WO2008029458A1 - Radio transmitting apparatus, radio receiving apparatus and wireless communication system - Google Patents

Radio transmitting apparatus, radio receiving apparatus and wireless communication system Download PDF

Info

Publication number
WO2008029458A1
WO2008029458A1 PCT/JP2006/317660 JP2006317660W WO2008029458A1 WO 2008029458 A1 WO2008029458 A1 WO 2008029458A1 JP 2006317660 W JP2006317660 W JP 2006317660W WO 2008029458 A1 WO2008029458 A1 WO 2008029458A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pilot
wireless
pilot signal
systems
Prior art date
Application number
PCT/JP2006/317660
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuya Oda
Takashi Enoki
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to PCT/JP2006/317660 priority Critical patent/WO2008029458A1/en
Publication of WO2008029458A1 publication Critical patent/WO2008029458A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2332Demodulator circuits; Receiver circuits using non-coherent demodulation using a non-coherent carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • Wireless transmission device Wireless reception device, and wireless communication system
  • the present invention relates to a radio transmission apparatus, radio reception apparatus, and radio communication system having a phase noise cancellation function and a MIMO (Multiple Input Multipie Output: spatial multiplexing) communication function using multiple antennas.
  • MIMO Multiple Input Multipie Output: spatial multiplexing
  • FIG. 1 is a block diagram showing an example of a wireless receiver in a conventional wireless communication system with improved phase noise characteristics.
  • the radio receiver shown in FIG. 1 has a local “noise” canceller to improve the phase noise characteristics.
  • FIG. 2 is a characteristic diagram showing the frequency characteristics of each component of the local noise canceller in the wireless receiver of FIG.
  • the symbols in each black circle in FIG. 1 correspond to the characteristic diagrams of the respective symbols in FIG.
  • the input signal (A) input to distributor 1 of the wireless receiver shown in Fig. 1 is the modulated IF signal (BBT-OFDM) and pilot carrier (PILOT).
  • BBT-OFDM modulated IF signal
  • PILOT pilot carrier
  • ⁇ (t) is the input phase noise ⁇ (t) superimposed on f and f.
  • PLT sig PLT and f are respectively expressed by the following equations.
  • the input signal (A) is distributed by distributor 1, one is output to the pilot branch, and the other is output to the signal branch (modulation signal branch). Distribution in the pilot branch One of the signals distributed by the filter 1 is band-limited by the band-pass filter (BPF) 2 and only the component of the pilot 'carrier (PILOT) is passed through and extracted, and is further limited by the limiter amplifier 3 The At this time, the IF signal component is removed from the frequency characteristics of the output signal (B) output from BPF2 and the output signal (C) output from the limiter amplifier 3 as shown in Fig. 2 (B Therefore, only the pilot 'carrier (PILOT) component and the input phase noise 0 (t) superimposed on it are included.
  • BPF band-pass filter
  • PILOT component of the pilot 'carrier
  • the carrier frequency f has a delay time ⁇
  • local oscillator signal (D) is output from local oscillator 4.
  • the frequency characteristics of the local oscillation signal (D), in which the local oscillator 4 power is also output, are as shown in Fig. 2 (D), and the local oscillation phase (LO) signal superimposed on the local oscillation frequency (LO) signal. Noise.
  • the local oscillation signal frequency in the system is expressed as f
  • the local oscillation signal frequency f in the system is f
  • the input signal output from the distributor 1 is frequency-converted by the multiplier (mixer) 5 with the local oscillator signal (D) of four local oscillators, and the multiplier 5 Signal (E) is output.
  • the frequency characteristics of the signal (E) output from the multiplier 5 are the sum and difference components of the input signal (A) and the local oscillation signal (D) as shown in Fig. 2 (E). Exists. Therefore, the relationship between each signal component included in the signal) and the superimposed phase noise is as follows.
  • the delay compensator 7 adds a delay At to the signal) to equalize the delay time difference from the pilot branch.
  • the signal (G) of the signal branch and the pilot branch signal (C) output from the limiter amplifier 3 are frequency-converted by the frequency change 8, and the signal (H) Is output.
  • the frequency characteristic of the signal (H) output from the frequency shift 8 is the sum and difference components of the signal (G) and the signal (C) as shown in Fig. 2 (H).
  • the relationship between each signal component contained in signal (H) and the superimposed phase noise is as follows. f — (f -f) ⁇ ⁇ (t- ⁇ )- ⁇ 0 (t- T - ⁇ ) - ⁇ ( ⁇ ⁇ ⁇ -At) ⁇
  • the delay time of the delay corrector 7 is
  • the delay ⁇ t is added to equalize the delay time difference between the signal branch and the pilot branch, so the above equation can be rearranged as follows.
  • the frequency of the output signal component is the frequency of the local oscillation signal (f) in the system related to the frequency of the input signal.
  • phase noise ⁇ that is, constant.
  • the sideband of the signal is inverted at the input and output.
  • the phase noise of the output signal is canceled by the input phase noise ⁇ (X) and becomes the phase noise ⁇ (X) of the local oscillation signal in the system instead. That is, the phase noise ⁇ of the local oscillation signal in the system
  • the signal (H) frequency-converted by the frequency conversion 8 is band-limited so that only the difference component and only the signal component pass through the band-pass filter (BPF) 9, and the signal is transmitted from the BPF 9.
  • (I) is output.
  • the frequency characteristics of this signal (I) are such that only the signal component of the difference component exists by removing the pilot / carrier component in the sum and difference components of signal (H). .
  • the relationship between the signal component included in the signal (I) and the superimposed phase noise is expressed by the following equation.
  • phase noise of the output signal is canceled by the phase noise ⁇ (X) superimposed on the input signal, and instead becomes only the phase noise ⁇ (X) of the local oscillation signal in the system. If the phase noise ⁇ (X) of the local oscillation signal is sufficiently small, the phase noise of the input signal is sufficiently reduced and output.
  • Patent Document 1 JP 2002-152158 A
  • FIG. 3 is a block diagram showing a configuration of a radio transmission apparatus and a radio reception apparatus when a phase noise cancellation technique is applied during MIMO communication in a conventional radio communication system.
  • the wireless communication system shown in FIG. 3 includes a wireless transmission device 10 and a wireless reception device 20 that perform MIMO communication.
  • the baseband signal output from the transmission baseband unit (transmission BB unit) 11 of the wireless transmission device 10 is separated into two systems by the MIMO separation unit 12.
  • One baseband signal is orthogonally modulated by the orthogonal modulation unit 13a, and further input to the transmission RF unit 14a and frequency-converted to an RF signal (radio signal) by the local oscillator 15.
  • the other baseband signal is quadrature modulated by the quadrature modulation unit 13b, further input to the transmission RF unit 14b, and frequency-converted to an RF signal (radio signal) by the local oscillator 15.
  • a radio signal is transmitted from the transmission antenna 16a of the transmission RF unit 14a via the path 1 and the path 2, and the radio signal is transmitted from the transmission antenna 16b of the transmission RF unit 14b via the path 3 and the path 4. Issue is sent.
  • the pilot signal for canceling the phase noise is transmitted through all propagation paths. It is superimposed on the line signal.
  • the radio signal transmitted from the transmission antenna 16a via the path 1 has propagation path phase information ⁇
  • propagation path phase information ⁇ 1 is added, and propagation path phase information ⁇ 2 is added to the radio signal transmitted from the transmission antenna 16a via the path 2. Further, the propagation path phase information ⁇ 3 is added to the radio signal transmitted from the transmission antenna 16b via the path 3, and the propagation path phase information ⁇ 4 is transmitted to the radio signal transmitted from the transmission antenna 16b via the path 4. Is added.
  • receiving antenna 21a receives a radio signal to which propagation path phase information ⁇ 1 is added from path 1, and a radio signal to which propagation path phase information ⁇ 3 is added from path 3. Receive. That is, the receiving antenna 21a receives the radio signals of the route 1 and the route 3 mixed.
  • the receiving antenna 21b receives a radio signal to which the propagation path phase information ⁇ 2 is added from the path 2 and receives a radio signal to which the propagation path phase information ⁇ 4 is added from the path 4.
  • the receiving antenna 2 lb receives in a state where the wireless signals of the route 2 and the route 4 are mixed.
  • a radio signal (including propagation path phase information ⁇ 1 and ⁇ 3) received by the receiving antenna 21a is amplified by the amplifier 22a and then mixed with the reference signal of the local oscillator 24 by the multiplier 23a.
  • the frequency is converted into an IF signal, and further input to the distributor 27a via the band pass filter 25a and the variable amplifier 26a.
  • This IF signal is distributed to the modulated signal branch and the pilot branch by the distributor 27a, and is input to the orthogonal demodulator 29a via the delay corrector 28a in the modulated signal branch.
  • the pilot signal is extracted by the band pass filter 30a, amplified by the amplifier 31a, and then input to the quadrature demodulator 29a.
  • the quadrature demodulator 29a cancels the phase noise by subtracting (E ⁇ F) the signal (F) that is the pilot signal from the signal (E) that is the IF signal. At this time, the propagation path phase information ⁇ 1 of the signal of the path 1 is also canceled out. Similarly, the propagation path phase information ⁇ 3 of the signal of the path 3 is also canceled.
  • Radio signals (including propagation path phase information 0 2 and 0 4) received by the reception antenna 21b of the radio reception device 20 are amplified by the amplifier 22b, and then are local oscillators in the multiplier 23b. It is mixed with 24 reference signals and converted to an IF signal. It is input to the distributor 27b via the filter 25b and the variable amplifier 26b. This IF signal is distributed to the modulated signal branch and the pilot branch by the distributor 27b, and is input to the quadrature demodulator 29b via the delay corrector 28b in the modulated signal branch. In the pilot branch, the pilot signal is extracted by the band pass filter 30b, amplified by the amplifier 31b, and then input to the quadrature demodulator 29b.
  • the quadrature demodulator 29b cancels the phase noise by subtracting (E ⁇ F) the signal (F) that is the pilot signal from the signal (E) that is the IF signal. At this time, the propagation path phase information ⁇ 2 of the signal of path 2 is also canceled. Similarly, the propagation path phase information ⁇ 4 of the signal of the path 4 is also canceled.
  • the MIMO synthesizer 32 performs the MIMO matrix operation. As a result, it becomes impossible to separate multiple data sequences, and it becomes impossible to output a signal to the reception baseband unit (reception BB unit) 33.
  • An object of the present invention is to provide a wireless transmission device, a wireless reception device, and a wireless communication system capable of realizing both a phase noise cancellation function and a MIMO communication function. Means for solving the problem
  • a wireless reception device of the present invention is a wireless reception device of a wireless communication system that performs n systems (n is a plurality) of MIMO communications, and in a wireless transmission device of a communication partner, among the n systems of MIMO paths
  • a pilot means is superimposed on an arbitrary m system (m is a natural number, n> m), receiving means for receiving signals transmitted by multiple systems, received signal power, extracting means for extracting the pilot signals, and all And a plurality of orthogonal demodulation means for performing orthogonal demodulation on the received signal transmitted through the MIMO path using the extracted pilot signal.
  • a radio transmission apparatus includes a separating unit that separates a transmission signal into n MIMO paths, a pilot signal generating unit that generates a pilot signal, and the pilot signal superimposed on m of the n systems.
  • the wireless communication system of the present invention is a wireless transmission device using n systems (n is a plurality) of MIMO communications.
  • a wireless communication system for transmitting a signal to a wireless reception device wherein the wireless transmission device includes a separation unit that separates a transmission signal into n MIMO paths, a pilot signal generation unit that generates a pilot signal, A superimposing unit that superimposes a pilot signal on m systems (m is a natural number, n> m) of the n systems, and a transmitting unit that transmits signals to the wireless receiving apparatus in n systems.
  • An apparatus includes: a receiving unit that receives a signal transmitted from a wireless transmission device of a communication partner; an extracting unit that extracts the pilot signal from the received signal; and the extraction for the received signal transmitted through all MIMO paths. And a plurality of orthogonal demodulation means for performing orthogonal demodulation using the pilot signal thus obtained.
  • the wireless transmission device superimposes the pilot signal for phase noise cancellation on only one of the propagation paths of a plurality of systems, and the wireless reception device extracts
  • the signal for quadrature demodulation of the signals of all propagation paths the phase information of the propagation path is not lost during quadrature demodulation, so the phase noise cancellation function and the MIMO communication function can be realized together. Good communication characteristics can be obtained.
  • FIG. 1 is a block diagram showing an example of a wireless receiving device in a conventional wireless communication system
  • FIG. 2 is a characteristic diagram showing frequency characteristics of each component of the local noise canceller in the wireless receiver of FIG.
  • FIG. 3 is a block diagram showing a configuration of a wireless transmission device and a wireless reception device when phase noise cancellation technology is applied during MIMO communication in a conventional wireless communication system.
  • FIG. 4 is a block diagram showing configurations of a wireless transmission device and a wireless reception device of the wireless communication system according to Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram showing configurations of a wireless transmission device and a wireless reception device of the wireless communication system according to Embodiment 2 of the present invention.
  • FIG. 6 is a block diagram showing configurations of a wireless transmission device and a wireless reception device of the wireless communication system according to the third embodiment of the present invention.
  • FIG. 4 is a block diagram showing configurations of radio transmitting apparatus 100 and radio receiving apparatus 200 of the radio communication system according to Embodiment 1 of the present invention.
  • the wireless communication system shown in Fig. 4 shows a case where communication is performed by two systems of MIMO for easy understanding.
  • Radio transmission apparatus 100 includes transmission baseband unit (transmission BB unit) 101, MIMO separation unit 102, orthogonal modulation units 103a and 103b, pilot signal generation unit 104, adder 105a, local oscillator 106, transmission RF unit 107a and 107b and transmission antennas 108a and 108b are provided.
  • radio receiving apparatus 200 includes receiving antennas 201a and 201b, amplifiers 202a and 202b, local oscillator 203, multipliers 204a and 204b, bandpass filters 205a and 205b, variable amplifiers 206a and 206b, and a first distribution. 207, delay correctors 208a and 208b, quadrature demodulation units 209a and 209b, band pass filter 210, amplifier 211, second distributor 212, MIMO synthesis unit 213, and reception baseband unit (reception BB unit) 214.
  • transmission BB section 101 In radio transmission apparatus 100, transmission BB section 101 generates a baseband signal and outputs it to Ml MO separation section 102. MIMO separation section 102 separates the baseband signal into two systems. Quadrature modulation sections 103a and 103b perform quadrature modulation on each baseband signal separated into two systems.
  • Pilot signal generation section 104 generates a pilot signal for phase noise cancellation.
  • Adder 105a mixes the pilot signal with the modulation signal output from quadrature modulation section 103a.
  • the local oscillator 106 generates a local oscillation signal (local signal) and outputs it to the transmission RF units 107a and 107b.
  • the transmission RF units 107a and 107b frequency-convert the modulation signal into a radio signal (RF signal) using the input local oscillation signal.
  • the transmitting antennas 108a and 108b transmit radio signals to the wireless receiving device 200.
  • the radio signal transmitted from the transmitting antenna 108a is transmitted through the path 1 to the propagation path phase information.
  • the receiving antenna 201a of the wireless receiving device 200 When it is received by the receiving antenna 201a of the wireless receiving device 200 with ⁇ 1 added.
  • the signal is received by the receiving antenna 201b of the radio receiving apparatus 200 through the path 2 with the propagation path phase information ⁇ 2 added thereto.
  • the radio signal transmitted from the transmission antenna 108b is received by the reception antenna 201a of the radio reception device 200 via the path 3 with the propagation path phase information ⁇ 3 added, and via the path 4.
  • the signal is received by the receiving antenna 201b of the radio receiving apparatus 200 with the propagation path phase information ⁇ 4 added.
  • receiving antenna 201 a receives a radio signal to which propagation path phase information ⁇ 1 has been added via path 1, and propagates path phase information via path 3.
  • a radio signal with ⁇ 3 added is received.
  • the receiving antenna 201b receives a radio signal to which the propagation path phase information ⁇ 2 is added via the path 2, and receives a radio signal to which the propagation path phase information ⁇ 4 is added via the path 4. To do.
  • the amplifiers 202a and 202b amplify the radio signals received by the respective receiving antennas 201a and 201b.
  • the local oscillator 203 generates a local oscillation signal (local signal) and outputs it to the multipliers 204a and 204b.
  • Multipliers 204a and 204b frequency-convert radio signals (RF signals) received from the respective amplifiers 202a and 202b into IF signals using the local transmission signals from local transmitter 203.
  • the band pass filters 205a and 205b extract only signals in a desired frequency band with the signal power frequency-converted by the multipliers 204a and 204b, respectively.
  • the variable amplifiers 206a and 206b variably amplify signals in desired frequency bands output from the band pass filters 205a and 205b, respectively.
  • the first distributor 207 distributes the signal output from the variable amplifier 206a in two directions, ie, a modulated signal branch and a pilot branch.
  • the band pass filter 210 extracts a pilot signal from the signal distributed to the pilot branch by the first distributor 207 and outputs it to the amplifier 211.
  • the amplifier 211 amplifies the pilot signal extracted by the band pass filter 210 and outputs it to the second distributor 212.
  • the second distributor 212 distributes the pilot signal output from the amplifier 211 to two systems and outputs it to the quadrature demodulator 209a and the quadrature demodulator 209b.
  • Delay corrector 208a delays the modulated signal of the modulated signal branch distributed by first distributor 207, and outputs the delayed signal to quadrature demodulator 209a.
  • Quadrature demodulator 209a uses the second distribution
  • the pilot signal output from the unit 212 and the output signal from the delay corrector 208a are frequency-multiplied and subjected to quadrature demodulation. That is, the quadrature demodulator 209a converts the pilot signal corresponding to the propagation path phase information ⁇ 1 into the signal to which the propagation path phase information ⁇ 1 of the path 1 is added and the signal to which the propagation path phase information ⁇ 3 of the path 3 is added.
  • Quadrature demodulation is performed by multiplying each frequency.
  • Delay corrector 208b gives a delay to the modulated signal output from variable amplifier 206b and outputs the delayed signal to quadrature demodulator 209b.
  • the orthogonal demodulator 209b multiplies the pilot signal distributed by the second distributor 212 and the output signal from the delay corrector 208b by frequency, and performs orthogonal demodulation. That is, the orthogonal demodulation unit 209b adds the pilot signal corresponding to the propagation path phase information ⁇ 1 to the signal to which the propagation path phase information ⁇ 2 of path 2 is added and the propagation path phase information ⁇ 4 of path 4 Each signal is orthogonally demodulated by frequency multiplication.
  • the phase noise of the local oscillator is canceled in the signal of each propagation path after quadrature demodulation.
  • MIMO combining section 213 uses the path 1 signal and path 3 signal output from quadrature demodulation section 209a, and the path 2 signal and path 4 signal output from quadrature demodulation section 209b to form a matrix. The calculation is performed, and the two baseband signals obtained are serialized (MIMO synthesis) and output to the reception baseband unit 214.
  • the reception baseband unit (reception BB unit) 21 4 converts the baseband signal output from the MIMO synthesis unit 213 and outputs the converted signal to a circuit in a subsequent process.
  • the baseband signal output from the transmission BB unit 101 of the wireless transmission device 100 is separated into two systems by the MIMO separation unit 102. Further, the separated baseband signals are orthogonally modulated by the orthogonal modulators 103a and 103b, respectively.
  • the phase noise canceling pilot signal generated by pilot signal generating section 104 is superimposed on the modulated signal output from quadrature modulator 103a.
  • transmission RF section 107a the modulated signal on which the pilot signal is superimposed is converted into a radio signal (RF signal) and transmitted from transmission antenna 108a.
  • the modulated signal output from the quadrature modulator 103b is converted into a radio signal (RF signal) and transmitted from the transmission antenna 108b.
  • the radio signal transmitted from the transmission antenna 108a of the radio transmission apparatus 100 is received by the reception antenna 201a of the radio reception apparatus 200 with the propagation path phase information ⁇ 1 added via the path 1.
  • the propagation path phase information ⁇ 2 is added via the path 2 and received by the reception antenna 201b of the radio reception apparatus 200.
  • the radio signal transmitted from the transmission antenna 108b of the wireless transmission device 100 is received by the reception antenna 201a of the wireless reception device 200 through the path 3 with the propagation path phase information ⁇ 3 added thereto, and is transmitted through the path 4.
  • the propagation path phase information ⁇ 4 is added and received by the reception antenna 201b of the radio reception apparatus 200.
  • the radio signal of path 1 (propagation phase information ⁇ 1) and the radio signal of path 3 (propagation phase information ⁇ 3) received by the receiving antenna 201a are amplified by the amplifier 202a and then locally oscillated.
  • the frequency is converted by the multiplier 204a using the local oscillation signal of the unit 203, only the component of the desired frequency band is extracted by the band pass filter 205a, and is variably amplified by the variable amplifier 206a.
  • the radio signal of the path 2 (propagation phase information ⁇ 2) and the radio signal of the path 4 (propagation phase information ⁇ 4) received by the receiving antenna 201b are amplified by the amplifier 202b and then the local oscillator 203
  • the frequency is converted by the multiplier 204b using the local oscillation signal, only the component of the desired frequency band is extracted by the band pass filter 205b, and variably amplified by the variable amplifier 206b.
  • the signal output from the variable amplifier 206a is distributed in two directions of the modulated signal branch and the pilot branch.
  • the pilot signal including the propagation path phase information ⁇ 1 of the path 1 is extracted from the signal power distributed to the pilot branch.
  • the pilot signal is amplified by the amplifier 211, distributed to two systems by the second distributor 212, and input to the quadrature demodulator 209a and the quadrature demodulator 209b.
  • the signal distributed to the modulation signal branch is delayed by the delay corrector 208a, Input to the demodulator 209a.
  • the signal output from the variable amplifier 206b is delayed by the delay corrector 208b and input to the quadrature demodulator 209b.
  • the quadrature demodulator 209a uses the pilot signal corresponding to the propagation path phase information ⁇ 1, and uses the pilot signal corresponding to the propagation path phase information ⁇ 1 and the wireless signal of the path 3 (propagation phase information ⁇ 1) Quadrature demodulation is performed for 3). Further, the quadrature demodulator 209b uses the pilot signal corresponding to the propagation path phase information ⁇ 1 and uses the pilot signal corresponding to the propagation path phase information ⁇ 1 and the wireless signal of the path 4 (propagation phase information ⁇ 2) and the wireless signal of the path 4 (propagation phase information ⁇ 4 ) Is subjected to quadrature demodulation.
  • the synthesizing unit 213 performs matrix calculation using these signals.
  • the two baseband signals obtained by the matrix operation are serialized by the synthesizer 213 and converted by the receiver 213.
  • radio reception apparatus 200 all received radio signals (propagation paths) using the pilot signal containing the propagation path phase information of one propagation path are used.
  • quadrature demodulation of the phase information ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4
  • the phase noise of the local oscillator can be canceled and the relative relationship of the transmission path phase information of each propagation path is changed. Because there is no ⁇ matrix operation can be performed.
  • pilot signals are extracted from a plurality of reception systems, and signals of all paths are orthogonally demodulated using the extracted pilot signals having the highest signal level.
  • FIG. 5 is a block diagram showing configurations of radio transmitting apparatus 100 and radio receiving apparatus 200a of the radio communication system according to Embodiment 2 of the present invention.
  • a radio reception apparatus 200a shown in FIG. 5 is provided with a first distributor 207a, a bandpass filter 210a and an amplifier 21la in one reception system, and a first distributor 207b, a bandpass filter 210b and an amplifier in the other reception system. Provide a width 21 lb.
  • the wireless reception device 200a includes the wireless reception device 200 shown in FIG. In contrast, a configuration in which a comparator 215 is added is adopted.
  • the first distributor 207a distributes the signal output from the variable amplifier 206a in two directions, ie, a modulated signal branch and a pilot branch.
  • the band pass filter 210a extracts the pilot signal from the signal distributed to the pilot branch by the first distributor 207a and outputs it to the amplifier 21 la.
  • the amplifier 21 la amplifies the pilot signal extracted by the band pass filter 210 a and outputs it to the comparator 215.
  • the first distributor 207b distributes the signal output from the variable amplifier 206b in two directions of a modulated signal branch and a pilot branch.
  • the band pass filter 210b extracts a pilot signal from the signal distributed to the pilot branch by the first distributor 207b and outputs it to the amplifier 21 lb.
  • the amplifier 21 lb amplifies the pilot signal extracted by the band pass filter 210b and outputs the amplified signal to the comparator 215.
  • Comparator 215 compares the signal level of the pilot signal output from amplifier 21 la with the signal level of the pilot signal output from amplifier 21 1 lb, and determines the pilot signal having the higher signal level as the first signal. 2 Outputs to the distributor 212. As a result, the pilot signal having the better quality is supplied to the orthogonal demodulation unit 209a and the orthogonal demodulation unit 209b.
  • a transmission path on which a pilot signal is superimposed is determined based on downlink propagation path information such as a subcarrier signal level of frequencies around the pilot signal.
  • FIG. 6 is a block diagram showing configurations of radio transmitting apparatus 100a and radio receiving apparatus 200a of the radio communication system according to Embodiment 3 of the present invention.
  • the radio transmission device 100a shown in FIG. 6 is provided with adders 105a and 105b in each transmission system. 6 employs a configuration in which a determination unit 109 and a switch 110 are added to the wireless transmission device 100 illustrated in FIG. 4 and FIG.
  • the radio receiving device 200a may have the same configuration as the radio receiving device 200 shown in FIG.
  • the determination unit 109 constantly monitors the spatial propagation state of the downlink propagation path and monitors the subcarrier signal level. The information indicating the determination result is output to the switch 110. Based on the determination result of the determination unit 109, the switch 110 outputs the pilot signal generated by the pilot signal generation unit 104 to either the adder 105a or the adder 105b.
  • the phase noise cancellation function and the MIMO communication function are optimally switched by switching the propagation path on which the pilot signal is superimposed to the optimal path according to the spatial propagation state. It can be realized together.
  • the power of the present invention described for two systems of MIMO communication is not limited to this, and can also be applied to three or more systems of MIMO communication.
  • the case where the pilot signal is superimposed on one system has been described.
  • the present invention is not limited to this.
  • the pilot signal is superimposed on two systems.
  • n systems n is a multiple number
  • m is a natural number, n> m.
  • the present invention can also be applied to an apparatus having a direct conversion configuration, and can also be applied to an apparatus having a Low-IF configuration.
  • the present invention II can also be applied to multicarrier communication such as OFDM (Orthogonal Frequency Division Multiplexing).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present invention can improve the phase noise characteristics while performing MIMO communication, it is suitable for use in various wireless communication devices such as mobile phones, PHS, wireless LANs, etc. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

A wireless communication system capable of providing both a phase noise canceler function and a MIMO communication function. In this wireless communication system, if there exist a plurality of propagation paths, a radio transmitting apparatus (100) superimposes a pilot signal for phase noise cancellation on only one of the plurality of propagation paths. A radio receiving apparatus (200) extracts and uses the pilot signal for quadrature demodulations of the signals of all of the propagation paths. That is, in the radio receiving apparatus (200), the pilot signal is extracted by a bandpass filter (210), then amplified by an amplifier (211), then distributed into two systems by a second distributor (212) and then used by quadrature demodulation parts (209a,209b) to perform the quadrature demodulations of the signals of all of the propagation paths.

Description

無線送信装置、無線受信装置及び無線通信システム  Wireless transmission device, wireless reception device, and wireless communication system
技術分野  Technical field
[0001] 本発明は、位相雑音相殺機能とマルチアンテナによる MIMO (Multiple Input Multi pie Output :空間多重化)通信機能を備えた無線送信装置、無線受信装置及び無線 通信システムに関する。  The present invention relates to a radio transmission apparatus, radio reception apparatus, and radio communication system having a phase noise cancellation function and a MIMO (Multiple Input Multipie Output: spatial multiplexing) communication function using multiple antennas.
背景技術  Background art
[0002] 従来より、位相雑音特性に優れた無線通信システムを提供するために様々な方策 が採られており、この種の無線通信システムの技術は例えば特許文献 1などに開示さ れている。図 1は、位相雑音特性を改善した従来の無線通信システムにおける無線 受信装置の一例を示すブロック図である。図 1に示す無線受信装置では、位相雑音 特性を改善するためにローカル'ノイズ'キャンセラを具備している。また、図 2は、図 1 の無線受信装置におけるローカル ·ノイズ'キャンセラの各構成部分の周波数特性を 示す特性図である。つまり、図 1の各黒丸部分の符号が図 2のそれぞれの符号の特 性図に対応している。  Conventionally, various measures have been taken in order to provide a wireless communication system with excellent phase noise characteristics, and the technology of this type of wireless communication system is disclosed in Patent Document 1, for example. FIG. 1 is a block diagram showing an example of a wireless receiver in a conventional wireless communication system with improved phase noise characteristics. The radio receiver shown in FIG. 1 has a local “noise” canceller to improve the phase noise characteristics. FIG. 2 is a characteristic diagram showing the frequency characteristics of each component of the local noise canceller in the wireless receiver of FIG. In other words, the symbols in each black circle in FIG. 1 correspond to the characteristic diagrams of the respective symbols in FIG.
[0003] 従って、図 1の無線受信装置におけるローカル'ノイズ'キャンセラの動作について 図 2を参照しながら説明する。図 1に示す無線受信装置の分配器 1に入力される入力 信号 (A)は、図 2 (A)に示すように、変調された IF信号 (BBT— OFDM)とパイロット •キャリア (PILOT)とが多重化されており、入力位相雑音 (太い斜め線部分)が重畳 されているものとする。ここで、入力信号におけるノ ィロット'キャリア(PILOT)の周波 数 、 IF信号 (BBT— OFDM)つまり入力信号の周波数を f とし、入力位相雑音 Accordingly, the operation of the local “noise” canceller in the radio reception apparatus of FIG. 1 will be described with reference to FIG. As shown in Fig. 2 (A), the input signal (A) input to distributor 1 of the wireless receiver shown in Fig. 1 is the modulated IF signal (BBT-OFDM) and pilot carrier (PILOT). Are multiplexed and the input phase noise (thick diagonal line) is superimposed. Here, the frequency of the no-carrier (PILOT) in the input signal, IF signal (BBT-OFDM), that is, the frequency of the input signal is f, and the input phase noise
PLT sig PLT sig
を Θ (t)とすると、 f 及び f には入力位相雑音 Θ (t)が重畳されているので、 f 及  Where Θ (t) is the input phase noise Θ (t) superimposed on f and f.
PLT sig PLT び f はそれぞれ次の式のように示される。  PLT sig PLT and f are respectively expressed by the following equations.
sig  sig
f Ζ Θ (t)  f Ζ Θ (t)
PLT  PLT
f Z Θ (t)  f Z Θ (t)
sig  sig
[0004] 入力信号 (A)は、分配器 1で分配され、一方がパイロットブランチへ出力され、他方 がシグナルブランチ (変調信号ブランチ)へ出力される。パイロットブランチでは、分配 器 1で分配された一方の信号が、帯域通過フィルタ (BPF) 2で帯域制限されて、パイ ロット'キャリア(PILOT)の成分のみが通過して抽出され、さらに、リミッタ増幅器 3で リミッタ増幅される。このとき、 BPF2から出力される出力信号 (B)及びリミッタ増幅器 3 力も出力される出力信号 (C)の周波数特性は、図 2 (B · C)に示すように、 IF信号成 分は除去されてパイロット 'キャリア(PILOT)の成分とそれに重畳された入力位相雑 音 0 (t)のみとなる。 [0004] The input signal (A) is distributed by distributor 1, one is output to the pilot branch, and the other is output to the signal branch (modulation signal branch). Distribution in the pilot branch One of the signals distributed by the filter 1 is band-limited by the band-pass filter (BPF) 2 and only the component of the pilot 'carrier (PILOT) is passed through and extracted, and is further limited by the limiter amplifier 3 The At this time, the IF signal component is removed from the frequency characteristics of the output signal (B) output from BPF2 and the output signal (C) output from the limiter amplifier 3 as shown in Fig. 2 (B Therefore, only the pilot 'carrier (PILOT) component and the input phase noise 0 (t) superimposed on it are included.
[0005] このとき BPF2では遅延が発生し、この遅延時間を τ とすると、入力パイロット'キ  [0005] At this time, a delay occurs in BPF2, and if this delay time is τ, the input pilot key
BPF1  BPF1
ャリア周波数 f には、遅延時間 τ  The carrier frequency f has a delay time τ
BPF1だけ遅延した入力位相雑音 0 (t— τ ) Input phase noise delayed by BPF1 0 (t— τ)
PLT BPF1 が重 畳されて!ヽるので、入カノィロット ·キャリア周波数 f は次の式のように示される。 Since PLT BPF1 is superimposed !, the incoming canolot carrier frequency f is expressed as follows.
PLT  PLT
f Z Θ (t- τ )  f Z Θ (t- τ)
PLT BPF1  PLT BPF1
[0006] 一方、分配器 1で分配されたシグナルブランチでは、局部発振器 4から局部発振信 号 (D)が出力される。ここで、局部発振器 4力も出力される局部発振信号 (D)の周波 数特性は、図 2 (D)に示すように、局部発振周波数 (LO)の信号とそれに重畳された 系内局部発振位相雑音である。ここで、系内の局部発振信号周波数を f  On the other hand, in the signal branch distributed by distributor 1, local oscillator signal (D) is output from local oscillator 4. Here, the frequency characteristics of the local oscillation signal (D), in which the local oscillator 4 power is also output, are as shown in Fig. 2 (D), and the local oscillation phase (LO) signal superimposed on the local oscillation frequency (LO) signal. Noise. Here, the local oscillation signal frequency in the system is expressed as f
LOとし、系内 局部発振位相雑音を Φ (t)とすると、系内の局部発振信号周波数 f  When LO is the local oscillation phase noise in the system and Φ (t), the local oscillation signal frequency f in the system is f
LOには、系内局部 発振位相雑音 Φ (t)が重畳されて ヽるので、局部発振信号周波数 f は次の式のよう  Since the local oscillation phase noise Φ (t) is superimposed on LO, the local oscillation signal frequency f is given by
LO  LO
に示される。  Shown in
f  f
LO )  LO)
[0007] そして、シグナルブランチでは、分配器 1から出力された入力信号が、乗算器 (ミキ サ) 5にお 、て局部発振器 4力もの局部発振信号 (D)で周波数変換され、乗算器 5よ り信号 (E)が出力される。ここで、乗算器 5から出力された信号 (E)の周波数特性は、 図 2 (E)に示すように、入力信号 (A)と局部発振信号 (D)との和成分と差成分とが存 在する。よって、信号 )に含まれる各信号成分と重畳される位相雑音との関係は、 それぞれ次の式のようになる。  [0007] In the signal branch, the input signal output from the distributor 1 is frequency-converted by the multiplier (mixer) 5 with the local oscillator signal (D) of four local oscillators, and the multiplier 5 Signal (E) is output. Here, the frequency characteristics of the signal (E) output from the multiplier 5 are the sum and difference components of the input signal (A) and the local oscillation signal (D) as shown in Fig. 2 (E). Exists. Therefore, the relationship between each signal component included in the signal) and the superimposed phase noise is as follows.
f -f Ζ Θ (t) - (t)  f -f Ζ Θ (t)-(t)
PLT LO  PLT LO
f f Z Θ (t) - (t)  f f Z Θ (t)-(t)
sig LO  sig LO
f +f Z Θ (t) + (t)  f + f Z Θ (t) + (t)
PLT LO  PLT LO
f +f Z Θ (t) + (t) [0008] そして、周波数変換された信号 (E)は、帯域通過フィルタ (BPF) 6で差成分のみが 通過するように帯域制限されているので、 BPF6から信号 (F)が出力される。この信 号 (F)の周波数特性は、図 2(F)に示すように、信号 )における和成分が除去され て差成分のみが存在する。このとき、 BPF6では遅延が発生し、この遅延時間を τ f + f Z Θ (t) + (t) [0008] Since the frequency-converted signal (E) is band-limited so that only the difference component passes through the band-pass filter (BPF) 6, the signal (F) is output from the BPF 6. In the frequency characteristics of this signal (F), as shown in Fig. 2 (F), the sum component in the signal) is removed and only the difference component exists. At this time, a delay occurs in BPF6.
BPF  BPF
2とすると、抽出される差成分に重畳される位相雑音には遅延時間 τ  Assuming 2, the phase noise superimposed on the extracted difference component has a delay time τ
BPF2だけ遅延が 発生する。このとき、信号 (F)に含まれる各信号成分と重畳される位相雑音との関係 は、それぞれ次の式のようになる。  A delay occurs only for BPF2. At this time, the relationship between each signal component included in the signal (F) and the superimposed phase noise is as follows.
f -f Z Θ (t- τ ) - (t- τ )  f -f Z Θ (t- τ)-(t- τ)
PLT LO BPF2 BPF2  PLT LO BPF2 BPF2
f -f Ζ θ (t- τ ) - (t- τ )  f -f Ζ θ (t- τ)-(t- τ)
sig LO BPF2 BPF2  sig LO BPF2 BPF2
[0009] そして、信号 )は、遅延補正器 7において、パイロットブランチの BPF2における 遅延時間と等価になるように遅延量が加えられ、遅延補正器 7から信号 (G)が出力さ れる。ここで、帯域通過フィルタ(BPF) 2の遅延時間 τ に対して、帯域通過フィル  [0009] Then, a delay amount is added to the signal) in the delay corrector 7 so as to be equivalent to the delay time in the BPF2 of the pilot branch, and the signal (G) is output from the delay corrector 7. Here, with respect to the delay time τ of the bandpass filter (BPF) 2, the bandpass filter
BPF1  BPF1
タ(BPF) 6の遅延時間を τ とし、遅延補正器 7における遅延時間を Atとすると、  (BPF) 6 delay time is τ and delay corrector 7 delay time is At.
BPF2  BPF2
τ = τ + At  τ = τ + At
BPFl BPF2  BPFl BPF2
となるように、遅延補正器 7は、信号 )に対して遅延 Atを加えてパイロットブラン チとの遅延時間差を等価にする。  Thus, the delay compensator 7 adds a delay At to the signal) to equalize the delay time difference from the pilot branch.
[0010] その結果、信号 (G)の周波数特性は変化せず、図 2(G)に示すような波形になり、 信号 (G)に含まれる各信号成分と重畳される位相雑音との関係は、位相雑音に遅延 Δ tが加わって次の式のようになる。  [0010] As a result, the frequency characteristic of the signal (G) does not change, and the waveform is as shown in Fig. 2 (G). The relationship between each signal component included in the signal (G) and the superimposed phase noise Is obtained by adding the delay Δt to the phase noise.
f -ί Ζ Θ (t- τ At) - (t- τ - At)  f -ί Ζ Θ (t- τ At)-(t- τ-At)
PLT LO BPF2- BPF2  PLT LO BPF2- BPF2
f f Z Θ (t- τ - At) - (t- τ - At)  f f Z Θ (t- τ-At)-(t- τ-At)
sig LO BPF2 BPF2  sig LO BPF2 BPF2
[0011] そして、シグナルブランチの信号 (G)と、上記のリミッタ増幅器 3から出力されるパイ ロットブランチの信号 (C)とが周波数変 8で周波数変換され、周波数変 8か ら信号 (H)が出力される。  [0011] The signal (G) of the signal branch and the pilot branch signal (C) output from the limiter amplifier 3 are frequency-converted by the frequency change 8, and the signal (H) Is output.
[0012] ここで、周波数変翻 8から出力される信号 (H)の周波数特性は、図 2(H)に示す ように、信号 (G)と信号 (C)との和成分と差成分とが存在する。よって、信号 (H)に含 まれる各信号成分と重畳される位相雑音との関係はそれぞれ次の式のようになる。 f — (f -f )Ζ θ (t-τ )-{ 0 (t- T -Α )-φ(ί~τ -At)}  [0012] Here, the frequency characteristic of the signal (H) output from the frequency shift 8 is the sum and difference components of the signal (G) and the signal (C) as shown in Fig. 2 (H). Exists. Therefore, the relationship between each signal component contained in signal (H) and the superimposed phase noise is as follows. f — (f -f) Ζ θ (t-τ)-{0 (t- T -Α) -φ (ί ~ τ -At)}
PLT PLT し O BPFl BPF2 BPF2 f — (f f )Z Θ (t-τ )-{ 0(t- T -Μ)-φ(ί~τ -At)}PLT PLT O BPFl BPF2 BPF2 f — (ff) Z Θ (t-τ)-{0 (t- T -Μ) -φ (ί ~ τ -At)}
PLT sig LO BPF1 BPF2 BPF2 PLT sig LO BPF1 BPF2 BPF2
f + (f -f )Z Θ (t-τ ) + { 0(t- T -At)- (t- T -At)}  f + (f -f) Z Θ (t-τ) + {0 (t- T -At)-(t- T -At)}
PLT PLT し O BPF1 BPF2 BPF2  PLT PLT O BPF1 BPF2 BPF2
f + (f f )Z Θ (t-τ ) + { 0(t- T -At)- (t- T -At)}  f + (f f) Z Θ (t-τ) + {0 (t- T -At)-(t- T -At)}
BPF2  BPF2
[0013] :で、上記のように、遅延補正器 7の遅延時間は、  [0013] As described above, the delay time of the delay corrector 7 is
τ = τ + At  τ = τ + At
BPFl BPF2  BPFl BPF2
となるように、遅延 Δ tを加えてシグナルブランチとパイロットブランチとの遅延時間 差を等価するので、上記の式を整理すると次の式のようになる。  Thus, the delay Δt is added to equalize the delay time difference between the signal branch and the pilot branch, so the above equation can be rearranged as follows.
f Z (t- τ -At)  f Z (t- τ -At)
LO BPF2  LO BPF2
f 一(f 一 f )Z (t- τ -At)  f one (f one f) Z (t- τ -At)
LO sig PLT BPF2  LO sig PLT BPF2
2Xf f Z2X Θ (t- τ ) - (t- τ - At)  2Xf f Z2X Θ (t- τ)-(t- τ-At)
PLT LO BPFl BPF2  PLT LO BPFl BPF2
f + (f -f )Z2X Θ (t- τ ) - (t- τ At)  f + (f -f) Z2X Θ (t- τ)-(t- τ At)
PLT sig LO BPFl BPF2  PLT sig LO BPFl BPF2
[0014] ここで、差成分に着目すると、出力信号成分の周波数は、入力信号の周波数に関 係なぐ系内の局部発振信号の周波数 (f )  [0014] Here, focusing on the difference component, the frequency of the output signal component is the frequency of the local oscillation signal (f) in the system related to the frequency of the input signal.
LOであり、つまり一定である。また、パイロッ ト 'キャリアに着目した場合の信号のサイドバンドは、入出力で反転する。また、出力 信号の位相雑音は、入力された位相雑音 Θ (X)がキャンセルされ、代わりに系内の 局部発振信号の位相雑音 φ (X)となる。つまり、系内の局部発振信号の位相雑音 φ LO, that is, constant. In addition, when the pilot 'carrier is focused, the sideband of the signal is inverted at the input and output. Also, the phase noise of the output signal is canceled by the input phase noise Θ (X) and becomes the phase noise φ (X) of the local oscillation signal in the system instead. That is, the phase noise φ of the local oscillation signal in the system
(X)が十分小さければ、入力された信号の位相雑音は、十分軽減されて出力される ことがわ力ゝる。 If (X) is sufficiently small, the phase noise of the input signal is sufficiently reduced and output.
[0015] そこで、周波数変翻8で周波数変換された信号 (H)は、帯域通過フィルタ (BPF )9において差成分のみ、かつ信号成分のみが通過するように帯域制限されて、 BPF 9より信号 (I)が出力される。この信号 (I)の周波数特性は、図 2(1)に示すように、信 号 (H)における和成分及び差成分内のパイロット ·キャリア成分が除去されて差成分 の信号成分のみが存在する。このとき、信号 (I)に含まれる信号成分と重畳される位 相雑音との関係は、次の式のようになる。  [0015] Therefore, the signal (H) frequency-converted by the frequency conversion 8 is band-limited so that only the difference component and only the signal component pass through the band-pass filter (BPF) 9, and the signal is transmitted from the BPF 9. (I) is output. As shown in Fig. 2 (1), the frequency characteristics of this signal (I) are such that only the signal component of the difference component exists by removing the pilot / carrier component in the sum and difference components of signal (H). . At this time, the relationship between the signal component included in the signal (I) and the superimposed phase noise is expressed by the following equation.
f 一(f 一 f )Ζ (t- τ -At)  f one (f one f) Ζ (t- τ -At)
LO sig PLT BPF2  LO sig PLT BPF2
[0016] 上記のローカル ·ノイズ ·キャンセラの周波数同期及び雑音除去の原理により、例え ば、入力信号に周波数偏差が生じていたとしても、局部発振器 4が発生する高い周 波数精度で高い安定度を持つ局部発振周波数に従う周波数の出力信号が得られる ので、入力信号の周波数偏差を解消することができる。また、出力信号の位相雑音 は、入力信号に重畳されていた位相雑音 Θ (X)がキャンセルされて、代わりに系内の 局部発振信号の位相雑音 φ (X)のみとなるので、系内の局部発振信号の位相雑音 Φ (X)が十分小さければ、入力された信号の位相雑音は、十分軽減されて出力され る。 [0016] Due to the principle of frequency synchronization and noise removal of the local noise canceller, for example, even if there is a frequency deviation in the input signal, high stability is achieved with high frequency accuracy generated by the local oscillator 4. Output signal with frequency according to local oscillation frequency Therefore, the frequency deviation of the input signal can be eliminated. Also, the phase noise of the output signal is canceled by the phase noise Θ (X) superimposed on the input signal, and instead becomes only the phase noise φ (X) of the local oscillation signal in the system. If the phase noise Φ (X) of the local oscillation signal is sufficiently small, the phase noise of the input signal is sufficiently reduced and output.
特許文献 1 :特開 2002— 152158号公報  Patent Document 1: JP 2002-152158 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] し力しながら、従来の無線通信システムにおいては、複数のアンテナを組み合わせ てマルチアンテナ通信を行う MIMO技術が適用されるシステムについての考慮がな されていない。そして、従来の無線通信システムにおいては、位相雑音をキャンセル 際に全ての経路における伝搬路位相情報が相殺されてしまい、 MIMOの行列演算 による複数データ系列の分離が不可能となる。  However, in the conventional wireless communication system, no consideration is given to a system to which MIMO technology for performing multi-antenna communication by combining a plurality of antennas is applied. In the conventional wireless communication system, when phase noise is canceled, channel phase information in all paths is canceled out, and it becomes impossible to separate a plurality of data sequences by MIMO matrix calculation.
[0018] 以下、従来の無線通信システムにおいて、 MIMOの行列演算による複数データ系 列の分離が不可能となる理由について図 3を用いて詳しく説明する。図 3は、従来の 無線通信システムにおいて MIMO通信時に位相雑音相殺技術を適用したときの無 線送信装置と無線受信装置の構成を示すブロック図である。図 3に示す無線通信シ ステムは、 MIMO通信を行う無線送信装置 10と無線受信装置 20によって構成され ている。  [0018] Hereinafter, the reason why it becomes impossible to separate a plurality of data sequences by a MIMO matrix operation in a conventional wireless communication system will be described in detail with reference to FIG. FIG. 3 is a block diagram showing a configuration of a radio transmission apparatus and a radio reception apparatus when a phase noise cancellation technique is applied during MIMO communication in a conventional radio communication system. The wireless communication system shown in FIG. 3 includes a wireless transmission device 10 and a wireless reception device 20 that perform MIMO communication.
[0019] 無線送信装置 10の送信ベースバンド部(送信 BB部) 11から出力されたベースバン ド信号は、 MIMO分離部 12によって 2つの系統に分離される。一方のベースバンド 信号は、直交変調部 13aによって直交変調され、さらに送信 RF部 14aに入力されて 局部発振器 15により RF信号 (無線信号)に周波数変換される。また、他方のベース バンド信号は、直交変調部 13bによって直交変調され、さらに送信 RF部 14bに入力 されて局部発振器 15により RF信号 (無線信号)に周波数変換される。これによつて、 送信 RF部 14aの送信アンテナ 16aから経路 1及び経路 2を経由して無線信号が送 信され、送信 RF部 14bの送信アンテナ 16bから経路 3及び経路 4を経由して無線信 号が送信される。このとき、位相雑音相殺用のパイロット信号は全ての伝搬経路の無 線信号に重畳される。 The baseband signal output from the transmission baseband unit (transmission BB unit) 11 of the wireless transmission device 10 is separated into two systems by the MIMO separation unit 12. One baseband signal is orthogonally modulated by the orthogonal modulation unit 13a, and further input to the transmission RF unit 14a and frequency-converted to an RF signal (radio signal) by the local oscillator 15. The other baseband signal is quadrature modulated by the quadrature modulation unit 13b, further input to the transmission RF unit 14b, and frequency-converted to an RF signal (radio signal) by the local oscillator 15. As a result, a radio signal is transmitted from the transmission antenna 16a of the transmission RF unit 14a via the path 1 and the path 2, and the radio signal is transmitted from the transmission antenna 16b of the transmission RF unit 14b via the path 3 and the path 4. Issue is sent. At this time, the pilot signal for canceling the phase noise is transmitted through all propagation paths. It is superimposed on the line signal.
[0020] 送信アンテナ 16aから経路 1を介して送信される無線信号には伝搬路位相情報 Θ  [0020] The radio signal transmitted from the transmission antenna 16a via the path 1 has propagation path phase information Θ
1が付加され、送信アンテナ 16aから経路 2を介して送信される無線信号には伝搬路 位相情報 Θ 2が付加される。また、送信アンテナ 16bから経路 3を介して送信される 無線信号には伝搬路位相情報 Θ 3が付加され、送信アンテナ 16bから経路 4を介し て送信される無線信号には伝搬路位相情報 Θ 4が付加される。  1 is added, and propagation path phase information Θ 2 is added to the radio signal transmitted from the transmission antenna 16a via the path 2. Further, the propagation path phase information Θ 3 is added to the radio signal transmitted from the transmission antenna 16b via the path 3, and the propagation path phase information Θ 4 is transmitted to the radio signal transmitted from the transmission antenna 16b via the path 4. Is added.
[0021] 無線受信装置 20において、受信アンテナ 21aは、経路 1から伝搬路位相情報 θ 1 が付加された無線信号を受信すると共に、経路 3から伝搬路位相情報 Θ 3が付加さ れた無線信号を受信する。つまり、受信アンテナ 21aは、経路 1と経路 3の無線信号 が混合された状態で受信する。また、受信アンテナ 21bは、経路 2から伝搬路位相情 報 Θ 2が付加された無線信号を受信すると共に、経路 4から伝搬路位相情報 Θ 4が 付加された無線信号を受信する。つまり、受信アンテナ 2 lbは、経路 2と経路 4の無 線信号が混合された状態で受信する。  In radio receiving apparatus 20, receiving antenna 21a receives a radio signal to which propagation path phase information θ 1 is added from path 1, and a radio signal to which propagation path phase information Θ 3 is added from path 3. Receive. That is, the receiving antenna 21a receives the radio signals of the route 1 and the route 3 mixed. The receiving antenna 21b receives a radio signal to which the propagation path phase information Θ2 is added from the path 2 and receives a radio signal to which the propagation path phase information Θ4 is added from the path 4. In other words, the receiving antenna 2 lb receives in a state where the wireless signals of the route 2 and the route 4 are mixed.
[0022] 受信アンテナ 21aで受信された無線信号 (伝搬路位相情報 Θ 1、 Θ 3を含む)は、 増幅器 22aで増幅された後、乗算器 23aにおいて局部発振器 24の基準信号とミキシ ングされて IF信号に周波数変換され、さらに、帯域通過フィルタ 25a及び可変増幅器 26aを経由して分配器 27aに入力される。そして、この IF信号は、分配器 27aによつ て変調信号ブランチとパイロットブランチに分配され、変調信号ブランチにおいては 遅延補正器 28aを経由して直交復調部 29aに入力される。また、パイロットブランチ においては、パイロット信号が帯域通過フィルタ 30aによって抽出されて増幅器 31a で増幅された後に直交復調部 29aに入力される。  [0022] A radio signal (including propagation path phase information Θ 1 and Θ 3) received by the receiving antenna 21a is amplified by the amplifier 22a and then mixed with the reference signal of the local oscillator 24 by the multiplier 23a. The frequency is converted into an IF signal, and further input to the distributor 27a via the band pass filter 25a and the variable amplifier 26a. This IF signal is distributed to the modulated signal branch and the pilot branch by the distributor 27a, and is input to the orthogonal demodulator 29a via the delay corrector 28a in the modulated signal branch. In the pilot branch, the pilot signal is extracted by the band pass filter 30a, amplified by the amplifier 31a, and then input to the quadrature demodulator 29a.
[0023] 直交復調部 29aでは、 IF信号である信号 (E)からパイロット信号である信号 (F)を 減算 (E— F)することによって位相雑音をキャンセルする。このとき、経路 1の信号の 伝搬路位相情報 θ 1も相殺されてしまう。同様に、経路 3の信号の伝搬路位相情報 Θ 3も相殺されてしまう。  The quadrature demodulator 29a cancels the phase noise by subtracting (E−F) the signal (F) that is the pilot signal from the signal (E) that is the IF signal. At this time, the propagation path phase information θ 1 of the signal of the path 1 is also canceled out. Similarly, the propagation path phase information Θ 3 of the signal of the path 3 is also canceled.
[0024] また、無線受信装置 20の受信アンテナ 21bで受信された無線信号 (伝搬路位相情 報 0 2、 0 4を含む)は、増幅器 22bで増幅された後、乗算器 23bにおいて局部発振 器 24の基準信号とミキシングされて IF信号に周波数変換され、さらに、帯域通過フィ ルタ 25b及び可変増幅器 26bを経由して分配器 27bに入力される。そして、この IF信 号は、分配器 27bによって変調信号ブランチとパイロットブランチに分配され、変調信 号ブランチにおいては遅延補正器 28bを経由して直交復調部 29bに入力される。ま た、パイロットブランチにおいては、パイロット信号が帯域通過フィルタ 30bによって抽 出されて増幅器 31bで増幅された後に直交復調部 29bに入力される。 [0024] Radio signals (including propagation path phase information 0 2 and 0 4) received by the reception antenna 21b of the radio reception device 20 are amplified by the amplifier 22b, and then are local oscillators in the multiplier 23b. It is mixed with 24 reference signals and converted to an IF signal. It is input to the distributor 27b via the filter 25b and the variable amplifier 26b. This IF signal is distributed to the modulated signal branch and the pilot branch by the distributor 27b, and is input to the quadrature demodulator 29b via the delay corrector 28b in the modulated signal branch. In the pilot branch, the pilot signal is extracted by the band pass filter 30b, amplified by the amplifier 31b, and then input to the quadrature demodulator 29b.
[0025] 直交復調部 29bでは、 IF信号である信号 (E)からパイロット信号である信号 (F)を 減算 (E—F)することによって位相雑音をキャンセルする。このとき、経路 2の信号の 伝搬路位相情報 Θ 2も相殺されてしまう。同様に、経路 4の信号の伝搬路位相情報 Θ 4も相殺されてしまう。 [0025] The quadrature demodulator 29b cancels the phase noise by subtracting (E−F) the signal (F) that is the pilot signal from the signal (E) that is the IF signal. At this time, the propagation path phase information Θ 2 of the signal of path 2 is also canceled. Similarly, the propagation path phase information Θ 4 of the signal of the path 4 is also canceled.
[0026] このように、 MIMO合成部 32に入力される信号の伝搬路位相情報 0 1、 0 2、 Θ 3 、 Θ 4が消失してしまっているので、 MIMO合成部 32において MIMOの行列演算に よる複数データ系列の分離が不可能になり、受信ベースバンド部 (受信 BB部) 33に 信号を出力することができなくなる。  [0026] Thus, since the propagation path phase information 0 1, 0 2, Θ 3, and Θ 4 of the signal input to the MIMO synthesizer 32 have been lost, the MIMO synthesizer 32 performs the MIMO matrix operation. As a result, it becomes impossible to separate multiple data sequences, and it becomes impossible to output a signal to the reception baseband unit (reception BB unit) 33.
[0027] 本発明の目的は、位相雑音相殺機能と MIMO通信機能とを併せて実現することが できる無線送信装置、無線受信装置、及び無線通信システムを提供することである。 課題を解決するための手段  [0027] An object of the present invention is to provide a wireless transmission device, a wireless reception device, and a wireless communication system capable of realizing both a phase noise cancellation function and a MIMO communication function. Means for solving the problem
[0028] 本発明の無線受信装置は、 n系統 (nは複数)の MIMO通信を行う無線通信システ ムの無線受信装置であって、通信相手の無線送信装置において、 n系統の MIMO 経路のうち任意の m系統 (mは自然数、 n>m)にパイロット信号が重畳され、複数系 統で送信された信号を受信する受信手段と、受信信号力 前記パイロット信号を抽 出する抽出手段と、全ての MIMO経路で伝送された前記受信信号に対して前記抽 出されたパイロット信号を用いて直交復調を行う複数の直交復調手段と、を備える構 成を採る。 [0028] A wireless reception device of the present invention is a wireless reception device of a wireless communication system that performs n systems (n is a plurality) of MIMO communications, and in a wireless transmission device of a communication partner, among the n systems of MIMO paths A pilot means is superimposed on an arbitrary m system (m is a natural number, n> m), receiving means for receiving signals transmitted by multiple systems, received signal power, extracting means for extracting the pilot signals, and all And a plurality of orthogonal demodulation means for performing orthogonal demodulation on the received signal transmitted through the MIMO path using the extracted pilot signal.
[0029] 本発明の無線送信装置は、送信信号を n系統の MIMO経路に分離する分離手段 と、パイロット信号を生成するパイロット信号生成手段と、前記パイロット信号を前記 n 系統のうち m系統に重畳させる重畳手段と、上記無線受信装置に対して n系統で信 号を送信する送信手段と、を備える構成を採る。  [0029] A radio transmission apparatus according to the present invention includes a separating unit that separates a transmission signal into n MIMO paths, a pilot signal generating unit that generates a pilot signal, and the pilot signal superimposed on m of the n systems. A superimposing means for transmitting and a transmitting means for transmitting signals to the radio receiving apparatus in n systems.
[0030] 本発明の無線通信システムは、 n系統 (nは複数)の MIMO通信により無線送信装 置力 無線受信装置に信号を送信する無線通信システムであって、前記無線送信 装置は、送信信号を n系統の MIMO経路に分離する分離手段と、パイロット信号を 生成するパイロット信号生成手段と、前記パイロット信号を前記 n系統のうち m系統( mは自然数、 n>m)に重畳させる重畳手段と、前記無線受信装置に対して n系統で 信号を送信する送信手段と、を備え、前記無線受信装置は、通信相手の無線送信 装置から送信された信号を受信する受信手段と、受信信号から前記パイロット信号を 抽出する抽出手段と、全ての MIMO経路で伝送された前記受信信号に対して前記 抽出されたパイロット信号を用いて直交復調を行う複数の直交復調手段と、を備える 構成を採る。 [0030] The wireless communication system of the present invention is a wireless transmission device using n systems (n is a plurality) of MIMO communications. A wireless communication system for transmitting a signal to a wireless reception device, wherein the wireless transmission device includes a separation unit that separates a transmission signal into n MIMO paths, a pilot signal generation unit that generates a pilot signal, A superimposing unit that superimposes a pilot signal on m systems (m is a natural number, n> m) of the n systems, and a transmitting unit that transmits signals to the wireless receiving apparatus in n systems. An apparatus includes: a receiving unit that receives a signal transmitted from a wireless transmission device of a communication partner; an extracting unit that extracts the pilot signal from the received signal; and the extraction for the received signal transmitted through all MIMO paths. And a plurality of orthogonal demodulation means for performing orthogonal demodulation using the pilot signal thus obtained.
発明の効果  The invention's effect
[0031] 本発明によれば、無線送信装置が、複数系統の伝搬経路のうちの 1つの伝搬経路 のみに位相雑音相殺用のパイロット信号を重畳し、無線受信装置が、抽出したパイ口 ット信号を全ての伝搬経路の信号の直交復調に使用することにより、直交復調の際 に伝搬路位相情報が消失しなくなるので、位相雑音相殺機能と MIMO通信機能とを 併せて実現することができ、良好な通信特性を得ることができる。  [0031] According to the present invention, the wireless transmission device superimposes the pilot signal for phase noise cancellation on only one of the propagation paths of a plurality of systems, and the wireless reception device extracts By using the signal for quadrature demodulation of the signals of all propagation paths, the phase information of the propagation path is not lost during quadrature demodulation, so the phase noise cancellation function and the MIMO communication function can be realized together. Good communication characteristics can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]従来の無線通信システムにおける無線受信装置の一例を示すブロック図 FIG. 1 is a block diagram showing an example of a wireless receiving device in a conventional wireless communication system
[図 2]図 1の無線受信装置におけるローカル ·ノイズ'キャンセラの各構成部分の周波 数特性を示す特性図  FIG. 2 is a characteristic diagram showing frequency characteristics of each component of the local noise canceller in the wireless receiver of FIG.
[図 3]従来の無線通信システムにおいて MIMO通信時に位相雑音相殺技術を適用 したときの無線送信装置と無線受信装置の構成を示すブロック図  FIG. 3 is a block diagram showing a configuration of a wireless transmission device and a wireless reception device when phase noise cancellation technology is applied during MIMO communication in a conventional wireless communication system.
[図 4]本発明の実施の形態 1に係る無線通信システムの無線送信装置と無線受信装 置の構成を示すブロック図  FIG. 4 is a block diagram showing configurations of a wireless transmission device and a wireless reception device of the wireless communication system according to Embodiment 1 of the present invention.
[図 5]本発明の実施の形態 2に係る無線通信システムの無線送信装置と無線受信装 置の構成を示すブロック図  FIG. 5 is a block diagram showing configurations of a wireless transmission device and a wireless reception device of the wireless communication system according to Embodiment 2 of the present invention.
[図 6]本発明の実施の形態 3に係る無線通信システムの無線送信装置と無線受信装 置の構成を示すブロック図  FIG. 6 is a block diagram showing configurations of a wireless transmission device and a wireless reception device of the wireless communication system according to the third embodiment of the present invention.
発明を実施するための最良の形態 [0033] 以下、本発明の無線通信システムの実施の形態について詳細に説明する。なお、 以下の各実施の形態で用いる図面において、同一の構成要素は同一の符号を付し 、重複する説明は省略する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the wireless communication system of the present invention will be described in detail. Note that, in the drawings used in the following embodiments, the same components are denoted by the same reference numerals, and redundant description is omitted.
[0034] 〈実施の形態 1〉  <Embodiment 1>
図 4は、本発明の実施の形態 1に係る無線通信システムの無線送信装置 100と無 線受信装置 200の構成を示すブロック図である。図 4に示す無線通信システムでは、 理解を容易にするために、 2系統の MIMOによって通信を行う場合を示す。  FIG. 4 is a block diagram showing configurations of radio transmitting apparatus 100 and radio receiving apparatus 200 of the radio communication system according to Embodiment 1 of the present invention. The wireless communication system shown in Fig. 4 shows a case where communication is performed by two systems of MIMO for easy understanding.
[0035] 無線送信装置 100は、送信ベースバンド部(送信 BB部) 101、 MIMO分離部 102 、直交変調部 103a, 103b,パイロット信号生成部 104、加算器 105a、局部発振器 1 06、送信 RF部 107a、 107b及び送信アンテナ 108a, 108bを備える。  Radio transmission apparatus 100 includes transmission baseband unit (transmission BB unit) 101, MIMO separation unit 102, orthogonal modulation units 103a and 103b, pilot signal generation unit 104, adder 105a, local oscillator 106, transmission RF unit 107a and 107b and transmission antennas 108a and 108b are provided.
[0036] 一方、無線受信装置 200は、受信アンテナ 201a, 201b,増幅器 202a, 202b,局 部発振器 203、乗算器 204a, 204b,帯域通過フィルタ 205a, 205b,可変増幅器 2 06a, 206b,第 1分配器 207、遅延補正器 208a, 208b,直交復調部 209a, 209b 、帯域通過フィルタ 210、増幅器 211、第 2分配器 212、 MIMO合成部 213及び受 信ベースバンド部(受信 BB部) 214を備える。  On the other hand, radio receiving apparatus 200 includes receiving antennas 201a and 201b, amplifiers 202a and 202b, local oscillator 203, multipliers 204a and 204b, bandpass filters 205a and 205b, variable amplifiers 206a and 206b, and a first distribution. 207, delay correctors 208a and 208b, quadrature demodulation units 209a and 209b, band pass filter 210, amplifier 211, second distributor 212, MIMO synthesis unit 213, and reception baseband unit (reception BB unit) 214.
[0037] 無線送信装置 100において、送信 BB部 101は、ベースバンド信号を生成して Ml MO分離部 102へ出力する。 MIMO分離部 102は、ベースバンド信号を 2系統に分 離する。直交変調部 103a, 103bは、 2系統に分離されたそれぞれのベースバンド信 号を直交変調する。  In radio transmission apparatus 100, transmission BB section 101 generates a baseband signal and outputs it to Ml MO separation section 102. MIMO separation section 102 separates the baseband signal into two systems. Quadrature modulation sections 103a and 103b perform quadrature modulation on each baseband signal separated into two systems.
[0038] パイロット信号生成部 104は、位相雑音相殺用のパイロット信号を生成する。加算 器 105aは、直交変調部 103aから出力された変調信号に対してパイロット信号をミキ シングする。  [0038] Pilot signal generation section 104 generates a pilot signal for phase noise cancellation. Adder 105a mixes the pilot signal with the modulation signal output from quadrature modulation section 103a.
[0039] 局部発振器 106は、局部発振信号 (ローカル信号)を生成して送信 RF部 107a、 1 07bへ出力する。送信 RF部 107a、 107bは、入力された局部発振信号を用いて変 調信号を無線信号 (RF信号)に周波数変換する。送信アンテナ 108a、 108bは、無 線信号を無線受信装置 200へ送信する。  [0039] The local oscillator 106 generates a local oscillation signal (local signal) and outputs it to the transmission RF units 107a and 107b. The transmission RF units 107a and 107b frequency-convert the modulation signal into a radio signal (RF signal) using the input local oscillation signal. The transmitting antennas 108a and 108b transmit radio signals to the wireless receiving device 200.
[0040] 送信アンテナ 108aから送信された無線信号は、経路 1を介して、伝搬路位相情報  [0040] The radio signal transmitted from the transmitting antenna 108a is transmitted through the path 1 to the propagation path phase information.
θ 1が付加された状態で無線受信装置 200の受信アンテナ 201aに受信されると共 に、経路 2を介して、伝搬路位相情報 Θ 2が付加された状態で無線受信装置 200の 受信アンテナ 201bに受信される。また、送信アンテナ 108bから送信された無線信 号は、経路 3を介して、伝搬路位相情報 Θ 3が付加された状態で無線受信装置 200 の受信アンテナ 201aに受信されると共に、経路 4を介して、伝搬路位相情報 Θ 4が 付加された状態で無線受信装置 200の受信アンテナ 201bに受信される。 When it is received by the receiving antenna 201a of the wireless receiving device 200 with θ1 added. In addition, the signal is received by the receiving antenna 201b of the radio receiving apparatus 200 through the path 2 with the propagation path phase information Θ 2 added thereto. In addition, the radio signal transmitted from the transmission antenna 108b is received by the reception antenna 201a of the radio reception device 200 via the path 3 with the propagation path phase information Θ3 added, and via the path 4. Thus, the signal is received by the receiving antenna 201b of the radio receiving apparatus 200 with the propagation path phase information Θ 4 added.
[0041] 次に、無線受信装置 200において、受信アンテナ 201aは、経路 1を介して、伝搬 路位相情報 θ 1が付加された無線信号を受信すると共に、経路 3を介して、伝搬路 位相情報 Θ 3が付加された無線信号を受信する。また、受信アンテナ 201bは、経路 2を介して、伝搬路位相情報 Θ 2が付加された無線信号を受信すると共に、経路 4を 介して、伝搬路位相情報 Θ 4が付加された無線信号を受信する。  Next, in radio receiving apparatus 200, receiving antenna 201 a receives a radio signal to which propagation path phase information θ 1 has been added via path 1, and propagates path phase information via path 3. A radio signal with Θ 3 added is received. In addition, the receiving antenna 201b receives a radio signal to which the propagation path phase information Θ2 is added via the path 2, and receives a radio signal to which the propagation path phase information Θ4 is added via the path 4. To do.
[0042] 増幅器 202a, 202bは、それぞれの受信アンテナ 201a, 201bが受信した無線信 号を増幅する。局部発振器 203は、局部発振信号 (ローカル信号)を生成して乗算 器 204a, 204bへそれぞれ出力する。乗算器 204a, 204bは、局部発信器 203から の局部発信信号を用いて、それぞれの増幅器 202a, 202bから受信した無線信号( RF信号)を IF信号に周波数変換する。  The amplifiers 202a and 202b amplify the radio signals received by the respective receiving antennas 201a and 201b. The local oscillator 203 generates a local oscillation signal (local signal) and outputs it to the multipliers 204a and 204b. Multipliers 204a and 204b frequency-convert radio signals (RF signals) received from the respective amplifiers 202a and 202b into IF signals using the local transmission signals from local transmitter 203.
[0043] 帯域通過フィルタ 205a, 205bは、それぞれ乗算器 204a, 204b〖こよって周波数変 換された信号力 所望の周波数帯域の信号のみを抽出する。また、可変増幅器 206 a, 206bは、それぞれ帯域通過フィルタ 205a, 205bから出力された所望の周波数 帯域の信号を可変増幅する。  [0043] The band pass filters 205a and 205b extract only signals in a desired frequency band with the signal power frequency-converted by the multipliers 204a and 204b, respectively. The variable amplifiers 206a and 206b variably amplify signals in desired frequency bands output from the band pass filters 205a and 205b, respectively.
[0044] 第 1分配器 207は、可変増幅器 206aから出力された信号を変調信号ブランチとパ ィロットブランチの 2方向に分配する。帯域通過フィルタ 210は、第 1分配器 207によ つてパイロットブランチへ分配された信号からパイロット信号を抽出して増幅器 211へ 出力する。増幅器 211は、帯域通過フィルタ 210によって抽出されたパイロット信号を 増幅し、第 2分配器 212に出力する。第 2分配器 212は、増幅器 211から出力された パイロット信号を 2系統に分配して直交復調部 209a及び直交復調部 209bへ出力す る。  [0044] The first distributor 207 distributes the signal output from the variable amplifier 206a in two directions, ie, a modulated signal branch and a pilot branch. The band pass filter 210 extracts a pilot signal from the signal distributed to the pilot branch by the first distributor 207 and outputs it to the amplifier 211. The amplifier 211 amplifies the pilot signal extracted by the band pass filter 210 and outputs it to the second distributor 212. The second distributor 212 distributes the pilot signal output from the amplifier 211 to two systems and outputs it to the quadrature demodulator 209a and the quadrature demodulator 209b.
[0045] 遅延補正器 208aは、第 1分配器 207によって分配された変調信号ブランチの変調 信号に遅延を与えて直交復調部 209aへ出力する。直交復調部 209aは、第 2分配 器 212から出力されたパイロット信号と遅延補正器 208aからの出力信号とを周波数 乗算し、直交復調する。すなわち、直交復調部 209aは、伝搬路位相情報 θ 1に対応 するパイロット信号を、経路 1の伝搬路位相情報 θ 1が付加された信号および経路 3 の伝搬路位相情報 Θ 3が付加された信号それぞれに周波数乗算することにより直交 復調する。 [0045] Delay corrector 208a delays the modulated signal of the modulated signal branch distributed by first distributor 207, and outputs the delayed signal to quadrature demodulator 209a. Quadrature demodulator 209a uses the second distribution The pilot signal output from the unit 212 and the output signal from the delay corrector 208a are frequency-multiplied and subjected to quadrature demodulation. That is, the quadrature demodulator 209a converts the pilot signal corresponding to the propagation path phase information θ 1 into the signal to which the propagation path phase information θ 1 of the path 1 is added and the signal to which the propagation path phase information Θ 3 of the path 3 is added. Quadrature demodulation is performed by multiplying each frequency.
[0046] 遅延補正器 208bは、可変増幅器 206bから出力された変調信号に遅延を与えて 直交復調部 209bへ出力する。直交復調部 209bは、第 2分配器 212によって分配さ れたパイロット信号と遅延補正器 208bからの出力信号とを周波数乗算し、直交復調 する。すなわち、直交復調部 209bは、伝搬路位相情報 θ 1に対応するパイロット信 号を、経路 2の伝搬路位相情報 Θ 2が付加された信号および経路 4の伝搬路位相情 報 Θ 4が付加された信号それぞれに周波数乗算することにより直交復調する。  [0046] Delay corrector 208b gives a delay to the modulated signal output from variable amplifier 206b and outputs the delayed signal to quadrature demodulator 209b. The orthogonal demodulator 209b multiplies the pilot signal distributed by the second distributor 212 and the output signal from the delay corrector 208b by frequency, and performs orthogonal demodulation. That is, the orthogonal demodulation unit 209b adds the pilot signal corresponding to the propagation path phase information θ 1 to the signal to which the propagation path phase information Θ 2 of path 2 is added and the propagation path phase information Θ 4 of path 4 Each signal is orthogonally demodulated by frequency multiplication.
[0047] この結果、直交復調後の各伝搬経路の信号は、局部発信器の位相雑音はキャンセ ルされる。また、直交復調後の各伝搬経路の信号の伝搬路位相情報の絶対値は変 化するが、相対関係は変化しない。すなわち、経路 1の信号の伝搬路位相情報は、 θ 1 - Θ 1 =0となり、経路 2の信号の伝搬路位相情報は、 0 2— 0 1となり、経路 3の 信号の伝搬路位相情報は、 0 3— 0 1となり、経路 4の信号の伝搬路位相情報は、 Θ 4- θ 1となる。  As a result, the phase noise of the local oscillator is canceled in the signal of each propagation path after quadrature demodulation. In addition, the absolute value of the propagation path phase information of each propagation path signal after quadrature demodulation changes, but the relative relationship does not change. That is, the propagation path phase information of the signal of path 1 is θ 1-Θ 1 = 0, the propagation path phase information of the signal of path 2 is 0 2− 0 1, and the propagation path phase information of the signal of path 3 is , 0 3 — 0 1, and the propagation path phase information of the signal of path 4 is Θ 4 −θ 1.
[0048] MIMO合成部 213は、直交復調部 209aから出力された経路 1の信号並びに経路 3の信号、及び、直交復調部 209bから出力された経路 2の信号並びに経路 4の信号 を用いて行列演算を行 、、得られた 2系統のベースバンド信号を直列化 (MIMO合 成)して、受信ベースバンド部 214に出力する。受信ベースバンド部(受信 BB部) 21 4は、 MIMO合成部 213から出力されたベースバンド信号を変換して後工程の回路 へ出力する。  [0048] MIMO combining section 213 uses the path 1 signal and path 3 signal output from quadrature demodulation section 209a, and the path 2 signal and path 4 signal output from quadrature demodulation section 209b to form a matrix. The calculation is performed, and the two baseband signals obtained are serialized (MIMO synthesis) and output to the reception baseband unit 214. The reception baseband unit (reception BB unit) 21 4 converts the baseband signal output from the MIMO synthesis unit 213 and outputs the converted signal to a circuit in a subsequent process.
[0049] 次に、図 4に示す無線通信システムの無線送信装置 100及び無線受信装置 200の 動作について説明する。  Next, operations of radio transmitting apparatus 100 and radio receiving apparatus 200 of the radio communication system shown in FIG. 4 will be described.
[0050] 無線送信装置 100の送信 BB部 101から出力されたベースバンド信号は、 MIMO 分離部 102によって 2系統に分離される。さらに、分離された各ベースバンド信号は、 それぞれ直交変調器 103a, 103bによって直交変調される。 [0051] 次に、加算器 105aにおいて、直交変調器 103aから出力された変調信号に、パイ ロット信号生成部 104で生成された位相雑音相殺用のパイロット信号が重畳される。 次に、送信 RF部 107aにおいて、パイロット信号が重畳された変調信号が、無線信号 (RF信号)に変換され、送信アンテナ 108aから送信される。また、送信 RF部 107bに おいて、直交変調器 103bから出力された変調信号が、無線信号 (RF信号)に変換 され、送信アンテナ 108bから送信される。 [0050] The baseband signal output from the transmission BB unit 101 of the wireless transmission device 100 is separated into two systems by the MIMO separation unit 102. Further, the separated baseband signals are orthogonally modulated by the orthogonal modulators 103a and 103b, respectively. [0051] Next, in adder 105a, the phase noise canceling pilot signal generated by pilot signal generating section 104 is superimposed on the modulated signal output from quadrature modulator 103a. Next, in transmission RF section 107a, the modulated signal on which the pilot signal is superimposed is converted into a radio signal (RF signal) and transmitted from transmission antenna 108a. Also, in the transmission RF section 107b, the modulated signal output from the quadrature modulator 103b is converted into a radio signal (RF signal) and transmitted from the transmission antenna 108b.
[0052] これにより、無線送信装置 100の送信アンテナ 108aから送信された無線信号が、 経路 1を介して、伝搬路位相情報 θ 1が付加されて無線受信装置 200の受信アンテ ナ 201aに受信され、経路 2を介して、伝搬路位相情報 Θ 2が付加されて無線受信装 置 200の受信アンテナ 201bに受信される。また、無線送信装置 100の送信アンテナ 108bから送信された無線信号が、経路 3を介して、伝搬路位相情報 Θ 3が付加され て無線受信装置 200の受信アンテナ 201aに受信され、経路 4を介して、伝搬路位相 情報 Θ 4が付加されて無線受信装置 200の受信アンテナ 201bに受信される。  [0052] Thereby, the radio signal transmitted from the transmission antenna 108a of the radio transmission apparatus 100 is received by the reception antenna 201a of the radio reception apparatus 200 with the propagation path phase information θ1 added via the path 1. Then, the propagation path phase information Θ 2 is added via the path 2 and received by the reception antenna 201b of the radio reception apparatus 200. Further, the radio signal transmitted from the transmission antenna 108b of the wireless transmission device 100 is received by the reception antenna 201a of the wireless reception device 200 through the path 3 with the propagation path phase information Θ3 added thereto, and is transmitted through the path 4. Thus, the propagation path phase information Θ 4 is added and received by the reception antenna 201b of the radio reception apparatus 200.
[0053] 受信アンテナ 201aに受信された経路 1の無線信号 (伝搬路位相情報 θ 1)及び経 路 3の無線信号 (伝搬路位相情報 Θ 3)は、増幅器 202aで増幅された後、局部発振 器 203の局部発振信号を用いて乗算器 204aで周波数変換され、帯域通過フィルタ 205aで所望の周波数帯域の成分のみが抽出され、可変増幅器 206aで可変増幅さ れる。また、受信アンテナ 201bに受信された経路 2の無線信号 (伝搬路位相情報 Θ 2)及び経路 4の無線信号 (伝搬路位相情報 Θ 4)は、増幅器 202bで増幅された後、 局部発振器 203の局部発振信号を用いて乗算器 204bで周波数変換され、帯域通 過フィルタ 205bで所望の周波数帯域の成分のみが抽出され、可変増幅器 206bで 可変増幅される。  [0053] The radio signal of path 1 (propagation phase information θ 1) and the radio signal of path 3 (propagation phase information Θ 3) received by the receiving antenna 201a are amplified by the amplifier 202a and then locally oscillated. The frequency is converted by the multiplier 204a using the local oscillation signal of the unit 203, only the component of the desired frequency band is extracted by the band pass filter 205a, and is variably amplified by the variable amplifier 206a. In addition, the radio signal of the path 2 (propagation phase information Θ 2) and the radio signal of the path 4 (propagation phase information Θ 4) received by the receiving antenna 201b are amplified by the amplifier 202b and then the local oscillator 203 The frequency is converted by the multiplier 204b using the local oscillation signal, only the component of the desired frequency band is extracted by the band pass filter 205b, and variably amplified by the variable amplifier 206b.
[0054] 第 1分配器 207では、可変増幅器 206aから出力された信号が、変調信号ブランチ とパイロットブランチの 2方向へ分配される。帯域通過フィルタ 210では、パイロットブ ランチへ分配された信号力も経路 1の伝搬路位相情報 Θ 1が入ったパイロット信号が 抽出される。パイロット信号は、増幅器 211で増幅され、第 2分配器 212で 2系統に分 配され、直交復調部 209aと直交復調部 209bへ入力される。  [0054] In the first distributor 207, the signal output from the variable amplifier 206a is distributed in two directions of the modulated signal branch and the pilot branch. In the band pass filter 210, the pilot signal including the propagation path phase information Θ 1 of the path 1 is extracted from the signal power distributed to the pilot branch. The pilot signal is amplified by the amplifier 211, distributed to two systems by the second distributor 212, and input to the quadrature demodulator 209a and the quadrature demodulator 209b.
[0055] 変調信号ブランチへ分配された信号は、遅延補正器 208aで遅延が与えられ、直 交復調部 209aへ入力する。可変増幅器 206bから出力された信号は、遅延補正器 2 08bで遅延が与えられ、直交復調部 209bへ入力する。 [0055] The signal distributed to the modulation signal branch is delayed by the delay corrector 208a, Input to the demodulator 209a. The signal output from the variable amplifier 206b is delayed by the delay corrector 208b and input to the quadrature demodulator 209b.
[0056] 直交復調部 209aでは、伝搬路位相情報 θ 1に対応するパイロット信号を用いて、 経路 1の無線信号 (伝搬路位相情報 θ 1)および経路 3の無線信号 (伝搬路位相情 報 Θ 3)に対して直交復調が行われる。また、直交復調部 209bでは、伝搬路位相情 報 θ 1に対応するパイロット信号を用いて、経路 2の無線信号 (伝搬路位相情報 Θ 2) および経路 4の無線信号 (伝搬路位相情報 Θ 4)に対して直交復調が行われる。  [0056] The quadrature demodulator 209a uses the pilot signal corresponding to the propagation path phase information θ1, and uses the pilot signal corresponding to the propagation path phase information θ1 and the wireless signal of the path 3 (propagation phase information θ1) Quadrature demodulation is performed for 3). Further, the quadrature demodulator 209b uses the pilot signal corresponding to the propagation path phase information θ 1 and uses the pilot signal corresponding to the propagation path phase information θ 1 and the wireless signal of the path 4 (propagation phase information Θ 2) and the wireless signal of the path 4 (propagation phase information Θ 4 ) Is subjected to quadrature demodulation.
[0057] したがって、 MIMO合成部 213には、直交復調部 209aから出力された経路 1の信 号 (伝搬路位相情報 0 1— 0 1 =0)及び経路 3の信号 (伝搬路位相情報 Θ 3— θ 1) が入力されると共に、直交復調部 209bから出力された経路 2の信号 (伝搬路位相情 η θ 2- θ 1)及び経路 4の信号 (伝搬路位相情報 Θ 4 θ 1)が入力される。 ΜΙΜΟ 合成部 213では、これらの信号を用いて行列演算が行われる。行列演算により得ら れた 2系統のベースバンド信号は、 ΜΙΜΟ合成部 213で直列化され、受信 ΒΒ部 21 4で変換される。  Therefore, the MIMO combining unit 213 receives the signal of the path 1 (propagation phase information 0 1− 0 1 = 0) output from the quadrature demodulation unit 209a and the signal of the path 3 (propagation phase information Θ 3 — Θ 1) is input, and the signal of path 2 (propagation phase information η θ 2-θ 1) and the signal of path 4 (propagation phase information Θ 4 θ 1) output from the quadrature demodulator 209b Entered. The synthesizing unit 213 performs matrix calculation using these signals. The two baseband signals obtained by the matrix operation are serialized by the synthesizer 213 and converted by the receiver 213.
[0058] このように、本実施の形態によれば、無線受信装置 200において、 1つの伝搬経路 の伝搬路位相情報が入ったパイロット信号を用いて、受信された全ての無線信号 (伝 搬路位相情報 Θ 1、 Θ 2、 Θ 3、 Θ 4)の直交復調を行うことにより、局部発信器の位相 雑音をキャンセルすることができると共に、各伝搬経路の伝送路位相情報の相対関 係は変わらないので ΜΙΜΟの行列演算を行うことができる。  As described above, according to the present embodiment, in radio reception apparatus 200, all received radio signals (propagation paths) using the pilot signal containing the propagation path phase information of one propagation path are used. By performing quadrature demodulation of the phase information (Θ1, Θ2, Θ3, Θ4), the phase noise of the local oscillator can be canceled and the relative relationship of the transmission path phase information of each propagation path is changed. Because there is no 行列 matrix operation can be performed.
[0059] 〈実施の形態 2〉  <Embodiment 2>
実施の形態 2では、複数の受信系統においてパイロット信号を抽出し、抽出された パイロット信号のうち最も信号レベルの高 、ものを用いて全ての経路の信号の直交 復調を行う。  In the second embodiment, pilot signals are extracted from a plurality of reception systems, and signals of all paths are orthogonally demodulated using the extracted pilot signals having the highest signal level.
[0060] 図 5は、本発明の実施の形態 2に係る無線通信システムの無線送信装置 100と無 線受信装置 200aの構成を示すブロック図である。図 5に示す無線受信装置 200aは 、一方の受信系統に第 1分配器 207a、帯域通過フィルタ 210a及び増幅器 21 laを 設けると共に、他方の受信系統に第 1分配器 207b、帯域通過フィルタ 210b及び増 幅器 21 lbを設ける。さらに、無線受信装置 200aは、図 4に示した無線受信装置 200 に対して、比較器 215を追加した構成を採る。 [0060] FIG. 5 is a block diagram showing configurations of radio transmitting apparatus 100 and radio receiving apparatus 200a of the radio communication system according to Embodiment 2 of the present invention. A radio reception apparatus 200a shown in FIG. 5 is provided with a first distributor 207a, a bandpass filter 210a and an amplifier 21la in one reception system, and a first distributor 207b, a bandpass filter 210b and an amplifier in the other reception system. Provide a width 21 lb. Further, the wireless reception device 200a includes the wireless reception device 200 shown in FIG. In contrast, a configuration in which a comparator 215 is added is adopted.
[0061] 第 1分配器 207aは、可変増幅器 206aから出力された信号を変調信号ブランチと パイロットブランチの 2方向に分配する。帯域通過フィルタ 210aは、第 1分配器 207a によってパイロットブランチへ分配された信号からパイロット信号を抽出して増幅器 21 laへ出力する。増幅器 21 laは、帯域通過フィルタ 210aによって抽出されたパイロッ ト信号を増幅し、比較器 215に出力する。  [0061] The first distributor 207a distributes the signal output from the variable amplifier 206a in two directions, ie, a modulated signal branch and a pilot branch. The band pass filter 210a extracts the pilot signal from the signal distributed to the pilot branch by the first distributor 207a and outputs it to the amplifier 21 la. The amplifier 21 la amplifies the pilot signal extracted by the band pass filter 210 a and outputs it to the comparator 215.
[0062] 第 1分配器 207bは、可変増幅器 206bから出力された信号を変調信号ブランチと パイロットブランチの 2方向に分配する。帯域通過フィルタ 210bは、第 1分配器 207b によってパイロットブランチへ分配された信号からパイロット信号を抽出して増幅器 21 lbへ出力する。増幅器 21 lbは、帯域通過フィルタ 210bによって抽出されたパイロッ ト信号を増幅し、比較器 215に出力する。  [0062] The first distributor 207b distributes the signal output from the variable amplifier 206b in two directions of a modulated signal branch and a pilot branch. The band pass filter 210b extracts a pilot signal from the signal distributed to the pilot branch by the first distributor 207b and outputs it to the amplifier 21 lb. The amplifier 21 lb amplifies the pilot signal extracted by the band pass filter 210b and outputs the amplified signal to the comparator 215.
[0063] 比較器 215は、増幅器 21 laから出力されたパイロット信号の信号レベルと増幅器 2 1 lbから出力されたパイロット信号の信号レベルとを比較し、信号レベルが高い方の ノ ィロット信号を第 2分配器 212に出力する。これにより、品質の良好な方のパイロッ ト信号が直交復調部 209aと直交復調部 209bへ供給される。  [0063] Comparator 215 compares the signal level of the pilot signal output from amplifier 21 la with the signal level of the pilot signal output from amplifier 21 1 lb, and determines the pilot signal having the higher signal level as the first signal. 2 Outputs to the distributor 212. As a result, the pilot signal having the better quality is supplied to the orthogonal demodulation unit 209a and the orthogonal demodulation unit 209b.
[0064] この結果、本実施の形態によれば、品質の良好なパイロット信号を用いて、全ての 伝搬経路の直交復調を行うことができるので、さらに高精度な位相雑音相殺機能と MIMO分離機能を実現することができる。  As a result, according to the present embodiment, since it is possible to perform quadrature demodulation of all propagation paths using a pilot signal with good quality, a more accurate phase noise cancellation function and MIMO separation function Can be realized.
[0065] 〈実施の形態 3〉  <Embodiment 3>
実施の形態 3では、パイロット信号周辺の周波数のサブキャリア信号レベル等、下り 伝搬路の情報に基づいてパイロット信号を重畳する送信経路を決定する。  In the third embodiment, a transmission path on which a pilot signal is superimposed is determined based on downlink propagation path information such as a subcarrier signal level of frequencies around the pilot signal.
[0066] 図 6は、本発明の実施の形態 3に係る無線通信システムの無線送信装置 100aと無 線受信装置 200aの構成を示すブロック図である。図 6に示す無線送信装置 100aは 、それぞれの送信系統に加算器 105a、 105bを設ける。また、図 6に示す無線送信 装置 100aは、図 4、図 5に示した無線送信装置 100に対して、判定部 109と、スイツ チ 110とを追加した構成を採る。なお、図 6では、無線受信装置 200aが図 5と同じ構 成である力 図 4に示した無線受信装置 200と同じ構成であってもよい。  FIG. 6 is a block diagram showing configurations of radio transmitting apparatus 100a and radio receiving apparatus 200a of the radio communication system according to Embodiment 3 of the present invention. The radio transmission device 100a shown in FIG. 6 is provided with adders 105a and 105b in each transmission system. 6 employs a configuration in which a determination unit 109 and a switch 110 are added to the wireless transmission device 100 illustrated in FIG. 4 and FIG. In FIG. 6, the radio receiving device 200a may have the same configuration as the radio receiving device 200 shown in FIG.
[0067] 判定部 109は、下り伝搬路の空間伝搬状態を常時監視してサブキャリア信号レべ ルなどの良否の判定を行い、判定結果を示す情報をスィッチ 110に出力する。スイツ チ 110は、判定部 109の判定結果に基づいて、パイロット信号生成部 104が生成し たパイロット信号を加算器 105aあるいは加算器 105bのいずれか一方に出力する。 [0067] The determination unit 109 constantly monitors the spatial propagation state of the downlink propagation path and monitors the subcarrier signal level. The information indicating the determination result is output to the switch 110. Based on the determination result of the determination unit 109, the switch 110 outputs the pilot signal generated by the pilot signal generation unit 104 to either the adder 105a or the adder 105b.
[0068] このように、本実施の形態では、空間伝搬状態に応じて、パイロット信号を重畳する 伝搬経路を最適な経路に切り替えることにより、最適な状態で位相雑音相殺機能と MIMO通信機能とを併せて実現することができる。  [0068] As described above, in the present embodiment, the phase noise cancellation function and the MIMO communication function are optimally switched by switching the propagation path on which the pilot signal is superimposed to the optimal path according to the spatial propagation state. It can be realized together.
[0069] なお、上記の各実施の形態では、 2系統の MIMO通信について説明した力 本発 明はこれに限られず、 3系統以上の MIMO通信についても適用することができる。ま た、 2系統の MIMO通信において、 1系統にパイロット信号を重畳する場合について 説明したが、本発明はこれに限られず、例えば、 4系統の MIMO通信において、 2系 統にパイロット信号を重畳する等、 n系統 (nは複数)の MIMO通信において、 m系統 (mは自然数、 n>m)にパイロット信号を重畳する場合についても適用することができ る。  [0069] Note that, in each of the above-described embodiments, the power of the present invention described for two systems of MIMO communication is not limited to this, and can also be applied to three or more systems of MIMO communication. In addition, in the two-channel MIMO communication, the case where the pilot signal is superimposed on one system has been described. However, the present invention is not limited to this. For example, in the four-channel MIMO communication, the pilot signal is superimposed on two systems. In the case of n systems (n is a multiple number) of MIMO communication, this can also be applied to the case where pilot signals are superimposed on m systems (m is a natural number, n> m).
[0070] また、本発明は、ダイレクトコンバージョン構成の装置にも適用することができ、 Low —IF構成の装置にも適用することができる。  The present invention can also be applied to an apparatus having a direct conversion configuration, and can also be applied to an apparatus having a Low-IF configuration.
[0071] また、本 II発明は、 OFDM (Orthogonal Frequency Division Multiplexing)のような マルチキャリア通信に適用することもでき、 OFDM信号の帯域中央にパイロットを重 畳することにより、伝送路中全ての位相雑音を相殺することができる。  [0071] The present invention II can also be applied to multicarrier communication such as OFDM (Orthogonal Frequency Division Multiplexing). By superimposing a pilot in the center of the band of the OFDM signal, all phases in the transmission path can be obtained. Noise can be canceled out.
産業上の利用可能性  Industrial applicability
[0072] 本発明は、 MIMO通信を行いながら位相雑音特性を向上させることができるので、 携帯電話、 PHS、無線 LANなどの各種無線通信装置及びこれら力 構成される無 線システムに用いるのに好適である。 [0072] Since the present invention can improve the phase noise characteristics while performing MIMO communication, it is suitable for use in various wireless communication devices such as mobile phones, PHS, wireless LANs, etc. It is.

Claims

請求の範囲 The scope of the claims
[1] n系統 (nは複数)の MIMO通信を行う無線通信システムの無線受信装置であって 通信相手の無線送信装置にお!、て、 n系統の MIMO経路のうち任意の m系統(m は自然数、 n>m)にパイロット信号が重畳され、複数系統で送信された信号を受信 する受信手段と、  [1] A wireless receiving device of a wireless communication system that performs n systems (n is a multiple number) of MIMO communications, and communicates with the wireless transmission device of the communication partner. Any m systems (m Is a natural number, n> m) with a pilot signal superimposed and receiving means for receiving signals transmitted by multiple systems,
受信信号から前記パイロット信号を抽出する抽出手段と、  Extracting means for extracting the pilot signal from the received signal;
全ての MIMO経路で伝送された前記受信信号に対して前記抽出されたパイロット 信号を用いて直交復調を行う複数の直交復調手段と、  A plurality of orthogonal demodulation means for performing orthogonal demodulation using the extracted pilot signals for the received signals transmitted in all MIMO paths;
を備える無線受信装置。  A wireless receiver comprising:
[2] 複数系統の MIMO通信を行う無線通信システムの無線受信装置であって、 [2] A wireless receiver of a wireless communication system that performs MIMO communication of multiple systems,
通信相手の無線送信装置において、複数系統の MIMO経路のうち任意の 1系統 にパイロット信号が重畳され、複数系統で送信された信号を受信する受信手段と、 受信信号から前記パイロット信号を抽出する抽出手段と、  In the wireless transmission device of the communication partner, a pilot signal is superimposed on an arbitrary one of a plurality of MIMO paths, receiving means for receiving a signal transmitted by the plurality of systems, and extraction for extracting the pilot signal from the received signal Means,
全ての MIMO経路で伝送された前記受信信号に対して前記抽出されたパイロット 信号を用いて直交復調を行う複数の直交復調手段と、  A plurality of orthogonal demodulation means for performing orthogonal demodulation using the extracted pilot signals for the received signals transmitted in all MIMO paths;
を備える無線受信装置。  A wireless receiver comprising:
[3] 前記抽出手段は、複数の MIMO経路の受信信号からそれぞれ前記パイロット信号 を抽出し、 [3] The extraction means extracts the pilot signals from the received signals of a plurality of MIMO paths,
前記ノ ィロット信号の信号レベルを比較し、最も信号レベルが高!ヽパイロット信号を 前記直交復調手段に出力する比較手段を備える、  Comparing means for comparing the signal level of the pilot signal and outputting the pilot signal having the highest signal level to the quadrature demodulating means,
請求項 1に記載の無線受信装置。  The wireless receiver according to claim 1.
[4] 送信信号を n系統の MIMO経路に分離する分離手段と、 [4] separation means for separating the transmission signal into n MIMO paths;
パイロット信号を生成するパイロット信号生成手段と、  Pilot signal generating means for generating a pilot signal;
前記パイロット信号を前記 n系統のうち m系統に重畳させる重畳手段と、 請求項 1記載の無線受信装置に対して n系統で信号を送信する送信手段と、を備 える無線送信装置。  A radio transmission apparatus comprising: superimposing means for superimposing the pilot signal on m systems out of the n systems; and transmitting means for transmitting signals in n systems to the radio reception apparatus according to claim 1.
[5] 各 MIMO経路の空間伝搬状態の良否を判定する判定手段を備え、 前記重畳手段は、前記判定手段の判定結果に基づ!、て前記パイロット信号を重畳 させる系統を切り替える、 [5] A determination means for determining whether the spatial propagation state of each MIMO path is good or bad is provided. The superimposing means switches the system for superimposing the pilot signal based on the determination result of the determining means.
請求項 4に記載の無線送信装置。  The wireless transmission device according to claim 4.
n系統 (nは複数)の MIMO通信により無線送信装置から無線受信装置に信号を送 信する無線通信システムであって、  A wireless communication system that transmits a signal from a wireless transmission device to a wireless reception device by n systems (n is a plurality) of MIMO communication,
前記無線送信装置は、  The wireless transmission device
送信信号を n系統の MIMO経路に分離する分離手段と、  Separation means for separating the transmission signal into n MIMO paths;
パイロット信号を生成するパイロット信号生成手段と、  Pilot signal generating means for generating a pilot signal;
前記パイロット信号を前記 n系統のうち m系統 (mは自然数、 n>m)に重畳させる重 畳手段と、  A superimposing means for superimposing the pilot signal on m of the n systems (m is a natural number, n> m);
前記無線受信装置に対して n系統で信号を送信する送信手段と、を備え、 前記無線受信装置は、  Transmitting means for transmitting signals to the wireless reception device in n systems, the wireless reception device,
通信相手の無線送信装置から送信された信号を受信する受信手段と、 受信信号から前記パイロット信号を抽出する抽出手段と、  Receiving means for receiving a signal transmitted from a wireless transmission device of a communication partner; extracting means for extracting the pilot signal from the received signal;
全ての MIMO経路で伝送された前記受信信号に対して前記抽出されたパイロット 信号を用いて直交復調を行う複数の直交復調手段と、を備える、  A plurality of orthogonal demodulation means for performing orthogonal demodulation using the extracted pilot signals for the received signals transmitted through all MIMO paths,
無線通信システム。  Wireless communication system.
PCT/JP2006/317660 2006-09-06 2006-09-06 Radio transmitting apparatus, radio receiving apparatus and wireless communication system WO2008029458A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317660 WO2008029458A1 (en) 2006-09-06 2006-09-06 Radio transmitting apparatus, radio receiving apparatus and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317660 WO2008029458A1 (en) 2006-09-06 2006-09-06 Radio transmitting apparatus, radio receiving apparatus and wireless communication system

Publications (1)

Publication Number Publication Date
WO2008029458A1 true WO2008029458A1 (en) 2008-03-13

Family

ID=39156903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317660 WO2008029458A1 (en) 2006-09-06 2006-09-06 Radio transmitting apparatus, radio receiving apparatus and wireless communication system

Country Status (1)

Country Link
WO (1) WO2008029458A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152158A (en) * 2000-11-15 2002-05-24 Hitachi Kokusai Electric Inc Ground digital tv broadcasting transmitting method and ground digital tv broadcasting system
JP2004048093A (en) * 2002-07-08 2004-02-12 Hitachi Kokusai Electric Inc Radio communication apparatus
JP2004072458A (en) * 2002-08-07 2004-03-04 Nippon Telegr & Teleph Corp <Ntt> Carrier frequency error estimation circuit and radio signal receiving device
JP2004080110A (en) * 2002-08-09 2004-03-11 Samsung Yokohama Research Institute Co Ltd Orthogonal frequency division multiplexing communication system and orthogonal frequency division multiplexing radio set
JP2006101245A (en) * 2004-09-30 2006-04-13 Toshiba Corp Receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152158A (en) * 2000-11-15 2002-05-24 Hitachi Kokusai Electric Inc Ground digital tv broadcasting transmitting method and ground digital tv broadcasting system
JP2004048093A (en) * 2002-07-08 2004-02-12 Hitachi Kokusai Electric Inc Radio communication apparatus
JP2004072458A (en) * 2002-08-07 2004-03-04 Nippon Telegr & Teleph Corp <Ntt> Carrier frequency error estimation circuit and radio signal receiving device
JP2004080110A (en) * 2002-08-09 2004-03-11 Samsung Yokohama Research Institute Co Ltd Orthogonal frequency division multiplexing communication system and orthogonal frequency division multiplexing radio set
JP2006101245A (en) * 2004-09-30 2006-04-13 Toshiba Corp Receiver

Similar Documents

Publication Publication Date Title
JP4102375B2 (en) Wireless transmission device and wireless reception device
JP5601205B2 (en) Optical receiver and optical communication system
JP3338747B2 (en) Interference wave canceller
JP5372294B2 (en) Relay satellite and satellite communication system
JP3657377B2 (en) Receiver circuit
CA2898183C (en) Relay apparatus, relay satellite, and satellite communication system
EP0807344B1 (en) Method and apparatus for generating plural quadrature modulated carriers
US8027411B2 (en) Wireless receiver
JP3393954B2 (en) Time division multiplexed FDD / TDD dual mode radio
WO2005093979A1 (en) Radio system and radio communication device
JP3957973B2 (en) Code-multiplexed radio equipment implementing interference canceller
JPH05291995A (en) Method for compensating interference for radio repeater station
WO2008029458A1 (en) Radio transmitting apparatus, radio receiving apparatus and wireless communication system
JP3287015B2 (en) Auxiliary signal transmission method
JP2682345B2 (en) Compensation system for cross polarization interference generated at non-regenerative wireless relay stations
JPH0774790A (en) Transmission reception circuit with nonlinear distortion compensation
WO2008029459A1 (en) Radio receiving apparatus and radio communication system
JP7133300B2 (en) Receiving system of diversity type microphone
WO2007034566A1 (en) Radio communication device
JP2504184B2 (en) Cross polarization communication system
JPS63222533A (en) Interference noise erasing system
JP2006262331A (en) Receiver
JP2005064846A (en) Interference eliminator
JPH04268836A (en) Radio transmitting device by spread spectrum
JPH03284027A (en) Diversity receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06797555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP