WO2008029459A1 - Radio receiving apparatus and radio communication system - Google Patents

Radio receiving apparatus and radio communication system Download PDF

Info

Publication number
WO2008029459A1
WO2008029459A1 PCT/JP2006/317662 JP2006317662W WO2008029459A1 WO 2008029459 A1 WO2008029459 A1 WO 2008029459A1 JP 2006317662 W JP2006317662 W JP 2006317662W WO 2008029459 A1 WO2008029459 A1 WO 2008029459A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
unit
radio
transmission
Prior art date
Application number
PCT/JP2006/317662
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuya Oda
Takashi Enoki
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to PCT/JP2006/317662 priority Critical patent/WO2008029459A1/en
Publication of WO2008029459A1 publication Critical patent/WO2008029459A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • the present invention relates to a radio reception apparatus having a phase noise cancellation function and an automatic frequency control (AFC) function, and a radio communication system.
  • AFC automatic frequency control
  • FIG. 1 is a block diagram showing an example of a wireless receiver in a conventional wireless communication system with improved phase noise characteristics.
  • the radio receiver shown in Fig. 1 has a local noise canceller to improve the phase noise characteristics.
  • FIG. 2 is a characteristic diagram showing frequency characteristics of each component of the local noise canceller in the wireless reception device of FIG. In other words, the symbol of each black circle in Fig. 1 corresponds to the characteristic diagram of each symbol in Fig. 2.
  • the input signal (A) input to the wireless receiver shown in Fig. 1 is multiplexed with the modulated IF signal (BBT-OFDM) and pilot 'carrier (PI LOT) as shown in Fig. 2 (A). It is assumed that the input phase noise (thick diagonal line) is superimposed.
  • the pilot 'carrier (PILOT) frequency in the input signal is f, IF
  • PLT sig PLT sig is expressed as follows.
  • the input signal (A) is distributed by distributor 1, one is output to the pilot branch, and the other is output to the signal branch.
  • one of the signals distributed by the distributor 1 is band-limited by the bandpass filter (BPF) 2 and pilot 'carrier (PIL Only the component OT) passes through and is extracted, and is further amplified by the limiter amplifier 3.
  • the IF signal component is removed from the frequency characteristics of the output signal ( ⁇ ) output from BPF2 and the output signal (C) output from limiter amplifier 3, as shown in Fig. 2 (B'C). Only the pilot carrier (PILOT) component and the input phase noise ⁇ (t) superimposed on it.
  • PLT has a delay time ⁇
  • local oscillator signal (D) is output from local oscillator 4.
  • the frequency characteristics of the local oscillation signal (D), in which the local oscillator 4 power is also output, are as shown in Fig. 2 (D), and the local oscillation phase (LO) signal superimposed on the local oscillation frequency (LO) signal. Noise.
  • the local oscillation signal frequency in the system is expressed as f
  • LO the local oscillation signal phase noise in the system
  • ⁇ (t) the local oscillation signal frequency f in the system.
  • the input signal output from the distributor 1 is frequency-converted by the multiplier (mixer) 5 with the local oscillator signal (D) of four local oscillators, and the multiplier 5 Signal (E) is output.
  • the frequency characteristics of the signal (E) output from the multiplier 5 are the sum and difference components of the input signal (A) and the local oscillation signal (D) as shown in Fig. 2 (E). Exists. Therefore, the relationship between each signal component included in the signal) and the superimposed phase noise is as follows.
  • the frequency-converted signal (E) has only a difference component by a bandpass filter (BPF) 6. Since the band is limited to pass, the signal (F) is output from BPF6. In the frequency characteristics of this signal (F), as shown in Fig. 2 (F), the sum component in the signal) is removed and only the difference component exists. At this time, a delay occurs in BPF6.
  • BPF bandpass filter
  • the delay compensator 7 adds a delay At to the signal) to equalize the delay time difference from the pilot branch.
  • the signal (G) of the signal branch and the pilot branch signal (C) output from the limiter amplifier 3 are frequency-converted by the frequency change 8, and the signal (H) Is output.
  • the frequency characteristic of the signal (H) output from the frequency shift 8 is the sum and difference components of the signal (G) and the signal (C) as shown in Fig. 2 (H).
  • the relationship between each signal component contained in signal (H) and the superimposed phase noise is as follows. f — (f -f) ⁇ ⁇ (t- ⁇ )- ⁇ 0 (t- T -At)-(t- T -At) ⁇
  • the delay time of the delay corrector 7 is
  • the delay ⁇ t is added to equalize the delay time difference between the signal branch and the pilot branch, so the above equation can be rearranged as follows.
  • the frequency of the output signal component is the frequency of the local oscillation signal (f) in the system related to the frequency of the input signal.
  • phase noise ⁇ that is, constant.
  • the sideband of the signal is inverted at the input and output.
  • the phase noise of the output signal is canceled by the input phase noise ⁇ (X) and becomes the phase noise ⁇ (X) of the local oscillation signal in the system instead. That is, the phase noise ⁇ of the local oscillation signal in the system
  • the signal (H) frequency-converted by the frequency change ⁇ 8 is band-limited so that only the difference component and only the signal component pass through the band-pass filter (BPF) 9, and from BPF 9, Signal (I) is output.
  • BPF band-pass filter
  • the frequency characteristics of this signal (I) are such that only the signal component of the difference component exists by removing the pilot / carrier component in the sum and difference components of signal (H). .
  • the relationship between the signal component included in the signal (I) and the superimposed phase noise is as follows.
  • the local oscillation frequency having high stability and high frequency generated by the local oscillator 4 Since an output signal with a frequency according to is obtained, the frequency deviation of the input signal can be eliminated.
  • the phase noise of the output signal is The phase noise ⁇ (X) superimposed on the input signal is canceled and instead only the phase noise ⁇ (X) of the local oscillation signal in the system, so the phase noise ⁇ (X) of the local oscillation signal in the system If X) is sufficiently small, the phase noise of the input signal is sufficiently reduced and output.
  • the difference between the frequency of the signal received from the base station and the local oscillation frequency of the terminal Terminal frequency is also fed back to the base station, and automatic frequency control (AFC) is required to synchronize the local oscillation frequency of the terminal with the base station reference frequency.
  • AFC automatic frequency control
  • the following methods are known as methods for realizing general AFC control.
  • a difference between the reception frequency from the base station and the local oscillation frequency of the terminal is detected in the baseband part of the terminal, and is fed back to the base station using an uplink transmission signal.
  • the reference frequency of the reference oscillator of the terminal is shifted according to the detected frequency deviation amount, and the oscillation frequency between the base station and the terminal is synchronized.
  • Patent Document 1 JP 2002-152158 A
  • FIG. 3 is a system configuration diagram when the AFC technology is applied when the phase noise cancellation technology is not used in the conventional wireless communication system.
  • Fig. 4 is a system configuration diagram when the AFC technology is applied when the phase noise cancellation technology is used in the conventional wireless communication system. Note that in both FIG. 3 and FIG. 4, only the radio reception unit of the terminal is shown by simplifying the configuration of the entire radio communication system.
  • a radio reception apparatus 10 shown in FIG. 3 includes a reception unit 11, a reception antenna 30, a transmission unit 12, and a transmission antenna 31.
  • the receiving antenna 30 receives a wireless signal (RF signal) from the wireless transmission device of the communication partner, and the transmission antenna 31 transmits the wireless signal (RF signal) to the wireless transmission device of the communication partner.
  • RF signal wireless signal
  • the receiving unit 11 includes a first receiving baseband unit 13 including a receiving baseband processing unit 14 and a frequency shift amount detecting unit 16, a frequency variable reference signal oscillator 18, a first receiving local oscillation unit 21, and an amplifier 51.
  • the transmission unit 12 includes a first transmission baseband unit 15, a third transmission local oscillation unit 23, a fourth transmission local oscillation unit 24, a quadrature modulator 80, a multiplier 81, and an amplifier 82. I have.
  • a signal is received by the reception antenna 30 of the wireless reception device 10 in a state in which a frequency shift is included due to the influence of fading or the like.
  • the signal frequency when the receiving antenna 30 is receiving a signal is represented by the following equation.
  • the signal having the signal frequency frx is subjected to predetermined processing such as amplification and frequency conversion by the amplifier 51, the multiplier (mixer) 52, the band-pass filter 53, and the amplifier 54, and the second receiving local oscillation unit
  • the signal oscillated at 22 is input to the quadrature demodulator 57 and demodulated into a baseband signal.
  • the signal frequency at the time of input to the reception baseband processing unit 14 is ⁇ 1 ”.
  • the signal frequency ⁇ 1 ′′ needs to be corrected because it is a difference between the reference frequency of the transmitter 12 and the reference frequency of the receiver 11.
  • the frequency shift amount Ai3 ⁇ 4S is detected by the frequency shift amount detection unit 16 in the first reception burst band unit 13. No detected frequency
  • the information of the amount ⁇ ⁇ is transferred to the frequency control unit 62, and the frequency control unit 62 performs control to shift the frequency of the frequency variable reference signal oscillator 18 in the reception unit 11 by Af.
  • the oscillation frequencies of the first reception local oscillation unit 21 and the second reception local oscillation unit 22, and the third transmission local oscillation unit 23 and the fourth transmission local oscillation unit 24 are shifted by ⁇ .
  • the transmitter 11 and the transmitter 12 can be synchronized. In this way, automatic frequency control (AF C) is realized.
  • the AFC control method described here is an example, and AFC can be realized by other control methods. What is important is that the baseband signal demodulated by the quadrature demodulator 57 is input to the reception baseband processing unit 14 in a state including the amount of frequency shift (here, ⁇ f).
  • the radio reception device 10a in FIG. 4 includes a reception unit lla, a reception antenna 30, a transmission unit 12a, and a transmission antenna 31.
  • the receiving antenna 30 receives a wireless signal (RF signal) from the wireless transmission device of the communication partner, and the transmission antenna 31 transmits the wireless signal (RF signal) to the wireless transmission device of the communication partner.
  • the reception unit 11a includes a reception baseband processing unit 14 and a frequency shift amount detection unit 16, a first reception baseband unit 13, a frequency variable reference signal oscillator 18, a first reception local oscillation unit 21, and an amplifier 51, a multiplier 52, a band pass filter 53, an amplifier 54, a distributor 55, a delay corrector 56, a quadrature demodulator 57, a band pass filter (BPF) 59, an amplifier 60, and a frequency control unit 62.
  • a reception baseband processing unit 14 and a frequency shift amount detection unit 16 a reception baseband unit 13
  • a frequency variable reference signal oscillator 18 a first reception local oscillation unit 21
  • an amplifier 51 a multiplier 52, a band pass filter 53, an amplifier 54, a distributor 55, a delay corrector 56, a quadrature demodulator 57, a band pass filter (BPF) 59, an amplifier 60, and a frequency control unit 62.
  • BPF band pass filter
  • the transmission unit 12a includes a first transmission baseband unit 15, a third transmission local oscillation unit 23, a first transmission baseband unit 15,
  • the input signal input to the reception unit 11a of the wireless reception device 1 Oa via the reception antenna 30 is represented by the following equation as described above.
  • This input signal is subjected to amplification and frequency conversion processing, and then distributed to the signal branch and pilot branch by the distributor 55.
  • the quadrature demodulator 57 performs quadrature demodulation according to the operation principle described in FIGS. All phase noise will be cancelled.
  • the pilot signal frequency at EE is given by the following equation.
  • the frequency of the input signal input to the reception baseband processing unit 14 is always the following. It is expressed by the following formula.
  • the term of the frequency shift amount ⁇ 1 "disappears, that is, the reception baseband processing unit 14 does not include the frequency shift amount generated in the propagation path. It will be Therefore, it becomes impossible to supply information on the frequency deviation amount to the frequency control unit 62, and as a result, it becomes impossible to vary the frequency of the frequency variable reference signal oscillator 18. Therefore, it is impossible to control the AFC with a wireless receiver having a conventional configuration as shown in FIG.
  • An object of the present invention is to provide a radio receiver capable of realizing high frequency and high communication quality by realizing automatic frequency control (AFC) between a base station and a terminal and improving phase noise characteristics. And providing a wireless communication system.
  • AFC automatic frequency control
  • the radio reception apparatus of the present invention is a radio transmission apparatus as a communication partner, wherein a pilot signal is superimposed and reception means for receiving the transmitted signal, extraction means for extracting the pilot signal from the reception signal, Orthogonal demodulation means for performing orthogonal demodulation on the received signal using the extracted pilot signal, and frequency deviation amount detecting means for detecting the frequency deviation amount of the oscillation frequency of the local oscillator with respect to a reference frequency using the received signal And automatic frequency control means for performing control to synchronize the oscillation frequency of the local oscillator with the reference frequency using the detected frequency deviation amount.
  • the radio communication system of the present invention is a radio communication system including a radio transmission device and a radio reception device, and the radio transmission device transmits a radio signal in which a pilot signal is superimposed on the center of a multicarrier signal.
  • the wireless reception device includes a reception unit that receives a signal transmitted from the wireless transmission device, an extraction unit that extracts the pilot signal from the reception signal, and the extraction for the reception signal.
  • Quadrature demodulating means for performing quadrature demodulation using the pilot signal, frequency deviation amount detecting means for detecting the frequency deviation amount of the oscillation frequency of the local oscillator with respect to a reference frequency using the received signal, and the detected frequency deviation And automatic frequency control means for performing control to synchronize the oscillation frequency of the local oscillator with the reference frequency using a quantity.
  • both the phase noise canceller and the automatic frequency control (AFC) can be achieved, so that it is possible to realize both the low power consumption and the improvement in the reception sensitivity.
  • the frequency of the received local signal can be obtained without using the frequency deviation information of the band signal. It becomes possible to synchronize the wave number and the frequency of the transmission local signal.
  • the phase noise canceling function can be optimally operated. This makes it possible to improve the phase noise characteristics and maintain good communication quality while realizing automatic frequency control between the base station and the terminal.
  • FIG. 1 is a block diagram showing an example of a wireless receiver in a conventional wireless communication system with improved phase noise characteristics
  • FIG. 2 is a characteristic diagram showing the frequency characteristics of each component of the local noise canceller in the wireless receiver of FIG.
  • FIG.4 System configuration diagram when applying AFC technology when phase noise cancellation technology is used for mobile communication in a conventional wireless communication system
  • FIG. 5 is a block diagram showing a configuration of a wireless transmission device of the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 1 of the present invention.
  • FIG. 7 is a characteristic diagram showing frequency characteristics of each signal in the wireless transmission device shown in FIG. 5 and the wireless reception device shown in FIG.
  • FIG. 9 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 2 of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a wireless reception device of the wireless communication system according to the third embodiment of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a wireless reception device of the wireless communication system according to the fourth embodiment of the present invention.
  • FIG. 12 shows a configuration of a radio receiving apparatus of a radio communication system according to Embodiment 5 of the present invention.
  • the wireless communication system of the present invention is provided with a function of further distributing the output signal of the pilot branch in the phase noise cancellation technique to detect the frequency shift amount. Then, the reference oscillation frequency in the receiver is changed according to the amount of frequency deviation detected by this function, and the frequency tracking is performed by setting the input frequency of the frequency converter (mixer) to a state that takes into account the amount of deviation. To realize. This makes it possible to achieve both phase noise cancellation and AFC.
  • FIG. 5 is a block diagram showing a configuration of a radio transmission apparatus of the radio communication system according to Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram showing the configuration of the radio reception apparatus of the radio communication system according to Embodiment 1 of the present invention. That is, the radio communication system according to the first embodiment includes radio transmission apparatus 100 shown in FIG. 5 and radio reception apparatus 200 shown in FIG. Note that the radio reception apparatus in FIG. 6 shows a single conversion type in which an input signal is frequency-converted by a local signal.
  • the wireless transmission device 100 includes a transmission baseband unit 101 that generates a baseband signal, a transmission unit 105 that performs predetermined processing on the baseband signal and transmits the signal as an RF signal, and an antenna 130. It has become.
  • the transmission baseband unit 101 combines the modulated signal and the pilot signal and transmits them to the transmission unit 105.
  • Transmitter 105 transmits to the outside a radio signal obtained by multiplexing a modulated signal with no signal at the center frequency and a pilot signal having the same center frequency as the center frequency.
  • the antenna 130 sends a radio signal (RF signal) to the outside. I believe.
  • the transmission baseband unit 101 includes a signal synthesis unit 102, a modulation signal generation unit 103, and a pilot signal generation unit 104.
  • Modulation signal generation section 103 generates a modulation signal such as a multicarrier that does not carry a signal on the center frequency portion, and outputs the modulation signal to signal synthesis section 102.
  • Pilot signal generation section 104 generates a pilot signal and outputs it to signal synthesis section 102.
  • the signal synthesis unit 102 synthesizes the modulation signal (M-CD MA) received from the modulation signal generation unit 103 and the pilot signal (PILOT) received from the pilot signal generation unit 104 and outputs the synthesized signal to the transmission unit 105.
  • M-CD MA modulation signal
  • PILOT pilot signal
  • the transmission unit 105 includes a reference signal oscillator 110, a first transmission local oscillation unit 121, a second transmission local oscillation unit 122, a quadrature modulator 152, a multiplier (mixer) 153, and an amplifier 154.
  • the reference signal oscillator 110 generates a reference signal and outputs it to the first transmission local oscillation unit 121 and the second transmission local oscillation unit 122.
  • First transmission local oscillator 121 generates a local oscillation signal using the reference signal received from reference signal oscillator 110 and outputs the local oscillation signal to multiplier 153.
  • Second transmission local oscillation unit 122 generates a local oscillation signal using the reference signal received from reference signal oscillator 110 and outputs the local oscillation signal to quadrature modulator 152.
  • the quadrature modulator 152 uses the local oscillation signal from the second transmission local oscillation unit 122 to orthogonally modulate the synthesized signal of the modulation signal output from the signal synthesis unit 102 of the transmission baseband unit 101 and the pilot signal. And output to the multiplier 153.
  • Multiplier 153 converts the signal subjected to quadrature modulation by quadrature modulator 152 into a radio signal (RF signal) using the local oscillation signal received from first transmission local oscillation unit 121.
  • Amplifier 154 amplifies the radio signal received from multiplier 153 and outputs the amplified signal to antenna 130.
  • the modulation signal generation unit 103 generates a modulation signal and outputs it to the signal synthesis unit 102.
  • the modulation signal is described as multi-carrier CDMA, the signal is placed on the center frequency portion on the power frequency axis, and any modulation signal can be handled, for example, It may be an OFDM signal or the like.
  • the signal synthesis unit 102 synthesizes the modulation signal (M-CDMA) received from the modulation signal generation unit 103 and the pilot signal (PILOT) received from the pilot signal generation unit 104. Transmit to transmission section 105.
  • second transmission local oscillation section 122 generates a local oscillation signal using the reference signal generated by reference signal oscillator 110, and this local oscillation signal is converted into quadrature modulator 152. Output to.
  • the quadrature modulator 152 uses the local oscillation signal received from the second transmission local oscillation unit 122, and combines the modulated signal output from the signal synthesis unit 102 of the transmission baseband unit 101 and the pilot signal. Are orthogonally modulated and output to the multiplier 153.
  • Multiplier 153 uses the local oscillation signal received from first transmission local oscillation unit 121 to convert the signal subjected to quadrature modulation by quadrature modulator 152 into a radio signal (RF signal).
  • the radio signal is amplified by the amplifier 154 and then transmitted to the radio reception device via the antenna 130.
  • the first transmission local oscillation unit 121 generates a local oscillation signal using the reference signal received from the reference signal oscillator 110, and the first transmission local oscillation unit 121 and the local oscillation signal from the first transmission local oscillation unit 121 The generation of the local oscillation signal by the two transmitting local oscillators 122 is synchronized.
  • the radio receiving apparatus 200 includes a receiving unit 201, a receiving antenna 230, a transmitting unit 202, and a transmitting antenna 231.
  • Receiving antenna 230 receives a radio signal (RF signal) from radio transmitting apparatus 100 shown in FIG. 5, and transmitting antenna 231 transmits a radio signal (RF signal) to radio transmitting apparatus 100.
  • RF signal radio signal
  • the reception unit 201 includes a first reception baseband unit 203 including a reception baseband processing unit 204, a frequency variable reference signal reception oscillator 210, a first reception local oscillation unit 221, an amplifier 251, and a multiplier 252. , Bandpass filter 253, amplifier 254, first distributor 255, delay corrector 256, quadrature demodulator 257, second distributor 258, bandpass filter (BPF) 259, amplifier 260, frequency control unit 262, and frequency A deviation amount detection unit 270 is provided.
  • a reception baseband unit 203 including a reception baseband processing unit 204, a frequency variable reference signal reception oscillator 210, a first reception local oscillation unit 221, an amplifier 251, and a multiplier 252.
  • BPF bandpass filter
  • the transmission unit 202 includes a first transmission baseband unit 205, a frequency variable reference signal transmission oscillator 211, a third transmission local oscillation unit 223, a fourth transmission local oscillation unit 224, and a quadrature modulator. 280, a multiplier 281, and an amplifier 282.
  • Amplifier 251 amplifies the radio signal (RF signal) received by receiving antenna 230 and outputs the amplified signal to multiplier 252.
  • Multiplier 252 converts the frequency of the radio signal output from amplifier 251 with the local oscillation signal from first reception local oscillation unit 221 and outputs the result to bandpass filter 253.
  • the band pass filter 253 extracts only the signal in the desired frequency band from the signal power frequency-converted by the multiplier 252 and outputs the signal power to the amplifier 254.
  • the amplifier 254 amplifies the signal in the desired frequency band output from the band pass filter 253 and outputs the amplified signal to the first distributor 255. That is, the radio signal (RF signal) received by the receiving antenna 230 is subjected to predetermined processing such as amplification and frequency conversion by the amplifier 251, the multiplier 252, the band-pass filter 253, and the amplifier 254. 1 Input to distributor 255.
  • the first distributor 255 distributes the input signal in two directions and outputs the signals to the delay compensator 256 and the second distributor 258, respectively.
  • the second distributor 258 further distributes the signal distributed by the first distributor 255 in two directions, and outputs them to the BPF 259 and the frequency shift amount detection unit 270, respectively.
  • the BPF 259 extracts a signal component corresponding to the pilot signal from one signal distributed by the first distributor 255 and outputs it to the amplifier 260.
  • the amplifier 260 amplifies the signal component corresponding to the pilot signal extracted by the BP F259 and outputs the amplified signal component to the quadrature demodulator 257.
  • the delay corrector 256 gives a delay to one of the signals distributed by the first distributor 255 and outputs the delayed signal to the quadrature demodulator 257.
  • Quadrature demodulator 257 performs quadrature demodulation by frequency multiplying the output signal of amplifier 260 and the output signal of delay corrector 256, and outputs the result to first reception baseband section 203.
  • the first reception baseband unit 203 performs baseband processing on the baseband signal demodulated by the quadrature demodulator 257 by the reception baseband processing unit 204.
  • the input signal level to quadrature demodulator 257 is kept constant only by amplifier 260, distortion occurs only in the pilot branch, and phase noise remains in the output of quadrature demodulator 257.
  • the input signal level to the first distributor 255 is Pin [dBm]
  • the power loss due to the first distributor 255 and the second distributor 258 is a [dB]
  • the power loss of the BPF259 is If the loss is ⁇ [dB] and the gain of the amplifier 260 is ⁇ [dB], the input signal level Pin to the first distributor 255 is approximately proportional to the output level of the amplifier 260 (Pin + y-a ⁇ ⁇ ). Set to be. Thereby, distortion in the pilot branch can be prevented.
  • the frequency shift amount detection unit 270 detects the frequency shift amount with respect to the reference frequency of the transmission base station using one of the signals distributed by the second distributor 258, and outputs it to the frequency control unit 262.
  • the frequency control unit 262 controls the frequency variable reference signal reception oscillator 210 and the frequency variable reference signal transmission oscillator 211 based on the frequency shift amount detected by the frequency shift amount detection unit 270.
  • the frequency variable reference signal receiving oscillator 210 is controlled in output frequency by the frequency control unit 262 and outputs an oscillation frequency signal to the first receiving local oscillation unit 221.
  • the first reception local oscillation unit 221 outputs an arbitrary frequency using the reference oscillation signal supplied from the frequency variable reference signal reception oscillator 210 as a reference.
  • the frequency variable reference signal transmission oscillator 211 outputs an oscillation frequency signal to the third transmission local oscillation unit 223 and the fourth transmission local oscillation unit 224, the output frequency of which is controlled by the frequency control unit 262.
  • Third transmission local oscillator 223 outputs an arbitrary frequency to the multiplier 2 81 a reference oscillation signal supplied from the variable frequency reference signal transmission oscillator 211 as a reference.
  • the fourth transmission local oscillation unit 224 generates a local oscillation signal using the reference oscillation signal supplied from the frequency variable reference signal transmission oscillator 211, and outputs the local oscillation signal to the quadrature modulator 280.
  • the first transmission baseband unit 205 generates a transmission baseband signal and outputs it to the quadrature modulator 280.
  • the quadrature modulator 280 uses the local oscillation signal from the fourth transmission local oscillation unit 224 to orthogonally modulate the transmission baseband signal output from the first transmission baseband unit 205 and the pilot signal, and thereby performs a multiplier. Output to 281.
  • Multiplier 281 converts the signal quadrature modulated by quadrature modulator 280 into a radio signal, using the local oscillation signal output from third transmission local oscillation unit 223.
  • the amplifier 282 amplifies the radio signal output from the multiplier 281 and transmits the amplified signal to the transmission antenna 231.
  • FIG. 7 is a characteristic diagram showing frequency characteristics of each signal in the wireless transmission device 100 shown in FIG. 5 and the wireless reception device 200 shown in FIG. Is the frequency and the vertical axis is the signal level.
  • 7 (A) to (G) show the frequency characteristics of the signal of the part to which the corresponding alphabet symbol is added in FIGS. 5 and 6.
  • FIG. 7 (A) to (G) show the frequency characteristics of the signal of the part to which the corresponding alphabet symbol is added in FIGS. 5 and 6.
  • the combined signal (A) of the modulation signal output from the modulation signal generation unit 103 and the pilot signal output from the pilot signal generation unit 104 has a frequency characteristic as shown in Fig. 7 (A). .
  • the combined signal (A) of the modulated signal and the pilot signal is frequency-converted to a radio signal by transmission section 105 and output from antenna 130.
  • RF—PILOT is expressed as the following equation.
  • the frequency of the modulation signal generated by the modulation signal generation unit 103 is f, and the first transmission
  • the frequency of the local oscillation signal oscillated by the local oscillation unit 121 is f and the second transmission local oscillation
  • f be the frequency of the local oscillation signal oscillated by unit 122.
  • the combined signal (A) is the phase noise of second transmission local oscillation section 122 in quadrature modulator 152 and the position of first transmission local oscillation section 121 in multiplier 153.
  • Phase noise is superimposed and output as a radio signal.
  • phase noise is superimposed on the radio signal even in the propagation path from the output from the antenna 130 of the radio transmission device 100 of FIG. 5 to the reception of the reception antenna 230 of the radio reception device 200 of FIG. Is done.
  • the radio signal (B) received by the receiving antenna 230 is the frequency shown in FIG. It is expressed as the following equation with characteristics.
  • the radio signal (B) received by the receiving antenna 230 in FIG. 6 was amplified by the amplifier 251. Later, the frequency is converted by a multiplier 252.
  • this local signal (C) since the first reception local oscillation unit 221 oscillates a local signal having phase noise ⁇ (t), this local signal (C) has a frequency characteristic as shown in FIG. 7 (C). It is expressed as the following formula.
  • phase noise ⁇ (t) of the first reception local oscillation unit 221 is superimposed on the signal frequency-converted by the multiplier 252 and given to the band pass filter 253.
  • the bandwidth of this bandpass filter 253 is the frequency of the difference component output from the multiplier 252, that is, (f
  • the signal (D) output from 4 has the frequency characteristics shown in Fig. 7 (D), and is expressed by the following equation.
  • the signal (D) is distributed by the first distributor 255, one of which is output as a modulated signal branch, and the other is output as a pilot branch.
  • the signal is distributed by the second distributor 258 and then input to the BPF 259. Since this BPF259 is set to extract only the pilot signal component, the BPF259 extracts and outputs only the pilot signal component from the distributed signal (D).
  • the delay ⁇ is superimposed on the signal (D) by passing through the BPF 259 and the amplifier 260. Therefore, the output signal ( ⁇ ) of the amplifier 260 is expressed by the following equation with frequency characteristics as shown in FIG.
  • the signal (F) output from the delay corrector 256 has a frequency characteristic as shown in FIG. 7 (F) and can be expressed as the following equation.
  • Signal (E) and signal (F) are multiplied by orthogonal demodulator 257 and then orthogonally demodulated. Note that the quadrature demodulator 257 is delayed as shown in the internal configuration diagram of the quadrature demodulator 257 shown in FIG. A delay corrector 401, a 90-degree phase shifter 402, a delay corrector 401 -side multiplier 403, and a 90-degree phase shifter 402 -side multiplier 404 are provided.
  • the signal) is input to the delay corrector 401 and the 90-degree phase shifter 402.
  • the 90-degree phase shifter 402 shifts the phase of the signal (E) by 90 degrees and outputs it to the multiplier 404.
  • a delay amount ⁇ is generated in the 90-degree phase shifter 402. Meanwhile, delay compensation
  • the device 401 has a delay amount ⁇ in the signal ( ⁇ ) as much as the delay amount generated by the 90-degree phase shifter 402.
  • the signal (F) is input to the multiplier 403 and the multiplier 404, multiplied by the output signal ( ⁇ ) from the delay corrector 401 and the 90-degree phase shifter 402, and the signal from the quadrature demodulator 257.
  • the signal ( ⁇ ) and signal (F) that are multiplied in step 1 are in phase. Therefore, ideal recovery can be performed.
  • signal (G) output from quadrature demodulator 257 has a frequency characteristic as shown in FIG. 7 (G), and can be expressed by the following equation.
  • radio transmitting apparatus 100 multiplexes and transmits a pilot signal at the center frequency of the transmission signal, and radio receiving apparatus 200 transmits the same frequency error and phase noise as the received signal.
  • Frequency multiplication is performed with a pilot signal with
  • frequency multiplication is performed using a signal having the same phase noise. Therefore, the frequency error and phase error contained in the received signal can be removed, and the phase error generated in the system can be completely removed, so that a wireless communication system with excellent phase noise characteristics can be obtained. Can be realized.
  • the signal distributed by the second distributor 258 is input to the frequency shift amount detection unit 270 in the frequency shift detection branch. Then, the frequency shift amount detection unit 270 detects the frequency shift amount with respect to the reference frequency of the transmission base station, and outputs it to the frequency control unit 262. Accordingly, the frequency control unit 262 controls the output oscillation frequencies of the frequency variable reference signal reception oscillator 210 and the frequency variable reference signal reception oscillator 211 according to the input frequency deviation amount.
  • the frequency of the first reception local oscillation unit 221 is referred to the oscillation frequency signal of the frequency variable reference signal reception oscillator 210 as a reference, so an arbitrary oscillation frequency signal corresponding to the frequency deviation is sent to the multiplier 252. Supply.
  • the transmission baseband signal output from the first transmission baseband unit 205 is modulated by the quadrature modulator 280, but the fourth reference signal is based on the oscillation frequency signal of the frequency variable reference signal transmission oscillator 211. Since the modulation oscillation signal is supplied from the transmission local oscillation unit 224, the output of the quadrature modulator 280 takes the frequency deviation into consideration. In addition, the force not shown in the figure is subjected to signal amplification processing by appropriate amplification and filtering, and then converted to a terminal output frequency by a multiplier 281.
  • a multiplier (frequency conversion device) 281 Since the oscillation signal for frequency conversion is supplied from the third transmission local oscillation unit 223 using the oscillation frequency signal of the frequency variable reference signal transmission oscillator 211 as a reference, a multiplier (frequency conversion device) 281 The output of is added with the amount of frequency deviation.
  • the output signal of the multiplier (frequency conversion device) 281 is subjected to appropriate processing such as amplification and is output from the transmission antenna 231.
  • the output signal of the transmission antenna 231 is a signal in which the amount of frequency deviation is added, the frequency synchronization between the wireless transmission device 100 in FIG. 5 and the wireless reception device 200 in FIG. 6 can be achieved. .
  • the pilot in the phase noise canceling technique is used.
  • the output of the branch is further distributed to provide a frequency shift detection function.
  • the reference oscillation frequency in the wireless receiver is changed according to the detected frequency deviation amount, and the input frequency of the frequency conversion (multiplier) is set to a state that takes into account the frequency deviation amount. Achieves frequency tracking. This makes it possible to achieve both phase noise cancellation and AFC.
  • phase noise is included in the frequency characteristics shown in FIG. 6 (D).
  • this phase noise can be suppressed by the second transmission local oscillation unit 122 of the wireless transmission device 100 shown in FIG. 5 and the first reception local oscillation unit 221 of the wireless reception device 200 shown in FIG.
  • the first reception local oscillation unit 221 is configured as a PLL frequency synthesizer, and the loop bandwidth is designed to be equal to or less than the bandwidth of the BPF259.
  • the phase noise ⁇ (t) outside the pass frequency band of the bandpass filter shown in Fig. 2 (D) can be suppressed, and the effect can be ignored.
  • the second transmission local oscillation unit 122 and the first transmission local oscillation unit 121 of the wireless transmission device 100 shown in FIG. 5 similarly suppress the phase noise 0 (t) outside the frequency band of the BPF259. can do.
  • first transmission local oscillation unit 121 in radio transmission device 100 oscillates as a local frequency oscillated in first reception local oscillation unit 221 of radio reception device 200 in FIG. Signal with the same frequency (f) as the local oscillation signal
  • the configuration of transmission baseband section 101 and transmission section 105 in radio transmission apparatus 100 in FIG. 5 is the superheterodyne system, but the pilot signal is centered on the frequency axis of the modulation signal. Any method can be used as long as it can transmit a signal having a frequency characteristic in which signals are arranged. For example, direct conversion, low IF, or the like may be used.
  • the radio signal received by the radio reception device is the center frequency. Therefore, the local oscillator 4 and the frequency change 8 in the signal branch of the conventional local noise canceller in FIG. 1 are multiplexed with a modulation signal that does not include signals in the number and a pilot signal having the same center frequency as the center frequency. Therefore, the phase noise included in the local oscillation signal generated by this local oscillation unit 4 is not included in the signal branch signal (signal F). Therefore, the phase error generated in the system can be completely removed, and a radio communication system having excellent phase noise characteristics can be realized. Furthermore, it becomes possible to realize AFC that performs frequency synchronization between the wireless transmission device and the wireless reception device.
  • FIG. 9 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 2 of the present invention.
  • the radio reception device 200a in FIG. 9 shows a single conversion type in which a received signal is frequency-converted by a multiplier 252. Note that the configuration of the wireless transmission apparatus of the wireless communication system according to Embodiment 2 is the same as the configuration of FIG.
  • the radio receiving apparatus 200a shown in FIG. 9 differs from the radio receiving apparatus 200 shown in FIG. 6 in that a second orthogonal demodulator 261 is added except for the frequency shift amount detection unit 270, and The difference is that a frequency shift amount detection unit 206 is added to the reception baseband unit 203a.
  • the second orthogonal demodulator 261 uses the signal from the frequency variable reference signal reception oscillator 210 to orthogonally demodulate one of the signals distributed by the second distributor 258.
  • the frequency shift amount detection unit 206 also detects the frequency shift amount ⁇ ⁇ for the signal power output from the second quadrature demodulator 261. That is, in radio receiving apparatus 200a of the second embodiment shown in FIG. 9, second orthogonal demodulator 261 is provided as a method for realizing frequency deviation amount detection section 270 of the first embodiment shown in FIG. Is input to the frequency shift amount detection unit 206 in the first reception baseband unit 203a to detect the frequency shift amount.
  • FIG. 10 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 3 of the present invention.
  • the radio reception device 200b of FIG. 10 shows a single conversion type in which a received signal is frequency-converted by a multiplier 252. Note that the configuration of the wireless transmission apparatus of the wireless communication system according to Embodiment 3 is the same as the configuration of FIG.
  • the wireless receiving apparatus 200b shown in FIG. 10 is different from the wireless receiving apparatus 200a shown in FIG. 9 in that a frequency variable BPF263 is provided instead of the BPF259.
  • This frequency variable B PF263 varies the band frequency to be passed according to the frequency deviation amount ⁇ .
  • the filter that extracts the pilot signal of the pilot branch is the frequency variable BPF263 that makes the center frequency variable, and the pilot signal can be extracted according to the frequency deviation amount, thereby reducing the phase noise cancellation effect due to the frequency deviation. Suppress it.
  • frequency variable BPF 263 is a band to be passed in accordance with frequency deviation amount ⁇ ⁇ input from frequency deviation amount detection unit 206 of first reception baseband unit 203a.
  • the frequency is varied.
  • the frequency variable BPF 263 can change the band frequency according to the frequency shift amount ⁇ ⁇ , so there is no possibility that the pilot signal extracted by the frequency variable BPF 263 will deteriorate. . Therefore, the phase noise canceller can be reliably operated even if the frequency shift amount ⁇ ⁇ fluctuates.
  • FIG. 11 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 4 of the present invention.
  • the radio receiving apparatus 200c in FIG. 11 shows a direct conversion type in which the received signal is directly converted into a baseband signal without frequency conversion.
  • the configuration of the wireless transmission apparatus of the wireless communication system according to Embodiment 4 is the same as the configuration of FIG.
  • the wireless reception device 200c shown in FIG. 11 is that the wireless reception device 200a shown in FIG. 9 is changed from single conversion to direct conversion. That is, as in the radio reception apparatus 200c shown in FIG. 11, the phase noise canceller and the AFC can be compatible with each other even if the input signal is not frequency-converted and the direct conversion type is used.
  • FIG. 12 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 5 of the present invention.
  • the radio reception device 200d in FIG. 12 shows a direct conversion type in which the received signal is directly converted into a baseband signal without frequency conversion. Note that the configuration of the radio transmission apparatus of the radio communication system according to Embodiment 5 is the same as the configuration of FIG. 5 shown in Embodiment 1, and thus the description thereof is omitted.
  • the wireless reception device 200d shown in FIG. 12 is that the wireless reception device 200b shown in FIG. 10 is changed from the single conversion to the direct conversion.
  • the radio reception device 200d shown in FIG. 12 even if it is a direct conversion type in which the input signal is not frequency-converted, it is possible to achieve both the phase noise canceller and the AFC as well as the frequency shift. Even if this occurs, the extracted pilot signal will not be degraded. Therefore, the phase noise canceller can be operated reliably even if a frequency shift occurs.
  • the wireless communication system of the present invention can be realized by a Low-IF configuration in addition to direct conversion and single conversion.
  • the wireless communication system of the present invention can also add a high-performance function of phase noise canceller technology. For example, it is possible to perform variable gain amplification that calculates the received power value of the received signal based on the amplitude of the output signal of the quadrature demodulator and performs amplification in accordance with the received power value.
  • a temperature measuring means for measuring the temperature can be provided, and a function for correcting the delay amount change due to the temperature characteristic and the amplitude of the received signal can be added.
  • the radio communication system of the present invention can also realize an orthogonal demodulator by frequency-multiplying the signal component corresponding to the pilot signal extracted by the BPF and the output signal of the delay corrector. It is also possible to change the BPF bandwidth in the pilot branch based on the filter band control signal in the baseband part. It is also possible to provide amplification means for amplifying the signal distributed in the pilot branch and outputting it to the BPF. In addition, the BSF for suppressing pilot signal components in the signal branch is omitted.
  • the wireless receiver and the wireless communication system according to the present invention can improve the phase noise characteristics while performing optimum automatic frequency control (AFC), and thus various wireless communication devices such as a mobile phone, a PHS, and a wireless LAN.
  • AFC automatic frequency control
  • the power can be effectively used for the wireless communication system configured.

Abstract

A radio receiving apparatus wherein AFC between a base station and the terminal can be accomplished and a phase noise characteristic can be improved, thereby ensuring a high communication quality. In this apparatus, a quadrature demodulator (257) uses a pilot signal from an amplifier (260) to perform a quadrature demodulation of a signal from a delay corrector (256) and cancel the phase noise. A frequency deviation amount determining part (270) uses a signal distributed by a second distributor (258) to determine the amount of a frequency deviation from a reference frequency of a transmitting base station. A frequency control part (262) controls, in accordance with the frequency deviation amount, a frequency-variable reference signal reception oscillator (210) and a frequency-variable reference signal transmission oscillator (211) to have respective output oscillation frequencies synchronized with the reference frequency of the transmitting base station.

Description

無線受信装置、及び無線通信システム  Radio receiving apparatus and radio communication system
技術分野  Technical field
[0001] 本発明は、位相雑音相殺機能と自動周波数制御 (AFC)機能を備えた無線受信装 置、及び無線通信システムに関する。  TECHNICAL FIELD [0001] The present invention relates to a radio reception apparatus having a phase noise cancellation function and an automatic frequency control (AFC) function, and a radio communication system.
背景技術  Background art
[0002] 従来より、位相雑音特性に優れた無線通信システムを提供するために様々な方策 が採られており、この種の無線通信システムの技術は例えば特許文献 1などに開示さ れている。図 1は、位相雑音特性を改善した従来の無線通信システムにおける無線 受信装置の一例を示すブロック図である。図 1に示す無線受信装置では、位相雑音 特性を改善するためにローカルノイズキャンセラを具備している。また、図 2は、図 1の 無線受信装置におけるローカルノイズキャンセラの各構成部分の周波数特性を示す 特性図である。つまり、図 1の各黒丸部分の符号が図 2のそれぞれの符号の特性図 に対応している。  Conventionally, various measures have been taken in order to provide a wireless communication system with excellent phase noise characteristics, and the technology of this type of wireless communication system is disclosed in Patent Document 1, for example. FIG. 1 is a block diagram showing an example of a wireless receiver in a conventional wireless communication system with improved phase noise characteristics. The radio receiver shown in Fig. 1 has a local noise canceller to improve the phase noise characteristics. FIG. 2 is a characteristic diagram showing frequency characteristics of each component of the local noise canceller in the wireless reception device of FIG. In other words, the symbol of each black circle in Fig. 1 corresponds to the characteristic diagram of each symbol in Fig. 2.
[0003] 従って、図 1の無線受信装置におけるローカルノイズキャンセラの動作について図 2 を参照しながら説明する。図 1に示す無線受信装置に入力される入力信号 (A)は、 図 2 (A)に示すように、変調された IF信号 (BBT— OFDM)とパイロット 'キャリア(PI LOT)とが多重化されており、入力位相雑音 (太い斜め線部分)が重畳されているも のとする。ここで、入力信号におけるパイロット 'キャリア(PILOT)の周波数を f 、 IF  Therefore, the operation of the local noise canceller in the wireless reception device of FIG. 1 will be described with reference to FIG. The input signal (A) input to the wireless receiver shown in Fig. 1 is multiplexed with the modulated IF signal (BBT-OFDM) and pilot 'carrier (PI LOT) as shown in Fig. 2 (A). It is assumed that the input phase noise (thick diagonal line) is superimposed. Where the pilot 'carrier (PILOT) frequency in the input signal is f, IF
PLT  PLT
信号 (BBT— OFDM)つまり入力信号の周波数を f とし、入力位相雑音を Θ (t)とす ると、 f 及び f には入力位相雑音 0 (t)が重畳されているので、 f 及び f はそれ If the frequency of the signal (BBT—OFDM), that is, the input signal is f and the input phase noise is Θ (t), the input phase noise 0 (t) is superimposed on f and f. Is it
PLT sig PLT sig ぞれ次の式のように示される。 PLT sig PLT sig is expressed as follows.
f Z Θ (t)  f Z Θ (t)
PLT  PLT
f Z Θ (t)  f Z Θ (t)
sig  sig
[0004] 入力信号 (A)は、分配器 1で分配され、一方がパイロットブランチへ出力され、他方 がシグナルブランチへ出力される。ノ ィロットブランチでは、分配器 1で分配された一 方の信号が、帯域通過フィルタ (BPF) 2で帯域制限されて、パイロット 'キャリア(PIL OT)の成分のみが通過して抽出され、さらに、リミッタ増幅器 3でリミッタ増幅される。 このとき、 BPF2から出力される出力信号 (Β)及びリミッタ増幅器 3から出力される出 力信号 (C)の周波数特性は、図 2 (B ' C)に示すように、 IF信号成分は除去されてパ ィロット ·キャリア(PILOT)の成分とそれに重畳された入力位相雑音 Θ (t)のみとなる [0004] The input signal (A) is distributed by distributor 1, one is output to the pilot branch, and the other is output to the signal branch. In the pilot branch, one of the signals distributed by the distributor 1 is band-limited by the bandpass filter (BPF) 2 and pilot 'carrier (PIL Only the component OT) passes through and is extracted, and is further amplified by the limiter amplifier 3. At this time, the IF signal component is removed from the frequency characteristics of the output signal (Β) output from BPF2 and the output signal (C) output from limiter amplifier 3, as shown in Fig. 2 (B'C). Only the pilot carrier (PILOT) component and the input phase noise Θ (t) superimposed on it.
[0005] このとき BPF2では遅延が発生し、この遅延時間を τ とすると、入力パイロット'キ [0005] At this time, a delay occurs in BPF2, and if this delay time is τ, the input pilot key
BPF1  BPF1
ャリア周波数 f (t— τ )  Carrier frequency f (t— τ)
PLTには、遅延時間 τ  PLT has a delay time τ
BPF1だけ遅延した入力位相雑音 0  Input phase noise delayed by BPF1 0
BPF1 が重 畳されて!ヽるので、入カノィロット ·キャリア周波数 f は次の式のように示される。  Since BPF1 is superimposed !, the incoming canolot carrier frequency f is expressed by the following equation.
PLT  PLT
f Z Θ (t- τ )  f Z Θ (t- τ)
PLT BPF1  PLT BPF1
[0006] 一方、分配器 1で分配されたシグナルブランチでは、局部発振器 4から局部発振信 号 (D)が出力される。ここで、局部発振器 4力も出力される局部発振信号 (D)の周波 数特性は、図 2 (D)に示すように、局部発振周波数 (LO)の信号とそれに重畳された 系内局部発振位相雑音である。ここで、系内の局部発振信号周波数を f  On the other hand, in the signal branch distributed by distributor 1, local oscillator signal (D) is output from local oscillator 4. Here, the frequency characteristics of the local oscillation signal (D), in which the local oscillator 4 power is also output, are as shown in Fig. 2 (D), and the local oscillation phase (LO) signal superimposed on the local oscillation frequency (LO) signal. Noise. Here, the local oscillation signal frequency in the system is expressed as f
LOとし、系内 の局部発振信号位相雑音を Φ (t)とすると、系内の局部発振信号周波数 f  Let LO be the local oscillation signal phase noise in the system, and let Φ (t) be the local oscillation signal frequency f in the system.
LOには、系 内の局部発振信号位相雑音 Φ (t)が重畳されているので、局部発振信号周波数 f  Since LO is superimposed with local oscillation signal phase noise Φ (t) in the system, local oscillation signal frequency f
LO  LO
は次の式のように示される。  Is expressed as:
f  f
LO )  LO)
[0007] そして、シグナルブランチでは、分配器 1から出力された入力信号が、乗算器 (ミキ サ) 5にお 、て局部発振器 4力もの局部発振信号 (D)で周波数変換され、乗算器 5よ り信号 (E)が出力される。ここで、乗算器 5から出力された信号 (E)の周波数特性は、 図 2 (E)に示すように、入力信号 (A)と局部発振信号 (D)との和成分と差成分とが存 在する。よって、信号 )に含まれる各信号成分と重畳される位相雑音との関係は、 それぞれ次の式のようになる。  [0007] In the signal branch, the input signal output from the distributor 1 is frequency-converted by the multiplier (mixer) 5 with the local oscillator signal (D) of four local oscillators, and the multiplier 5 Signal (E) is output. Here, the frequency characteristics of the signal (E) output from the multiplier 5 are the sum and difference components of the input signal (A) and the local oscillation signal (D) as shown in Fig. 2 (E). Exists. Therefore, the relationship between each signal component included in the signal) and the superimposed phase noise is as follows.
f -f Ζ Θ (t) - (t)  f -f Ζ Θ (t)-(t)
PLT LO  PLT LO
f f Z Θ (t) - (t)  f f Z Θ (t)-(t)
sig LO  sig LO
f +f Z Θ (t) + (t)  f + f Z Θ (t) + (t)
PLT LO  PLT LO
f +f Z Θ (t) + (t)  f + f Z Θ (t) + (t)
sig LO  sig LO
[0008] そして、周波数変換された信号 (E)は、帯域通過フィルタ (BPF) 6で差成分のみが 通過するように帯域制限されているので、 BPF6から信号 (F)が出力される。この信 号 (F)の周波数特性は、図 2(F)に示すように、信号 )における和成分が除去され て差成分のみが存在する。このとき、 BPF6では遅延が発生し、この遅延時間を τ [0008] The frequency-converted signal (E) has only a difference component by a bandpass filter (BPF) 6. Since the band is limited to pass, the signal (F) is output from BPF6. In the frequency characteristics of this signal (F), as shown in Fig. 2 (F), the sum component in the signal) is removed and only the difference component exists. At this time, a delay occurs in BPF6.
BPF  BPF
2とすると、抽出される差成分に重畳される位相雑音には遅延時間 τ  Assuming 2, the phase noise superimposed on the extracted difference component has a delay time τ
BPF2だけ遅延が 発生する。このとき、信号 (F)に含まれる各信号成分と重畳される位相雑音との関係 は、それぞれ次の式のようになる。  A delay occurs only for BPF2. At this time, the relationship between each signal component included in the signal (F) and the superimposed phase noise is as follows.
f -f Z Θ (t- τ ) - (t- τ )  f -f Z Θ (t- τ)-(t- τ)
PLT LO BPF2 BPF2  PLT LO BPF2 BPF2
f -f Ζ θ (t- τ ) - (t- τ )  f -f Ζ θ (t- τ)-(t- τ)
sig LO BPF2 BPF2  sig LO BPF2 BPF2
[0009] そして、信号 )は、遅延補正器 7において、パイロットブランチの BPF2における 遅延時間と等価になるように遅延量が加えられ、遅延補正器 7から信号 (G)が出力さ れる。ここで、帯域通過フィルタ(BPF) 2の遅延時間 τ に対して、帯域通過フィル  [0009] Then, a delay amount is added to the signal) in the delay corrector 7 so as to be equivalent to the delay time in the BPF2 of the pilot branch, and the signal (G) is output from the delay corrector 7. Here, with respect to the delay time τ of the bandpass filter (BPF) 2, the bandpass filter
BPF1  BPF1
タ(BPF) 6の遅延時間を τ とし、遅延補正器 7における遅延時間を Atとすると、  (BPF) 6 delay time is τ and delay corrector 7 delay time is At.
BPF2  BPF2
τ = τ + At  τ = τ + At
BPFl BPF2  BPFl BPF2
となるように、遅延補正器 7は、信号 )に対して遅延 Atを加えてパイロットブラン チとの遅延時間差を等価にする。  Thus, the delay compensator 7 adds a delay At to the signal) to equalize the delay time difference from the pilot branch.
[0010] その結果、信号 (G)の周波数特性は変化せず、図 2(G)に示すような波形になり、 信号 (G)に含まれる各信号成分と重畳される位相雑音との関係は、位相雑音に遅延 Δ tが加わって次の式のようになる。 [0010] As a result, the frequency characteristic of the signal (G) does not change, and the waveform is as shown in Fig. 2 (G). The relationship between each signal component included in the signal (G) and the superimposed phase noise Is obtained by adding the delay Δt to the phase noise.
f -ί Ζ Θ (t- τ At) - (t- τ - At)  f -ί Ζ Θ (t- τ At)-(t- τ-At)
PLT LO BPF2- BPF2  PLT LO BPF2- BPF2
f f Z Θ (t- τ -At) - (t- τ - At)  f f Z Θ (t- τ -At)-(t- τ-At)
sig LO BPF2 BPF2  sig LO BPF2 BPF2
[0011] そして、シグナルブランチの信号 (G)と、上記のリミッタ増幅器 3から出力されるパイ ロットブランチの信号 (C)とが周波数変 8で周波数変換され、周波数変 8か ら信号 (H)が出力される。  [0011] The signal (G) of the signal branch and the pilot branch signal (C) output from the limiter amplifier 3 are frequency-converted by the frequency change 8, and the signal (H) Is output.
[0012] ここで、周波数変翻 8から出力される信号 (H)の周波数特性は、図 2(H)に示す ように、信号 (G)と信号 (C)との和成分と差成分とが存在する。よって、信号 (H)に含 まれる各信号成分と重畳される位相雑音との関係はそれぞれ次の式のようになる。 f — (f -f )Ζ θ (t-τ )-{ 0(t- T -At)- (t- T -At)}  [0012] Here, the frequency characteristic of the signal (H) output from the frequency shift 8 is the sum and difference components of the signal (G) and the signal (C) as shown in Fig. 2 (H). Exists. Therefore, the relationship between each signal component contained in signal (H) and the superimposed phase noise is as follows. f — (f -f) Ζ θ (t-τ)-{0 (t- T -At)-(t- T -At)}
PLT PLT し O BPFl BPF2 BPF2  PLT PLT O BPFl BPF2 BPF2
f — (f f )Z Θ (t-τ )-{ 0(t- T -At)- (t- T -At)}  f — (f f) Z Θ (t-τ)-{0 (t- T -At)-(t- T -At)}
PLT sig LO BPFl BPF2 BPF2 f + (f -f )Z Θ (t- τ ) + { 0 (t- T -Μ)-φ(ί~ τ -At)}PLT sig LO BPFl BPF2 BPF2 f + (f -f) Z Θ (t- τ) + {0 (t- T -Μ) -φ (ί ~ τ -At)}
PLT PLT し O BPF1 BPF2 BPF2 PLT PLT O BPF1 BPF2 BPF2
f + (f f )Z Θ (t- τ ) + { 0 (t- T -At)- (t- T -At)}  f + (f f) Z Θ (t- τ) + {0 (t- T -At)-(t- T -At)}
PLT sig LO BPF1 BPF2 BPF2  PLT sig LO BPF1 BPF2 BPF2
[0013] ここで、上記のように、遅延補正器 7の遅延時間は、  [0013] Here, as described above, the delay time of the delay corrector 7 is
τ = τ + At  τ = τ + At
BPFl BPF2  BPFl BPF2
となるように、遅延 Δ tを加えてシグナルブランチとパイロットブランチとの遅延時間 差を等価するので、上記の式を整理すると次の式のようになる。  Thus, the delay Δt is added to equalize the delay time difference between the signal branch and the pilot branch, so the above equation can be rearranged as follows.
f Z (t- τ - At)  f Z (t- τ-At)
LO BPF2  LO BPF2
f 一(f 一 f ) Z (t- τ - At)  f one (f one f) Z (t- τ-At)
LO sig PLT BPF2  LO sig PLT BPF2
2Xf f Z2X Θ (t- τ ) - (t- τ - At)  2Xf f Z2X Θ (t- τ)-(t- τ-At)
PLT LO BPFl BPF2  PLT LO BPFl BPF2
f + (f -f ) Z2X Θ (t- τ ) - (t- τ At)  f + (f -f) Z2X Θ (t- τ)-(t- τ At)
PLT sig LO BPFl BPF2  PLT sig LO BPFl BPF2
[0014] ここで、差成分に着目すると、出力信号成分の周波数は、入力信号の周波数に関 係なぐ系内の局部発振信号の周波数 (f )  [0014] Here, focusing on the difference component, the frequency of the output signal component is the frequency of the local oscillation signal (f) in the system related to the frequency of the input signal.
LOであり、つまり一定である。また、パイロッ ト 'キャリアに着目した場合の信号のサイドバンドは、入出力で反転する。また、出力 信号の位相雑音は、入力された位相雑音 Θ (X)がキャンセルされ、代わりに系内の 局部発振信号の位相雑音 φ (X)となる。つまり、系内の局部発振信号の位相雑音 φ LO, that is, constant. In addition, when the pilot 'carrier is focused, the sideband of the signal is inverted at the input and output. Also, the phase noise of the output signal is canceled by the input phase noise Θ (X) and becomes the phase noise φ (X) of the local oscillation signal in the system instead. That is, the phase noise φ of the local oscillation signal in the system
(X)が十分小さければ、入力された信号の位相雑音は、十分軽減されて出力される ことがわ力ゝる。 If (X) is sufficiently small, the phase noise of the input signal is sufficiently reduced and output.
[0015] そこで、周波数変^ ^8で周波数変換された信号 (H)は、帯域通過フィルタ(BPF )9において差成分のみ、かつ信号成分のみが通過するように帯域制限されて、 BPF 9より信号 (I)が出力される。この信号 (I)の周波数特性は、図 2(1)に示すように、信 号 (H)における和成分及び差成分内のパイロット ·キャリア成分が除去されて差成分 の信号成分のみが存在する。このとき、信号 (I)に含まれる信号成分と重畳される位 相雑音との関係は、次の式ようになる。  [0015] Therefore, the signal (H) frequency-converted by the frequency change ^^ 8 is band-limited so that only the difference component and only the signal component pass through the band-pass filter (BPF) 9, and from BPF 9, Signal (I) is output. As shown in Fig. 2 (1), the frequency characteristics of this signal (I) are such that only the signal component of the difference component exists by removing the pilot / carrier component in the sum and difference components of signal (H). . At this time, the relationship between the signal component included in the signal (I) and the superimposed phase noise is as follows.
f 一(f 一 f ) Ζ (t- τ - At)  f one (f one f) Ζ (t- τ-At)
LO sig PLT BPF2  LO sig PLT BPF2
[0016] 上記のローカルノイズキャンセラの周波数同期及び雑音除去の原理により、例えば 、入力信号に周波数偏差が生じていたとしても、局部発振器 4が発生する高い周波 数精度で高い安定度を持つ局部発振周波数に従う周波数の出力信号が得られるの で、入力信号の周波数偏差を解消することができる。また、出力信号の位相雑音は、 入力信号に重畳されていた位相雑音 Θ (X)がキャンセルされて、代わりに系内の局 部発振信号の位相雑音 φ (X)のみとなるので、系内の局部発振信号の位相雑音 φ ( X)が十分小さければ、入力された信号の位相雑音は、十分軽減されて出力される。 [0016] Due to the frequency synchronization and noise removal principle of the above local noise canceller, for example, even if there is a frequency deviation in the input signal, the local oscillation frequency having high stability and high frequency generated by the local oscillator 4 Since an output signal with a frequency according to is obtained, the frequency deviation of the input signal can be eliminated. The phase noise of the output signal is The phase noise Θ (X) superimposed on the input signal is canceled and instead only the phase noise φ (X) of the local oscillation signal in the system, so the phase noise φ (X) of the local oscillation signal in the system If X) is sufficiently small, the phase noise of the input signal is sufficiently reduced and output.
[0017] また、移動体通信分野において、基地局と端末との間における局部発振周波数の ずれによる特性劣化を回避するために、基地局から受信した信号の周波数と端末の 局部発振周波数のずれを端末力も基地局へフィードバックして、端末の局部発振周 波数を基地局の基準周波数に同期させる自動周波数制御 (AFC)が必須となる。  [0017] Also, in the mobile communication field, in order to avoid characteristic deterioration due to a difference in local oscillation frequency between the base station and the terminal, the difference between the frequency of the signal received from the base station and the local oscillation frequency of the terminal Terminal frequency is also fed back to the base station, and automatic frequency control (AFC) is required to synchronize the local oscillation frequency of the terminal with the base station reference frequency.
[0018] 一般的な AFCの制御を実現する方法としては、次のような方法が知られている。す なわち、既知のレプリカシンボル等を用いて、基地局からの受信周波数と端末の局 部発振周波数とのずれを端末のベースバンド部で検出し、上り送信信号によって基 地局へフィードバックする。同時に、検出した周波数ずれ量に応じて、端末の基準発 振器の基準周波数をずらし、基地局と端末との間の発振周波数を同期させる。  The following methods are known as methods for realizing general AFC control. In other words, using a known replica symbol or the like, a difference between the reception frequency from the base station and the local oscillation frequency of the terminal is detected in the baseband part of the terminal, and is fed back to the base station using an uplink transmission signal. At the same time, the reference frequency of the reference oscillator of the terminal is shifted according to the detected frequency deviation amount, and the oscillation frequency between the base station and the terminal is synchronized.
特許文献 1 :特開 2002— 152158号公報  Patent Document 1: JP 2002-152158 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0019] し力しながら、従来の無線通信システムにおける AFCの制御方法では、端末のァ ンテナで信号を受信して力 ベースバンド部の入力前段までに受信周波数のずれが キャンセルされるため、ベースバンド部の入力時点で常に周波数ずれ量が 0となって しまい、本来得られるはずの周波数ずれ情報を検出することができなくなってしまう。 よって、実際の周波数ずれ量が不明となり、基地局と端末との間の周波数同期が取 れなくなって特'性劣ィ匕が生じてしまう。  [0019] However, in the AFC control method in the conventional wireless communication system, since the signal is received by the terminal antenna and the received frequency shift is canceled before the input of the baseband unit, The frequency deviation amount is always 0 at the time of input of the band portion, and it becomes impossible to detect the frequency deviation information that should originally be obtained. Therefore, the actual frequency shift amount becomes unclear, and frequency synchronization between the base station and the terminal cannot be obtained, resulting in inferior characteristics.
[0020] 以下、 AFCによって生じる特性劣化について、図 3及び図 4を用いてさらに詳しく説 明する。図 3は、従来の無線通信システムにおいて位相雑音相殺技術を用いないと きの AFC技術適用時のシステム構成図である。また、図 4は、従来の無線通信システ ムにおいて位相雑音相殺技術を用いたときの AFC技術適用時のシステム構成図で ある。なお、図 3、図 4共に、無線通信システム全体の構成を簡略して端末の無線受 信部のみを記載している。  [0020] Hereinafter, the characteristic deterioration caused by AFC will be described in more detail with reference to FIG. 3 and FIG. Fig. 3 is a system configuration diagram when the AFC technology is applied when the phase noise cancellation technology is not used in the conventional wireless communication system. Fig. 4 is a system configuration diagram when the AFC technology is applied when the phase noise cancellation technology is used in the conventional wireless communication system. Note that in both FIG. 3 and FIG. 4, only the radio reception unit of the terminal is shown by simplifying the configuration of the entire radio communication system.
[0021] まず、図 3の無線通信システムにおいて位相雑音相殺技術を用いないときの周波 数同期の動作を説明する。なお、構成要素がこれまで述べてきたものと同じものにつ いては説明を省略する。 First, the frequency when the phase noise cancellation technique is not used in the wireless communication system of FIG. The operation of number synchronization will be described. The description of the same components as those described so far is omitted.
[0022] 図 3に示す無線受信装置 10は、受信部 11、受信アンテナ 30、送信部 12、及び送 信アンテナ 31によって構成されている。受信アンテナ 30は、通信相手の無線送信装 置力ゝらの無線信号 (RF信号)を受信し、送信アンテナ 31は、無線信号 (RF信号)を 通信相手の無線送信装置へ送信する。  A radio reception apparatus 10 shown in FIG. 3 includes a reception unit 11, a reception antenna 30, a transmission unit 12, and a transmission antenna 31. The receiving antenna 30 receives a wireless signal (RF signal) from the wireless transmission device of the communication partner, and the transmission antenna 31 transmits the wireless signal (RF signal) to the wireless transmission device of the communication partner.
[0023] 受信部 11は、受信ベースバンド処理部 14及び周波数ずれ量検出部 16を備える第 1の受信ベースバンド部 13、周波数可変基準信号発振器 18、第 1の受信局部発振 部 21、増幅器 51、乗算器 52、帯域通過フィルタ 53、増幅器 54、直交復調器 57、及 び周波数制御部 62を備えて 、る。  The receiving unit 11 includes a first receiving baseband unit 13 including a receiving baseband processing unit 14 and a frequency shift amount detecting unit 16, a frequency variable reference signal oscillator 18, a first receiving local oscillation unit 21, and an amplifier 51. A multiplier 52, a band-pass filter 53, an amplifier 54, a quadrature demodulator 57, and a frequency control unit 62.
[0024] また、送信部 12は、第 1の送信ベースバンド部 15、第 3の送信局部発振部 23、第 4 の送信局部発振部 24、直交変調器 80、乗算器 81、及び増幅器 82を備えている。  In addition, the transmission unit 12 includes a first transmission baseband unit 15, a third transmission local oscillation unit 23, a fourth transmission local oscillation unit 24, a quadrature modulator 80, a multiplier 81, and an amplifier 82. I have.
[0025] 実際の環境においては、フェージング等の影響により周波数ずれが含まれた状態 で無線受信装置 10の受信アンテナ 30で信号が受信される。このとき、受信アンテナ 30が信号を受信しているときの信号周波数は次の式であらわされるとする。  In an actual environment, a signal is received by the reception antenna 30 of the wireless reception device 10 in a state in which a frequency shift is included due to the influence of fading or the like. At this time, it is assumed that the signal frequency when the receiving antenna 30 is receiving a signal is represented by the following equation.
frx=fo+ Af  frx = fo + Af
但し、  However,
frx:アンテナ受信下での信号周波数  frx: Signal frequency under antenna reception
f  f
0:本来の信号周波数  0: Original signal frequency
Δ f:伝搬路で生じた周波数ずれ量  Δ f: Amount of frequency deviation generated in the propagation path
[0026] 信号周波数 frxの信号は、増幅器 51、乗算器 (ミキサ) 52、帯域通過フィルタ 53、及 び増幅器 54によって増幅及び周波数変換など所定の処理が行われ、第 2の受信局 部発振部 22で発振された信号が直交復調器 57に入力されてベースバンド信号に復 調される。このとき、第 2の受信局部発振部 22で発振される周波数は、最初は foで設 定されているため、受信ベースバンド処理部 14への入力時の信号周波数は Δ1"とな る。この信号周波数 Δ1"は送信部 12の基準周波数と受信部 11の基準周波数のずれ となるために補正する必要がある。そこで、第 1の受信バースバンド部 13内にある周 波数ずれ量検出部 16によって周波数ずれ量 Ai¾S検出される。検出された周波数ず れ量 Δ ίの情報は周波数制御部 62に転送され、周波数制御部 62によって、受信部 1 1内にある周波数可変基準信号発振器 18の周波数を Af分だけずらす制御を行う。 これにより、第 1の受信局部発振部 21及び第 2の受信局部発振部 22と、第 3の送信 局部発振部 23及び第 4の送信局部発振部 24の発振周波数が Δ ί分ずれるので、受 信部 11と送信部 12の同期が取れることになる。このようにして自動周波数制御 (AF C)が実現される。ただし、ここで説明した AFCの制御方法は一例であり、他の制御 方法でも AFCは実現可能である。重要なことは、直交復調器 57によって復調された ベースバンド信号は周波数ずれ量の分 (ここでは Δ f)を含んだ状態で受信ベースバ ンド処理部 14へ入力されることである。 [0026] The signal having the signal frequency frx is subjected to predetermined processing such as amplification and frequency conversion by the amplifier 51, the multiplier (mixer) 52, the band-pass filter 53, and the amplifier 54, and the second receiving local oscillation unit The signal oscillated at 22 is input to the quadrature demodulator 57 and demodulated into a baseband signal. At this time, since the frequency oscillated by the second reception local oscillation unit 22 is initially set to fo, the signal frequency at the time of input to the reception baseband processing unit 14 is Δ1 ”. The signal frequency Δ1 ″ needs to be corrected because it is a difference between the reference frequency of the transmitter 12 and the reference frequency of the receiver 11. Therefore, the frequency shift amount Ai¾S is detected by the frequency shift amount detection unit 16 in the first reception burst band unit 13. No detected frequency The information of the amount Δ ί is transferred to the frequency control unit 62, and the frequency control unit 62 performs control to shift the frequency of the frequency variable reference signal oscillator 18 in the reception unit 11 by Af. As a result, the oscillation frequencies of the first reception local oscillation unit 21 and the second reception local oscillation unit 22, and the third transmission local oscillation unit 23 and the fourth transmission local oscillation unit 24 are shifted by Δί. The transmitter 11 and the transmitter 12 can be synchronized. In this way, automatic frequency control (AF C) is realized. However, the AFC control method described here is an example, and AFC can be realized by other control methods. What is important is that the baseband signal demodulated by the quadrature demodulator 57 is input to the reception baseband processing unit 14 in a state including the amount of frequency shift (here, Δf).
[0027] 次に、図 4の無線通信システムにおいて位相雑音相殺技術を移動体通信に用いた ときの AFCの動作にっ 、て説明する。  Next, the operation of the AFC when the phase noise cancellation technique is used for mobile communication in the wireless communication system of FIG. 4 will be described.
[0028] 図 4の無線受信装置 10aは、受信部 l la、受信アンテナ 30、送信部 12a、及び送 信アンテナ 31によって構成されている。受信アンテナ 30は、通信相手の無線送信装 置力ゝらの無線信号 (RF信号)を受信し、送信アンテナ 31は、無線信号 (RF信号)を 通信相手の無線送信装置へ送信する。  The radio reception device 10a in FIG. 4 includes a reception unit lla, a reception antenna 30, a transmission unit 12a, and a transmission antenna 31. The receiving antenna 30 receives a wireless signal (RF signal) from the wireless transmission device of the communication partner, and the transmission antenna 31 transmits the wireless signal (RF signal) to the wireless transmission device of the communication partner.
[0029] 受信部 11aは、受信ベースバンド処理部 14及び周波数ずれ量検出部 16を備える 第 1の受信ベースバンド部 13、周波数可変基準信号発振器 18、第 1の受信局部発 振部 21、増幅器 51、乗算器 52、帯域通過フィルタ 53、増幅器 54、分配器 55、遅延 補正器 56、直交復調器 57、帯域通過フィルタ (BPF) 59、増幅器 60及び周波数制 御部 62を備えている。  [0029] The reception unit 11a includes a reception baseband processing unit 14 and a frequency shift amount detection unit 16, a first reception baseband unit 13, a frequency variable reference signal oscillator 18, a first reception local oscillation unit 21, and an amplifier 51, a multiplier 52, a band pass filter 53, an amplifier 54, a distributor 55, a delay corrector 56, a quadrature demodulator 57, a band pass filter (BPF) 59, an amplifier 60, and a frequency control unit 62.
[0030] また、送信部 12aは、第 1の送信ベースバンド部 15、第 3の送信局部発振部 23、第 [0030] The transmission unit 12a includes a first transmission baseband unit 15, a third transmission local oscillation unit 23, a first transmission baseband unit 15,
4の送信局部発振部 24、直交変調器 80、乗算器 81、及び増幅器 82を備えている。 4 transmission local oscillators 24, a quadrature modulator 80, a multiplier 81, and an amplifier 82.
[0031] 受信アンテナ 30を介して無線受信装置 1 Oaの受信部 11 aに入力された入力信号 は、前述と同様に以下の式で表されるものとする。 [0031] The input signal input to the reception unit 11a of the wireless reception device 1 Oa via the reception antenna 30 is represented by the following equation as described above.
frx=fo+ Af  frx = fo + Af
但し、  However,
frx:アンテナ受信下での信号周波数  frx: Signal frequency under antenna reception
f :本来の信号周波数 Δ f:伝搬路で生じた周波数ずれ量 f: Original signal frequency Δ f: Amount of frequency deviation generated in the propagation path
[0032] この入力信号は増幅及び周波数変換処理を行った後、分配器 55によりシグナルブ ランチとパイロットブランチに分配され、図 1及び図 2で述べた動作原理により直交復 調器 57による直交復調時には位相雑音が全て相殺されることになる。しかし、ここで 注意した 、のは、図 4の図中 FFでのシグナル信号周波数と図中 EEでのパイロット信 号周波数の関係である。 FFでのシグナル信号周波数は受信アンテナ 30の入力信 号のままであるので次の式のようになる。 [0032] This input signal is subjected to amplification and frequency conversion processing, and then distributed to the signal branch and pilot branch by the distributor 55. When the quadrature demodulator 57 performs quadrature demodulation according to the operation principle described in FIGS. All phase noise will be cancelled. However, what is noted here is the relationship between the signal signal frequency at FF in the diagram of Fig. 4 and the pilot signal frequency at EE in the diagram. Since the signal signal frequency at FF remains the input signal of the receiving antenna 30, the following equation is obtained.
fFF=fl + Af  fFF = fl + Af
但し、  However,
IFF:図 4の FFでの信号周波数  IFF: Signal frequency at FF in Figure 4
fl :本来の信号周波数を第 1の受信局部発振部 21の発振周波数で周波数変換し た値  fl: Value converted from the original signal frequency by the oscillation frequency of the first receiving local oscillator 21
Δ f:伝搬路で生じた周波数ずれ量  Δ f: Amount of frequency deviation generated in the propagation path
[0033] また、図中 EEでのパイロット信号周波数は次の式のようになる。 [0033] Also, in the figure, the pilot signal frequency at EE is given by the following equation.
fEE=fl + Af  fEE = fl + Af
但し、  However,
EE:図 4の EEでの信号周波数  EE: Signal frequency at EE in Figure 4
fl :本来の信号周波数を第 1の受信局部発振部 21の発振周波数で周波数変換し た値  fl: Value converted from the original signal frequency by the oscillation frequency of the first receiving local oscillator 21
Δ f:伝搬路で生じた周波数ずれ量  Δ f: Amount of frequency deviation generated in the propagation path
[0034] ここで、直交復調部 57では、シグナル信号周波数 fFFとパイロット信号周波数 ffiEと を用いて周波数変換が行われるため、受信ベースバンド処理部 14へ入力される入 力信号の周波数は常に次の式で表わされる。 Here, since the orthogonal demodulation unit 57 performs frequency conversion using the signal signal frequency fFF and the pilot signal frequency ffiE, the frequency of the input signal input to the reception baseband processing unit 14 is always the following. It is expressed by the following formula.
1BB = 0  1BB = 0
但し、  However,
1BB :直交復調器 57の出力での信号周波数 (0 =ベースバンド周波数)  1BB: Signal frequency at output of quadrature demodulator 57 (0 = baseband frequency)
[0035] この式力も分力るように、周波数ずれ量 Δ1"の項が消失してしまう。すなわち、受信べ ースバンド処理部 14へは伝搬路で生じた周波数ずれ量が含まれな 、ことになる。よ つて、周波数制御部 62へ周波数ずれ量の情報を供給することができなくなり、その 結果、周波数可変基準信号発振器 18の周波数を可変することが不能となる。よって 、図 4に示すような従来構成の無線受信装置では AFCの制御を行うことが不可能と なる。 [0035] As this expression force is also divided, the term of the frequency shift amount Δ1 "disappears, that is, the reception baseband processing unit 14 does not include the frequency shift amount generated in the propagation path. It will be Therefore, it becomes impossible to supply information on the frequency deviation amount to the frequency control unit 62, and as a result, it becomes impossible to vary the frequency of the frequency variable reference signal oscillator 18. Therefore, it is impossible to control the AFC with a wireless receiver having a conventional configuration as shown in FIG.
[0036] 本発明の目的は、基地局と端末との間の自動周波数制御 (AFC)を実現させると共 に位相雑音特性を向上させて、高 、通信品質を保証することができる無線受信装置 及び無線通信システムを提供することである。  [0036] An object of the present invention is to provide a radio receiver capable of realizing high frequency and high communication quality by realizing automatic frequency control (AFC) between a base station and a terminal and improving phase noise characteristics. And providing a wireless communication system.
課題を解決するための手段  Means for solving the problem
[0037] 本発明の無線受信装置は、通信相手の無線送信装置において、パイロット信号が 重畳され、送信された信号を受信する受信手段と、受信信号から前記パイロット信号 を抽出する抽出手段と、前記受信信号に対して前記抽出されたパイロット信号を用い て直交復調を行う直交復調手段と、前記受信信号を用いて基準周波数に対する局 部発振器の発振周波数の周波数ずれ量を検出する周波数ずれ量検出手段と、前記 検出された周波数ずれ量を用いて前記局部発振器の発振周波数を前記基準周波 数に同期させる制御を行う自動周波数制御手段と、を具備する構成を採る。  [0037] The radio reception apparatus of the present invention is a radio transmission apparatus as a communication partner, wherein a pilot signal is superimposed and reception means for receiving the transmitted signal, extraction means for extracting the pilot signal from the reception signal, Orthogonal demodulation means for performing orthogonal demodulation on the received signal using the extracted pilot signal, and frequency deviation amount detecting means for detecting the frequency deviation amount of the oscillation frequency of the local oscillator with respect to a reference frequency using the received signal And automatic frequency control means for performing control to synchronize the oscillation frequency of the local oscillator with the reference frequency using the detected frequency deviation amount.
[0038] 本発明の無線通信システムは、無線送信装置と無線受信装置とを備える無線通信 システムであって、前記無線送信装置は、多キャリア信号の中央にパイロット信号を 重畳した無線信号を送信する送信手段を備え、前記無線受信装置は、前記無線送 信装置から送信された信号を受信する受信手段と、受信信号から前記パイロット信号 を抽出する抽出手段と、前記受信信号に対して前記抽出されたパイロット信号を用い て直交復調を行う直交復調手段と、前記受信信号を用いて基準周波数に対する局 部発振器の発振周波数の周波数ずれ量を検出する周波数ずれ量検出手段と、前記 検出された周波数ずれ量を用いて前記局部発振器の発振周波数を前記基準周波 数に同期させる制御を行う自動周波数制御手段と、を備える構成を採る。  [0038] The radio communication system of the present invention is a radio communication system including a radio transmission device and a radio reception device, and the radio transmission device transmits a radio signal in which a pilot signal is superimposed on the center of a multicarrier signal. The wireless reception device includes a reception unit that receives a signal transmitted from the wireless transmission device, an extraction unit that extracts the pilot signal from the reception signal, and the extraction for the reception signal. Quadrature demodulating means for performing quadrature demodulation using the pilot signal, frequency deviation amount detecting means for detecting the frequency deviation amount of the oscillation frequency of the local oscillator with respect to a reference frequency using the received signal, and the detected frequency deviation And automatic frequency control means for performing control to synchronize the oscillation frequency of the local oscillator with the reference frequency using a quantity.
発明の効果  The invention's effect
[0039] 本発明によれば、位相雑音キャンセラと自動周波数制御 (AFC)とを両立させること ができるので、低消費電力化と受信感度の向上を併せて実現することが可能になる と共に、ベースバンド信号の周波数ずれ情報を用いなくても受信ローカル信号の周 波数と送信ローカル信号の周波数を同期させることが可能になる。また、周波数ずれ が生じてもパイロット信号が劣化するおそれはな!/、ので、位相雑音相殺機能を最適 に動作させることができる。これによつて、基地局と端末との間における自動周波数 制御を実現しながら、位相雑音特性を向上させて良好な通信品質を維持することが できる。 [0039] According to the present invention, both the phase noise canceller and the automatic frequency control (AFC) can be achieved, so that it is possible to realize both the low power consumption and the improvement in the reception sensitivity. The frequency of the received local signal can be obtained without using the frequency deviation information of the band signal. It becomes possible to synchronize the wave number and the frequency of the transmission local signal. In addition, since there is no possibility that the pilot signal will deteriorate even if a frequency shift occurs, the phase noise canceling function can be optimally operated. This makes it possible to improve the phase noise characteristics and maintain good communication quality while realizing automatic frequency control between the base station and the terminal.
図面の簡単な説明 Brief Description of Drawings
[図 1]位相雑音特性を改善した従来の無線通信システムにおける無線受信装置の一 例を示すブロック図 FIG. 1 is a block diagram showing an example of a wireless receiver in a conventional wireless communication system with improved phase noise characteristics
[図 2]図 1の無線受信装置におけるローカルノイズキャンセラの各構成部分の周波数 特性を示す特性図  2 is a characteristic diagram showing the frequency characteristics of each component of the local noise canceller in the wireless receiver of FIG.
[図 3]従来の無線通信システムにお 、て位相雑音相殺技術を用いな 、ときの AFC技 術適用時のシステム構成図  [Figure 3] System configuration diagram when applying AFC technology without using phase noise cancellation technology in a conventional wireless communication system
[図 4]従来の無線通信システムにお 、て位相雑音相殺技術を移動体通信に用いたと きの AFC技術適用時のシステム構成図  [Fig.4] System configuration diagram when applying AFC technology when phase noise cancellation technology is used for mobile communication in a conventional wireless communication system
[図 5]本発明の実施の形態 1に係る無線通信システムの無線送信装置の構成を示す ブロック図  FIG. 5 is a block diagram showing a configuration of a wireless transmission device of the wireless communication system according to Embodiment 1 of the present invention.
[図 6]本発明の実施の形態 1に係る無線通信システムの無線受信装置の構成を示す ブロック図  FIG. 6 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 1 of the present invention.
[図 7]図 5に示す無線送信装置と図 6に示す無線受信装置における各信号の周波数 特性を示す特性図  7 is a characteristic diagram showing frequency characteristics of each signal in the wireless transmission device shown in FIG. 5 and the wireless reception device shown in FIG.
[図 8]図 6に示す直交復調器の内部構成図  [Fig.8] Internal configuration of quadrature demodulator shown in Fig.6
[図 9]本発明の実施の形態 2に係る無線通信システムの無線受信装置の構成を示す ブロック図  FIG. 9 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 2 of the present invention.
[図 10]本発明の実施の形態 3に係る無線通信システムの無線受信装置の構成を示 すブロック図  FIG. 10 is a block diagram showing a configuration of a wireless reception device of the wireless communication system according to the third embodiment of the present invention.
[図 11]本発明の実施の形態 4に係る無線通信システムの無線受信装置の構成を示 すブロック図  FIG. 11 is a block diagram showing a configuration of a wireless reception device of the wireless communication system according to the fourth embodiment of the present invention.
[図 12]本発明の実施の形態 5に係る無線通信システムの無線受信装置の構成を示 すブロック図 FIG. 12 shows a configuration of a radio receiving apparatus of a radio communication system according to Embodiment 5 of the present invention. Block diagram
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] 〈発明の概要〉  <Summary of the invention>
本発明の無線通信システムは、位相雑音相殺技術におけるパイロットブランチの出 力信号をさらに分配して周波数ずれ量を検出する機能を設ける。そして、この機能で 検出した周波数ずれ量に応じて受信装置内の基準発振周波数を変化させ、周波数 変換器 (ミキサ)の入力周波数を、 "ずれ量"を加味した状態にすることによって周波 数追従を実現する。これによつて位相雑音相殺と AFCを両立させることが可能となる  The wireless communication system of the present invention is provided with a function of further distributing the output signal of the pilot branch in the phase noise cancellation technique to detect the frequency shift amount. Then, the reference oscillation frequency in the receiver is changed according to the amount of frequency deviation detected by this function, and the frequency tracking is performed by setting the input frequency of the frequency converter (mixer) to a state that takes into account the amount of deviation. To realize. This makes it possible to achieve both phase noise cancellation and AFC.
[0042] 次に、本発明の無線通信システムの実施の形態について詳細に説明する。なお、 以下の各実施の形態で用いる図面において、同一の構成要素は同一の符号を付し 、かつ重複する説明は可能な限り省略する。また、位相雑音相殺の原理を説明する 際には、説明の内容を簡単にするために、空間伝播路による信号周波数のずれ量な どは無いものとして説明する。 Next, an embodiment of the wireless communication system of the present invention will be described in detail. Note that, in the drawings used in the following embodiments, the same components are denoted by the same reference numerals, and redundant descriptions are omitted as much as possible. Furthermore, when explaining the principle of phase noise cancellation, it is assumed that there is no signal frequency deviation due to the spatial propagation path in order to simplify the explanation.
[0043] 〈実施の形態 1〉  <Embodiment 1>
図 5は、本発明の実施の形態 1に係る無線通信システムの無線送信装置の構成を 示すブロック図である。また、図 6は、本発明の実施の形態 1に係る無線通信システム の無線受信装置の構成を示すブロック図である。つまり、実施の形態 1の無線通信シ ステムは、図 5に示す無線送信装置 100と図 6に示す無線受信装置 200とによって 構成されている。なお、図 6の無線受信装置は、入力信号をローカル信号によって周 波数変換するシングルコンバージョンタイプについて示してある。  FIG. 5 is a block diagram showing a configuration of a radio transmission apparatus of the radio communication system according to Embodiment 1 of the present invention. FIG. 6 is a block diagram showing the configuration of the radio reception apparatus of the radio communication system according to Embodiment 1 of the present invention. That is, the radio communication system according to the first embodiment includes radio transmission apparatus 100 shown in FIG. 5 and radio reception apparatus 200 shown in FIG. Note that the radio reception apparatus in FIG. 6 shows a single conversion type in which an input signal is frequency-converted by a local signal.
[0044] まず、図 5に示す無線送信装置 100の構成について説明する。この無線送信装置 100は、ベースバンド信号を生成する送信ベースバンド部 101、そのベースバンド信 号に所定の処理を施して RF信号として外部へ送信する送信部 105、及びアンテナ 1 30を備えた構成となっている。送信ベースバンド部 101は、変調信号とパイロット信 号とを合成して送信部 105へ送信する。送信部 105は、中心周波数に信号が載らな い変調信号と中心周波数と同一の中心周波数を持つパイロット信号とを多重化した 無線信号を外部へ送信する。また、アンテナ 130は外部へ無線信号 (RF信号)を送 信する。 First, the configuration of radio transmitting apparatus 100 shown in FIG. 5 will be described. The wireless transmission device 100 includes a transmission baseband unit 101 that generates a baseband signal, a transmission unit 105 that performs predetermined processing on the baseband signal and transmits the signal as an RF signal, and an antenna 130. It has become. The transmission baseband unit 101 combines the modulated signal and the pilot signal and transmits them to the transmission unit 105. Transmitter 105 transmits to the outside a radio signal obtained by multiplexing a modulated signal with no signal at the center frequency and a pilot signal having the same center frequency as the center frequency. The antenna 130 sends a radio signal (RF signal) to the outside. I believe.
[0045] 送信ベースバンド部 101は、信号合成部 102、変調信号生成部 103、及びパイロッ ト信号生成部 104を備えている。変調信号生成部 103は、中心周波数部分に信号が 載せられていないマルチキャリアなどの変調信号を生成し、信号合成部 102に出力 する。パイロット信号生成部 104は、パイロット信号を生成し、信号合成部 102に出力 する。信号合成部 102は、変調信号生成部 103から受け取った変調信号 (M— CD MA)と、パイロット信号生成部 104から受け取ったパイロット信号 (PILOT)とを合成 して送信部 105へ出力する。  The transmission baseband unit 101 includes a signal synthesis unit 102, a modulation signal generation unit 103, and a pilot signal generation unit 104. Modulation signal generation section 103 generates a modulation signal such as a multicarrier that does not carry a signal on the center frequency portion, and outputs the modulation signal to signal synthesis section 102. Pilot signal generation section 104 generates a pilot signal and outputs it to signal synthesis section 102. The signal synthesis unit 102 synthesizes the modulation signal (M-CD MA) received from the modulation signal generation unit 103 and the pilot signal (PILOT) received from the pilot signal generation unit 104 and outputs the synthesized signal to the transmission unit 105.
[0046] また、送信部 105は、基準信号発振器 110、第 1の送信局部発振部 121、第 2の送 信局部発振部 122、直交変調器 152、乗算器 (ミキサ) 153、及び増幅器 154を備え ている。基準信号発振器 110は、基準信号を生成し、第 1の送信局部発振部 121及 び第 2の送信局部発振部 122へ出力する。第 1の送信局部発振部 121は、基準信号 発振器 110から受信した基準信号を用いて局部発振信号を発生させ、乗算器 153 へ出力する。第 2の送信局部発振部 122は、基準信号発振器 110から受信した基準 信号を用いて局部発振信号を発生させ、直交変調器 152へ出力する。直交変調器 1 52は、第 2の送信局部発振部 122からの局部発振信号を用いて、送信ベースバンド 部 101の信号合成部 102から出力された変調信号とパイロット信号との合成信号を 直交変調して乗算器 153に出力する。乗算器 153は、第 1の送信局部発振部 121か ら受信した局部発振信号を用いて、直交変調器 152で直交変調された信号を無線 信号 (RF信号)に変換する。増幅器 154は、乗算器 153から受信した無線信号を増 幅してアンテナ 130へ出力する。  In addition, the transmission unit 105 includes a reference signal oscillator 110, a first transmission local oscillation unit 121, a second transmission local oscillation unit 122, a quadrature modulator 152, a multiplier (mixer) 153, and an amplifier 154. I have. The reference signal oscillator 110 generates a reference signal and outputs it to the first transmission local oscillation unit 121 and the second transmission local oscillation unit 122. First transmission local oscillator 121 generates a local oscillation signal using the reference signal received from reference signal oscillator 110 and outputs the local oscillation signal to multiplier 153. Second transmission local oscillation unit 122 generates a local oscillation signal using the reference signal received from reference signal oscillator 110 and outputs the local oscillation signal to quadrature modulator 152. The quadrature modulator 152 uses the local oscillation signal from the second transmission local oscillation unit 122 to orthogonally modulate the synthesized signal of the modulation signal output from the signal synthesis unit 102 of the transmission baseband unit 101 and the pilot signal. And output to the multiplier 153. Multiplier 153 converts the signal subjected to quadrature modulation by quadrature modulator 152 into a radio signal (RF signal) using the local oscillation signal received from first transmission local oscillation unit 121. Amplifier 154 amplifies the radio signal received from multiplier 153 and outputs the amplified signal to antenna 130.
[0047] 次に、図 5に示す無線送信装置 100の動作について説明する。送信ベースバンド 部 101において、変調信号生成部 103が変調信号を発生して信号合成部 102に出 力する。なお、ここでは、変調信号をマルチキャリアの CDMAとして説明する力 周 波数軸上の中心周波数部分に信号が載せられて 、な 、ものであればどのような変調 信号でも取り扱うことができ、例えば、 OFDM信号などであってもよい。  Next, the operation of radio transmitting apparatus 100 shown in FIG. 5 will be described. In the transmission baseband unit 101, the modulation signal generation unit 103 generates a modulation signal and outputs it to the signal synthesis unit 102. Here, the modulation signal is described as multi-carrier CDMA, the signal is placed on the center frequency portion on the power frequency axis, and any modulation signal can be handled, for example, It may be an OFDM signal or the like.
[0048] また、信号合成部 102は、変調信号生成部 103から受信した変調信号 (M— CDM A)と、パイロット信号生成部 104から受信したパイロット信号 (PILOT)とを合成して 送信部 105へ送信する。なお、パイロット信号生成部 104で生成されたパイロット信 号は、変調信号の周波数軸上の中心に位置するようになっていて、パイロット信号の 周波数を f とすると、 f =0[Hz]となっている。 [0048] Further, the signal synthesis unit 102 synthesizes the modulation signal (M-CDMA) received from the modulation signal generation unit 103 and the pilot signal (PILOT) received from the pilot signal generation unit 104. Transmit to transmission section 105. Note that the pilot signal generated by the pilot signal generation unit 104 is positioned at the center on the frequency axis of the modulation signal, and f = 0 [Hz], where f is the frequency of the pilot signal. ing.
PILOT PILOT  PILOT PILOT
[0049] 次に、送信部 105において、第 2の送信局部発振部 122が、基準信号発振器 110 力 発せられた基準信号を用いて局部発振信号を発生し、この局部発振信号を直交 変調器 152に出力する。すると、直交変調器 152は、第 2の送信局部発振部 122か ら受信した局部発振信号を用いて、送信ベースバンド部 101の信号合成部 102から 出力された変調信号とパイロット信号との合成信号を直交変調して、これを乗算器 15 3に出力する。  Next, in transmission section 105, second transmission local oscillation section 122 generates a local oscillation signal using the reference signal generated by reference signal oscillator 110, and this local oscillation signal is converted into quadrature modulator 152. Output to. Then, the quadrature modulator 152 uses the local oscillation signal received from the second transmission local oscillation unit 122, and combines the modulated signal output from the signal synthesis unit 102 of the transmission baseband unit 101 and the pilot signal. Are orthogonally modulated and output to the multiplier 153.
[0050] 乗算器 153は、第 1の送信局部発振部 121から受信した局部発振信号を用いて、 直交変調器 152において直交変調された信号を無線信号 (RF信号)に変換する。そ して、この無線信号は、増幅器 154において増幅された後にアンテナ 130を介して無 線受信装置へ送信される。なお、ここでは、第 1の送信局部発振部 121は、基準信号 発振器 110から受信した基準信号を用いて局部発振信号を発生するものとし、第 1 の送信局部発振部 121による局部発振信号と第 2の送信局部発振部 122による局 部発振信号の発生は同期している。  Multiplier 153 uses the local oscillation signal received from first transmission local oscillation unit 121 to convert the signal subjected to quadrature modulation by quadrature modulator 152 into a radio signal (RF signal). The radio signal is amplified by the amplifier 154 and then transmitted to the radio reception device via the antenna 130. Note that here, the first transmission local oscillation unit 121 generates a local oscillation signal using the reference signal received from the reference signal oscillator 110, and the first transmission local oscillation unit 121 and the local oscillation signal from the first transmission local oscillation unit 121 The generation of the local oscillation signal by the two transmitting local oscillators 122 is synchronized.
[0051] 次に、図 6に示す無線受信装置 200の構成について説明する。この無線受信装置 200は、受信部 201、受信アンテナ 230、送信部 202、及び送信アンテナ 231によつ て構成されている。受信アンテナ 230は、図 5に示す無線送信装置 100からの無線 信号 (RF信号)を受信し、送信アンテナ 231は、無線信号 (RF信号)を無線送信装 置 100へ送信する。  Next, the configuration of radio receiving apparatus 200 shown in FIG. 6 will be described. The radio receiving apparatus 200 includes a receiving unit 201, a receiving antenna 230, a transmitting unit 202, and a transmitting antenna 231. Receiving antenna 230 receives a radio signal (RF signal) from radio transmitting apparatus 100 shown in FIG. 5, and transmitting antenna 231 transmits a radio signal (RF signal) to radio transmitting apparatus 100.
[0052] 受信部 201は、受信ベースバンド処理部 204を備える第 1の受信ベースバンド部 2 03、周波数可変基準信号受信発振器 210、第 1の受信局部発振部 221、増幅器 25 1、乗算器 252、帯域通過フィルタ 253、増幅器 254、第 1分配器 255、遅延補正器 2 56、直交復調器 257、第 2分配器 258、帯域通過フィルタ(BPF) 259、増幅器 260 、周波数制御部 262、及び周波数ずれ量検出部 270を備えている。  The reception unit 201 includes a first reception baseband unit 203 including a reception baseband processing unit 204, a frequency variable reference signal reception oscillator 210, a first reception local oscillation unit 221, an amplifier 251, and a multiplier 252. , Bandpass filter 253, amplifier 254, first distributor 255, delay corrector 256, quadrature demodulator 257, second distributor 258, bandpass filter (BPF) 259, amplifier 260, frequency control unit 262, and frequency A deviation amount detection unit 270 is provided.
[0053] また、送信部 202は、第 1の送信ベースバンド部 205、周波数可変基準信号送信 発振器 211、第 3の送信局部発振部 223、第 4の送信局部発振部 224、直交変調器 280、乗算器 281、及び増幅器 282を備えている。 [0053] The transmission unit 202 includes a first transmission baseband unit 205, a frequency variable reference signal transmission oscillator 211, a third transmission local oscillation unit 223, a fourth transmission local oscillation unit 224, and a quadrature modulator. 280, a multiplier 281, and an amplifier 282.
[0054] 増幅器 251は、受信アンテナ 230が受信した無線信号 (RF信号)を増幅し、乗算 器 252に出力する。乗算器 252は、増幅器 251から出力された無線信号を第 1の受 信局部発振部 221からの局部発振信号によって周波数変換し、帯域通過フィルタ 2 53に出力する。帯域通過フィルタ 253は、乗算器 252によって周波数変換された信 号力も所望の周波数帯域の信号のみ抽出し、増幅器 254に出力する。増幅器 254 は、帯域通過フィルタ 253から出力された所望の周波数帯域の信号を増幅して第 1 分配器 255へ出力する。すなわち、受信アンテナ 230によって受信された無線信号( RF信号)は、増幅器 251、乗算器 252、帯域通過フィルタ 253、及び増幅器 254〖こ よって、増幅及び周波数変換などの所定の処理が行われて第 1分配器 255に入力さ れる。 Amplifier 251 amplifies the radio signal (RF signal) received by receiving antenna 230 and outputs the amplified signal to multiplier 252. Multiplier 252 converts the frequency of the radio signal output from amplifier 251 with the local oscillation signal from first reception local oscillation unit 221 and outputs the result to bandpass filter 253. The band pass filter 253 extracts only the signal in the desired frequency band from the signal power frequency-converted by the multiplier 252 and outputs the signal power to the amplifier 254. The amplifier 254 amplifies the signal in the desired frequency band output from the band pass filter 253 and outputs the amplified signal to the first distributor 255. That is, the radio signal (RF signal) received by the receiving antenna 230 is subjected to predetermined processing such as amplification and frequency conversion by the amplifier 251, the multiplier 252, the band-pass filter 253, and the amplifier 254. 1 Input to distributor 255.
[0055] 第 1分配器 255は、入力した信号を 2方向に分配し、それぞれ遅延補正器 256およ び第 2分配器 258に出力する。第 2分配器 258は、第 1分配器 255によって分配され た信号をさらに 2方向に分配し、それぞれ BPF259および周波数ずれ量検出部 270 に出力する。 BPF259は、第 1分配器 255によって分配された一方の信号からパイ口 ット信号に対応する信号成分を抽出して増幅器 260へ出力する。増幅器 260は、 BP F259によって抽出されたパイロット信号に対応する信号成分を増幅し、直交復調器 257に出力する。  [0055] The first distributor 255 distributes the input signal in two directions and outputs the signals to the delay compensator 256 and the second distributor 258, respectively. The second distributor 258 further distributes the signal distributed by the first distributor 255 in two directions, and outputs them to the BPF 259 and the frequency shift amount detection unit 270, respectively. The BPF 259 extracts a signal component corresponding to the pilot signal from one signal distributed by the first distributor 255 and outputs it to the amplifier 260. The amplifier 260 amplifies the signal component corresponding to the pilot signal extracted by the BP F259 and outputs the amplified signal component to the quadrature demodulator 257.
[0056] 遅延補正器 256は、第 1分配器 255によって分配された一方の信号に遅延を与え て直交復調器 257へ出力する。直交復調器 257は、増幅器 260の出力信号と遅延 補正器 256の出力信号とを周波数乗算することにより直交復調し、第 1の受信ベース バンド部 203に出力する。第 1の受信ベースバンド部 203は、直交復調器 257によつ て復調されたベースバンド信号を受信ベースバンド処理部 204によってベースバンド 処理する。  The delay corrector 256 gives a delay to one of the signals distributed by the first distributor 255 and outputs the delayed signal to the quadrature demodulator 257. Quadrature demodulator 257 performs quadrature demodulation by frequency multiplying the output signal of amplifier 260 and the output signal of delay corrector 256, and outputs the result to first reception baseband section 203. The first reception baseband unit 203 performs baseband processing on the baseband signal demodulated by the quadrature demodulator 257 by the reception baseband processing unit 204.
[0057] なお、増幅器 260のみで直交復調器 257への入力信号レベルを一定に保とうとす るとパイロットブランチにのみ歪みが生じ、直交復調器 257の出力に位相雑音が残つ てしまうことになる。そこで、第 1分配器 255への入力信号レベルを Pin[dBm]とし、 第 1分配器 255及び第 2分配器 258による電力損失を a [dB]、 BPF259の電力損 失を β [dB]、増幅器 260の利得を γ [dB]とすると、第 1分配器 255への入力信号レ ベル Pinが増幅器 260の出力レベル (Pin + y - a ~ β )と略比例関係となるように 設定する。これにより、パイロットブランチにおける歪みを防止することができる。 Note that if the input signal level to quadrature demodulator 257 is kept constant only by amplifier 260, distortion occurs only in the pilot branch, and phase noise remains in the output of quadrature demodulator 257. Become. Therefore, the input signal level to the first distributor 255 is Pin [dBm], the power loss due to the first distributor 255 and the second distributor 258 is a [dB], and the power loss of the BPF259 is If the loss is β [dB] and the gain of the amplifier 260 is γ [dB], the input signal level Pin to the first distributor 255 is approximately proportional to the output level of the amplifier 260 (Pin + y-a ~ β). Set to be. Thereby, distortion in the pilot branch can be prevented.
[0058] 周波数ずれ量検出部 270は、第 2分配器 258で分配された一方の信号を用いて、 送信基地局の基準周波数に対する周波数ずれ量を検出し、周波数制御部 262に出 力する。周波数制御部 262は、周波数ずれ量検出部 270によって検出された周波数 ずれ量に基づいて周波数可変基準信号受信発振器 210及び周波数可変基準信号 送信発振器 211の制御を行う。  The frequency shift amount detection unit 270 detects the frequency shift amount with respect to the reference frequency of the transmission base station using one of the signals distributed by the second distributor 258, and outputs it to the frequency control unit 262. The frequency control unit 262 controls the frequency variable reference signal reception oscillator 210 and the frequency variable reference signal transmission oscillator 211 based on the frequency shift amount detected by the frequency shift amount detection unit 270.
[0059] 周波数可変基準信号受信発振器 210は、周波数制御部 262によって出力周波数 が制御され、第 1の受信局部発振部 221へ発振周波数信号を出力する。第 1の受信 局部発振部 221は、周波数可変基準信号受信発振器 210から供給された基準発振 信号をリファレンスとして任意の周波数を出力する。  The frequency variable reference signal receiving oscillator 210 is controlled in output frequency by the frequency control unit 262 and outputs an oscillation frequency signal to the first receiving local oscillation unit 221. The first reception local oscillation unit 221 outputs an arbitrary frequency using the reference oscillation signal supplied from the frequency variable reference signal reception oscillator 210 as a reference.
[0060] 周波数可変基準信号送信発振器 211は、周波数制御部 262によって出力周波数 が制御され、第 3の送信局部発振部 223及び第 4の送信局部発振部 224へ発振周 波数信号を出力する。第 3の送信局部発振部 223は、周波数可変基準信号送信発 振器 211から供給された基準発振信号をリファレンスとして任意の周波数を乗算器2 81に出力する。第 4の送信局部発振部 224は、周波数可変基準信号送信発振器 21 1から供給された基準発振信号を用いて局部発振信号を発生させ、直交変調器 280 へ出力する。第 1の送信ベースバンド部 205は、送信ベースバンド信号を生成して直 交変調器 280へ出力する。直交変調器 280は、第 4の送信局部発振部 224からの局 部発振信号を用いて、第 1の送信ベースバンド部 205から出力された送信ベースバ ンド信号とパイロット信号を直交変調して乗算器 281に出力する。 The frequency variable reference signal transmission oscillator 211 outputs an oscillation frequency signal to the third transmission local oscillation unit 223 and the fourth transmission local oscillation unit 224, the output frequency of which is controlled by the frequency control unit 262. Third transmission local oscillator 223 outputs an arbitrary frequency to the multiplier 2 81 a reference oscillation signal supplied from the variable frequency reference signal transmission oscillator 211 as a reference. The fourth transmission local oscillation unit 224 generates a local oscillation signal using the reference oscillation signal supplied from the frequency variable reference signal transmission oscillator 211, and outputs the local oscillation signal to the quadrature modulator 280. The first transmission baseband unit 205 generates a transmission baseband signal and outputs it to the quadrature modulator 280. The quadrature modulator 280 uses the local oscillation signal from the fourth transmission local oscillation unit 224 to orthogonally modulate the transmission baseband signal output from the first transmission baseband unit 205 and the pilot signal, and thereby performs a multiplier. Output to 281.
[0061] 乗算器 281は、第 3の送信局部発振部 223から出力された局部発振信号を用いて 、直交変調器 280で直交変調された信号を無線信号に変換する。また、増幅器 282 は、乗算器 281から出力された無線信号を増幅して送信アンテナ 231へ送信する。  Multiplier 281 converts the signal quadrature modulated by quadrature modulator 280 into a radio signal, using the local oscillation signal output from third transmission local oscillation unit 223. The amplifier 282 amplifies the radio signal output from the multiplier 281 and transmits the amplified signal to the transmission antenna 231.
[0062] 次に、図 5の無線送信装置 100と図 6の無線受信装置 200における信号の送受信 動作について図 7を参照して説明する。図 7は、図 5に示す無線送信装置 100と図 6 に示す無線受信装置 200における各信号の周波数特性を示す特性図であり、横軸 が周波数、縦軸が信号レベルである。なお、図 7 (A)〜(G)は、図 5及び図 6におい て対応するアルファベット記号が付加された部分の信号の周波数特性を示したもの である。 Next, signal transmission / reception operations in radio transmitting apparatus 100 in FIG. 5 and radio receiving apparatus 200 in FIG. 6 will be described with reference to FIG. FIG. 7 is a characteristic diagram showing frequency characteristics of each signal in the wireless transmission device 100 shown in FIG. 5 and the wireless reception device 200 shown in FIG. Is the frequency and the vertical axis is the signal level. 7 (A) to (G) show the frequency characteristics of the signal of the part to which the corresponding alphabet symbol is added in FIGS. 5 and 6. FIG.
[0063] 変調信号生成部 103から出力される変調信号とパイロット信号生成部 104から出力 されるパイロット信号との合成信号 (A)は、図 7 (A)に示すような周波数特性を持って いる。なお、前述したように、ここでは、パイロット信号は、変調信号の周波数軸上の 中心に位置するようにされており、パイロット信号の周波数を f とすると、 f =0  [0063] The combined signal (A) of the modulation signal output from the modulation signal generation unit 103 and the pilot signal output from the pilot signal generation unit 104 has a frequency characteristic as shown in Fig. 7 (A). . As described above, here, the pilot signal is positioned at the center on the frequency axis of the modulation signal, and if the frequency of the pilot signal is f, f = 0
PILOT PILOT  PILOT PILOT
[Hz]である。  [Hz].
[0064] 変調信号とパイロット信号との合成信号 (A)は、送信部 105で無線信号に周波数 変換され、アンテナ 130から出力される。アンテナ 130から出力された無線信号に含 まれる変調信号の無線周波数 f  [0064] The combined signal (A) of the modulated signal and the pilot signal is frequency-converted to a radio signal by transmission section 105 and output from antenna 130. Radio frequency f of the modulation signal included in the radio signal output from the antenna 130
RFと、パイロット信号の無線周波数 f  RF and radio frequency of pilot signal f
RF— PILOTは、次の 式のように表される。  RF—PILOT is expressed as the following equation.
f =f +f +f  f = f + f + f
RF CDMA Lol Lo2  RF CDMA Lol Lo2
f =f +f +f  f = f + f + f
RF_PIPOT PILOT Lol Lo2  RF_PIPOT PILOT Lol Lo2
[0065] なお、変調信号生成部 103で発生された変調信号の周波数を f 、第 1の送信  Note that the frequency of the modulation signal generated by the modulation signal generation unit 103 is f, and the first transmission
CDMA  CDMA
局部発振部 121にて発振された局部発振信号の周波数を f 、第 2の送信局部発振  The frequency of the local oscillation signal oscillated by the local oscillation unit 121 is f and the second transmission local oscillation
Lol  LOL
部 122にて発振された局部発振信号の周波数を f とする。  Let f be the frequency of the local oscillation signal oscillated by unit 122.
Lo2  Lo2
[0066] ここで、送信部 105では、合成信号 (A)は、直交変調器 152における第 2の送信局 部発振部 122の位相雑音及び乗算器 153における第 1の送信局部発振部 121の位 相雑音が重畳されて無線信号として出力される。また、図 5の無線送信装置 100のァ ンテナ 130から出力されてから、図 6の無線受信装置 200の受信アンテナ 230で受 信される間の伝搬路においても、無線信号には位相雑音が重畳される。  Here, in transmission section 105, the combined signal (A) is the phase noise of second transmission local oscillation section 122 in quadrature modulator 152 and the position of first transmission local oscillation section 121 in multiplier 153. Phase noise is superimposed and output as a radio signal. In addition, phase noise is superimposed on the radio signal even in the propagation path from the output from the antenna 130 of the radio transmission device 100 of FIG. 5 to the reception of the reception antenna 230 of the radio reception device 200 of FIG. Is done.
[0067] よって、送信部 105及び伝搬路で重畳された位相雑音の総和を Θ (t)とすると、受 信アンテナ 230で受信される無線信号 (B)は、図 7 (B)に示す周波数特性をもって次 の式のように表される。  [0067] Therefore, assuming that the total sum of the phase noise superimposed on the transmitter 105 and the propagation path is Θ (t), the radio signal (B) received by the receiving antenna 230 is the frequency shown in FIG. It is expressed as the following equation with characteristics.
f Z Θ (t)  f Z Θ (t)
RF  RF
f Z Θ (t)  f Z Θ (t)
RF— PILOT  RF—PILOT
[0068] 図 6の受信アンテナ 230で受信された無線信号 (B)は、増幅器 251で増幅された 後に乗算器 252で周波数変換される。ここで、第 1の受信局部発振部 221は、位相 雑音 Φ (t)を有するローカル信号を発振するので、このローカル信号 (C)は、図 7 (C )に示すような周波数特性を持って次の式のように表される。 [0068] The radio signal (B) received by the receiving antenna 230 in FIG. 6 was amplified by the amplifier 251. Later, the frequency is converted by a multiplier 252. Here, since the first reception local oscillation unit 221 oscillates a local signal having phase noise Φ (t), this local signal (C) has a frequency characteristic as shown in FIG. 7 (C). It is expressed as the following formula.
f Z φ (t)  f Z φ (t)
[0069] そのため、乗算器 252で周波数変換された信号には、第 1の受信局部発振部 221 の位相雑音 φ (t)が重畳されて帯域通過フィルタ 253へ与えられる。この帯域通過フ ィルタ 253のバンド幅は、乗算器 252で出力される差成分の周波数、すなわち、(f Therefore, the phase noise φ (t) of the first reception local oscillation unit 221 is superimposed on the signal frequency-converted by the multiplier 252 and given to the band pass filter 253. The bandwidth of this bandpass filter 253 is the frequency of the difference component output from the multiplier 252, that is, (f
-f )及び (f -f )が抽出されるように設定してある。そのため、増幅器 25-f) and (f-f) are set to be extracted. Therefore, amplifier 25
4から出力される信号 (D)は、図 7 (D)に示す周波数特性を持ち、次の式のように表 される。 The signal (D) output from 4 has the frequency characteristics shown in Fig. 7 (D), and is expressed by the following equation.
f f Z Θ (t) - (t)  f f Z Θ (t)-(t)
f -f Z Θ (t) - (t)  f -f Z Θ (t)-(t)
[0070] 次に、信号 (D)は、第 1分配器 255で分配されて、一方は変調信号ブランチとして 出力され、他方はパイロットブランチとして出力される。パイロットブランチでは、第 2分 配器 258によって信号が分配された後に BPF259に入力される。この BPF259はパ ィロット信号成分のみを抽出するように設定されているので、 BPF259は分配された 信号 (D)からパイロット信号成分のみを抽出して出力することになる。  [0070] Next, the signal (D) is distributed by the first distributor 255, one of which is output as a modulated signal branch, and the other is output as a pilot branch. In the pilot branch, the signal is distributed by the second distributor 258 and then input to the BPF 259. Since this BPF259 is set to extract only the pilot signal component, the BPF259 extracts and outputs only the pilot signal component from the distributed signal (D).
[0071] このとき、信号 (D)には、 BPF259及び増幅器 260を通過することで遅延 τ が重 畳される。そのため、増幅器 260の出力信号 (Ε)は、図 7 (E)に示すような周波数特 性を持って次の式のように表される。  At this time, the delay τ is superimposed on the signal (D) by passing through the BPF 259 and the amplifier 260. Therefore, the output signal (Ε) of the amplifier 260 is expressed by the following equation with frequency characteristics as shown in FIG.
f f Z Θ (t- τ ) - (t- τ )  f f Z Θ (t- τ)-(t- τ)
[0072] 一方、変調信号ブランチでは、信号 (D)には、遅延補正器 256において、 Μ= τ  On the other hand, in the modulation signal branch, the signal (D) is transferred to the delay corrector 256 by Μ = τ
1 1
+ τ となるような遅延量が重畳される。なお、 τ は後述する直交復調器 257の内部 で生じる遅延量である。そのため、遅延補正器 256から出力される信号 (F)は、図 7 ( F)に示すような周波数特性を持ち、次の式のように表わすことができる。 A delay amount such that + τ is superimposed. Note that τ is a delay amount generated inside the quadrature demodulator 257 described later. Therefore, the signal (F) output from the delay corrector 256 has a frequency characteristic as shown in FIG. 7 (F) and can be expressed as the following equation.
f -f Ζ Θ (t A t)— φ (t- A t)  f -f Θ Θ (t A t) — φ (t- A t)
[0073] そして、信号 (E)と信号 (F)は、直交復調器 257にて乗算された後に直交復調され る。なお、直交復調器 257は、図 8に示す直交復調器 257の内部構成図のように、遅 延補正器 401、 90度位相器 402、遅延補正器 401側の乗算器 403、及び 90度位相 器 402側の乗算器 404を備えた構成となって 、る。 [0073] Signal (E) and signal (F) are multiplied by orthogonal demodulator 257 and then orthogonally demodulated. Note that the quadrature demodulator 257 is delayed as shown in the internal configuration diagram of the quadrature demodulator 257 shown in FIG. A delay corrector 401, a 90-degree phase shifter 402, a delay corrector 401 -side multiplier 403, and a 90-degree phase shifter 402 -side multiplier 404 are provided.
[0074] 図 8において、信号 )は遅延補正器 401及び 90度位相器 402に入力される。こ れによって、 90度位相器 402は信号 (E)の位相を 90度シフトさせて乗算器 404へ出 力する。このとき、 90度位相器 402において遅延量 τ が発生する。一方、遅延補正 In FIG. 8, the signal) is input to the delay corrector 401 and the 90-degree phase shifter 402. As a result, the 90-degree phase shifter 402 shifts the phase of the signal (E) by 90 degrees and outputs it to the multiplier 404. At this time, a delay amount τ is generated in the 90-degree phase shifter 402. Meanwhile, delay compensation
2  2
器 401は、 90度位相器 402にて発生した遅延量と同じだけ信号 (Ε)に遅延量 τ が  The device 401 has a delay amount τ in the signal (Ε) as much as the delay amount generated by the 90-degree phase shifter 402.
2 生じるように補正を行う。  2 Make corrections so that they occur.
[0075] また、信号 (F)は、乗算器 403及び乗算器 404に入力され、遅延補正器 401及び 9 0度位相器 402からの出力信号 (Ε)と掛け合わされ、直交復調器 257から信号 (G)と して出力される。なお、信号 )は、遅延補正器 256において直交復調器 257の内 部における遅延量て も考慮して補正されているので、乗算器 403及び乗算器 404 The signal (F) is input to the multiplier 403 and the multiplier 404, multiplied by the output signal (信号) from the delay corrector 401 and the 90-degree phase shifter 402, and the signal from the quadrature demodulator 257. Output as (G). Note that the signal) is corrected in the delay corrector 256 in consideration of the delay amount in the quadrature demodulator 257, so that the multiplier 403 and the multiplier 404 are corrected.
2  2
にて掛け合わされる信号 (Ε)と信号 (F)は位相が一致している。よって、理想的な復 調が可能となる。  The signal (Ε) and signal (F) that are multiplied in step 1 are in phase. Therefore, ideal recovery can be performed.
[0076] そのため、直交復調器 257から出力される信号 (G)は、図 7 (G)に示すような周波 数特性を持ち、次の式で表わすことができる。  Therefore, signal (G) output from quadrature demodulator 257 has a frequency characteristic as shown in FIG. 7 (G), and can be expressed by the following equation.
(f 一 f ) 一 (f 一 f )  (f 1 f) 1 (f 1 f)
RF Lol RF— PILOT Lol  RF Lol RF— PILOT Lol
Z Θ (t- τ - τ ) - (t- τ — τ ) 一 { 0 (t一 A t) 一 φ (t一 A t) }  Z Θ (t- τ-τ)-(t- τ — τ) one {0 (t one A t) one φ (t one A t)}
1 2 1 2  1 2 1 2
[0077] これを、 f =0Hz及び A t= τ + τ という条件を用いて整理すると、次の式の  [0077] When this is rearranged using the conditions f = 0 Hz and A t = τ + τ,
PILOT 1 2  PILOT 1 2
ようになる。  It becomes like this.
f Z 0  f Z 0
CDMA  CDMA
[0078] これらの式は、送信部 105、伝搬路、及び第 1の受信局部発振部 221において重 畳される位相雑音が完全にキャンセルされて、変調信号生成部 103にて発生された 変調信号が無線受信装置 200にて復調されていることを意味する。すなわち、受信 信号に重畳された位相雑音を除去すると共に、受信無線部の系内で生じる位相雑 音も除去できている。  [0078] These equations show that the modulation signal generated by the modulation signal generation unit 103 is completely canceled out by the phase noise superimposed on the transmission unit 105, the propagation path, and the first reception local oscillation unit 221. Is demodulated by the radio receiving apparatus 200. That is, the phase noise superimposed on the received signal can be removed, and the phase noise generated in the system of the reception radio section can be removed.
[0079] 以上説明したように、無線送信装置 100は、送信信号の中心周波数にパイロット信 号が載るように多重化して送信し、無線受信装置 200は、受信信号と同じ周波数誤 差と位相雑音を持ったパイロット信号で周波数乗算を行 ヽ、系内で発生する位相雑 音に関しても同じ位相雑音を持った信号を用いて周波数乗算を行う。そのため、受 信信号に含まれる周波数誤差と位相誤差を除去することができると共に、系内で発 生する位相誤差も完全に除去することができるので、位相雑音特性に優れた無線通 信システムを実現することができる。 [0079] As described above, radio transmitting apparatus 100 multiplexes and transmits a pilot signal at the center frequency of the transmission signal, and radio receiving apparatus 200 transmits the same frequency error and phase noise as the received signal. Frequency multiplication is performed with a pilot signal with For sound, frequency multiplication is performed using a signal having the same phase noise. Therefore, the frequency error and phase error contained in the received signal can be removed, and the phase error generated in the system can be completely removed, so that a wireless communication system with excellent phase noise characteristics can be obtained. Can be realized.
[0080] 次に、伝搬路によって送信信号周波数に周波数ずれが加わったときの AFC動作 の原理について説明する。図 6において、第 2分配器 258で分配された信号は周波 数ずれ検出ブランチにある周波数ずれ量検出部 270に入力される。すると、周波数 ずれ量検出部 270は、送信基地局の基準周波数に対する周波数ずれ量を検出し、 周波数制御部 262へ出力する。これによつて、周波数制御部 262は、入力された周 波数ずれ量に応じて、周波数可変基準信号受信発振器 210及び周波数可変基準 信号受信発振器 211の出力発振周波数を制御する。このとき、第 1の受信局部発振 部 221の周波数は周波数可変基準信号受信発振器 210の発振周波数信号をリファ レンスとして!/ヽるので、周波数ずれに応じた任意の発振周波数信号を乗算器 252へ 供給する。  Next, the principle of AFC operation when a frequency shift is added to the transmission signal frequency by the propagation path will be described. In FIG. 6, the signal distributed by the second distributor 258 is input to the frequency shift amount detection unit 270 in the frequency shift detection branch. Then, the frequency shift amount detection unit 270 detects the frequency shift amount with respect to the reference frequency of the transmission base station, and outputs it to the frequency control unit 262. Accordingly, the frequency control unit 262 controls the output oscillation frequencies of the frequency variable reference signal reception oscillator 210 and the frequency variable reference signal reception oscillator 211 according to the input frequency deviation amount. At this time, the frequency of the first reception local oscillation unit 221 is referred to the oscillation frequency signal of the frequency variable reference signal reception oscillator 210 as a reference, so an arbitrary oscillation frequency signal corresponding to the frequency deviation is sent to the multiplier 252. Supply.
[0081] 一方、第 1の送信ベースバンド部 205から出力された送信ベースバンド信号は直交 変調器 280によって変調されるが、周波数可変基準信号送信発振器 211の発振周 波数信号をリファレンスとする第 4の送信局部発振部 224から変調用発振信号が供 給されるので、直交変調器 280の出力は周波数ずれ分が加味されたものとなる。さら に図では省略されている力 適切な増幅とフィルタによる信号抽出処理を施した後、 乗算器 281によって端末の出力周波数に変換される。  On the other hand, the transmission baseband signal output from the first transmission baseband unit 205 is modulated by the quadrature modulator 280, but the fourth reference signal is based on the oscillation frequency signal of the frequency variable reference signal transmission oscillator 211. Since the modulation oscillation signal is supplied from the transmission local oscillation unit 224, the output of the quadrature modulator 280 takes the frequency deviation into consideration. In addition, the force not shown in the figure is subjected to signal amplification processing by appropriate amplification and filtering, and then converted to a terminal output frequency by a multiplier 281.
[0082] このとき、周波数可変基準信号送信発振器 211の発振周波数信号をリファレンスと する第 3の送信局部発振部 223から周波数変換用発振信号が供給されるので、乗 算器 (周波数変換装置) 281の出力は周波数ずれ量の分が加味されたものとなる。 乗算器 (周波数変換装置) 281の出力信号は適切な増幅等の処理が行われ、送信 アンテナ 231から出力される。前述したように、この送信アンテナ 231の出力信号は 周波数ずれ量が加味された信号となっているので、図 5の無線送信装置 100と図 6の 無線受信装置 200の周波数同期が取れることとなる。  At this time, since the oscillation signal for frequency conversion is supplied from the third transmission local oscillation unit 223 using the oscillation frequency signal of the frequency variable reference signal transmission oscillator 211 as a reference, a multiplier (frequency conversion device) 281 The output of is added with the amount of frequency deviation. The output signal of the multiplier (frequency conversion device) 281 is subjected to appropriate processing such as amplification and is output from the transmission antenna 231. As described above, since the output signal of the transmission antenna 231 is a signal in which the amount of frequency deviation is added, the frequency synchronization between the wireless transmission device 100 in FIG. 5 and the wireless reception device 200 in FIG. 6 can be achieved. .
[0083] 以上説明したように、本実施の形態によれば、位相雑音相殺技術におけるパイロッ トブランチの出力をさらに分配して、周波数ずれ検出機能を設けている。そして、検 出した周波数ずれ量に応じて無線受信装置内の基準発振周波数を変化させ、周波 数変翻 (乗算器)の入力周波数を、周波数ずれ量を加味した状態にすることによつ て周波数追従を実現している。これによつて、位相雑音の相殺と AFCとを併せて実 現させることが可會となる。 [0083] As described above, according to the present embodiment, the pilot in the phase noise canceling technique is used. The output of the branch is further distributed to provide a frequency shift detection function. Then, the reference oscillation frequency in the wireless receiver is changed according to the detected frequency deviation amount, and the input frequency of the frequency conversion (multiplier) is set to a state that takes into account the frequency deviation amount. Achieves frequency tracking. This makes it possible to achieve both phase noise cancellation and AFC.
[0084] なお、 BPF259によってパイロット信号を抽出する際に、 BPF259の周波数帯域外 にある位相雑音は抽出できないため、その位相雑音は、図 6 (D)に示す周波数特性 に含まれることになる。しかし、この位相雑音は、図 5に示す無線送信装置 100の第 2 の送信局部発振部 122及び図 6に示す無線受信装置 200の第 1の受信局部発振部 221によって抑圧することができる。  [0084] When the pilot signal is extracted by BPF259, the phase noise outside the frequency band of BPF259 cannot be extracted. Therefore, the phase noise is included in the frequency characteristics shown in FIG. 6 (D). However, this phase noise can be suppressed by the second transmission local oscillation unit 122 of the wireless transmission device 100 shown in FIG. 5 and the first reception local oscillation unit 221 of the wireless reception device 200 shown in FIG.
[0085] 例えば、第 1の受信局部発振部 221を PLL周波数シンセサイザとして構成し、ルー プ帯域幅を BPF259の帯域幅以下に設計する。そうすることによって、図 2 (D)に示 すバンドパスフィルタの通過周波数帯域外にある位相雑音 φ (t)を抑圧することがで きるため、その影響を無視することができる。なお、図 5に示す無線送信装置 100の 第 2の送信局部発振部 122及び第 1の送信局部発振部 121においても、同様にして 、 BPF259の周波数帯域外にある位相雑音 0 (t)を抑圧することができる。  For example, the first reception local oscillation unit 221 is configured as a PLL frequency synthesizer, and the loop bandwidth is designed to be equal to or less than the bandwidth of the BPF259. By doing so, the phase noise φ (t) outside the pass frequency band of the bandpass filter shown in Fig. 2 (D) can be suppressed, and the effect can be ignored. Note that the second transmission local oscillation unit 122 and the first transmission local oscillation unit 121 of the wireless transmission device 100 shown in FIG. 5 similarly suppress the phase noise 0 (t) outside the frequency band of the BPF259. can do.
[0086] また、本実施の形態においては、図 6の無線受信装置 200の第 1の受信局部発振 部 221において発振するローカル周波数として、無線送信装置 100における第 1の 送信局部発振部 121が発振する局部発振信号と同じ周波数 (f )の信号を用いた  Further, in the present embodiment, first transmission local oscillation unit 121 in radio transmission device 100 oscillates as a local frequency oscillated in first reception local oscillation unit 221 of radio reception device 200 in FIG. Signal with the same frequency (f) as the local oscillation signal
Lol  LOL
力 2 XRF周波数 (f +f )以下で、かつ RF周波数と異なる周波数であればよぐ  Force 2 XRF frequency (f + f) or less and different from RF frequency
Lol Lo2  Lol Lo2
当然のことながら、第 2の送信局部発振部 122が発振する局部発振信号と同じ周波 数 (f )を用いても、同様に位相雑音をキャンセルすることができる。  Naturally, even if the same frequency (f) as that of the local oscillation signal oscillated by the second transmission local oscillation unit 122 is used, the phase noise can be similarly canceled.
Lo2  Lo2
[0087] また、本実施の形態においては、図 5の無線送信装置 100における送信ベースバ ンド部 101及び送信部 105の構成をスーパーヘテロダイン方式としているが、変調信 号の周波数軸上の中心にパイロット信号を配置した周波数特性を持つ信号を送信で きる方式であれば、どのような方式でもよぐ例えば、ダイレクトコンバージョンや Low IF等でもよい。  Further, in the present embodiment, the configuration of transmission baseband section 101 and transmission section 105 in radio transmission apparatus 100 in FIG. 5 is the superheterodyne system, but the pilot signal is centered on the frequency axis of the modulation signal. Any method can be used as long as it can transmit a signal having a frequency characteristic in which signals are arranged. For example, direct conversion, low IF, or the like may be used.
[0088] また、本実施の形態によれば、無線受信装置に受信される無線信号が、中心周波 数に信号が載らない変調信号と中心周波数と同一の中心周波数を持つパイロット信 号とが多重されたものであるので、図 1の従来のローカルノイズキャンセラのシグナル ブランチにある局部発振器 4及び周波数変 8が必要なくなるため、この局部発振 部 4にて発生する局部発振信号に含まれる位相雑音がシグナルブランチの信号 (信 号 F)に載らない。そのため、系内で発生する位相誤差も完全に除去することができ るので、位相雑音特性に優れた無線通信システムを実現することができる。さらに、 無線送信装置と無線受信装置の周波数同期を行う AFCを実現することが可能となる [0088] Also, according to the present embodiment, the radio signal received by the radio reception device is the center frequency. Therefore, the local oscillator 4 and the frequency change 8 in the signal branch of the conventional local noise canceller in FIG. 1 are multiplexed with a modulation signal that does not include signals in the number and a pilot signal having the same center frequency as the center frequency. Therefore, the phase noise included in the local oscillation signal generated by this local oscillation unit 4 is not included in the signal branch signal (signal F). Therefore, the phase error generated in the system can be completely removed, and a radio communication system having excellent phase noise characteristics can be realized. Furthermore, it becomes possible to realize AFC that performs frequency synchronization between the wireless transmission device and the wireless reception device.
[0089] 〈実施の形態 2〉 <Embodiment 2>
図 9は、本発明の実施の形態 2に係る無線通信システムの無線受信装置の構成を 示すブロック図である。図 9の無線受信装置 200aは、受信信号を乗算器 252によつ て周波数変換するシングルコンバージョンタイプについて示してある。なお、実施の 形態 2に係る無線通信システムの無線送信装置の構成は、実施の形態 1で示した図 5の構成と同じであるのでその説明は省略する。  FIG. 9 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 2 of the present invention. The radio reception device 200a in FIG. 9 shows a single conversion type in which a received signal is frequency-converted by a multiplier 252. Note that the configuration of the wireless transmission apparatus of the wireless communication system according to Embodiment 2 is the same as the configuration of FIG.
[0090] 図 9に示す無線受信装置 200aが図 6に示した無線受信装置 200と異なるところは 、周波数ずれ量検出部 270を除いて、第 2の直交復調器 261を追加した点と、第 1の 受信ベースバンド部 203aに周波数ずれ量検出部 206を追加した点である。第 2の直 交復調器 261は、周波数可変基準信号受信発振器 210からの信号を用いて第 2分 配器 258で分配された一方の信号を直交復調する。周波数ずれ量検出部 206は、 第 2の直交復調器 261から出力された信号力も周波数ずれ量 Δ ίを検出する。つまり 、図 9に示す実施の形態 2の無線受信装置 200aでは、図 6に示す実施の形態 1の周 波数ずれ量検出部 270の実現方法として、第 2の直交復調器 261を設け、その出力 を第 1の受信ベースバンド部 203a内の周波数ずれ量検出部 206へ入力することに よって周波数ずれ量の検出を行って 、る。  [0090] The radio receiving apparatus 200a shown in FIG. 9 differs from the radio receiving apparatus 200 shown in FIG. 6 in that a second orthogonal demodulator 261 is added except for the frequency shift amount detection unit 270, and The difference is that a frequency shift amount detection unit 206 is added to the reception baseband unit 203a. The second orthogonal demodulator 261 uses the signal from the frequency variable reference signal reception oscillator 210 to orthogonally demodulate one of the signals distributed by the second distributor 258. The frequency shift amount detection unit 206 also detects the frequency shift amount Δ ί for the signal power output from the second quadrature demodulator 261. That is, in radio receiving apparatus 200a of the second embodiment shown in FIG. 9, second orthogonal demodulator 261 is provided as a method for realizing frequency deviation amount detection section 270 of the first embodiment shown in FIG. Is input to the frequency shift amount detection unit 206 in the first reception baseband unit 203a to detect the frequency shift amount.
[0091] このように、本実施の形態によれば、実施の形態 1の場合と同様に、位相雑音キヤ ンセラと AFCとを両立させながら低消費電力化と受信感度の向上を実現することが できる。  [0091] Thus, according to the present embodiment, as in the case of Embodiment 1, it is possible to achieve low power consumption and improved reception sensitivity while making both the phase noise canceller and the AFC compatible. it can.
[0092] 〈実施の形態 3〉 図 10は、本発明の実施の形態 3に係る無線通信システムの無線受信装置の構成 を示すブロック図である。図 10の無線受信装置 200bは、受信信号を乗算器 252に よって周波数変換するシングルコンバージョンタイプについて示してある。なお、実施 の形態 3に係る無線通信システムの無線送信装置の構成は、実施の形態 1で示した 図 5の構成と同じであるのでその説明は省略する。 <Embodiment 3> FIG. 10 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 3 of the present invention. The radio reception device 200b of FIG. 10 shows a single conversion type in which a received signal is frequency-converted by a multiplier 252. Note that the configuration of the wireless transmission apparatus of the wireless communication system according to Embodiment 3 is the same as the configuration of FIG.
[0093] 図 10に示す無線受信装置 200bが図 9に示した無線受信装置 200aと異なるところ は、 BPF259の代わりに周波数可変 BPF263を設けた点である。この周波数可変 B PF263は、周波数ずれ量 Δ ίに応じて通過させる帯域周波数を可変させる。つまり、 パイロットブランチのパイロット信号を抽出するフィルタを、中心周波数を可変させる 周波数可変 BPF263とし、周波数ずれ量に応じたパイロット信号の抽出を可能とする ことで、周波数ずれによる位相雑音相殺効果の低下を抑制して 、る。 The wireless receiving apparatus 200b shown in FIG. 10 is different from the wireless receiving apparatus 200a shown in FIG. 9 in that a frequency variable BPF263 is provided instead of the BPF259. This frequency variable B PF263 varies the band frequency to be passed according to the frequency deviation amount Δί. In other words, the filter that extracts the pilot signal of the pilot branch is the frequency variable BPF263 that makes the center frequency variable, and the pilot signal can be extracted according to the frequency deviation amount, thereby reducing the phase noise cancellation effect due to the frequency deviation. Suppress it.
[0094] すなわち、図 10に示す無線受信装置 200bでは、周波数可変 BPF263は、第 1の 受信ベースバンド部 203aの周波数ずれ量検出部 206から入力される周波数ずれ量 Δ ίに応じて通過させる帯域周波数を可変させている。これによつて、周波数ずれが 生じても、周波数可変 BPF263が周波数ずれ量 Δ ίに応じて帯域周波数を可変させ ることができるので、周波数可変 BPF263によって抽出されるパイロット信号が劣化 するおそれはなくなる。したがって、周波数ずれ量 Δ ίが変動しても位相雑音キャンセ ラを確実に動作させることができる。  That is, in radio receiving apparatus 200b shown in FIG. 10, frequency variable BPF 263 is a band to be passed in accordance with frequency deviation amount Δ ί input from frequency deviation amount detection unit 206 of first reception baseband unit 203a. The frequency is varied. As a result, even if a frequency shift occurs, the frequency variable BPF 263 can change the band frequency according to the frequency shift amount Δ ί, so there is no possibility that the pilot signal extracted by the frequency variable BPF 263 will deteriorate. . Therefore, the phase noise canceller can be reliably operated even if the frequency shift amount Δ ί fluctuates.
[0095] 〈実施の形態 4〉  <Embodiment 4>
図 11は、本発明の実施の形態 4に係る無線通信システムの無線受信装置の構成 を示すブロック図である。図 11の無線受信装置 200cは、受信信号を周波数変換し ないでそのままベースバンド信号とするダイレクトコンバージョンタイプについて示し てある。なお、実施の形態 4に係る無線通信システムの無線送信装置の構成は、実 施の形態 1で示した図 5の構成と同じであるのでその説明は省略する。図 11に示す 無線受信装置 200cは、図 9に示した無線受信装置 200aがシングルコンバージョン であるところを、ダイレクトコンバージョンに変更した点である。つまり、図 11に示す無 線受信装置 200cのように、入力信号を周波数変換しな 、ダイレクトコンバージョンタ イブにしても、位相雑音キャンセラと AFCとを両立させることは可能である。 [0096] 〈実施の形態 5〉 FIG. 11 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 4 of the present invention. The radio receiving apparatus 200c in FIG. 11 shows a direct conversion type in which the received signal is directly converted into a baseband signal without frequency conversion. Note that the configuration of the wireless transmission apparatus of the wireless communication system according to Embodiment 4 is the same as the configuration of FIG. The wireless reception device 200c shown in FIG. 11 is that the wireless reception device 200a shown in FIG. 9 is changed from single conversion to direct conversion. That is, as in the radio reception apparatus 200c shown in FIG. 11, the phase noise canceller and the AFC can be compatible with each other even if the input signal is not frequency-converted and the direct conversion type is used. <Embodiment 5>
図 12は、本発明の実施の形態 5に係る無線通信システムの無線受信装置の構成 を示すブロック図である。図 12の無線受信装置 200dは、受信信号を周波数変換し ないでそのままベースバンド信号とするダイレクトコンバージョンタイプについて示し てある。なお、実施の形態 5に係る無線通信システムの無線送信装置の構成は、実 施の形態 1で示した図 5の構成と同じであるのでその説明は省略する。図 12に示す 無線受信装置 200dは、図 10に示した無線受信装置 200bがシングルコンバージョン であるところを、ダイレクトコンバージョンに変更した点である。  FIG. 12 is a block diagram showing a configuration of a radio reception apparatus of the radio communication system according to Embodiment 5 of the present invention. The radio reception device 200d in FIG. 12 shows a direct conversion type in which the received signal is directly converted into a baseband signal without frequency conversion. Note that the configuration of the radio transmission apparatus of the radio communication system according to Embodiment 5 is the same as the configuration of FIG. 5 shown in Embodiment 1, and thus the description thereof is omitted. The wireless reception device 200d shown in FIG. 12 is that the wireless reception device 200b shown in FIG. 10 is changed from the single conversion to the direct conversion.
[0097] つまり、図 12に示す無線受信装置 200dのように、入力信号を周波数変換しないダ ィレクトコンバージョンタイプにしても、位相雑音キャンセラと AFCとを両立させること は可能であると共に、周波数ずれが生じても抽出されるパイロット信号が劣化するお それはなくなる。したがって、周波数ずれが生じても位相雑音キャンセラを確実に動 作させることができる。  That is, as in the radio reception device 200d shown in FIG. 12, even if it is a direct conversion type in which the input signal is not frequency-converted, it is possible to achieve both the phase noise canceller and the AFC as well as the frequency shift. Even if this occurs, the extracted pilot signal will not be degraded. Therefore, the phase noise canceller can be operated reliably even if a frequency shift occurs.
[0098] なお、本発明の無線通信システムは、ダイレクトコンバージョンやシングルコンパ一 ジョン以外に Low— IFの構成によっても実現することができる。また、本発明の無線 通信システムは、 AFCの構成に加えて、位相雑音キャンセラ技術の高性能化機能の 追加することもできる。例えば、直交復調器の出力信号の振幅に基づいて受信信号 の受信電力値を算出し、受信電力値に応じた増幅を行う可変利得増幅を行うことも できる。また、温度を測定する温度測定手段を備えて、温度特性による遅延量変化 や受信信号の振幅を補正する機能を付加することもできる。  Note that the wireless communication system of the present invention can be realized by a Low-IF configuration in addition to direct conversion and single conversion. In addition to the AFC configuration, the wireless communication system of the present invention can also add a high-performance function of phase noise canceller technology. For example, it is possible to perform variable gain amplification that calculates the received power value of the received signal based on the amplitude of the output signal of the quadrature demodulator and performs amplification in accordance with the received power value. In addition, a temperature measuring means for measuring the temperature can be provided, and a function for correcting the delay amount change due to the temperature characteristic and the amplitude of the received signal can be added.
[0099] さらに、本発明の無線通信システムは、 BPFが抽出したノ ィロット信号に対応する 信号成分と遅延補正器の出力信号とを周波数乗算することによって直交復調器を実 現することもできる。また、パイロットブランチにおける BPFの帯域幅を、ベースバンド 部のフィルタ帯域制御信号に基づいて変化させることもできる。また、パイロットブラン チにおいて分配された信号を増幅して BPFへ出力するための増幅手段を設けること もできる。さらに、信号ブランチにおいてパイロット信号成分を抑圧するための BSFを 備免ることちでさる。  Furthermore, the radio communication system of the present invention can also realize an orthogonal demodulator by frequency-multiplying the signal component corresponding to the pilot signal extracted by the BPF and the output signal of the delay corrector. It is also possible to change the BPF bandwidth in the pilot branch based on the filter band control signal in the baseband part. It is also possible to provide amplification means for amplifying the signal distributed in the pilot branch and outputting it to the BPF. In addition, the BSF for suppressing pilot signal components in the signal branch is omitted.
産業上の利用可能性 本発明に係る無線受信装置及び無線通信システムは、最適な自動周波数制御 (A FC)を行いながら位相雑音特性を向上させることができるので、携帯電話、 PHS、無 線 LANなどの各種無線通信装置及びこれら力 構成される無線通信システムに有 効に利用することができる。 Industrial applicability The wireless receiver and the wireless communication system according to the present invention can improve the phase noise characteristics while performing optimum automatic frequency control (AFC), and thus various wireless communication devices such as a mobile phone, a PHS, and a wireless LAN. In addition, the power can be effectively used for the wireless communication system configured.

Claims

請求の範囲 The scope of the claims
[1] 通信相手の無線送信装置において、ノ ィロット信号が重畳され、送信された信号を 受信する受信手段と、  [1] In the wireless transmission device of the communication partner, a receiving means for receiving the transmitted signal with the notched signal superimposed thereon;
受信信号から前記パイロット信号を抽出する抽出手段と、  Extracting means for extracting the pilot signal from the received signal;
前記受信信号に対して前記抽出されたパイロット信号を用いて直交復調を行う直 交復調手段と、  An orthogonal demodulation means for performing orthogonal demodulation on the received signal using the extracted pilot signal;
前記受信信号を用いて基準周波数に対する局部発振器の発振周波数の周波数 ずれ量を検出する周波数ずれ量検出手段と、  A frequency deviation detecting means for detecting a frequency deviation of the oscillation frequency of the local oscillator with respect to a reference frequency using the received signal;
前記検出された周波数ずれ量を用いて前記局部発振器の発振周波数を前記基準 周波数に同期させる制御を行う自動周波数制御手段と、  Automatic frequency control means for performing control to synchronize the oscillation frequency of the local oscillator with the reference frequency using the detected frequency deviation amount;
を具備する無線受信装置。  A wireless receiver comprising:
[2] 前記受信信号に対して前記局部発振器から発振された信号を用いて直交復調を 行う第 2の直交復調手段を具備し、  [2] comprising second orthogonal demodulation means for performing orthogonal demodulation on the received signal using a signal oscillated from the local oscillator;
前記周波数ずれ量検出手段は、前記第 2の直交復調手段が直交復調した信号か ら前記周波数ずれ量を検出する、  The frequency shift amount detecting means detects the frequency shift amount from a signal quadrature demodulated by the second orthogonal demodulating means;
請求項 1に記載の無線受信装置。  The wireless receiver according to claim 1.
[3] 前記抽出手段は、受信信号に対して帯域制限することによりパイロット信号に対応 する信号成分を抽出する周波数可変帯域通過フィルタを有し、前記周波数ずれ量に 基づいて前記周波数可変帯域通過フィルタの中心周波数を変化させる、 [3] The extraction means includes a frequency variable bandpass filter that extracts a signal component corresponding to a pilot signal by band-limiting the received signal, and the frequency variable bandpass filter based on the frequency shift amount Change the center frequency of
請求項 1に記載の無線受信装置。  The wireless receiver according to claim 1.
[4] 無線送信装置と無線受信装置とを備える無線通信システムであって、 [4] A wireless communication system comprising a wireless transmission device and a wireless reception device,
前記無線送信装置は、  The wireless transmission device
多キャリア信号の中央にパイロット信号を重畳した無線信号を送信する送信手段を 備え、  A transmission means for transmitting a radio signal in which a pilot signal is superimposed at the center of a multicarrier signal;
前記無線受信装置は、  The wireless receiver is
前記無線送信装置から送信された信号を受信する受信手段と、  Receiving means for receiving a signal transmitted from the wireless transmission device;
受信信号から前記パイロット信号を抽出する抽出手段と、  Extracting means for extracting the pilot signal from the received signal;
前記受信信号に対して前記抽出されたパイロット信号を用いて直交復調を行う直 交復調手段と、 A direct demodulation is performed on the received signal using the extracted pilot signal. A demodulating means;
前記受信信号を用いて基準周波数に対する局部発振器の発振周波数の周波数 ずれ量を検出する周波数ずれ量検出手段と、  A frequency deviation detecting means for detecting a frequency deviation of the oscillation frequency of the local oscillator with respect to a reference frequency using the received signal;
前記検出された周波数ずれ量を用いて前記局部発振器の発振周波数を前記基準 周波数に同期させる制御を行う自動周波数制御手段と、を備える、  Automatic frequency control means for performing control to synchronize the oscillation frequency of the local oscillator with the reference frequency using the detected frequency deviation amount,
無線通信システム。  Wireless communication system.
PCT/JP2006/317662 2006-09-06 2006-09-06 Radio receiving apparatus and radio communication system WO2008029459A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317662 WO2008029459A1 (en) 2006-09-06 2006-09-06 Radio receiving apparatus and radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317662 WO2008029459A1 (en) 2006-09-06 2006-09-06 Radio receiving apparatus and radio communication system

Publications (1)

Publication Number Publication Date
WO2008029459A1 true WO2008029459A1 (en) 2008-03-13

Family

ID=39156904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317662 WO2008029459A1 (en) 2006-09-06 2006-09-06 Radio receiving apparatus and radio communication system

Country Status (1)

Country Link
WO (1) WO2008029459A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651437A (en) * 2017-05-23 2020-01-03 三菱电机株式会社 Base station device, ground station device, and ground antenna device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112460A (en) * 1997-01-31 1999-04-23 Jisedai Digital Television Hoso System Kenkyusho Orthogonal frequency division multiplex signal demodulator
JP2001053640A (en) * 1999-08-11 2001-02-23 Communication Research Laboratory Mpt Device and method for radio communication
JP2003087218A (en) * 2001-06-29 2003-03-20 Matsushita Electric Ind Co Ltd Multicarrier sending device, multicarrier receiving device and method for multicarrier radio communication
JP2005312021A (en) * 2004-03-25 2005-11-04 Matsushita Electric Ind Co Ltd Radio system, radio transmitter and radio receiver
JP2006101003A (en) * 2004-09-28 2006-04-13 Fujitsu Ltd Adaptive equalization processing apparatus and digital wireless receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112460A (en) * 1997-01-31 1999-04-23 Jisedai Digital Television Hoso System Kenkyusho Orthogonal frequency division multiplex signal demodulator
JP2001053640A (en) * 1999-08-11 2001-02-23 Communication Research Laboratory Mpt Device and method for radio communication
JP2003087218A (en) * 2001-06-29 2003-03-20 Matsushita Electric Ind Co Ltd Multicarrier sending device, multicarrier receiving device and method for multicarrier radio communication
JP2005312021A (en) * 2004-03-25 2005-11-04 Matsushita Electric Ind Co Ltd Radio system, radio transmitter and radio receiver
JP2006101003A (en) * 2004-09-28 2006-04-13 Fujitsu Ltd Adaptive equalization processing apparatus and digital wireless receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651437A (en) * 2017-05-23 2020-01-03 三菱电机株式会社 Base station device, ground station device, and ground antenna device
CN110651437B (en) * 2017-05-23 2022-05-17 三菱电机株式会社 Base station device, ground station device, and ground antenna device

Similar Documents

Publication Publication Date Title
JP4102375B2 (en) Wireless transmission device and wireless reception device
JP3381689B2 (en) Nonlinear distortion compensation circuit, transmission device using the same, and mobile communication device
JP3565160B2 (en) Cross polarization interference compensation circuit
US20010049264A1 (en) Method for controlling the transmitter part of a radio transceiver and a corresponding radio transceiver
JP2003517246A (en) Suppression of transmitter image in time division duplex transceiver
JP3632535B2 (en) Diversity transmission / reception method and apparatus
US8027411B2 (en) Wireless receiver
CN102301626B (en) Dual polarization transmission system, dual polarization transmission method, reception apparatus, transmission apparatus, reception method, and transmission method
US9049091B2 (en) System and method for in-phase/quadrature-phase (I/Q) time delay measurement and compensation
WO2005093979A1 (en) Radio system and radio communication device
JP2004040678A (en) Demodulator
JP2008072218A (en) Digital broadcast wave relay device
JP2007295331A (en) Radio base station device
WO2008029459A1 (en) Radio receiving apparatus and radio communication system
JPH05291995A (en) Method for compensating interference for radio repeater station
JP2002199039A (en) Receiving method and receiver in communication system
JP2007311839A (en) Digital radio device
JP2003174390A (en) Diversity receiver
JP2009159021A (en) Relay apparatus, and device and method of monitoring relay apparatus
EP2756645B1 (en) Efficient transmitter protection of all outdoor radios
JPH0774790A (en) Transmission reception circuit with nonlinear distortion compensation
JP5705088B2 (en) Transmission system, base station apparatus, terminal station apparatus, and transmission method
JP2792292B2 (en) Receiving machine
JPH05268117A (en) Transmission power control system
JP2513311B2 (en) Cross polarization communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06797557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP