WO2008029587A1 - Medical measurement device for outputting information useful for diagnosis - Google Patents
Medical measurement device for outputting information useful for diagnosis Download PDFInfo
- Publication number
- WO2008029587A1 WO2008029587A1 PCT/JP2007/065496 JP2007065496W WO2008029587A1 WO 2008029587 A1 WO2008029587 A1 WO 2008029587A1 JP 2007065496 W JP2007065496 W JP 2007065496W WO 2008029587 A1 WO2008029587 A1 WO 2008029587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveform
- waveforms
- unit
- feature
- index
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title abstract description 17
- 238000003745 diagnosis Methods 0.000 title description 13
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 238000012545 processing Methods 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 51
- 230000008569 process Effects 0.000 claims description 27
- 238000000605 extraction Methods 0.000 claims description 9
- 238000010606 normalization Methods 0.000 claims description 8
- 230000003416 augmentation Effects 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 description 15
- 230000000630 rising effect Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 238000005070 sampling Methods 0.000 description 9
- 238000003825 pressing Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 230000036772 blood pressure Effects 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 210000001765 aortic valve Anatomy 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 230000010247 heart contraction Effects 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000036581 peripheral resistance Effects 0.000 description 1
- 230000035485 pulse pressure Effects 0.000 description 1
- 210000002321 radial artery Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02416—Measuring pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
Definitions
- the present invention relates to a medical measuring instrument, a biological signal waveform extraction method, and a medium on which a biological signal waveform extraction program is recorded, and in particular, a medical measuring instrument that continuously detects a waveform obtained from a biological signal,
- the present invention relates to a biological signal waveform extraction method and a medium on which a biological signal waveform extraction program is recorded.
- Some pulse wave detection devices as medical measuring instruments continuously detect a pulse wave that is a waveform obtained from a biological signal.
- a representative waveform (hereinafter referred to as a “waveform”) is selected from a large number of detected pulse wave waveforms. , Representative waveform) must be extracted and displayed.
- Patent Document 1 The arteriosclerosis inspection apparatus disclosed in Japanese Patent Application Laid-Open No. 2004-136107 (hereinafter referred to as Patent Document 1) extracts a representative waveform without displaying a waveform mixed with noise due to arrhythmia or body movement.
- Patent Document 1 a method of selecting and displaying a waveform in which the sharpness of the peak of the ejection wave is close to the average from the sequentially detected waveforms is adopted.
- Patent Document 1 JP 2004-136107 A
- the feature quantity of the waveform is limited to the sharpness of the peak of the ejection wave, and the feature quantity other than the sharpness is lost.
- the extracted representative waveform may be insufficient depending on the purpose of diagnosis.
- the present invention has been made in view of such a problem, and extracts a waveform corresponding to a diagnostic purpose from a plurality of detected waveforms obtained from a biological signal and outputs the same.
- An object is to provide a measuring instrument, a biological signal waveform extraction method, and a medium on which a biological signal waveform extraction program is recorded.
- a medical measuring instrument includes: a detection unit that detects a plurality of waveforms obtained from a biological signal; and a plurality of waveforms from each of the plurality of waveforms.
- a calculation unit that calculates one feature value and a second feature value, a plurality of waveform forces, a relationship of the first feature value to the first index obtained from the plurality of calculated first feature values, and a plurality
- a search unit for searching for a representative waveform from the plurality of waveforms based on the relationship of the second feature quantity to the second index obtained from the plurality of second feature quantities calculated from the waveform of
- An output processing unit that performs processing for outputting a waveform.
- the waveform obtained from the biological signal is a pulse waveform
- the first feature value and the second feature value include an AI (Augmentation Index) value, a pulse wave cycle, a baseline fluctuation rate, and a sharpness.
- AI Application Index
- ET Ejection Time
- the search unit sets a weighting coefficient for each of the first feature value and the second feature value in one waveform, and the first feature for the first index
- a determination unit that determines a representative waveform in consideration of a weighting factor for each of the relationship between the quantities and the relationship between the second feature quantity and the second index.
- the search unit uses the average value of the first feature value for the plurality of waveforms as a first index, and the second value for the plurality of waveforms as a second index.
- An average calculation unit for calculating an average value of feature quantities, a first difference that is a difference between the first index and the first feature quantity, and a second index and a second feature for each of the plurality of waveforms.
- a difference calculation unit that calculates a second difference that is a difference from the quantity, a normalization processing unit that normalizes the calculated first difference and second difference, and the normalized first difference and second difference
- a determination unit for determining a representative waveform based on the determination waveform.
- the search unit includes a coefficient setting unit that sets a weighting factor for each of the first feature amount and the second feature amount in one waveform, and the normalized first difference and first feature amount.
- a weight processing unit that multiplies each of the two differences by a set weighting coefficient, and the determination unit determines the representative waveform based on the weighted first difference and second difference.
- the search unit further includes an addition processing unit that adds the weighted first difference and the second difference for each of the plurality of waveforms, and the determination unit has a minimum added difference. Is determined as a representative waveform.
- the search processing in the search unit is performed based on the relationship between each of the first feature value and the second feature value and the first-stage index for the plurality of waveforms.
- the search processing in the search unit is performed based on the relationship between each of the first feature value and the second feature value and the first-stage index for the plurality of waveforms.
- a second-stage search process for searching for a representative waveform from the waveforms.
- the output processing unit performs a process for displaying the value used for the process of detecting the representative waveform in the search unit or the information specifying the representative waveform together with the representative waveform.
- each of the first index and the second index includes an average value, a median value, a mode value, and a maximum value of a plurality of corresponding feature amounts for the plurality of waveforms.
- an index setting unit that sets the first index and the second index is further provided.
- a biological signal waveform extraction method is a method of extracting a representative waveform from waveforms obtained from a biological signal, the step of acquiring a plurality of continuous waveforms, A step of dividing a unit waveform from a plurality of continuous waveforms, a step of calculating a first feature amount and a second feature amount from each of the plurality of unit waveforms, and a plurality of components calculated from the plurality of waveforms The relationship of the first feature quantity to the first index obtained from the first feature quantity, and the second feature for the second index obtained from a plurality of second feature quantities calculated from a plurality of waveforms Based on the quantity relationship, a step of extracting a representative waveform from the plurality of unit waveforms and a step of outputting the representative waveform are provided.
- a medium on which a biological signal waveform extraction program is recorded executes a process of extracting a representative waveform from waveforms obtained from a biological signal.
- the step of extracting the representative waveform from the plurality of unit waveforms and the step of outputting the representative waveform are executed based on the relationship of the second feature amount to the second index obtained from the second feature amount of It is a computer-readable recording medium on which the program to be recorded is recorded.
- the representative waveform is extracted from the waveform obtained from the biological signal force measured using a plurality of feature quantities, so that a stable waveform can be extracted.
- a waveform that matches the purpose of diagnosis can be extracted, and a useful waveform can be provided by diagnosis.
- FIG. 1 is a diagram showing a specific example of a device configuration of a pulse wave detection device.
- FIG. 2 is a block diagram showing a specific example of a functional configuration of the pulse wave detection device.
- FIG. 3 is a diagram showing a specific example of a pulse wave waveform.
- FIG. 4 is a diagram showing a specific example of a pulse wave waveform.
- FIG. 5 is a diagram showing a specific example of a pulse wave waveform.
- FIG. 6 is a diagram showing a specific example of a pulse wave waveform.
- FIG. 7 is a block diagram showing one specific example of a functional configuration included in the representative waveform search processing unit 109.
- FIG. 8 is a flowchart showing processing in the pulse wave detection device.
- FIG. 9 is a flowchart showing an example of a pulse wave segmentation process executed in step S3.
- FIG. 10 is a flowchart showing an example of representative waveform search processing executed in step S7.
- FIG. 11 is a diagram for explaining display contents on the display screen.
- FIG. 12 is a flowchart showing an example of a representative waveform search process executed in step S 7 in the pulse wave detection device according to a modification.
- ROM Read Only Memory
- RAM Random Access Memory
- Switching valve Pressing cuff
- Semiconductor pressure sensor 20 Multiplexer, 21 Amplifier, 22 Characteristic variable filter, 23 A / D converter, 24 operation unit, 25 display unit, 101 pulse wave measurement value acquisition unit, 103 pulse wave segmentation processing unit, 105 feature amount calculation unit, 107 feature amount storage unit, 109 representative waveform search processing unit, 111 representative waveform display control unit, 1050 AI calculation unit, 1051 ET calculation unit, 1052 pulse wave period calculation unit, 1053 MSP calculation unit, 1054 baseline fluctuation rate calculation unit, 1091 feature value reading unit, 1092 average calculation unit, 1093 difference calculation unit, 1094 normalization processing unit, 1095 coefficient determination unit, 1096 weighting processing unit, 1097 addition processing unit, 1098 representative waveform determination unit.
- the medical measuring instrument according to the present invention is employed in a pulse wave detection device that detects a pulse wave that is a waveform obtained from a biological signal.
- the medical measuring instrument according to the present invention is not limited to the pulse wave detection device, and may be adopted in any other device as long as it is a device that detects a waveform obtained from a biological signal.
- the pulse wave detection device generally includes, as one specific example, sensor unit 1, display unit 3, and fixed base unit 7. Composed.
- the display unit 3 is provided so as to be operable from the outside, and is operated to input various information related to pulse wave analysis, and outputs various information such as pulse wave analysis results to the outside. It includes a display unit 25 consisting of a light emitting diode (LED) and a liquid crystal display (LCD).
- LED light emitting diode
- LCD liquid crystal display
- the fixed base unit 7 stores data and programs for controlling the pulse wave detection device.
- ROM Read Only Memory
- RAM Random Access Memory
- CPU Central Processing Unit 11 that performs various processes including calculations to centrally control the pulse detector, pressurization pump 15, negative pressure pump 16, switching valve 17, control circuit 14 for receiving signal from CPU11 and sending to pressure pump 15, negative pressure pump 16, switching valve 17, variable characteristics that can be changed to at least two values
- filter 22 and A / D converter 23 Includes filter 22 and A / D converter 23.
- the CPU 11 accesses the ROM 12, reads the program, develops it on the RAM 13, executes it, and controls the entire pulse wave detection device.
- the CPU 11 receives an operation signal from the user from the operation unit 24, and performs control processing for the entire pulse wave detection device based on the operation signal. That is, the CPU 11 sends a control signal to the control circuit 14, the multiplexer 20, and the characteristic variable filter 22 based on the operation signal input from the operation unit 24. Further, the CPU 11 performs control for displaying the pulse wave analysis result on the display unit 25.
- the pressurizing pump 15 is a pump for pressure-causing an internal pressure (hereinafter referred to as "cuff pressure") of a press cuff (air bag) 18 to be described later.
- the negative pressure pump 16 is a pump for reducing the cuff pressure.
- the switching valve 17 selectively connects one of the pressurizing pump 15 and the negative pressure pump 16 to the air pipe 5.
- the control circuit 14 controls these in accordance with a control signal from the CPU 11.
- the sensor unit 1 includes a semiconductor pressure sensor 19 including a plurality of sensor elements, a multiplexer 20 that selectively derives pressure signals output from the plurality of sensor elements, and a pressure signal output from the multiplexer 20. And a pressure cuff 18 including an air bag that is pressurized to press the semiconductor pressure sensor 19 onto the wrist.
- the semiconductor pressure sensor 19 is configured to include a plurality of sensor elements arranged at predetermined intervals in one direction on a semiconductor chip made of single crystal silicon or the like.
- the semiconductor pressure sensor 19 is pressed against the measurement site such as the wrist of the subject under measurement by the pressure of the pressing cuff 18. In this state, the semiconductor pressure sensor 19 detects the pulse wave of the subject via the radial artery.
- the semiconductor pressure sensor 19 detects the pulse wave to detect
- the pressure signal output from the sub-element is input to the multiplexer 20 for each sensor element channel. For example, 40 sensor elements are arranged.
- the multiplexer 20 selectively outputs a pressure signal output from each sensor element.
- the pressure signal sent from the multiplexer 20 is amplified by the amplifier 21 and selectively supplied to the A / D converter 23 via the variable characteristic filter 22.
- multiplexer 20 outputs a plurality of pressure signals output from each sensor element in accordance with a control signal from CPU 11. Switch sequentially and output. After the optimum sensor element for pulse wave detection is selected, it is fixed to the corresponding channel according to the control signal from CPU11. Accordingly, at this time, the multiplexer 20 selects and outputs the pressure signal output from the selected sensor element.
- the characteristic variable filter 22 is a low-pass filter for blocking signal components of a predetermined value or more, and can be changed to at least two values.
- the A / D converter 23 converts the pressure signal, which is an analog signal derived from the semiconductor pressure sensor 19, into digital information, and provides the digital information to the CPU 11.
- the A / D converter 23 simultaneously acquires the pressure signals output from the sensor elements included in the semiconductor pressure sensor 19 via the multiplexer 20 until the channel of the multiplexer 20 is fixed by the CPU 11. After the CPU 11 fixes the channel of the multiplexer 20, the A / D converter 23 acquires the pressure signal output from the corresponding sensor element.
- the period in which the pressure signal is sampled (hereinafter referred to as “sampling period”) is, for example, 2 ms.
- the variable characteristic filter 22 changes the value of the cutoff frequency until the channel of the multiplexer 20 is fixed and after it is fixed. Until the channel of the multiplexer 20 is fixed, sampling is performed by switching a plurality of pressure signals. Therefore, the variable characteristic filter 22 selects a cutoff frequency value higher than the sampling frequency (for example, 20 kHz) at this time. As a result, the force S can be prevented from causing rounding after A / D conversion, and the optimum sensor element can be selected appropriately. After the channel is fixed, the characteristic variable filter 22 follows the control signal from the CPU 11. Thus, a value is selected that results in a cutoff frequency that is less than half of the sampling frequency (eg, 500 Hz) for a single pressure signal.
- the sampling frequency for example, 20 kHz
- aliasing noise is a frequency component of 1/2 or more of the sampling frequency that appears in an area of 1/2 or less of the sampling frequency due to the aliasing phenomenon when an analog signal is converted to a digital signal by the sampling theorem.
- the display unit 3 can be downsized.
- the display unit 3 may be built in the force fixing base unit 7 provided separately from the fixing base unit 7 and the display unit 3. Conversely, the display unit 3 may be provided with the CPU 11, ROM 12, and RAMI 3. Also, it can be connected to a PC (Personal Computer) to perform various controls.
- PC Personal Computer
- FIG. 2 is a block diagram showing a specific example of a functional configuration for searching, extracting, and displaying a representative pulse wave from a plurality of detected pulse waves in the pulse wave detection device.
- Each function shown in FIG. 2 is performed by CPU 11 accessing ROM 12, reading a program, developing it on RAM 13, and executing it. At least a part of the functions formed in CPU 11 is shown in FIG. It may be a function that is exhibited by the device.
- the above functions of the pulse wave detection device include a pulse wave measurement value acquisition unit 101 for acquiring a pressure signal (sensor signal) from a sensor element included in the semiconductor pressure sensor 19, 1 is divided by a pulse wave delimiter processing unit 103 and a pulse wave delimiter processing unit 103 that process the pressure signal acquired by the wave measurement value acquisition unit 101 to perform a process of dividing a continuous pulse wave into one beat at a time.
- Feature quantity calculation unit 105 that calculates multiple types of feature quantities for each unit waveform that represents the pulse wave of acupuncture, feature quantity storage unit 10 7 that stores multiple types of calculated feature quantities one beat at a time, calculation for each unit waveform
- a representative waveform search processing unit 109 for performing processing for searching and extracting a pulse waveform as a representative waveform (hereinafter referred to as a representative waveform) from a continuous pulse wave using the plurality of types of feature values obtained, To display the extracted representative waveform on the display unit 25. It includes a representative waveform display control unit 111 that performs processing for generating and displaying signals.
- the types of feature amounts calculated by the feature amount calculation unit 105 include, for example, AI value, ET value, pulse period, rising sharpness MSP, and baseline fluctuation rate.
- the feature quantity calculation unit 105 includes an AI calculation unit 1050, an ET calculation unit 1051, a pulse wave period calculation unit 1052, an MSP calculation unit 1053, and a baseline fluctuation rate calculation unit 1054. It is assumed that the type of feature amount is calculated.
- AI is a known index indicating the ratio of the reflected wave to the pulse pressure, and is an index for mainly evaluating the hardening of the arterial vascular wall of the central blood vessel.
- the AI value is the level a that is the amplitude difference between the lowest pulse wave position (that is, the start position of the pulse wave waveform) and the first peak, and the level that is the amplitude difference between the lowest pulse wave position and the second peak.
- AI (%) b / a X 100.
- Level a shows the pressure value due to the ejection wave of blood due to the heartbeat
- level b shows the pressure value due to the reflected wave with respect to the ejection wave due to the heartbeat.
- the intensity and appearance time phase of this reflected wave change corresponding to the hardening of the blood vessel, and as the blood vessel hardens, the intensity of the reflected wave increases and the appearance time phase becomes earlier (shifts to the left). In other words, the higher the AI value, the more the blood vessel is cured.
- As a method for determining levels a and b there is a method of performing an operation such as differentiation on the pulse waveform. That is, referring to FIG. 3, a differential curve obtained by fourth-order differentiation is superimposed on the detected waveform, and level a and level b can be determined using the amplitude corresponding to the extreme point position.
- ET refers to the time from the opening point of the aortic valve to the closing point, and is an index related to cardiac contraction force, stroke volume, outflow tract resistance, and peripheral resistance.
- the ET value is obtained from the maximum point of the second derivative waveform of the waveform representing one beat of the pulse wave to the second maximum point. For example, when the pulse waveform shown in FIG. 4 is detected, the length c of the second derivative waveform up to the maximum point PA force and the second maximum point PB represents the ET value.
- the maximum point PA of the second derivative waveform is the rising point of the pulse wave, and the second maximum point PB represents the point at which the aortic valve begins to close.
- the pulse wave period indicates a period of a pulse wave waveform in one section, and is used as an index for detecting the deformation of a time component of the waveform shape due to the influence of body movement, noise, or the like, or arrhythmia.
- One example of a method for determining the period of the pulse wave waveform is as follows. Referring to Fig.
- PA point the local minimum point corresponding to the previous rising zero crossing point to the previous local minimum rising point (PB point)
- PA point Referring to the original waveform up to (PA point), if it is confirmed that the maximum point (PP point) exists between them and the PA point is the minimum value between the PA point and the PP point, PA The point is determined as the “rising point”, in other words, the “pulse wave start point” of one beat. Then, it is determined as the period of the pulse wave waveform of the length D force from the PA point to the PB point.
- the rising sharpness MSP is a parameter that significantly represents the pressing force of the pressing cuff 18 and evaluates the distortion of the waveform.
- the rising point of the output change of the semiconductor pressure sensor 19 is sharp, it indicates that the pressing force of the pressing cuff 18 is appropriate, and when the rising point approaches a flat change, the pressing force of the pressing cuff 18 is inappropriate. It is shown that the subcutaneous artery at the measurement site is pressurized more than necessary.
- Rising sharpness MSP is a numerical value of the sharpness of the rising point of the output change of the semiconductor pressure sensor 19. For example, referring to FIG.
- Ta the time interval between two points that are 10% higher than the maximum amplitude from the amplitude at a predetermined breakpoint (TDIA) set around the rising position of the pulse waveform.
- TDIA time from the end point between two points to the peak of the pulse waveform.
- the baseline fluctuation rate represents the fluctuation of the baseline of the adjacent pulse wave waveform, and is an index for detecting the deformation of the amplitude component of the waveform shape due to the influence of body movement, noise, and the like.
- the “pulse wave start point” can be determined by a method similar to the method described in the description of the pulse period.
- the feature amount storage unit 107 stores the five types of feature amounts calculated for each pulse wave. .
- the types of feature amounts calculated by the feature amount calculation unit 105 are not limited to the above five types, and may be at least two of them. Further, other feature amounts may be calculated.
- Other feature quantities include, for example, the time interval between the maximum traveling wave point and the maximum reflected wave point, which is an index for evaluating the temporal component of the reflected wave and the degree of arterial vessel wall hardening, and the rising point of the traveling wave A well-known index such as TR (Traveling time to Reflected wave) representing the time interval from the rising point of the reflected wave can be mentioned.
- TR Traveling time to Reflected wave
- any feature quantity useful for diagnosis using the pulse wave waveform can be adopted.
- representative waveform search processing section 109 has feature quantity reading section 1091 for reading out the feature quantity stored from feature quantity storage section 107 for each pulse wave waveform, and for each type of feature quantity.
- An average calculation unit 1092 that calculates an average value and sets it as an index
- a difference calculation unit 1093 that calculates a difference of the average value for each feature quantity as a relationship with the above index, and the calculated difference value as the type of feature quantity
- a normalization processing unit 1094 for normalization according to the above a coefficient determination unit 1095 for determining a weighting factor for determining a weighting factor for the type of feature amount to be considered when extracting a representative waveform, and the normalized difference value
- a weighting processing unit 1096 for weighting each pulse waveform using the determined weighting factor
- an addition processing unit 1097 for calculating the sum of the weighted difference values for each pulse waveform, and a difference for each pulse wave waveform Determine the representative waveform from the above sum of values.
- a representative waveform determining unit 1098 is included.
- the weighting here refers to the importance of the feature quantity used when extracting the representative waveform using a plurality of types of feature quantities as described above.
- the value is used as it is, and the weighting coefficient is set to 0.5.
- the weighting coefficient is used.
- by setting a combination of weighting factors here it is possible to extract a representative waveform using only one feature quantity (for example, AI value) out of a plurality of calculated feature quantities. It is also possible to extract a representative waveform by using all of the plurality of calculated feature amounts equally.
- Such a weight coefficient is determined by the coefficient determination unit 1095. Is done. The following methods can be used as a method for determining the weighting factor by the coefficient determination unit 1095.
- the operation unit 24 is provided with a specific button.
- the setting screen is displayed on the display unit 25. Users such as doctors can select the weights (numbers, importance (small, medium, large) selection, etc.) corresponding to each feature according to the purpose of diagnosis by operating the specific buttons or following the setting screen.
- the coefficient determination unit 1095 receives operation signals from these operations and determines a weight coefficient for each feature quantity.
- the input information capability of the user such as a doctor such as the medical history of the subject and the purpose of diagnosis, which is input prior to the main measurement and stored in a predetermined area such as RAMI 3, is used.
- a method of automatically setting the coefficient is a method of automatically setting a weighting factor of a feature amount suitable for a symptom having a high incidence by age and gender from input information on the subject such as age and gender.
- the relationship between the input information and the weighting factor for each feature amount is stored in advance in a storage area such as ROM 12, and the coefficient determination unit 1095 stores the above-described storage as necessary. This is determined by referring to the area and reading the corresponding weighting factor.
- FIG. 8 is a flowchart showing processing for displaying a representative waveform after measuring a pulse wave in the pulse wave detection device according to the present exemplary embodiment.
- the processing shown in the flowchart of FIG. 8 is realized by the CPU 11 accessing the ROM 12, reading the program, developing it on the RAM 13, executing it, and controlling each function shown in FIGS.
- pulse wave measurement value acquisition unit 101 acquires a pressure signal from semiconductor pressure sensor 19 to measure a pulse wave (step S 1).
- the pulse wave measured in step SI is divided into pulse waves by the pulse wave delimiter processing unit 103 (step S3), and the feature amount calculating unit 105
- the above five types of feature values are calculated by this method (step S5).
- the processing in steps S1 to S5 may be performed in parallel with pulse wave measurement. In that case, the feature amount calculation in step S5 is performed for each pulse wave waveform until the pulse wave measurement is completed.
- the representative waveform search processing unit 109 performs the above five types of pulse wave waveforms calculated in step S5.
- a representative waveform is searched based on the feature amount, and a corresponding pulse waveform is extracted (step S7).
- the representative waveform display control unit 111 generates and displays a display signal for displaying the pulse waveform extracted as the representative waveform in step S7 together with other calculated values on the display unit 25 as a measurement result (step S9). .
- step S3 An example of the pulse wave segmentation process executed in step S3 is shown in the flowchart of FIG. In the following, this process is described as an analysis process after the channel of the multiplexer 20 is fixed.
- the input pressure signal is amplified to a predetermined frequency in the amplifier 21 (S303), and analog filter processing is performed in the characteristic variable filter 22 (S305).
- variable characteristic filter 22 blocks signal components that are 1/2 or more of the sampling frequency. If the sampling frequency is 500 Hz, for example, signal components with a frequency exceeding 250 Hz are blocked. That is, here, the signal component corresponding to the pulse waveform outside the standard range is removed.
- the pressure signal that has passed through the variable characteristic filter 22 is digitized by the A / D converter 23 (S307), and is subjected to digital filtering to extract a predetermined range of frequencies for the purpose of noise removal and the like. (S309). Then, the A / D converter 23 transfers the digitized pressure signal to the CPU 11.
- the pulse wave segmentation processing unit 103 performs N-order differentiation on the pulse wave waveform obtained from the pressure signal by taking the difference of each data (S311). Then, the pulse wave division processing unit 103 extracts the first pulse wave waveform by dividing the pulse wave waveform based on the differential result of step S311 (S313).
- FIG. 10 is a flowchart showing an example of the representative waveform search process executed by the representative waveform search processor 109 in step S7.
- the average value is calculated for each type of feature value in the average calculation unit 1092 for the feature value read from the feature value storage unit 107 by the feature value reading unit 1091 (Step S70 Do, then the difference calculation unit In 1093, the difference from the above average value is calculated for each feature amount (step S703), and the difference calculated in step S703 is normalized in the normalization processing unit 1094 (step S705).
- the normalization process is a general normalization process and is not limited to a specific process in the present invention, and the difference normalized in step S705 is weighted by the coefficient determination unit 1095 in the weighting processing unit 1096. Weighting is performed using a coefficient (step S707), specifically, the weighting factor determined for each type of feature amount by the coefficient determination unit 10 95 is used as the feature amount with respect to the difference normalized in step S705. Seeds The difference between the above five types of feature values for each waveform of 1 ⁇ that has been weighted is added by the addition processing unit 1097 to calculate the sum of the differences for each waveform (step S709). Then, in the representative waveform determining unit 1098, the waveform having the smallest sum, that is, the waveform closest to the average as a whole for all the above five types of feature values is determined as the representative waveform and extracted (step). S711) 0
- FIG. 11 is a diagram for explaining the display contents on the display screen displayed by the display signal from the representative waveform display control unit 111 in step S9.
- the pulse waveform 200 for the beat extracted as a representative waveform and the average value of blood pressure and AI are valid as the pulse wave measurement result 300.
- the average value of the blood pressure and the average value of the AI values are displayed for all the waveforms!
- the display screen displays information 201 relating to the process of extracting the representative waveform.
- the display 201 indicates the force corresponding to the number of the effective waveform of the extracted representative waveform, and the representative screen.
- marks 203, 205, 207 representing the characteristic positions and values of the feature values used when extracting the waveform on the waveform, and a display 209 of the feature values.
- AI value, ET value, and pulse wave period are used among the above five types of features when extracting the representative waveform
- mark 203 is used to calculate the AI value.
- the above-mentioned level a and level 1 are represented, the mark 205 represents the above-mentioned length c corresponding to ET, and the mark 207 represents the above-described pulse wave start point which is a pulse wave period.
- those specific numbers are Displayed in 209.
- an average value for each type of feature quantity is used as the index, and a difference from the average value is calculated for each feature quantity as a relationship with the index, and all the feature quantities are calculated. As a whole, it is closest to the average value! /, And the waveform is determined as the representative waveform! /. In this way, a stable waveform close to the average as a whole can be used as the representative waveform.
- the above index is not limited to an average value, and it is possible to use other straight lines. Similar to the case where the average value is used as an index, the median value or the mode value can be used as another index for the purpose of making a stable waveform a representative waveform.
- the representative waveform search processing unit 109 normalizes the feature amount read from the feature amount storage unit 107, and then performs the above-described multiple types of one waveform.
- the normalized feature values are added and arranged in order of magnitude, and the waveform with the magnitude order in the center is determined as the representative waveform.
- the representative waveform search processing unit 109 is a feature amount storage unit.
- an arbitrary threshold value for an arbitrary type of feature amount among the plurality of types of feature amounts may be set as the index.
- a threshold value with an AI value of 10% or more can be set as an index.
- the representative waveform search processing unit 109 determines a waveform having a read feature amount equal to or greater than the threshold, a waveform equal to or less than the threshold, or a waveform within a predetermined range from the threshold as the representative waveform. Use such indicators Thus, a characteristic waveform useful for a specific diagnosis can be extracted by selecting a characteristic waveform.
- the index a minimum value or a maximum value can be used.
- the minimum baseline fluctuation rate or the maximum AI value can be used as an indicator.
- the representative waveform search processing unit 109 determines a waveform whose read feature amount satisfies the condition as a representative waveform. By using such an index, it is possible to select a stable waveform or to select a characteristic waveform.
- the representative waveform search processing unit 109 may determine which value is used as an index.
- a method for determining the index a method similar to the method for determining the weighting factor described above can be used. That is, as a first method, it may be determined according to an operation signal by an operator's operation, or input information of a user such as a doctor such as a medical history of a subject or a diagnosis purpose, or input regarding a subject such as age and gender. It may be set automatically from the information.
- the representative waveform search processing unit 109 performs the representative waveform search processing in two stages.
- FIG. 12 is a flowchart showing an example of representative waveform search processing executed in representative waveform search processing unit 109 in step S 7 in the pulse wave detection device according to the modification.
- the average value of each type of feature amount is used as the first-stage index as described above.
- Steps S701 to S709 are performed, and in step S712, the representative waveform determination unit 1098 searches for a waveform in which the sum of the difference of feature values for one beat waveform is within a predetermined range from the average value in the next second stage search. Are selected as target waveforms.
- the representative waveform determination unit 1098 performs a second-stage search on the target waveform selected in step S712, for example, using the maximum value of the AI value as the second-stage index.
- the waveform with the largest AI value is determined as the representative waveform from the target waveforms (step S713).
- a representative waveform is searched and extracted from a plurality of pulse wave waveforms in two or more stages.
- multi-stage search By selecting, as a target waveform, a waveform that matches the condition in the relationship with the index from a plurality of pulse wave waveforms, and extracting a waveform that matches the condition in the relationship with the further index as a representative waveform. It is possible to extract a waveform that is more suited to the purpose, such as a pulse waveform with a small and prominent AI value, as a representative waveform. This makes it possible to extract representative waveforms that are more useful for diagnosis.
- the biological signal waveform extraction method which is a method for extracting the representative waveform in the above-described pulse wave detection device, is not limited to the analysis of the pulse wave, and is generated by the first waveform and expansion caused by the heart contraction. Any other biological signal waveform obtained by synthesizing the second waveform can be used in the process of extracting the representative waveform.
- a program for realizing the biological signal waveform extraction method in the pulse wave detection device can be recorded on a computer-readable recording medium such as a flexible disk, CD-ROM (Compact Disk-Read Only Memory), ROM, RAM, or memory card attached to the computer as a program product. It can also be provided. Alternatively, the program can be provided by being recorded on a recording medium such as a hard disk built in the computer. The program can also be provided by downloading via the network.
- a computer-readable recording medium such as a flexible disk, CD-ROM (Compact Disk-Read Only Memory), ROM, RAM, or memory card attached to the computer as a program product. It can also be provided. Alternatively, the program can be provided by being recorded on a recording medium such as a hard disk built in the computer. The program can also be provided by downloading via the network.
- the program according to the present invention is a program module provided as a part of a computer operation system (OS) that calls necessary modules in a predetermined arrangement at a predetermined timing to execute processing. It may be. In that case, the program itself does not include the module, and the process is executed in cooperation with the OS. A program that does not include such a module can also be included in the program that is effective in the present invention.
- OS computer operation system
- the program according to the present invention may be provided by being incorporated in a part of another program such as a normal pulse wave measurement program. Even in this case, the program itself does not include the module included in the other program, and the process is executed in cooperation with the other program. Programs incorporated in such other programs can also be included in the programs that are effective in the present invention.
- the provided program product is installed in a program storage unit such as a hard disk. To be executed.
- the program product includes the program itself and a recording medium on which the program is recorded.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Physiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
A pulse wave detection device as a medical measurement device calculates a plurality of types of feature amounts such as the AI value, ET, the pulse wave cycle, the MSP conspicuity, and the base line fluctuation ratio for each of delimited pulse waveforms (S1, 3) from the measured continuous pulse wave (S5). Upon completion of the measurement, a representative waveform is searched according to the plurality of types of feature amounts for each of the calculated pulse waveform (S7).
Description
明 細 書 Specification
診断に有用な情報を出力する医療用測定器 Medical measuring instrument that outputs information useful for diagnosis
技術分野 Technical field
[0001] この発明は医療用測定器、生体信号波形抽出方法、および生体信号波形抽出プ ログラムを記録した媒体に関し、特に、生体信号から得られる波形を連続的に検出す る医療用測定器、生体信号波形抽出方法、および生体信号波形抽出プログラムを 記録した媒体に関する。 The present invention relates to a medical measuring instrument, a biological signal waveform extraction method, and a medium on which a biological signal waveform extraction program is recorded, and in particular, a medical measuring instrument that continuously detects a waveform obtained from a biological signal, The present invention relates to a biological signal waveform extraction method and a medium on which a biological signal waveform extraction program is recorded.
背景技術 Background art
[0002] 医療用測定器としての脈波検出装置では、生体信号から得られる波形である脈波 が連続的に検出されるものがある。このような脈波検出装置では、脈波検出装置から 出力される脈波波形を用いて短時間での適確な診断をするため、検出される数多く の脈波波形から代表的な波形(以下、代表波形)を抽出し、表示する必要がある。 [0002] Some pulse wave detection devices as medical measuring instruments continuously detect a pulse wave that is a waveform obtained from a biological signal. In such a pulse wave detection device, in order to make an accurate diagnosis in a short time using the pulse wave waveform output from the pulse wave detection device, a representative waveform (hereinafter referred to as a “waveform”) is selected from a large number of detected pulse wave waveforms. , Representative waveform) must be extracted and displayed.
[0003] 特開 2004— 136107号公報(以下、特許文献 1)に開示されている動脈硬化検査 装置では、不整脈や体動などによるノイズが混入した波形を表示せず、代表波形を 抽出して表示するために、逐次検出された波形から、駆出波のピークの先鋭度が平 均に近い波形を選択して表示する手法が採用されている。 [0003] The arteriosclerosis inspection apparatus disclosed in Japanese Patent Application Laid-Open No. 2004-136107 (hereinafter referred to as Patent Document 1) extracts a representative waveform without displaying a waveform mixed with noise due to arrhythmia or body movement. In order to display, a method of selecting and displaying a waveform in which the sharpness of the peak of the ejection wave is close to the average from the sequentially detected waveforms is adopted.
特許文献 1 :特開 2004— 136107号公報 Patent Document 1: JP 2004-136107 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0004] しかしながら、上記特許文献 1に開示されて!/、る手法では、波形の特徴量を駆出波 のピークの先鋭度に限定しており、先鋭度以外の特徴量が失われるため、抽出され る代表波形は診断目的によっては不十分な波形となる場合もあり得るという問題があ つた。 [0004] However, in the method disclosed in Patent Document 1 above, the feature quantity of the waveform is limited to the sharpness of the peak of the ejection wave, and the feature quantity other than the sharpness is lost. The extracted representative waveform may be insufficient depending on the purpose of diagnosis.
[0005] また、他の手法として、フーリエ変換などを用いて、検出された波形から平均的な波 形を算出して表示する手法もあり得るが、この手法によって表示される波形は実際に 生体から検出される波形ではなくなる。そのため、本来の特徴量が欠落してしまう場 合があるという問題がある。
[0006] 本発明はこのような問題に鑑みてなされたものであって、検出された、複数の、生体 信号から得られる波形のうち、診断目的に応じた波形を抽出して出力する医療用測 定器、生体信号波形抽出方法、および生体信号波形抽出プログラムを記録した媒体 を提供することを目的とする。 [0005] As another method, there may be a method of calculating and displaying an average waveform from a detected waveform using Fourier transform or the like, but the waveform displayed by this method is actually a living body. The waveform is not detected. Therefore, there is a problem that the original feature amount may be lost. [0006] The present invention has been made in view of such a problem, and extracts a waveform corresponding to a diagnostic purpose from a plurality of detected waveforms obtained from a biological signal and outputs the same. An object is to provide a measuring instrument, a biological signal waveform extraction method, and a medium on which a biological signal waveform extraction program is recorded.
課題を解決するための手段 Means for solving the problem
[0007] 上記目的を達成するために、本発明のある局面に従うと、医療用測定器は、生体 信号から得られる、複数の波形を検出する検出部と、上記複数の波形の各々より、第 1の特徴量と第 2の特徴量とを算出する算出部と、複数の波形力 算出された複数の 第 1の特徴量より得られる第 1の指標に対する第 1の特徴量の関係、および複数の波 形から算出された複数の第 2の特徴量より得られる第 2の指標に対する第 2の特徴量 の関係に基づいて、上記複数の波形の中から代表波形を検索する検索部と、代表 波形を出力するための処理を行なう出力処理部とを備える。 [0007] In order to achieve the above object, according to one aspect of the present invention, a medical measuring instrument includes: a detection unit that detects a plurality of waveforms obtained from a biological signal; and a plurality of waveforms from each of the plurality of waveforms. A calculation unit that calculates one feature value and a second feature value, a plurality of waveform forces, a relationship of the first feature value to the first index obtained from the plurality of calculated first feature values, and a plurality A search unit for searching for a representative waveform from the plurality of waveforms based on the relationship of the second feature quantity to the second index obtained from the plurality of second feature quantities calculated from the waveform of An output processing unit that performs processing for outputting a waveform.
[0008] 好ましくは、生体信号から得られる波形は脈波波形であり、第 1の特徴量および第 2 の特徴量には、 AI (Augmentation Index)値、脈波周期、基線変動率、先鋭度、およ び ET (Ejection Time)ィ直の少なくとも 1つが含まれる。 [0008] Preferably, the waveform obtained from the biological signal is a pulse waveform, and the first feature value and the second feature value include an AI (Augmentation Index) value, a pulse wave cycle, a baseline fluctuation rate, and a sharpness. , And at least one of ET (Ejection Time).
[0009] 好ましくは、検索部は、 1つの波形における第 1の特徴量および第 2の特徴量の各 々に対して重み係数を設定する係数設定部と、第 1の指標に対する第 1の特徴量の 関係、および第 2の指標に対する第 2の特徴量の関係の各々に対して、重み係数を 考慮して代表波形を決定する決定部とを含む。 [0009] Preferably, the search unit sets a weighting coefficient for each of the first feature value and the second feature value in one waveform, and the first feature for the first index And a determination unit that determines a representative waveform in consideration of a weighting factor for each of the relationship between the quantities and the relationship between the second feature quantity and the second index.
[0010] 好ましくは、検索部は、第 1の指標として上記複数の波形についての第 1の特徴量 の平均値、および第 2の指標として上記複数の波形につ!/、ての第 2の特徴量の平均 値を算出する平均算出部と、上記複数の波形の各々について、第 1の指標と第 1の 特徴量との差分である第 1差分、および第 2の指標と第 2の特徴量との差分である第 2差分を算出する差分算出部と、算出された第 1差分および第 2差分を正規化する正 規化処理部と、正規化された第 1差分および第 2差分に基づいて代表波形を決定す る決定部とを含む。 [0010] Preferably, the search unit uses the average value of the first feature value for the plurality of waveforms as a first index, and the second value for the plurality of waveforms as a second index. An average calculation unit for calculating an average value of feature quantities, a first difference that is a difference between the first index and the first feature quantity, and a second index and a second feature for each of the plurality of waveforms. A difference calculation unit that calculates a second difference that is a difference from the quantity, a normalization processing unit that normalizes the calculated first difference and second difference, and the normalized first difference and second difference And a determination unit for determining a representative waveform based on the determination waveform.
[0011] さらに好ましくは、検索部は、 1つの波形における第 1の特徴量および第 2の特徴量 の各々に対して重み係数を設定する係数設定部と、正規化された第 1差分および第
2差分の各々に対して、設定された重み係数を乗じる重み付け処理部とをさらに含み 、決定部は、重み付けされた第 1差分および第 2差分に基づいて代表波形を決定す [0011] More preferably, the search unit includes a coefficient setting unit that sets a weighting factor for each of the first feature amount and the second feature amount in one waveform, and the normalized first difference and first feature amount. A weight processing unit that multiplies each of the two differences by a set weighting coefficient, and the determination unit determines the representative waveform based on the weighted first difference and second difference.
[0012] さらに好ましくは、検索部は、上記複数の波形の各々について、重み付けされた第 1差分と第 2差分とを加算する加算処理部をさらに含み、決定部は、加算された差分 が最小である波形を代表波形に決定する。 [0012] More preferably, the search unit further includes an addition processing unit that adds the weighted first difference and the second difference for each of the plurality of waveforms, and the determination unit has a minimum added difference. Is determined as a representative waveform.
[0013] 好ましくは、検索部における検索処理は、上記複数の波形についての第 1の特徴 量および第 2の特徴量の各々と第 1段階の指標との関係に基づいて、上記複数の波 形の中から対象波形を選別する第 1段階の検索処理と、上記対象波形についての 第 1の特徴量および第 2の特徴量の各々と第 2段階の指標との関係に基づいて、上 記対象波形の中から代表波形を検索する第 2段階の検索処理とを含む。 [0013] Preferably, the search processing in the search unit is performed based on the relationship between each of the first feature value and the second feature value and the first-stage index for the plurality of waveforms. Based on the first-stage search process for selecting the target waveform from the above, and the relationship between the first and second feature quantities of the target waveform and the second-stage index, And a second-stage search process for searching for a representative waveform from the waveforms.
[0014] 好ましくは、前記出力処理部は、代表波形と共に、検索部において代表波形を検 出する処理に用いられた値または代表波形を特定する情報を表示するための処理 を行なう。 [0014] Preferably, the output processing unit performs a process for displaying the value used for the process of detecting the representative waveform in the search unit or the information specifying the representative waveform together with the representative waveform.
[0015] 好ましくは、第 1の指標および第 2の指標は、共に、上記複数の波形についての、 対応する複数の特徴量の平均値と、中央値と、最頻値と、最大値と、最小値と、任意 のしき!/ 直との!/、ずれかである。 [0015] Preferably, each of the first index and the second index includes an average value, a median value, a mode value, and a maximum value of a plurality of corresponding feature amounts for the plurality of waveforms. The difference between the minimum value and any threshold! / Straight! /.
[0016] 好ましくは、第 1の指標および第 2の指標を設定する指標設定部をさらに備える。 [0016] Preferably, an index setting unit that sets the first index and the second index is further provided.
本発明の他の局面に従うと、生体信号波形抽出方法は、生体信号から得られる波 形の中から代表波形を抽出する方法であって、連続した複数の波形を取得するステ ップと、上記連続した複数の波形から、単位波形を区切るステップと、複数の単位波 形の各々より、第 1の特徴量と第 2の特徴量とを算出するステップと、複数の波形から 算出された複数の第 1の特徴量より得られる第 1の指標に対する第 1の特徴量の関係 、および複数の波形から算出された複数の第 2の特徴量より得られる第 2の指標に対 する第 2の特徴量の関係に基づいて、上記複数の単位波形の中から代表波形を抽 出するステップと、代表波形を出力するステップとを備える。 According to another aspect of the present invention, a biological signal waveform extraction method is a method of extracting a representative waveform from waveforms obtained from a biological signal, the step of acquiring a plurality of continuous waveforms, A step of dividing a unit waveform from a plurality of continuous waveforms, a step of calculating a first feature amount and a second feature amount from each of the plurality of unit waveforms, and a plurality of components calculated from the plurality of waveforms The relationship of the first feature quantity to the first index obtained from the first feature quantity, and the second feature for the second index obtained from a plurality of second feature quantities calculated from a plurality of waveforms Based on the quantity relationship, a step of extracting a representative waveform from the plurality of unit waveforms and a step of outputting the representative waveform are provided.
[0017] 本発明のさらに他の局面に従うと、生体信号波形抽出プログラムを記録した媒体は 、生体信号から得られる波形の中から代表波形を抽出する処理をコンピュータに実
行させるプログラムであって、連続した複数の波形を取得するステップと、上記連続し た複数の波形から、単位波形を区切るステップと、複数の単位波形の各々より、第 1 の特徴量と第 2の特徴量とを算出するステップと、複数の波形力 算出された複数の 第 1の特徴量より得られる第 1の指標に対する第 1の特徴量の関係、および複数の波 形から算出された複数の第 2の特徴量より得られる第 2の指標に対する第 2の特徴量 の関係に基づいて、上記複数の単位波形の中から代表波形を抽出するステップと、 代表波形を出力するステップとを実行させるプログラムを記録した、コンピュータ読取 可能な記録媒体である。 [0017] According to still another aspect of the present invention, a medium on which a biological signal waveform extraction program is recorded executes a process of extracting a representative waveform from waveforms obtained from a biological signal. Each of the plurality of unit waveforms, the step of obtaining a plurality of consecutive waveforms, the step of dividing a unit waveform from the plurality of consecutive waveforms, and the second feature waveform. A feature amount of the first feature amount, a plurality of waveform forces, a relationship of the first feature amount to the first index obtained from the plurality of first feature amounts calculated, and a plurality of waveforms calculated from the plurality of waveforms. The step of extracting the representative waveform from the plurality of unit waveforms and the step of outputting the representative waveform are executed based on the relationship of the second feature amount to the second index obtained from the second feature amount of It is a computer-readable recording medium on which the program to be recorded is recorded.
発明の効果 The invention's effect
[0018] 本発明に力、かる医療用測定器では、複数の特徴量を用いて測定された生体信号 力 得られる波形より代表とする波形を抽出するので、安定した波形を抽出すること ができる。 [0018] In the medical measuring instrument, which is the power of the present invention, the representative waveform is extracted from the waveform obtained from the biological signal force measured using a plurality of feature quantities, so that a stable waveform can be extracted. .
[0019] さらに、各特徴量の重要度を考慮することによって、診断目的に合致した波形を抽 出することができ、診断により有用な波形を提供することができる。 Furthermore, by considering the importance of each feature quantity, a waveform that matches the purpose of diagnosis can be extracted, and a useful waveform can be provided by diagnosis.
図面の簡単な説明 Brief Description of Drawings
[0020] [図 1]脈波検出装置の装置構成の具体例を示す図である。 FIG. 1 is a diagram showing a specific example of a device configuration of a pulse wave detection device.
[図 2]脈波検出装置の機能構成の具体例を示すブロック図である。 FIG. 2 is a block diagram showing a specific example of a functional configuration of the pulse wave detection device.
[図 3]脈波波形の具体例を示す図である。 FIG. 3 is a diagram showing a specific example of a pulse wave waveform.
[図 4]脈波波形の具体例を示す図である。 FIG. 4 is a diagram showing a specific example of a pulse wave waveform.
[図 5]脈波波形の具体例を示す図である。 FIG. 5 is a diagram showing a specific example of a pulse wave waveform.
[図 6]脈波波形の具体例を示す図である。 FIG. 6 is a diagram showing a specific example of a pulse wave waveform.
[図 7]代表波形検索処理部 109に含まれる機能構成の 1つの具体例を示すブロック 図である。 FIG. 7 is a block diagram showing one specific example of a functional configuration included in the representative waveform search processing unit 109.
[図 8]脈波検出装置での処理を表わしたフローチャートである。 FIG. 8 is a flowchart showing processing in the pulse wave detection device.
[図 9]ステップ S3で実行される脈波区切処理の一例を表わすフローチャートである。 FIG. 9 is a flowchart showing an example of a pulse wave segmentation process executed in step S3.
[図 10]ステップ S7で実行される代表波形検索処理の一例を表わすフローチャートで ある。 FIG. 10 is a flowchart showing an example of representative waveform search processing executed in step S7.
[図 11]表示画面での表示内容を説明する図である。
[図 12]変形例に力、かる脈波検出装置において、ステップ S7で実行される代表波形検 索処理の一例を表わすフローチャートである。 FIG. 11 is a diagram for explaining display contents on the display screen. FIG. 12 is a flowchart showing an example of a representative waveform search process executed in step S 7 in the pulse wave detection device according to a modification.
符号の説明 Explanation of symbols
[0021] 1 センサユニット、 3 表示ユニット、 5 エア管、 7 固定台ユニット、 11 CPU, 12 [0021] 1 Sensor unit, 3 Display unit, 5 Air tube, 7 Fixed base unit, 11 CPU, 12
ROM, 13 RAM, 14 制御回路、 15 加圧ポンプ、 16 負圧ポンプ、 17 切換 弁、 18 押圧カフ、 19 半導体圧力センサ、 20 マルチプレクサ、 21 アンプ、 22 特性可変フィルタ、 23 A/D変換部、 24 操作部、 25 表示部、 101 脈波計測値 取得部、 103 脈波区切処理部、 105 特徴量算出部、 107 特徴量記憶部、 109 代表波形検索処理部、 111 代表波形表示制御部、 1050 AI算出部、 1051 ET 算出部、 1052 脈波周期算出部、 1053 MSP算出部、 1054 基線変動率算出部 、 1091 特徴量読出部、 1092 平均算出部、 1093 差分算出部、 1094 正規化 処理部、 1095 係数決定部、 1096 重み付け処理部、 1097 加算処理部、 1098 代表波形決定部。 ROM, 13 RAM, 14 Control circuit, 15 Pressure pump, 16 Negative pressure pump, 17 Switching valve, 18 Pressing cuff, 19 Semiconductor pressure sensor, 20 Multiplexer, 21 Amplifier, 22 Characteristic variable filter, 23 A / D converter, 24 operation unit, 25 display unit, 101 pulse wave measurement value acquisition unit, 103 pulse wave segmentation processing unit, 105 feature amount calculation unit, 107 feature amount storage unit, 109 representative waveform search processing unit, 111 representative waveform display control unit, 1050 AI calculation unit, 1051 ET calculation unit, 1052 pulse wave period calculation unit, 1053 MSP calculation unit, 1054 baseline fluctuation rate calculation unit, 1091 feature value reading unit, 1092 average calculation unit, 1093 difference calculation unit, 1094 normalization processing unit, 1095 coefficient determination unit, 1096 weighting processing unit, 1097 addition processing unit, 1098 representative waveform determination unit.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明 では、同一の部品および構成要素には同一の符号を付してある。それらの名称およ び機能も同じである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are the same.
[0023] 本実施の形態においては、本発明かかる医療用測定器が、生体信号から得られる 波形である脈波を検出する脈波検出装置に採用されるものとする。し力、しながら、本 発明にかかる医療用測定器は脈波検出装置に限定されず、生体信号から得られる 波形を検出する装置であれば、その他あらゆる装置に採用され得る。 In the present embodiment, the medical measuring instrument according to the present invention is employed in a pulse wave detection device that detects a pulse wave that is a waveform obtained from a biological signal. However, the medical measuring instrument according to the present invention is not limited to the pulse wave detection device, and may be adopted in any other device as long as it is a device that detects a waveform obtained from a biological signal.
[0024] 図 1を参照して、本実施の形態にかかる脈波検出装置は、 1つの具体例として、大 きくは、センサユニット 1と、表示ユニット 3と、固定台ユニット 7とを含んで構成される。 Referring to FIG. 1, the pulse wave detection device according to the present embodiment generally includes, as one specific example, sensor unit 1, display unit 3, and fixed base unit 7. Composed.
[0025] 表示ユニット 3は、外部から操作可能に設けられて脈波解析などに関する各種情報 を入力するために操作される操作部 24、および脈波解析結果などの各種情報を外 部に出力するための LED (Light Emitting Diode)や LCD (Liquid Crystal Display )などからなる表示部 25を含む。 [0025] The display unit 3 is provided so as to be operable from the outside, and is operated to input various information related to pulse wave analysis, and outputs various information such as pulse wave analysis results to the outside. It includes a display unit 25 consisting of a light emitting diode (LED) and a liquid crystal display (LCD).
[0026] 固定台ユニット 7は、脈波検出装置を制御するためのデータやプログラムを記憶す
る ROM (Read Only Memory) 12や RAM (Random Access Memory) 13、当該脈 波検出装置を集中的に制御するために演算を含む各種処理を実行する CPU (Cent ral Processing Unit) 11、加圧ポンプ 15、負圧ポンプ 16、切換弁 17、 CPU11から の信号を受け取り加圧ポンプ 15,負圧ポンプ 16,切換弁 17に送信するための制御 回路 14、少なくとも 2つの値に変更可能である特性可変フィルタ 22、および A/D変 換器 23を含む。 [0026] The fixed base unit 7 stores data and programs for controlling the pulse wave detection device. ROM (Read Only Memory) 12 and RAM (Random Access Memory) 13, CPU (Central Processing Unit) 11 that performs various processes including calculations to centrally control the pulse detector, pressurization pump 15, negative pressure pump 16, switching valve 17, control circuit 14 for receiving signal from CPU11 and sending to pressure pump 15, negative pressure pump 16, switching valve 17, variable characteristics that can be changed to at least two values Includes filter 22 and A / D converter 23.
[0027] CPU11は ROM12にアクセスしてプログラムを読出して RAM13上に展開して実 行し、当該脈波検出装置全体の制御を行なう。そして、 CPU11は、操作部 24よりュ 一ザからの操作信号を受取り、その操作信号に基づいて脈波検出装置全体の制御 処理を行なう。すなわち、 CPU11は、操作部 24から入力された操作信号に基づい て、制御回路 14、マルチプレクサ 20、および特性可変フィルタ 22に制御信号を送出 する。また、 CPU11は、脈波解析結果などを表示部 25に表示するための制御を行 なう。 [0027] The CPU 11 accesses the ROM 12, reads the program, develops it on the RAM 13, executes it, and controls the entire pulse wave detection device. The CPU 11 receives an operation signal from the user from the operation unit 24, and performs control processing for the entire pulse wave detection device based on the operation signal. That is, the CPU 11 sends a control signal to the control circuit 14, the multiplexer 20, and the characteristic variable filter 22 based on the operation signal input from the operation unit 24. Further, the CPU 11 performs control for displaying the pulse wave analysis result on the display unit 25.
[0028] 加圧ポンプ 15は、後述の押圧カフ(空気袋) 18の内圧(以下、「カフ圧」という)をカロ 圧するためのポンプである。負圧ポンプ 16は、カフ圧を減圧するためのポンプである 。切換弁 17は、これらの加圧ポンプ 15と負圧ポンプ 16とのいずれかを選択的にエア 管 5に切換接続する。そして、制御回路 14は、 CPU11からの制御信号にしたがって これらを制御する。 [0028] The pressurizing pump 15 is a pump for pressure-causing an internal pressure (hereinafter referred to as "cuff pressure") of a press cuff (air bag) 18 to be described later. The negative pressure pump 16 is a pump for reducing the cuff pressure. The switching valve 17 selectively connects one of the pressurizing pump 15 and the negative pressure pump 16 to the air pipe 5. The control circuit 14 controls these in accordance with a control signal from the CPU 11.
[0029] センサユニット 1は、複数のセンサエレメントを含む半導体圧力センサ 19、複数のセ ンサエレメントそれぞれが出力する圧力信号を選択的に導出するマルチプレクサ 20 、マルチプレクサ 20から出力される圧力信号を増幅するためのアンプ 21、および半 導体圧力センサ 19を手首上に押圧させるために加圧調整される空気袋を含む押圧 カフ 18を含む。 [0029] The sensor unit 1 includes a semiconductor pressure sensor 19 including a plurality of sensor elements, a multiplexer 20 that selectively derives pressure signals output from the plurality of sensor elements, and a pressure signal output from the multiplexer 20. And a pressure cuff 18 including an air bag that is pressurized to press the semiconductor pressure sensor 19 onto the wrist.
[0030] 半導体圧力センサ 19は、単結晶シリコンなどからなる半導体チップに一方向に所 定間隔に配列された複数のセンサエレメントを含んで構成される。半導体圧力センサ 19は、押圧カフ 18の圧力によって測定中の被験者の手首などの測定部位に押圧さ れる。半導体圧力センサ 19は、その状態で、半導体圧力センサ 19は橈骨動脈を介 して被験者の脈波を検出する。半導体圧力センサ 19は、脈波を検出することでセン
サエレメントから出力される圧力信号を、各センサエレメントのチャネルごとに、マルチ プレクサ 20に入力する。複数のセンサエレメントは、たとえば 40個配列される。 [0030] The semiconductor pressure sensor 19 is configured to include a plurality of sensor elements arranged at predetermined intervals in one direction on a semiconductor chip made of single crystal silicon or the like. The semiconductor pressure sensor 19 is pressed against the measurement site such as the wrist of the subject under measurement by the pressure of the pressing cuff 18. In this state, the semiconductor pressure sensor 19 detects the pulse wave of the subject via the radial artery. The semiconductor pressure sensor 19 detects the pulse wave to detect The pressure signal output from the sub-element is input to the multiplexer 20 for each sensor element channel. For example, 40 sensor elements are arranged.
[0031] マルチプレクサ 20は、各センサエレメントが出力する圧力信号を選択的に出力する 。マルチプレクサ 20から送出される圧力信号は、アンプ 21で増幅され、特性可変フィ ルタ 22を介して選択的に A/D変換器 23に供給される。 [0031] The multiplexer 20 selectively outputs a pressure signal output from each sensor element. The pressure signal sent from the multiplexer 20 is amplified by the amplifier 21 and selectively supplied to the A / D converter 23 via the variable characteristic filter 22.
[0032] 本実施の形態において、脈波検出のための最適なセンサエレメントが選択されるま では、マルチプレクサ 20は、 CPU11からの制御信号にしたがって、各センサエレメ ントから出力される複数の圧力信号を順次切り替えて出力する。また、脈波検出のた めの最適なセンサエレメントが選択された後は、 CPU11からの制御信号にしたがつ て、該当のチャネルに固定される。したがって、このとき、マルチプレクサ 20は、選択 されたセンサエレメントから出力される圧力信号を選択して出力する。 In the present embodiment, until an optimal sensor element for pulse wave detection is selected, multiplexer 20 outputs a plurality of pressure signals output from each sensor element in accordance with a control signal from CPU 11. Switch sequentially and output. After the optimum sensor element for pulse wave detection is selected, it is fixed to the corresponding channel according to the control signal from CPU11. Accordingly, at this time, the multiplexer 20 selects and outputs the pressure signal output from the selected sensor element.
[0033] 特性可変フィルタ 22は、所定値以上の信号成分を遮断するための低域通過フィル タであり、少なくとも 2つの値に変更可能である。 [0033] The characteristic variable filter 22 is a low-pass filter for blocking signal components of a predetermined value or more, and can be changed to at least two values.
[0034] A/D変換器 23は、半導体圧力センサ 19から導出されたアナログ信号である圧力 信号をデジタル情報に変換して、 CPU11に与える。 A/D変換器 23は、 CPU11に よってマルチプレクサ 20のチャネルが固定されるまでは、半導体圧力センサ 19に含 まれる各センサエレメントが出力する圧力信号を、マルチプレクサ 20を介して同時に 取得する。そして、 CPU11によってマルチプレクサ 20のチャネルが固定された後は 、 A/D変換器 23は、該当のセンサエレメントから出力される圧力信号を取得する。 圧力信号がサンプリングされる周期(以下「サンプリング周期」という)は、たとえば、 2 msどする。 The A / D converter 23 converts the pressure signal, which is an analog signal derived from the semiconductor pressure sensor 19, into digital information, and provides the digital information to the CPU 11. The A / D converter 23 simultaneously acquires the pressure signals output from the sensor elements included in the semiconductor pressure sensor 19 via the multiplexer 20 until the channel of the multiplexer 20 is fixed by the CPU 11. After the CPU 11 fixes the channel of the multiplexer 20, the A / D converter 23 acquires the pressure signal output from the corresponding sensor element. The period in which the pressure signal is sampled (hereinafter referred to as “sampling period”) is, for example, 2 ms.
[0035] 特性可変フィルタ 22は、マルチプレクサ 20のチャネルが固定されるまでと、固定さ れた後とで、遮断周波数の値を変更する。マルチプレクサ 20のチャネルが固定され るまでは、複数の圧力信号を切り替えてサンプリングが行なわれる。したがって、特性 可変フィルタ 22では、このときのサンプリング周波数(たとえば 20kHz)よりも高い遮 断周波数の値が選択される。これにより、 A/D変換後になまりが生じることを防止す ること力 Sでき、最適なセンサエレメントを適切に選択することができる。そして、チヤネ ルが固定された後は、特性可変フィルタ 22では、 CPU11からの制御信号にしたがつ
て、ある 1つの圧力信号に対するサンプリング周波数 (たとえば 500Hz)の 1/2以下 の遮断周波数となる値が選択される。これにより、エイリアシングノイズを削減すること が可能となり、精度よく脈波解析を行なうことができる。なお、エイリアシングノイズとは 、サンプリング定理により、アナログ信号をデジタル信号に変換する場合に、折り返し 現象によって、サンプリング周波数の 1/2以下の領域に出現する、サンプリング周波 数の 1/2以上の周波数成分を持つノイズを指す。 The variable characteristic filter 22 changes the value of the cutoff frequency until the channel of the multiplexer 20 is fixed and after it is fixed. Until the channel of the multiplexer 20 is fixed, sampling is performed by switching a plurality of pressure signals. Therefore, the variable characteristic filter 22 selects a cutoff frequency value higher than the sampling frequency (for example, 20 kHz) at this time. As a result, the force S can be prevented from causing rounding after A / D conversion, and the optimum sensor element can be selected appropriately. After the channel is fixed, the characteristic variable filter 22 follows the control signal from the CPU 11. Thus, a value is selected that results in a cutoff frequency that is less than half of the sampling frequency (eg, 500 Hz) for a single pressure signal. As a result, aliasing noise can be reduced, and pulse wave analysis can be performed with high accuracy. Note that aliasing noise is a frequency component of 1/2 or more of the sampling frequency that appears in an area of 1/2 or less of the sampling frequency due to the aliasing phenomenon when an analog signal is converted to a digital signal by the sampling theorem. Refers to noise with
[0036] 本実施の形態においては、 CPU11 , ROM12および RAM13を固定台ユニット 7 に備えることとして!/、るので、表示ユニット 3の小型化を図ることができる。 In the present embodiment, since the CPU 11, ROM 12 and RAM 13 are provided in the fixed base unit 7! /, The display unit 3 can be downsized.
[0037] なお、固定台ユニット 7と表示ユニット 3とは別個に設けた力 固定台ユニット 7に表 示ユニット 3が内蔵される構成であってもよい。また、逆に、表示ユニット 3に CPU11 , ROM12, RAMI 3が設けられる構成としてもよい。また、 PC (Personal Computer) と接続されて、各種制御を行なうこととしてもよレ、。 [0037] It should be noted that the display unit 3 may be built in the force fixing base unit 7 provided separately from the fixing base unit 7 and the display unit 3. Conversely, the display unit 3 may be provided with the CPU 11, ROM 12, and RAMI 3. Also, it can be connected to a PC (Personal Computer) to perform various controls.
[0038] 本実施の形態にかかる脈波検出装置では、検出された複数の脈波から代表とする 脈波を検索して抽出し、表示する。図 2は、脈波検出装置において、検出された複数 の脈波から代表とする脈波を検索して抽出し、表示するための機能構成の具体例を 示すブロック図である。図 2に示される各機能は、 CPU11が ROM12にアクセスして プログラムを読出して RAM13上に展開して実行することで、主に CPU11に形成さ れるカ S、少なくとも一部が、図 1に示される装置によって発揮される機能であってもよ い。 [0038] In the pulse wave detection device according to the present embodiment, a representative pulse wave is searched from a plurality of detected pulse waves, extracted, and displayed. FIG. 2 is a block diagram showing a specific example of a functional configuration for searching, extracting, and displaying a representative pulse wave from a plurality of detected pulse waves in the pulse wave detection device. Each function shown in FIG. 2 is performed by CPU 11 accessing ROM 12, reading a program, developing it on RAM 13, and executing it. At least a part of the functions formed in CPU 11 is shown in FIG. It may be a function that is exhibited by the device.
[0039] 図 2を参照して、脈波検出装置における上記機能には、半導体圧力センサ 19に含 まれるセンサエレメントから圧力信号 (センサ信号)を取得する脈波計測値取得部 10 1、脈波計測値取得部 101で取得された圧力信号に対して処理を行なって連続した 脈波を 1拍ずつに区切る処理を行なう脈波区切処理部 103、脈波区切処理部 103で 区切られた 1柏の脈波を表わす単位波形ごとに複数種類の特徴量を算出する特徴 量算出部 105、算出された複数種類の特徴量を 1拍ずつ記憶する特徴量記憶部 10 7、単位波形ごとに算出された複数種類の特徴量を用いて、連続した脈波の中から 代表的な波形 (以下、代表波形)とする脈波波形を検索して抽出する処理を行なう代 表波形検索処理部 109、および抽出された代表波形を表示部 25で表示するための
信号を生成して表示する処理を行なう代表波形表示制御部 111を含んで構成されるReferring to FIG. 2, the above functions of the pulse wave detection device include a pulse wave measurement value acquisition unit 101 for acquiring a pressure signal (sensor signal) from a sensor element included in the semiconductor pressure sensor 19, 1 is divided by a pulse wave delimiter processing unit 103 and a pulse wave delimiter processing unit 103 that process the pressure signal acquired by the wave measurement value acquisition unit 101 to perform a process of dividing a continuous pulse wave into one beat at a time. Feature quantity calculation unit 105 that calculates multiple types of feature quantities for each unit waveform that represents the pulse wave of acupuncture, feature quantity storage unit 10 7 that stores multiple types of calculated feature quantities one beat at a time, calculation for each unit waveform A representative waveform search processing unit 109 for performing processing for searching and extracting a pulse waveform as a representative waveform (hereinafter referred to as a representative waveform) from a continuous pulse wave using the plurality of types of feature values obtained, To display the extracted representative waveform on the display unit 25. It includes a representative waveform display control unit 111 that performs processing for generating and displaying signals.
〇 Yes
[0040] 特徴量算出部 105で算出される特徴量の種類としては、たとえば AI値、 ET値、脈 波周期、立上がり先鋭度 MSP、および基線変動率などが挙げられる。本実施の形態 においては、特徴量算出部 105は、 AI算出部 1050、 ET算出部 1051、脈波周期算 出部 1052、 MSP算出部 1053、および基線変動率算出部 1054を含んで、これら 5 種類の特徴量を算出するものとする。 [0040] The types of feature amounts calculated by the feature amount calculation unit 105 include, for example, AI value, ET value, pulse period, rising sharpness MSP, and baseline fluctuation rate. In the present embodiment, the feature quantity calculation unit 105 includes an AI calculation unit 1050, an ET calculation unit 1051, a pulse wave period calculation unit 1052, an MSP calculation unit 1053, and a baseline fluctuation rate calculation unit 1054. It is assumed that the type of feature amount is calculated.
[0041] ここで、 AIとは、脈圧に占める反射波の割合を示す公知の指標であって、主に中枢 血管の動脈血管壁の硬化を評価する指標である。 AI値は、脈波の最低位置(つまり 脈波波形の開始位置)と第 1のピークとの振幅差であるレベル aと、脈波の最低位置と 第 2のピークとの振幅差であるレベル bとの比率で得られ、たとえば AI (%) =b/a X 100として得られる。図 3に示される脈波波形が検出された場合を例に説明する。図 3において、縦軸はカフ圧を示し、横軸は時間経過を示している。これらは、以下の 波形を表わす図でも同様である。レベル aは、心臓の心拍による血液の駆出波による 圧力値を示し、レベル bは、心拍による駆出波についての反射波による圧力値を示 す。この反射波は、血管の硬化に対応して強度と出現時相とが変化し、血管が硬化 するほど反射波の強度が大きくなり、出現時相が早くなる(左にずれる)。つまり、 AI 値が大きくなるほど、血管の硬化が進んでいることが示される。なお、レベル a, bを決 定する方法としては、脈波波形に微分等の演算操作を行なう方法が挙げられる。す なわち、図 3を参照して、検出された波形に、四次微分して得られる微分曲線を重ね て、その極点位置に対応する振幅を用いてレベル a, レベル bが決定され得る。 [0041] Here, AI is a known index indicating the ratio of the reflected wave to the pulse pressure, and is an index for mainly evaluating the hardening of the arterial vascular wall of the central blood vessel. The AI value is the level a that is the amplitude difference between the lowest pulse wave position (that is, the start position of the pulse wave waveform) and the first peak, and the level that is the amplitude difference between the lowest pulse wave position and the second peak. For example, AI (%) = b / a X 100. An example in which the pulse waveform shown in FIG. 3 is detected will be described. In FIG. 3, the vertical axis represents the cuff pressure, and the horizontal axis represents the passage of time. The same applies to the diagrams showing the following waveforms. Level a shows the pressure value due to the ejection wave of blood due to the heartbeat, and level b shows the pressure value due to the reflected wave with respect to the ejection wave due to the heartbeat. The intensity and appearance time phase of this reflected wave change corresponding to the hardening of the blood vessel, and as the blood vessel hardens, the intensity of the reflected wave increases and the appearance time phase becomes earlier (shifts to the left). In other words, the higher the AI value, the more the blood vessel is cured. As a method for determining levels a and b, there is a method of performing an operation such as differentiation on the pulse waveform. That is, referring to FIG. 3, a differential curve obtained by fourth-order differentiation is superimposed on the detected waveform, and level a and level b can be determined using the amplitude corresponding to the extreme point position.
[0042] また、 ETとは大動脈弁開放開始点から閉鎖点までの時間を指し、心収縮力、一回 拍出量、流出路抵抗、および末梢抵抗に関連する指標である。 ET値は、脈波の 1拍 を表わす波形の二次微分波形の最大点から 2つ目の極大点までの長さで得られる。 たとえば、図 4に示される脈波波形が検出された場合には、二次微分波形の最大点 PA力 2つ目の極大点 PBまでの長さ cが ET値を表わしている。二次微分波形の最 大点 PAは脈波の立上がり点であり、 2つ目の極大点 PBは大動脈弁の閉じ始めの点 を表わしている。つまり ET値が小さくなるほど、心機能が低下していることが示される
[0043] また、脈波周期は一区切りの脈波波形の周期を指し、体動、ノイズ等の影響による 波形形状の時間成分の変形や、不整脈を検出する指標とされる。脈波波形の周期を 決定する方法の一例として、次のような方法が挙げられる。図 5を参照して、原波形の 極大値が検知されると、直前の上昇方向のゼロクロス点に対応する極小点(PB点)か らその前の上昇方向のゼロクロス点に対応する極小点(PA点)までの原波形を参照 して、その間に最大点(PP点)が存在し、かつ PA点から PP点までの間で PA点が最 小値であることが確認されれば、 PA点が「立ち上がり点」、言い換えれば 1拍の「脈波 開始点」として確定される。そして、 PA点から PB点までの長さ D力 柏の脈波波形の 周期と決定される。 [0042] ET refers to the time from the opening point of the aortic valve to the closing point, and is an index related to cardiac contraction force, stroke volume, outflow tract resistance, and peripheral resistance. The ET value is obtained from the maximum point of the second derivative waveform of the waveform representing one beat of the pulse wave to the second maximum point. For example, when the pulse waveform shown in FIG. 4 is detected, the length c of the second derivative waveform up to the maximum point PA force and the second maximum point PB represents the ET value. The maximum point PA of the second derivative waveform is the rising point of the pulse wave, and the second maximum point PB represents the point at which the aortic valve begins to close. In other words, the smaller the ET value, the lower the cardiac function [0043] The pulse wave period indicates a period of a pulse wave waveform in one section, and is used as an index for detecting the deformation of a time component of the waveform shape due to the influence of body movement, noise, or the like, or arrhythmia. One example of a method for determining the period of the pulse wave waveform is as follows. Referring to Fig. 5, when the local maximum value of the original waveform is detected, the local minimum point (PB point) corresponding to the previous rising zero crossing point to the previous local minimum rising point (PB point) (PB point) Referring to the original waveform up to (PA point), if it is confirmed that the maximum point (PP point) exists between them and the PA point is the minimum value between the PA point and the PP point, PA The point is determined as the “rising point”, in other words, the “pulse wave start point” of one beat. Then, it is determined as the period of the pulse wave waveform of the length D force from the PA point to the PB point.
[0044] また、立上がり先鋭度 MSPとは、押圧カフ 18の押圧力を顕著に表わし、波形の歪 みを評価する指標である。半導体圧力センサ 19の出力変化の立上がり点が先鋭で ある場合には押圧カフ 18の押圧力が適切であることが示され、立上がり点が平坦な 変化に近付くと押圧カフ 18の押圧力が不適切であり測定部位の皮下の動脈が必要 以上に加圧されていることが示される。立上がり先鋭度 MSPは、半導体圧力センサ 1 9の出力変化の立上がり点の先鋭さを数値化した値である。たとえば、図 6を参照して 、脈波波形の立上がり位置を中心として設定された所定の区切り点 (TDIA)におけ る振幅から最大振幅の 10 %分上昇した 2点の時間間隔を Ta、その 2点間の端点から 脈波波形のピークまでの時間を Tbと定義すると、立上がり先鋭度 MSPは Taと Tbと の比率で得られ、たとえば、 MSP=Ta/Tbとして得られる。 [0044] Further, the rising sharpness MSP is a parameter that significantly represents the pressing force of the pressing cuff 18 and evaluates the distortion of the waveform. When the rising point of the output change of the semiconductor pressure sensor 19 is sharp, it indicates that the pressing force of the pressing cuff 18 is appropriate, and when the rising point approaches a flat change, the pressing force of the pressing cuff 18 is inappropriate. It is shown that the subcutaneous artery at the measurement site is pressurized more than necessary. Rising sharpness MSP is a numerical value of the sharpness of the rising point of the output change of the semiconductor pressure sensor 19. For example, referring to FIG. 6, let Ta be the time interval between two points that are 10% higher than the maximum amplitude from the amplitude at a predetermined breakpoint (TDIA) set around the rising position of the pulse waveform. If the time from the end point between two points to the peak of the pulse waveform is defined as Tb, the rising sharpness MSP can be obtained by the ratio of Ta and Tb, for example, MSP = Ta / Tb.
[0045] 基線変動率とは、隣接する脈波波形の基線の変動を表わし、体動、ノイズ等の影響 による波形形状の振幅成分の変形を検出する指標とされる。基線変動率は、脈波の 最大値と、「脈波開始点」と次の脈波の「脈波開始点」との間の差との比率で得られる 。たとえば、図 6に示される脈波波形が検出された場合には、脈波開始点 S1と脈波 最大点 S2との圧力差を A、脈波開始点 S1と次の脈波の開始点 S3との圧力差を Bと すると、基線変動率(%) =8/八 100として得られる。なお、「脈波開始点」は、脈 波周期の説明において述べた方法と同様の方法で決定することができる。 [0045] The baseline fluctuation rate represents the fluctuation of the baseline of the adjacent pulse wave waveform, and is an index for detecting the deformation of the amplitude component of the waveform shape due to the influence of body movement, noise, and the like. The baseline fluctuation rate is obtained by the ratio of the maximum value of the pulse wave and the difference between the “pulse wave start point” and the “pulse wave start point” of the next pulse wave. For example, if the pulse wave waveform shown in Fig. 6 is detected, the pressure difference between the pulse wave start point S1 and the pulse wave maximum point S2 is A, and the pulse wave start point S1 and the next pulse wave start point S3 Assuming that the pressure difference with B is B, the baseline fluctuation rate (%) = 8 / eight 100. The “pulse wave start point” can be determined by a method similar to the method described in the description of the pulse period.
[0046] 特徴量記憶部 107には、脈波ごとに算出された上記 5種類の特徴量が記憶される
。なお、特徴量算出部 105で算出される特徴量の種類は上記 5種類に限定されず、 その中の少なくとも 2種類であってもよい。また、その他の特徴量が算出されてもよい 。他の特徴量としては、たとえば、反射波の時間的成分や動脈血管壁の硬化度を評 価する指標となる、進行波最大点と反射波最大点との時間間隔や、進行波立上がり 点と反射波立上がり点との時間間隔を表わす TR (Traveling time to Reflected wa ve)などの、公知の指標が挙げられる。その他、脈波波形を用いて診断するために有 用なあらゆる特徴量が採用され得る。 [0046] The feature amount storage unit 107 stores the five types of feature amounts calculated for each pulse wave. . Note that the types of feature amounts calculated by the feature amount calculation unit 105 are not limited to the above five types, and may be at least two of them. Further, other feature amounts may be calculated. Other feature quantities include, for example, the time interval between the maximum traveling wave point and the maximum reflected wave point, which is an index for evaluating the temporal component of the reflected wave and the degree of arterial vessel wall hardening, and the rising point of the traveling wave A well-known index such as TR (Traveling time to Reflected wave) representing the time interval from the rising point of the reflected wave can be mentioned. In addition, any feature quantity useful for diagnosis using the pulse wave waveform can be adopted.
[0047] 図 7を参照して、代表波形検索処理部 109には、特徴量記憶部 107から記憶され ている特徴量を脈波波形ごとに読出す特徴量読出部 1091、特徴量の種類ごとに平 均値を算出して指標として設定する平均算出部 1092、各特徴量について上記指標 との関係として平均値力もの差分を算出する差分算出部 1093、算出された差分値 を特徴量の種類に応じて正規化する正規化処理部 1094、代表波形を抽出する際 に考慮する特徴量の種類についての重み係数を決定する重み係数を決定する係数 決定部 1095、正規化された上記差分値を決定された重み係数を用いて脈波波形ご とに重み付けする重み付け処理部 1096、重み付けされた上記差分値の脈波波形ご との合計を算出する加算処理部 1097、および脈波波形ごとの差分値の上記合計よ り代表波形を決定する代表波形決定部 1098が含まれる。 Referring to FIG. 7, representative waveform search processing section 109 has feature quantity reading section 1091 for reading out the feature quantity stored from feature quantity storage section 107 for each pulse wave waveform, and for each type of feature quantity. An average calculation unit 1092 that calculates an average value and sets it as an index, a difference calculation unit 1093 that calculates a difference of the average value for each feature quantity as a relationship with the above index, and the calculated difference value as the type of feature quantity A normalization processing unit 1094 for normalization according to the above, a coefficient determination unit 1095 for determining a weighting factor for determining a weighting factor for the type of feature amount to be considered when extracting a representative waveform, and the normalized difference value A weighting processing unit 1096 for weighting each pulse waveform using the determined weighting factor, an addition processing unit 1097 for calculating the sum of the weighted difference values for each pulse waveform, and a difference for each pulse wave waveform Determine the representative waveform from the above sum of values. A representative waveform determining unit 1098 is included.
[0048] ここでの重み付けとは、上述のような複数種類の特徴量を用いて代表波形を抽出 する際に用いる特徴量の重要度を指し、たとえば重み係数を 1とすることで代表波形 を抽出する際に対応する特徴量についてはその値をそのまま用い、重み係数を 0. 5 とすることで、代表波形を抽出する際に対応する特徴量についてはその値の 50%を 用い、重み係数を 0とすることで、代表波形を抽出する際に対応する特徴量を用いな いとすること力 Sできる。このため、ここで重み係数の組合わせを設定することで、算出 された複数の特徴量のうちある 1つの特徴量 (たとえば AI値)のみを用いて代表波形 を抽出することもできる。また、算出された複数の特徴量のすべてを均等に用いて代 表波形を抽出することもできる。また、ある目的にしたがって、算出された複数の特徴 量のうちの特定の特徴量を特に重視し、その他の特徴量の重要度を小さくして代表 波形を抽出することもできる。このような重み係数は係数決定部 1095において決定
される。係数決定部 1095で重み係数を決定する方法としては、次のような方法が挙 げられる。 [0048] The weighting here refers to the importance of the feature quantity used when extracting the representative waveform using a plurality of types of feature quantities as described above. For the feature quantity corresponding to the extraction, the value is used as it is, and the weighting coefficient is set to 0.5. By using 50% of the value for the feature quantity corresponding to the representative waveform extraction, the weighting coefficient is used. By setting to 0, it is possible to suppress the use of the corresponding feature value when extracting the representative waveform. For this reason, by setting a combination of weighting factors here, it is possible to extract a representative waveform using only one feature quantity (for example, AI value) out of a plurality of calculated feature quantities. It is also possible to extract a representative waveform by using all of the plurality of calculated feature amounts equally. In addition, according to a certain purpose, it is possible to extract a representative waveform with particular emphasis on a specific feature amount among a plurality of calculated feature amounts and reducing the importance of other feature amounts. Such a weight coefficient is determined by the coefficient determination unit 1095. Is done. The following methods can be used as a method for determining the weighting factor by the coefficient determination unit 1095.
[0049] 係数決定部 1095での重み係数を決定する第 1の方法の前提として、操作部 24に 特定のボタンが備えられる。または、表示部 25に設定画面が表示される。医師等の 使用者は診断目的に合わせて各特徴量に対応する重み (数字や、重要度 (小、中、 大)選択など)を上記特定のボタンの操作や、上記設定画面に従った操作を行なって 入力する。係数決定部 1095はそれら操作による操作信号を受け付けて、各特徴量 に対して重み係数を決定する。 [0049] As a premise of the first method of determining the weighting coefficient in the coefficient determination unit 1095, the operation unit 24 is provided with a specific button. Alternatively, the setting screen is displayed on the display unit 25. Users such as doctors can select the weights (numbers, importance (small, medium, large) selection, etc.) corresponding to each feature according to the purpose of diagnosis by operating the specific buttons or following the setting screen. To input. The coefficient determination unit 1095 receives operation signals from these operations and determines a weight coefficient for each feature quantity.
[0050] 第 2の方法としては、本測定に先だって入力され、 RAMI 3等の所定領域に記憶さ れた、被験者の病歴や診断目的などの医師等の使用者の入力情報力 特徴量の重 み係数を自動的に設定する方法が挙げられる。または、年齢、性別等の被験者に関 する入力情報から、年代、性別での発症率の高い症状に合った特徴量の重み係数 を自動設定する方法が挙げられる。 自動的に重み係数を設定する場合には、予め上 記入力情報と各特徴量に対する重み係数との関係が ROM12等の記憶領域に記憶 されており、係数決定部 1095が必要に応じて上記記憶領域を参照して、対応する 重み係数を読出すことで決定される。 [0050] As a second method, the input information capability of the user such as a doctor such as the medical history of the subject and the purpose of diagnosis, which is input prior to the main measurement and stored in a predetermined area such as RAMI 3, is used. A method of automatically setting the coefficient. Another example is a method of automatically setting a weighting factor of a feature amount suitable for a symptom having a high incidence by age and gender from input information on the subject such as age and gender. When automatically setting the weighting factor, the relationship between the input information and the weighting factor for each feature amount is stored in advance in a storage area such as ROM 12, and the coefficient determination unit 1095 stores the above-described storage as necessary. This is determined by referring to the area and reading the corresponding weighting factor.
[0051] 図 8は、本実施の形態にかかる脈波検出装置で、脈波を測定した後に代表波形を 表示する処理を表わしたフローチャートである。図 8のフローチャートに示される処理 は、 CPU11が ROM12にアクセスしてプログラムを読出して RAM13上に展開して 実行し、図 2,図 7に示される各機能を制御することによって実現される。 FIG. 8 is a flowchart showing processing for displaying a representative waveform after measuring a pulse wave in the pulse wave detection device according to the present exemplary embodiment. The processing shown in the flowchart of FIG. 8 is realized by the CPU 11 accessing the ROM 12, reading the program, developing it on the RAM 13, executing it, and controlling each function shown in FIGS.
[0052] 図 8を参照して、始めに、脈波計測値取得部 101において半導体圧力センサ 19か らの圧力信号が取得されて、脈波の計測が行なわれる (ステップ S l)。ステップ SIで 計測された脈波は脈波区切処理部 103にお!/、て 1拍ごとの脈波に区切られ (ステツ プ S3)、特徴量算出部 105において、脈波波形ごとに、上述の方法で上記 5種類の 特徴量が算出される(ステップ S5)。上記ステップ S1〜S5の処理は、脈波の計測と 並行して行なわれてもよい。その場合、ステップ S5での特徴量の算出は脈波計測が 終了するまで脈波波形ごとに行なわれる。そして、計測が終了すると、代表波形検索 処理部 109において、ステップ S5で算出された各脈波波形についての上記 5種類の
特徴量に基づいて代表波形が検索され、該当する脈波波形が抽出される(ステップ S7)。代表波形表示制御部 111は、ステップ S7で代表波形として抽出された脈波波 形は計測結果として他の計算値と共に表示部 25で表示するための表示信号を生成 し、表示させる(ステップ S9)。 Referring to FIG. 8, first, pulse wave measurement value acquisition unit 101 acquires a pressure signal from semiconductor pressure sensor 19 to measure a pulse wave (step S 1). The pulse wave measured in step SI is divided into pulse waves by the pulse wave delimiter processing unit 103 (step S3), and the feature amount calculating unit 105 The above five types of feature values are calculated by this method (step S5). The processing in steps S1 to S5 may be performed in parallel with pulse wave measurement. In that case, the feature amount calculation in step S5 is performed for each pulse wave waveform until the pulse wave measurement is completed. When the measurement is completed, the representative waveform search processing unit 109 performs the above five types of pulse wave waveforms calculated in step S5. A representative waveform is searched based on the feature amount, and a corresponding pulse waveform is extracted (step S7). The representative waveform display control unit 111 generates and displays a display signal for displaying the pulse waveform extracted as the representative waveform in step S7 together with other calculated values on the display unit 25 as a measurement result (step S9). .
[0053] 上記ステップ S3で実行される脈波区切処理としては、図 9のフローチャートに一例 が示される。なお以降において、この処理はマルチプレクサ 20のチャネルが固定さ れた後の解析処理であるものとして説明する。 [0053] An example of the pulse wave segmentation process executed in step S3 is shown in the flowchart of FIG. In the following, this process is described as an analysis process after the channel of the multiplexer 20 is fixed.
[0054] 図 9を参照して、始めに、半導体圧力センサ 19から圧力信号が送出されたことが検 出されると(S301)、マノレチプレクサ 20は、 CPU11力、らの制御信号に従って固定さ れたチャネルに該当するセンサエレメントからのセンサ信号を選択し、アンプ 21に入 力する。 [0054] Referring to FIG. 9, when it is first detected that a pressure signal is transmitted from the semiconductor pressure sensor 19 (S301), the mano-replexer 20 is fixed according to the control signal of the CPU 11 force and the like. Select the sensor signal from the sensor element corresponding to the channel and input it to amplifier 21.
[0055] そして、入力された圧力信号は、アンプ 21において、圧力信号は所定の周波数ま で増幅され(S 303)、特性可変フィルタ 22においてアナログフィルタ処理がなされる( S305)。 [0055] The input pressure signal is amplified to a predetermined frequency in the amplifier 21 (S303), and analog filter processing is performed in the characteristic variable filter 22 (S305).
[0056] このとき、特性可変フィルタ 22は、サンプリング周波数の 1/2以上の信号成分を遮 断する。サンプリング周波数が 500Hzであるとすると、たとえば、 250Hzを超える周 波数の信号成分が遮断される。すなわち、ここで、規格範囲外の脈波波形に該当す る信号成分が除去される。 [0056] At this time, the variable characteristic filter 22 blocks signal components that are 1/2 or more of the sampling frequency. If the sampling frequency is 500 Hz, for example, signal components with a frequency exceeding 250 Hz are blocked. That is, here, the signal component corresponding to the pulse waveform outside the standard range is removed.
[0057] 特性可変フィルタ 22を通過した圧力信号は、 A/D変換器 23においてデジタル化 され (S307)、ノイズ除去などを目的として所定範囲の周波数を抽出するためのデジ タルフィルタ処理がなされる(S309)。そして、 A/D変換器 23は、デジタル化した圧 力信号を、 CPU11に転送する。 [0057] The pressure signal that has passed through the variable characteristic filter 22 is digitized by the A / D converter 23 (S307), and is subjected to digital filtering to extract a predetermined range of frequencies for the purpose of noise removal and the like. (S309). Then, the A / D converter 23 transfers the digitized pressure signal to the CPU 11.
[0058] 脈波区切処理部 103は、 A/D変換器 23から受信した圧力信号について、各デー タの差分をとることにより圧力信号から得る脈波波形を N次微分する(S311)。そして 、脈波区切処理部 103は、ステップ S311の微分結果に基づいて脈波波形を区切つ て 1柏の脈波波形を抽出する(S313)。 [0058] With respect to the pressure signal received from the A / D converter 23, the pulse wave segmentation processing unit 103 performs N-order differentiation on the pulse wave waveform obtained from the pressure signal by taking the difference of each data (S311). Then, the pulse wave division processing unit 103 extracts the first pulse wave waveform by dividing the pulse wave waveform based on the differential result of step S311 (S313).
[0059] 図 10は、上記ステップ S7で代表波形検索処理部 109において実行される代表波 形検索処理の一例を表わすフローチャートである。図 10を参照して、上記ステップ S
7では、特徴量読出部 1091が特徴量記憶部 107から読み出した特徴量について、 平均算出部 1092において、特徴量の種類ごとに平均値が算出される (ステップ S70 D o続いて、差分算出部 1093において、特徴量ごとに上記平均値からの差分が算 出される(ステップ S703)。ステップ S703で算出された差分は正規化処理部 1094 において正規化処理される(ステップ S705)。ここでの正規化処理は、一般的な正規 化処理であって、本発明において特定の処理に限定されない。ステップ S705で正 規化された差分は、重み付け処理部 1096において、係数決定部 1095で決定され た重み係数を用いて重み付けされる (ステップ S707)。具体的には、係数決定部 10 95によって特徴量の種類ごとに決定された重み係数を、ステップ S705で正規化さ れた差分に対して特徴量の種類に応じて乗じることで重み付けする。重み付け処理 された、 1柏の波形ごとの上記 5種類の特徴量の差分は加算処理部 1097において 加算され、波形ごとの差分の和が算出される (ステップ S709)。そして、代表波形決 定部 1098において、その和が最小の波形、つまり上記 5種類の特徴量すべてにつ いて全体として最も平均値に近い波形が代表波形に決定され、抽出される(ステップ S711) 0 FIG. 10 is a flowchart showing an example of the representative waveform search process executed by the representative waveform search processor 109 in step S7. Referring to FIG. 7, the average value is calculated for each type of feature value in the average calculation unit 1092 for the feature value read from the feature value storage unit 107 by the feature value reading unit 1091 (Step S70 Do, then the difference calculation unit In 1093, the difference from the above average value is calculated for each feature amount (step S703), and the difference calculated in step S703 is normalized in the normalization processing unit 1094 (step S705). The normalization process is a general normalization process and is not limited to a specific process in the present invention, and the difference normalized in step S705 is weighted by the coefficient determination unit 1095 in the weighting processing unit 1096. Weighting is performed using a coefficient (step S707), specifically, the weighting factor determined for each type of feature amount by the coefficient determination unit 10 95 is used as the feature amount with respect to the difference normalized in step S705. Seeds The difference between the above five types of feature values for each waveform of 1 柏 that has been weighted is added by the addition processing unit 1097 to calculate the sum of the differences for each waveform (step S709). Then, in the representative waveform determining unit 1098, the waveform having the smallest sum, that is, the waveform closest to the average as a whole for all the above five types of feature values is determined as the representative waveform and extracted (step). S711) 0
図 11は、上記ステップ S9で代表波形表示制御部 111からの表示信号によって表 示される表示画面での表示内容を説明する図である。図 11を参照して、表示画面に おいては、代表波形として上記処理で抽出されたー拍分の脈波波形 200と、血圧値 や AIの平均値が脈波測定の結果 300として、有効な全波形につ!/、て得られた血圧 の平均値および AI値の平均値とが表示される。さらに、表示画面には、代表波形を 抽出する処理に関する情報を表わす表示として、抽出された代表波形が、有効な波 形のうちの何番目の波形に該当する力、を表わす表示 201や、代表波形を抽出する 際に用いた特徴量の上記波形上での特徴的な位置や値を表わすマーク 203, 205 , 207や、その特徴量の表示 209が含まれることが好ましい。図 11の例では、代表波 形を抽出する際に、上記 5種類の特徴量のうち AI値、 ET値、および脈波周期が用い られており、マーク 203は AI値を算出する際に用いられた上述のレベル aとレベル と の位置を表わし、マーク 205は ETに相当する上述の長さ cを表わし、マーク 207は脈 波周期である上述の脈波開始点を表わしている。さらに、それらの具体的な数値は
表示 209に示されている。このように、表示画面において代表波形と共に代表波形を 抽出する処理に関する情報を表示することで、その代表波形がどのようにして抽出さ れたものであるかや、その代表波形が全体の波形のうちのどの位置にある(何番目に ある)ものかが明らかとなり、診断に有用な情報を提供することができる。 FIG. 11 is a diagram for explaining the display contents on the display screen displayed by the display signal from the representative waveform display control unit 111 in step S9. Referring to Fig. 11, on the display screen, the pulse waveform 200 for the beat extracted as a representative waveform and the average value of blood pressure and AI are valid as the pulse wave measurement result 300. The average value of the blood pressure and the average value of the AI values are displayed for all the waveforms! In addition, the display screen displays information 201 relating to the process of extracting the representative waveform. The display 201 indicates the force corresponding to the number of the effective waveform of the extracted representative waveform, and the representative screen. It is preferable to include marks 203, 205, 207 representing the characteristic positions and values of the feature values used when extracting the waveform on the waveform, and a display 209 of the feature values. In the example of Fig. 11, AI value, ET value, and pulse wave period are used among the above five types of features when extracting the representative waveform, and mark 203 is used to calculate the AI value. The above-mentioned level a and level 1 are represented, the mark 205 represents the above-mentioned length c corresponding to ET, and the mark 207 represents the above-described pulse wave start point which is a pulse wave period. Furthermore, those specific numbers are Displayed in 209. In this way, by displaying information related to the process of extracting the representative waveform together with the representative waveform on the display screen, how the representative waveform is extracted, and whether the representative waveform is the entire waveform. It is possible to find out which position (the number) is among them and provide useful information for diagnosis.
[0061] なお、図 11の例では、脈波測定の結果 300として、有効な全波形について得られ た血圧の平均値および AI値の平均値を表示するものとして!/、るが、代表波形につ!/、 て得られた血圧値および AI値を表示するようにしてもよ!/、。このように表示することで 、代表波形とその代表波形に関する数値とを表示画面から得ることができる。 [0061] In the example of FIG. 11, as the result 300 of the pulse wave measurement, the average value of blood pressure and the average value of AI values obtained for all valid waveforms are displayed! You can also display the blood pressure and AI values obtained! By displaying in this way, the representative waveform and the numerical value related to the representative waveform can be obtained from the display screen.
[0062] 以上の実施の形態においては、上記指標として特徴量の種類ごとの平均値を用い 、上記指標との関係として各特徴量について平均値との差分を算出し、すべての特 徴量にっレ、て全体的に平均値に最も近!/、波形を代表波形に決定して!/、る。このよう にすることで、全体として平均に近い、安定した波形を代表波形とすることができる。 In the above embodiment, an average value for each type of feature quantity is used as the index, and a difference from the average value is calculated for each feature quantity as a relationship with the index, and all the feature quantities are calculated. As a whole, it is closest to the average value! /, And the waveform is determined as the representative waveform! /. In this way, a stable waveform close to the average as a whole can be used as the representative waveform.
[0063] 上記指標は平均値に限定されず、他のィ直を用いること力 Sできる。指標として平均値 を用いる場合と同様に、安定した波形を代表波形とすることを目的とすると、その他の 指標として、中央値や最頻値を用いることができる。 [0063] The above index is not limited to an average value, and it is possible to use other straight lines. Similar to the case where the average value is used as an index, the median value or the mode value can be used as another index for the purpose of making a stable waveform a representative waveform.
[0064] より具体的には、指標として中央値を用いる場合、代表波形検索処理部 109は特 徴量記憶部 107から読出した特徴量を正規化した後に、 1柏の波形について上記複 数種類の正規化された特徴量を加えて大きさ順に並べ、大きさ順が中央に位置する 波形を代表波形と決定する。 More specifically, when the median is used as an index, the representative waveform search processing unit 109 normalizes the feature amount read from the feature amount storage unit 107, and then performs the above-described multiple types of one waveform. The normalized feature values are added and arranged in order of magnitude, and the waveform with the magnitude order in the center is determined as the representative waveform.
[0065] また、指標として最頻値を用いる場合、代表波形検索処理部 109は特徴量記憶部 [0065] When the mode value is used as an index, the representative waveform search processing unit 109 is a feature amount storage unit.
107から読出した特徴量を正規化した後に、 1柏の波形について上記複数種類の正 規化された特徴量を加えてグラフにプロットするなどして分布を確認し、特徴量の和 が最も多く存在する範囲に位置する波形を代表波形と決定する。 After normalizing the feature values read out from 107, check the distribution by adding the above-mentioned multiple types of normalized feature values to the graph and plotting them on a graph, etc., and the sum of the feature values is the largest. A waveform located in the existing range is determined as a representative waveform.
[0066] また、指標の他の具体例として、上記複数種類の特徴量のうちの任意の種類の特 徴量についての任意のしきい値を指標に設定することもできる。たとえば、 AI値が 10 %以上というしきい値を指標として設定することができる。この場合、代表波形検索処 理部 109は読出した特徴量がしきい値以上の波形、しきい値以下の波形、またはし きい値から所定範囲にある波形を代表波形と決定する。このような指標を用いること
で、特徴的な波形を選択し、特定の診断に有用な特徴波形を抽出できる。 [0066] Further, as another specific example of the index, an arbitrary threshold value for an arbitrary type of feature amount among the plurality of types of feature amounts may be set as the index. For example, a threshold value with an AI value of 10% or more can be set as an index. In this case, the representative waveform search processing unit 109 determines a waveform having a read feature amount equal to or greater than the threshold, a waveform equal to or less than the threshold, or a waveform within a predetermined range from the threshold as the representative waveform. Use such indicators Thus, a characteristic waveform useful for a specific diagnosis can be extracted by selecting a characteristic waveform.
[0067] また、指標の他の具体例として、最小値や最大値を用いることができる。たとえば、 基線変動率の最小値や、 AI値の最大値を指標として用いることができる。この場合、 代表波形検索処理部 109は読出した特徴量がその条件を満たす波形を代表波形と 決定する。このような指標を用いることで、安定した波形を選択したり、特徴的な波形 を選択したりすること力 Sできる。 [0067] As another specific example of the index, a minimum value or a maximum value can be used. For example, the minimum baseline fluctuation rate or the maximum AI value can be used as an indicator. In this case, the representative waveform search processing unit 109 determines a waveform whose read feature amount satisfies the condition as a representative waveform. By using such an index, it is possible to select a stable waveform or to select a characteristic waveform.
[0068] さらに、代表波形検索処理部 109において、いずれの値を指標に用いるかを決定 してもよい。指標を決定する方法としては、上述の重み係数を決定する方法と同様の 方法が挙げられる。すなわち、第 1の方法として操作者の操作による操作信号に従つ て決定してもよいし、被験者の病歴や診断目的などの医師等の使用者の入力情報 や年齢、性別等の被験者に関する入力情報から自動的に設定してもよい。 [0068] Furthermore, the representative waveform search processing unit 109 may determine which value is used as an index. As a method for determining the index, a method similar to the method for determining the weighting factor described above can be used. That is, as a first method, it may be determined according to an operation signal by an operator's operation, or input information of a user such as a doctor such as a medical history of a subject or a diagnosis purpose, or input regarding a subject such as age and gender. It may be set automatically from the information.
[0069] [変形例] [0069] [Modification]
変形例にかかる脈波検出装置では、代表波形検索処理部 109において代表波形 の検索処理を 2段階で行なうものとする。 In the pulse wave detection device according to the modification, the representative waveform search processing unit 109 performs the representative waveform search processing in two stages.
[0070] 図 12は、変形例にかかる脈波検出装置において、上記ステップ S 7で代表波形検 索処理部 109において実行される代表波形検索処理の一例を表わすフローチャート である。 FIG. 12 is a flowchart showing an example of representative waveform search processing executed in representative waveform search processing unit 109 in step S 7 in the pulse wave detection device according to the modification.
[0071] 図 12を参照して、変形例に力、かる脈波検出装置では、第 1段階の検索として、上述 のように各種類の特徴量のおける平均値を第 1段階の指標として上記ステップ S701 〜S709の処理が行なわれ、ステップ S712で代表波形決定部 1098において 1拍の 波形についての特徴量の差分の和が平均値から所定範囲内である波形が、次の第 2段階の検索の対象波形として選別される。 [0071] Referring to FIG. 12, in the pulse wave detection device that is powerful as a modified example, as a first-stage search, the average value of each type of feature amount is used as the first-stage index as described above. Steps S701 to S709 are performed, and in step S712, the representative waveform determination unit 1098 searches for a waveform in which the sum of the difference of feature values for one beat waveform is within a predetermined range from the average value in the next second stage search. Are selected as target waveforms.
[0072] さらに変形例においては、代表波形決定部 1098は、たとえば AI値の最大値を第 2 段階の指標としてステップ S712で選別された対象波形に対して第 2段階の検索を行 ない、上記対象波形の中から AI値が最大である波形を代表波形に決定する (ステツ プ S713)。 [0072] Further, in the modified example, the representative waveform determination unit 1098 performs a second-stage search on the target waveform selected in step S712, for example, using the maximum value of the AI value as the second-stage index. The waveform with the largest AI value is determined as the representative waveform from the target waveforms (step S713).
[0073] このように、変形例に力、かる脈波検出装置では、 2段階またはそれ以上の多段階で 複数の脈波波形から代表波形を検索し、抽出する。複数段階の検索において、予め
複数の脈波波形の中から指標との関係における条件に合致したものを対象波形とし て選別し、さらなる指標との関係における条件に合致したものを代表波形として抽出 することで、たとえば、ノイズが少なぐかつ突出した AI値を持つ脈波波形などの、よ り目的に応じた波形を代表波形として抽出することができる。このため、より診断に有 用な代表波形を抽出することが可能になる。 As described above, in the pulse wave detection device that is powerful as a modification, a representative waveform is searched and extracted from a plurality of pulse wave waveforms in two or more stages. In multi-stage search, By selecting, as a target waveform, a waveform that matches the condition in the relationship with the index from a plurality of pulse wave waveforms, and extracting a waveform that matches the condition in the relationship with the further index as a representative waveform. It is possible to extract a waveform that is more suited to the purpose, such as a pulse waveform with a small and prominent AI value, as a representative waveform. This makes it possible to extract representative waveforms that are more useful for diagnosis.
[0074] なお、上述の脈波検出装置における代表波形を抽出する方法である生体信号波 形抽出方法は、脈波の解析に限定されず、心臓の収縮によって生ずる第 1波形と拡 張によって生ずる第 2波形とが合成されてなる他のあらゆる生体信号波形について、 代表波形を抽出する処理に採用され得る。 [0074] The biological signal waveform extraction method, which is a method for extracting the representative waveform in the above-described pulse wave detection device, is not limited to the analysis of the pulse wave, and is generated by the first waveform and expansion caused by the heart contraction. Any other biological signal waveform obtained by synthesizing the second waveform can be used in the process of extracting the representative waveform.
[0075] さらに、本実施の形態にかかる脈波検出装置における生体信号波形抽出方法を実 現させるためのプログラムを提供することもできる。このようなプログラムは、コンビユー タに付属するフレキシブルディスク、 CD— ROM (Compact Disk-Read Only Memo ry)、 ROM、 RAMおよびメモリカードなどのコンピュータ読取り可能な記録媒体にて 記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内 蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもで きる。また、ネットワークを介したダウンロードによって、プログラムを提供することもで きる。 Furthermore, it is possible to provide a program for realizing the biological signal waveform extraction method in the pulse wave detection device according to the present embodiment. Such a program can be recorded on a computer-readable recording medium such as a flexible disk, CD-ROM (Compact Disk-Read Only Memory), ROM, RAM, or memory card attached to the computer as a program product. It can also be provided. Alternatively, the program can be provided by being recorded on a recording medium such as a hard disk built in the computer. The program can also be provided by downloading via the network.
[0076] なお、本発明にかかるプログラムは、コンピュータのオペレーションシステム(OS)の 一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列 で所定のタイミングで呼出して処理を実行させるものであってもよい。その場合、プロ グラム自体には上記モジュールが含まれず OSと協働して処理が実行される。このよう なモジュールを含まないプログラムも、本発明に力、かるプログラムに含まれ得る。 [0076] The program according to the present invention is a program module provided as a part of a computer operation system (OS) that calls necessary modules in a predetermined arrangement at a predetermined timing to execute processing. It may be. In that case, the program itself does not include the module, and the process is executed in cooperation with the OS. A program that does not include such a module can also be included in the program that is effective in the present invention.
[0077] また、本発明に力、かるプログラムは、たとえば通常の脈波計測のためのプログラムな どの他のプログラムの一部に組込まれて提供されるものであってもよい。その場合に も、プログラム自体には上記他のプログラムに含まれるモジュールが含まれず、他の プログラムと協働して処理が実行される。このような他のプログラムに組込まれたプロ グラムも、本発明に力、かるプログラムに含まれ得る。 [0077] Further, the program according to the present invention may be provided by being incorporated in a part of another program such as a normal pulse wave measurement program. Even in this case, the program itself does not include the module included in the other program, and the process is executed in cooperation with the other program. Programs incorporated in such other programs can also be included in the programs that are effective in the present invention.
[0078] 提供されるプログラム製品は、ハードディスクなどのプログラム格納部にインストール
されて実行される。なお、プログラム製品は、プログラム自体と、プログラムが記録され た記録媒体とを含む。 [0078] The provided program product is installed in a program storage unit such as a hard disk. To be executed. The program product includes the program itself and a recording medium on which the program is recorded.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。
It should be considered that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
Claims
[1] 生体信号から得られる、複数の波形を検出する検出部(103)と、 [1] A detection unit (103) for detecting a plurality of waveforms obtained from a biological signal;
前記複数の波形の各々より、第 1の特徴量と第 2の特徴量とを算出する算出部(10 5)と、 A calculation unit (105) that calculates a first feature value and a second feature value from each of the plurality of waveforms;
前記複数の波形から算出された複数の第 1の特徴量より得られる第 1の指標に対 する前記第 1の特徴量の関係、および前記複数の波形から算出された複数の第 2の 特徴量より得られる第 2の指標に対する前記第 2の特徴量の関係に基づいて、前記 複数の波形の中から代表波形を検索するための処理を行なう検索部(109)と、 前記代表波形を出力するための処理を行なう出力処理部(111)とを含む、医療用 測定器。 The relationship of the first feature quantity to the first index obtained from the plurality of first feature quantities calculated from the plurality of waveforms, and the plurality of second feature quantities calculated from the plurality of waveforms. A search unit (109) for performing a process for searching for a representative waveform from among the plurality of waveforms based on a relationship of the second feature quantity with respect to the second index obtained, and outputting the representative waveform A medical measuring instrument including an output processing unit (111) for performing processing for the purpose.
[2] 前記生体信号から得られる波形は脈波波形であり、 [2] The waveform obtained from the biological signal is a pulse waveform,
前記第 1の特徴量および前記第 2の特徴量には、 AI (Augmentation Index)値、脈 波周期、基線変動率、先鋭度、および ET (Ejection Time)値の少なくとも 1つが含ま れる、請求の範囲第 1項に記載の医療用測定器。 The first feature quantity and the second feature quantity include at least one of an AI (Augmentation Index) value, a pulse period, a baseline fluctuation rate, a sharpness, and an ET (Ejection Time) value. Medical measuring instrument according to paragraph 1 of the scope.
[3] 前記検索部は、 [3] The search unit
1つの波形における前記第 1の特徴量および前記第 2の特徴量の各々に対して重 み係数を設定する係数設定部(1095)と、 A coefficient setting unit (1095) for setting a weight coefficient for each of the first feature quantity and the second feature quantity in one waveform;
前記第 1の指標に対する前記第 1の特徴量の関係、および前記第 2の指標に対す る前記第 2の特徴量の関係の各々に対して、前記重み係数を考慮して前記代表波 形を決定する決定部(1098)とを含む、請求の範囲第 1項に記載の医療用測定器。 For each of the relationship between the first feature quantity with respect to the first index and the relationship with the second feature quantity with respect to the second index, the representative waveform is determined in consideration of the weighting factor. The medical measuring instrument according to claim 1, further comprising a determining unit (1098) for determining.
[4] 前記検索部は、 [4] The search unit includes:
前記第 1の指標として前記複数の波形についての前記第 1の特徴量の平均値、お よび前記第 2の指標として前記複数の波形についての前記第 2の特徴量の平均値を 算出する平均算出部(1092)と、 Average calculation for calculating an average value of the first feature quantity for the plurality of waveforms as the first index and an average value of the second feature quantity for the plurality of waveforms as the second index. Part (1092),
前記複数の波形の各々について、前記第 1の指標と前記第 1の特徴量との差分で ある第 1差分、および前記第 2の指標と前記第 2の特徴量との差分である第 2差分を 算出する差分算出部(1093)と、 For each of the plurality of waveforms, a first difference that is a difference between the first index and the first feature quantity, and a second difference that is a difference between the second index and the second feature quantity. A difference calculating unit (1093) for calculating
算出された前記第 1差分および前記第 2差分を正規化する正規化処理部(1094)
と、 A normalization processing unit (1094) for normalizing the calculated first difference and the second difference When,
前記正規化された前記第 1差分および前記第 2差分に基づいて前記代表波形を 決定する決定部(1098)とを含む、請求の範囲第 1項に記載の医療用測定器。 The medical measuring instrument according to claim 1, further comprising: a determining unit (1098) that determines the representative waveform based on the normalized first difference and the second difference.
[5] 前記検索部は、 [5] The search unit includes:
1つの波形における前記第 1の特徴量および前記第 2の特徴量の各々に対して重 み係数を設定する係数設定部(1095)と、 A coefficient setting unit (1095) for setting a weight coefficient for each of the first feature quantity and the second feature quantity in one waveform;
前記正規化された前記第 1差分および前記第 2差分の各々に対して、前記重み係 数を乗じる重み付け処理部(1096)とをさらに含み、 A weighting processing unit (1096) that multiplies each of the normalized first difference and the second difference by the weighting factor;
前記決定部は、前記重み付けされた前記第 1差分および前記第 2差分に基づいて 前記代表波形を決定する、請求の範囲第 4項に記載の医療用測定器。 5. The medical measuring instrument according to claim 4, wherein the determining unit determines the representative waveform based on the weighted first difference and the second difference.
[6] 前記検索部は、 [6] The search unit includes:
前記複数の波形の各々について、前記重み付けされた前記第 1差分と前記第 2差 分とを加算する加算処理部(1097)をさらに含み、 For each of the plurality of waveforms, further includes an addition processing unit (1097) for adding the weighted first difference and the second difference,
前記決定部は、加算された前記差分が最小である波形を前記代表波形に決定す る、請求の範囲第 5項に記載の医療用測定器。 6. The medical measuring instrument according to claim 5, wherein the determining unit determines a waveform having the smallest difference as the representative waveform.
[7] 前記検索部における検索処理は、 [7] The search process in the search unit is:
前記複数の波形についての前記第 1の特徴量および前記第 2の特徴量の各々と第 1段階の指標との関係に基づいて、前記複数の波形の中から対象波形を選別する第 1段階の検索処理(S701〜S712)と、 A first step of selecting a target waveform from the plurality of waveforms based on a relationship between each of the first feature amount and the second feature amount of the plurality of waveforms and a first step index; Search processing (S701 to S712)
前記対象波形についての前記第 1の特徴量および前記第 2の特徴量の各々と第 2 段階の指標との関係に基づいて、前記対象波形の中から前記代表波形を検索する 第 2段階の検索処理 (S713)とを含む、請求の範囲第 1項に記載の医療用測定器。 Searching the representative waveform from the target waveform based on the relationship between each of the first feature quantity and the second feature quantity of the target waveform and the second stage index Second stage search The medical measuring instrument according to claim 1, further comprising a process (S713).
[8] 前記出力処理部は、前記代表波形と共に、前記検索部において前記代表波形を 検出する処理に用いられた値または前記代表波形を特定する情報を表示するため の処理を行なう、請求の範囲第 1項に記載の医療用測定器。 [8] The output processing unit performs a process for displaying, together with the representative waveform, a value used in the process of detecting the representative waveform in the search unit or information specifying the representative waveform. The medical measuring instrument according to item 1.
[9] 前記第 1の指標および前記第 2の指標は、共に、前記複数の波形についての、対 応する前記複数の特徴量の平均値と、中央値と、最頻値と、最大値と、最小値と、任 意のしきい値とのいずれかである、請求の範囲第 1項に記載の医療用測定器。
[9] The first index and the second index are both an average value, a median value, a mode value, and a maximum value of the corresponding feature quantities of the plurality of waveforms. The medical measuring instrument according to claim 1, wherein the medical measuring instrument is one of a minimum value and an arbitrary threshold value.
[10] 前記第 1の指標および前記第 2の指標を設定する指標設定部(109)をさらに備え る、請求の範囲第 1項に記載の医療用測定器。 [10] The medical measuring instrument according to claim 1, further comprising an index setting unit (109) for setting the first index and the second index.
[11] 生体信号から得られる波形の中から代表波形を抽出する方法であって、 [11] A method for extracting a representative waveform from waveforms obtained from biological signals,
連続した複数の前記波形を取得するステップ(S1)と、 Obtaining a plurality of consecutive waveforms (S1);
前記連続した複数の波形から、単位波形を区切るステップ(S3)と、 A step (S3) of dividing a unit waveform from the plurality of continuous waveforms;
複数の前記単位波形の各々より、第 1の特徴量と第 2の特徴量とを算出するステツ プ(S5)と、 A step (S5) for calculating a first feature value and a second feature value from each of the plurality of unit waveforms;
前記複数の波形から算出された複数の第 1の特徴量より得られる第 1の指標に対 する前記第 1の特徴量の関係、および前記複数の波形から算出された複数の第 2の 特徴量より得られる第 2の指標に対する前記第 2の特徴量の関係に基づいて、前記 複数の単位波形の中から代表波形を抽出するステップ(S7)と、 The relationship of the first feature quantity to the first index obtained from the plurality of first feature quantities calculated from the plurality of waveforms, and the plurality of second feature quantities calculated from the plurality of waveforms. A step (S7) of extracting a representative waveform from the plurality of unit waveforms based on the relationship of the second feature quantity to the second index obtained from
前記代表波形を出力するステップ (S9)とを備える、生体信号波形抽出方法。 A biological signal waveform extraction method comprising: (S9) outputting the representative waveform.
[12] 生体信号から得られる波形の中から代表波形を抽出する処理をコンピュータに実 行させるプログラムを記録した媒体であって、 [12] A medium storing a program for causing a computer to execute processing for extracting a representative waveform from waveforms obtained from a biological signal,
連続した複数の前記波形を取得するステップ(S1)と、 Obtaining a plurality of consecutive waveforms (S1);
前記連続した複数の波形から、単位波形を区切るステップ(S3)と、 A step (S3) of dividing a unit waveform from the plurality of continuous waveforms;
複数の前記単位波形の各々より、第 1の特徴量と第 2の特徴量とを算出するステツ プ(S5)と、 A step (S5) for calculating a first feature value and a second feature value from each of the plurality of unit waveforms;
前記複数の波形から算出された複数の第 1の特徴量より得られる第 1の指標に対 する前記第 1の特徴量の関係、および前記複数の波形から算出された複数の第 2の 特徴量より得られる第 2の指標に対する前記第 2の特徴量の関係に基づいて、前記 複数の単位波形の中から代表波形を抽出するステップ(S7)と、 The relationship of the first feature quantity to the first index obtained from the plurality of first feature quantities calculated from the plurality of waveforms, and the plurality of second feature quantities calculated from the plurality of waveforms. A step (S7) of extracting a representative waveform from the plurality of unit waveforms based on the relationship of the second feature quantity to the second index obtained from
前記代表波形を出力するステップ(S9)とを実行させる、生体信号波形抽出プログ ラムを記録した、コンピュータ読取可能な媒体。
A computer-readable medium recording a biological signal waveform extraction program for executing the step (S9) of outputting the representative waveform.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-243000 | 2006-09-07 | ||
JP2006243000A JP2008061824A (en) | 2006-09-07 | 2006-09-07 | Medical measuring instrument, biosignal waveform extraction method and biosignal waveform extraction program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008029587A1 true WO2008029587A1 (en) | 2008-03-13 |
Family
ID=39157030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/065496 WO2008029587A1 (en) | 2006-09-07 | 2007-08-08 | Medical measurement device for outputting information useful for diagnosis |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2008061824A (en) |
TW (1) | TW200816953A (en) |
WO (1) | WO2008029587A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011229736A (en) * | 2010-04-28 | 2011-11-17 | Denso Corp | Pulse wave determination device and blood pressure estimation device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2501278B1 (en) * | 2009-11-18 | 2021-09-29 | Texas Instruments Incorporated | Apparatus for sensing blood flow and hemodynamic parameters |
WO2013180286A1 (en) * | 2012-05-31 | 2013-12-05 | 日本ゼオン株式会社 | Timing detection device, timing detection program, iabp driving device, and iabp driving program |
JP6226822B2 (en) | 2014-06-11 | 2017-11-08 | 日本光電工業株式会社 | Biological information measuring device, operating method, and program |
JP5940725B1 (en) * | 2015-12-07 | 2016-06-29 | 山陽精工株式会社 | Vascular elasticity evaluation device |
KR102551184B1 (en) | 2016-02-15 | 2023-07-04 | 삼성전자주식회사 | Method and apparatus for processing biosignal |
CN108882869B (en) | 2016-04-15 | 2021-03-23 | 欧姆龙株式会社 | Biological information analysis device, system, and program |
JP6431965B2 (en) * | 2017-09-22 | 2018-11-28 | 日本光電工業株式会社 | Biological information measuring device and program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6462121A (en) * | 1987-09-02 | 1989-03-08 | Matsushita Electric Ind Co Ltd | Acceleration type pulse wave meter |
JPH07124132A (en) * | 1993-10-29 | 1995-05-16 | Matsushita Electric Ind Co Ltd | Pulse wave measuring instrument |
JP2004136107A (en) * | 2003-12-22 | 2004-05-13 | Colin Medical Technology Corp | Arteriosclerosis examining apparatus |
-
2006
- 2006-09-07 JP JP2006243000A patent/JP2008061824A/en active Pending
-
2007
- 2007-08-08 WO PCT/JP2007/065496 patent/WO2008029587A1/en active Application Filing
- 2007-09-06 TW TW96133167A patent/TW200816953A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6462121A (en) * | 1987-09-02 | 1989-03-08 | Matsushita Electric Ind Co Ltd | Acceleration type pulse wave meter |
JPH07124132A (en) * | 1993-10-29 | 1995-05-16 | Matsushita Electric Ind Co Ltd | Pulse wave measuring instrument |
JP2004136107A (en) * | 2003-12-22 | 2004-05-13 | Colin Medical Technology Corp | Arteriosclerosis examining apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011229736A (en) * | 2010-04-28 | 2011-11-17 | Denso Corp | Pulse wave determination device and blood pressure estimation device |
Also Published As
Publication number | Publication date |
---|---|
TW200816953A (en) | 2008-04-16 |
JP2008061824A (en) | 2008-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3951708B2 (en) | Biological information evaluation device | |
WO2008029587A1 (en) | Medical measurement device for outputting information useful for diagnosis | |
US6824519B2 (en) | Heart-sound detecting apparatus | |
CN104382571B (en) | A kind of measurement blood pressure method and device based on radial artery pulse wave conduction time | |
CN100415156C (en) | Diagnostic instrument for arteriosclerosis | |
JP5287668B2 (en) | Pulse wave analyzer and pulse wave analysis program | |
CN201088579Y (en) | Device for checking and evaluating arteriosclerosis | |
JP2006289088A (en) | Apparatus and method for pulse detection | |
CN105595983B (en) | A kind of blood pressure measuring device and the method for improving blood pressure measurement accuracy | |
CN202960481U (en) | Traditional Chinese medicine pulse condition acquisition device | |
US20210369129A1 (en) | Wearable device with plethysmogram sensor | |
WO2017047384A1 (en) | Blood pressure analyzing device, blood pressure measuring device, blood pressure analyzing method, and blood pressure analyzing program | |
US6923770B2 (en) | Pulse-wave-characteristic-point determining apparatus, and pulse-wave-propagation-velocity-related-information obtaining apparatus employing the pulse-wave-characteristic-point determining apparatus | |
CN107106046B (en) | Blood vessel elastic modulus evaluation device | |
CN107822615B (en) | Blood pressure measuring apparatus and signal processing method | |
CN102413760B (en) | Monitoring peripheral decoupling | |
KR20080043545A (en) | Method for diagnosis pulse action and a portable device therfor | |
US20060074327A1 (en) | Pulse wave information display apparatus, program product for controlling pulse wave information display apparatus, and method of displaying pulse wave information | |
KR20080030189A (en) | Apparatus and method for monitoring a status of blood vessel | |
JP2011182968A (en) | Blood pressure information measuring instrument and method of computing index of extent of arteriosclerosis by the instrument | |
CN113951846B (en) | Pulse wave signal processing method and device and readable storage medium | |
US20010053881A1 (en) | System and method for the automatic evaluation of the indexes of volemic status | |
KR101440991B1 (en) | Monitoring apparatus and method of sclerosis of the blood vessels based on oscillometric arterial blood pressure measurement | |
JP2002224061A (en) | Electronic sphygmomanometer | |
JPWO2019188768A1 (en) | Shunt sound analyzers and methods, computer programs and storage media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07792164 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07792164 Country of ref document: EP Kind code of ref document: A1 |