WO2008032506A1 - Mineral water and process for producing the mineral water - Google Patents

Mineral water and process for producing the mineral water Download PDF

Info

Publication number
WO2008032506A1
WO2008032506A1 PCT/JP2007/065315 JP2007065315W WO2008032506A1 WO 2008032506 A1 WO2008032506 A1 WO 2008032506A1 JP 2007065315 W JP2007065315 W JP 2007065315W WO 2008032506 A1 WO2008032506 A1 WO 2008032506A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
soft porous
ancient marine
porous ancient
component
Prior art date
Application number
PCT/JP2007/065315
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Hirota
Morio Sekiguchi
Yoshinari Kato
Kenji Watanabe
Original Assignee
Osamu Hirota
Morio Sekiguchi
Yoshinari Kato
Kenji Watanabe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osamu Hirota, Morio Sekiguchi, Yoshinari Kato, Kenji Watanabe filed Critical Osamu Hirota
Publication of WO2008032506A1 publication Critical patent/WO2008032506A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • C02F1/688Devices in which the water progressively dissolves a solid compound
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/02Medicinal preparations containing materials or reaction products thereof with undetermined constitution from inanimate materials
    • A61K35/08Mineral waters; Sea water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment

Definitions

  • the present invention relates to a mineral water obtained by eluting a mineral component from a soft porous ancient marine humus and a method for producing the mineral water.
  • the soft porous ancient marine humus aluminum oxide (A1 2 0 3) 13. 0 wt%, silicon dioxide (Si0 2) 55.0 wt%, calcium oxide (CaO) 3.6 wt%, acid iron (Fe 2 0 3 ) 4.1% by weight, magnesium oxide (MgO) 1.6% by weight, manganese oxide (M ⁇ ) 0.04% by weight, sodium oxide (Na 2 0) 0.05% by weight, phosphorus oxide (P 2 0 5 ) 0.07% by weight %, Titanium oxide (TiO) 0.16 wt%, Cobalt oxide (Co0) 0.06 wt%, Sulfur (S) 1.1 wt%, Potassium (K) 0.473 wt%, Besides, barium, copper, nickel, It contains tin, strontium, vanadium, zinc, etc. and is used as a mineral eluent.
  • a calcined bioceramic obtained by mixing and calcining the soft porous ancient marine humus and Si 60 18 is used as a mineral water production or soil improver, and the calcined bioceramic is placed in distilled circulating water.
  • Silica anhydride (Si0 2 ) 6.6 mg / l, aluminum (Al) 0.76 mg / l, iron (Fe) 0.05 mg, calcium (Ca) 18 mg / l, magnesium (Mg) 0.64 mg / l, potassium (K) 0.68mg, titanium (Ti) 0.
  • Mineral water obtained by the above water treatment method is silicic anhydride (Si0 2 ) 6.6 mg / l, aluminum (A1) 0.76 mg, iron (Fe) 0.05 mg / l, calcium (Ca) 18 mg / l , Magnesium (Mg) 0.64 mg / l, Potassium (K) 0.668 mg / l, Titanium (Ti) 0.1 mg / l, Phosphorus (P) 0.13 mg / l, Sodium (Na) 1. 7mg / l, Manganese (Mn) 0. Olmg / 1, Cobalt (Co) 0. Olmg / 1, Barium (Ba) 0. Olmg / 1, Zinc (Zn) 0.
  • Olmg / 1 Tin (Sn) 0. Contains lmg / l, Panadium (V) 0. lmg / l, Nickel (Ni) 0. Olmg / 1 and Copper (Cu) 0. Olmg / 1. each mineral components in the case of the Si0 2 of about 22.8 wt% relative to ⁇ body weight 28.
  • A1 is about 2.6 wt%
  • Fe is from about 0.2 wt%
  • Mn Is about 0.03 wt% Co is about 0.03 wt%
  • Ba is about 0.03 wt%
  • Zn is about 0.03 wt%
  • Sn is about 0.3 wt%
  • V is about 0.3 wt%
  • M is about 0 03 wt%
  • Cu was about 0.03 wt%.
  • the present inventor also produced mineral water by eluting mineral components using soft porous ancient marine humus, and gave the mineral water to experimental animals such as mice. There were significant differences in growth between animals. It is not clear what effect the mineral water has on animal growth, but it is compared with the mineral water component obtained by the water treatment method described in Japanese Patent Laid-Open No. 6-9280. As a result, the mineral water contained an extremely large amount of Ca component.
  • the present invention provides mineral water in which the Ca component in the mineral component eluted from the soft porous ancient marine humus is contained in an amount of 90% or more based on the total amount of the mineral. It is. Disclosure of the invention
  • the Ca component accounts for 90% or more of the total amount of the mineral component.
  • mineral water according to claim 2 of the present invention the soft porous ancient marine humus minerals eluted from Si0 2, Al, Fe, Ca , Mg, K, Ti, P, Na, Mn , Co, Ba, Zn, Sn, V, Ni, and Cu, and the Ca component accounts for 90% or more of the total amount of the mineral component.
  • the method for producing mineral water according to claim 3 of the present invention is characterized in that raw water is attached to granular raw stone of soft porous ancient marine humus and soft porous ancient marine humus powder is adhered in layers.
  • Mineral components Si0 2 , Al, Fe, Ca, Mg, K, Ti, P through the lamination of fired soft porous ancient marine humic ceramics and the soft porous ancient marine humic material Na, Mn, Co, Ba, Zn, Sn, V, Ni and Cu are eluted to produce mineral water containing 90% or more of the Ca component relative to the total amount of the mineral component.
  • the method for producing mineral water according to claim 4 of the present invention is the method for producing mineral water according to claim 3, wherein the soft porous ancient marine humic ceramics has a diameter of 4 It uses sintered ceramics with a diameter of 5 to 30 mm, in which a soft porous ancient marine humic powder is attached in layers to a ⁇ 10mm granular rough.
  • the Ca component is contained in the mineral component eluted from the soft porous ancient marine humus. Mineral water with more than 90% share can be provided.
  • Mineral water according to the present embodiment 2 of a soft porous ancient marine humus Si0, Al, Fe, Ca, M g, K, Ti, P, Na, Mn, Co, Ba, Zn N Sn, V,
  • the mineral components of Ni and Cu are eluted so that the Ca component accounts for 90% by weight or more of the total amount of the mineral component.
  • the soft porous ancient marine humus is, for example, seafood, plankton, algae 'seaweeds, etc., which lived in the sea tens of millions of years ago in Tanakakura, Higashishirakawa-gun, Fukushima It can be collected at a fault that is said to be petrified sea mud.
  • the soft porous ancient marine humus contains aluminum oxide (A1 2 0 3 ) 13.0 wt%, silicon dioxide (Si0 2) 55.0 wt%, calcium oxide (CaO) 3. 6 wt%, iron oxide (Fe 2 0 3) 4. 1 wt 0/0, magnesium oxide (MgO) 1.
  • Si0 2 is 4 to 6 mg / l as a main component
  • A1 is less than about 0.05mg
  • Fe is less than about 0.05mg / l
  • Ca is 160 to 190mg
  • Mg is 2 to 4mg
  • K is 2 to 3mg
  • Ti is less than about 0.05mg / l
  • Na is 0.5 ⁇ l mg / l
  • Mn is less than about 0. Olmg / 1
  • Co less than about 0. 01m g / l
  • Ba is less than about 0.
  • Olmg / 1 Zn is less than about 0. Olmg / 1
  • Sn is about 0.
  • V is about 0.003 mg / l
  • Ni is less than about 0. Olmg / 1
  • Cu is less than about 0.001 mg / l.
  • the Ca component was about 93.02-94.81% by weight.
  • Si 0 2 as a main component is 4-6 mg / l, A1 less than about 0.05 mg / l, Fe less than about 0.05 mg, Ca 160-190 mg / l, Mg 2-4 mg / l, K 2-3 mg / l, Ti about 0 It has been confirmed that less than 05 mg / l, P is less than about 0.05 mg / l, Na is 0.5 to 1 mg / 1 and Mn is less than about 0. Olmg / 1.
  • the Ca component was about 93.04 to 94.84% by weight with respect to the total amount of the components 168.71 to 204.21 mg / l.
  • the mineral water is a laminate of soft porous ancient marine humic ceramics made by laminating raw water with soft porous ancient marine humic granular raw stones and laminating soft porous ancient marine humic powder in layers. If the mineral component of soft porous ancient marine humus is eluted in the raw water through the laminate composed of the calcined powder of soft porous ancient marine humus, the eluted mineral component (Si0 2 , Al, Fe, Ca, Mg, K, Ti ⁇ P, Na, Mn, Co, Ba, Zn, Sn, V, Ni, and Cu) Mineral water containing over 90% by weight of dissolved Ca component is generated with respect to the total amount. Can.
  • distilled water distilled water, tap water or well water may be used.
  • the soft porous ancient marine humic ceramics are prepared by placing granular soft porous ancient marine humic raw stones with a diameter of about 4 to 10 mm in a bowl-shaped iron dish container with a diameter of about 2000 mm, and rotating the bowl-shaped iron dish container at 30 rpm. Applying water in a mist to the extent that the granular rough is moist, and after stopping the spraying, uniformly distribute the powder of soft porous ancient marine humus with a diameter of 0.1 to 1 mm.
  • the spraying and sprinkling process to attach the powder to the rough is repeated to grow it into a ball with a diameter of 5-30 mm, and then the ball is placed in an oxygen atmosphere. It can be obtained by baking at a temperature of 800-900 ° C for 20-40 minutes. That is, the ceramic is obtained by forming a soft porous ancient marine humus powder in a granular soft porous ancient marine humic raw stone in a layered form and firing it.
  • the soft porous ancient marine humic powder is pulverized by drying 10 to 50 kg of the collected soft porous ancient marine humic substance with a tray-type far-infrared dryer (food dryer).
  • a vibrating sieve machine remove the sand and roots with a 4-mesh sieve, then remove further sand, etc. with a 32-mesh sieve, and apply to a 100-mesh sieve to obtain a powder. This can be obtained by evaporating and removing suspended impurities, drying the clay after evaporating with a tray-type far-infrared dryer, and pulverizing it again.
  • two rollers with different speeds in the container (for example, 60c / s and 80c / s) are contact-reversed, and the soft porous ancient marine humus sampled between the rollers is introduced, It can also be obtained by a method of sucking out dust that has been crushed and powdered and collecting it with a filter.
  • the soft porous ancient marine humus calcined powder is obtained by calcining the soft porous ancient marine humic powder in an oxygen atmosphere at a temperature of 500 to 600 ° C.
  • Two rollers are contact-reversed at 60c / s and 80c / s, soft porous ancient marine humus sampled between the rollers is inserted, and dust that is crushed by the roller's reversal and dances in powder is sucked out by a filter It was recovered to obtain a powder of 0.1 to 1 diameter of soft porous ancient marine humus.
  • a granular soft porous ancient marine humic raw stone with a diameter of about 4-10 mm Put it in a 2000mm bowl-shaped iron dish container, rotate the bowl-shaped iron dish container at 30rpm, and use the water droplets adhering to the rough as a binder to attach the powder of 0.1 to 1 diameter in a bowl shape.
  • the ball was baked in an oxygen atmosphere at a temperature of 800 to 900 ° C. for 20 to 40 minutes to obtain a soft porous ancient marine humic ceramic having a diameter of 5 to 30 mm. Further, the powder having a diameter of 1 to 1 mm was fired in an oxygen atmosphere at a temperature of 500 to 600 ° C. to obtain a fired powder.
  • Table 1 shows the eluted mineral components in Comparative Examples 1 to 3.
  • the Ca component in Example 1 is 167/1 76.85, that is, 94.43% by weight in the total amount of SiO to Mn mineral, or 167 / 176.904, that is, 94 in the total amount of SiO to Cu mineral. . 40 by weight 0/0 170/180. 63, i.e., 94.12% by weight in an Ca component SiO ⁇ Mn mineral total amount in example 2, in SiO ⁇ Cu mineral total amount 170/180. 684, i.e. 94 09 wt%, Ca component in Example 3 is 174 / 184.77 in total amount of SiO to Mn minerals, ie 94.17 wt%, SiO
  • the total weight is 178 89.304, ie 94.03 wt%
  • the Ca component in Example 5 is 181 / 192.89, ie 93.84 wt%
  • the total amount of SiO to Cu mineral is SiO1 / Mn mineral total 181/1 92.944, ie 93.81% by weight
  • Ca component in Comparative Example 1 is 62.8 / 92.93, ie 67.58% by weight, and SiO to Cu mineral 62.
  • Ca component in Comparative Example 2 is 155.1 1 / 18.2 in the total amount of SiO to Mn mineral, ie 83. 30 wt%, SiO to Cu mineral total 155. 1/186. 254 in terms of quantity, ie 83. 27% by weight, 3 components in Comparative Example 3 are 18 / 28.67 in total amount of 5 ⁇ -1 ⁇ mineral, ie 62. 78% by weight, 18 / 28.9 for total SiO to Cu minerals 11, ie 62.27% by weight.
  • the A1 component, Fe component, Ti component and P component of 0.05> mg 8 are 0.05 mg / l, and the Mn component, Co component, Ba component, Zn component, Sn component and Ni component of 0.01>
  • the mg / l was calculated as 0. Olmg-8, and the 0.001> mg / l of the Cu component was calculated as 0.OOlmg / 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Nutrition Science (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Mineral water which contains mineral ingredients released from a soft porous ancient marine humic substance and including a calcium ingredient, the calcium ingredient accounting for at least 90% of the mineral ingredients. The mineral water contains SiO2, Al, Fe, Ca, Mg, K, Ti, P, Na, and Mn which are mineral ingredients released from a soft porous ancient marine humic substance and in which the calcium ingredient accounts for 90 wt.% or more of the total amount of the mineral ingredients. Also provided is a process for mineral water production which comprises passing raw water through superposed layers of a soft porous ancient marine humic substance ceramic obtained by adhering a powder of a soft porous ancient marine humic substance in a layer arrangement to a particulate ore of a soft porous ancient marine humic substance and burning them and through superposed layers comprising a burned powder of a soft porous ancient marine humic substance to dissolve mineral ingredients, i.e., SiO2, Al, Fe, Ca, Mg, K, Ti, P, Na, Mn, Co, Ba, Zn, Sn, V, Ni, and Cu, in the raw water. Thus, mineral water containing the calcium ingredient in an amount of 90 wt.% or larger based on the total amount of the mineral ingredients is produced.

Description

明 細 書 ミネラル水及ぴ該ミネラル水の製造方法 技術分野  Description Mineral water and method for producing the mineral water Technical Field
本発明は、 軟質多孔性古代海洋腐植質よりミネラル成分を溶出させてなるミネラ ル水及ぴ該ミネラル水の製造方法に関するものである。 背景技術  The present invention relates to a mineral water obtained by eluting a mineral component from a soft porous ancient marine humus and a method for producing the mineral water. Background art
周知の通り、 軟質多孔性古代海洋腐植質には、 酸化アルミニウム (A1203) 13. 0重量%、 二酸化珪素 (Si02) 55.0重量%、 酸化カルシウム (CaO) 3.6重量%、 酸 化鉄 (Fe203) 4.1重量%、 酸化マグネシウム (MgO) 1.6重量%、 酸化マンガン (M ηθ) 0.04重量%、 酸化ナトリウム (Na20) 0.05重量%、 酸化リン (P205) 0.07重量 %、 酸化チタン (TiO) 0.16重量%、 酸化コバルト (Co0) 0.06重量%、 硫黄 (S) 1. 1重量%、 カリウム (K) 0.473重量%、 及ぴ、 その外、 バリウム、 銅、 ニッケル、 錫、 ス トロンチウム、 バナジウム、 亜鉛等が含まれており、 ミネラル溶出剤として 用いられている。 As is well known, the soft porous ancient marine humus, aluminum oxide (A1 2 0 3) 13. 0 wt%, silicon dioxide (Si0 2) 55.0 wt%, calcium oxide (CaO) 3.6 wt%, acid iron (Fe 2 0 3 ) 4.1% by weight, magnesium oxide (MgO) 1.6% by weight, manganese oxide (M ηθ) 0.04% by weight, sodium oxide (Na 2 0) 0.05% by weight, phosphorus oxide (P 2 0 5 ) 0.07% by weight %, Titanium oxide (TiO) 0.16 wt%, Cobalt oxide (Co0) 0.06 wt%, Sulfur (S) 1.1 wt%, Potassium (K) 0.473 wt%, Besides, barium, copper, nickel, It contains tin, strontium, vanadium, zinc, etc. and is used as a mineral eluent.
また、 前記軟質多孔性古代海洋腐植質と Si6018とを混合して焼成した焼成バイオ セラミックをミネラル水の作出や土壌の改善剤として用い、 当該焼成バイオセラ ミ ックを蒸留循環水内に 2時間浸漬させて無水珪酸 (Si02) 6.6mg/l、 アルミ二 ゥム (Al) 0.76mg/l、 鉄 (Fe) 0.05mg 、 カルシウム (Ca) 18mg/l、 マグネシウム (Mg) 0.64mg/l、 カリ ウム (K) 0.68mg八、 チタン (Ti) 0. lmg/l、 リン (P) 0.1 3mg/l、 ナトリ ウム (Na) 1.7mg/l、 マンガン (Mn) 0.01mg/l、 コバルト (Co) 0.01 mg/l、 バリウム (Ba) 0.01mg/l、 亜鉛 (Zn) 0.01mg/l、 錫 (Sn) 0. lmg/l、 パナジ ゥム (V ) 0. lmg/l、 ニッケル (Ni) 0. Olmg/1及び銅 (Cu) 0. Olmg/1のミネラルを 溶出させる水処理方法が提案されている (日本国特開平 6— 9 2 8 0号公報参照)。 前記水処理方法により得られるミネラル水は、 無水珪酸 (Si02) 6. 6mg/l、 アル ミニゥム (A1) 0. 76mg八、 鉄 (Fe) 0. 05mg/l、 カルシウム (Ca) 18mg/l、 マグネシ ゥム (Mg) 0. 64mg/l、 カリウム (K) 0. 68mg/l、 チタン (Ti) 0. lmg/l、 リン (P ) 0. 13mg/l、 ナトリウム (Na) 1. 7mg/l、 マンガン (Mn) 0. Olmg/1, コバルト (Co) 0. Olmg/1, バリウム (Ba) 0. Olmg/1, 亜鉛 (Zn) 0. Olmg/1, 錫 (Sn) 0. lmg/l、 パナ ジゥム (V ) 0. lmg/l、 ニッケル (Ni) 0. Olmg/1及び銅 (Cu) 0. Olmg/1を含有して おり、 当該ミネラル成分の合計量を全体量とした場合の各ミネラル成分は該全体量 28. 92mg/lに対して Si02が約 22. 8重量%、 A1が約 2. 6重量%、 Feが約 0. 2重量%、 Ca が約 62. 2重量%、 Mgが約 2. 2重量%、 Kが約 2. 4重量%、 Tiが約 0. 3重量%、 Pが約 0. 4重量%, が約5. 9重量%、 Mnが約 0. 03重量%、 Coが約 0. 03重量%、 Baが約 0. 03重 量%、 Znが約 0. 03重量%、 Snが約 0. 3重量%、 Vが約 0. 3重量%、 Mが約 0. 03重量% 及び Cuが約 0. 03重量%であった。 In addition, a calcined bioceramic obtained by mixing and calcining the soft porous ancient marine humus and Si 60 18 is used as a mineral water production or soil improver, and the calcined bioceramic is placed in distilled circulating water. Silica anhydride (Si0 2 ) 6.6 mg / l, aluminum (Al) 0.76 mg / l, iron (Fe) 0.05 mg, calcium (Ca) 18 mg / l, magnesium (Mg) 0.64 mg / l, potassium (K) 0.68mg, titanium (Ti) 0. lmg / l, phosphorus (P) 0.1 3mg / l, sodium (Na) 1.7mg / l, manganese (Mn) 0.01mg / l, cobalt (Co) 0.01 mg / l, Barium (Ba) 0.01 mg / l, Zinc (Zn) 0.01 mg / l, Tin (Sn) 0. lmg / l, Panaji A water treatment method has been proposed to elute the minerals of hum (V) 0. lmg / l, nickel (Ni) 0. Olmg / 1 and copper (Cu) 0. Olmg / 1. 9 2 8 0). Mineral water obtained by the above water treatment method is silicic anhydride (Si0 2 ) 6.6 mg / l, aluminum (A1) 0.76 mg, iron (Fe) 0.05 mg / l, calcium (Ca) 18 mg / l , Magnesium (Mg) 0.64 mg / l, Potassium (K) 0.668 mg / l, Titanium (Ti) 0.1 mg / l, Phosphorus (P) 0.13 mg / l, Sodium (Na) 1. 7mg / l, Manganese (Mn) 0. Olmg / 1, Cobalt (Co) 0. Olmg / 1, Barium (Ba) 0. Olmg / 1, Zinc (Zn) 0. Olmg / 1, Tin (Sn) 0. Contains lmg / l, Panadium (V) 0. lmg / l, Nickel (Ni) 0. Olmg / 1 and Copper (Cu) 0. Olmg / 1. each mineral components in the case of the Si0 2 of about 22.8 wt% relative to該全body weight 28. 92mg / l, A1 is about 2.6 wt%, Fe is from about 0.2 wt%, Ca of about 62 2% by weight, Mg about 2.2%, K about 2.4%, Ti about 0.3%, P about 0.4%, about 5.9%, Mn Is about 0.03 wt% Co is about 0.03 wt%, Ba is about 0.03 wt%, Zn is about 0.03 wt%, Sn is about 0.3 wt%, V is about 0.3 wt%, M is about 0 03 wt% and Cu was about 0.03 wt%.
本発明者においても、 軟質多孔性古代海洋腐植質を用いてミネラル成分を溶出さ せてミネラル水を生成し、 当該ミネラル水をマウス等の実験動物に与えたところ 当該ミネラル水を与えなかった実験動物との間で成長において格段の相違が見 られた。 当該ミネラル水が動物の成長にいかなる影響を及ぼしているのかは解 らないが、 日本国特開平 6— 9 2 8 0号公報に記載の前記水処理方法により得ら れるミネラル水の成分と比較したところ当該ミネラル水においては Ca成分を極 端に多く含んでいた。  The present inventor also produced mineral water by eluting mineral components using soft porous ancient marine humus, and gave the mineral water to experimental animals such as mice. There were significant differences in growth between animals. It is not clear what effect the mineral water has on animal growth, but it is compared with the mineral water component obtained by the water treatment method described in Japanese Patent Laid-Open No. 6-9280. As a result, the mineral water contained an extremely large amount of Ca component.
そこで、 本発明は、 軟質多孔性古代海洋腐植質から溶出したミネラル成分中の Ca 成分が該ミネラル全成分量に対して 90%以上含まれているミネラル水を提供するも のである。 発明の開示 Therefore, the present invention provides mineral water in which the Ca component in the mineral component eluted from the soft porous ancient marine humus is contained in an amount of 90% or more based on the total amount of the mineral. It is. Disclosure of the invention
本発明の請求の範囲第 1項に係るミネラル水は、 軟質多孔性古代海洋腐植質より 溶出させたミネラル成分 Si02、 Al、 Fe、 Ca、 Mg、 K、 Ti、 P、 Na及び Mnを含有して いると共に当該 Ca成分が当該ミネラル成分合計量の 90%以上を占めているものであ る。 Mineral water according to claim 1, wherein the present invention, containing the soft porous ancient marine humus minerals eluted from Si0 2, Al, Fe, Ca , Mg, K, Ti, P, the Na and Mn In addition, the Ca component accounts for 90% or more of the total amount of the mineral component.
また、 本発明の請求の範囲第 2項に係るミネラル水は、 軟質多孔性古代海洋腐植 質より溶出させたミネラル成分 Si02、 Al、 Fe、 Ca、 Mg、 K、 Ti、 P、 Na、 Mn、 Co、 Ba、 Zn、 Sn、 V、 Ni及び Cuを含有していると共に当該 Ca成分が当該ミネラル成分合 ^"量の 90%以上を占めているものである。 Also, mineral water according to claim 2 of the present invention, the soft porous ancient marine humus minerals eluted from Si0 2, Al, Fe, Ca , Mg, K, Ti, P, Na, Mn , Co, Ba, Zn, Sn, V, Ni, and Cu, and the Ca component accounts for 90% or more of the total amount of the mineral component.
また、 本発明の請求の範囲第 3項に係るミネラル水の製造方法は、 原水を軟質多 孔性古代海洋腐植質の粒状原石に軟質多孔性古代海洋腐植質の粉末を層状に付着さ せて焼成してなる軟質多孔性古代海洋腐植質セラミックスの積層と軟質多孔性古代 海洋腐植質の焼成粉末からなる積層とに通してミネラル成分 Si02、 Al、 Fe、 Ca、 Mg、 K、 Ti、 P、 Na、 Mn、 Co、 Ba、 Zn、 Sn、 V、 Ni及ぴ Cuを溶出させて当該ミネラル 成分合計量に対して 90%以上の前記 Ca成分を含有するミネラル水を生成させるもの である。 Further, the method for producing mineral water according to claim 3 of the present invention is characterized in that raw water is attached to granular raw stone of soft porous ancient marine humus and soft porous ancient marine humus powder is adhered in layers. Mineral components Si0 2 , Al, Fe, Ca, Mg, K, Ti, P through the lamination of fired soft porous ancient marine humic ceramics and the soft porous ancient marine humic material Na, Mn, Co, Ba, Zn, Sn, V, Ni and Cu are eluted to produce mineral water containing 90% or more of the Ca component relative to the total amount of the mineral component.
さらに、 本発明の請求の範囲第 4項に係るミネラル水の製造方法は、 前記請求の 範囲第 3項に係るミネラル水の製造方法において、 軟質多孔性古代海洋腐植質セラ ミ ックスとして、 直径 4〜10mmの粒状原石に軟質多孔性古代海洋腐植質の粉末を層 状に付着させた直径 5〜30讓の焼成セラミックスを用いたものである。  Further, the method for producing mineral water according to claim 4 of the present invention is the method for producing mineral water according to claim 3, wherein the soft porous ancient marine humic ceramics has a diameter of 4 It uses sintered ceramics with a diameter of 5 to 30 mm, in which a soft porous ancient marine humic powder is attached in layers to a ~ 10mm granular rough.
本発明によれば、 軟質多孔性古代海洋腐植質から溶出したミネラル成分中に Ca成 分が 90%以上占めているミネラル水を提供することができる。 発明を実施するための最良の形態 According to the present invention, the Ca component is contained in the mineral component eluted from the soft porous ancient marine humus. Mineral water with more than 90% share can be provided. BEST MODE FOR CARRYING OUT THE INVENTION
本実施の形態に係るミネラル水は、軟質多孔性古代海洋腐植質から Si02、 Al、 Fe、 Ca、 Mg、 K、 Ti、 P、 Na、 Mn、 Co、 Ba、 ZnN Sn、 V、 Ni及び Cuのミネラル成分を当 該 Ca成分が当該ミネラル成分合計量の 90重量%以上を占めるように溶出したもので ある。 Mineral water according to the present embodiment, 2 of a soft porous ancient marine humus Si0, Al, Fe, Ca, M g, K, Ti, P, Na, Mn, Co, Ba, Zn N Sn, V, The mineral components of Ni and Cu are eluted so that the Ca component accounts for 90% by weight or more of the total amount of the mineral component.
前記軟質多孔性古代海洋腐植質は、 例えば、 日本国福島県東白川郡棚倉町の山地 一帯の数千万年前に海中に生息していた魚介類 · プランク トン ·藻類 '海藻など が堆積 ·化石化した海の泥であるといわれている断層にて採取することができ、 当該軟質多孔性古代海洋腐植質には、 酸化アルミニウム (A1203) 13. 0重量%、 二 酸化珪素 (Si02) 55. 0重量%、 酸化カルシウム (CaO) 3. 6重量%、 酸化鉄 (Fe203) 4. 1重量0 /0、 酸化マグネシウム (MgO) 1. 6重量%、 酸化マンガン (MnO) 0. 04重量0 /0、 酸化ナトリゥム (Na20) 0. 05重量%、 酸化リン (P205) 0. 07重量%、 酸化チタン (T iO) 0. 16重量%、 酸化コバルト (CoO) 0. 06重量%、 硫黄 (S) 1. 1重量%、 力リウ ム (K) 0. 473重量%、 及び、 その外、 バリウム (Ba) 0. 007重量%、 銅 (Cu) 0. 001 重量%、 ニッケル (Ni) 0. 002重量0/。、 錫 (Sn) 0. 006重量%、 ストロンチウム (Sr) 0. 007重量%、 バナジウム (V ) 0. 003重量%、 亜鉛 (Zn) 0. 006重量%等が含まれ ている。 The soft porous ancient marine humus is, for example, seafood, plankton, algae 'seaweeds, etc., which lived in the sea tens of millions of years ago in Tanakakura, Higashishirakawa-gun, Fukushima It can be collected at a fault that is said to be petrified sea mud. The soft porous ancient marine humus contains aluminum oxide (A1 2 0 3 ) 13.0 wt%, silicon dioxide (Si0 2) 55.0 wt%, calcium oxide (CaO) 3. 6 wt%, iron oxide (Fe 2 0 3) 4. 1 wt 0/0, magnesium oxide (MgO) 1. 6 wt%, manganese oxide (MnO ) 0.04 wt 0/0, oxide Natoriumu (Na 2 0) 0. 05% by weight, phosphorylated (P 2 0 5) 0. 07% by weight of titanium oxide (T iO) 0. 16 wt%, cobalt oxide (CoO) 0.06 wt%, Sulfur (S) 1.1 wt%, Powered Rium (K) 0.473 wt%, and Barium (Ba) 0.007 wt%, Copper (Cu) 0 001 wt%, nickel (Ni) 0. 002 weight 0 /. , Tin (Sn) 0.006% by weight, strontium (Sr) 0.007% by weight, vanadium (V) 0.003% by weight, zinc (Zn) 0.006% by weight, and the like.
溶出 Ca成分が溶出ミネラル成分合計量の 90重量%以上を占めるように前記軟質多 孔性古代海洋腐植質から抽出した当該ミネラル成分中には、 主成分として Si02が 4 〜6 mg/l、 A1が約 0. 05mg八未満、 Feが約 0. 05mg/l未満、 Caが 160〜190mg八、 Mgが 2 〜4 mg八、 Kが 2〜3 mg 、 Tiが約 0. 05mg/l未満、 Pが約 0. 05mg/l未満、 Naが 0. 5 〜l mg/l、 Mnが約 0. Olmg/1未満、 Coが約 0. 01mg/l未満、 Baが約 0. Olmg/1未満、 Znが 約 0. Olmg/1未満、 Snが約 0. Olmg/1未満、 Vが約 0. 003mg/l、 Niが約 0. Olmg/1未満及 ぴ Cuが約 0. 001mg/l未満含まれていることを確認しており、 当該ミネラル成分の合 計量 168. 764〜204. 264mg/lに対しては Ca成分が約 93. 02〜94. 81重量%であった。 また、 溶出 Ca成分が溶出ミネラル成分合計量の 90重量%以上を占めるように前記 軟質多孔性古代海洋腐植質から抽出した当該ミネラル成分中には、 主成分として Si 02が 4〜6 mg/l、 A1が約 0. 05mg/l未満、 Feが約 0. 05mg 未満、 Caが 160〜190mg/l、 Mgが 2〜4 mg/l、 Kが 2〜3 mg/l、 Tiが約 0. 05mg/l未満、 Pが約 0. 05mg/l未満、 Na が 0. 5〜 1 mg/1及び Mnが約 0. Olmg/1未満含まれていることを確認しており、 当該ミ ネラル成分の合計量 168. 71〜204. 21mg/lに対しては Ca成分が約 93. 04〜94. 84重量% であった。 In the mineral component extracted from the soft porous ancient marine humus so that the eluted Ca component accounts for 90% by weight or more of the total amount of the eluted mineral component, Si0 2 is 4 to 6 mg / l as a main component, A1 is less than about 0.05mg, Fe is less than about 0.05mg / l, Ca is 160 to 190mg, Mg is 2 to 4mg, K is 2 to 3mg, Ti is less than about 0.05mg / l P is less than about 0.05 mg / l, Na is 0.5 ~l mg / l, Mn is less than about 0. Olmg / 1, Co less than about 0. 01m g / l, Ba is less than about 0. Olmg / 1, Zn is less than about 0. Olmg / 1, Sn is about 0. Less than Olmg / 1, V is about 0.003 mg / l, Ni is less than about 0. Olmg / 1 and Cu is less than about 0.001 mg / l. For the total weight of 168.764-204.264 mg / l, the Ca component was about 93.02-94.81% by weight. In addition, in the mineral component extracted from the soft porous ancient marine humus so that the eluted Ca component accounts for 90% by weight or more of the total amount of the eluted mineral component, Si 0 2 as a main component is 4-6 mg / l, A1 less than about 0.05 mg / l, Fe less than about 0.05 mg, Ca 160-190 mg / l, Mg 2-4 mg / l, K 2-3 mg / l, Ti about 0 It has been confirmed that less than 05 mg / l, P is less than about 0.05 mg / l, Na is 0.5 to 1 mg / 1 and Mn is less than about 0. Olmg / 1. The Ca component was about 93.04 to 94.84% by weight with respect to the total amount of the components 168.71 to 204.21 mg / l.
前記ミネラル水は、 原水を軟質多孔性古代海洋腐植質の粒状原石に軟質多孔性古 代海洋腐植質の粉末を層状に付着させて焼成してなる軟質多孔性古代海洋腐植質セ ラミックスの積層と、 軟質多孔性古代海洋腐植質の焼成粉末からなる積層とに通し て当該原水に軟質多孔性古代海洋腐植質のミネラル成分を溶出させれば、 溶出ミネ ラル成分 (Si02、 Al、 Fe、 Ca、 Mg、 K、 Tiゝ P、 Na、 Mn、 Co、 Ba、 Zn、 Sn、 V、 Ni 及び Cu) 合計量に对して 90重量%以上の溶出 Ca成分を含有するミネラル水を生成す ることができる。 The mineral water is a laminate of soft porous ancient marine humic ceramics made by laminating raw water with soft porous ancient marine humic granular raw stones and laminating soft porous ancient marine humic powder in layers. If the mineral component of soft porous ancient marine humus is eluted in the raw water through the laminate composed of the calcined powder of soft porous ancient marine humus, the eluted mineral component (Si0 2 , Al, Fe, Ca, Mg, K, Ti ゝ P, Na, Mn, Co, Ba, Zn, Sn, V, Ni, and Cu) Mineral water containing over 90% by weight of dissolved Ca component is generated with respect to the total amount. Can.
前記原水として、 蒸留水や水道水や井戸水を使用すればよい。  As the raw water, distilled water, tap water or well water may be used.
前記軟質多孔性古代海洋腐植質セラミックスは、 直径約 4〜10匪の粒状軟質多孔 性古代海洋腐植質原石を直径約 2000mmのお椀状鉄製皿容器に入れ、 当該お椀状鉄製 皿容器を 30rpmで回転させ、 前記粒状原石が湿り気を帯びる程度に水分を霧状に与 え、 噴霧を止めた後に軟質多孔性古代海洋腐植質の直径 0. 1〜1讓の粉末を均一に 振り掛け、 原石に付着した水滴をパインダ一として当該原石に当該粉末を付着させ る噴霧と振り掛け工程を繰り返して直径 5〜30删のボールに成長させ、 この後、 当 該ボールを酸素雰囲気中にて温度 800〜900°Cで 20〜40分間焼成することにより得る ことができる。 即ち、 当該セラミックスは粒状軟質多孔性古代海洋腐植質原石に軟 質多孔性古代海洋腐植質の 0. 1〜 1 删粉末を層状に形成して焼成したものである。 前記軟質多孔性古代海洋腐植質の粉末は、 採取した軟質多孔性古代海洋腐植質 1 0〜50kgをトレー方式遠赤外線乾燥機 (フードドライヤー) で乾燥させて粉砕し、 次に、 当該粉砕物を振動篩機によって 4メッシュの篩で砂や根っこ取り除く篩い分 けを行い、 続いて、 32メッシュの篩で更に砂等を取り除き、 100メッシュの篩に掛 けて粉末を得、 最後に、 当該粉末を水簸して浮遊不純物を取り除き、 水簸後の粘土 をトレー方式遠赤外線乾燥機で乾燥させて再度粉砕することにより得ることができ る。 なお、 容器内でスピードの違う (例えば、 60c/sと 80c/s) ローラ 2本を接触反 転させ、 該ローラ間に採取した軟質多孔性古代海洋腐植質を投入し、 ローラの反 転により潰されて粉末状に舞うほこりを吸い出しフィルタ一にて回収する方法によ り得ることもできる。 The soft porous ancient marine humic ceramics are prepared by placing granular soft porous ancient marine humic raw stones with a diameter of about 4 to 10 mm in a bowl-shaped iron dish container with a diameter of about 2000 mm, and rotating the bowl-shaped iron dish container at 30 rpm. Applying water in a mist to the extent that the granular rough is moist, and after stopping the spraying, uniformly distribute the powder of soft porous ancient marine humus with a diameter of 0.1 to 1 mm. Sprinkling, using the water droplets attached to the rough as a binder, the spraying and sprinkling process to attach the powder to the rough is repeated to grow it into a ball with a diameter of 5-30 mm, and then the ball is placed in an oxygen atmosphere. It can be obtained by baking at a temperature of 800-900 ° C for 20-40 minutes. That is, the ceramic is obtained by forming a soft porous ancient marine humus powder in a granular soft porous ancient marine humic raw stone in a layered form and firing it. The soft porous ancient marine humic powder is pulverized by drying 10 to 50 kg of the collected soft porous ancient marine humic substance with a tray-type far-infrared dryer (food dryer). Using a vibrating sieve machine, remove the sand and roots with a 4-mesh sieve, then remove further sand, etc. with a 32-mesh sieve, and apply to a 100-mesh sieve to obtain a powder. This can be obtained by evaporating and removing suspended impurities, drying the clay after evaporating with a tray-type far-infrared dryer, and pulverizing it again. In addition, two rollers with different speeds in the container (for example, 60c / s and 80c / s) are contact-reversed, and the soft porous ancient marine humus sampled between the rollers is introduced, It can also be obtained by a method of sucking out dust that has been crushed and powdered and collecting it with a filter.
さらに、 前記軟質多孔性古代海洋腐植質の焼成粉末は、 軟質多孔性古代海洋腐植 質の前記粉末を酸素雰囲気中にて温度 500〜 600°Cで焼成したものである。  Furthermore, the soft porous ancient marine humus calcined powder is obtained by calcining the soft porous ancient marine humic powder in an oxygen atmosphere at a temperature of 500 to 600 ° C.
実施例:!〜 5 .  Example:! ~ Five .
ローラ 2本を 60c/sと 80c/sにより接触反転させ、 該ローラ間に採取した軟質多孔 性古代海洋腐植質を投入してローラの反転により潰されて粉末状に舞うほこりを 吸い出しフィルターにて回収して軟質多孔性古代海洋腐植質の直径 0. 1〜 1議の 粉末を得た。 次に、 直径約 4〜 10mmの粒状軟質多孔性古代海洋腐植質原石を直径約 2000mmのお椀状鉄製皿容器に入れてお椀状鉄製皿容器を 30rpmで回転させ、 当該原 石に付着した水滴をパインダ一として前記直径 0. 1〜 1議の粉末を付着させてボー ル状に成長させ、 当該ボールを酸素雰囲気中にて温度 800〜900°Cで 20〜40分間焼成 して直径 5 〜30脑の軟質多孔性古代海洋腐植質セラミックスを得た。 さらに、 前記 直径 1〜 1 mmの粉末を酸素雰囲気中にて温度 500〜600°Cで焼成して焼成粉末を得 た。 Two rollers are contact-reversed at 60c / s and 80c / s, soft porous ancient marine humus sampled between the rollers is inserted, and dust that is crushed by the roller's reversal and dances in powder is sucked out by a filter It was recovered to obtain a powder of 0.1 to 1 diameter of soft porous ancient marine humus. Next, a granular soft porous ancient marine humic raw stone with a diameter of about 4-10 mm Put it in a 2000mm bowl-shaped iron dish container, rotate the bowl-shaped iron dish container at 30rpm, and use the water droplets adhering to the rough as a binder to attach the powder of 0.1 to 1 diameter in a bowl shape. The ball was baked in an oxygen atmosphere at a temperature of 800 to 900 ° C. for 20 to 40 minutes to obtain a soft porous ancient marine humic ceramic having a diameter of 5 to 30 mm. Further, the powder having a diameter of 1 to 1 mm was fired in an oxygen atmosphere at a temperature of 500 to 600 ° C. to obtain a fired powder.
続いて、 水道水を前記軟質多孔性古代海洋腐植質セラミックスの積層と、 前記焼 成粉末からなる積層とに 5 〜10リットル 分のパッチ処理により通過させて当該水 道水に軟質多孔性古代海洋腐植質のミネラル成分 Si02、 Al、 Fe、 Ca、 Mg、 K、 Ti、 P、 Na、 Mn、 Co、 Ba、 Zn、 Sn、 V、 Ni及び Cuを溶出させて各ミネラル水を生成した (実施例 1 :直径 5 mmセラミックス、 実施例 2 :直径 8腿セラミックス、 実施例 3 :直径 10匪セラミックス、 実施例 4 :直径 20讓セラミックス、 実施例 5 :直径 30mm セラミ ックス)。 実施例 1 〜 5における溶出ミネラル成分を表 1に示す。 なお、 ミ ネラル成分分析は、 SiO、 Al、 Ti、 P及び Snは比色法、 他は原子吸光光度法によつ た。 Subsequently, tap water is passed through the laminate of the soft porous ancient marine humic ceramics and the laminate composed of the calcined powder by a patch treatment of 5 to 10 liters, and the soft porous ancient ocean is passed into the water. minerals Si0 2 of humus, Al, Fe, Ca, M g, K, Ti, to produce P, Na, Mn, Co, Ba, Zn, Sn, V, each mineral water to elute the Ni and Cu (Example 1: 5 mm diameter ceramics, Example 2: 8 thigh ceramics, Example 3: 10 mm diameter ceramics, Example 4: 20 mm diameter ceramics, Example 5: 30 mm diameter ceramics). The eluted mineral components in Examples 1 to 5 are shown in Table 1. Mineral component analysis was performed by a colorimetric method for SiO, Al, Ti, P and Sn, and by atomic absorption spectrophotometry for others.
比較例 1  Comparative Example 1
水道水を直径約 4〜10讓の粒状軟質多孔性古代海洋腐植質原石の積層に 5〜10リ ットル Z分の割合で浸漬して当該水道水に軟質多孔性古代海洋腐植質のミネラル成 分 Si02、 Al、 Fe、 Ca、 Mg、 K、 Ti、 P、 Na、 Mn、 Co、 Ba、 Zn、 Sn、 V、 Ni及び Cuが 溶出したミネラル溶出水道水を生成した。 Mineral composition of soft porous ancient marine humus in tap water by immersing tap water in a layer of granular soft porous ancient marine humus rough with a diameter of about 4-10 mm in a ratio of 5-10 liters Z. Si0 2, Al, Fe, Ca , produced Mg, K, Ti, P, Na, Mn, Co, Ba, Zn, Sn, V, mineral dissolution tap water Ni and Cu was eluted.
比較例 2  Comparative Example 2
水道水を前記 0. 1〜 l mm焼成粉末からなる積層に 5 〜10リットル/分の割合で浸 漬して当該水道水に軟質多孔性古代海洋腐植質のミネラル成分 Si02、 Al、 Fe、 Ca、 Mg、 :、 Ti、 P、 Na、 Mn、 Co、 Ba、 Zn、 Sn、 V、 Ni及ぴ Cuが溶出したミネラル溶出 水道水を生成した。 Minerals Si0 2 of the tap water the 0.. 1 to l mm fired powder consisting laminated immersed at a rate of 5-10 l / min soft porous to the tap water ancient marine humus, Al, Fe, Ca, Mineral-eluting tap water from which Mg,:, Ti, P, Na, Mn, Co, Ba, Zn, Sn, V, Ni and Cu were eluted was generated.
比較例 3  Comparative Example 3
日本国特開平 6 _ 9 2 8 0号公報に記載されている焼成バイオセラミックを蒸留 循環水内に 2時間浸漬させることにより確認されている当該公報記載のミネラ ル溶出量。  Mineral elution amount described in the publication, which is confirmed by immersing the fired bioceramic described in JP-A-6_9280 in Japan for 2 hours in distilled circulating water.
比較例 1〜 3における溶出ミネラル成分を表 1に示す。 Table 1 shows the eluted mineral components in Comparative Examples 1 to 3.
Figure imgf000010_0001
Figure imgf000010_0001
表 1に示すように、 実施例 1における Ca成分は SiO〜Mnミネラル合計量では 167/1 76. 85、 即ち 94. 43重量%, SiO〜Cuミネラル合計量では 167/176. 904、 即ち 94. 40重 量0 /0、 実施例 2における Ca成分は SiO〜Mnミネラル合計量では 170/180. 63、 即ち 94. 12重量%, SiO〜Cuミネラル合計量では 170/180. 684、 即ち 94. 09重量%、 実施例 3 における Ca成分は SiO〜Mnミネラル合計量では 174/184. 77、 即ち 94. 17重量%, SiOAs shown in Table 1, the Ca component in Example 1 is 167/1 76.85, that is, 94.43% by weight in the total amount of SiO to Mn mineral, or 167 / 176.904, that is, 94 in the total amount of SiO to Cu mineral. . 40 by weight 0/0 170/180. 63, i.e., 94.12% by weight in an Ca component SiO~Mn mineral total amount in example 2, in SiO~Cu mineral total amount 170/180. 684, i.e. 94 09 wt%, Ca component in Example 3 is 174 / 184.77 in total amount of SiO to Mn minerals, ie 94.17 wt%, SiO
〜Cuミネラル合計量では 174/184. 824、 即ち 94. 14重量%、 実施例 4における Ca成分 は SiO〜Mnミネラル合計量では 178/189. 25、 即ち 94. 06重量0ん SiO〜Cuミネラル合 計量では 178 89. 304、 即ち 94. 03重量%、 実施例 5における Ca成分は SiO〜Mnミネ ラル合計量では 181/192. 89、 即ち 93. 84重量%, SiO〜Cuミネラル合計量では 181/1 92. 944、 即ち 93. 81重量%、 比較例 1における Ca成分は SiO〜Mnミネラル合計量では 62. 8/92. 93、 即ち 67. 58重量%, SiO〜Cuミネラル合計量では 62. 8/92. 984、 即ち 67. 54重量%、 比較例 2における Ca成分は SiO〜Mnミネラル合計量では 155. 1/186. 2、 即 ち 83. 30重量%, SiO〜Cuミネラル合計量では 155. 1/186. 254、 即ち 83. 27重量%、 比 較例 3にぉけるじ3成分は5^〜1^ミネラル合計量では18/28. 67、 即ち 62. 78重量%, SiO〜Cuミネラル合計量では 18/28. 911、 即ち 62. 27重量%であった。 なお、 A1成分、 Fe成分、 Ti成分及び P成分の 0. 05 >mg八は 0. 05mg/lとし、 Mn成分、 Co成分、 Ba成分、 Zn成分、 Sn成分及び Ni成分の 0. 01〉mg/lは 0. Olmg八とし、 Cu成分の 0. 001 >mg/lは 0. OOlmg/1として算出した。 174/184 The ~Cu mineral total amount. 824, i.e. 94.14 wt%, the Ca component SiO~Mn mineral total amount in Example 4 178/189. 25, i.e., 94.06 weight 0 SiO~Cu minerals The total weight is 178 89.304, ie 94.03 wt%, the Ca component in Example 5 is 181 / 192.89, ie 93.84 wt%, and the total amount of SiO to Cu mineral is SiO1 / Mn mineral total 181/1 92.944, ie 93.81% by weight, Ca component in Comparative Example 1 is 62.8 / 92.93, ie 67.58% by weight, and SiO to Cu mineral 62. 8/92. 984, ie 67. 54 wt%, Ca component in Comparative Example 2 is 155.1 1 / 18.2 in the total amount of SiO to Mn mineral, ie 83. 30 wt%, SiO to Cu mineral total 155. 1/186. 254 in terms of quantity, ie 83. 27% by weight, 3 components in Comparative Example 3 are 18 / 28.67 in total amount of 5 ^ -1 ^ mineral, ie 62. 78% by weight, 18 / 28.9 for total SiO to Cu minerals 11, ie 62.27% by weight. The A1 component, Fe component, Ti component and P component of 0.05> mg 8 are 0.05 mg / l, and the Mn component, Co component, Ba component, Zn component, Sn component and Ni component of 0.01> The mg / l was calculated as 0. Olmg-8, and the 0.001> mg / l of the Cu component was calculated as 0.OOlmg / 1.
STZ ( streptozotoc in) で誘発した糖尿病モデルマウスに実施例:!〜 5のミ ネラル水を毎日与えたところ、 血糖値が 6週目から降下して 1 2週目までに正 常値を維持した。 比較例 1〜 3の溶出ミネラル水を与えたモデルマウスで は変化がなかった。 これによ り、 実施例 1〜 5のミネラル水が有用である ことを確認した。 本発明によれば、 軟質多孔性古代海洋腐植質より溶出させた Ca成分が溶出ミネラ ル成分合計量の 90重量%以上を占めているミネラル飲料水を提供できる。 Example: Diabetic model mice induced with STZ (streptozotoc in): When ˜5 mineral water was given daily, the blood glucose level dropped from the 6th week and maintained the normal level by the 12th week. There was no change in the model mice to which the eluted mineral water of Comparative Examples 1 to 3 was given. As a result, it was confirmed that the mineral waters of Examples 1 to 5 were useful. According to the present invention, it is possible to provide mineral drinking water in which the Ca component eluted from the soft porous ancient marine humus occupies 90% by weight or more of the total amount of the eluted mineral component.

Claims

請 求 の 範 囲 The scope of the claims
1 . 軟質多孔性古代海洋腐植質より溶出させたミネラル成分 Si02、 Al、 Fe、 Ca、 Mg、 K、 Ti、 P、 Na及ぴ Mnを含有していると共に当該 Ca成分が当該ミネラ ル成分合計量の 90%以上を占めているミネラル水。 1. Mineral component eluted from soft porous ancient marine humus Si0 2 , Al, Fe, Ca, Mg, K, Ti, P, Na and Mn, and the Ca component is the mineral component Mineral water accounts for over 90% of the total volume.
2 . 軟質多孔性古代海洋腐植質より溶出させたミネラル成分 Si02、 Al、 Fe、 Ca、 Mg、 K、 Ti、 P、 Na、 Mn、 Co、 Ba、 Zn、 Sn、 V、 Ni及び Cuを含有している と共に当該 Ca成分が当該ミネラル成分合計量の 90%以上を占めているミネラル 水。 2. Soft porous ancient minerals eluted from marine humus Si0 2, Al, Fe, Ca , Mg, K, Ti, P, Na, Mn, Co, Ba, Zn, Sn, V, Ni and Cu Mineral water that is contained and the Ca component accounts for 90% or more of the total amount of the mineral component.
3 . 原水を軟質多孔性古代海洋腐植質の粒状原石に軟質多孔性古代海洋腐植 質の粉末を層状に付着させて焼成してなる軟質多孔性古代海洋腐植質セラミ ッ クスの積層と軟質多孔性古代海洋腐植質の焼成粉末からなる積層とに通してミ ネラル成分 Si02、 Al、 Fe、 Ca、 Mg、 K、 Ti、 P、 Na、 Mn、 Co、 Ba、 Zn、 Sn、 V、 Ni及び Cuを溶出させて当該ミネラル成分合計量に対して 90%以上の前記 成分 を含有するミネラル水を生成させることを特徴とするミネラル水の製造方法。 3. Lamination of soft porous ancient marine humic ceramics by laminating raw water with soft porous ancient marine humic granular raw stones and laminating soft porous ancient marine humic powder in layers and soft porosity Mineral components Si0 2 , Al, Fe, Ca, Mg, K, Ti, P, Na, Mn, Co, Ba, Zn, Sn, V, Ni, and the like through the lamination of calcined powder of ancient marine humus A method for producing mineral water, comprising eluting Cu to produce mineral water containing 90% or more of the above-mentioned components with respect to the total amount of the mineral components.
4 . 軟質多孔性古代海洋腐植質セラ ミ ックスが、 直径 4〜10 の粒状原石 に軟質多孔性古代海洋腐植質の粉末を層状に付着させた直径 5〜30画の焼成セ ラミックスである請求の範囲第 3項記載のミネラル水の製造方法。  4. A soft porous ancient marine humic ceramic is a calcined ceramic with a diameter of 5 to 30 in which a powder of soft porous ancient marine humic substance is deposited in layers on a granular raw stone with a diameter of 4 to 10 4. The method for producing mineral water according to item 3 of the above.
PCT/JP2007/065315 2006-09-15 2007-07-30 Mineral water and process for producing the mineral water WO2008032506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006251620A JP5152452B2 (en) 2006-09-15 2006-09-15 Manufacturing method of mineral water
JP2006-251620 2006-09-15

Publications (1)

Publication Number Publication Date
WO2008032506A1 true WO2008032506A1 (en) 2008-03-20

Family

ID=39183573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065315 WO2008032506A1 (en) 2006-09-15 2007-07-30 Mineral water and process for producing the mineral water

Country Status (2)

Country Link
JP (1) JP5152452B2 (en)
WO (1) WO2008032506A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMC20090043A1 (en) * 2009-03-10 2010-09-11 Andrea Accorroni COMPOSITION OF MINERALS OBTAINED FROM THE SEAT OF A MINERAL WATER, FOR THERAPEUTIC PURPOSES

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190004740A (en) * 2016-05-23 2019-01-14 미츠나가 요시카와 Coating material containing a calcined material of soft porous ancient marine humus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215891A (en) * 1990-12-17 1992-08-06 Taiyo Kosho Kk Method and apparatus for quality improvement of water
JPH069280A (en) * 1991-07-09 1994-01-18 Baitaru Japan Kk Calcined bioceramic and production of calcined bioceramic

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226581A (en) * 1998-02-10 1999-08-24 Hokkaido Calcium:Kk Quality modifier of drinking water or the like and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215891A (en) * 1990-12-17 1992-08-06 Taiyo Kosho Kk Method and apparatus for quality improvement of water
JPH069280A (en) * 1991-07-09 1994-01-18 Baitaru Japan Kk Calcined bioceramic and production of calcined bioceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMC20090043A1 (en) * 2009-03-10 2010-09-11 Andrea Accorroni COMPOSITION OF MINERALS OBTAINED FROM THE SEAT OF A MINERAL WATER, FOR THERAPEUTIC PURPOSES

Also Published As

Publication number Publication date
JP5152452B2 (en) 2013-02-27
JP2008068237A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
CN110776257B (en) Ceramic glaze with antibacterial function and preparation method and application thereof
Fernane et al. Sorption of cadmium and copper ions on natural and synthetic hydroxylapatite particles
CN104072084B (en) Nano ore powder multiple-effect flexible ceramic vessel
CN107141904A (en) A kind of environmentally friendly diatom ceramic tile joint trimming agent and preparation method thereof
Ramakrishnan et al. Cation doped hydroxyapatite nanoparticles enhance strontium adsorption from aqueous system: A comparative study with and without calcination
KR101729707B1 (en) Composition for improving soil and water quality having natural minerals, and preparation method thereof
CN106927854A (en) A kind of tourmaline ceramic ball for purifying water and preparation method thereof
CN106219720A (en) Improve composite mineral substance crystal of water quality, enhancing immunity, useful cardiovascular and cerebrovascular disease and preparation method thereof
JP2008530065A5 (en)
Rathnayake et al. Essence of hydroxyapatite in defluoridation of drinking water: A review
CN101450854B (en) Tourmaline water quality purification mineralization ball and preparation method thereof
WO2008032506A1 (en) Mineral water and process for producing the mineral water
CN1709062A (en) Medical stone inorganic antibacterial agent and its preparing method
CN110078192A (en) A kind of mineral water and preparation method thereof
Sarmah et al. Surface modification of paddy husk ash by hydroxyl-alumina coating to develop an efficient water defluoridation media and the immobilization of the sludge by lime-silica reaction
CN113769478B (en) Calcium-magnesium mineralized filter material and preparation method thereof
WO2020130302A1 (en) Health function-customized natural mineral activating composite filter, and method for producing same
WO2014016082A1 (en) Biocidal filter medium
KR101533326B1 (en) Soil application improvement material of nano particles having environment-friendly and water-soluble and method for manufacturing the same
Ling et al. Properties evaluation and fabrication of green clay reformulated from water sludge
KR101922305B1 (en) Wall attached type finishing material of interior and manufacturing method thereby
CN105152353B (en) The method that heavy metal in sewage is handled using gram- bacteria
JP3160705B2 (en) Method for preparing fired tourmaline-containing ceramics having enhanced water pH increasing properties and metal ion adsorption properties
CN106731215A (en) A kind of Water treatment filter element and preparation method thereof
JPH0716453A (en) Ceramic adsorptive remover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07791988

Country of ref document: EP

Kind code of ref document: A1