25 2024-04-02 上海龙殷生物科技有限公司 Preparation method of alpha-glyceroglycosides

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591891A (en) 1991-09-30 1993-04-16 Kikkoman Corp Production of saccharide compound
JP2001245690A (en) 2000-03-03 2001-09-11 Yakult Honsha Co Ltd Method for producing glycoside or oligosaccharide
JP2004331577A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Antibacterial agent
JP2004331579A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Production promoter of corium matrix
JP2004331583A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Skin cleanser
JP2004331578A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Cell activator
JP2004331580A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Accumulation inhibiter of neutral fat
JP2004331582A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Water-based cosmetic

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3106456A1 (en) * 1981-02-21 1982-10-07 Röhm GmbH, 6100 Darmstadt METHOD FOR THE PRODUCTION OF PEARL-SHAPED, HYDROPHILIC, POLYMER-BASED POLYMERS TO PROTEINS
DE19540749A1 (en) * 1995-11-02 1997-05-07 Beiersdorf Ag Cosmetic preparations with an effective content of glycosylglycerides
WO2004101744A2 (en) * 2003-05-07 2004-11-25 Renessen Llc Plants with increased levels of one or more amino acids

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591891A (en) 1991-09-30 1993-04-16 Kikkoman Corp Production of saccharide compound
JP2001245690A (en) 2000-03-03 2001-09-11 Yakult Honsha Co Ltd Method for producing glycoside or oligosaccharide
JP2004331577A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Antibacterial agent
JP2004331579A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Production promoter of corium matrix
JP2004331583A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Skin cleanser
JP2004331578A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Cell activator
JP2004331580A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Accumulation inhibiter of neutral fat
JP2004331582A (en) 2003-05-08 2004-11-25 Noevir Co Ltd Water-based cosmetic

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
COUTINHO PM ET AL., J. MOL. BIOL., vol. 328, 2003, pages 307 - 317
HENRISSAT B., BIOCHEM. J., vol. 280, 1999, pages 309 - 316
KAUSHAL GP ET AL., ARCH. BIOCHEM. BIOPHYS., vol. 272, 1989, pages 481 - 487
KAWASAKI H ET AL., BIOSCI. BIOTECH. BIOCHEM., vol. 60, 1996, pages 322 - 324
KITAO S. ET AL., BIOTEC. BIOCHEM., vol. 56, 1992, pages 2011 - 2014
KITAO S; NAKANO E, J., FERMENT. BIOENG., vol. 73, 1992, pages 179 - 184
MARIN K. ET AL., J. BACTERIOL., vol. 180, 1998, pages 4843 - 4849
NAKANO H. ET AL., J. BIOSCI. BIOENG., vol. 95, 2003, pages 583 - 588
RODER ET AL., FEMS MICROBIOL. LETT., vol. 243, 2005, pages 219 - 226
TAKENAKA F. ET AL., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 64, 2000, pages 378 - 385
TAKENAKA F.; UCHIYAMA H., BIOSCI. BIOTECHNOL. BIOCHEM., vol. 64, 2000, pages 1821 - 1826
VAN DEN BROEK LAM ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 65, 2004, pages 219 - 227

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039231A1 (en) 2008-08-22 2010-02-25 Bitop Ag Use of glucosylglycerol
DE102008053549A1 (en) 2008-10-28 2010-04-29 Bitop Ag Glucosylglycerol containing composition
JP2012506882A (en) * 2008-10-28 2012-03-22 ビトップ アーゲー Composition containing glucosylglycerol
EP2186904A1 (en) * 2008-11-14 2010-05-19 Technische Universität Graz Method for producing glucose derivatives
WO2010055123A2 (en) * 2008-11-14 2010-05-20 Technische Universität Graz Method for producing glucose derivatives
WO2010055123A3 (en) * 2008-11-14 2010-09-23 Technische Universität Graz Method for producing glucose derivatives
EP2332426A1 (en) * 2009-12-11 2011-06-15 Technische Universität Graz Prebiotic
WO2011070010A1 (en) 2009-12-11 2011-06-16 Technische Universität Graz Prebiotic
WO2011124538A1 (en) 2010-04-06 2011-10-13 Universiteit Gent A thermostable sucrose phosphorylase
US9701992B2 (en) 2010-07-12 2017-07-11 Universiteit Gent Metabolically engineered organisms for the production of added value bio-products
US10570430B2 (en) 2010-07-12 2020-02-25 Inbiose N.V. Metabolically engineered organisms for the production of added value bio-products
US11384374B2 (en) 2010-07-12 2022-07-12 Inbiose N.V. Metabolically engineered organisms for the production of added value bio-products
WO2013077433A1 (en) 2011-11-24 2013-05-30 東洋精糖株式会社 Keratoconjunctival protecting agent, or keratoconjunctival disorder inhibiting agent
RU2630581C2 (en) * 2011-11-24 2017-09-11 Тойо Шугар Рифайнинг Ко., Лтд. Protective agent for cornea and conjunctiva or suppressive agent in case of keratoconjunctivitis
CN107252427A (en) * 2012-07-09 2017-10-17 比托普股份公司 For the composition for including active material for the bodily tissue regeneration for promoting damage
KR20180135425A (en) * 2017-06-12 2018-12-20 씨제이제일제당 (주) Novel polypeptides having glucosylglycerol productivity and a method for producing glucosylglycerol using the same
KR102232837B1 (en) 2017-06-12 2021-03-29 씨제이제일제당 주식회사 Novel polypeptides having glucosylglycerol productivity and a method for producing glucosylglycerol using the same
CN110804553A (en) * 2019-11-21 2020-02-18 华南农业大学 Culture medium for improving preservation survival rate of lactic acid bacteria and application thereof
CN110804553B (en) * 2019-11-21 2022-08-12 华南农业大学 Culture medium for improving preservation survival rate of lactic acid bacteria and application thereof
CN111172127A (en) * 2020-01-17 2020-05-19 浙江工业大学 Application of sucrose phosphorylase in preparation of glycerol glucoside
CN113801177A (en) * 2021-09-10 2021-12-17 珠海市柏瑞医药科技有限公司 Synthetic method of alpha-glycerol glucoside
CN113801177B (en) * 2021-09-10 2022-05-31 珠海市柏瑞医药科技有限公司 Synthetic method of alpha-glycerol glucoside

Also Published As

Publication number Publication date
AT504347A4 (en) 2008-05-15
AT504347B8 (en) 2008-09-15
US20180265907A1 (en) 2018-09-20
US20090318372A1 (en) 2009-12-24
EP2069519A2 (en) 2009-06-17
EP2069519B1 (en) 2010-03-24
ES2340888T3 (en) 2010-06-10
US10683525B2 (en) 2020-06-16
JP2010504082A (en) 2010-02-12
WO2008034158A3 (en) 2008-07-17
AT504347B1 (en) 2008-05-15
DE602007005496D1 (en) 2010-05-06
ATE462012T1 (en) 2010-04-15
WO2008034158A8 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US10683525B2 (en) Method for producing 2-O-glyceryl-alpha-D-glucopyranoside
Goedl et al. Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of α-D-glucose 1-phosphate
US8173399B2 (en) Method for producing lacto-N-biose I and galacto-N-biose
JP4043015B2 (en) Method for producing glycosylated product
Luley-Goedl et al. Biocatalytic process for production of α-glucosylglycerol using sucrose phosphorylase
CN108350474B (en) Method for small molecule glycosylation
Antošová et al. Chromatographic separation and kinetic properties of fructosyltransferase from Aureobasidium pullulans
JP5677097B2 (en) Cellobiose 2-epimerase, production method and use thereof
Shah et al. Strategy for purification of aggregation prone β-glucosidases from the cell wall of yeast: a preparative scale approach
EP2186904B1 (en) Method for producing glucose derivatives
JP2017123844A (en) Method for producing glycoside
CN115819479A (en) Alpha-salidroside and preparation method and application thereof
Côté et al. Production of isomelezitose from sucrose by engineered glucansucrases
Wu et al. Revealing the critical role of Leucine145 of α-glucosidase AglA for enhancing α-arbutin production
KR20210096084A (en) Enzymatic production of tagatose
CN114015735B (en) Method for synthesizing aspergillus niger disaccharide by cascading and catalyzing sucrose phosphorylase and glucose isomerase
Kim et al. Immobilization on chitosan of a thermophilic trehalose synthase from Thermus thermophilus HJ6
CN114774495A (en) Double-enzyme co-immobilization synthesis method of uridine diphosphate-N-acetylglucosamine
Han et al. Affinity immobilization of dextransucrase on dextran-based support and the production of leucrose
CN116622664A (en) Method for generating C-glycoside through biocatalysis
JP2010104239A (en) Method for producing 1,5-d-anhydroglucitol
JP2005210925A (en) Method for transferring glucosyl group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07800190

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12442288

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009528546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007800190

Country of ref document: EP