WO2008031935A1 - Generateur de champ magnetique a aimants permanents - Google Patents
Generateur de champ magnetique a aimants permanents Download PDFInfo
- Publication number
- WO2008031935A1 WO2008031935A1 PCT/FR2007/001456 FR2007001456W WO2008031935A1 WO 2008031935 A1 WO2008031935 A1 WO 2008031935A1 FR 2007001456 W FR2007001456 W FR 2007001456W WO 2008031935 A1 WO2008031935 A1 WO 2008031935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rings
- group
- groups
- axis
- magnetized
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/0273—Magnetic circuits with PM for magnetic field generation
- H01F7/0278—Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/093—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
Definitions
- the invention relates to a magnetic field generator with permanent magnets, in particular for a laser optical component.
- laser optical components such as those used for example in the production of compact disc players, use magnetic fields of the order of 0.5 to 1 T (Tesla). The more intense the magnetic field generated, the better the device.
- the invention is aimed in particular at producing a magnetic field generator that induces a Faraday effect.
- the Faraday effect is the effect which, in a manner known per se, describes the interaction between light and a magnetic field in a material: the polarization of light effects a rotation proportional to the magnetic field component in the direction of spread of light.
- the main consequence is that a light beam entering with a rectilinear polarization in a magnetic field generator Faraday effect device, comes out with an orientation of its different polarization.
- the Faraday effect devices currently used in measuring instruments are often composed of permanent magnets, because they do not consume energy and do not need to be cooled.
- a first cylindrical magnet having an axial passage is magnetized parallel to its axis. It is longitudinally framed by two other magnets each having an axial passage of the same dimensions as the first magnet. These two magnets are magnetized in the same direction, but in the opposite direction of the magnetization direction of the first magnet.
- the magnetic field obtained by such a configuration is generally of the order of 80% of the remanent field of the material used to make the magnets (the remanent field being the magnetic field existing in the material in the absence of current).
- magic sphere is, as its name indicates, a sphere, formed of a magnetized material whose direction of magnetization is in the meridian plane and oriented so as to make, with the polar axis, an equal angle ⁇ at the polar angle.
- such a sphere is formed of 204 pieces of magnets forming twelve meridian slices of 17 pieces of magnets.
- This sphere weighs several kilograms and has dimensions that are not in line with those imposed by the devices of the market. However, it allows to create a magnetic field of up to 5 T in a cylindrical air gap of 0.15 mm in length and 6 mm in diameter.
- the invention relates to a magnetic field generator device with permanent magnets, consisting of an arrangement around a common axis of magnetized rings which are coaxially aligned end to end so as to substantially form a hollow passage for radiation, said hollow passage having as axis said common axis.
- the device according to the invention comprises: a first group of at least one central ring whose magnetization has a direction parallel to the axis of said hollow passage and a direction defined by a reference vector, and
- the device also comprises at least a fourth and at least a fifth group each of at least one element having a symmetry of revolution about said common axis.
- the at least fourth and fifth groups are respectively disposed on either side of said at least one ring of said first group, between the third and the first group on the one hand, and between the second and the first group of other go.
- said at least one element of said at least one fourth and at least one fifth group is magnetized in a direction having a value selected from 0, + ⁇ / 2 and - ⁇ r / 2 with respect to said reference vector.
- the device according to the invention ensures the creation of a magnetic field greater than the remanent field of the material used to make the rings or the magnetized elements, and in particular a magnetic field of the order of 2 T, independently of the device size.
- the invention can thus find an industrial application in the production of many devices.
- said first ring of said first group is magnetized in the opposite direction to the direction of propagation of said radiation through said hollow passage.
- said at least one fourth and at least one fifth group each comprise a second element which has a symmetrical shape of revolution about said common axis.
- it is advantageously magnetized in a direction having a value chosen from 0, + ⁇ / 2, - ⁇ / 2 and ⁇ relative to said reference vector.
- said second elements are magnetized in the same directions as those of said at least one element of said at least one fourth and at least one fifth group, but in opposite directions.
- said second elements and said elements of said at least one fourth and at least one fifth groups are contiguous along a generally conical surface having said axis axis common and for opening angle an angle ( ⁇ ).
- This embodiment is in particular chosen to create magnetic fields that vary as the natural logarithm of the ratio pe / pi (mentioned above concerning the calculation of the field B in the hollow of a magic sphere), which allows to obtain magnetic fields greater than the remanent magnetic field Br as soon as the ratio pe / pi is sufficiently large. This demonstration will be detailed later.
- said opening angle is 54.73 °.
- the opening angle is substantially 30 ° or 75 °.
- the element of each of the at least one fourth and at least one fifth groups has an internal diameter substantially equal to that of said rings of said first, second and third groups.
- each of the at least one fourth and at least one fifth groups preferably has a rectangular section, which allows easy realization and assembly of the elements together.
- FIG. 1 is a sectional view of a device according to the invention according to a first embodiment
- FIG. 2 illustrates an alternative embodiment of the device shown in FIG. 1, in sectional view
- FIG. 3 is a curve representing the magnetic field measured in the device illustrated in FIG. 2 according to the axial position of the probe introduced into the device;
- FIG. 4 is a sectional view of a device according to the invention according to a second embodiment
- FIG. 5 illustrates an alternative embodiment of the device shown in FIG. 4, in sectional view
- FIG. 6 is a curve representing the magnetic field measured in the device illustrated in FIG. 2 according to the axial position of the probe introduced into the device;
- FIG. 7 illustrates three curves each representing the induced magnetic field at the center of a hollow cylindrical structure as a function of three different magnetization vectors.
- the Applicant has defined the needs to be met by the device according to the invention: it was to achieve a device whose internal field would be homogeneous and point along the central axis of the device. It was also a question of making a device capable of allowing itself to be traversed by a beam of light. ⁇
- the thickness of the magnetized material was located between a distance pi of the axis (corresponding to the internal radius of the cylinder) and a distance pe of the axis (corresponding to the outer radius of the cylinder).
- the Applicant has sought to arrange the magnetized material in an orientation and direction that maximizes the magnetic field at the center of the structure.
- Figure 7 shows that the functions fi ( ⁇ ), f2 ( ⁇ ) and fs ( ⁇ ) are close to the function f opt ( ⁇ ) for three particular values of angles ⁇ . From this observation, the Applicant has realized the device according to the invention in two variants:
- FIGS. 1 and 2 a first variant embodiment illustrated in FIGS. 1 and 2, comprising elements magnetized in two directions,
- FIGS. 4 and 5 a second variant embodiment illustrated in FIGS. 4 and 5, comprising elements magnetized in four directions.
- FIG. 7 thus clearly shows that it is desirable to include the magnetization orientation of the material and to make a device in which certain elements are magnetized in an incoming or outgoing radial direction.
- Figure 1 shows an embodiment of a device 1 according to the invention according to a first embodiment.
- this is an embodiment where the magnetization of all the elements constituting the device 1 has a direction parallel to that of the Z axis of the device 1.
- the device 1 is composed of magnetized rings 2, 3 and 4 which are arranged around a common axis which is located on the Z axis of the device 1.
- the magnetized rings 2, 3 and 4 are coaxially aligned end to end so as to substantially form a hollow passage 5 for a radiation represented by an arrow 6.
- the hollow passage 5 has an axis of said common axis Z.
- the magnetized rings 2, 3 and 4 are of rectangular sections of length L and thickness e.
- the passage 5 is cylindrical with a diameter D.
- the device comprises a first group P1 which comprises at least one central ring 2 whose magnetization has a direction parallel to the Z axis of the hollow passage 5 and a direction defined by a reference vector V.
- the ring 2 of the first group P1 is here magnetized in the opposite direction to the direction of propagation of the radiation 6 through the hollow passage 5.
- the first group P1 has been produced with two central rings 2 and 2 'which are strictly identical.
- the first group may have more rings, and that these rings could very well have different shapes.
- the choice of two rings in this embodiment is here only the consequence of cutting a jar of material.
- the choice of two rings 2 and 2 ' was made for a question of thickness of the first group.
- the device 1 also comprises a second group P2 and a third group P3.
- Each of the groups P2 and P3 comprises at least one ring 3 or 4, respectively, whose magnetization has a direction parallel to the axis Z of the hollow passage 5 and in the opposite direction to that of the rings 2 and 2 'of the first group P1 .
- the groups P2 and P3 each comprise two identical rings, respectively 3 and 3 'on the one hand, and 4 and 4' on the other hand.
- the second and third groups P2 and P3 could have more rings, and that these rings could very well have different shapes.
- the device 1 of FIG. 1 comprises a fourth group P4 and a fifth group P5.
- the groups P4 and P5 are respectively arranged on either side of the rings 2 and 2 'of the first group P1, between the third and the first group on the one hand, and en1; re the second and the first group on the other. go.
- each of the groups P4 and P5 comprises at least one element 7 having a symmetry of revolution about the Z axis.
- the fourth and fifth groups P4 and P5 each comprise a second element 8 which has a symmetrical shape of revolution about the Z axis.
- the first element 7 (with a symmetry of revolution about the Z axis) has a polygonal section, substantially in the form of a half-pyramid whose base is opposite the rings 2 and 2 'of the first group P1, and whose vertex is next to the rings 3, 3 'and 4, 4' groups 4 and 5 respectively.
- the second element 8 (with symmetry of revolution about the Z axis) also has a polygonal section, generally (or generally) in the form of stepped half-pyramid. However, the base of the pyramidal shape is opposite the rings 3, 3 'and 4, 4' of groups 4 and 5 respectively, and the top is opposite the rings 2 and 2 'of the first group P1.
- Each of the elements 7 and 8 were made from rings of rectangular sections whose thicknesses are identical but whose lengths are different.
- the element 7 is composed of 3 rings 71, 72 and 73
- the element 8 is composed of 3 rings 81, 82 and 83.
- the element 7 of the fourth and fifth groups is magnetized in a direction having the same direction as that of the rings 2 and 2 '.
- the magnetization direction is 0 relative to said reference vector.
- the second element 8 of the fourth and fifth groups is magnetized in an antiparallel direction relative to that of the rings 2 and 2 '.
- the magnetization direction has the value ⁇ relative to said reference vector.
- the second elements 8 are magnetized in the same direction as that of the first elements 7, but in opposite directions.
- the second elements 8 and the elements 7 of the fourth and fifth groups P4 and P5 are contiguous in a generally conical surface, stepped, having the axis Z axis and for opening angle an angle ⁇ '(or angle ⁇ , see Figure 2), the angle ⁇ 'corresponding to the angle marked on the curves shown in Figure 7 according to the embodiment considered, that is to say to two directions of magnetization in the case described .
- the rings 71, 72, 73 and 81, 82, 83 have been made with lengths such that when they are arranged with respect to one another, one goes from one direction of magnetization to another of share and else of the surface of a cone whose opening angle is substantially 54.73 °.
- FIG. 1 a device with an opening angle ⁇ 'of 54.70 ° was first produced (FIG. 1).
- FIG. 1 An alternative embodiment of this device is illustrated in FIG. 1
- the first group P1 ' has a single ring 9.
- the second and third groups P2 'and P3' each comprise three rings 10, 11 and 12 on the one hand, and 10 ', 11' and 12 'on the other hand, these rings having the same dimensions. Furthermore, the elements T and 8 'of the fourth and fifth groups P4' and P5 1 each comprise two rings, respectively 13 and 14 on the one hand, and 15 and 16 on the other hand. ;
- the opening angle ⁇ is, in the context of this embodiment of 54.73 e
- spacers 20 have been inserted between the rings 13 and 16 on the one hand, and 14 and 15 on the other hand.
- the spacers 20 are made of non-magnetized materials. They can advantageously be made of plastic or other non-conductive material.
- the internal diameters of the rings 81, 82, 83 on the one hand, and the rings 15 and 16 on the other hand are equal to those of the rings 2, 2 ', 3, 3', 4, 4 ', 10, 11, 12 and 10', 11 ', and 12' of the first groups P1, PI ', second groups P2, P2' and third groups P3 and P3 ' .
- the ring 9 of the first group P1 ' has an outer diameter of 80 mm and an inner diameter of 10 mm.
- the rings 10, 10 ', 11, 11' and 12, 12 ' are identical to the ring 9. They are simply arranged in such a way that their direction of magnetization is reversed relative to that of the ring 9.
- the rings 13 have an external diameter of 80 mm and an internal diameter of 30 mm.
- the rings 14 have an outer diameter of 80 and an internal diameter of 60 mm.
- the rings 15 have an outer diameter of 50 mm and an internal diameter of 10 mm.
- the rings 16 have an outer diameter of 25 mm and an internal diameter of 10 mm.
- the device has a generally tubular shape of circular section, whose axial passage has a diameter D of 10 mm and whose outer diameter is 80 mm.
- the total length of the cylinder is 110 mm.
- FIG. 3 shows that, thus conceived, the device 1 can generate magnetic fields of the order of 1, 7 T.
- a first central part of the device consisting of the rings 9, 13 and 14 is formed.
- the rings 9, 13 and 14 are magnetized in the same direction. Then, the two side parts of the device 1 are formed with the rings 10, 11, 12, 15 and 16 on the one hand, and 1 , 11 ', 12', 15 and 16 on the other hand.
- the assembly and the centering of the rings of each of these three parts are done in several stages by means of a gripping axis by the inside diameter of the rings and a duralumin plate allowing the maintenance by the outer diameter of the rings. other rings.
- FIGS. 4 and 5 show an exemplary embodiment of a device 30 according to the invention according to a second embodiment which is defined by an arrangement of magnetized elements, arranged between them in such a way that the device has four directions of magnetization.
- the rings are aligned about an axis Z 'and are placed end to end so as to substantially form a hollow passage 31 for a radiation 32 represented by an arrow in FIG.
- the hollow passage 31 has axis Z '.
- the device 30 comprises a first group G1 of two central rings 33 and 34 whose magnetization has a direction parallel to the axis Z 'of the hollow passage 31 and a direction defined by a reference vector V.
- the device 30 also comprises a second and a third group G2 and G3 of at least one ring 40 and 41, respectively, whose magnetization has a direction parallel to the axis of the hollow passage 31 and in the opposite direction to that of the ring 33 or 34 of the first group G1.
- the device 30 comprises fourth and fifth groups G4 and G5.
- Each of the groups G4 and G5 comprises two elements 35, 35 ', and 36, 36', these elements having a symmetry of revolution about the axis Z '.
- the groups G4 and G5 are respectively located on either side of the rings 33 and 34 of the first group G1, between the third and the first groups on the one hand, and between the second and the first group. groups on the other hand.
- the element 35 and the element 36 respectively of the fourth and fifth groups are magnetized in a direction having a value respectively of - ⁇ / 2 and + ⁇ / 2 with respect to said reference vector.
- the element 35 is composed of several rings 43, 37, 38, 39 and 42 of different sizes, so that their outer surfaces are in the extension of one another.
- the stack of rings thus obtained forms a rotationally symmetrical element 35 whose section is substantially in the shape of a half-pyramid.
- the element 36 is identical to the element 35, and comprises several rings 43 ', 37', 38 ', 39' and 42 'identical to the rings 43, 37, 38, 39 and 42 respectively.
- the element 35 comprises two rings of different dimensions 44 and 45, forming a rotationally symmetrical element whose section is generally (or generally) shaped half-pyramid.
- the element 36 ' is identical to the element 35', and comprises two rings of different dimensions 44 'and 45', forming a symmetrical element of revolution whose section is also generally in the form of a half-pyramid.
- the elements 36 and 36 ' join in a generally conical surface whose axis is the axis Z' and whose opening angle is equal to ⁇ ".
- ⁇ " is substantially 30 °.
- FIG. 4 is assembled according to the same principle as that described for the device shown in FIG.
- FIG. 5 shows an alternative embodiment of the device with four directions of magnetizations.
- FIG. 5 shows a device 50 which consists of an arrangement of rings around an axis Z 'which is common to them, the rings being aligned end to end so as to substantially form a hollow passage 51 for a radiation 52.
- the hollow passage 51 having the axis axis common Z '.
- the device 50 comprises a first group G'1 composed of a central ring 53 whose magnetization has a direction parallel to the axis Z 'of the hollow passage 51 and a direction defined by a reference vector V ".
- the device 50 also comprises a second and a third group G'2 and G'3, each group comprising respectively a ring 54 and 55 whose magnetization has a direction parallel to the axis Z 'of the hollow passage 51 and in the opposite direction to that of the ring 53 of the first group G'1.
- the rings 53, 54 and 55 have the same dimensions.
- the device 50 comprises fourth and fifth groups G'4 and G'5.
- Each group G'4 and G'5 comprises an element having a symmetry of revolution about the axis Z ', and are respectively disposed on either side of the ring 53 of the first group G1, between the third and the first group on the one hand, and between the second and the first group on the other hand,
- the element of the group G'4, whose shape is symmetrical about the Z 'axis, comprises two rings 56 and 57 which are identical and which are magnetized radially in a direction having the value + ⁇ / 2 by relative to the reference vector V ".
- the element of the group G'5 also comprises two rings 58 and 59 which are identical and which are magnetized radially in a direction having the value - ⁇ / 2 relative to said reference vector V ".
- This device is also made with a radially magnetized NdFedB alloy protected by a nickel coating.
- the rings 53, 54 and 55 have an internal diameter of 22 mm, an external diameter of 110 mm and a thickness of 20 mm.
- the rings 56, 57, 58 and 59 have an internal diameter of 22 mm, an outer diameter of 90 mm and a thickness of 23 mm.
- FIG. 6 shows the field variations measured at the center of the device represented in FIG. 5, with a Hall effect probe, as a function of the position measured in mm of the probe along the Z 'axis.
- the maximum magnetic field produced by the prototype is of the order of 1.6 T. This value decreases slowly as one moves away from the center of the device in the axial direction.
- the field produced is thus considered very high and very homogeneous.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Hard Magnetic Materials (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
L'invention concerne un générateur de champ magnétique à aimants permanents (1) pour rotateur de Faraday, consistant en un agencement autour d'un axe commun (Z) d'anneaux aimantés qui sont alignés coaxialement bout à bout de manière à former sensiblement un passage creux (5) pour un rayonnement (6), ledit passage creux (5) ayant pour axe ledit axe commun. L'originalité de l'invention réside dans la répartition géométrique des disques constituant la structure magnétique et cette répartition permet d'obtenir un champ magnétique au centre de la structure croissant comme le logarithme d'un rapport de dimensions. Le générateur de champ magnétique selon l'invention présente notamment une structure à deux directions d'aimantation qui sépare les domaines d'aimantation par des surfaces coniques ou des approximations de surfaces coniques formées de cylindres et de couronnes. Le générateur selon l'invention peut également présenter une structure à quatre directions d'aimantations comportant des couronnes à aimantation sensiblement radiale entrante ou sortante.
Description
GENERATEUR DE CHAMP MAGNÉTIQUE A AIMANTS PERMANENTS
L'invention concerne un générateur de champ magnétique à aimants permanents notamment pour composant optique laser.
Dans certains appareils du commerce, des composants optiques laser tels que ceux utilisés par exemple dans la réalisation de lecteurs de disques compacts, font appel à des champs magnétiques de l'ordre de 0,5 à 1 T (Tesla). Plus le champ magnétique généré est intense, plus l'appareil est performant.
A l'origine de l'invention, on a donc cherché à réaliser un composant optique laser plus performant que ceux existant déjà et, à cet effet, un générateur de champs magnétique susceptible de générer un champ magnétique supérieur par exemple à 1 T.
L'invention vise en particulier à la réalisation d'un générateur de champ magnétique qui induit un effet Faraday.
L'effet Faraday est l'effet qui, de manière en soi connu, décrit l'interaction entre la lumière et un champ magnétique dans un matériau : la polarisation de la lumière effectue une rotation proportionnelle à la composante du champ magnétique sur la direction de propagation de la lumière. La conséquence principale est qu'un rayon lumineux entrant avec une polarisation rectiligne dans un dispositif à effet Faraday générateur de champ magnétique, en ressort avec une orientation de sa polarisation différente.
Pour réaliser des composants optiques laser faisant appel à cet effet, on cherche usuellement à utiliser des dispositifs qui produisent un champ
^
magnétique aussi intense que possible et qui présentent des dimensions de l'ordre du centimètre.
Les dispositifs à effet Faraday qui sont actuellement utilisés dans les appareils de mesures sont bien souvent composés d'aimants permanents, du fait qu'ils ne consomment pas d'énergie et qu'ils n'ont pas besoin d'être refroidis.
Usuellement, ces aimants sont assemblés suivant l'agencement préconisé dans le brevet américain US-4 856 878 : un premier aimant cylindrique présentant un passage axial est aimanté parallèlement à son axe. Il est encadré longitudinalement de deux autres aimants présentant chacun un passage axial de mêmes dimensions que le premier aimant. Ces deux aimants sont aimantés dans la même direction, mais en sens contraire du sens d'aimantation du premier aimant. Le champ magnétique obtenu par une telle configuration est généralement de l'ordre de 80 % du champ rémanent du matériau utilisé pour réaliser les aimants (le champ rémanent étant le champ magnétique existant dans le matériau en l'absence de courant).
Cela signifie que pour les meilleurs matériaux actuels dont le champ rémanent Br vaut environ 1 ,45 T, on peut obtenir un champ magnétique au maximum de l'ordre de 1 ,15 T.
A l'origine de l'invention, on a cherché à réaliser un dispositif capable de créer un champ magnétique supérieur à celui du champ rémanent du matériau utilisé.
On connaît un dispositif théorique, appelé « sphère magique », permettant de répondre à cette exigence. La « sphère magique » est, comme son nom l'indique, une sphère, formée d'un matériau aimanté dont la direction de magnétisation est dans le plan méridien et orientée de manière à faire, avec l'axe polaire, un angle γ égal à l'angle polaire.
Théoriquement, pour une sphère magique qui présente un creux central, dont le rayon interne est pi et dont le rayon externe est pe, il a été montré que le champ B dans le creux central est uniforme et vaut :
B = (4/3) Br ln(pe/pi)
où Br est le champ rémanent du milieu.
Avec un matériau réalisé en alliage NdFeB, dont le champ rémanent Br vaut 1 ,45 T et avec un rapport ρe/ρi = 3, on pourrait théoriquement obtenir un champ interne de l'ordre de 2,1 T.
Bien que cette sphère magique permette de créer des champs magnétiques importants, sa réalisation pose de nombreux problèmes.
Par exemple, il est nécessaire de réaliser des trous pour pouvoir utiliser le champ magnétique généré dans le creux de la sphère. De plus, la superposition d'aimants suivant un agencement général sphérique est difficile à réaliser. Enfin les aimants soumis à un fort champ magnétique ont tendance à se démagnétiser.
Un prototype dérivé de cette « sphère magique » a toutefois pu être réalisé par l'équipe de O. Cugat à Grenoble (Thèse de Génie Electrique de F. Bloch soutenue en Juillet 1999 à l'Institut National Polytechnique de Grenobe ; F. Bloch, O. Cugat, J. C. Toussaint, Revue Internationale de Génie Electrique, 1 , 321 (1998) ; F. Bloch, O. Cugat, J. C. Toussaint, G. Meunier, IEEE Trans. Magn. 34, 2465 (1998) ; F. Bloch, O. Cugat, J. C. Toussaint, G. Meunier, Euro. Phys. J. Appl. Phys. 5, 85 (1999)). Ce prototype est unique et n'est pas industrialisable pour les applications recherchées. En effet, une telle sphère est formée de 204 morceaux d'aimants formant douze tranches méridiennes de 17
morceaux d'aimants. Cette sphère pèse plusieurs kilogrammes et présente des dimensions qui ne sont pas en adéquation avec celles imposées par les appareils du marché. En revanche, elle permet de créer un champ magnétique allant jusqu'à 5 T dans un entrefer cylindrique de 0,15 mm de longueur et de 6 mm de diamètre.
Une autre sphère magique a été réalisée pour un tube électronique par l'équipe de H. A. Leupold aux USA (« Permanent magnet sphères : Design, construction, and application », H.A. Leupold, E. Tilak and E. Potenziani II J. Applied Physics, 87, 4730 (2000)). Il s'agit aussi d'un arrangement complexe formé de nombreux morceaux d'aimants. Le champ produit est voisin de 1 Tesla sur une longueur de 6,2 cm et la sphère pèse 22 kg. Cette sphère ne correspond pas aux besoins du marché et sa production industrielle serait aussi très coûteuse.
L'invention concerne un dispositif générateur de champ magnétique à aimants permanents, consistant en un agencement autour d'un axe commun d'anneaux aimantés qui sont alignés coaxialement bout à bout de manière à former sensiblement un passage creux pour un rayonnement, ledit passage creux ayant pour axe ledit axe commun. Le dispositif selon l'invention comporte : - un premier groupe d'au moins un anneau central dont l'aimantation présente une direction parallèle à l'axe dudit passage creux et un sens défini par un vecteur de référence, et
- un second et un troisième groupes d'au moins un anneau dont l'aimantation présente une direction parallèle à l'axe dudit passage creux et en sens opposé à celui dudit au moins un anneau dudit premier groupe.
Selon l'invention, le dispositif comporte également au moins un quatrième et au moins un cinquième groupes chacun d'au moins un élément présentant une symétrie de révolution autour dudit axe commun. Les au moins un quatrième et un cinquième groupes sont disposés respectivement de part et d'autre dudit au moins un anneau dudit premier groupe, entre le troisième et le premier groupes d'une part, et entre le second et le premier groupes d'autre part. Enfin, ledit au moins un élément desdits au moins un quatrième et au moins un cinquième
groupe est aimanté suivant une direction ayant une valeur choisie parmi 0, +π/2 et -τr/2 par rapport audit vecteur de référence.
Ainsi réalisé, le dispositif selon l'invention assure la création d'un champ magnétique supérieur au champ rémanent du matériau utilisé pour réaliser les anneaux ou les éléments aimantés, et notamment un champ magnétique de l'ordre de 2 T, cela indépendamment de la taille du dispositif.
L'invention peut ainsi trouver une application industrielle dans la réalisation de bien des appareils.
Suivant un premier mode de réalisation du dispositif selon l'invention, ledit premier anneau dudit premier groupe est aimanté en sens opposé au sens de propagation dudit rayonnement au travers dudit passage creux.
De manière avantageuse, lesdits au moins un quatrième et au moins un cinquième groupes comprennent chacun un second élément qui présente une forme à symétrie de révolution autour dudit axe commun. De plus, il est avantageusement aimanté suivant une direction ayant une valeur choisie parmi 0, +π/2, -ττ/2 et π par rapport audit vecteur de référence.
Selon une variante de réalisation, lesdits seconds éléments sont aimantés suivant les mêmes directions que celles dudit au moins un élément desdits au moins un quatrième et au moins un cinquième groupes, mais en sens opposés.
Dans le cadre d'un mode de réalisation préféré qui sera décrit par la suite, il est prévu que lesdits seconds éléments et lesdits éléments desdits au moins un quatrième et au moins un cinquième groupes sont accolés suivant une surface généralement conique ayant pour axe ledit axe commun et pour angle d'ouverture un angle (θ).
Ce mode de réalisation est en particulier choisi pour créer des champs magnétiques qui varient comme le logarithme népérien du rapport pe/pi (évoqué ci-avant concernant le calcul du champ B dans le creux d'une sphère magique), ce qui permet d'obtenir des champs magnétiques supérieurs au champ magnétique rémanent Br dès que le rapport pe/pi est suffisamment grand. Cette démonstration sera détaillée par la suite.
De manière à obtenir un rapport pe/pi suffisamment grand, il est notamment prévu de faire joindre les premiers et seconds éléments des quatrième et cinquième groupes suivant une surface conique dont l'angle d'ouverture est compris entre 54 et 55 °, préférentiellement entre 54,7 et 54,8 °.
Dans le cadre d'un mode de réalisation qui sera illustré et décrit par la suite, ledit angle d'ouverture est de 54,73°.
Dans le cadre d'une variante de réalisation d'un dispositif de préférence à quatre directions d'aimantation, l'angle d'ouverture est sensiblement de 30° ou de 75 °.
De manière avantageuse, l'élément de chacun des au moins un quatrième et au moins un cinquième groupes présente un diamètre interne sensiblement égal à celui desdits anneaux desdits premier, second et troisième groupes.
Enfin, l'élément de chacun des au moins un quatrième et au moins un cinquième groupes présente de préférence une section rectangulaire, ce qui permet une réalisation et un assemblage facile des éléments entre eux.
On décrira maintenant plusieurs modes de réalisations préférées du dispositif selon l'invention, en faisant référence aux dessins annexés, parmi lesquels :
- la figure 1 est une vue de coupe d'un dispositif selon l'invention conforme à un premier mode de réalisation,
- la figure 2 illustre une variante de réalisation du dispositif montré en figure 1 , en vue de coupe,
- la figure 3 est une courbe représentant le champ magnétique mesuré dans le dispositif illustré en figure 2 suivant la position axiale de la sonde introduite dans le dispositif,
- la figure 4 est une vue de coupe d'un dispositif selon l'invention conforme à un second mode de réalisation,
- la figure 5 illustre une variante de réalisation du dispositif montré en figure 4, en vue de coupe,
- la figure 6 est une courbe représentant le champ magnétique mesuré dans le dispositif illustré en figure 2 suivant la position axiale de la sonde introduite dans le dispositif,
- et enfin la figure 7 illustre trois courbes représentant chacune le champ magnétique induit au centre d'une structure cylindrique creuse en fonction de trois vecteurs d'aimantation différents.
Comme indiqué précédemment, la construction d'une sphère magique est trop complexe pour être adaptée aux besoins du marché.
A l'origine, la demanderesse a défini les besoins auxquels devait répondre le dispositif selon l'invention : il s'agissait de réaliser un dispositif dont le champ interne serait homogène et pointerait suivant l'axe central du dispositif. Il s'agissait également de réaliser un dispositif apte à se laisser traverser par un faisceau de lumière.
^
Ces deux conditions ont conduit la demanderesse à réaliser un dispositif dont la forme est sensiblement cylindrique, à tout le moins à réaliser un dispositif creux dont la forme présente une symétrie de révolution autour d'un axe.
La demanderesse s'est alors questionnée sur l'orientation d'aimantation de la matière dont serait constitué ledit cylindre creux ou ladite forme à symétrie de révolution.
Il a alors été considéré que l'épaisseur de la matière aimantée était située entre une distance pi de l'axe (correspondant au rayon interne du cylindre) et une distance pe de l'axe (correspondant au rayon externe du cylindre).
Au regard de la sphère magique théorique, la demanderesse a cherché à disposer la matière aimantée suivant une orientation et un sens qui maximisent le champ magnétique au centre de la structure.
Il a été montré que, dans un repère dans l'espace d'origine O et d'axe OX, OY et OZ, l'orientation optimale de l'aimantation d'un élément de matière en un point A tel que l'angle (OZ, OA) = θ est obtenu quand cette aimantation est dans le plan (OZ), (OA) et fait un angle ψ avec (OA) tel que :
2 tan ψ = tan θ
La contribution de cet élément de volume à la composante Z du champ magnétique au centre de la structure est alors proportionnelle à une fonction fopt (θ) qui est définie de la manière suivante :
W (θ) = [1 + 3 cos2θ]1/2
^
La fonction fopt (θ) est représentée sur la figure 7.
La demanderesse s'est alors proposée de calculer la valeur de la fonction f(θ) pour des orientations d'aimantations réalisables sans complexité pratique excessive :
a) Quand l'orientation d'aimantation est antiparallèle à l'axe OZ, on a ψ = π - θ. Dans ce cas, la fonction f(θ) vaut :
fi(θ) = 1 - 3 cos2θ.
b) Quand l'orientation d'aimantation est radiale dans le plan perpendiculaire à l'axe OZ, on a ψ = π/2 - θ. Dans ce cas, la fonction f(θ) vaut :
f2(θ) = 3 cosθ sinθ.
c) Quand l'orientation d'aimantation est parallèle à l'axe OZ, on a Ψ = 0 et dans ce cas, la fonction f(θ) vaut :
f3(θ) =3 COS2Θ - 1.
Les fonctions f-ι(θ), f2(θ) et f3(θ) sont également représentées sur la figure 7.
La figure 7 montre que les fonctions fi(θ), f2(θ) et fs(θ) sont proches de la fonction fopt (θ) pour trois valeurs d'angles θ particulières.
A partir de cette constatation, la demanderesse a réalisé le dispositif selon l'invention en deux variantes de réalisation :
- une première variante de réalisation illustrée sur les figures 1 et 2, comprenant des éléments aimantés suivant deux directions,
- et une seconde variante de réalisation illustrée sur les figures 4 et 5, comprenant des éléments aimantés suivant quatre directions.
En considérant que la structure à deux directions d'aimantations correspond à appliquer uniquement les fonctions fi(θ) et f3(θ), la demanderesse a cherché la valeur θ quand f,(θ) = f3(θ).
Au regard de la figure 7, fi(θ) = f3(θ) en C, quand :
fi(θ) = f3(θ)=0, et Θ = 54,73 °
Les dispositifs représentés sur les figures 1 et 2 ont été réalisés à partir de ces calculs.
Par ailleurs, en considérant que la structure à quatre directions d'aimantations correspond à appliquer les fonctions f-ι(θ), f2(θ) et f3(θ), la demanderesse a cherché les valeurs de θ quand f-i(θ) = f2(θ), et quand f2(θ) = f3(θ).
Au regard de la figure 7, fi(θ) = f2(θ) en B, quand :
f1 = f2 = 0,781 et que fopt = 1 ,104
et f2(θ) = f3(θ) en A, quand :
^ ^
f2 = f3 = 1 ,281 et que fopt = 1 ,827
L'inspection de la figure 7 montre ainsi clairement qu'il est souhaitable d'inclure l'orientation d'aimantation du matériau et de réaliser un dispositif où certains éléments sont aimantés suivant une direction radiale entrante ou sortante.
Toutefois il semblerait plus aisé de réaliser un dispositif avec des éléments dont la direction d'aimantation est parallèle ou antiparallèle, plutôt qu'un dispositif présentant des éléments dont l'aimantation est radiale entrante ou sortante.
C'est pour cette raison que plusieurs exemples de réalisation vont maintenant être décrits, en faisant références aux figures 1 à 6.
Structure à deux directions d'aimantation :
La figure 1 montre un exemple de réalisation d'un dispositif 1 selon l'invention suivant un premier mode de réalisation.
Comme on peut l'observer sur la figure 1 , il s'agit d'un mode de réalisation où l'aimantation de tous les éléments constituant le dispositif 1 présente une direction parallèle à celle de l'axe Z du dispositif 1.
Plus précisément, le dispositif 1 est composé d'anneaux aimantés 2, 3 et 4 qui sont agencés autour d'un axe commun qui se trouve être l'axe Z du dispositif 1.
Les anneaux aimantés 2, 3 et 4 sont alignés coaxialement bout à bout de manière à former sensiblement un passage creux 5 pour un rayonnement représenté par une flèche 6.
Le passage creux 5 a pour axe ledit axe commun Z.
Les anneaux aimantés 2, 3 et 4 sont de sections rectangulaires de longueur L et d'épaisseur e.
Le passage 5 est cylindrique de diamètre D.
Conformément à l'invention, le dispositif comporte un premier groupe P1 qui comprend au moins un anneau central 2 dont l'aimantation présente une direction parallèle à l'axe Z du passage creux 5 et un sens défini par un vecteur de référence V.
L'anneau 2 du premier groupe P1 est ici aimanté en sens opposé au sens de propagation du rayonnement 6 au travers du passage creux 5.
Suivant le mode de réalisation représenté sur la figure 1 , le premier groupe P1 a été réalisé avec deux anneaux centraux 2 et 2' strictement identiques.
II devra toutefois être compris que le premier groupe peut comporter davantage d'anneaux, et que ces anneaux pourraient très bien présenter des formes différentes. Le choix de deux anneaux dans ce mode de réalisation n'est ici que la conséquence d'un découpage d'un boc de matière. Le choix de deux anneaux 2 et 2' a été fait pour une question d'épaisseur du premier groupe.
Le dispositif 1 comporte également un second groupe P2 et un troisième groupe P3.
Chacun des groupes P2 et P3 comporte au moins un anneau 3 ou 4, respectivement, dont l'aimantation présente une direction parallèle à l'axe Z du passage creux 5 et en sens opposé à celui des anneaux 2 et 2' du premier groupe P1.
Suivant le mode de réalisation représenté sur la figure 1 , les groupes P2 et P3 comporte chacun deux anneaux identiques, respectivement 3 et 3' d'une part, et 4 et 4' d'autre part.
Toute comme pour le premier groupe P1 , il devra être noté que les deuxième et troisième groupes P2 et P3 pourraient comporter davantage d'anneaux, et que ces anneaux pourraient très bien présenter des formes différentes.
Conformément à l'invention, le dispositif 1 de la figure 1 comporte un quatrième groupe P4 et un cinquième groupe P5.
Les groupes P4 et P5 sont disposés respectivement de part et d'autre des anneaux 2 et 2' du premier groupe P1 , entre le troisième et le premier groupes d'une part, et en1;re le second et le premier groupes d'autre part.
De plus, chacun des groupes P4 et P5 comporte au moins un élément 7 présentant une symétrie de révolution autour de l'axe Z.
Dans le mode de réalisation du dispositif représenté sur la figure 1 , les quatrième et cinquième groupes P4 et P5 comprennent chacun un second élément 8 qui présente une forme à symétrie de révolution autour de l'axe Z.
Le premier élément 7 (à symétrie de révolution autour de l'axe Z) présente une section polygonale, sensiblement en forme de demi-pyramide dont la base se trouve en regard des anneaux 2 et 2' du premier groupe P1, et dont le sommet
se trouve en regard des anneaux 3, 3' et 4, 4' des groupes 4 et 5 respectivement.
Le second élément 8 (à symétrie de révolution autour de l'axe Z) présente également une section polygonale, généralement (ou globalement) en forme de demi-pyramide à gradins. Toutefois, la base de la forme pyramidale se trouve en regard des anneaux 3, 3' et 4, 4' des groupes 4 et 5 respectivement, et le sommet se trouve en regard des anneaux 2 et 2' du premier groupe P1.
Chacun des éléments 7 et 8 ont été réalisés à partir d'anneaux de sections rectangulaires dont les épaisseurs sont identiques mais dont les longueurs sont différentes.
Comme on peut le voir sur la figure 1 , l'élément 7 est composé de 3 anneaux 71 , 72 et 73, et l'élément 8 est composé de 3 anneaux 81 , 82 et 83.
Dans le mode de réalisation présenté sur la figure 1 , l'élément 7 des quatrième et cinquième groupes est aimanté suivant une direction ayant la même direction que celle des anneaux 2 et 2'. Autrement dit, la direction d'aimantation a pour valeur 0 rapport audit vecteur de référence.
De plus, le second élément 8 des quatrième et cinquième groupes est aimanté suivant une direction antiparallèle par rapport à celle des anneaux 2 et 2'. Autrement dit, la direction d'aimantation a pour valeur π rapport audit vecteur de référence.
Ainsi, dans le cadre du mode de réalisation représenté en figure 1 , les seconds éléments 8 sont aimantés suivant la même direction que celle des premiers éléments 7, mais en sens opposés.
De plus, les seconds éléments 8 et les éléments 7 des quatrième et cinquième groupes P4 et P5 sont accolés suivant une surface globalement conique, à gradins, ayant pour axe l'axe Z et pour angle d'ouverture un angle θ' (ou angle θ, voir figure 2), l'angle θ' correspondant à l'angle repéré sur les courbes représentées en figure 7 suivant le mode de réalisation considéré, c'est-à-dire à deux directions d'aimantation dans le cas présentement décrit.
Il a été précédemment vu que, pour ce cas, on considérait le point C où fi(θ) = f3(θ). Dans ce cas, on trouve θ = 54,73°.
Aussi, on a réalisé les anneaux 71 , 72, 73 et 81 , 82, 83 avec des longueurs telles que lorsqu'ils sont agencés les uns par rapport aux autres, on passe d'une direction d'aimantation à une autre de part et d'autre de la surface d'un cône dont l'angle d'ouverture est sensiblement de 54,73°.
De manière à simplifier la réalisation du dispositif, on a d'abord réalisé un dispositif avec un angle d'ouverture θ' de 54, 70° (figure 1).
Une variante de réalisation de ce dispositif est illustré en figure 2.
Dans le cadre de ce dernier mode de réalisation, le premier groupe P1' comporte un seul anneau 9.
Les second et troisièmes groupes P2' et P3' comportent chacun trois anneaux 10, 11 et 12 d'une part, et 10', 11' et 12' d'autre part, ces anneaux ayant les mêmes dimensions.
Par ailleurs, les éléments T et 8' des quatrième et cinquième groupes P4' et P51 comportent chacun deux anneaux, respectivement 13 et 14 d'une part, et 15 et 16 d'autre part. ;
L'angle d'ouverture θ est, dans le cadre de ce mode de réalisation de 54,73e
Pour obtenir une telle précision dans l'angle d'ouverture, des entretoises 20 ont été insérées entre les anneaux 13 et 16 d'une part, et 14 et 15 d'autre part. Les entretoises 20 sont réalisées dans des matériaux non aimantés. Elles peuvent avantageusement être réalisées en matière plastique ou autre matériau non conducteur.
De manière générale, comme on peut le voir sur les figures 1 et 2, les diamètres internes des anneaux 81 , 82, 83 d'une part, et des anneaux 15 et 16 d'autre part sont égaux à ceux des anneaux 2, 2', 3, 3', 4, 4', 10, 11, 12 et 10', 11', et 12' des premiers groupes P1 , PI', des seconds groupes P2, P2' et des troisièmes groupes P3 et P3'.
Tous les éléments constituant les dispositifs 1 ou l' représentés sur les figures 1 ou 2 ont été réalisés en NdFeB. Ils sont tous aimantés axialement.
Concernant le mode de réalisation représenté en figure 2, l'anneau 9 du premier groupe P1' présente un diamètre extérieur de 80 mm et un diamètre intérieur de 10 mm.
Les anneaux 10, 10', 11, 11' et 12, 12' sont identiques à l'anneau 9. Ils sont simplement disposés de telle manière que leur direction d'aimantation est inversée par rapport à celle de l'anneau 9.
Les anneaux 13 présentent un diamètre externe de 80 mm et un diamètre interne de 30 mm.
Les anneaux 14 présentent un diamètre externe de 80 et un diamètre interne de 60 mm.
Les anneaux 15 présentent un diamètre externe de 50 mm et un diamètre interne de 10 mm.
Enfin, les anneaux 16 présentent un diamètre externe de 25 mm et un diamètre interne de 10 mm.
Ainsi réalisé, le dispositif l' présente une forme générale tubulaire de section circulaire, dont le passage axial présente un diamètre D de 10 mm et dont le diamètre externe est de 80 mm. La longueur totale du cylindre est de 110 mm.
La figure 3 montre que, ainsi conçu, le dispositif l' peut engendrer des champs magnétiques de l'ordre de 1 ,7 T.
Nous allons maintenant décrire un procédé de montage du dispositif l' selon l'invention.
II est important de procédé suivant les étapes suivantes afin d'éviter que les anneaux ne s'attirent violemment, provoquant ainsi des chocs pouvant les abîmer.
On forme tout d'abord une première partie centrale du dispositif, composée des anneaux 9, 13 et 14.
Comme on peut le voir sur la figure 2, les anneaux 9, 13 et 14 sont aimantés suivant la même direction.
Puis, on forme les deux parties latérales du dispositif l' avec les anneaux 10, 11 , 12, 15 et 16 d'une part, et 101, 11', 12', 15 et 16 d'autre part.
L'assemblage et le centrage des anneaux de chacune de ces trois parties se font en plusieurs étapes à l'aide d'un axe de préhension par le diamètre intérieur des anneaux et d'une plaque en duralumin permettant le maintien par le diamètre extérieur des autres anneaux.
Pour l'assemblage final des trois parties, on utilise un cylindre en duralumin dont le diamètre extérieur est de 100 mm, dont le diamètre intérieur est de 80 mm, et dont la hauteur est de 110 mm.
On dispose alors les trois parties qui sont alors en forte répulsion sur l'axe central et on approche ces trois parties qui sont maintenues en position par l'intermédiaire d'un couvercle à l'aide de quatre tiges filetées en laiton munies d'écrous. Le couvercle qui sert à solidariser le montage final, est finalement fixé par huit vis en acier inoxydable amagnétique.
Structure à quatre directions d'aimantation :
Les figures 4 et 5 montrent un exemple de réalisation d'un dispositif 30 selon l'invention suivant un second mode de réalisation qui se définit par un agencement d'éléments aimantés, agencés entre eux de telle manière que le dispositif présente quatre directions d'aimantation.
Conformément à l'invention, les anneaux sont alignés autour d'un axe Z' et ils sont placés bout à bout de manière à former sensiblement un passage creux 31 pour un rayonnement 32 représenté par une flèche sur la figure 4.
Le passage creux 31 a pour axe l'axe Z'.
Le dispositif 30 comporte un premier groupe G1 de deux anneaux centraux 33 et 34 dont l'aimantation présente une direction parallèle à l'axe Z' du passage creux 31 et un sens défini par un vecteur de référence V.
Le dispositif 30 comporte également un second et un troisième groupes G2 et G3 d'au moins un anneau 40 et 41, respectivement, dont l'aimantation présente une direction parallèle à l'axe du passage creux 31 et en sens opposé à celui de l'anneau 33 ou 34 du premier groupe G1.
Conformément à l'invention, le dispositif 30 comporte un quatrième et un cinquième groupes G4 et G5.
Chacun des groupes G4 et G5 comporte deux éléments 35, 35', et 36, 36', ces éléments présentant une symétrie de révolution autour de l'axe Z'.
Comme le montre la figure 4, les groupes G4 et G5 sont disposés respectivement de part et d'autre des anneaux 33 et 34 du premier groupe G1 , entre le troisième et Ie premier groupes d'une part, et entre le second et le premier groupes d'autre part.
Par ailleurs, l'élément 35 et l'élément 36 respectivement des quatrième et cinquième groupes sont aimantés suivant une direction ayant une valeur respectivement de -ττ/2 et de +π/2 par rapport audit vecteur de référence.
L'élément 35 est composé de plusieurs anneaux 43, 37, 38, 39 et 42 de tailles différentes, de manière à ce que leurs surfaces externes soient dans le prolongement l'une de l'autre. L'empilement d'anneaux ainsi obtenu forme un élément 35 à symétrie de révolution dont la section est sensiblement en forme de demi-pyramide.
L'élément 36 est identique à l'élément 35, et comporte plusieurs anneaux 43', 37', 38', 39' et 42' identiques aux anneaux 43, 37, 38, 39 et 42 respectivement.
L'élément 35' comporte deux anneaux de dimensions différentes 44 et 45, formant un élément à symétrie de révolution dont la section est généralement (ou globalement) en forme de demi-pyramide.
L'élément 36' est identique à l'élément 35', et comporte deux anneaux de dimensions différentes 44' et 45', formant un élément à symétrie de révolution dont la section est également globalement en forme de demi-pyramide.
Les éléments 36 et 36' se joignent suivant une surface globalement conique dont l'axe est l'axe Z' et dont l'angle d'ouverture vaut θ".
Conformément aux calculs précédemment réalisés pour un dispositif à quatre directions d'aimantation, θ" vaut sensiblement 30°.
Il a également été vu précédemment que l'on pouvait changer de direction d'aimantation de part et d'autre d'une surface conique dont l'angle d'ouverture serait voisin de 75 °. Il s'agit de l'angle θ'" représenté sur la figure 4.
Le montage du dispositif représenté en figure 4 se fait suivant le même principe que celui décrit pour le dispositif représenté sur la figure 2.
La figure 5 montre une variante de réalisation du dispositif à quatre directions d'aimantations.
La figure 5 montre un dispositif 50 qui consiste en un agencement d'anneaux autour d'un axe Z' qui leur est commun, les anneaux étant alignés bout à bout de manière à former sensiblement un passage creux 51 pour un rayonnement 52.
Le passage creux 51 ayant pour axe l'axe commun Z'.
Le dispositif 50 comporte un premier groupe G'1 composé d'un anneau central 53 dont l'aimantation présente une direction parallèle à l'axe Z' du passage creux 51 et un sens défini par un vecteur de référence V".
Le dispositif 50 comporte également un second et un troisième groupes G'2 et G'3, chaque groupe comprenant respectivement un anneau 54 et 55 dont l'aimantation présente une direction parallèle à l'axe Z' du passage creux 51 et en sens opposé à celui de l'anneau 53 du premier groupe G'1.
Les anneaux 53, 54 et 55 présentent les mêmes dimensions.
Conformément à l'invention, le dispositif 50 comporte un quatrième et un cinquième groupes G'4 et G'5.
Chaque groupe G'4 et G'5 comporte un élément présentant une symétrie de révolution autour de l'axe Z', et sont disposés respectivement de part et d'autre de l'anneau 53 du premier groupe G1 , entre le troisième et le premier groupes d'une part, et entre le second et le premier groupes d'autre part,
L'élément du groupe G'4, dont la forme est à symétrie de révolution autour de l'axe Z', comporte deux anneaux 56 et 57 qui sont identiques et qui sont aimantés radialement suivant une direction ayant pour valeur + π/2 par rapport au vecteur de référence V".
De plus, l'élément du groupe G'5 comporte également deux anneaux 58 et 59 qui sont identiques et qui sont aimantés radialement suivant une direction ayant pour valeur - π/2 par rapport audit vecteur de référence V".
Ce dispositif est également réalisé avec un alliage NdFedB aimanté radialement et protégé par un revêtement de nickel.
Les anneaux 53, 54 et 55 présentent un diamètre interne de 22 mm, un diamètre externe de 110 mm et une épaisseur de 20 mm.
Les anneaux 56, 57, 58 et 59 présentent un diamètre interne de 22 mm, un diamètre externe de 90 mm et une épaisseur de 23 mm.
La figure 6 montre les variations de champs mesurées au centre du dispositif représenté sur la figure 5, avec une sonde à effet Hall, en fonction de la position mesurée en mm de la sonde selon l'axe Z'.
On comprend de la figure 7 que le champ magnétique maximum produit par le prototype est de l'ordre de 1 ,6 T. Cette valeur décroît lentement quand on s'éloigne du centre du dispositif selon la direction axiale.
Le champ produit est ainsi considéré comme très élevé et très homogène.
Claims
REVENDICATIONS
1 - Dispositif (1) générateur de champ magnétique à aimants permanents, consistant en un agencement autour d'un axe commun (Z) d'anneaux aimantés qui sont alignés coaxialement bout à bout de manière à former sensiblement un passage creux (5) pour un rayonnement (6), ledit passage creux (5) ayant pour axe ledit axe commun (Z), ledit dispositif (1) comportant :
- un premier groupe (P1 , PT, G1 , G'1 ,) d'au moins un anneau central dont l'aimantation présente une direction parallèle à l'axe dudit passage creux et un sens défini par un vecteur de référence,
- un second (P2, P2\ G2, G'2) et un troisième (P3, P3', G3, G'3) groupes d'au moins un anneau dont l'aimantation présente une direction parallèle à l'axe dudit passage creux et en sens opposé à celui dudit au moins un anneau dudit premier groupe (P1 , P1\ G1 , G'1 ,), caractérisé en ce qu'il comporte au moins un quatrième (P4, P4', G4, G'4) et au moins un cinquième (P5, P5', G5, G'5) groupes chacun d'au moins un élément présentant une symétrie de révolution autour dudit axe commun (Z), disposés respectivement de part et d'autre dudit au moins un anneau dudit premier groupe (P1 , P1\ G1 , G'1), entre Ie troisième (P3, P3', G3, G'3) et le premier (P1 , Pf, G1 , G'1) groupes d'une part, et entre le second (P2, P2', G2, G'2) et Ie premier groupes (P1 , P1', G1 , G'1) d'autre part, ledit au moins un élément desdits au moins un quatrième et au moins un cinquième groupes étant aimanté suivant une direction ayant une valeur choisie parmi 0, +τr/2 et -ττ/2 par rapport audit vecteur de référence.
2 - Dispositif selon la revendication 1 , caractérisé en ce que ledit premier anneau dudit premier groupe (P1 , P1', G1 , G'1) est aimanté en sens opposé au sens de propagation dudit rayonnement (6) au travers dudit passage creux (5).
3 - Dispositif selon Ia revendication 1 ou 2, caractérisé en ce que lesdits au moins un quatrième (P4, P4', G4, G'4) et au moins un cinquième (P5, P5', G5,
G'5) groupes comprennent chacun un second élément qui présente une forme à symétrie de révolution autour dudit axe commun, et qui est aimanté suivant une direction ayant une valeur choisie parmi 0, +π/2, -τr/2 et π par rapport audit vecteur de référence.
4 - Dispositif selon la revendication 3, caractérisé en ce que lesdits seconds éléments sont aimantés suivant les mêmes directions que celles dudit au moins un élément desdits au moins un quatrième (P4, P4\ G4, G'4) et au moins un cinquième (P5, P5\ G5, G'5) groupes, mais en sens opposés.
5 - Dispositif selon la revendication 4, caractérisé en ce que lesdits seconds éléments et lesdits éléments desdits au moins un quatrième (P4, P4\ G4, G4', G'4) et au moins un cinquième (P5, P5', G5, G5', G'5) groupes sont accolés suivant une surface sensiblement conique ayant pour axe ledit axe commun et pour angle d'ouverture un angle (θ).
6 - Dispositif selon la revendication 5, caractérisé en ce que ledit angle (θ) d'ouverture est compris entre 54 et 55 °, préférentiellement entre 54,7 et 54,8 °.
7 - Dispositif selon la revendication 6, caractérisé en ce que ledit angle (θ) d'ouverture est de 54,73°.
8 - Dispositif selon la revendication 5, caractérisé en ce que ledit angle (θ) d'ouverture est sensiblement de 30°.
9 - Dispositif selon la revendication 5, caractérisé en ce que ledit angle (θ) d'ouverture est sensiblement de 75 °.
10 - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit élément de chacun des au moins un quatrième et au moins un cinquième groupes présente un diamètre interne sensiblement égal à celui desdits anneaux desdits premier, second et troisième groupes.
11 - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce ledit élément de chacun des au moins un quatrième et cinquième groupes présente une section rectangulaire.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR06/07923 | 2006-09-11 | ||
FR0607923A FR2905794B1 (fr) | 2006-09-11 | 2006-09-11 | Generateur de champ magnetique a aimants permanents. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008031935A1 true WO2008031935A1 (fr) | 2008-03-20 |
Family
ID=37401375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2007/001456 WO2008031935A1 (fr) | 2006-09-11 | 2007-09-10 | Generateur de champ magnetique a aimants permanents |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2905794B1 (fr) |
WO (1) | WO2008031935A1 (fr) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1351545A (fr) * | 1961-12-27 | 1964-02-07 | Hitachi Ltd | Dispositif à aimant permanent |
US4829276A (en) * | 1987-03-30 | 1989-05-09 | The United States Of America As Represented By The Secretary Of The Army | Optimal periodic permanent magnet structure for electron beam focusing tubes |
US4856878A (en) * | 1987-12-04 | 1989-08-15 | Wilson Donald K | Magnetic configuration for Faraday rotators |
US5014028A (en) * | 1990-04-25 | 1991-05-07 | The United States Of America As Represented By The Secretary Of The Army | Triangular section permanent magnetic structure |
US5107238A (en) * | 1991-04-01 | 1992-04-21 | The United States Of America As Represented By The Secretary Of The Army | Magnetic cladding for use in periodic permanent magnet stacks |
JPH1064721A (ja) * | 1996-08-13 | 1998-03-06 | Shin Etsu Chem Co Ltd | 軸方向磁場発生用永久磁石磁気回路 |
-
2006
- 2006-09-11 FR FR0607923A patent/FR2905794B1/fr not_active Expired - Fee Related
-
2007
- 2007-09-10 WO PCT/FR2007/001456 patent/WO2008031935A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1351545A (fr) * | 1961-12-27 | 1964-02-07 | Hitachi Ltd | Dispositif à aimant permanent |
US4829276A (en) * | 1987-03-30 | 1989-05-09 | The United States Of America As Represented By The Secretary Of The Army | Optimal periodic permanent magnet structure for electron beam focusing tubes |
US4856878A (en) * | 1987-12-04 | 1989-08-15 | Wilson Donald K | Magnetic configuration for Faraday rotators |
US5014028A (en) * | 1990-04-25 | 1991-05-07 | The United States Of America As Represented By The Secretary Of The Army | Triangular section permanent magnetic structure |
US5107238A (en) * | 1991-04-01 | 1992-04-21 | The United States Of America As Represented By The Secretary Of The Army | Magnetic cladding for use in periodic permanent magnet stacks |
JPH1064721A (ja) * | 1996-08-13 | 1998-03-06 | Shin Etsu Chem Co Ltd | 軸方向磁場発生用永久磁石磁気回路 |
Also Published As
Publication number | Publication date |
---|---|
FR2905794B1 (fr) | 2008-12-26 |
FR2905794A1 (fr) | 2008-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2470921B1 (fr) | Dispositif d'aimant permanent cylindrique produisant un champ magnétique contrôlé à une distance de sa surface | |
FR2949604A1 (fr) | Structure aimantee axisymetrique induisant en son centre un champ homogene d'orientation predeterminee | |
EP0974185B1 (fr) | Actionneur lineaire ameliore | |
FR2533361A1 (fr) | Aimant permanent multipolaire a intensite de champ reglable | |
FR2994353A1 (fr) | Moteur electrique optimise a dents etroites | |
FR3024233A1 (fr) | Element de machine et dispositif pour mesurer une force ou un moment ainsi que procede de realisation de l'element de machine | |
CA2763820A1 (fr) | Generateur de champ magnetique et dispositif magnetocalorique comportant ledit generateur de champ magnetique | |
CH711220A2 (fr) | Dispositif magnétique de pivotement d'un arbre dans un mouvement horloger. | |
CA2475352A1 (fr) | Piege a ions a aimant permanent et spectrometre de masse utilisant un tel aimant | |
EP2470922B1 (fr) | Assemblage de structures aimantees coaxiales induisant en son centre un champ homogene longitudinal | |
CA2835787C (fr) | Turbine generatrice de courant electrique | |
CH712192A1 (fr) | Procédé pour générer un champ magnétique et générateur de champ magnétique rotatif. | |
EP2156538A1 (fr) | Actionneur électromagnétique à réluctance variable | |
FR2795524A1 (fr) | Dispositif de mesure rmn portable | |
WO2011023910A1 (fr) | Dispositif d'aimant permanent cylindrique a champ magnetique induit d'orientation predeterminee et procede de fabrication | |
WO2008031935A1 (fr) | Generateur de champ magnetique a aimants permanents | |
EP2887153B1 (fr) | Dispositif de centrage magnétique | |
FR2957713A1 (fr) | Actionneur lineaire electromagnetique | |
EP1135781B1 (fr) | Actionneurs bidirectionnels | |
FR2875637A1 (fr) | Actionneur electromagnetique bistable a serrure integree. | |
EP3189715B1 (fr) | Multi-pole magnetique reglable | |
FR3113540A1 (fr) | Dispositif de génération d’un rayonnement électromagnétique cohérent | |
CH709006A2 (fr) | Dispositif de posage pour le contrôle de composants. | |
FR2566958A1 (fr) | Dispositif generateur de champ magnetique uniforme | |
BE435891A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07823492 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07823492 Country of ref document: EP Kind code of ref document: A1 |