WO2008031959A1 - Device improving the operation of a supercharged engine with an exhaust gas recirculation circuit - Google Patents

Device improving the operation of a supercharged engine with an exhaust gas recirculation circuit Download PDF

Info

Publication number
WO2008031959A1
WO2008031959A1 PCT/FR2007/051752 FR2007051752W WO2008031959A1 WO 2008031959 A1 WO2008031959 A1 WO 2008031959A1 FR 2007051752 W FR2007051752 W FR 2007051752W WO 2008031959 A1 WO2008031959 A1 WO 2008031959A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
cooler
circuit
flap
exhaust gas
Prior art date
Application number
PCT/FR2007/051752
Other languages
French (fr)
Inventor
Stephane Guilain
Eric Magere
Johann William
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Publication of WO2008031959A1 publication Critical patent/WO2008031959A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine

Definitions

  • the present invention relates to a device improving the operation of a supercharged engine. More particularly, the invention relates to an exhaust gas recirculation circuit disposed between an exhaust manifold and an intake air distributor of a supercharged engine comprising means for regulating the amount of EGR.
  • the location of the EGR control valve downstream of the EGR cooler can pose long-term problems of fouling and / or corrosion of the EG R valve due to the condensation of the exhaust gas comprising corrosive particles in and after the cooler EG R.
  • the seal of the valve is degraded which results in a degradation of the performance of the engine at full load. Because of this phenomenon, this valve must be made with a material type and thickness determined to ensure satisfactory endurance. This has implications for the weight and price of such a valve.
  • Some systems have a valve placed upstream of the cooler EG R to overcome the aforementioned drawbacks of systems that have a control valve of the amount of EG R placed downstream of the cooler EGR.
  • a regulation valve of the amount of EG R is placed between an exhaust manifold and the cooler EG R.
  • the invention proposes to solve the problem of modifying the inlet gas pressure which leads to a reduction in engine performance and to solving the problem of the reliability of the valve regulating the amount of EGR.
  • a gas recirculation circuit comprising means for regulating the amount of EGR placed between the exhaust manifold and an EGR cooler, the circuit also comprising an obstruction means that can at least partially obstruct the circuit arranged between an upstream port of the EGR cooler and the air distributor at the intake.
  • a duct of the supercharging circuit is connected at a damper box upstream of the intake air distributor.
  • the obstruction means is then disposed in this housing. According to this characteristic, it does not change the pressure pulsations on admission while obtaining a better compactness of the system. It also reduces the number of connections on the recirculation circuit, which has the effect of limiting the risk of leaks from the circuit.
  • the obstruction means is a flap, a joint of which has a common pivot point with a damper flap, these flaps having respective independent movements.
  • the addition of a flap in the housing is achieved by reusing the mechanical pivoting means of the damper flap, reducing the cost of production and study of the housing.
  • the independent nature of the movements of these components makes it possible to separate the functions of each component.
  • Another feature is to place the obstruction means in the EG cooler R at the downstream port. This provides a compact recirculation circuit and having a reduced number of connections that can be a source of leaks. This also makes it possible to couple this obstruction means with means for selecting EG R "hot” or "cold”.
  • the obstruction means is unique and is placed in a U-type EGR cooler.
  • the configuration of the U-shaped cooler makes it possible to make the circuit adaptation to the motor more compact, and to make the system more reliable and less expensive because of the use of a single obstruction means, which in this configuration also makes it possible to operate the selection of EG R "hot” or "cold".
  • a conduit of the recirculation circuit is connected to a supercharging circuit at a supercharger.
  • a higher integration is achieved with the obstruction function being able to be coupled with means already present in the supercharging cooler.
  • the invention also relates to a supercharged engine comprising an EGR circuit according to the invention.
  • FIG. 1 is a diagram showing a first embodiment of the invention.
  • a second valve regulating the amount of EGR is added between the cooler and the intake air distributor;
  • - Figure 2a is a diagram showing a second embodiment.
  • An additional flap is added in the damper box to close the EGR circuit in "EGR operating" position;
  • - Figure 2b is a diagram showing a second embodiment.
  • An additional flap is added in the damper box to close the EG R circuit in the "full load” position;
  • FIG. 3a is a diagram showing a third embodiment of the invention.
  • a system comprising two flaps is adapted to an EG cooler R I to allow the closure of the downstream duct EG R, represented in the "full load” position;
  • FIG. 3b is a diagram showing a third embodiment of the invention.
  • a system comprising two flaps is adapted to an EG cooler R I to allow the closure of the downstream duct EG R, shown in position "cold operation EG R";
  • FIG. 3c is a diagram showing a third embodiment of the invention.
  • a system comprising two flaps is adapted to an EG cooler R in I for allow the shut-off of the downstream duct EG R, represented in the "operating EG R hot"position;
  • FIG. 4a is a diagram showing a fourth embodiment.
  • a system comprising two shutters is adapted to a U-shaped U-shaped cooler to allow the shut-off of the downstream duct EG R, represented in the "full load” position;
  • FIG. 4b is a diagram showing a fourth embodiment.
  • a system comprising two flaps is adapted to a U-shaped cooler R R to allow the closure of the downstream duct EGR, represented in position "cold EGR operation";
  • FIG. 4c is a diagram showing a fourth embodiment.
  • a system comprising two flaps is adapted to a U-shaped cooler R R to allow the closure of the downstream duct EGR, represented in position "hot EGR operation";
  • Figure 5 is a diagram showing a connection of the recirculation circuit at the booster.
  • FIG. 1 shows an exhaust gas recirculation system for a supercharged engine according to a first embodiment.
  • This system is adapted to an engine comprising at least one exhaust manifold 1 and an intake air distributor 2 and having a boost circuit B1 and an exhaust gas recirculation circuit B2.
  • the supercharging circuit B1 comprises at least a first C1 and a second C2 circuit portions and at least one turbocharger or a mechanical compressor 3, possibly a charge cooler 4 and possibly a damper housing 5.
  • the first portion of conduit C1 is arranged between the turbocharger 3 and the charge cooler 4 and the second portion of the duct C2 is arranged between the charge cooler 4 and the intake air distributor 2.
  • This case 5 is arranged on the second portion of the duct C2 thereof.
  • the housing 5 stops the engine by cutting off the air supply. This housing 5 can also be used to regulate quantities of EG R in certain modes of operation.
  • the recirculation circuit B2 comprises at least a first C3 and a second C4 duct portions, a flow control valve EGR 6, an EG cooler R 7 and an obstruction means 8 of the circuit B2.
  • the first duct portion C3 is disposed between the exhaust manifold 1 and the cooler EG R 7 and the second duct portion C4 is disposed between the cooler EG R 7 and the intake air distributor 2.
  • the valve EG R 6 flow control is placed on the first conduit portion C3 and the obstructing means 8 is placed on the second conduit portion C4.
  • the EG R 6 flow control valve regulates the amount of exhaust gas that is recirculated at the intake.
  • This means 8 makes it possible to at least partially obstruct the section of the second duct portion C4 for the operating modes of the engine for which a total or partial reduction of the quantity of EG R is desired, in particular at full load. Closing this means 8 makes it possible to reduce the volume seen from the intake, and to minimize the propagation of the wave fronts in the recirculation circuit which causes pressure losses on admission. By positioning the means 8 as close as possible to the inlet distributor 2, it is possible to optimize the reduction of the pressure losses since it is possible to adapt the volume seen from the admission remaining after the closure of this means 8. Surprisingly, a good operation of the system is obtained even for a medium level of sealing, that is to say from a quasi-total obstruction of the conduit C4 by the means 8. This ensures a good reliability of the system itself when the means 8 is fouled or corroded due to condensed exhaust gas after passing through the cooler EG R 7.
  • the obstruction means 8 of the recirculation circuit B2 take place in the damper housing 5.
  • This second embodiment is shown in FIGS. 2a and 2b which show the integration of the obstruction means 8 in the damper housing 5 respectively in a position corresponding to the mode of "EGR operation" and "full load”.
  • the second duct portion C4 of the recirculation circuit B2 is connected to the second duct portion C2 of the booster circuit B1 at the damper housing 5.
  • the housing Damper 5 thus comprises at least three ports with an input port and an output of conduit C2 and an input port of conduit C4.
  • This housing 5 further comprises a pair of obstruction means which may be flaps.
  • a first obstruction means Vs is placed in the passage of the conduit portion C2 of the boost circuit B1 and regulates the amount of air from it. This means Vs makes it possible to stop the engine and to assist in regulating the flow rates of EG R.
  • a second Vegr obstruction means is placed in the passage of the portion of the duct C4 of the recirculation circuit B2 and makes it possible to regulate the amount of exhaust gas recirculated at intake.
  • These obstruction means Vs and Vegr are mobile and can be moved independently of one another. These means Vs and Vegr take determined positions as a function of the load, the engine speed and the desired amount of EGR.
  • FIG. 2a represents the position of these means Vs and Vegr when this damper box 5 is in the "operating EG R" position.
  • the means Vs can take a number of positions obstructing more or less the line C2 of the supercharging circuit B1.
  • the Vegr means can take a number of positions between a position in which the conduit C4 of the recirculation circuit B2 is not obstructed at all and a position partially obstructing this conduit so as to regulate the amount of EGR on admission.
  • FIG. 2b represents the position of these means Vs and Vegr when this damper box 5 is in the "full load” position, that is to say with little or no EG R.
  • Vs the average Vs which is positioned as close as possible to the walls of the C2 conduit in order to obstruct the least possible this one. It will thus be possible to adapt the shape of this means Vs to the contour of the duct C2.
  • the Vegr means is positioned so that the conduit C4 is almost completely obstructed when one is in "full load” operating mode.
  • This second embodiment makes it possible to limit the volume seen of the admission and thus to reduce the problems of loss of pressure on admission while obtaining a better compactness of the system.
  • the number of connections present on the gas recirculation circuit is also reduced.
  • the obstruction means 8 of the recirculation circuit B2 are located in the EGR cooler 7.
  • This embodiment is applicable to an EGR cooler 7 comprising at least two types distinct passages and having a structure called I.
  • An I-7 cooler has upstream and downstream ports on opposite sides, fluids flowing therethrough in a substantially rectilinear motion and in a single direction.
  • the first passage C is called “EG R hot” and allows to let the exhaust gas to recirculate without being cooled.
  • the second passage F referred to as "cold EGR" includes at least one cooling channel to obtain cooled recirculated exhaust gases to further reduce NOx formation.
  • the hot EGR passage C is used to obtain exhaust gases that are warmer than those that have passed through the cold EG R passage F. Although an optimal reduction of NOx is not achieved, there is a reduction in other pollutants present when the engine has not yet been warmed up or for particular depollution methods.
  • a first 8a and a second 8b average type shutter make it possible to choose the desired passage for the exhaust gases to be recirculated. In the embodiment shown, these means are placed at the outlet of the EGR cooler 7. These flaps make it possible to obstruct one or the other of the passages C, F according to the desired operation.
  • the second component 8b is added to allow the exhaust gas recirculation to be eliminated at full load.
  • This flap 8b may be disposed in the vicinity of the upstream port of the cooler 7 or in the vicinity of the downstream port.
  • the second component 8b is disposed adjacent the first flap 8a and has the same axis of rotation as the latter.
  • FIG 3a shows the positioning of the flaps 8a, 8b when the EGR is off, operating mode that is used when the engine is used at full load.
  • the flaps are arranged so that the passages EGR hot C and EGR cold F are obstructed.
  • FIG. 3c shows the positioning of the flaps when the EGR is not cooled, operating mode that is used when the engine has not yet reached its operating temperature or for certain modes of combustion. According to this mode of operation, the flaps 8a, 8b are arranged so as to obstruct the cold EGR passage F.
  • FIG. 3b shows the positioning of the flaps when the EGR is cooled, operating mode that is used when the engine has reached its end. operating temperature and that the motor is not used at full load. According to this mode of operation, the flaps 8a, 8b are arranged so as to obstruct the hot EGR passage C and to leave at least partially free passage EG R cold F.
  • FIGS. 4a, 4b and 4c show the integration of the function of obstruction of the EGR conduits C3, C4 in a U-shaped cooler 7 according to a fourth embodiment.
  • a U-shaped cooler 7 has upstream and downstream ports on the same side, the fluids passing therethrough follow a looping movement to exit on the side where they entered the cooler 7.
  • the use of this type of EGR cooler 7 has advantages in terms of integration and compactness of the system on an engine.
  • the EGR cooler 7 has two separate passages for the recirculated exhaust gas, a warm EG R passage C and a cold EGR passage F but the configuration and location of those These are different.
  • the hot EGR passage C is located on the side of the end of the cooler 7 which has the upstream and downstream ports.
  • the cold EGR passage F extends between this hot EGR circuit C and the end of the cooler 7 opposite the end which has the upstream and downstream ports.
  • This cold EGR passage F comprises at least one cooling channel.
  • this U-shaped cooler 7 makes it possible, thanks to a single flap 8, to perform the dual function of selecting between a hot EGR and a cold EG R and the obstruction function of the EGR circuit in order to suppress exhaust gas recirculation at full load.
  • This flap 8 is located on the side of the cooler EG R 7 having the upstream and downstream ports.
  • Figure 4a shows the positioning of the flap 8 when the gas recirculation is cut off, operating mode that is used when the engine is used at full load. In this configuration, the flap 8 obstructs the downstream port of the cooler 7. Thus, the recirculated gases can not leave the cooler 7, the engine operates without EGR at the intake.
  • Figure 4b shows the positioning of the flap 8 when the EGR is not cooled, operating mode that is used when the engine has not yet reached its operating temperature. During this operating mode, the shutter 8 is placed in such a way that it does not obstruct any opening or driving.
  • FIG 4c shows the positioning of the flap when the EGR is cooled, the operating mode that is used when the engine has reached its operating temperature and the engine is not being used at full load. During this operating mode, the flap 8 is placed so as to obstruct the hot EGR passage C, the recirculated gases thus pass through the cold EGR passage F and the gases downstream of the cooler 7 are cooled.
  • FIG. 5 represents a fifth embodiment in which the recirculation circuit B2 is connected to the supercharging circuit B1 as close as possible to the charge-air cooler 4. According to this embodiment, the pressure loss phenomena in the intake circuit are little affected by the addition of the volume of the recirculation circuit B2.
  • An obstruction means 8 may be added in the charge-air cooler 4.
  • the recirculation circuit B2 may comprise an EGR cooler 7 according to the third or fourth embodiment.
  • the exhaust gas recirculation system according to embodiment 4 is modified so as to integrate the damper means in the damper housing and place it close to the cooler of the overeating. This further reduces the elements by coupling the obstruction means and means for selecting the temperature and the charge air flow rate in the charge-air cooler.
  • Exhaust gas recirculation circuit (B2) arranged between an exhaust manifold (1) and an intake air distributor (2) of a supercharged engine comprising means for regulating the amount of exhaust gas EG R (6) placed between the exhaust manifold (1) and an EGR cooler (7) characterized in that the circuit (B2) has an obstruction means (8) which can at least partially block the circuit (B2) disposed between an upstream port of the cooler EG R (7) and the air distributor to the inlet (2).
  • exhaust gas recirculation circuit (B2) according to claim 1 characterized in that a conduit (C4) is connected to a supercharging circuit (B1) at a damper housing (5) and in that that the obstruction means (8) is disposed in this housing (5).
  • exhaust gas recirculation circuit (B2) characterized in that the obstruction means (8) is a flap (Vegr), a joint has a common pivot point with a damper flap ( Vs) and in that their respective displacements are independent.
  • the obstruction means (8) is a flap (Vegr)
  • a joint has a common pivot point with a damper flap ( Vs) and in that their respective displacements are independent.
  • exhaust gas recirculation circuit (B2) according to claim 1 characterized in that the obstruction means (8) is placed in the EGR cooler (7) at its downstream port.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

The invention relates to an exhaust gas recirculation circuit (B2) positioned between an exhaust manifold (1) and an air intake distributor (2) of a supercharged engine comprising an EGR regulating means (6) positioned between the exhaust manifold (1) and an EGR cooler (7), characterized in that the circuit (B2) has an obstruction means (8) that can be used to at least partially obstruct the circuit (B2) positioned between an upstream port of the EGR cooler (7) and the air intake distributor (2). Another subject of the invention is an engine comprising a recirculation circuit according to the invention.

Description

DISPOSITIF AMÉLIORANT LE FONCTIONNEMENT D'UN DEVICE IMPROVING THE OPERATION OF A
MOTEUR SURALIMENTÉ AVEC UN CIRCUIT DEENGINE SUPERCHARGED WITH A CIRCUIT OF
RECIRCULATION DE GAZ D'ECHAPPEMENTRECIRCULATION OF EXHAUST GAS
La présente invention se rapporte à un dispositif améliorant le fonctionnement d'un moteur suralimenté. Plus particulièrement, l'invention concerne un circuit de recirculation des gaz d'échappement disposé entre un collecteur d'échappement et un répartiteur d'air d'admission d'un moteur suralimenté comportant un moyen de régulation de la quantité d'EGR.The present invention relates to a device improving the operation of a supercharged engine. More particularly, the invention relates to an exhaust gas recirculation circuit disposed between an exhaust manifold and an intake air distributor of a supercharged engine comprising means for regulating the amount of EGR.
Les moteurs suralimentés modernes doivent se conformer à des normes anti-pollution de plus en plus strictes. Pour cela, plusieurs techniques ont été développées et l'une d'entre elle est la recirculation d'une partie des gaz d'échappement à l'admission (EGR). Cette technique, par le mélange de gaz d'échappement à l'air qui est admis dans le moteur, permet de diminuer la formation des oxydes d'azote (NOx) durant la phase de combustion en appauvrissant le mélange oxygène/carburant. On prévoit aussi de refroidir les gaz d'échappement avant leur réintroduction pour obtenir une efficacité accrue de la diminution de la formation des NOx. Pour préserver les performances maximales du moteur, on fait généralement varier la quantité de gaz recirculée en fonction de la charge du moteur, afin de ne pas appauvrir le mélange oxygène/carburant à pleine charge du moteur. Généralement, on prévoit de pouvoir couper l'EGR lorsque le moteur est à pleine charge de manière à pouvoir atteindre des mélanges oxygène/carburant élevés. Habituellement, ces gaz recirculés sont injectés en un seul point en amont du répartiteur d'air d'admission et peuvent provenir d'un circuit de recirculation unique ou bien de plusieurs circuits de recirculation. Dans des systèmes de l'art antérieur comme celui présenté par exemple dans le brevet WO 2004/04441 2, la vanne de régulation du débit d'EG R est placée entre le refroidisseur EG R et le répartiteur d'air d'admission. Cette configuration présente des problèmes de fiabilité au niveau de la vanne. Plus particulièrement, la localisation de la vanne de régulation d' EGR en aval du refroidisseur EGR peut poser à long terme des problèmes d'encrassement et/ou de corrosion de la vanne EG R du fait de la condensation des gaz d'échappement comprenant des particules corrosives dans et après le refroidisseur EG R. Par suite, l'étanchéité de la vanne est dégradée ce qui entraîne une dégradation des performances du moteur à pleine charge. En raison de ce phénomène, cette vanne doit être réalisée avec un type de matériau et une épaisseur déterminés pour s'assurer d'une endurance satisfaisante. Ceci a des répercussions sur le poids et sur le prix d'une telle vanne.Modern supercharged engines have to comply with increasingly stringent anti-pollution standards. For this, several techniques have been developed and one of them is the recirculation of a portion of the exhaust gas on admission (EGR). This technique, by the mixture of exhaust gas to air that is admitted into the engine, reduces the formation of nitrogen oxides (NOx) during the combustion phase by depleting the oxygen / fuel mixture. It is also expected to cool the exhaust before reintroduction to obtain an increased efficiency of the reduction of NOx formation. To preserve the maximum performance of the engine, the amount of recirculated gas is generally varied according to the engine load, so as not to deplete the oxygen / fuel mixture at full load of the engine. Generally, it is expected to be able to cut the EGR when the engine is fully loaded so as to achieve high oxygen / fuel mixtures. Usually, these recirculated gases are injected at a single point upstream of the intake air distributor and can come from a single recirculation circuit or from several recirculation circuits. In systems of the prior art such as that presented, for example, in patent WO 2004/04441 2, the EG R flow control valve is placed between the cooler EG R and the intake air distributor. This configuration presents reliability problems at the valve. More particularly, the location of the EGR control valve downstream of the EGR cooler can pose long-term problems of fouling and / or corrosion of the EG R valve due to the condensation of the exhaust gas comprising corrosive particles in and after the cooler EG R. As a result, the seal of the valve is degraded which results in a degradation of the performance of the engine at full load. Because of this phenomenon, this valve must be made with a material type and thickness determined to ensure satisfactory endurance. This has implications for the weight and price of such a valve.
Certains systèmes présentent une vanne placée en amont du refroidisseur EG R pour remédier aux inconvénients précédemment mentionnés des systèmes qui ont une vanne de régulation de la quantité d'EG R placée en aval du refroidisseur EGR. Généralement, dans ces systèmes, une vanne de régulation de la quantité d'EG R est placée entre un collecteur d'échappement et le refroidisseur EG R. Selon cette configuration, on assiste à une diminution des performances du moteur importante qu'il n'est pas possible de compenser, par exemple en modifiant les paramètres du turbocompresseur. Ceci s'explique par le fait qu'en positionnant la vanne ainsi, des problèmes de pulsations de pressions apparaissent dans le circuit d'admission d'air, réduisant la pression d'admission dans le moteur. Ce changement de comportement est particulièrement sensible lors des modes de fonctionnement où l'EGR est supprimé, notamment à pleine charge et pour les bas régimes moteur. La pression de suralimentation y est alors réduite de manière importante, réduisant en conséquence le couple ainsi que le comportement dynamique du moteur à ces régimes.Some systems have a valve placed upstream of the cooler EG R to overcome the aforementioned drawbacks of systems that have a control valve of the amount of EG R placed downstream of the cooler EGR. Generally, in these systems, a regulation valve of the amount of EG R is placed between an exhaust manifold and the cooler EG R. According to this configuration, there is a decrease in the performance of the engine that it important It is not possible to compensate, for example by changing the parameters of the turbocharger. This is explained by the fact that positioning the valve thus, problems of pressure pulsations appear in the air intake circuit, reducing the intake pressure in engine. This change in behavior is particularly noticeable during operating modes where the EGR is removed, especially at full load and for low engine speeds. The supercharging pressure is then reduced significantly, thereby reducing the torque and the dynamic behavior of the engine at these speeds.
L'invention se propose de résoudre le problème de modification de la pression des gaz à l'admission qui entraîne une diminution des performances du moteur et de résoudre le problème de fiabilité de la vanne de régulation de la quantité d'EGR.The invention proposes to solve the problem of modifying the inlet gas pressure which leads to a reduction in engine performance and to solving the problem of the reliability of the valve regulating the amount of EGR.
Dans ce but, on propose un circuit de recirculation des gaz comportant un moyen de régulation de la quantité d'EGR placé entre le collecteur d'échappement et un refroidisseur EGR, le circuit comprenant également un moyen d'obstruction pouvant obstruer au moins partiellement le circuit disposé entre un port amont du refroidisseur EGR et le répartiteur d'air à l'admission. Selon une caractéristique de l'invention, un conduit du circuit de suralimentation est connecté au niveau d'un boîtier étouffoir en amont du répartiteur d'air d'admission. Le moyen d'obstruction est alors disposé dans ce boîtier. Selon cette caractéristique, on ne modifie pas les pulsations de pression à l'admission tout en obtenant une meilleure compacité du système. On réduit aussi le nombre de raccords présents sur le circuit de recirculation des gaz, ce qui a pour effet de limiter le risque de fuites du circuit.For this purpose, there is provided a gas recirculation circuit comprising means for regulating the amount of EGR placed between the exhaust manifold and an EGR cooler, the circuit also comprising an obstruction means that can at least partially obstruct the circuit arranged between an upstream port of the EGR cooler and the air distributor at the intake. According to a characteristic of the invention, a duct of the supercharging circuit is connected at a damper box upstream of the intake air distributor. The obstruction means is then disposed in this housing. According to this characteristic, it does not change the pressure pulsations on admission while obtaining a better compactness of the system. It also reduces the number of connections on the recirculation circuit, which has the effect of limiting the risk of leaks from the circuit.
Selon une autre caractéristique, le moyen d'obstruction est un volet, dont une articulation présente un point de pivot commun avec un volet étouffoir, ces volets ayant des déplacements respectifs indépendants. L'addition d'un volet dans le boîtier est réalisé en réutilisant les moyens mécaniques de pivotement du volet étouffoir, réduisant les coûts de production et d'étude du boîtier. Le caractère indépendant des mouvements de ces volets permet de séparer les fonctions de chaque volet.According to another characteristic, the obstruction means is a flap, a joint of which has a common pivot point with a damper flap, these flaps having respective independent movements. The addition of a flap in the housing is achieved by reusing the mechanical pivoting means of the damper flap, reducing the cost of production and study of the housing. The independent nature of the movements of these components makes it possible to separate the functions of each component.
Une autre caractéristique consiste à placer le moyen d'obstruction dans le refroidisseur EG R au niveau du port aval. On obtient ainsi un circuit de recirculation compact et présentant un nombre réduit de raccords qui peuvent être source de fuites. Ceci permet aussi de coupler ce moyen d'obstruction à des moyens de sélection d'EG R « chaud » ou « froid » .Another feature is to place the obstruction means in the EG cooler R at the downstream port. This provides a compact recirculation circuit and having a reduced number of connections that can be a source of leaks. This also makes it possible to couple this obstruction means with means for selecting EG R "hot" or "cold".
Selon une autre caractéristique, le moyen d'obstruction est unique et est placé dans un refroidisseur EGR de type en U. La configuration du refroidisseur en U permet de rendre l'adaptation du circuit sur le moteur plus compacte, et de rendre le système plus fiable et moins coûteux en raison de l'utilisation d'un moyen d'obstruction unique, qui dans cette configuration permet également d'opérer la sélection d'EG R « chaud » ou « froid » .According to another characteristic, the obstruction means is unique and is placed in a U-type EGR cooler. The configuration of the U-shaped cooler makes it possible to make the circuit adaptation to the motor more compact, and to make the system more reliable and less expensive because of the use of a single obstruction means, which in this configuration also makes it possible to operate the selection of EG R "hot" or "cold".
Selon une autre caractéristique, un conduit du circuit de recirculation est connecté à un circuit de suralimentation au niveau d'un refroidisseur de suralimentation. On obtient une intégration supérieure avec la fonction d'obstruction pouvant être couplée avec des moyens déjà présents dans le refroidisseur de suralimentation.According to another characteristic, a conduit of the recirculation circuit is connected to a supercharging circuit at a supercharger. A higher integration is achieved with the obstruction function being able to be coupled with means already present in the supercharging cooler.
L'invention concerne également un moteur suralimenté comprenant un circuit EGR selon l'invention. D'autres caractéristiques et avantages de l'invention apparaîtront clairement à la lecture de la description suivante du mode de réalisation non limitatif de celle-ci, en liaison avec les dessins annexés sur lesquels :The invention also relates to a supercharged engine comprising an EGR circuit according to the invention. Other characteristics and advantages of the invention will become clear from reading the following description of the nonlimiting embodiment thereof, in conjunction with the appended drawings in which:
- la figure 1 est un schéma représentant un premier mode de réalisation de l'invention. Une seconde vanne régulant la quantité d'EGR est ajoutée entre le refroidisseur et le répartiteur d'air d'admission ;- Figure 1 is a diagram showing a first embodiment of the invention. A second valve regulating the amount of EGR is added between the cooler and the intake air distributor;
- la figure 2a est un schéma représentant un deuxième mode de réalisation. Un volet supplémentaire est ajouté dans le boîtier étouffoir pour obturer le circuit EGR en position « fonctionnement EGR » ; - la figure 2b est un schéma représentant un deuxième mode de réalisation. Un volet supplémentaire est ajouté dans le boîtier étouffoir pour obturer le circuit EG R en position « pleine charge » ;- Figure 2a is a diagram showing a second embodiment. An additional flap is added in the damper box to close the EGR circuit in "EGR operating" position; - Figure 2b is a diagram showing a second embodiment. An additional flap is added in the damper box to close the EG R circuit in the "full load" position;
- la figure 3a est un schéma représentant un troisième mode de réalisation de l'invention. Un système comprenant deux volets est adapté à un refroidisseur EG R en I pour permettre l'obturation du conduit aval EG R, représenté en position « pleine charge » ;- Figure 3a is a diagram showing a third embodiment of the invention. A system comprising two flaps is adapted to an EG cooler R I to allow the closure of the downstream duct EG R, represented in the "full load" position;
- la figure 3b est un schéma représentant un troisième mode de réalisation de l'invention. Un système comprenant deux volets est adapté à un refroidisseur EG R en I pour permettre l'obturation du conduit aval EG R, représenté en position « fonctionnement EG R froid » ;- Figure 3b is a diagram showing a third embodiment of the invention. A system comprising two flaps is adapted to an EG cooler R I to allow the closure of the downstream duct EG R, shown in position "cold operation EG R";
- la figure 3c est un schéma représentant un troisième mode de réalisation de l'invention. Un système comprenant deux volets est adapté à un refroidisseur EG R en I pour permettre l'obturation du conduit aval EG R, représenté en position « fonctionnement EG R chaud » ;- Figure 3c is a diagram showing a third embodiment of the invention. A system comprising two flaps is adapted to an EG cooler R in I for allow the shut-off of the downstream duct EG R, represented in the "operating EG R hot"position;
- la figure 4a est un schéma représentant un quatrième mode de réalisation Un système comprenant deux volets est adapté à un refroidisseur EG R en U pour permettre l'obturation du conduit aval EG R, représenté en position « pleine charge » ;FIG. 4a is a diagram showing a fourth embodiment. A system comprising two shutters is adapted to a U-shaped U-shaped cooler to allow the shut-off of the downstream duct EG R, represented in the "full load" position;
- la figure 4b est un schéma représentant un quatrième mode de réalisation. Un système comprenant deux volets est adapté à un refroidisseur EG R en U pour permettre l'obturation du conduit aval EGR, représenté en position « fonctionnement EGR froid » ;- Figure 4b is a diagram showing a fourth embodiment. A system comprising two flaps is adapted to a U-shaped cooler R R to allow the closure of the downstream duct EGR, represented in position "cold EGR operation";
- la figure 4c est un schéma représentant un quatrième mode de réalisation. Un système comprenant deux volets est adapté à un refroidisseur EG R en U pour permettre l'obturation du conduit aval EGR, représenté en position « fonctionnement EGR chaud » ; la figure 5 est un schéma représentant un raccordement du circuit de recirculation au niveau du refroidisseur de suralimentation.- Figure 4c is a diagram showing a fourth embodiment. A system comprising two flaps is adapted to a U-shaped cooler R R to allow the closure of the downstream duct EGR, represented in position "hot EGR operation"; Figure 5 is a diagram showing a connection of the recirculation circuit at the booster.
Dans la description qui va suivre, on qualifie une position aval, la position se trouvant du côté d'un élément par lequel le fluide qui le traverse jaillit hors de celui-ci. On qualifie une position amont, la position se trouvant du côté d'un élément par lequel le fluide qui le traverse pénètre dans celui- ci. Par extension, on qualifiera également, les ports aval et les ports amont comme respectivement les ports d'entrée et de sortie d'un élément. Sur la figure 1 est représenté un système de recirculation des gaz d'échappement pour moteur suralimenté selon un premier mode de réalisation.In the following description, it qualifies a downstream position, the position being on the side of an element through which the fluid flowing through it springs out of it. An upstream position is referred to as the position on the side of an element through which the fluid passing through it enters the position. By extension, the downstream ports and the upstream ports will also be referred to as the input and output ports of an element, respectively. FIG. 1 shows an exhaust gas recirculation system for a supercharged engine according to a first embodiment.
Ce système est adapté à un moteur comportant au moins un collecteur d'échappement 1 et un répartiteur d'air d'admission 2 et comportant un circuit de suralimentation B1 et un circuit de recirculation des gaz d'échappement B2.This system is adapted to an engine comprising at least one exhaust manifold 1 and an intake air distributor 2 and having a boost circuit B1 and an exhaust gas recirculation circuit B2.
Le circuit de suralimentation B1 comporte au moins une première C1 et une deuxième C2 portions de circuit et au moins un turbocompresseur ou un compresseur mécanique 3, éventuellement un refroidisseur de suralimentation 4 et éventuellement un boîtier étouffoir 5. La première portion de conduit C1 est disposée entre le turbocompresseur 3 et le refroidisseur de suralimentation 4 et la deuxième portion de conduit C2 est disposée entre le refroidisseur de suralimentation 4 et le répartiteur d'air d'admission 2. Ce boîtier 5 est disposé sur la deuxième portion de conduit C2 de ce circuit B1 . Le boîtier 5 permet d'arrêter le moteur en lui coupant l'arrivée d'air. Ce boîtier 5 peut aussi être utilisé pour réguler des quantités d'EG R dans certains modes de fonctionnement.The supercharging circuit B1 comprises at least a first C1 and a second C2 circuit portions and at least one turbocharger or a mechanical compressor 3, possibly a charge cooler 4 and possibly a damper housing 5. The first portion of conduit C1 is arranged between the turbocharger 3 and the charge cooler 4 and the second portion of the duct C2 is arranged between the charge cooler 4 and the intake air distributor 2. This case 5 is arranged on the second portion of the duct C2 thereof. circuit B1. The housing 5 stops the engine by cutting off the air supply. This housing 5 can also be used to regulate quantities of EG R in certain modes of operation.
Le circuit de recirculation B2 comporte au moins une première C3 et une deuxième C4 portions de conduit, une vanne de régulation du débit d'EGR 6, un refroidisseur EG R 7 et un moyen d'obstruction 8 du circuit B2. La première portion de conduit C3 est disposée entre le collecteur d'échappement 1 et le refroidisseur EG R 7 et la deuxième portion de conduit C4 est disposée entre le refroidisseur EG R 7 et le répartiteur d'air d'admission 2. La vanne de régulation du débit d'EG R 6 est placée sur la première portion de conduit C3 et le moyen d'obstruction 8 est placé sur la deuxième portion de conduit C4. La vanne de régulation du débit d'EG R 6 permet de réguler la quantité de gaz d'échappement qui est recirculée à l'admission. Ce moyen 8 permet d'obstruer au moins partiellement la section de la deuxième portion de conduit C4 pour les modes de fonctionnement du moteur pour lesquels une diminution totale ou partielle de la quantité d'EG R est désirée, notamment à pleine charge. La fermeture de ce moyen 8 permet de réduire le volume vu de l'admission, et de minimiser la propagation des fronts d'ondes dans le circuit de recirculation qui entraîne des pertes de pression à l'admission. En positionnant le moyen 8 au plus près du répartiteur d'admission 2, on peut optimiser la réduction des pertes de pression puisque l'on peut adapter le volume vu de l'admission restant après la fermeture de ce moyen 8. De manière surprenante, un bon fonctionnement du système est obtenu même pour un niveau d'étanchéité moyen, c'est-à-dire à partir d'une obstruction quasi-totale du conduit C4 par le moyen 8. Ceci permet de garantir une bonne fiabilité du système même lorsque le moyen 8 est encrassé ou corrodé en raison de gaz d'échappement condensés après leur passage dans le refroidisseur EG R 7.The recirculation circuit B2 comprises at least a first C3 and a second C4 duct portions, a flow control valve EGR 6, an EG cooler R 7 and an obstruction means 8 of the circuit B2. The first duct portion C3 is disposed between the exhaust manifold 1 and the cooler EG R 7 and the second duct portion C4 is disposed between the cooler EG R 7 and the intake air distributor 2. The valve EG R 6 flow control is placed on the first conduit portion C3 and the obstructing means 8 is placed on the second conduit portion C4. The EG R 6 flow control valve regulates the amount of exhaust gas that is recirculated at the intake. This means 8 makes it possible to at least partially obstruct the section of the second duct portion C4 for the operating modes of the engine for which a total or partial reduction of the quantity of EG R is desired, in particular at full load. Closing this means 8 makes it possible to reduce the volume seen from the intake, and to minimize the propagation of the wave fronts in the recirculation circuit which causes pressure losses on admission. By positioning the means 8 as close as possible to the inlet distributor 2, it is possible to optimize the reduction of the pressure losses since it is possible to adapt the volume seen from the admission remaining after the closure of this means 8. Surprisingly, a good operation of the system is obtained even for a medium level of sealing, that is to say from a quasi-total obstruction of the conduit C4 by the means 8. This ensures a good reliability of the system itself when the means 8 is fouled or corroded due to condensed exhaust gas after passing through the cooler EG R 7.
Selon un deuxième mode de réalisation le moyen d'obstruction 8 du circuit de recirculation B2 prend place dans le boîtier étouffoir 5. Ce deuxième mode de réalisation est représenté aux figures 2a et 2b qui montrent l'intégration du moyen d'obstruction 8 dans le boîtier étouffoir 5 respectivement dans une position correspondant au mode de « fonctionnement EGR » et « pleine charge » .According to a second embodiment, the obstruction means 8 of the recirculation circuit B2 take place in the damper housing 5. This second embodiment is shown in FIGS. 2a and 2b which show the integration of the obstruction means 8 in the damper housing 5 respectively in a position corresponding to the mode of "EGR operation" and "full load".
Selon ce deuxième mode de réalisation, la deuxième portion de conduit C4 du circuit de recirculation B2 est raccordée à la deuxième portion de conduit C2 du circuit de suralimentation B1 au niveau du boîtier étouffoir 5. Le boîtier étouffoir 5 comporte donc au moins trois ports avec un port d'entrée et un de sortie du conduit C2 et un port d'entrée du conduit C4. Ce boîtier 5 comporte de plus, une paire de moyens d'obstruction qui peuvent être des volets. Un premier moyen d'obstruction Vs est placé dans le passage de la portion de conduit C2 du circuit de suralimentation B1 et permet de réguler la quantité d'air en provenant. Ce moyen Vs permet d'arrêter le moteur et d'aider à la régulation des débits d'EG R. Un deuxième moyen d'obstruction Vegr est placé dans le passage de la portion de conduit C4 du circuit de recirculation B2 et permet de réguler la quantité de gaz d'échappement recirculé à l'admission. Ces moyens d'obstruction Vs et Vegr sont mobiles et peuvent être déplacés indépendamment l'un de l'autre. Ces moyens Vs et Vegr prennent des positions déterminées en fonction de la charge, du régime moteur et de la quantité d'EGR désirée.According to this second embodiment, the second duct portion C4 of the recirculation circuit B2 is connected to the second duct portion C2 of the booster circuit B1 at the damper housing 5. The housing Damper 5 thus comprises at least three ports with an input port and an output of conduit C2 and an input port of conduit C4. This housing 5 further comprises a pair of obstruction means which may be flaps. A first obstruction means Vs is placed in the passage of the conduit portion C2 of the boost circuit B1 and regulates the amount of air from it. This means Vs makes it possible to stop the engine and to assist in regulating the flow rates of EG R. A second Vegr obstruction means is placed in the passage of the portion of the duct C4 of the recirculation circuit B2 and makes it possible to regulate the amount of exhaust gas recirculated at intake. These obstruction means Vs and Vegr are mobile and can be moved independently of one another. These means Vs and Vegr take determined positions as a function of the load, the engine speed and the desired amount of EGR.
La figure 2a représente la position de ces moyens Vs et Vegr lorsque ce boîtier étouffoir 5 est en position de « fonctionnement EG R ». En fonctionnement EG R, le moyen Vs peut prendre un certain nombre de positions obstruant plus ou moins le conduit C2 du circuit de suralimentation B1 . De son côté, le moyen Vegr peut prendre un certain nombre de positions entre une position dans laquelle le conduit C4 du circuit de recirculation B2 n'est pas du tout obstrué et une position obstruant partiellement ce conduit de manière à réguler la quantité d'EGR à l'admission.FIG. 2a represents the position of these means Vs and Vegr when this damper box 5 is in the "operating EG R" position. In operation EG R, the means Vs can take a number of positions obstructing more or less the line C2 of the supercharging circuit B1. For its part, the Vegr means can take a number of positions between a position in which the conduit C4 of the recirculation circuit B2 is not obstructed at all and a position partially obstructing this conduit so as to regulate the amount of EGR on admission.
La figure 2b représente la position de ces moyens Vs et Vegr lorsque ce boîtier étouffoir 5 est en position « pleine charge » c'est-à-dire avec peu ou pas d'EG R. A pleine charge, on a donc le moyen Vs qui est positionné aussi proche que possible des parois du conduit C2 afin d'obstruer le moins possible celui-ci. On pourra ainsi adapter la forme de ce moyen Vs au contour du conduit C2. Le moyen Vegr est quant à lui positionné de telle sorte que le conduit C4 est presque totalement obstrué lorsque l'on est en mode de fonctionnement « pleine charge » .FIG. 2b represents the position of these means Vs and Vegr when this damper box 5 is in the "full load" position, that is to say with little or no EG R. At full load, we thus have the average Vs which is positioned as close as possible to the walls of the C2 conduit in order to obstruct the least possible this one. It will thus be possible to adapt the shape of this means Vs to the contour of the duct C2. The Vegr means is positioned so that the conduit C4 is almost completely obstructed when one is in "full load" operating mode.
Ce deuxième mode de réalisation permet de limiter le volume vu de l'admission et donc de réduire les problèmes de pertes de pression à l'admission tout en obtenant une meilleure compacité du système. On réduit aussi le nombre de raccords présents sur le circuit de recirculation des gaz.This second embodiment makes it possible to limit the volume seen of the admission and thus to reduce the problems of loss of pressure on admission while obtaining a better compactness of the system. The number of connections present on the gas recirculation circuit is also reduced.
Selon un troisième mode de réalisation, représenté aux figures 3a, 3b et 3c les moyens d'obstruction 8 du circuit de recirculation B2 sont localisés dans le refroidisseur EGR 7. Ce mode de réalisation est applicable à un refroidisseur EGR 7 comportant au moins deux types de passages distincts et ayant une structure dite en I . Un refroidisseur 7 en I présente des ports amont et aval sur des côtés opposés, les fluides le traversant circulant suivant un mouvement sensiblement rectiligne et selon un sens unique. Le premier passage C est dénommé « EG R chaud » et permet de laisser passer les gaz d'échappement à recirculer sans qu'ils soient refroidis. Le deuxième passage F dénommé « EGR froid » comprend au moins un canal de refroidissement afin d'obtenir des gaz d'échappement à recirculer refroidis pour réduire davantage la formation de NOx. On utilise le passage EGR chaud C pour obtenir des gaz d'échappement plus chauds que ceux qui ont transité dans le passage EG R froid F. Bien que l'on n'atteigne pas une réduction optimale des NOx, on assiste à une réduction d'autres polluants présents lorsque le moteur n'est pas encore monté en température ou pour des modes de dépollution particuliers. Un premier 8a et un deuxième 8b moyen du type volet permettent de choisir le passage souhaité pour les gaz d'échappement à recirculer. Dans le mode de réalisation représenté ces moyens sont placés en sortie du refroidisseur EGR 7. Ces volets permettent d'obstruer l'un ou l'autre des passages C, F suivant le fonctionnement désiré. Le deuxième volet 8b est ajouté afin de permettre de supprimer la recirculation des gaz d'échappement à pleine charge. Ce volet 8b peut être disposé au voisinage du port amont du refroidisseur 7 ou au voisinage du port aval. De préférence, comme représenté à la figure 3a, 3b et 3c, ce deuxième volet 8b est disposé au voisinage du premier volet 8a et dispose du même axe de rotation que celui-ci.According to a third embodiment, represented in FIGS. 3a, 3b and 3c, the obstruction means 8 of the recirculation circuit B2 are located in the EGR cooler 7. This embodiment is applicable to an EGR cooler 7 comprising at least two types distinct passages and having a structure called I. An I-7 cooler has upstream and downstream ports on opposite sides, fluids flowing therethrough in a substantially rectilinear motion and in a single direction. The first passage C is called "EG R hot" and allows to let the exhaust gas to recirculate without being cooled. The second passage F referred to as "cold EGR" includes at least one cooling channel to obtain cooled recirculated exhaust gases to further reduce NOx formation. The hot EGR passage C is used to obtain exhaust gases that are warmer than those that have passed through the cold EG R passage F. Although an optimal reduction of NOx is not achieved, there is a reduction in other pollutants present when the engine has not yet been warmed up or for particular depollution methods. A first 8a and a second 8b average type shutter make it possible to choose the desired passage for the exhaust gases to be recirculated. In the embodiment shown, these means are placed at the outlet of the EGR cooler 7. These flaps make it possible to obstruct one or the other of the passages C, F according to the desired operation. The second component 8b is added to allow the exhaust gas recirculation to be eliminated at full load. This flap 8b may be disposed in the vicinity of the upstream port of the cooler 7 or in the vicinity of the downstream port. Preferably, as shown in Figure 3a, 3b and 3c, the second component 8b is disposed adjacent the first flap 8a and has the same axis of rotation as the latter.
La figure 3a présente le positionnement des volets 8a, 8b lorsque l'EGR est coupé, mode de fonctionnement qui est utilisé lorsque le moteur est utilisé à pleine charge. Dans cette configuration, les volets sont disposés de sorte que les passages EGR chaud C et EGR froid F sont obstrués.Figure 3a shows the positioning of the flaps 8a, 8b when the EGR is off, operating mode that is used when the engine is used at full load. In this configuration, the flaps are arranged so that the passages EGR hot C and EGR cold F are obstructed.
La figure 3c présente le positionnement des volets lorsque l'EGR n'est pas refroidi, mode de fonctionnement qui est utilisé lorsque le moteur n'a pas encore atteint sa température de fonctionnement ou pour certains modes de combustion. Selon ce mode de fonctionnement, les volets 8a, 8b sont disposés de manière à obstruer le passage EGR froid F. La figure 3b présente le positionnement des volets lorsque l'EGR est refroidi, mode de fonctionnement qui est utilisé lorsque le moteur a atteint sa température de fonctionnement et que le moteur n'est pas utilisé à pleine charge. Selon ce mode de fonctionnement, les volets 8a, 8b sont disposés de manière à obstruer le passage EGR chaud C et à laisser au moins partiellement libre le passage EG R froid F.Figure 3c shows the positioning of the flaps when the EGR is not cooled, operating mode that is used when the engine has not yet reached its operating temperature or for certain modes of combustion. According to this mode of operation, the flaps 8a, 8b are arranged so as to obstruct the cold EGR passage F. FIG. 3b shows the positioning of the flaps when the EGR is cooled, operating mode that is used when the engine has reached its end. operating temperature and that the motor is not used at full load. According to this mode of operation, the flaps 8a, 8b are arranged so as to obstruct the hot EGR passage C and to leave at least partially free passage EG R cold F.
Les figures 4a, 4b et 4c représentent l'intégration de la fonction d'obstruction des conduits EGR C3, C4 dans un refroidisseur EGR 7 en U selon un quatrième mode de réalisation. Un refroidisseur 7 en U présente des ports amont et aval sur un même côté, les fluides le traversant suivent un mouvement en boucle pour ressortir du côté où ils sont entrés dans le refroidisseur 7. L'utilisation de ce type de refroidisseur EGR 7 présente des avantages en termes d'intégration et de compacité du système sur un moteur. Comme pour le troisième mode de réalisation, selon ce mode de réalisation, le refroidisseur EGR 7 présente deux passages distincts pour les gaz d'échappement recirculés, un passage EG R chaud C et un passage EGR froid F mais la configuration et la localisation de ceux-ci sont différents. Le passage EGR chaud C est localisé du côté de l'extrémité du refroidisseur 7 qui présente les ports amont et aval. Le passage EGR froid F s'étend entre ce circuit EGR chaud C et l'extrémité du refroidisseur 7 opposée à l'extrémité qui présente les ports amont et aval. Ce passage EGR froid F comporte au moins un canal de refroidissement.FIGS. 4a, 4b and 4c show the integration of the function of obstruction of the EGR conduits C3, C4 in a U-shaped cooler 7 according to a fourth embodiment. A U-shaped cooler 7 has upstream and downstream ports on the same side, the fluids passing therethrough follow a looping movement to exit on the side where they entered the cooler 7. The use of this type of EGR cooler 7 has advantages in terms of integration and compactness of the system on an engine. As for the third embodiment, according to this embodiment, the EGR cooler 7 has two separate passages for the recirculated exhaust gas, a warm EG R passage C and a cold EGR passage F but the configuration and location of those These are different. The hot EGR passage C is located on the side of the end of the cooler 7 which has the upstream and downstream ports. The cold EGR passage F extends between this hot EGR circuit C and the end of the cooler 7 opposite the end which has the upstream and downstream ports. This cold EGR passage F comprises at least one cooling channel.
Selon ce mode de réalisation, la configuration de ce refroidisseur 7 en U, permet grâce à un volet unique 8 de réaliser la double fonction de sélection entre un EGR chaud et un EG R froid et la fonction d'obstruction du circuit EGR afin de supprimer la recirculation des gaz d'échappement à pleine charge. Ce volet 8 est localisé du côté du refroidisseur EG R 7 présentant les ports amont et aval. Ainsi, mettant de côté les coûts de mise en œuvre réduit de ce système, l'utilisation d'un refroidisseur 7 en U, permet de simplifier le système d'EGR, et d'en augmenter le niveau de fiabilité.According to this embodiment, the configuration of this U-shaped cooler 7 makes it possible, thanks to a single flap 8, to perform the dual function of selecting between a hot EGR and a cold EG R and the obstruction function of the EGR circuit in order to suppress exhaust gas recirculation at full load. This flap 8 is located on the side of the cooler EG R 7 having the upstream and downstream ports. Thus, putting aside the reduced implementation costs of this system, the use of a U-shaped cooler 7, simplifies the EGR system and increases the level of reliability.
La figure 4a présente le positionnement du volet 8 lorsque la recirculation des gaz est coupée, mode de fonctionnement qui est utilisé lorsque le moteur est utilisé à pleine charge. Dans cette configuration, le volet 8 obstrue le port aval du refroidisseur 7. Ainsi, les gaz recirculés ne peuvent sortir du refroidisseur 7, le moteur fonctionne sans EGR à l'admission. La figure 4b présente le positionnement du volet 8 lorsque l'EGR n'est pas refroidi, mode de fonctionnement qui est utilisé lorsque le moteur n'a pas encore atteint sa température de fonctionnement. Pendant ce mode de fonctionnement, le volet 8 est placé de manière à ce qu'il n'obstrue aucune ouverture ou conduite. Le passage EGR chaud C étant placé plus proche des ports aval et amont que le passage EGR froid F et que la résistance y est moins importante, en raison de l'absence de canal de refroidissement, les gaz circulent préférentiellement par le premier cité. La figure 4c présente le positionnement du volet lorsque l'EGR est refroidi, mode de fonctionnement qui est utilisé lorsque le moteur a atteint sa température de fonctionnement et que le moteur n'est pas utilisé à pleine charge. Pendant ce mode de fonctionnement, le volet 8 est placé de manière à obstruer le passage EGR chaud C, les gaz recirculés transitent donc par le passage EGR froid F et les gaz en aval du refroidisseur 7 sont refroidis.Figure 4a shows the positioning of the flap 8 when the gas recirculation is cut off, operating mode that is used when the engine is used at full load. In this configuration, the flap 8 obstructs the downstream port of the cooler 7. Thus, the recirculated gases can not leave the cooler 7, the engine operates without EGR at the intake. Figure 4b shows the positioning of the flap 8 when the EGR is not cooled, operating mode that is used when the engine has not yet reached its operating temperature. During this operating mode, the shutter 8 is placed in such a way that it does not obstruct any opening or driving. The hot EGR passage C being placed closer to the downstream and upstream ports than the cold EGR passage F and that the resistance is less important there, because of the absence of cooling channel, the gases preferentially circulate by the first city. Figure 4c shows the positioning of the flap when the EGR is cooled, the operating mode that is used when the engine has reached its operating temperature and the engine is not being used at full load. During this operating mode, the flap 8 is placed so as to obstruct the hot EGR passage C, the recirculated gases thus pass through the cold EGR passage F and the gases downstream of the cooler 7 are cooled.
La figure 5 représente un cinquième mode de réalisation dans lequel le circuit de recirculation B2 est raccordé au circuit de suralimentation B1 au plus près du refroidisseur de suralimentation 4. Selon ce mode de réalisation, les phénomènes de perte de pression dans le circuit d'admission sont peu affectés par l'ajout du volume du circuit de recirculation B2. On peut ajouter un moyen d'obstruction 8 dans le refroidisseur de suralimentation 4. Le circuit de recirculation B2 peut comprendre un refroidisseur EGR 7 selon le troisième ou le quatrième mode de réalisation.FIG. 5 represents a fifth embodiment in which the recirculation circuit B2 is connected to the supercharging circuit B1 as close as possible to the charge-air cooler 4. According to this embodiment, the pressure loss phenomena in the intake circuit are little affected by the addition of the volume of the recirculation circuit B2. An obstruction means 8 may be added in the charge-air cooler 4. The recirculation circuit B2 may comprise an EGR cooler 7 according to the third or fourth embodiment.
Selon une variante de l'invention non représentée, le système de recirculation des gaz d'échappement selon le mode de réalisation 4 est modifié de manière à intégrer le moyen étouffoir dans le boîtier étouffoir et de placer celui-ci au plus près du refroidisseur de suralimentation. On obtient ainsi une réduction supplémentaire des éléments en couplant les moyens d'obstruction et des moyens de sélection de la température et du débit d'air de suralimentation dans le refroidisseur de suralimentation. According to a variant of the invention not shown, the exhaust gas recirculation system according to embodiment 4 is modified so as to integrate the damper means in the damper housing and place it close to the cooler of the overeating. This further reduces the elements by coupling the obstruction means and means for selecting the temperature and the charge air flow rate in the charge-air cooler.
REVENDICATIONS
1 ) Circuit de recirculation des gaz d'échappement (B2) disposé entre un collecteur d'échappement (1 ) et un répartiteur d'air d'admission (2) d'un moteur suralimenté comportant un moyen de régulation de la quantité d'EG R (6) placé entre le collecteur d'échappement (1 ) et un refroidisseur EGR (7) caractérisé en ce que le circuit (B2) présente un moyen d'obstruction (8) pouvant obstruer au moins partiellement le circuit (B2) disposé entre un port amont du refroidisseur EG R (7) et le répartiteur d'air à l'admission (2).1) Exhaust gas recirculation circuit (B2) arranged between an exhaust manifold (1) and an intake air distributor (2) of a supercharged engine comprising means for regulating the amount of exhaust gas EG R (6) placed between the exhaust manifold (1) and an EGR cooler (7) characterized in that the circuit (B2) has an obstruction means (8) which can at least partially block the circuit (B2) disposed between an upstream port of the cooler EG R (7) and the air distributor to the inlet (2).
2) Circuit de recirculation des gaz d'échappement (B2) selon la revendication 1 caractérisé en ce qu'un conduit (C4) est connecté à un circuit de suralimentation (B1 ) au niveau d'un boîtier étouffoir (5) et en ce que le moyen d'obstruction (8) est disposé dans ce boîtier (5).2) exhaust gas recirculation circuit (B2) according to claim 1 characterized in that a conduit (C4) is connected to a supercharging circuit (B1) at a damper housing (5) and in that that the obstruction means (8) is disposed in this housing (5).
3) Circuit de recirculation des gaz d'échappement (B2) selon la revendication 2 caractérisé en ce que le moyen d'obstruction (8) est un volet (Vegr), dont une articulation présente un point de pivot commun avec un volet étouffoir (Vs) et en ce que leurs déplacements respectifs sont indépendants.3) exhaust gas recirculation circuit (B2) according to claim 2 characterized in that the obstruction means (8) is a flap (Vegr), a joint has a common pivot point with a damper flap ( Vs) and in that their respective displacements are independent.
4) Circuit de recirculation des gaz d'échappement (B2) selon la revendication 1 caractérisé en ce que le moyen d'obstruction (8) est placé dans le refroidisseur EGR (7) au niveau de son port aval. 4) exhaust gas recirculation circuit (B2) according to claim 1 characterized in that the obstruction means (8) is placed in the EGR cooler (7) at its downstream port.

Claims

5) Circuit de recirculation des gaz d'échappement (B2) selon la revendication 4 caractérisé en ce que le moyen d'obstruction (8) est placé dans un refroidisseur EG R (7) et comprend au moins un premier volet (8a) permettant d'obstruer le passage EG R chaud (C) et un deuxième volet (8b) permettant d'obstruer le passage EG R froid (F), de mouvement relatif indépendant et en ce que le premier volet (8a) et le deuxième volet (8b) sont aptes à pivoter autour d'un même axe. 5) exhaust gas recirculation circuit (B2) according to claim 4 characterized in that the obstruction means (8) is placed in an EG cooler R (7) and comprises at least a first flap (8a) allowing to obstruct the passage EG R hot (C) and a second flap (8b) for obstructing the passage EG R cold (F), relative independent movement and that the first flap (8a) and the second flap ( 8b) are able to pivot about the same axis.
6) Circuit de recirculation des gaz d'échappement (B2) selon la revendication 5 caractérisé en ce que dans une première position, le premier volet (8a) obstrue le passage EG R chaud (C) et le deuxième volet (8b) obstrue le passage EG R froid (F) ; dans une deuxième position, les premier (8a) et deuxième (8b)) volets obstruent le passage EGR froid (F) ; et dans une troisième position, les premier (8a) et deuxième (8b) volets obstruent le passage EG R chaud (C).6) exhaust gas recirculation circuit (B2) according to claim 5 characterized in that in a first position, the first flap (8a) obstructs the passage EG R hot (C) and the second flap (8b) obstructs the cold EG R passage (F); in a second position, the first (8a) and second (8b) shutters obstruct the cold EGR passage (F); and in a third position, the first (8a) and second (8b) shutters obstruct the EG R hot passage (C).
7) Circuit de recirculation des gaz d'échappement (B2) EGR selon la revendication 4 caractérisé en ce que le moyen d'obstruction (8) est placé dans un refroidisseur EG R (7), du type en U, et comprend un volet (8) unique permettant d'obstruer le passage EGR chaud (C) et/ou le passage EGR froid (F).7) EGR exhaust gas recirculation circuit (B2) according to claim 4 characterized in that the obstruction means (8) is placed in a U-type EG cooler (7) and comprises a flap (8) Unique to obstruct the hot EGR passage (C) and / or the cold EGR passage (F).
8) Circuit de recirculation des gaz d'échappement (B2) EGR selon la revendication 4 caractérisé en ce que dans une première position, le volet (8) obstrue le port aval du refroidisseur EG R (7) ; dans une deuxième position, le volet (8) est placée dans une position telle qu'elle n'obstrue aucun port ou passage du refroidisseur (7) ; et dans une troisième position, le volet (8) obstrue le passage EG R chaud (C).8) EGR exhaust gas recirculation circuit (B2) according to claim 4 characterized in that in a first position, the flap (8) obstructs the downstream port EG cooler R (7); in a second position, the flap (8) is placed in a position such that it does not obstruct any port or passage of the cooler (7); and in a third position, the flap (8) obstructs the EG R hot passage (C).
9) Circuit de recirculation des gaz d'échappement (B2) EGR selon la revendication 1 , 3, 4, 5 et 6 caractérisé en ce qu'un conduit (C4) est connecté à un circuit de suralimentation (B2) au niveau d'un refroidisseur de suralimentation (4).9) EGR exhaust gas recirculation circuit (B2) according to claim 1, 3, 4, 5 and 6 characterized in that a duct (C4) is connected to a supercharging circuit (B2) at the level of a charge cooler (4).
10) Moteur suralimenté comprenant un circuit EGR selon l'une des revendications précédentes. 10) supercharged engine comprising an EGR circuit according to one of the preceding claims.
PCT/FR2007/051752 2006-09-12 2007-07-30 Device improving the operation of a supercharged engine with an exhaust gas recirculation circuit WO2008031959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653688 2006-09-12
FR0653688A FR2905735B1 (en) 2006-09-12 2006-09-12 DEVICE FOR IMPROVING THE OPERATION OF A SUPERIOR ENGINE WITH AN EXHAUST GAS RECIRCULATION CIRCUIT

Publications (1)

Publication Number Publication Date
WO2008031959A1 true WO2008031959A1 (en) 2008-03-20

Family

ID=37908070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051752 WO2008031959A1 (en) 2006-09-12 2007-07-30 Device improving the operation of a supercharged engine with an exhaust gas recirculation circuit

Country Status (2)

Country Link
FR (1) FR2905735B1 (en)
WO (1) WO2008031959A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062831A (en) * 2010-09-16 2012-03-29 Aisan Industry Co Ltd Egr cooler bypass valve and egr system
DE102021116217A1 (en) 2021-06-23 2022-03-24 Audi Aktiengesellschaft Exhaust gas cooler for cooling exhaust gas from an internal combustion engine and a drive device with an internal combustion engine and a method for operating a drive device
US11454180B1 (en) 2021-06-17 2022-09-27 Cummins Inc. Systems and methods for exhaust gas recirculation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102452541B1 (en) 2016-12-14 2022-10-07 현대자동차주식회사 Vehicle heat exchanger
KR102463697B1 (en) * 2016-12-14 2022-11-07 현대자동차주식회사 Vehicle heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585105A1 (en) * 1992-08-24 1994-03-02 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Internal combustion engines with exhaust gas recirculation
EP0987427A1 (en) * 1998-09-14 2000-03-22 Modine Manufacturing Company Device for recirculating an exhaust gas stream to the intake conduit of an engine
EP1273788A1 (en) * 2001-07-03 2003-01-08 Peugeot Citroen Automobiles SA Air supply device for a diesel engine in a vehicle
WO2003085252A2 (en) * 2002-04-10 2003-10-16 Johnson Controls Technology Company Multiway valve
WO2004044412A1 (en) * 2002-11-13 2004-05-27 Honeywell International Inc. Dual and hybrid egr systems for use with turbocharged engine
JP2004346918A (en) * 2003-05-26 2004-12-09 Nissan Diesel Motor Co Ltd Egr device for diesel engine
FR2873413A1 (en) * 2004-07-23 2006-01-27 Denso Corp Exhaust gas temperature controlling device for exhaust gas re-circulating system for engine system, has valve to open and close cooling and/or bypass channels to mix gas for producing gas mixture that is made homogenous by partition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585105A1 (en) * 1992-08-24 1994-03-02 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Internal combustion engines with exhaust gas recirculation
EP0987427A1 (en) * 1998-09-14 2000-03-22 Modine Manufacturing Company Device for recirculating an exhaust gas stream to the intake conduit of an engine
EP1273788A1 (en) * 2001-07-03 2003-01-08 Peugeot Citroen Automobiles SA Air supply device for a diesel engine in a vehicle
WO2003085252A2 (en) * 2002-04-10 2003-10-16 Johnson Controls Technology Company Multiway valve
WO2004044412A1 (en) * 2002-11-13 2004-05-27 Honeywell International Inc. Dual and hybrid egr systems for use with turbocharged engine
JP2004346918A (en) * 2003-05-26 2004-12-09 Nissan Diesel Motor Co Ltd Egr device for diesel engine
FR2873413A1 (en) * 2004-07-23 2006-01-27 Denso Corp Exhaust gas temperature controlling device for exhaust gas re-circulating system for engine system, has valve to open and close cooling and/or bypass channels to mix gas for producing gas mixture that is made homogenous by partition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062831A (en) * 2010-09-16 2012-03-29 Aisan Industry Co Ltd Egr cooler bypass valve and egr system
US11454180B1 (en) 2021-06-17 2022-09-27 Cummins Inc. Systems and methods for exhaust gas recirculation
US11754007B2 (en) 2021-06-17 2023-09-12 Cummins Inc. Systems and methods for exhaust gas recirculation
DE102021116217A1 (en) 2021-06-23 2022-03-24 Audi Aktiengesellschaft Exhaust gas cooler for cooling exhaust gas from an internal combustion engine and a drive device with an internal combustion engine and a method for operating a drive device

Also Published As

Publication number Publication date
FR2905735B1 (en) 2011-02-25
FR2905735A1 (en) 2008-03-14

Similar Documents

Publication Publication Date Title
EP1567754B1 (en) Device for the thermal regulation of the intake air for an engine and the recirculated exhaust gas emitted by said engine
EP1561021B1 (en) Device for the thermal regulation of the intake air for an engine and the recirculated exhaust gas emitted by said engine.
WO2005073536A1 (en) Turbocharged internal combustion engine
EP3084198B1 (en) Assembly including a heat engine and an electric compressor configured to heat the inlet gases
EP2191126B1 (en) Device and method for recirculating exhaust gases of an internal combustion engine
WO2007045768A1 (en) Circuit for supplying a supercharged engine with at least one fluid and method of supplying such an engine with at least one fluid
CN106958498B (en) Condensate management system for exhaust gas cooler and heat recovery device
WO2018019558A1 (en) Device and method for controlling the combined injection of air and exhaust gasses at the intake of a supercharged internal combustion engine
WO2018002037A1 (en) Device and method for controlling the injection of air and exhaust gas at the intake of a supercharged internal combustion engine
WO2008031959A1 (en) Device improving the operation of a supercharged engine with an exhaust gas recirculation circuit
WO2005116414A1 (en) Improved system for regulating the temperature of intake gas in an engine
EP3555442B1 (en) Method of controlling the quantity of compressed air introduced at the intake of an internal combustion engine
FR2879669A1 (en) Drive train for motor vehicle, has controller selectively controlling, based on signal representing exhaust gas output temperature in cooled/non-cooled recirculation, EGR valve and control valves to control gas flow and gas temperature
FR3053405B1 (en) EXHAUST GAS CIRCULATION ASSEMBLY OF A THERMAL ENGINE
EP2024630B1 (en) Internal combustion engine comprising an exhaust gas recirculation system
FR2897393A1 (en) INTAKE AIR CIRCUIT FOR INTERNAL COMBUSTION ENGINE
FR3032487A1 (en) TURBOCHARGER ENGINE ASSEMBLY WITH TWO EXHAUST DUCTS WITH RECIRCULATION LINE AND REGULATION DEVICE
FR3028560A1 (en) SUPERIOR THERMAL ENGINE ARCHITECTURE WITH PRESSURE STORAGE DEVICE
FR2945579A1 (en) Method for controlling exhaust gas recirculated at inlet of diesel type supercharged internal combustion engine, involves establishing controlled connection of exhaust gas circulation from exhaust gas outlet to another exhaust gas outlet
FR3045732A1 (en) EXHAUST CIRCUIT OF A COMBUSTION ENGINE
FR2930596A1 (en) Exhaust gas recirculation controlling method for e.g. Diesel engine, of vehicle, involves compensating decrease of quantity of recirculated exhaust gas by introducing exhaust gas into engine's intake to obtain required total quantity of gas
FR3087851A1 (en) INTAKE CIRCUIT FOR AN INTERNAL COMBUSTION ENGINE COMPRISING A BOOSTER COMPRESSOR
FR3053079A1 (en) COOLING AIR COOLER FOR INTERNAL COMBUSTION ENGINE AND BOILER ASSOCIATED BOOSTER CIRCUIT.
FR2905980A1 (en) Drive train for motor vehicle, has compressor supplying compressed air to engine instead of supercharger during startup phase of engine, where supercharger and compressor are operated to supply engine when engine turns to full load
FR2895455A1 (en) Gas flow control system for IC engine intakes comprises non-return valve mounted upstream which prevents gases from flowing back into air intake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07823667

Country of ref document: EP

Kind code of ref document: A1