WO2008026766A1 - Lightning arrestor, grounding electrode, and thunder surge voltage reducing method - Google Patents

Lightning arrestor, grounding electrode, and thunder surge voltage reducing method Download PDF

Info

Publication number
WO2008026766A1
WO2008026766A1 PCT/JP2007/067245 JP2007067245W WO2008026766A1 WO 2008026766 A1 WO2008026766 A1 WO 2008026766A1 JP 2007067245 W JP2007067245 W JP 2007067245W WO 2008026766 A1 WO2008026766 A1 WO 2008026766A1
Authority
WO
WIPO (PCT)
Prior art keywords
lightning
conductor
lightning surge
ground
ground electrode
Prior art date
Application number
PCT/JP2007/067245
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Miyakawa
Koichi Nakamura
Isao Horibe
Original Assignee
Nippon Steel Corporation
Kaela R & D Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006234625A external-priority patent/JP4709715B2/en
Priority claimed from JP2006354186A external-priority patent/JP2008166104A/en
Application filed by Nippon Steel Corporation, Kaela R & D Co. Ltd. filed Critical Nippon Steel Corporation
Priority to CN2007800320188A priority Critical patent/CN101513133B/en
Publication of WO2008026766A1 publication Critical patent/WO2008026766A1/en
Priority to HK10100520.7A priority patent/HK1133524A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • H02G13/80Discharge by conduction or dissipation, e.g. rods, arresters, spark gaps

Definitions

  • the present invention relates to a lightning arrester, a ground electrode, and a lightning surge voltage reduction method for preventing lightning damage by flowing a lightning surge current caused by a lightning strike to the ground side.
  • a lightning surge current with a high output flows to a building, various facilities such as traffic lights, or trees due to a lightning strike, these will be destroyed.
  • various facilities such as traffic lights, or trees due to a lightning strike
  • lightning damage has become a serious threat.
  • a conductor usually called a lightning rod, which includes a lightning rod, a lightning conductor, etc.
  • a lightning rod which includes a lightning rod, a lightning conductor, etc.
  • an insulator is provided on the outer periphery of the lightning rod conductor to prevent the occurrence of flashover by making the surroundings of the lightning rod conductor completely insulated.
  • grounding impedance 10 ⁇ or less.
  • the ground impedance is represented by an equivalent circuit consisting of resistance, inductance, and capacitance.
  • the resistance is mainly the contact resistance with the ground of the ground electrode and the ground resistance
  • the inductance is the inductance of the ground electrode
  • the capacitance is the capacitance between the ground electrode and the ground.
  • An object of the present invention is to provide a lightning arrester capable of reliably preventing lightning surge current flashover due to lightning and preventing lightning damage, a structural column having a lightning protection function, and a method of reducing lightning surge voltage. That is.
  • Another object of the present invention is to prevent lightning damage caused by lightning surge currents by lowering the ground impedance of buildings and various facilities, etc., which are the targets of lightning damage prevention, in particular the above-mentioned inductance, lower than the specific value of the conductor.
  • the present invention also provides a ground electrode, a ground electrode group, and a lightning surge voltage reduction method capable of improving cost effectiveness.
  • a lightning arrester for flowing a lightning surge current due to a lightning strike to the ground side, a steel pipe, a conductor coaxially arranged in the steel pipe, A conductive filler filled between the steel pipe and the conductor; a lightning surge current caused by the lightning strike is shunted; a low frequency component flows through the conductor; and a high frequency component A lightning arrester is provided, characterized by flowing through the steel pipe and the filler.
  • the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
  • the steel pipe and the conductor may be grounded after being terminated by a coaxial characteristic impedance.
  • the conductor, the steel pipe, and the filler may be attached to an existing facility.
  • a structural pillar having a lightning protection function of flowing a lightning surge current due to a lightning strike to the ground side the support part having the lightning protection function, and supported by the support part, A supported portion having a function different from the lightning protection function, and the support portion having the lightning protection function
  • a structural pillar having a lightning protection function characterized in that a frequency component flows through the conductor and the high frequency component flows through the steel pipe and the filler.
  • the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
  • the steel pipe and the conductor may be grounded after being terminated by a coaxial characteristic impedance.
  • a method for reducing a lightning surge voltage when a lightning surge current caused by a lightning strike is caused to flow to the ground side wherein the impedance to the high frequency component of the lightning surge current is the first.
  • the first current path is formed of a conductor
  • the second current path is a steel pipe coaxially disposed so as to cover an outer periphery of the conductor, the steel pipe, and the steel pipe
  • the conductive material may be filled with a conductive filler.
  • the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
  • a ground electrode for flowing lightning surge current due to lightning as well as frequency ground fault current to the ground at least a part of which is buried in the ground, a tubular conductor coaxially disposed in the tubular conductor, A conductive filler filled between the tubular conductor and the inner conductor, wherein a lightning surge current caused by the lightning strike is shunted, and the low-frequency component mainly flows through the inner conductor.
  • a ground electrode is provided in which the high-frequency component mainly flows through the tubular conductor and the filler.
  • the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
  • the tubular conductor and the inner conductor may be grounded after being terminated by a characteristic impedance of a coaxial system.
  • the ground electrode is connected to a lightning arrester that sends a lightning surge current due to a lightning strike to the ground side. It may be.
  • the ground electrode may be formed in a coaxial shape integrated with the lightning arrester.
  • the ground electrode may be connected to a grounding device that causes a ground fault fault current of a commercial frequency power facility or power facility to flow to the ground side.
  • the tubular conductor may be embedded with the axial direction set to the vertical direction.
  • the tubular conductor may be embedded with the axial direction horizontal.
  • the tubular conductor and the inner conductor may be connected to an equipotential bonding conductor.
  • a ground electrode group comprising a plurality of the ground electrodes.
  • a method for reducing a lightning surge voltage when a lightning surge current caused by a lightning strike is caused to flow to the ground wherein one end of the first current path is disposed in the ground.
  • a second current path whose impedance to the high frequency component of the lightning surge current is lower than that of the first current path, and the low frequency component of the lightning surge current mainly flows in the first current path.
  • the lightning surge voltage in the first current path is reduced by diverting the lightning surge current according to the frequency component so that the high-frequency component mainly flows in the second current path.
  • a method for reducing lightning surge voltage is provided. It also functions as a conventional ground electrode in the same way as before.
  • the first current path is configured by an inner conductor
  • the second current path is formed by a coaxial conductor disposed so as to cover an outer periphery of the inner conductor; It may be constituted by a conductive filler filled between the tubular conductor and the inner conductor.
  • the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
  • an outer skin may be provided on the outer periphery of the coaxially arranged tubular conductor.
  • concrete can be used as the outer skin to take measures against corrosion of steel pipes when buried.
  • the lightning surge current when a lightning surge current caused by a lightning strike flows to the ground side through a conductor (that is, a lightning rod conductor), the lightning surge current is shunted, and the low frequency component flows through the conductor as the first current path.
  • the high-frequency component flows through the second current path provided around the conductor, the entire current of the lightning surge current flows through the conductor as in a conventionally known lightning arrester.
  • T / JP2007 / 067245 it is possible to reduce the voltage drop per unit length of the conductor (that is, lightning surge voltage). As a result, it is possible to prevent the occurrence of flashover by suppressing the potential rise at the top of the conductor, and to effectively prevent lightning damage to surrounding equipment such as buried equipment.
  • the ground electrode according to the present invention has an effect of reducing the ground impedance.
  • it has a structure that reduces the inductance inherent to the ground electrode. Therefore, it has a function to suppress the rise of ground voltage when current flows not only for ground fault current of commercial frequency but also for lightning surge current.
  • the present invention is superior in cost-effectiveness, including shortening the number of days, in that it only requires installation at the site. Yes.
  • the inner conductor center conductor
  • the ratio of the shunt surge is extremely small. The lightning disaster of electrical equipment is reduced by the effect of reducing the shunt current.
  • the present invention it is possible to effectively suppress an increase in the potential of the ground electrode against a lightning surge current and to realize a ground impedance that is much lower than that of the prior art.
  • lightning surge current can be reliably sent to the ground via the ground electrode, and unforeseen situations can be prevented, such as flowing to the building side and destroying electronic equipment.
  • the lightning surge voltage at the grounding electrode is very low. Because of the value, the damage can be minimized and made safer.
  • Figure 1 shows a vertical section of a lightning arrester according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view taken along the line XX in FIG.
  • Fig. 3 is an enlarged perspective view of the lightning arrester near the ground.
  • Figure 4 is a circuit diagram per unit length when the lightning surge current flows through the lightning arrester.
  • FIG. 5 is a partial cross-sectional view in the vertical direction of the lightning arrester according to the second embodiment of the present invention.
  • FIG. 6 is a vertical cross-sectional view of a structural column according to the third embodiment of the present invention.
  • FIG. 7 is an enlarged cross-sectional view taken along arrows Y—Y in FIG.
  • FIG. 8 is a configuration diagram showing an example in which the ground electrode according to the fourth embodiment of the present invention is applied to a building as a lightning protection target.
  • FIG. 9 is a vertical sectional view of the ground electrode.
  • FIG. 10 is an enlarged cross-sectional view taken along the line XX in FIG.
  • FIG. 11 is an enlarged perspective view of the ground electrode in the vicinity of the ground Fig. 12 is composed of a steel pipe, conductor and filler when a lightning surge current flowing from the upper end side of the conductor flows to the ground side
  • FIG. 6 is a circuit diagram showing an equivalent circuit per unit length of a ground electrode according to a fourth embodiment of the present invention.
  • FIG. 13 is a diagram for explaining the influence of the ground electrode according to the embodiment of the present invention on surrounding buildings.
  • (a) shows the positional relationship between the ground electrode and its surroundings.
  • (B) shows the relationship between the value of the lightning surge voltage (vertical axis) when the lightning surge current flows from the ground electrode to the ground and the position from the point of flow (horizontal axis).
  • FIG. 14 is a diagram for explaining the influence of the ground electrode according to the embodiment of the present invention on surrounding people.
  • A shows the positional relationship between the ground electrode and the person around the ground electrode.
  • B indicates whether the lightning surge current is grounded. The relationship between the lightning surge voltage value (vertical axis) and the position from the flow point (horizontal axis) when flowing into the ground is shown.
  • FIG. 15 is a vertical sectional view of a ground electrode group having a plurality of ground electrodes according to a fifth embodiment of the present invention.
  • FIG. 16 is a horizontal cross-sectional view of a ground electrode group according to a sixth embodiment of the present invention, all having four ground electrodes arranged horizontally in the tube axis direction.
  • FIG. 8 is a configuration diagram showing a configuration of a ground electrode formed in a coaxial shape integrated with a lightning arrester according to a seventh embodiment of the present invention, in which a lightning surge current caused by a lightning strike flows to the ground side.
  • FIG. 18 is a schematic perspective view of a coaxial cable.
  • Figure 19 shows the results of trial calculation of the attenuation rate D (dB) per unit length when current of three types of frequency f flows through the conductor for each of the four types of conductance G.
  • FIG. 1 is a vertical sectional view of a lightning arrester 1 according to the first embodiment of the present invention.
  • 2 is an enlarged cross-sectional view taken along the line X— in FIG. Figure
  • the lightning arrester 1 has a configuration in which a bare conductor 4 is coaxially arranged inside an annular steel pipe 3 erected vertically on the ground 2.
  • the steel pipe 3 is made of, for example, stainless steel.
  • the conductor 4 is made of copper or the like, for example, and is disposed in the steel pipe 3 from the upper end side to the lower end side along the axial direction.
  • the upper end of the conductor 4 is connected to a projecting needle 8 that protrudes slightly outside the upper end of the steel pipe 3 so as to receive a lightning strike 7.
  • the conductor 4 is fixed at a central position in the steel pipe 3 by a plurality of insulating fixing devices 5 provided at predetermined intervals along the axial direction of the steel pipe 3.
  • the filler 10 is cement in which the materials of the resistor 15, the dielectric 16 and the magnetic body 17 are mixed at a predetermined ratio.
  • the resistor 15 for example, metal fine powder (silver powder, copper powder, etc.) or graph items are used.
  • the dielectric 16 a material having a relatively high dielectric constant (for example, aluminum oxide, barium titanate, etc.) is used.
  • the magnetic material 17 for example, ferrite or the like is used.
  • the cement as the filler 10 is preferably reduced in weight, for example, by being formed into a foamed shape.
  • FIG. 3 is an enlarged perspective view of the lightning arrester 1 near the ground 2.
  • the lower end of the steel pipe 3 is buried in the ground 2 (here, the ground 2 is treated as the ground, but depending on the installation location, it may be a concrete structure surface) and connected to the grounding system 20 Grounded.
  • the grounding system 20 has a configuration in which the lower ends of the steel pipe 3 and the conductor 4 in the ground are connected to the deep electrode grounding electrode 22 through the matching unit 21.
  • the matching unit 21 is configured so that the lower ends of the steel pipe 3 and the conductor 4 are terminated by the characteristic impedance of the coaxial system formed by both of them.
  • the lightning surge current I caused by the lightning strike 7 is It is designed to flow almost without reflection on the pole ground electrode 22.
  • a cylindrical concrete material is used as the matching unit 21, which is arranged in parallel and concentric with the steel pipe 3 in the axial direction.
  • lightning surge current I which includes a variety of frequency components, passes through the conductor 4 of the lightning arrester 1 along the axial direction. It flows from the upper end side to the lower end side.
  • a steel pipe 3 arranged coaxially so as to cover the outer periphery of the conductor 4 is arranged, and between the conductor 4 and the steel pipe 3, a conductive filler 10 is filled. Therefore, the lightning surge current I attenuates when it flows through the conductor 4. This phenomenon is explained below using the circuit diagram shown in Fig. 4.
  • FIG. 4 shows an embodiment of the present invention constituted by the steel pipe 3, the conductor 4, and the filler 10 when the lightning surge current I that strikes the needle 8 connected to the upper end side of the conductor 4 flows to the ground side.
  • FIG. 3 is a circuit diagram showing an equivalent circuit per unit length of the lightning arrester 1 according to the embodiment.
  • L is the inductance of conductor 4
  • R is the resistance of conductor 4
  • C is the capacitance between conductor 4 and steel pipe 3.
  • G is a conductance due to the filler 10 containing the resistor 15, the dielectric 16 and the magnetic 17.
  • the lightning surge current I attenuates when it flows through the conductor 4, and the high-frequency component I H of the lightning surge current I passes through the filler 10 and the steel pipe 3 outside the conductor 4 (that is, This is because it flows from point A 1 to point B 2 shown in Figure 4. Therefore, the attenuated lightning surge current I flowing through the conductor 4 is the low frequency component IL of the lightning surge current I.
  • the lightning arrester 1 is configured such that the lightning surge current I of the lightning strike 7 is divided into the low frequency component I and the high frequency component I H, and the low frequency component JP2007 / 067245 is configured to flow through the conductor 4 as the first current path, and the high-frequency component I H flows through the steel pipe 3 and the filler 10 as the second current path.
  • the low frequency component IL of the lightning surge current I flowing through the conductor 4 and the high frequency component I H of the lightning surge current I flowing through the filler 10 and the steel pipe 3 flow to the lower end side along the axial direction and are lower than the ground 2 When it reaches the position, it flows to the grounding system 20 as shown in Fig.3. That is, the lightning surge current I flows through the matching unit 21 to the ground electrode 22 terminated by the characteristic impedance of the coaxial system.
  • the lightning arrester 1 is configured as a coaxial cable in which the conductor 4 is arranged at the center of the steel pipe 3, and the conductive filler 10 is filled between the steel pipe 3 and the conductor 4. Therefore, the lightning surge current I is shunted when it flows through the conductor 4, the low frequency component IL mainly flows through the conductor 4 as the first current path, and the high frequency component I H around the conductor 4. It can be made to flow through the second current path provided in the circuit. As a result, almost all lightning surge current I flows through conductor 4 Compared to the conventional lightning protection technology, the amount of current flowing through conductor 4 is reduced and the lightning surge voltage (L Xdi / dt) generated in conductor 4 is reduced. Can reduce 7 067245 can stabilize the lightning surge current I flowing through the conductor 4, reliably prevent the flashover that the lightning surge current I caused by the lightning strike 7 jumps out of the lightning arrester 1, and effectively prevent lightning damage. It becomes possible.
  • a matching unit 22 is provided in the grounding system 20, and the lower ends of the steel pipe 3 and the conductor 4 are terminated by the characteristic impedance of the coaxial system formed by the two (3, 4) and then grounded.
  • the ground impedance is constant regardless of the earth resistivity.
  • the lightning surge current I (that is, the low frequency component IL and the high frequency component I H ) can flow to the ground side without being reflected. As a result, the lightning surge current I can flow more reliably to the ground side, and the occurrence of flashover can be further suppressed.
  • FIG. 5 is a partial cross-sectional view in the vertical direction of the lightning arrester 1 according to the second embodiment of the present invention.
  • a lightning arrester constructed almost in the same manner as in the case of the first embodiment of the present invention 1 force
  • a plurality of fixtures 45 support shafts of the traffic light 40 with a slight inclination with respect to the vertical direction. It is attached to 41.
  • the lower ends of the steel pipe 3 and the conductor 4 are terminated with a coaxial characteristic impedance and then connected to the mesh ground electrode 52.
  • the deep buried electrode ground electrode 22 may be used as in the first embodiment.
  • the lightning arrester 1 since the lightning arrester 1 is attached to existing facilities such as the traffic light 40, for example, the necessary strength and support are provided compared to the case where the lightning arrester 1 is erected independently.
  • the design constraints related to the structure are reduced, and it is possible to easily downsize and simplify the system, and the equipment cost and equipment space of the lightning arrester 1 can be reduced.
  • the second embodiment of 67245 also has the same effect as the first embodiment.
  • FIG. 6 is a vertical sectional view of the structural column 60 according to the embodiment of the present invention.
  • FIG. 7 is an enlarged cross-sectional view taken along arrow Y in FIG.
  • the structural column 60 is supported by the support 61 having the same configuration as the lightning arrester 1 according to the first embodiment of the present invention, and the support 61. And a signal device as the supported portion 62.
  • the supported portion 6 2 is axially (ie, in the lead straight direction) between the conductor 4 of the support portion 61 and the steel pipe 3. It has a configuration in which the upper and lower ends of hollow pipes 65 arranged along the side are bent at right angles so as to protrude out of the steel pipe 3. At the upper end of the pipe 65 protruding in this way, a light emitting device 66 equipped with, for example, red, yellow and green lamps is provided.
  • the lower end of the pipe 65 is connected to a control device (not shown) that controls the light emitting device 66 and a power supply device (not shown) that supplies power to the light emitting device 66.
  • a control device not shown
  • a power supply device not shown
  • an electric wire group 67 such as an electric wire and a signal line for connecting the control device and the power supply device (not shown) and the light emitting device 66 are disposed.
  • the pipe 65 is fixed with a filler 10 filled between the conductor 4 and the steel pipe 3.
  • the structural column 60 is supported by a support part 61 having a lightning protection function and a function different from the lightning protection function supported by the support part 61 (that is, a signal
  • a lightning protection function that prevents lightning damage due to lightning strikes 7 and various functions other than the lightning protection function. It is possible to save installation space.
  • the third embodiment of the present invention has the same effect as the first embodiment.
  • FIG. 8 shows a grounding electrode 1 0 1 according to the fourth embodiment of the present invention.
  • 67245 is a block diagram showing an example when applied to a building 105 as an object to be stopped.
  • a lightning arrester 110 as a lightning arrester is installed in the vertical direction as a lightning arrester that sends a lightning surge current from the lightning strike 107 to the ground side.
  • a lowering lead wire 113 is connected to the lower end of the lightning rod 110 so that the lightning surge current of the lightning 107 that has fallen to the upper end can flow through the lead wire 113.
  • the conducting wire 113 extends downward along the outer surface of the building 105, is introduced into the building 105 at a position lower than the ground 115, and is connected to a grounding part 117 provided inside the building 105.
  • the grounding part 117 may be made of metal or the like arranged over the entire bottom part in the building 105.
  • the ground part 117 is connected to the ground electrode 101 and the equipotential bonding conductor 120.
  • the potential equipotential bonding conductor 120 is connected to an electronic device 125 such as a bath computer or a metal pipe 126 such as a water pipe.
  • electronic device 125 is connected to external power supply 127.
  • the equipotential bonding conductor 120 is, for example, a metal plate provided so as to hold the connected electronic device 125, the metal tube 126, and the like at an equipotential.
  • FIG. 9 is a vertical sectional view of the ground electrode 101.
  • FIG. 10 is an enlarged cross-sectional view taken along the line XX in FIG.
  • the ground electrode 101 has a configuration in which a bare conductor 134 is coaxially arranged inside an annular steel pipe 133 embedded in the ground 115 in the vertical direction.
  • the steel pipe 133 as a tubular conductor is made of, for example, stainless steel or a corrosion-resistant steel pipe.
  • the conductor 134 as the internal conductor is made of, for example, copper, and is disposed in the steel pipe 133 from the upper end side to the lower end side along the axial direction.
  • the upper end of the conductor 134 is arranged to protrude slightly outside the upper end of the steel pipe 133. Connected to part 1 17. In some cases, the conductor 134 is fixed at a central position in the steel pipe 133 by a plurality of insulating fixing devices 135 provided at predetermined intervals along the axial direction of the steel pipe 133.
  • a filler 140 having conductivity is filled between the steel pipe 133 and the conductor 134.
  • the filler 140 for example, cement in which materials of the resistor 145, the dielectric 146, and the magnetic body 147 are mixed at a predetermined ratio is used.
  • the resistor 145 for example, a metal fine powder (silver powder, copper powder, etc.) or a graph item is used.
  • the dielectric 146 a material having a relatively high dielectric constant (for example, aluminum oxide, barium titanate, etc.) is used.
  • the magnetic body 147 for example, ferrite or the like is used. Note that the cement as the filler 140 is preferably reduced in weight, for example, by being formed in a foamed shape.
  • FIG. 11 is an enlarged perspective view of the ground electrode 101 near the ground 1 15.
  • the steel pipe 133 is embedded in the ground 1 15 almost along its entire length along the axial direction, but its upper end protrudes from the ground 1 15. ing.
  • the matching unit 151 is configured so that the lower ends of the steel pipe 133 and the conductor 134 are terminated by a coaxial characteristic impedance formed by both of them (133, 134).
  • a cylindrical concrete material is used as the matching unit 15 51, which is arranged in parallel and concentrically with the steel pipe 133 in the axial direction.
  • a lightning surge voltage reduction method which is performed by the ground electrode 101 configured as described above, will be described.
  • lightning surge current I flows down from the bottom of the lightning arrester 1 10 to the conducting wire 1 13 Next, it flows from the conductive wire U 3 to the ground electrode 10 1 .
  • This lightning surge current I contains many frequency components.
  • the lightning surge current I flowing to the ground electrode 101 flows from the upper end side to the lower end side along the axial direction of the conductor 134 of the ground electrode 101 in FIG.
  • a steel pipe 133 is arranged coaxially so as to cover the outer periphery of the conductor 134, and between the conductor 134 and the steel pipe 133, a conductive filler 140 is filled. Therefore, the lightning surge current I attenuates as it flows through the conductor 134. This phenomenon will be described below with reference to the circuit diagram shown in FIG.
  • FIG. 12 shows the ground electrode according to the fourth embodiment of the present invention, which is composed of the steel pipe 133, the conductor 134, and the filler 140 when the lightning surge current I flowing from the upper end side of the conductor 134 flows to the ground side.
  • FIG. 6 is a circuit diagram showing an equivalent circuit per unit length of 101.
  • L is the inductance of the conductor 134
  • R is the resistance of the conductor 134
  • C is the capacitance between the conductor 134 and the steel pipe 133.
  • G is a conductance caused by the filler 140 containing the resistor 145, the dielectric 146, and the magnetic material 147.
  • the lightning surge current flowing in the conductor 134 is IL mainly composed of a low frequency component obtained by subtracting I H from the lightning surge current I.
  • the ground electrode 1 according to the first embodiment of the present invention has the lightning surge current of the lightning 107.
  • the low-frequency component II mainly flows through the conductor 134 as the first current path
  • the high-frequency component I H is mainly the steel pipe as the second current path 133.
  • the filler 140 is configured to flow.
  • V L L XdI L Zdt.
  • This lightning surge voltage V L is conventionally known.
  • the resistance is mainly caused by the resistance antibody 35, the dielectric 136 and the magnetic substance 137 contained in the filler 140. Heating, dielectric heating, and induction heating occur, and part of the energy is consumed.
  • the ground electrode 101 is configured as a coaxial cable in which the conductor 134 is disposed at the center of the steel pipe 133, and the conductive filler 140 is filled between the steel pipe 133 and the conductor 134.
  • the lightning surge current I is shunted when flowing through the conductor 134, the low-frequency component I flows mainly through the conductor 134 as the first current path, and the high-frequency component I H mainly flows through the conductor 134. It is possible to flow through a second current path provided around the. This reduces the amount of current flowing through the conductor 134 and reduces the lightning surge voltage (L XdiZdt) generated in the conductor 134, compared to the case of the conventionally known ground electrode in which almost all the lightning surge current I flows through the conductor 134.
  • the ground impedance can be made lower than before. As a result, the diversion flow that flows to the building side is reduced, and as a result, the situation such as the destruction of electrically connected electronic devices is reduced.
  • the lightning surge voltage caused by the ground electrode 101 is reduced, so that the lightning surge that flows to the ground 115 via the ground electrode 101 is reduced. It is possible to minimize damage to the surrounding buildings and human beings.
  • the effect will be described with reference to examples shown in FIGS.
  • FIG. 13 (a) another building 155 exists near the building 105 having the ground electrode 101.
  • the other building 155 includes, for example, an electronic device 165 connected to an external power source 167, for example.
  • the other building 155 is grounded by a conventionally known ground electrode 161 embedded in the ground 115.
  • the ground electrode 161 is connected to the electronic device 165 via the conductive wire 160.
  • Fig. 13 (b) shows the lightning surge voltage in the ground 115 when the lightning surge current I flows from the ground electrode 101 to the ground 115 when the lightning 107 falls on the building 105 shown in (a). Is a graph showing the value of with the position on the ground 115.
  • the vertical axis represents the lightning surge voltage value
  • the horizontal axis represents the position (ie, distance) on the ground 115.
  • the horizontal positional relationship of (a) corresponds to the distance indicated by the horizontal axis of (b).
  • the initial value of the lightning surge current voltage (lightning surge voltage) when flowing to the ground 115 is UE Q , but infinite.
  • the ground electrode 101 of the present invention is used with the far point potential set to zero, the value of the lightning surge voltage flowing to the ground 115 is greatly reduced, and the lightning surge voltage immediately after flowing to the ground 115 is reduced.
  • the initial value is U E 1 .
  • the lightning surge voltage gradually attenuates as it travels to a position (distance) farther away from the point where the ground 115 is passed, but when a conventionally known ground electrode is used for the building 105, The lightning surge voltage at point D of the adjacent ground electrode 161 is still a very high value U D Q. 165 may be damaged.
  • the ground electrode 101 according to the present invention when used, the lightning surge voltage at the point D of the adjacent ground electrode 161 becomes a sufficiently low value U D 1 and the electronic device 165 is not damaged. .
  • the ground electrode of the building 105 is not the ground electrode 101 of the present invention, but is conventionally known.
  • the initial value of the lightning surge current voltage (lightning surge voltage) when flowing to the ground is ⁇ ⁇ ⁇ , as shown by the dotted line in Fig. 13 (b).
  • the steel tube portion 133 is not in contact with the ground 115 but the conductor, and the center conductor 134 is not in direct contact with the ground 115 as in the known ground electrode. Therefore, since the steel pipe portion 133 acts as an electromagnetic shield for the central conductor 134, intrusion of lightning surge current into the central conductor 134 is suppressed.
  • the current of the low frequency component selectively flows through the center conductor 134 due to its property, the current surge voltage is greatly reduced.
  • FIG. 14 (a) a pedestrian 170 walking near the building 105 with the ground electrode 101 is shown.
  • Figure 14 (b) shows the value of lightning surge voltage in the ground 115 when the lightning surge current I flows from the ground electrode 101 to the ground 115 when the lightning 107 falls on the building 105 shown in (a).
  • the vertical axis represents the lightning surge voltage value
  • the horizontal axis represents the position on the ground 115 (ie, the distance).
  • the horizontal positional relationship in (a) corresponds to the distance indicated by the horizontal axis in (b).
  • the building 105 shown in (a) has a conventionally known ground electrode instead of the ground electrode 101
  • the relationship between the lightning surge voltage and the distance is (b ) As shown in the dotted line.
  • the initial value of the lightning surge current voltage (lightning surge voltage) when flowing to the ground 115 is U EQ .
  • the ground electrode 101 of the present invention when used, the value of the lightning surge voltage flowing through the ground 115 is greatly reduced, and the initial value of the lightning surge voltage immediately after flowing through the ground 115 is U E 1 . It has become.
  • the lightning surge voltage gradient (solid line (b)) when the ground electrode 101 of the present invention is used is the lightning surge voltage gradient (dotted line (b)) when the conventionally known ground electrode is used. It has become more gradual.
  • both feet of the pedestrian 170 are in contact with the ground 115 at different positions L l and L 2, so that the lightning surge current that flows from the ground electrode 101 to the ground 115
  • stride voltage a lightning surge voltage corresponding to the potential difference between both feet
  • stride voltage a lightning surge voltage corresponding to the potential difference between both feet
  • the ground electrode 101 of the present invention when used, the slope of the lightning surge voltage is moderated as described above, and therefore, between the position L 1 of one foot and the position L 2 of the other foot.
  • the potential difference is reduced to a significantly low value from U S 1 and the potential difference U S () when a conventionally known ground electrode is used.
  • the lightning surge voltage (referred to as the contact voltage) received when the contact person 171 receives an electric shock is Position W and contact 171 position
  • the ground electrode 101 of the present invention is used, as shown by the solid line in FIG. 14 (b), the lightning surge voltage is sufficiently reduced and the attenuation level is moderated. In this case, the applied potential difference U T 1 is very low.
  • the present invention even when a lightning surge current flows, it is possible to effectively reduce the electric shock damage of the contact person 171.
  • the ground electrode 101 having a coaxial structure can basically reduce the inductance component of the conventional ground electrode significantly, thereby reducing the ground impedance value.
  • the value of the reactance component does not depend on the normal soil environment (for example, resistivity) in which the ground electrode 101 is installed.
  • the manufactured ground electrode 101 is transported to the site where the installation location (for example, the building 105, etc.) is located and along the vertical direction. After excavating a hole, the ground electrode 101 can be inserted and fixed in this hole, and the operation can be performed very easily.
  • the steel pipe 133 of the ground electrode 101 can shield the current from the outside and protect the conductor 134. This prevents a situation where the induced lightning surge current flows from the ground 115 into the conductor 134.
  • a lightning surge current flowing from the other adjacent ground electrode to the ground 115 flows into the center conductor 134 of the ground electrode 1. The amount can be reduced.
  • FIG. 15 is a cross-sectional view showing a vertical cross section of a ground electrode group 102 having three ground electrodes 101 as an example.
  • three ground electrodes 101 are embedded in the ground 115 at substantially equal intervals from each other with the tube axis direction of the steel pipe 133 as a tubular conductor being vertical.
  • the conductors 134 of the three ground electrodes 101 are connected to each other outside the steel pipes 133 to become one.
  • each ground electrode 101 can be made smaller than before. This greatly facilitates the transportation and construction of each ground electrode 101. Note that the fifth embodiment also has the same effect as the fourth embodiment.
  • FIG. 16 is a cross-sectional view showing a horizontal cross section of a ground electrode group 102 having four ground electrodes 101 as an example.
  • the four ground electrodes 101 are all arranged in the same horizontal plane with the tube axis direction of the steel pipe 133 as a tubular conductor being horizontal.
  • the four ground electrodes 101 are arranged radially so that the directions of the tube axes are perpendicular to each other.
  • Each ground electrode 101 is arranged with the end on the side where the conductor 134 as an internal conductor extends outside the steel pipe 133 facing the center of radiation.
  • a hollow space 180 is provided at the center of the radial ground electrode group 102, and the conductors 134 of the four ground electrodes 101 are connected to each other in the space 180. It is one.
  • the conductors 34 joined together in this way are extended upward along the vertical direction, for example, It is connected to a lightning arrester 110 provided at the upper part of the building 105 via a grounding part 117 shown in FIG.
  • the sixth embodiment of the present invention by arranging the tube axis direction of the steel pipe 133 of the ground electrode 101 horizontally, for example, when embedding the ground electrode 101, holes formed in the ground 115 have the same depth. The construction will be facilitated, such as better.
  • the end portions of the ground electrodes 101 on the side where the lightning surge current flows can be arranged away from each other. The impact can be reduced.
  • the sixth embodiment also has the same effect as the fourth embodiment.
  • FIG. 17 is a vertical cross-sectional view of an upright lightning rod 185 as an example in which the lightning arrester 110 and the ground electrode 101 are formed in a body-shaped coaxial shape.
  • the lightning rod 185 is erected independently and has a protruding needle 186 at the upper end.
  • the lightning protection device and the ground electrode may be integrated and provided in the existing equipment. For example, if this configuration is used by connecting to the overhead ground wire of the transmission line and connecting the upper end of the ground electrode to the overhead ground wire, the rise in lightning surge voltage of the overhead ground wire can be reduced.
  • the seventh embodiment of the present invention since the lightning surge current caused by the lightning strike 107 flows through the coaxial lightning arrester 110 before it reaches the ground electrode 101, the potential increase of the lightning surge current is more effectively suppressed.
  • the ground impedance can be greatly reduced.
  • Discharge such as flashover caused by lightning surge current Can be prevented. Furthermore, it is possible to prevent current from flowing into this path from the outside. Note that the seventh embodiment also has the same effect as the fourth embodiment.
  • tubular conductors 3 133 made of stainless steel or anti-corrosion steel pipe, for example, is used as the tubular conductor.
  • tubular conductors made of other materials may be used. .
  • the fillers 10 and 140 may use any conductive material.
  • the fillers 10 and 140 may contain one or more materials selected from the group consisting of resistors, derivatives, and magnetic materials. Furthermore, materials other than these resistors, dielectrics, and magnetic materials may be included.
  • the resistors 15 and 145 are metal fine powder (silver powder, copper powder, or the like) or a graph item has been described, but other materials may be used as the resistors 15 and 145.
  • the dielectrics 16 and 146 are aluminum oxide and barium titanate has been described. However, other materials may be used as the dielectrics 16 and 146.
  • the magnetic bodies 17 and 147 are ferrites. However, materials other than these are used as the magnetic bodies 17 and 147. May be.
  • the matching unit 22, 151 In the embodiment, a description has been given of the case where a cylindrical concrete material is used as the matching unit 22, 151, which is arranged in parallel and concentrically with the steel pipes 3, 133.
  • the matching unit 22, 151 May be any material and shape for impedance matching.
  • the grounding electrode of the grounding system 20 is the deep buried electrode grounding electrode 22 or the mesh grounding electrode 52 has been described, but other grounding electrodes may be used.
  • the supported portion 62 has a traffic light function.
  • the supported portion 62 has a function other than the lightning protection function, such as a communication function and an illumination function. May be.
  • the ground electrode 101 of the present invention is used alone has been described.
  • it may be used in combination with a conventionally known ground electrode such as a mesh ground electrode. This has the effect of reducing the ground impedance of the ground electrode.
  • ground electrode group 102 has three or four ground electrodes 101 has been described in the fifth embodiment, any number of ground electrodes 101 may be included. Further, the plurality of ground electrodes 101 included in the ground electrode group 102 may have any arrangement configuration.
  • the case where the lightning arrester 110 and the ground electrode 101 are formed in an integral coaxial shape has been described.
  • a bellows-shaped coaxial or non-coaxial intermediate portion may be provided, and the lightning arrester 110 and the ground electrode 101 may be connected via the intermediate portion.
  • the ground electrode 101 exerts an effect on the lightning surge current caused by the lightning strike 107 .
  • the ground electrode 101 includes, for example, the electric device 125 shown in FIG. In case of a fault Even if it is the same, the effect is similar to the effect against lightning surge current flow against leakage current flow at commercial frequency frequency. It is possible to achieve this effect. .
  • the grounded ground electrode electrode 110011 is directly and directly connected to the ground 111155. Although it has been explained in the case where it is buried, it has been explained in the case of the outer circumference of the contact ground electrode electrode 110011. For example, a cement etc. It's okay to have an outer and outer skin. . In this way, an outer skin can be provided on the outer periphery of the steel pipe tube 113333 so that the grounded earth electrode electrode 110011 This can be done by taking countermeasures against corrosion corrosion of the steel pipe tube 113333 at the time of burial. .
  • the main major frequency component of the lightning surge current flow is considered to be 1100 KKHHzz ⁇ ⁇ 11 MMHHzz.
  • the lightning arrester device 11 and the grounded ground electrode electrode 110011 relating to the form of implementation of the invention are generally used in a general transmission transmission type. From the analysis of the positive sine wave using the steady-state normal current method, the trial calculation using the equation is applied appropriately. It verifies the effectiveness of its effectiveness. .
  • the lightning arrester device 11 and the grounded electrode electrode 110011 are connected to the lossy loss line shown in Figs. 44 and 1122. Since it can be regarded as an equivalent equivalent circuit circuit of the track, in the following, a trial calculation is made by appropriately applying one general formula of publicly known knowledge. Do arithmetic. . It should be noted that the resistance resistance RR and the conductance GG are set to 00 and set to 00 in the equivalent equivalent circuit of the lossy and broken line. In such a case, it falls under the equivalent equivalent circuit path of a lossless lossless line. .
  • the inner and outer conductors 9911 have outer and outer diameters of aa and 9911, respectively.
  • the coaxial shaft cable 9955 whose inner diameter is bb, has an inner air conductor 9911 and an outer outer conductor 9922 that are insulated with air and air. If the electric current of the frequency of the frequency ((HHzz)) is applied, the coaxial cable cable is used. Inductor inductance LL ((ii HH // mm)), capacitance capacitor CC ((ppFF // mm)) and resistance per unit length of 9955 Resistance resistance RR
  • Table 1 shows various conductivity ⁇ as filler 1 or 140 (containing resistor, dielectric and magnetic) When the substance of (S / m) is used, each value of the conductance G (S Zm) of the lightning arrester 1 or the ground electrode 101 calculated from the above equation (6) is shown.
  • ⁇ shown in the following equation (7) is generally called the propagation coefficient.
  • the conductor 4 of the lightning arrester 1 or the ground electrode 101 It shows the result of trial calculation of the attenuation factor D (dB) per unit length when flowing through the conductor 134.
  • Lightning surge current of D 0.2 (dB)
  • frequency f 10 5 (Hz)
  • frequency f 10 6 (Hz)
  • D l.5 (dB )
  • the figure shows the results of trial calculations of the characteristic impedance Zo of the lightning arrester 1 or ground electrode 1 when a lightning surge current of 10 6 (Hz) flows through the conductor 4 or 134 using the above equation (4). is there. This corresponds to the resistance of the matcher.
  • FIG. 20 is a graph giving a guide to the matching impedance of the present invention.
  • the characteristic impedance Zo is 288.7 ( ⁇ ) as shown in Fig. 20.
  • the characteristic impedance is constant regardless of frequency when it is lossless, and this means that the matching resistance is 288.7 ( ⁇ ) when lossless. Means that it is consumed at the end without disturbing the voltage-current characteristics.
  • the characteristic impedance differs depending on the value of conductance G (ie, dielectric constant ⁇ ) shown in Fig. 20, and also depends on the frequency. This is the matching impedance. As shown in FIG.
  • the impedance Zo of the lightning arrester 1 or the ground electrode 101 is the conductance G (that is, the conductive).
  • G that is, the conductive
  • L 1.7 (// H / m), which is about twice as large.
  • the lightning surge voltage V can be calculated from the following equation (11) as the voltage generated between the cables.
  • the lightning surge voltage described above corresponds to the lightning surge voltage generated at the outlet end of the ground electrode 1. Therefore, since this value is low, the influence of lightning surge voltage on the surroundings can be made very small, and the contact voltage and stride voltage can be reduced to effectively reduce the electric shock accident disaster. Become. Industrial applicability
  • the present invention is particularly useful for a lightning arrester and a grounding electrode that prevent lightning damage by flowing a lightning surge current caused by a lightning strike to the ground.
  • lightning arresters such as power distribution poles in the power system field, ground electrodes, lightning arresters such as overhead support poles in the electric railway field, ground electrodes, lightning arresters such as road lighting pillars and traffic signal pillars in the road field , Ground electrodes, ground electrodes for antennas of mobile communication base poles in the information communication field, surveillance cameras, etc. It is very useful for lightning devices, grounding electrodes, lightning protection devices such as various manufacturing factories and storage facilities in the engineering field, and grounding electrodes.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

A lightning arrestor (1) for flowing the thunder surge current due to lightning strike (7) to the ground comprises a steel pipe (3), a conductor (4) coaxially disposed in the steel pipe (3), an a filler (10) placed between the steel pipe (3) and the conductor (4) and having a conductivity. With this, the thunder surge current flowing through the lightning arrestor (1) is divided. The low-frequency component flows through the conductor (4), and the high-frequency component flows through the steel pipe (3) outside the conductor (4) and the filler (10).

Description

避雷装置、 接地電極及び雷サージ電圧の低減方法 Lightning arrester, ground electrode, and lightning surge voltage reduction method
技術分野 Technical field
本発明は、 落雷による雷サージ電流を接地側に流すことによって 雷害を防止する避雷装置、 接地電極及び雷サージ電圧の低減方法に 明  The present invention relates to a lightning arrester, a ground electrode, and a lightning surge voltage reduction method for preventing lightning damage by flowing a lightning surge current caused by a lightning strike to the ground side.
関する。 書 Related. book
背景技術 Background art
落雷により高出力の雷サージ電流が建造物、 信号機等の各種設備 又は樹木等に流れると、 これらは破壊されてしまう。 近年では、 電 気的な衝撃に対して特に弱い電子機器も増加しており、 雷害が非常 に脅威になっている。 このような雷害を防止するため、 落雷による 雷サージ電流を接地側に流す経路を予め確保する導体 (通常避雷針 とも呼ばれ、 避雷突針や避雷導体等が含まれる) が用いられている  If a lightning surge current with a high output flows to a building, various facilities such as traffic lights, or trees due to a lightning strike, these will be destroyed. In recent years, the number of electronic devices that are particularly vulnerable to electrical shocks has increased, and lightning damage has become a serious threat. In order to prevent such lightning damage, a conductor (usually called a lightning rod, which includes a lightning rod, a lightning conductor, etc.) that secures a path for lightning surge current due to lightning to the ground side in advance is used.
ところが、 雷サージ電流には多種多様の周波数の交流電流が含ま れており、 落雷による雷サージ電流が避雷針導体を流れる際には、 雷サージ電流の高周波成分による電圧は非常に大きくなる (即ち、 雷サージ電流の高周波成分では、 萼体のインダクタンス Lと電流の 微分成分 d i / d tの積から求まる電圧降下分 V = L x d i Z d tが非常に 大きくなる) 。 このため、 この電圧降下分である Vが導体周辺の絶 緣耐カを上回ると絶縁破壊が生じ、 導体周辺に火花放電発生し (一 般に、 フラッシオーバーと呼ばれる) 、 周囲に予想外の雷害を与え てしまう恐れがある。 However, lightning surge currents include AC currents of a wide variety of frequencies, and when lightning surge current due to lightning strikes the lightning rod conductor, the voltage due to high-frequency components of lightning surge current becomes very large (that is, In the high-frequency component of the lightning surge current, the voltage drop V = L xdi Z dt obtained from the product of the inductance L of the enclosure and the differential component di / dt of the current becomes very large). For this reason, when V, which is the voltage drop, exceeds the insulation resistance around the conductor, dielectric breakdown occurs, spark discharge occurs around the conductor (commonly called flashover), and unexpected lightning strikes around the conductor. There is a risk of harm.
そこで、 特開 2002— 186 160号公報に記載の避雷技術では、 上述し たフラッシオーバ一を防止するように、 避雷針導体の外周に絶縁体 を設け、 避雷針導体の周囲を完全な絶縁状態にすることによって、 フラッシオーバーの発生を防止している。 Therefore, in the lightning protection technology described in Japanese Patent Laid-Open No. 2002-186 160, In order to prevent flashover, an insulator is provided on the outer periphery of the lightning rod conductor to prevent the occurrence of flashover by making the surroundings of the lightning rod conductor completely insulated.
しかしながら、 この特許文献に開示された避雷技術では、 避雷針 導体の外周に設けた絶縁体にクラックが入る等して僅かに破損した だけでも絶縁破壊し、 フラッシオーバ一が発生してしまう。 また、 フラッシオーバーの発生の可能性は、 避雷針導体の導体長が長いほ ど高くなりそのため避雷針導体は、 より高い絶縁耐カを有すること が要求されている。  However, in the lightning protection technique disclosed in this patent document, even if the insulator provided on the outer periphery of the lightning conductor is cracked or broken slightly, the insulation breaks down and a flashover occurs. In addition, the possibility of the occurrence of flashover becomes higher as the conductor length of the lightning rod conductor becomes longer. Therefore, the lightning rod conductor is required to have higher insulation resistance.
また一般に、 上記導体の一方の端部は、 避雷突針が接続され、 落 雷を受けるように雷害防止の対象である建造物や各種設備等の上部 に配置されている。 また、 他方の端部は、 大地に埋設された接地電 極に接続されている。 これにより、 雷サージ電流を、 避雷導体、 接 地電極、 大地の順に流し、 雷害防止の対象である建造物等から迂回 させることで、 被害を防止するようになっている。 なお、 接地工事 で、 例えば A種接地での接地抵抗 (一般に、 接地インピーダンスと 呼ばれている) は 10 Ω以下である。 通常、 接地イ ンピーダンスは抵 抗、 インダク夕ンス、 キャパシタンスからなる等価回路で表される 。 抵抗は主に接地電極の大地との接触抵抗並びに大地抵抗であり、 ィンダク夕ンスは接地電極のィンダクタンスであり、 キャパシ夕ン スは接地電極と大地との間のキャパシタンスである。 上述の等価回 路では、 インダク夕ンスと抵抗は直列接続に構成され、 また抵抗と キャパシタンスは並列接続に構成されている。  In general, one end of the conductor is connected to a lightning rod, and is placed on top of a building or various facilities that are to be protected from lightning strikes. The other end is connected to a ground electrode buried in the ground. As a result, lightning surge currents flow in the order of lightning conductors, ground electrodes, and ground, and are diverted from buildings that are the subject of lightning damage prevention, thereby preventing damage. In grounding work, for example, the grounding resistance in class A grounding (generally called grounding impedance) is 10 Ω or less. Normally, the ground impedance is represented by an equivalent circuit consisting of resistance, inductance, and capacitance. The resistance is mainly the contact resistance with the ground of the ground electrode and the ground resistance, the inductance is the inductance of the ground electrode, and the capacitance is the capacitance between the ground electrode and the ground. In the above-described equivalent circuit, the inductance and the resistor are connected in series, and the resistor and the capacitance are connected in parallel.
この等価回路で表される接地インピーダンスにおいて、 特にイン ダクタンスと抵抗の直列回路に加わる電圧が、 流れる電流の周波数 成分によって異なる点に留意しなければならない。 即ち、 直流や 50 Hz、 60Hzの商用周波数電流ならば、 回路電圧の大部分は抵抗に加わ る成分である。 一方、 電流の周波数成分が広くなるとともに、 イン ダク夕ンス成分の電圧も顕著になり、 回路電圧は抵抗成分とインダ クタンス成分が重畳する値になる。 したがって接地電極に雷サージ 電流が流れるとき抵抗値相当以上の高い電圧が接地電極に生じるの はこの理由による。 In the ground impedance represented by this equivalent circuit, it must be noted that the voltage applied to the series circuit of the inductance and the resistance varies depending on the frequency component of the flowing current. That is, for DC, commercial frequency currents of 50 Hz and 60 Hz, most of the circuit voltage is added to the resistor. It is a component. On the other hand, as the frequency component of the current becomes wider, the voltage of the inductance component becomes more prominent, and the circuit voltage becomes a value in which the resistance component and the inductance component are superimposed. Therefore, this is why a high voltage equivalent to the resistance value or more is generated at the ground electrode when lightning surge current flows through the ground electrode.
従来の接地工事においては、 雷サージ電流に対する接地電極の電 位上昇を抑制する観点から ( 1 ) 抵抗を更に下げる工事、 又は ( 2 ) 接地インピーダンスを下げる工事を行う等の対策が採られている 。 しかし、 これらの工事は非常に大きなコス トや日数を要している 。 また、 上記 ( 1 ) での抵抗の低減が必ずしも接地インピーダンス の低減に結び付かず費用対効果が悪い。 上記 ( 2 ) では、 所望の値 を得るまで何度も追加工事と計測を必要とする等、 これも費用対効 果が悪いという課題がある。  In the conventional grounding work, measures such as (1) further reducing the resistance or (2) lowering the grounding impedance are taken from the viewpoint of suppressing the potential increase of the grounding electrode against the lightning surge current. . However, these constructions require very large costs and days. In addition, the reduction in resistance in (1) above does not necessarily lead to a reduction in ground impedance and is not cost effective. In (2) above, there is a problem that this is also not cost effective, as additional work and measurement are required repeatedly until the desired value is obtained.
いま、 接地インピーダンスのうち、 抵抗を 10Ω、 インダクタンス を 10 χ Ηとし、 雷サージ電流の大きさを lOOkAかつ lOOkA/ s とす ると、 上述した接地電極に雷サージ電流が流れる際には、 10 (Ω) X100 (kA) + 100 ( k/ /1 s ) xlO ( n H) = 1000 (kV) + 1000 ( kV) = 2000 (kV) の電位上昇が生ずる。 このインダクタンス成分電 圧を極力低減することが、 接地電極に直接又は間接につながった電 気設備や付近にある設備の絶縁破壊防止に極めて有効である。  If the resistance is 10 Ω, the inductance is 10 χ 、, and the lightning surge current is lOOkA and lOOkA / s, then when the lightning surge current flows through the ground electrode, 10 (Ω) X100 (kA) + 100 (k // 1 s) xlO (nH) = 1000 (kV) + 1000 (kV) = 2000 (kV). Reducing the inductance component voltage as much as possible is extremely effective in preventing dielectric breakdown of electrical equipment directly connected to the ground electrode or indirectly.
雷サージ電流により発生する接地電極の電位上昇が大きいと接触 電圧や歩幅電圧が高くなり付近の住民や動物が感電する事が有り危 険である。 また、 2本の接地電極が近く に離間して接地されている 時、 1本目に雷サージ電流が直接流れると、 2本目にも雷サージ電 流が分流してその接地電極につながった電気設備が災害を受ける事 が多々ある。 家電設備の雷災害の典型の 1つである。 発明の開示 If the potential rise of the ground electrode caused by lightning surge current is large, the contact voltage and stride voltage will increase, and nearby residents and animals may get an electric shock. In addition, when two ground electrodes are grounded close to each other, if a lightning surge current flows directly to the first, the lightning surge current is also shunted to the second, and the electrical equipment connected to the ground electrode Often suffer from disasters. This is one of the typical lightning disasters of home appliances. Disclosure of the invention
本発明の目的は、 落雷による雷サ一ジ電流のフラッシオーバーを 確実に防ぎ、 雷害を防止することが可能な避雷装置、 避雷機能を有 する構造柱及び雷サージ電圧の低減方法を提供することである。  An object of the present invention is to provide a lightning arrester capable of reliably preventing lightning surge current flashover due to lightning and preventing lightning damage, a structural column having a lightning protection function, and a method of reducing lightning surge voltage. That is.
本発明の他の目的は、 雷害防止の対象である建造物や各種設備等 の接地インピーダンス、 特に上述のィンダクタンスを導体固有の値 よりも低くすることによって、 雷サージ電流による雷害を防止する と共に、 費用対効果を向上させることが可能な接地電極、 接地電極 群及び雷サージ電圧の低減方法を提供することである。  Another object of the present invention is to prevent lightning damage caused by lightning surge currents by lowering the ground impedance of buildings and various facilities, etc., which are the targets of lightning damage prevention, in particular the above-mentioned inductance, lower than the specific value of the conductor. The present invention also provides a ground electrode, a ground electrode group, and a lightning surge voltage reduction method capable of improving cost effectiveness.
上記課題を解決するために、 本発明の第 1 の態様によれば、 落雷 による雷サージ電流を接地側に流す避雷装置であって、 鋼管と、 前 記鋼管内に同軸配置された導体と、 前記鋼管と前記導体の間に充填 された、 導電性を有する充填材と、 を有し、 前記落雷による雷サー ジ電流が分流され、 その低周波成分が前記導体を流れ、 且つその高 周波成分が前記鋼管及び前記充填材を流れることを特徴とする、 避 雷装置が提供される。  In order to solve the above problems, according to a first aspect of the present invention, there is provided a lightning arrester for flowing a lightning surge current due to a lightning strike to the ground side, a steel pipe, a conductor coaxially arranged in the steel pipe, A conductive filler filled between the steel pipe and the conductor; a lightning surge current caused by the lightning strike is shunted; a low frequency component flows through the conductor; and a high frequency component A lightning arrester is provided, characterized by flowing through the steel pipe and the filler.
上記避雷装置において、 前記充填材は、 抵抗体、 誘電体及び磁性 体より成る群から選択した 1以上の材料を含有するようにしてもよ い。  In the above lightning arrester, the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
上記避雷装置において、 前記鋼管と前記導体が、 同軸系の特性ィ ンピ一ダンスにより終端された後に接地されていてもよい。  In the lightning arrester, the steel pipe and the conductor may be grounded after being terminated by a coaxial characteristic impedance.
上記避雷装置において、 前記導体、 前記鋼管及び前記充填材が既 設の設備に付設されていてもよい。  In the lightning arrester, the conductor, the steel pipe, and the filler may be attached to an existing facility.
また、 本発明の第 2の態様によれば、 落雷による雷サージ電流を 接地側に流す避雷機能を有する構造柱であって、 避雷機能を有する 支持部と、 前記支持部によって支持された、 前記避雷機能とは別の 機能を有する被支持部と、 を有し、 前記避雷機能を有する支持部は 、 鋼管、 前記鋼管内に同軸配置された導体、 及び前記鋼管と前記導 体の間に充填された、 導電性を有する充填材を備え、 前記落雷によ る雷サージ電流が分流され、 その低周波成分が前記導体を流れ、 且 つその高周波成分が前記鋼管及び前記充填材を流れるように構成し たことを特徴とする、 避雷機能を有する構造柱が提供される。 Further, according to the second aspect of the present invention, there is a structural pillar having a lightning protection function of flowing a lightning surge current due to a lightning strike to the ground side, the support part having the lightning protection function, and supported by the support part, A supported portion having a function different from the lightning protection function, and the support portion having the lightning protection function A steel pipe, a conductor coaxially disposed in the steel pipe, and a conductive filler filled between the steel pipe and the conductor, and a lightning surge current caused by the lightning strike is shunted, There is provided a structural pillar having a lightning protection function, characterized in that a frequency component flows through the conductor and the high frequency component flows through the steel pipe and the filler.
上記避雷機能を有する構造柱において、 前記充填材は、 抵抗体、 誘電体及び磁性体より成る群から選択した 1以上の材料を含有する よう にしてもよい。  In the structural pillar having the lightning protection function, the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
上記避雷機能を有する構造柱において、 前記鋼管と前記導体が、 同軸系の特性インピーダンスにより終端された後に接地されていて もよい。  In the structural column having the lightning protection function, the steel pipe and the conductor may be grounded after being terminated by a coaxial characteristic impedance.
また、 本発明の第 3の態様によれば、 落雷による雷サージ電流を 接地側に流す際に雷サージ電圧を低減する方法であって、 前記雷サ —ジ電流の高周波成分に対するインピーダンスが第 1 の電流路より も低い第 2の電流路を設け、 前記雷サージ電流の低周波成分が第 1 の電流路に流れ、 且つ高周波成分が第 2の電流路に流れるように、 雷サージ電流を分流させることにより前記第 1の電流路の雷サージ 電圧を低減することを特徴とする、 雷サージ電圧の低減方法が提供 される。  According to a third aspect of the present invention, there is provided a method for reducing a lightning surge voltage when a lightning surge current caused by a lightning strike is caused to flow to the ground side, wherein the impedance to the high frequency component of the lightning surge current is the first. A second current path lower than the first current path, and the lightning surge current is shunted so that the low-frequency component of the lightning surge current flows in the first current path and the high-frequency component flows in the second current path. Thus, there is provided a lightning surge voltage reducing method, characterized by reducing the lightning surge voltage in the first current path.
上記雷サージ電圧の低減方法において、 前記第 1 の電流路は、 導 体で構成され、 前記第 2の電流路は、 前記導体の外周を被覆するよ うに同軸配置した鋼管と、 前記鋼管及び前記導体の間に充填された 、 導電性を有する充填材とで構成されていてもよい。  In the lightning surge voltage reducing method, the first current path is formed of a conductor, and the second current path is a steel pipe coaxially disposed so as to cover an outer periphery of the conductor, the steel pipe, and the steel pipe The conductive material may be filled with a conductive filler.
上記雷サージ電圧の低減方法において、 前記充填材は、 抵抗体、 誘電体及び磁性体より成る群から選択した 1以上の材料を含有する ようにしてもよい。  In the lightning surge voltage reducing method, the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
上記課題を解決するために、 本発明の第 4の態様によれば、 商用 周波の地絡電流のみならず落雷による雷サージ電流を大地に流す接 地電極であって、 少なく とも一部分が大地に埋設された管状導体と 、 前記管状導体内に同軸配置された内部導体と、 前記管状導体と前 記内部導体の間に充填された、 導電性を有する充填材と、 を有し、 前記落雷による雷サージ電流が分流され、 その低周波成分が主とし て前記内部導体を流れ、 且つその高周波成分が主として前記管状導 体及び前記充填材を流れることを特徴とする、 接地電極が提供され る。 In order to solve the above problems, according to a fourth aspect of the present invention, A ground electrode for flowing lightning surge current due to lightning as well as frequency ground fault current to the ground, at least a part of which is buried in the ground, a tubular conductor coaxially disposed in the tubular conductor, A conductive filler filled between the tubular conductor and the inner conductor, wherein a lightning surge current caused by the lightning strike is shunted, and the low-frequency component mainly flows through the inner conductor. In addition, a ground electrode is provided in which the high-frequency component mainly flows through the tubular conductor and the filler.
上記接地電極において、 前記充填材は、 抵抗体、 誘電体及び磁性 体より成る群から選択した 1以上の材料を含有していてよい。  In the ground electrode, the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
上記接地電極において、 前記管状導体と前記内部導体が、 同軸系 の特性インピーダンスにより終端された後に接地されていてもよい 上記接地電極において、 落雷による雷サージ電流を接地側に流す 避雷装置に接続されていてもよい。  In the ground electrode, the tubular conductor and the inner conductor may be grounded after being terminated by a characteristic impedance of a coaxial system. The ground electrode is connected to a lightning arrester that sends a lightning surge current due to a lightning strike to the ground side. It may be.
上記接地電極において、 前記避雷装置と一体型の同軸形状に形成 されていてもよい。  The ground electrode may be formed in a coaxial shape integrated with the lightning arrester.
上記接地電極において、 商用周波電力施設や電力設備の地絡故障 電流を接地側に流す接地装置に接続されてもよい。  The ground electrode may be connected to a grounding device that causes a ground fault fault current of a commercial frequency power facility or power facility to flow to the ground side.
上記接地電極において、 前記管状導体は、 軸方向を鉛直方向にし て埋設されていてもよい。  In the ground electrode, the tubular conductor may be embedded with the axial direction set to the vertical direction.
上記接地電極において、 前記管状導体は、 軸方向を水平方向にし て埋設されていてもよい。  In the ground electrode, the tubular conductor may be embedded with the axial direction horizontal.
上記接地電極において、 前記管状導体と前記内部導体は、 等電位 ボンディ ング導体に接続されていてもよい。  In the ground electrode, the tubular conductor and the inner conductor may be connected to an equipotential bonding conductor.
また、 本発明の第 5の態様によれば、 上記接地電極を複数有する ことを特徴とする、 接地電極群が提供される。 また、 本発明の第 6の態様によれば、 落雷による雷サージ電流を 大地に流す際に雷サージ電圧を低減する方法であって、 第 1 の電流 路をその一端が大地の中に配置されるように設けると共に、 前記雷 サージ電流の高周波成分に対するインピーダンスが前記第 1 の電流 路よりも低い第 2の電流路を設け、 前記雷サージ電流の低周波成分 が主として第 1 の電流路に流れ、 且つ高周波成分が主として第 2の 電流路に流れるように、 雷サージ電流を周波成分に応じて分流させ ることにより前記第 1の電流路の雷サージ電圧を低減することを特 徴とする、 雷サージ電圧の低減方法が提供される。 また、 通常の接 地電極としても従来と同様に機能する。 According to a fifth aspect of the present invention, there is provided a ground electrode group comprising a plurality of the ground electrodes. According to a sixth aspect of the present invention, there is provided a method for reducing a lightning surge voltage when a lightning surge current caused by a lightning strike is caused to flow to the ground, wherein one end of the first current path is disposed in the ground. A second current path whose impedance to the high frequency component of the lightning surge current is lower than that of the first current path, and the low frequency component of the lightning surge current mainly flows in the first current path. The lightning surge voltage in the first current path is reduced by diverting the lightning surge current according to the frequency component so that the high-frequency component mainly flows in the second current path. A method for reducing lightning surge voltage is provided. It also functions as a conventional ground electrode in the same way as before.
上記雷サージ電圧の低減方法において、 前記第 1 の電流路は、 内 部導体で構成され、 前記第 2の電流路は、 前記内部導体の外周を被 覆するように同軸配置した管状導体と、 前記管状導体及び前記内部 導体の間に充填された、 導電性を有する充填材とで構成されていて もよい。  In the lightning surge voltage reducing method, the first current path is configured by an inner conductor, and the second current path is formed by a coaxial conductor disposed so as to cover an outer periphery of the inner conductor; It may be constituted by a conductive filler filled between the tubular conductor and the inner conductor.
上記雷サージ電圧の低減方法において、 前記充填材は、 抵抗体、 誘電体及び磁性体より成る群から選択した 1以上の材料を含有して いてもよい。  In the lightning surge voltage reducing method, the filler may contain one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
上記雷サージ電圧の低減方法において、 前記同軸配置した管状導 体の外周に外皮を設けるようにしてもよい。 この外皮として、 例え ばコンクリート等を用いることによって埋設時に鋼管の腐食対策を とることができる。  In the lightning surge voltage reducing method, an outer skin may be provided on the outer periphery of the coaxially arranged tubular conductor. For example, concrete can be used as the outer skin to take measures against corrosion of steel pipes when buried.
本発明によれば、 落雷による雷サージ電流を導体 (即ち、 避雷針 導体) を通して接地側に流す際に、 雷サージ電流を分流し、 その低 周波成分が第 1の電流路としての導体を流れ、 且つ高周波成分が導 体の周囲に設けた第 2の電流路を流れるようにしたことによって、 従来公知の避雷装置のように雷サージ電流の全電流が導体を流れる T/JP2007/067245 場合よりも、 導体の単位長さ当たりの電圧低下 (即ち、 雷サージ電 圧) を低減することが可能になる。 これにより、 導体上部の電位上 昇を抑制してフラッシオーバ一の発生を防ぎ、 例えば埋設設備等、 周囲の設備への雷害を効果的に防止することが可能になる。 According to the present invention, when a lightning surge current caused by a lightning strike flows to the ground side through a conductor (that is, a lightning rod conductor), the lightning surge current is shunted, and the low frequency component flows through the conductor as the first current path. In addition, since the high-frequency component flows through the second current path provided around the conductor, the entire current of the lightning surge current flows through the conductor as in a conventionally known lightning arrester. Compared to T / JP2007 / 067245, it is possible to reduce the voltage drop per unit length of the conductor (that is, lightning surge voltage). As a result, it is possible to prevent the occurrence of flashover by suppressing the potential rise at the top of the conductor, and to effectively prevent lightning damage to surrounding equipment such as buried equipment.
本発明による接地電極は、 接地イ ンピーダンスを低減する効果を 有する。 特に、 接地電極固有のインダクタンスを低減する構造を有 する。 従って、 商用周波の地絡電流のみならず、 雷サージ電流に対 しても電流が流れる際の接地電圧上昇を抑制する機能を備えている 。 特に、 従来は接地インピーダンス低減のための工事がカッ トアン ド トライであるのに対し、 本発明では、 現地に備え付ける程度のェ 事で済む点で、 日数の短縮を含めた費用対効果は優れている。 また 、 本発明の同軸構造の接地電極は内部導体 (中心導体) が管状導体 としての外側鋼管で電磁気的に遮蔽されるので、 分流サージの割合 は極めて小さくなる。 この分流サージ電流の低減効果により電気設 備の雷災害は減ずる。  The ground electrode according to the present invention has an effect of reducing the ground impedance. In particular, it has a structure that reduces the inductance inherent to the ground electrode. Therefore, it has a function to suppress the rise of ground voltage when current flows not only for ground fault current of commercial frequency but also for lightning surge current. In particular, while the work for reducing ground impedance is conventionally cut-and-try, the present invention is superior in cost-effectiveness, including shortening the number of days, in that it only requires installation at the site. Yes. Further, since the inner conductor (center conductor) is electromagnetically shielded by the outer steel pipe as the tubular conductor in the ground electrode of the coaxial structure of the present invention, the ratio of the shunt surge is extremely small. The lightning disaster of electrical equipment is reduced by the effect of reducing the shunt current.
本発明によれば、 雷サージ電流に対し接地電極の電位上昇を効果 的に抑制し、 従来よりも非常に低い接地インピ一ダンスを実現する ことができる。 これにより、 雷サージ電流を接地電極経由で確実に 大地に流すことができ、 建物側に流れて電子機器を破壊する等、 不 測の事態を防止できる。 また、 大地に流した雷サージ電流が、 周囲 にある他の建物等の設備、 隣接する他の接地電極、 周囲の人間等に 大地経由で流れても、 接地電極の雷サージ電圧が非常に低い値にな つているため、 その被害を最小限に抑え、 より安全にすることがで きる。 図面の簡単な説明  According to the present invention, it is possible to effectively suppress an increase in the potential of the ground electrode against a lightning surge current and to realize a ground impedance that is much lower than that of the prior art. As a result, lightning surge current can be reliably sent to the ground via the ground electrode, and unforeseen situations can be prevented, such as flowing to the building side and destroying electronic equipment. In addition, even if lightning surge current that has flowed to the ground flows to other facilities in the surrounding area, other adjacent grounding electrodes, surrounding people, etc. via the ground, the lightning surge voltage at the grounding electrode is very low. Because of the value, the damage can be minimized and made safer. Brief Description of Drawings
図 1 は本発明の第 1の実施の形態に係る避雷装置の鉛直方向の断 面図である。 Figure 1 shows a vertical section of a lightning arrester according to the first embodiment of the present invention. FIG.
図 2は図 1 の X— X矢視拡大断面図である。  2 is an enlarged cross-sectional view taken along the line XX in FIG.
図 3は地面付近における避雷装置を拡大した斜視図である。  Fig. 3 is an enlarged perspective view of the lightning arrester near the ground.
図 4は雷サージ電流が避雷装置を流れる際の単位長さ当たりの回 路図である。  Figure 4 is a circuit diagram per unit length when the lightning surge current flows through the lightning arrester.
図 5は本発明の第 2の実施形態に係る避雷装置の鉛直方向の一部 断面図である。  FIG. 5 is a partial cross-sectional view in the vertical direction of the lightning arrester according to the second embodiment of the present invention.
図 6は本発明の第 3の実施の形態に係る構造柱の鉛直方向の断面 図である。  FIG. 6 is a vertical cross-sectional view of a structural column according to the third embodiment of the present invention.
図 7は図 6の Y— Y矢視拡大断面図である。  FIG. 7 is an enlarged cross-sectional view taken along arrows Y—Y in FIG.
図 8は本発明の第 4の実施形態に係る接地電極を、 雷害防止の対 象として建物に適用した場合の一例を示す構成図であ •o。  FIG. 8 is a configuration diagram showing an example in which the ground electrode according to the fourth embodiment of the present invention is applied to a building as a lightning protection target.
図 9は接地電極の鉛直方向の断面図である。  FIG. 9 is a vertical sectional view of the ground electrode.
図 10は図 9の X— X矢視拡大断面図である。  FIG. 10 is an enlarged cross-sectional view taken along the line XX in FIG.
図 1 1は大地付近における接地電極を拡大した斜視図である 図 12は導体の上端側から流された雷サージ電流を接地側に流す際 の、 鋼管、 導体及び充填材によつて構成される本発明の第 4の実施 形態に係る接地電極の単位長さ当たりの等価回路を示した回路図で ある。  Fig. 11 is an enlarged perspective view of the ground electrode in the vicinity of the ground Fig. 12 is composed of a steel pipe, conductor and filler when a lightning surge current flowing from the upper end side of the conductor flows to the ground side FIG. 6 is a circuit diagram showing an equivalent circuit per unit length of a ground electrode according to a fourth embodiment of the present invention.
図 13は本発明の実施の形態に係る接地電極が周囲の建物に及ぼす 影響を説明する図である。 ( a ) は 、 接地電極とその周囲にあ ο 物等の位置関係を示す。 ( b ) は、 雷サージ電流が接地電極から大 地に流されたナ 合における雷サージ電圧の値 (縦軸) と、 流した地 点からの位置 (横軸) との関係を示す。  FIG. 13 is a diagram for explaining the influence of the ground electrode according to the embodiment of the present invention on surrounding buildings. (a) shows the positional relationship between the ground electrode and its surroundings. (B) shows the relationship between the value of the lightning surge voltage (vertical axis) when the lightning surge current flows from the ground electrode to the ground and the position from the point of flow (horizontal axis).
図 14は本発明の実施の形態に係る接地電極が周囲の人間に及ぼす 影響を説明する図である。 ( a ) は、 接地電極と接地電極の周囲に いる人間の位置関係を示す。 ( b ) は、 雷サージ電流が接地電極か ら大地に流れた場合における雷サージ電圧の値 (縦軸) と、 流した 地点からの位置 (横軸) との関係を示す。 FIG. 14 is a diagram for explaining the influence of the ground electrode according to the embodiment of the present invention on surrounding people. (A) shows the positional relationship between the ground electrode and the person around the ground electrode. (B) indicates whether the lightning surge current is grounded. The relationship between the lightning surge voltage value (vertical axis) and the position from the flow point (horizontal axis) when flowing into the ground is shown.
図 1 5は本発明の第 5の実施形態に係る、 接地電極を複数有する接 地電極群の鉛直方向の断面図である。  FIG. 15 is a vertical sectional view of a ground electrode group having a plurality of ground electrodes according to a fifth embodiment of the present invention.
図 16は本発明の第 6の実施形態に係る、 いずれも管軸方向を水平 にして配置された接地電極を 4つ有する接地電極群の水平方向の断 面図である。  FIG. 16 is a horizontal cross-sectional view of a ground electrode group according to a sixth embodiment of the present invention, all having four ground electrodes arranged horizontally in the tube axis direction.
図 Πは本発明の第 7の実施形態に係る、 落雷による雷サージ電流 を接地側に流す避雷装置と一体型の同軸形状に形成された接地電極 の構成を示す構成図である。  FIG. 8 is a configuration diagram showing a configuration of a ground electrode formed in a coaxial shape integrated with a lightning arrester according to a seventh embodiment of the present invention, in which a lightning surge current caused by a lightning strike flows to the ground side.
図 18は同軸ケーブルの模式的な斜視図である。  FIG. 18 is a schematic perspective view of a coaxial cable.
図 19は 4種類のコンダクタンス Gの各値について、 3種類の周波 数 f の電流が導体を流れる際の単位長さ当たりの減衰率 D ( dB) を 各々試算した結果を示したものである。  Figure 19 shows the results of trial calculation of the attenuation rate D (dB) per unit length when current of three types of frequency f flows through the conductor for each of the four types of conductance G.
図 20は 4種類のコンダクタンス Gの各値に、 G = 0 ( σ = 0 ) の 値を加えた 5種類のコンダクタンス Gの各値について、 3種類の周 波数 f = 104 , 105 , 106 ( Hz ) の交流電流が導体を流れる際の接地 電極 1 の特性インピーダンス Zoを各々試算した結果を示したもので ある。 発明を実施するための最良の形態 Figure 20 shows four conductances G, plus G = 0 (σ = 0), and five conductances G. Three different frequencies f = 10 4 , 10 5 , 10 The figure shows the result of trial calculation of the characteristic impedance Zo of the ground electrode 1 when an alternating current of 6 (Hz) flows through the conductor. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら、 本発明の好適な実施形態について説 明をする。 なお、 本明細書及び図面において、 実質的に同一の機能 構成を有する要素については、 同一の符号を付することにより重複 説明を省略する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
図 1は、 本発明の第 1 の実施の形態に係る避雷装置 1の鉛直方向 の断面図である。 図 2は、 図 1の X—: 矢視拡大断面図である。 図 1及び図 2に示すように、 避雷装置 1は、 地面 2上に鉛直方向に立 設された円環形状の鋼管 3の内部に裸の導体 4を同軸配置した構成 を有する。 鋼管 3は、 例えばステンレス鋼で構成されている。 導体 4は、 例えば銅等で構成され、 鋼管 3内を軸方向に沿って上端側か ら下端側まで配設されている。 導体 4の上端は、 落雷 7 を受けるよ うに、 鋼管 3の上端の外側に若干突出して配置された突針 8が接続 されている。 導体 4は、 鋼管 3 の軸方向に沿って所定間隔で複数設 けた絶縁性の固定装置 5によって鋼管 3内の中央位置に固定されて いる。 FIG. 1 is a vertical sectional view of a lightning arrester 1 according to the first embodiment of the present invention. 2 is an enlarged cross-sectional view taken along the line X— in FIG. Figure As shown in FIG. 1 and FIG. 2, the lightning arrester 1 has a configuration in which a bare conductor 4 is coaxially arranged inside an annular steel pipe 3 erected vertically on the ground 2. The steel pipe 3 is made of, for example, stainless steel. The conductor 4 is made of copper or the like, for example, and is disposed in the steel pipe 3 from the upper end side to the lower end side along the axial direction. The upper end of the conductor 4 is connected to a projecting needle 8 that protrudes slightly outside the upper end of the steel pipe 3 so as to receive a lightning strike 7. The conductor 4 is fixed at a central position in the steel pipe 3 by a plurality of insulating fixing devices 5 provided at predetermined intervals along the axial direction of the steel pipe 3.
図 2に示すように、 鋼管 3及び導体 4の間には導電性を有する充 填材 1 0が充填されている。 本実施の形態では、 充填材 10としては、 抵抗体 1 5、 誘電体 1 6及び磁性体 1 7の各材料を、 所定の割合で混入さ せたセメントが用いられている。 抵抗体 1 5としては、 例えば金属微 粉末 (銀粉、 銅粉等) 又はグラフアイ ト等が用いられる。 誘電体 1 6 としては比較的誘電率の高い材料 (例えば酸化アルミ、 チタン酸バ リウム等) が用いられる。 さらに、 磁性体 1 7としては、 例えばフエ ライ ト等が用いられる。 なお、 充填材 10としてのセメントは、 例え ば発泡状に構成する等により軽量化されているのが好ましい。  As shown in FIG. 2, a filler 10 having conductivity is filled between the steel pipe 3 and the conductor 4. In the present embodiment, the filler 10 is cement in which the materials of the resistor 15, the dielectric 16 and the magnetic body 17 are mixed at a predetermined ratio. As the resistor 15, for example, metal fine powder (silver powder, copper powder, etc.) or graph items are used. As the dielectric 16, a material having a relatively high dielectric constant (for example, aluminum oxide, barium titanate, etc.) is used. Further, as the magnetic material 17, for example, ferrite or the like is used. Note that the cement as the filler 10 is preferably reduced in weight, for example, by being formed into a foamed shape.
図 3は、 地面 2付近における避雷装置 1 を拡大した斜視図である 。 図 3に示すように、 鋼管 3 の下端は地面 2 (ここでは、 地面 2 を 大地として扱うが、 設置場所によってはコンクリート構造面として もよい) の中に埋設され、 接地系 20に接続されて接地されている。 接地系 20は、 地中にある鋼管 3及び導体 4の下端を、 整合器 2 1を介 して深埋設電極接地極 22に接続した構成を有する。 この整合器 2 1は 、 鋼管 3及び導体 4の下端を、 両者 3 , 4が形成する同軸系の特性 インピーダンスにより終端するように構成されている。 これにより 、 落雷 7 による雷サージ電流 I が、 鋼管 3及び導体 4から深埋設電 極接地極 22にほとんど反射せずに流れるようになつている。 なお、 本実施の形態では、 整合器 21として、 鋼管 3 と軸方向を平行に且つ 同心に配置された円柱形状のコンク リー ト材が用いられている。 以上のように構成された避雷装置 1 によって実施される、 本発明 の実施の形態に係る避雷方法について説明する。 FIG. 3 is an enlarged perspective view of the lightning arrester 1 near the ground 2. As shown in Fig. 3, the lower end of the steel pipe 3 is buried in the ground 2 (here, the ground 2 is treated as the ground, but depending on the installation location, it may be a concrete structure surface) and connected to the grounding system 20 Grounded. The grounding system 20 has a configuration in which the lower ends of the steel pipe 3 and the conductor 4 in the ground are connected to the deep electrode grounding electrode 22 through the matching unit 21. The matching unit 21 is configured so that the lower ends of the steel pipe 3 and the conductor 4 are terminated by the characteristic impedance of the coaxial system formed by both of them. As a result, the lightning surge current I caused by the lightning strike 7 is It is designed to flow almost without reflection on the pole ground electrode 22. In the present embodiment, a cylindrical concrete material is used as the matching unit 21, which is arranged in parallel and concentric with the steel pipe 3 in the axial direction. A lightning arresting method according to the embodiment of the present invention performed by the lightning arrester 1 configured as described above will be described.
雷 7が発生し、 避雷装置 1の上端の突針 8に落雷すると、 図 1 に 示すように、 多種多様の周波数成分を含む雷サージ電流 Iが、 避雷 装置 1 の導体 4を軸方向に沿って上端側から下端側に流れる。 導体 4の周囲には、 導体 4の外周を被覆するように同軸配置した鋼管 3 が配置されており、 且つ導体 4 と鋼管 3 との間には導電性を有する 充填材 10が充填されているため、 雷サージ電流 I は導体 4を流れる 際に減衰する。 この現象を図 4に示す回路図を用いて以下で説明す る。  When lightning 7 occurs and lightning strikes the tip 8 of the lightning arrester 1, as shown in Fig. 1, lightning surge current I, which includes a variety of frequency components, passes through the conductor 4 of the lightning arrester 1 along the axial direction. It flows from the upper end side to the lower end side. Around the conductor 4, a steel pipe 3 arranged coaxially so as to cover the outer periphery of the conductor 4 is arranged, and between the conductor 4 and the steel pipe 3, a conductive filler 10 is filled. Therefore, the lightning surge current I attenuates when it flows through the conductor 4. This phenomenon is explained below using the circuit diagram shown in Fig. 4.
図 4は、 導体 4の上端側に接続された突針 8 に落雷した雷サージ 電流 I を接地側に流す際の、 鋼管 3、 導体 4及び充填材 10によって 構成される本発明の実施の形態に係る避雷装置 1 の単位長さ当たり の等価回路を示した回路図である。 図 4において、 Lは導体 4のィ ンダク夕ンス、 Rは導体 4の抵抗、 Cは導体 4 と鋼管 3の間のキヤ パシタンスである。 Gは、 抵抗体 15、 誘電体 16及び磁性体 17を含有 する充填材 10に起因するコンダクタンスである。  FIG. 4 shows an embodiment of the present invention constituted by the steel pipe 3, the conductor 4, and the filler 10 when the lightning surge current I that strikes the needle 8 connected to the upper end side of the conductor 4 flows to the ground side. FIG. 3 is a circuit diagram showing an equivalent circuit per unit length of the lightning arrester 1 according to the embodiment. In Fig. 4, L is the inductance of conductor 4, R is the resistance of conductor 4, and C is the capacitance between conductor 4 and steel pipe 3. G is a conductance due to the filler 10 containing the resistor 15, the dielectric 16 and the magnetic 17.
雷サージ電流 Iが導体 4を流れる際に減衰するのは、 図 4に示す ように、 雷サージ電流 I の高周波成分 I Hが、 導体 4の外側の充填 材 10及び鋼管 3を通って (即ち、 図 4に示す点 A 1から点 B 2の方 に) 流れるからである。 従って、 導体 4 に流れる減衰した雷サージ 電流 I は、 雷サージ電流 I の低周波成分 I Lである。 このように、 本発明の実施の形態に係る避雷装置 1は、 落雷 7の雷サージ電流 I が低周波成分 I と、 高周波成分 I Hとに分流され、 低周波成分 JP2007/067245 が第 1 の電流路としての導体 4を流れ、 高周波成分 I Hが第 2の電 流路としての鋼管 3及び充填材 10を流れるように構成されている。 As shown in Fig. 4, the lightning surge current I attenuates when it flows through the conductor 4, and the high-frequency component I H of the lightning surge current I passes through the filler 10 and the steel pipe 3 outside the conductor 4 (that is, This is because it flows from point A 1 to point B 2 shown in Figure 4. Therefore, the attenuated lightning surge current I flowing through the conductor 4 is the low frequency component IL of the lightning surge current I. As described above, the lightning arrester 1 according to the embodiment of the present invention is configured such that the lightning surge current I of the lightning strike 7 is divided into the low frequency component I and the high frequency component I H, and the low frequency component JP2007 / 067245 is configured to flow through the conductor 4 as the first current path, and the high-frequency component I H flows through the steel pipe 3 and the filler 10 as the second current path.
減衰した雷サージ電流 I (即ち、 雷サージ電流 I の低周波成分 I L) が導体 4を流れる際に発生する雷サージ電圧 VLは、 VL = L Xd IL/dtとなる。 この雷サージ電圧 VLは、 従来公知の避雷装置のよ うに、 全ての雷サージ電流 I (= I L + I H) が導体 4に流れる場合 に発生する雷サージ電圧 VL + H= L X { d ( I L + I H) Zdt} より も低減されている。 The lightning surge voltage V L generated when the attenuated lightning surge current I (that is, the low-frequency component I L of the lightning surge current I) flows through the conductor 4 is V L = L Xd I L / dt. This lightning surge voltage VL is the lightning surge voltage V L + H = LX {d that occurs when all lightning surge currents I (= I L + I H ) flow through the conductor 4 as in a known lightning arrester. It is lower than (I L + I H ) Zdt}.
一方、 雷サージ電流 I の高周波成分 I Hが導体 4の外側の鋼管 3 及び充填材 10を流れる際には、 主として充填材 10が含有する抵抗体 15、 誘電体 16及び磁性体 17によって抵抗加熱、 誘電加熱、 及び誘電 加熱が生じ、 そのエネルギーの一部が消費される。 On the other hand, when the high-frequency component I H of the lightning surge current I flows through the steel pipe 3 and the filler 10 outside the conductor 4, resistance heating is performed mainly by the resistor 15, the dielectric 16 and the magnetic substance 17 contained in the filler 10. Dielectric heating and dielectric heating occur, and part of the energy is consumed.
導体 4を流れる雷サージ電流 I の低周波成分 I Lと、 充填材 10及 び鋼管 3を流れる雷サージ電流 I の高周波成分 I Hは、 軸方向に沿 つて下端側に流れて地面 2よりも低い位置に到達すると、 図 3に示 すように、 接地系 20に流れる。 即ち、 雷サ一ジ電流 I は、 整合器 21 を経由し、 同軸系の特性インピーダンスにより終端された接地極 22 に流れる。 The low frequency component IL of the lightning surge current I flowing through the conductor 4 and the high frequency component I H of the lightning surge current I flowing through the filler 10 and the steel pipe 3 flow to the lower end side along the axial direction and are lower than the ground 2 When it reaches the position, it flows to the grounding system 20 as shown in Fig.3. That is, the lightning surge current I flows through the matching unit 21 to the ground electrode 22 terminated by the characteristic impedance of the coaxial system.
以上の実施の形態によれば、 避雷装置 1 を鋼管 3の中心に導体 4 を配置した同軸ケーブルに構成し、 さらに、 鋼管 3及び導体 4の間 に、 導電性を有する充填材 10を充填したことによって、 雷サージ電 流 I が導体 4を流れる際に分流され、 その低周波成分 I Lが主とし て第 1の電流路としての導体 4を流れ、 且つその高周波成分 I Hが 導体 4の周囲に設けた第 2の電流路を流れるようにすることができ る。 これにより、 ほとんど全ての雷サ一ジ電流 I が導体 4を流れる 従来公知の避雷技術の場合よりも、 導体 4を流れる電流量を低減し 、 導体 4に生じる雷サージ電圧 (L Xdi/dt) を低減させることが 7 067245 でき、 導体 4を流れる雷サージ電流 I を安定化させ、 落雷 7による 雷サージ電流 I が避雷装置 1から飛出してしまうフラッシオーバー を確実に防ぎ、 雷害を効果的に防止することが可能になる。 According to the above embodiment, the lightning arrester 1 is configured as a coaxial cable in which the conductor 4 is arranged at the center of the steel pipe 3, and the conductive filler 10 is filled between the steel pipe 3 and the conductor 4. Therefore, the lightning surge current I is shunted when it flows through the conductor 4, the low frequency component IL mainly flows through the conductor 4 as the first current path, and the high frequency component I H around the conductor 4. It can be made to flow through the second current path provided in the circuit. As a result, almost all lightning surge current I flows through conductor 4 Compared to the conventional lightning protection technology, the amount of current flowing through conductor 4 is reduced and the lightning surge voltage (L Xdi / dt) generated in conductor 4 is reduced. Can reduce 7 067245 can stabilize the lightning surge current I flowing through the conductor 4, reliably prevent the flashover that the lightning surge current I caused by the lightning strike 7 jumps out of the lightning arrester 1, and effectively prevent lightning damage. It becomes possible.
また、 接地系 20に整合器 22を設け、 鋼管 3 と導体 4の下端を、 両 者 ( 3 , 4 ) が形成する同軸系の特性インピーダンスにより終端し た後に接地するように構成したことによって、 接地インピーダンス は大地の抵抗率に関わらず一定となる。 また、 雷サージ電流 I (即 ち、 低周波成分 I L及び高周波成分 I H ) は反射されずに接地側に流 れるようにすることができる。 これにより、 雷サージ電流 I をより 確実に接地側に流すことができるので、 フラッシオーバーの発生を さらに抑制することが可能である。 In addition, a matching unit 22 is provided in the grounding system 20, and the lower ends of the steel pipe 3 and the conductor 4 are terminated by the characteristic impedance of the coaxial system formed by the two (3, 4) and then grounded. The ground impedance is constant regardless of the earth resistivity. Further, the lightning surge current I (that is, the low frequency component IL and the high frequency component I H ) can flow to the ground side without being reflected. As a result, the lightning surge current I can flow more reliably to the ground side, and the occurrence of flashover can be further suppressed.
本発明の第 2 の実施形態として、 図 5に示すように、 導体 4、 鋼 管 3及び充填材 10が、 例えば信号機 40等の既設の設備に付設されて いてもよい。 図 5は、 本発明の第 2の実施形態に係る避雷装置 1 の 鉛直方向の一部断面図である。 図 5に示すように、 本発明の第 1の 実施形態の場合と概ね同様に構成された避雷装置 1力 鉛直方向に 対して若干傾斜した状態で、 複数の固定具 45によって信号機 40の支 柱 41に付設されている。 この第 2の実施形態では、 鋼管 3及び導体 4の下端が、 同軸系の特性インピーダンスで終端された後にメッシ ュ接地極 52に接続された構成を有する。 なお、 第 2の実施形態にお いても、 第 1の実施形態と同様に、 深埋設電極接地極 22を用いても よい。  As a second embodiment of the present invention, as shown in FIG. 5, the conductor 4, the steel pipe 3, and the filler 10 may be attached to existing equipment such as a traffic light 40. FIG. 5 is a partial cross-sectional view in the vertical direction of the lightning arrester 1 according to the second embodiment of the present invention. As shown in FIG. 5, a lightning arrester constructed almost in the same manner as in the case of the first embodiment of the present invention 1 force A plurality of fixtures 45 support shafts of the traffic light 40 with a slight inclination with respect to the vertical direction. It is attached to 41. In the second embodiment, the lower ends of the steel pipe 3 and the conductor 4 are terminated with a coaxial characteristic impedance and then connected to the mesh ground electrode 52. In the second embodiment, the deep buried electrode ground electrode 22 may be used as in the first embodiment.
本発明の第 2 の実施形態によれば、 避雷装置 1 を、 例えば信号機 40等の既設の設備に付設するようにしたため、 避雷装置 1 を単独で 立設する場合よりも、 必要な強度、 支持構造に関する設計制約等が 低減され、 容易に小型化及び単純化することが可能になり、 避雷装 置 1の設備費及び設備空間を軽減することができる。 また、 本発明 67245 の第 2の実施形態は、 第 1の実施形態と同様の効果も有する。 According to the second embodiment of the present invention, since the lightning arrester 1 is attached to existing facilities such as the traffic light 40, for example, the necessary strength and support are provided compared to the case where the lightning arrester 1 is erected independently. The design constraints related to the structure are reduced, and it is possible to easily downsize and simplify the system, and the equipment cost and equipment space of the lightning arrester 1 can be reduced. In addition, the present invention The second embodiment of 67245 also has the same effect as the first embodiment.
本発明の第 3の実施形態として、 図 6に示すように、 本発明を避 雷機能を有する構造柱に適用してもよい。 図 6は、 本発明の実施の 形態に係る構造柱 60の鉛直方向の断面図である。 図 7は、 図 6の Y 一 Y矢視拡大断面図である。  As a third embodiment of the present invention, as shown in FIG. 6, the present invention may be applied to a structural pillar having a lightning protection function. FIG. 6 is a vertical sectional view of the structural column 60 according to the embodiment of the present invention. FIG. 7 is an enlarged cross-sectional view taken along arrow Y in FIG.
図 6 に示すよう に、 構造柱 60は、 本発明の第 1 の実施形態にぉけ る避雷装置 1 と同様に構成された支持部 6 1と、 この支持部 6 1によつ て支持された被支持部 6 2としての信号装置とを備えた構成になって いる。 本発明の第 3の実施形態では、 図 6及び図 7 に示すように、 被支持部 6 2は、 支持部 6 1の導体 4と鋼管 3の間に軸方向 (即ち、 鉛 直方向) に沿って配置された中空の配管 6 5の上端及び下端を直角に 曲げて鋼管 3の外に突出させた構成を有する。 このように突出した 配管 65の上端には、 例えば赤色、 黄色及び緑色の三色のランプを備 えた発光装置 66が設けられている。 配管 6 5の下端は、 発光装置 6 6を 制御する制御装置 (図示せず) 及び発光装置 6 6に電源を供給する電 源装置 (図示せず) に接続されている。 配管 6 5内には、 これらの制 御装置及び電源装置 (図示せず) と発光装置 6 6とを接続する電線及 び信号線等の電線群 67が配設されている。 なお、 配管 6 5は、 導体 4 と鋼管 3 との間に充填された充填材 1 0で固定されている。  As shown in FIG. 6, the structural column 60 is supported by the support 61 having the same configuration as the lightning arrester 1 according to the first embodiment of the present invention, and the support 61. And a signal device as the supported portion 62. In the third embodiment of the present invention, as shown in FIG. 6 and FIG. 7, the supported portion 6 2 is axially (ie, in the lead straight direction) between the conductor 4 of the support portion 61 and the steel pipe 3. It has a configuration in which the upper and lower ends of hollow pipes 65 arranged along the side are bent at right angles so as to protrude out of the steel pipe 3. At the upper end of the pipe 65 protruding in this way, a light emitting device 66 equipped with, for example, red, yellow and green lamps is provided. The lower end of the pipe 65 is connected to a control device (not shown) that controls the light emitting device 66 and a power supply device (not shown) that supplies power to the light emitting device 66. In the pipe 65, an electric wire group 67 such as an electric wire and a signal line for connecting the control device and the power supply device (not shown) and the light emitting device 66 are disposed. The pipe 65 is fixed with a filler 10 filled between the conductor 4 and the steel pipe 3.
本発明の第 3の実施形態によれば、 構造柱 60を、 避雷機能を有す る支持部 6 1と、 この支持部 6 1によって支持された、 避雷機能とは別 の機能 (即ち、 信号機能) を有する被支持部 6 2とで構成したことに よって、 同一の設置空間内に、 落雷 7による雷害を防ぐ避雷機能と 、 避雷機能以外の種々の機能を立設することができ、 設置空間を節 約することが可能になる。 また、 本発明の第 3の実施形態は、 第 1 の実施形態と同様の効果も有する。  According to the third embodiment of the present invention, the structural column 60 is supported by a support part 61 having a lightning protection function and a function different from the lightning protection function supported by the support part 61 (that is, a signal In the same installation space, it is possible to establish a lightning protection function that prevents lightning damage due to lightning strikes 7 and various functions other than the lightning protection function. It is possible to save installation space. In addition, the third embodiment of the present invention has the same effect as the first embodiment.
図 8は、 本発明の第 4の実施形態に係る接地電極 1 0 1を、 雷害防 67245 止の対象として建物 105に適用した場合の一例を示す構成図である 。 図 8に示すように、 建物 105の屋根の上には、 落雷 107による雷サ ージ電流を接地側に流す避雷装置としての避雷突針 110が鉛直方向 に立設されている。 避雷突針 110の下端には、 引き下げ導線 113が接 続されており、 上端に落ちた雷 107の雷サージ電流を導線 113に流す ことができるようになつている。 この導線 113は、 建物 105の外面に 沿って下方まで延設され、 大地 115よりも低い位置で建物 105内に導 入され、 建物 105の内部に設けた接地部 117に接続されている。 この 接地部 117は、 建物 105内の底部全体に亘つて配置された金属等が用 いられてもよい。 FIG. 8 shows a grounding electrode 1 0 1 according to the fourth embodiment of the present invention. 67245 is a block diagram showing an example when applied to a building 105 as an object to be stopped. As shown in FIG. 8, on the roof of the building 105, a lightning arrester 110 as a lightning arrester is installed in the vertical direction as a lightning arrester that sends a lightning surge current from the lightning strike 107 to the ground side. A lowering lead wire 113 is connected to the lower end of the lightning rod 110 so that the lightning surge current of the lightning 107 that has fallen to the upper end can flow through the lead wire 113. The conducting wire 113 extends downward along the outer surface of the building 105, is introduced into the building 105 at a position lower than the ground 115, and is connected to a grounding part 117 provided inside the building 105. The grounding part 117 may be made of metal or the like arranged over the entire bottom part in the building 105.
図 8に示すように、 接地部 117は、 接地電極 101と等電位ボンディ ング導体 120に接続されている。 電位等電位ボンディ ング導体 120に は、 例えばバソコン等の電子機器 125や例えば水道管等の金属管 126 等が接続されている。 本実施の形態では、 電子機器 125は、 外部の 電源 127に接続されている。 等電位ボンディング導体 120は、 接続さ れた電子機器 125、 金属管 126等を等電位に保持するように設けた例 えば金属板である。 これにより、 落雷 7 による雷サージ電流が流れ ても各機器間 125, 126の間に電位差が発生しないため、 雷害を防止 することができる。  As shown in FIG. 8, the ground part 117 is connected to the ground electrode 101 and the equipotential bonding conductor 120. The potential equipotential bonding conductor 120 is connected to an electronic device 125 such as a bath computer or a metal pipe 126 such as a water pipe. In the present embodiment, electronic device 125 is connected to external power supply 127. The equipotential bonding conductor 120 is, for example, a metal plate provided so as to hold the connected electronic device 125, the metal tube 126, and the like at an equipotential. As a result, even if a lightning surge current caused by a lightning strike 7 flows, no potential difference occurs between the devices 125 and 126, thus preventing lightning damage.
図 9は、 接地電極 101の鉛直方向の断面図である。 図 10は、 図 9 の X— X矢視拡大断面図である。 図 9及び図 10に示すように、 接地 電極 101は、 大地 115中に鉛直方向に埋設された円環形状の鋼管 133 の内部に裸の導体 134を同軸配置した構成を有する。 管状導体とし ての鋼管 133は、 例えばステンレス鋼や防食対策鋼管で構成されて いる。 内部導体としての導体 134は、 例えば銅等で構成され、 鋼管 1 33内を軸方向に沿って上端側から下端側まで配設されている。 導体 134の上端は、 鋼管 133の上端の外側に若干突出して配置され、 接地 部 1 17に接続されている。 場合によっては、 導体 134は、 鋼管 133の 軸方向に沿って所定間隔で複数設けた絶縁性の固定装置 135によつ て鋼管 133内の中央位置に固定されている。 FIG. 9 is a vertical sectional view of the ground electrode 101. FIG. 10 is an enlarged cross-sectional view taken along the line XX in FIG. As shown in FIGS. 9 and 10, the ground electrode 101 has a configuration in which a bare conductor 134 is coaxially arranged inside an annular steel pipe 133 embedded in the ground 115 in the vertical direction. The steel pipe 133 as a tubular conductor is made of, for example, stainless steel or a corrosion-resistant steel pipe. The conductor 134 as the internal conductor is made of, for example, copper, and is disposed in the steel pipe 133 from the upper end side to the lower end side along the axial direction. The upper end of the conductor 134 is arranged to protrude slightly outside the upper end of the steel pipe 133. Connected to part 1 17. In some cases, the conductor 134 is fixed at a central position in the steel pipe 133 by a plurality of insulating fixing devices 135 provided at predetermined intervals along the axial direction of the steel pipe 133.
図 10に示すように、 鋼管 133及び導体 134の間には導電性を有する 充填材 140が充填されている。 本実施の形態では、 充填材 140として は、 抵抗体 145、 誘電体 146及び磁性体 147の各材料を、 所定の割合 で混入させた例えばセメントが用いられている。 抵抗体 145として は、 例えば金属微粉末 (銀粉、 銅粉等) 又はグラフアイ ト等が用い られる。 誘電体 146としては比較的誘電率の高い材料 (例えば酸化 アルミ、 チタン酸バリウム等) が用いられる。 さらに、 磁性体 147 としては、 例えばフェライ ト等が用いられる。 なお、 充填材 140と してのセメン トは、 例えば発泡状に構成する等により軽量化されて いるのが好ましい。  As shown in FIG. 10, a filler 140 having conductivity is filled between the steel pipe 133 and the conductor 134. In the present embodiment, as the filler 140, for example, cement in which materials of the resistor 145, the dielectric 146, and the magnetic body 147 are mixed at a predetermined ratio is used. As the resistor 145, for example, a metal fine powder (silver powder, copper powder, etc.) or a graph item is used. As the dielectric 146, a material having a relatively high dielectric constant (for example, aluminum oxide, barium titanate, etc.) is used. Further, as the magnetic body 147, for example, ferrite or the like is used. Note that the cement as the filler 140 is preferably reduced in weight, for example, by being formed in a foamed shape.
図 1 1は、 大地 1 15付近における接地電極 10 1を拡大した斜視図であ る。 図 8、 図 9及び図 1 1に示すように、 鋼管 133は軸方向に沿って 概ね全長に亘つて大地 1 15内に埋設されているが、 その上端は大地 1 15から突出した構成になっている。 整合器 15 1は、 鋼管 133及び導体 134の下端を、 両者 ( 133 , 134) が形成する同軸系の特性インピー ダンスにより終端するように構成されている。 なお、 本実施の形態 では、 整合器 1 5 1として、 鋼管 133と軸方向を平行に且つ同心に配置 された円柱形状のコンクリート材が用いられている。  FIG. 11 is an enlarged perspective view of the ground electrode 101 near the ground 1 15. As shown in Fig. 8, Fig. 9 and Fig. 11, the steel pipe 133 is embedded in the ground 1 15 almost along its entire length along the axial direction, but its upper end protrudes from the ground 1 15. ing. The matching unit 151 is configured so that the lower ends of the steel pipe 133 and the conductor 134 are terminated by a coaxial characteristic impedance formed by both of them (133, 134). In the present embodiment, a cylindrical concrete material is used as the matching unit 15 51, which is arranged in parallel and concentrically with the steel pipe 133 in the axial direction.
以上のように構成された接地電極 101によって実施される、 本発 明の第 4の実施形態に係る雷サージ電圧の低減方法について説明す る。  A lightning surge voltage reduction method according to the fourth embodiment of the present invention, which is performed by the ground electrode 101 configured as described above, will be described.
図 8に示すように、 雷 107が発生し、 避雷装置である避雷突針 1 10 の上端に落雷すると、 雷サ一ジ電流 Iが避雷突針 1 10の下端から引 き下げ導線 1 13に流れ、 次いで、 導線 U 3から接地電極 10 1に流れる 。 この雷サージ電流 I は、 多くの周波数成分を含んでいる。 接地電 極 101に流れた雷サージ電流 I は、 図 2 の接地電極 101の導体 134を 軸方向に沿つて上端側から下端側に流れる。 導体 134の周囲には、 導体 134の外周を被覆するように同軸配置した鋼管 133が配置されて おり、 且つ導体 134と鋼管 133との間には導電性を有する充填材 140 が充填されているため、 雷サージ電流 I は導体 134を流れる際に減 衰する。 この現象を図 12に示す回路図を用いて以下で説明する。 As shown in Figure 8, when lightning 107 occurs and lightning strikes the top of the lightning arrester 1 10 that is a lightning arrester, lightning surge current I flows down from the bottom of the lightning arrester 1 10 to the conducting wire 1 13 Next, it flows from the conductive wire U 3 to the ground electrode 10 1 . This lightning surge current I contains many frequency components. The lightning surge current I flowing to the ground electrode 101 flows from the upper end side to the lower end side along the axial direction of the conductor 134 of the ground electrode 101 in FIG. Around the conductor 134, a steel pipe 133 is arranged coaxially so as to cover the outer periphery of the conductor 134, and between the conductor 134 and the steel pipe 133, a conductive filler 140 is filled. Therefore, the lightning surge current I attenuates as it flows through the conductor 134. This phenomenon will be described below with reference to the circuit diagram shown in FIG.
図 12は、 導体 134の上端側から流された雷サージ電流 I を接地側 に流す際の、 鋼管 133、 導体 134及び充填材 140によって構成される 本発明の第 4の実施形態に係る接地電極 101の単位長さ当たりの等 価回路を示した回路図である。 図 12において、 Lは導体 134のイン ダク夕ンス、 Rは導体 134の抵抗、 Cは導体 134と鋼管 133の間のキ ャパシタンスである。 Gは、 抵抗体 145、 誘電体 146及び磁性体 147 を含有する充填材 140に起因するコンダクタンスである。  FIG. 12 shows the ground electrode according to the fourth embodiment of the present invention, which is composed of the steel pipe 133, the conductor 134, and the filler 140 when the lightning surge current I flowing from the upper end side of the conductor 134 flows to the ground side. FIG. 6 is a circuit diagram showing an equivalent circuit per unit length of 101. In FIG. 12, L is the inductance of the conductor 134, R is the resistance of the conductor 134, and C is the capacitance between the conductor 134 and the steel pipe 133. G is a conductance caused by the filler 140 containing the resistor 145, the dielectric 146, and the magnetic material 147.
雷サージ電流 I が導体 134を流れる際には、 雷サージ電流 I の高 周波成分を主体とする電流 I Hは、 導体 134の外側の充填材 140及び 鋼管 133に (即ち、 図 12に示す点 A 1から点 B 2の方に) 流れ易い 。 従って、 導体 134に流れる雷サージ電流は、 雷サージ電流 I から I Hを減じた低周波成分を主体とする I Lである。 このように、 本発 明の第 1の実施形態に係る接地電極 1は、 落雷 107の雷サージ電流When the lightning surge current I flows through the conductor 134, the current I H mainly composed of the high-frequency component of the lightning surge current I is applied to the filler 140 and the steel pipe 133 outside the conductor 134 (that is, the points shown in FIG. 12). Easy to flow from A1 to point B2. Therefore, the lightning surge current flowing in the conductor 134 is IL mainly composed of a low frequency component obtained by subtracting I H from the lightning surge current I. As described above, the ground electrode 1 according to the first embodiment of the present invention has the lightning surge current of the lightning 107.
Iが低周波成分 I Iと、 高周波成分 I Hとに分流され、 低周波成分 I Lが主として第 1の電流路としての導体 134を流れ、 高周波成分 I H が主として第 2 の電流路としての鋼管 133及び充填材 140を流れるよ うに構成されている。 I is divided into a low-frequency component II and a high-frequency component I H , the low-frequency component IL mainly flows through the conductor 134 as the first current path, and the high-frequency component I H is mainly the steel pipe as the second current path 133. And the filler 140 is configured to flow.
減衰した雷サージ電流 I (即ち、 雷サージ電流 I の低周波成分 I L) が導体 134を流れる際に発生するおおよその雷サージ電圧 は 、 VL = L XdILZdtとなる。 この雷サージ電圧 VLは、 従来公知の 接地電極のように、 雷サージ電流 I (= I L + I h) が導体 34に流れ る場合に発生する雷サージ電圧 VL + H = L X { d ( I L + I H) Zdt } よりも低減されている。 The approximate lightning surge voltage generated when the attenuated lightning surge current I (that is, the low-frequency component IL of the lightning surge current I) flows through the conductor 134 is V L = L XdI L Zdt. This lightning surge voltage V L is conventionally known. Lightning surge voltage V L + H = LX {d (I L + I H ) Zdt}, which occurs when lightning surge current I (= IL + I h ) flows through conductor 34, like ground electrode Has been.
一方、 雷サージ電流 I の高周波成分 I Hが導体 134の外側の鋼管 13 3及び充填材 140を流れる際には、 主として充填材 140が含有する抵 抗体 35、 誘電体 136及び磁性体 137によって抵抗加熱、 誘電加熱、 及 び誘導加熱が生じ、 そのエネルギーの一部が消費される。 On the other hand, when the high-frequency component I H of the lightning surge current I flows through the steel pipe 133 and the filler 140 outside the conductor 134, the resistance is mainly caused by the resistance antibody 35, the dielectric 136 and the magnetic substance 137 contained in the filler 140. Heating, dielectric heating, and induction heating occur, and part of the energy is consumed.
導体 134を流れる雷サージ電流 I の低周波成分 I Lと、 充填材 140 及び鋼管 133を流れる雷サージ電流 I の高周波成分 I Hの主なものは 、 軸方向に沿って下端側に流れて大地 115よりも低い位置に到達す ると、 図 10に示すように、 整合器 151を経由して大地 115に流出し、 その一部は、 鋼管 133と接触している部分から大地 115に流出する。 以上の実施の形態によれば、 接地電極 101を鋼管 133の中心に導体 134を配置した同軸ケーブルに構成し、 さらに、 鋼管 133及び導体 13 4の間に、 導電性を有する充填材 140を充填したことによって、 雷サ ージ電流 I が導体 134を流れる際に分流され、 その低周波成分 I が 主として第 1 の電流路としての導体 134を流れ、 且つその高周波成 分 I Hが主として導体 134の周囲に設けた第 2の電流路を流れるよう にすることができる。 これにより、 ほとんど全ての雷サ一ジ電流 I が導体 134を流れる従来公知の接地電極の場合よりも、 導体 134を流 れる電流量を低減し、 導体 134に生じる雷サージ電圧 (L XdiZdt ) を低減させることができ、 接地インピーダンスを従来よりも低い 値にすることが可能になる。 これにより、 建物側に流れる分流分が 低減し、 結果として電気的につながった電子機器の破壊等の事態が 少なくなる。 The main components of the low-frequency component IL of the lightning surge current I flowing through the conductor 134 and the high-frequency component I H of the lightning surge current I flowing through the filler 140 and the steel pipe 133 flow to the lower end side along the axial direction. When it reaches a lower position, as shown in FIG. 10, it flows out to the ground 115 through the matching unit 151, and a part of it flows out to the ground 115 from the portion in contact with the steel pipe 133. According to the above embodiment, the ground electrode 101 is configured as a coaxial cable in which the conductor 134 is disposed at the center of the steel pipe 133, and the conductive filler 140 is filled between the steel pipe 133 and the conductor 134. As a result, the lightning surge current I is shunted when flowing through the conductor 134, the low-frequency component I flows mainly through the conductor 134 as the first current path, and the high-frequency component I H mainly flows through the conductor 134. It is possible to flow through a second current path provided around the. This reduces the amount of current flowing through the conductor 134 and reduces the lightning surge voltage (L XdiZdt) generated in the conductor 134, compared to the case of the conventionally known ground electrode in which almost all the lightning surge current I flows through the conductor 134. The ground impedance can be made lower than before. As a result, the diversion flow that flows to the building side is reduced, and as a result, the situation such as the destruction of electrically connected electronic devices is reduced.
さ らに、 上述したように接地電極 101による雷サージ電圧を低減 させたことによって、 接地電極 101経由で大地 115に流された雷サ一 ジ電流が、 周囲にある建物や人間に及ぼす被害を最小限に抑えるこ とが可能になる。 以下、 図 13及び図 14に示す例を用いて、 その効果 について説明する。 In addition, as described above, the lightning surge voltage caused by the ground electrode 101 is reduced, so that the lightning surge that flows to the ground 115 via the ground electrode 101 is reduced. It is possible to minimize damage to the surrounding buildings and human beings. Hereinafter, the effect will be described with reference to examples shown in FIGS.
図 13 ( a ) に示す例では、 接地電極 101を備えた建物 105の近くに 他の建物 155が存在している。 他の建物 155は、 例えば外部電源 167 に接続された電子機器 165等を内部に備えている。 他の建物 155は、 大地 115に埋設された従来公知の接地電極 161によって接地されてい る。 接地電極 161は、 導線 160を介して電子機器 165に接続されてい る。 図 13 ( b ) は、 ( a ) に示す建物 105に雷 107が落ちた際に、 そ の雷サージ電流 I が接地電極 101から大地 115に流された場合の大地 115の中の雷サージ電圧の値を、 大地 115における位置と共に示した グラフである。 なお、 ( b ) では、 縦軸が雷サージ電圧の値を表し 、 横軸が大地 115における位置 (即ち、 距離) を表している。 ( a ) の横方向の位置関係は、 ( b ) の横軸で示される距離と対応して いる。 ( a ) に示す建物 105が接地電極 101の代わりに従来公知の接 地電極を備えている場合には、 雷サージ電圧と距離との関係は、 ( b ) の点線のようになる。  In the example shown in FIG. 13 (a), another building 155 exists near the building 105 having the ground electrode 101. The other building 155 includes, for example, an electronic device 165 connected to an external power source 167, for example. The other building 155 is grounded by a conventionally known ground electrode 161 embedded in the ground 115. The ground electrode 161 is connected to the electronic device 165 via the conductive wire 160. Fig. 13 (b) shows the lightning surge voltage in the ground 115 when the lightning surge current I flows from the ground electrode 101 to the ground 115 when the lightning 107 falls on the building 105 shown in (a). Is a graph showing the value of with the position on the ground 115. In (b), the vertical axis represents the lightning surge voltage value, and the horizontal axis represents the position (ie, distance) on the ground 115. The horizontal positional relationship of (a) corresponds to the distance indicated by the horizontal axis of (b). When the building 105 shown in (a) has a conventionally known ground electrode instead of the ground electrode 101, the relationship between the lightning surge voltage and the distance is as shown by the dotted line in (b).
図 13 ( b ) に示すように、 従来公知の接地電極を用いた場合に、 大地 115に流れた時の雷サージ電流の電圧 (雷サージ電圧) の初期 値が U E Qであるのに対し無限遠点の電位を零として本発明の接地電 極 101を用いた場合には、 大地 115に流される雷サージ電圧の値が大 幅に低減され、 大地 115に流された直後の雷サージ電圧の初期値は UE 1になっている。 一般に、 雷サージ電圧は、 大地 115に流された 地点からより遠い位置 (距離) に進行するに従ってその値が徐々に 減衰するが、 建物 105に従来公知の接地電極が用いられた場合には 、 隣接する接地電極 161の地点 Dにおける雷サージ電圧は依然とし て非常に高い値 UD Qになっており、 この高い電圧によつて電子機器 165が損傷する可能性がある。 これに対して、 本発明による接地電 極 101を用いた場合には、 隣接する接地電極 161の地点 Dにおける雷 サージ電圧は充分に低い値 UD 1になり、 電子機器 165の損傷は免れ る。 このように、 本発明によって、 隣接する接地電極 161に対する 雷サージ電圧による被害を低減化又は無害化することが可能である 一方、 建物 105の接地電極として本発明の接地電極 101ではなく、 従来公知の接地電極 161を用いた場合には、 図 13 ( b ) の点線で示 すように、 大地に流れた時の雷サージ電流の電圧 (雷サ一ジ電圧) の初期値が υΕϋになるが、 隣接する接地電極として本発明の接地電 極 101を用いれば、 大地 115と直接接触しているのは従来公知の接地 電極のように導体ではなく鋼管部分 133であり、 中心導体 134ではな いため、 鋼管部分 133が中心導体 134に対して電磁気的な遮蔽体とし て働くので、 中心導体 134への雷サージ電流の侵入は抑制される。 また、 中心導体 134には、 その性質上低周波成分の電流が選択的に 流れるので、 電流サージ電圧は大幅に低減される。 As shown in Fig. 13 (b), when a conventionally known ground electrode is used, the initial value of the lightning surge current voltage (lightning surge voltage) when flowing to the ground 115 is UE Q , but infinite. When the ground electrode 101 of the present invention is used with the far point potential set to zero, the value of the lightning surge voltage flowing to the ground 115 is greatly reduced, and the lightning surge voltage immediately after flowing to the ground 115 is reduced. The initial value is U E 1 . In general, the lightning surge voltage gradually attenuates as it travels to a position (distance) farther away from the point where the ground 115 is passed, but when a conventionally known ground electrode is used for the building 105, The lightning surge voltage at point D of the adjacent ground electrode 161 is still a very high value U D Q. 165 may be damaged. On the other hand, when the ground electrode 101 according to the present invention is used, the lightning surge voltage at the point D of the adjacent ground electrode 161 becomes a sufficiently low value U D 1 and the electronic device 165 is not damaged. . Thus, according to the present invention, it is possible to reduce or eliminate the damage caused by lightning surge voltage on the adjacent ground electrode 161. On the other hand, the ground electrode of the building 105 is not the ground electrode 101 of the present invention, but is conventionally known. When the ground electrode 161 is used, the initial value of the lightning surge current voltage (lightning surge voltage) when flowing to the ground is υ よ う , as shown by the dotted line in Fig. 13 (b). However, if the ground electrode 101 of the present invention is used as the adjacent ground electrode, the steel tube portion 133 is not in contact with the ground 115 but the conductor, and the center conductor 134 is not in direct contact with the ground 115 as in the known ground electrode. Therefore, since the steel pipe portion 133 acts as an electromagnetic shield for the central conductor 134, intrusion of lightning surge current into the central conductor 134 is suppressed. In addition, since the current of the low frequency component selectively flows through the center conductor 134 due to its property, the current surge voltage is greatly reduced.
次に、 図 14を用いて周囲の人間に及ぼされる被害が最小限に抑え られていることの説明をする。 図 14 ( a ) に示す例では、 接地電極 101を備えた建物 105の近くを歩いている歩行者 170が示されている 。 図 14 ( b ) は、 ( a ) に示す建物 105に雷 107が落ちた際に、 その 雷サージ電流 Iが接地電極 101から大地 115に流れた場合の大地 115 の中の雷サージ電圧の値を、 大地 115における位置と共に示したグ ラフである。 なお、 (b ) では、 縦軸が雷サージ電圧の値を表し、 横軸が大地 115における位置 (即ち、 距離) を表している。 ( a ) の横方向の位置関係は、 ( b ) の横軸で示される距離と対応してい る。 ( a ) に示す建物 105が接地電極 101の代わりに従来公知の接地 電極を備えている場合には、 雷サージ電圧と距離との関係は、 ( b ) に示す点線のようになる。 Next, we will use Fig. 14 to explain that the damage to the surrounding people is minimized. In the example shown in FIG. 14 (a), a pedestrian 170 walking near the building 105 with the ground electrode 101 is shown. Figure 14 (b) shows the value of lightning surge voltage in the ground 115 when the lightning surge current I flows from the ground electrode 101 to the ground 115 when the lightning 107 falls on the building 105 shown in (a). Is a graph showing the position along the ground 115. In (b), the vertical axis represents the lightning surge voltage value, and the horizontal axis represents the position on the ground 115 (ie, the distance). The horizontal positional relationship in (a) corresponds to the distance indicated by the horizontal axis in (b). When the building 105 shown in (a) has a conventionally known ground electrode instead of the ground electrode 101, the relationship between the lightning surge voltage and the distance is (b ) As shown in the dotted line.
図 14 ( a ) ( b ) に示すように、 従来公知の接地電極を用いた場 合に、 大地 115に流れたときの雷サージ電流の電圧 (雷サージ電圧 ) の初期値が UE Qであるのに対し、 本発明の接地電極 101を用いた 場合には、 大地 115に流れる雷サージ電圧の値が大幅に低減され、 大地 115を流れた直後の雷サージ電圧の初期値は UE 1になっている 。 これにより、 本発明の接地電極 101を用いた場合の雷サージ電圧 の勾配 ( (b ) の実線) は、 従来公知の接地電極を用いた場合の雷 サージ電圧の勾配 ( (b ) の点線) よりも緩やかになっている。 As shown in Fig. 14 (a) and (b), when a conventionally known ground electrode is used, the initial value of the lightning surge current voltage (lightning surge voltage) when flowing to the ground 115 is U EQ . On the other hand, when the ground electrode 101 of the present invention is used, the value of the lightning surge voltage flowing through the ground 115 is greatly reduced, and the initial value of the lightning surge voltage immediately after flowing through the ground 115 is U E 1 . It has become. As a result, the lightning surge voltage gradient (solid line (b)) when the ground electrode 101 of the present invention is used is the lightning surge voltage gradient (dotted line (b)) when the conventionally known ground electrode is used. It has become more gradual.
図 14 ( a ) に示すように、 歩行者 170の両足は大地 115に対して別 々の位置 L l, L 2で接触しているため、 接地電極 101から大地 115 に流れた雷サージ電流が歩行者 170の直下の大地 115に流れた場合に は、 両足間の電位差に対応した雷サージ電圧 (歩幅電圧と呼ばれる ) が歩行者 170に加わることになる。 しかしながら、 本発明の接地 電極 101を用いた場合には、 上述したように雷サージ電圧の勾配を 緩やかにされているため、 一方の足の位置 L 1 と他方の足の位置 L 2 との間の電位差は US 1と、 従来公知の接地電極を用いた場合の電 位差 US ()から著しく低い値に低減されている。 このように、 本発明 によって、 歩行者 Π0に雷サージ電流が流れた場合にもその被害を 効果的に低減することが可能である。 As shown in Fig. 14 (a), both feet of the pedestrian 170 are in contact with the ground 115 at different positions L l and L 2, so that the lightning surge current that flows from the ground electrode 101 to the ground 115 When it flows to the ground 115 immediately below the pedestrian 170, a lightning surge voltage (referred to as stride voltage) corresponding to the potential difference between both feet is applied to the pedestrian 170. However, when the ground electrode 101 of the present invention is used, the slope of the lightning surge voltage is moderated as described above, and therefore, between the position L 1 of one foot and the position L 2 of the other foot. The potential difference is reduced to a significantly low value from U S 1 and the potential difference U S () when a conventionally known ground electrode is used. Thus, according to the present invention, even when a lightning surge current flows through pedestrian Π0, it is possible to effectively reduce the damage.
上述した例では、 歩行者 170の雷サージ電流による感電について 説明したが、 図 14 ( a ) に示すように、 本発明の接地電極 101を用 いることによって建物 105に直接接触している接触者 171の感電被害 をも効果的に低減化又は無害化することができる。  In the above-mentioned example, the electric shock due to the lightning surge current of the pedestrian 170 has been described. However, as shown in FIG. 14 (a), the contact person who is in direct contact with the building 105 by using the ground electrode 101 of the present invention. 171 electric shock damage can be effectively reduced or made harmless.
例えば、 図 14 ( b ) の点線で示すように、 従来公知の接地電極が 用いられている場合には、 接触者 171が感電した際に受ける雷サー ジ電圧 (接触電圧と呼ばれる) は、 壁の位置 Wと接触者 171の位置 L 0 との間の電位差 UT Gであり、 前述した歩行者 170の受ける電位 差 US ()と比較して、 著しく大きくなつている。 ところが、 本発明の 接地電極 101を用いた場合には、 図 14 ( b ) の実線で示すように、 雷サージ電圧が十分に低減され、 減衰度合いも緩やかになるため、 接触者 171が感電した場合に印加される電位差 UT 1が非常に低い値 になっている。 このように、 本発明によって、 雷サージ電流が流れ てしまった場合においても接触者 171の感電の被害を効果的に低減 することが可能である。 For example, as shown by the dotted line in Fig. 14 (b), when a conventionally known ground electrode is used, the lightning surge voltage (referred to as the contact voltage) received when the contact person 171 receives an electric shock is Position W and contact 171 position This is the potential difference U TG with L 0, which is significantly larger than the potential difference U S () received by the pedestrian 170 described above. However, when the ground electrode 101 of the present invention is used, as shown by the solid line in FIG. 14 (b), the lightning surge voltage is sufficiently reduced and the attenuation level is moderated. In this case, the applied potential difference U T 1 is very low. As described above, according to the present invention, even when a lightning surge current flows, it is possible to effectively reduce the electric shock damage of the contact person 171.
さらに、 上述したように接地電極 101を同軸構造にしたことによ つて、 基本的には、 従来形接地電極のインダク夕ンス成分を大幅に 低減することができ、 これにより接地インピーダンスの値は小さく なる。 その接地インピ一ダンスのうち、 リアクタンス成分の値は、 接地電極 101を設置する通常の土壌環境 (例えば抵抗率等) に依存 しないという利点が得られる。 また、 接地電極 101を雷害防止の対 象である建物 105等に設置する際には、 製造した接地電極 101を設置 場所 (例えば建物 105等) のある現場に搬送し、 鉛直方向に沿って 孔を掘削した後に、 この孔に接地電極 101を挿入して固定するとい う非常に単純な手順で実行でき、 その施工が非常に容易化される。 さらに、 上述したように接地電極 101を同軸構造にしたことによ つて、 接地電極 101の鋼管 133が外からの電流を遮蔽し、 導体 134を 保護することができる。 これにより、 誘導雷サージ電流が大地 115 から導体 134に流れ込んでしまう事態を防止できる。 また、 例えば 接地電極 101に隣接して他の接地電極が設けられている場合等に、 この隣接する他の接地電極から大地 115に流された雷サージ電流が 接地電極 1 の中心導体 134に流れ込む量を低減できる。  Furthermore, as described above, the ground electrode 101 having a coaxial structure can basically reduce the inductance component of the conventional ground electrode significantly, thereby reducing the ground impedance value. Become. Among the ground impedances, there is an advantage that the value of the reactance component does not depend on the normal soil environment (for example, resistivity) in which the ground electrode 101 is installed. In addition, when installing the ground electrode 101 in the building 105, etc., which is the target of lightning damage prevention, the manufactured ground electrode 101 is transported to the site where the installation location (for example, the building 105, etc.) is located and along the vertical direction. After excavating a hole, the ground electrode 101 can be inserted and fixed in this hole, and the operation can be performed very easily. Furthermore, as described above, since the ground electrode 101 has a coaxial structure, the steel pipe 133 of the ground electrode 101 can shield the current from the outside and protect the conductor 134. This prevents a situation where the induced lightning surge current flows from the ground 115 into the conductor 134. In addition, for example, when another ground electrode is provided adjacent to the ground electrode 101, a lightning surge current flowing from the other adjacent ground electrode to the ground 115 flows into the center conductor 134 of the ground electrode 1. The amount can be reduced.
本発明の第 5の実施形態として、 図 15に示すように、 複数の異な る特性インピーダンスの接地電極 101を互いに接続し、 接地電極群 1 02を形成するようにしてもよい。 図 15は、 一例として 3つの接地電 極 101を有する接地電極群 102の鉛直方向の断面を示した断面図であ る。 図 15に示す接地電極群 102の例では、 3つの接地電極 101が、 い ずれも管状導体としての鋼管 133の管軸方向を鉛直方向にして互い に概ね等間隔で大地 115に埋設されている。 3つの接地電極 101の導 体 134は、 各鋼管 133の外で互いに接続されて 1つになっている。 こ のように 1つに合流した導体 134は、 例えば図 8 に示す接地部 117等 を介して建物 105の上部に設けた避雷装置 110に接続されている。 本発明の第 5の実施形態によれば、 複数の接地電極 101を用いる ようにしたことにより、 各々の接地電極 101を従来よりも小型化で きる。 これにより、 各接地電極 101の搬送及び施工が非常に容易化 される。 なお、 第 5の実施形態においても、 第 4の実施形態と同様 の効果を有する。 As a fifth embodiment of the present invention, as shown in FIG. 15, a plurality of ground electrodes 101 having different characteristic impedances are connected to each other, and ground electrode group 1 02 may be formed. FIG. 15 is a cross-sectional view showing a vertical cross section of a ground electrode group 102 having three ground electrodes 101 as an example. In the example of the ground electrode group 102 shown in FIG. 15, three ground electrodes 101 are embedded in the ground 115 at substantially equal intervals from each other with the tube axis direction of the steel pipe 133 as a tubular conductor being vertical. . The conductors 134 of the three ground electrodes 101 are connected to each other outside the steel pipes 133 to become one. The conductors 134 joined together in this way are connected to a lightning arrester 110 provided at the upper part of the building 105 via, for example, a grounding part 117 shown in FIG. According to the fifth embodiment of the present invention, since a plurality of ground electrodes 101 are used, each ground electrode 101 can be made smaller than before. This greatly facilitates the transportation and construction of each ground electrode 101. Note that the fifth embodiment also has the same effect as the fourth embodiment.
本発明の第 6の実施形態として、 図 16に示すように、 異なる特性 インピーダンスの接地電極 101を複数設置する際に、 その管軸方向 を水平にして大地 115に埋設するようにしてもよい。 図 16は、 一例 として 4つの接地電極 101を有する接地電極群 102の水平方向の断面 を示した断面図である。 図 16に示す接地電極群 102の例では、 4つ の接地電極 101が、 いずれも管状導体としての鋼管 133の管軸方向を 水平方向にして同一水平面内に配置されている。 4つの接地電極 10 1は、 互いの管軸方向が直角になるように放射状に配置されている 。 各接地電極 101は、 内部導体としての導体 134が鋼管 133の外に延 設されている側の端部を放射の中心に向けて配置されている。 本発 明の第 6の実施形態では、 放射状の接地電極群 102の中心部に中空 の空間 180が設けられており、 この空間 180内で 4つの接地電極 101 の各導体 134が互いに接続されて 1つになっている。 このように 1 つに合流した導体 34は、 鉛直方向に沿って上方に延設され、 例えば 図 11に示す接地部 117等を介して建物 105の上部に設けた避雷装置 11 0に接続されている。 As a sixth embodiment of the present invention, as shown in FIG. 16, when a plurality of ground electrodes 101 having different characteristic impedances are installed, the tube axis direction may be horizontal and buried in the ground 115. FIG. 16 is a cross-sectional view showing a horizontal cross section of a ground electrode group 102 having four ground electrodes 101 as an example. In the example of the ground electrode group 102 shown in FIG. 16, the four ground electrodes 101 are all arranged in the same horizontal plane with the tube axis direction of the steel pipe 133 as a tubular conductor being horizontal. The four ground electrodes 101 are arranged radially so that the directions of the tube axes are perpendicular to each other. Each ground electrode 101 is arranged with the end on the side where the conductor 134 as an internal conductor extends outside the steel pipe 133 facing the center of radiation. In the sixth embodiment of the present invention, a hollow space 180 is provided at the center of the radial ground electrode group 102, and the conductors 134 of the four ground electrodes 101 are connected to each other in the space 180. It is one. The conductors 34 joined together in this way are extended upward along the vertical direction, for example, It is connected to a lightning arrester 110 provided at the upper part of the building 105 via a grounding part 117 shown in FIG.
本発明の第 6の実施形態によれば、 接地電極 101の鋼管 133の管軸 方向を水平に配置したことによって、 接地電極 101を埋設する際に 例えば大地 115に形成する孔が同じ深さでよくなる等、 その施工が 容易化される。 また、 複数の接地電極 101を接続して接地電極群 102 を形成する場合に、 各接地電極 101の大地 115に雷サージ電流を流す 側の端部を互いに遠ざけて配置することができ、 相互の影響を低減 することが可能になる。 なお、 第 6の実施形態においても、 第 4の 実施形態と同様の効果を有する。  According to the sixth embodiment of the present invention, by arranging the tube axis direction of the steel pipe 133 of the ground electrode 101 horizontally, for example, when embedding the ground electrode 101, holes formed in the ground 115 have the same depth. The construction will be facilitated, such as better. In addition, when a plurality of ground electrodes 101 are connected to form the ground electrode group 102, the end portions of the ground electrodes 101 on the side where the lightning surge current flows can be arranged away from each other. The impact can be reduced. Note that the sixth embodiment also has the same effect as the fourth embodiment.
本発明の第 7の実施形態として、 図 17に示すように、 落雷 107に よる雷サージ電流を接地側に流す避雷装置 110と接地電極 101とを一 体型の同軸形状に形成してもよい。 図 Πは、 避雷装置 110と接地電 極 101がー体型の同軸形状に形成された一例としての立設型避雷針 1 85の鉛直方向の断面図である。 図 16に示す例では、 避雷針 185が単 独で立設されており、 上端に突針 186を備えている。 なお、 避雷装 置及び接地電極を一体型にして既存の設備等に設けるようにしても よい。 この構成を例えば、 送電線の架空地線に接続し、 接地電極の 上端を架空地線に接続して使用すれば、 架空地線の雷サージ電圧の 上昇が低減できる。  As a seventh embodiment of the present invention, as shown in FIG. 17, a lightning arrester 110 and a ground electrode 101 for flowing a lightning surge current due to a lightning strike 107 to the ground side may be formed in a single coaxial shape. FIG. 8 is a vertical cross-sectional view of an upright lightning rod 185 as an example in which the lightning arrester 110 and the ground electrode 101 are formed in a body-shaped coaxial shape. In the example shown in FIG. 16, the lightning rod 185 is erected independently and has a protruding needle 186 at the upper end. The lightning protection device and the ground electrode may be integrated and provided in the existing equipment. For example, if this configuration is used by connecting to the overhead ground wire of the transmission line and connecting the upper end of the ground electrode to the overhead ground wire, the rise in lightning surge voltage of the overhead ground wire can be reduced.
本発明の第 7の実施形態によれば、 落雷 107による雷サージ電流 が接地電極 101に到達する前から同軸形状の避雷装置 110を流れるた め、 雷サージ電流の電位上昇がより効果的に抑制され、 接地インピ 一ダンスを大幅に低下させることができる。 また、 雷サージ電流が 避雷装置 110から整合器 151を介して大地 115に流されるまでの間の 全経路 (即ち、 大地 115より上の大気中を流れる経路と、 大地 115の 中の経路) において、 雷サージ電流によるフラッシオーバ等の放電 の発生を防止することができる。 さらに、 外部からこの経路に電流 が流れ込む事態も防止できる。 なお、 第 7の実施形態においても、 第 4の実施形態と同様の効果を有する。 According to the seventh embodiment of the present invention, since the lightning surge current caused by the lightning strike 107 flows through the coaxial lightning arrester 110 before it reaches the ground electrode 101, the potential increase of the lightning surge current is more effectively suppressed. The ground impedance can be greatly reduced. In addition, in all the routes from the lightning surge current flowing from the lightning arrester 110 to the ground 115 via the matching device 151 (that is, the route flowing in the atmosphere above the ground 115 and the route in the ground 115) Discharge such as flashover caused by lightning surge current Can be prevented. Furthermore, it is possible to prevent current from flowing into this path from the outside. Note that the seventh embodiment also has the same effect as the fourth embodiment.
以上、 添付図面を参照しながら本発明の好適な実施形態について 説明したが、 本発明は係る例に限定されない。 当業者であれば、 特 許請求の範囲に記載された技術的思想の範疇内において、 各種の変 更例又は修正例に想到し得ることは明らかであり、 それらについて も当然に本発明の技術的範囲に属するものと了解される。  As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, this invention is not limited to the example which concerns. It is obvious that a person skilled in the art can come up with various changes or modifications within the scope of the technical idea described in the scope of the patent claims. It is understood that it belongs to the scope.
実施形態においては、 管状導体として例えばステンレス鋼や防食 対策鋼管で構成された鋼管 3, 133が用いられている場合について 説明したが、 その他の材料で形成された管状導体が用いられてもよ い。  In the embodiment, the case where steel pipes 3, 133 made of stainless steel or anti-corrosion steel pipe, for example, is used as the tubular conductor has been described. However, tubular conductors made of other materials may be used. .
実施形態においては、 充填材 10, 140として、 それぞれ抵抗体 15 , 145、 誘導体 16, 146及び磁性体 17, 147の全てを所定の割合で混 入させたセメントが用いられている場合について説明したが、 充填 材 10, 140は、 導電性を有する任意の材料を用いてよい。 また、 充 填材 10, 140には、 抵抗体、 誘導体及び磁性体より成る群から選択 した 1以上の材料が含有されるようにしてもよい。 さらに、 これら 抵抗体、 誘電体及び磁性体以外の材料が含まれていてもよい。  In the embodiment, a description has been given of a case where cement is used as the fillers 10 and 140, in which the resistors 15 and 145, the derivatives 16 and 146, and the magnetic bodies 17 and 147 are mixed at a predetermined ratio, respectively. However, the fillers 10 and 140 may use any conductive material. The fillers 10 and 140 may contain one or more materials selected from the group consisting of resistors, derivatives, and magnetic materials. Furthermore, materials other than these resistors, dielectrics, and magnetic materials may be included.
実施形態においては、 抵抗体 15, 145が金属微粉末 (銀粉、 銅粉 等) 又はグラフアイ トである場合について説明したが、 抵抗体 15 , 145としてこれら以外の材料を用いてもよい。  In the embodiment, the case where the resistors 15 and 145 are metal fine powder (silver powder, copper powder, or the like) or a graph item has been described, but other materials may be used as the resistors 15 and 145.
実施形態においては、 誘電体 16 , 146が酸化アルミ、 チタン酸バ リウムである場合について説明したが、 誘電体 16, 146としてこれ ら以外の材料を用いてもよい。  In the embodiment, the case where the dielectrics 16 and 146 are aluminum oxide and barium titanate has been described. However, other materials may be used as the dielectrics 16 and 146.
実施形態においては、 磁性体 17, 147がフェライ トである場合に ついて説明したが、 磁性体 17, 147としてこれら以外の材料を用い てもよい。 In the embodiment, the case where the magnetic bodies 17 and 147 are ferrites has been described. However, materials other than these are used as the magnetic bodies 17 and 147. May be.
実施形態においては、 整合器 22, 151として、 鋼管 3, 133と軸方 向を平行に且つ同心に配置された円柱形状のコンクリート材が用い られている場合について説明したが、 整合器 22, 151は、 インピー ダンスの整合をとるための任意の材料及び形状であってもよい。 第 1〜第 3の実施形態においては、 接地系 20の接地極が深埋設電 極接地極 22又はメッシュ接地極 52である場合について説明したが、 その他の接地極が用いられてもよい。  In the embodiment, a description has been given of the case where a cylindrical concrete material is used as the matching unit 22, 151, which is arranged in parallel and concentrically with the steel pipes 3, 133. However, the matching unit 22, 151 May be any material and shape for impedance matching. In the first to third embodiments, the case where the grounding electrode of the grounding system 20 is the deep buried electrode grounding electrode 22 or the mesh grounding electrode 52 has been described, but other grounding electrodes may be used.
第 3の実施形態においては、 被支持部 62が信号機の機能を備えて いる場合について説明したが、 被支持部 62が、 例えば通信機能、 照 明機能等、 避雷機能以外の機能を備えるようにしてもよい。  In the third embodiment, the case where the supported portion 62 has a traffic light function has been described. However, the supported portion 62 has a function other than the lightning protection function, such as a communication function and an illumination function. May be.
第 4〜第 7の実施形態においては、 本発明の接地電極 101を単独 で用いる場合について説明したが、 例えばメッシュ接地極等の従来 公知の接地電極と併用してもよく、 この併用によって従来公知の接 地電極の接地インピーダンスを低減させる効果がある。  In the fourth to seventh embodiments, the case where the ground electrode 101 of the present invention is used alone has been described. However, for example, it may be used in combination with a conventionally known ground electrode such as a mesh ground electrode. This has the effect of reducing the ground impedance of the ground electrode.
第 5の実施形態においては、 接地電極群 102が接地電極 101を 3つ 又は 4つ有する場合について説明したが、 任意の数の接地電極 101 を有していてもよい。 また、 接地電極群 102が有する複数の接地電 極 101は任意の配置構成であつてもよい。  Although the case where the ground electrode group 102 has three or four ground electrodes 101 has been described in the fifth embodiment, any number of ground electrodes 101 may be included. Further, the plurality of ground electrodes 101 included in the ground electrode group 102 may have any arrangement configuration.
第 7の実施形態においては、 避雷装置 110と接地電極 101とが一体 型の同軸形状に形成されている場合について説明したが、 同軸形状 の避雷装置 110と同軸形状の接地電極 101との間に例えば蛇腹形状の 同軸形状又は非同軸形状の中間部分を設け、 この中間部分を介して 避雷装置 110と接地電極 101とを接続するようにしてもよい。  In the seventh embodiment, the case where the lightning arrester 110 and the ground electrode 101 are formed in an integral coaxial shape has been described. However, between the coaxial lightning arrester 110 and the coaxial ground electrode 101, For example, a bellows-shaped coaxial or non-coaxial intermediate portion may be provided, and the lightning arrester 110 and the ground electrode 101 may be connected via the intermediate portion.
第 4〜第 7の実施形態においては、 接地電極 101が落雷 107による 雷サージ電流に対して効果を発揮する場合について説明したが、 接 地電極 101は、 例えば図 1 に示す電気機器 125が地絡故障した場合に おおいいててもも、、 商商用用周周波波数数のの漏漏電電電電流流にに対対ししてて雷雷ササーージジ電電流流にに対対すするる効効 果果とと同同様様のの効効果果をを発発揮揮すするるここととがが可可能能ででああるる。。 In the fourth to seventh embodiments, the case where the ground electrode 101 exerts an effect on the lightning surge current caused by the lightning strike 107 has been described. However, the ground electrode 101 includes, for example, the electric device 125 shown in FIG. In case of a fault Even if it is the same, the effect is similar to the effect against lightning surge current flow against leakage current flow at commercial frequency frequency. It is possible to achieve this effect. .
第第 44〜〜第第 77のの実実施施形形態態ににおおいいててはは、、 接接地地電電極極 110011がが大大地地 111155のの中中にに 直直接接的的にに埋埋設設さされれてていいるる場場合合ににつついいてて説説明明ししたたがが、、 接接地地電電極極 110011のの 外外周周にに例例ええばばセセメメンントト等等のの外外皮皮をを設設けけるるよよううににししててももよよいい。。 ここののよよ ううににししてて鋼鋼管管 113333のの外外周周にに外外皮皮をを設設けけるるここととにによよっってて、、 接接地地電電極極 110011 のの埋埋設設時時にに鋼鋼管管 113333のの腐腐食食対対策策ををととるるここととががででききるる。。 実実施施例例  In the 44th to 77th practical embodiments, the grounded ground electrode electrode 110011 is directly and directly connected to the ground 111155. Although it has been explained in the case where it is buried, it has been explained in the case of the outer circumference of the contact ground electrode electrode 110011. For example, a cement etc. It's okay to have an outer and outer skin. . In this way, an outer skin can be provided on the outer periphery of the steel pipe tube 113333 so that the grounded earth electrode electrode 110011 This can be done by taking countermeasures against corrosion corrosion of the steel pipe tube 113333 at the time of burial. . Example of actual implementation
一一般般にに、、 雷雷ササーージジ電電流流のの主主要要なな周周波波数数成成分分はは 1100KKHHzz〜〜 11 MMHHzzととみみなな さされれてておおりり、、 本本発発明明のの実実施施のの形形態態にに係係るる避避雷雷装装置置 11おおよよびび接接地地電電極極 110011にに、、 一一般般的的なな伝伝送送式式をを適適用用ししたた試試算算をを行行ううここととにによよっってて正正弦弦波波 定定常常電電流流法法にによよるる解解析析かかららそそのの有有効効性性をを検検証証すするる。。  In general, the main major frequency component of the lightning surge current flow is considered to be 1100 KKHHzz ~ ~ 11 MMHHzz. The lightning arrester device 11 and the grounded ground electrode electrode 110011 relating to the form of implementation of the invention are generally used in a general transmission transmission type. From the analysis of the positive sine wave using the steady-state normal current method, the trial calculation using the equation is applied appropriately. It verifies the effectiveness of its effectiveness. .
既既述述ししたたよよううにに、、 避避雷雷装装置置 11おおよよびび接接地地電電極極 110011はは、、 図図 44,, 1122にに 示示すす有有損損失失線線路路のの等等価価回回路路ととみみななせせるるののでで、、 以以下下でではは、、 公公知知のの一一般般 式式をを適適用用ししてて試試算算をを行行うう。。 ななおお、、 有有損損失失線線路路のの等等価価回回路路ににおおいいてて、、 抵抵抗抗 RR及及びびココンンダダククタタンンスス GGをを 00にに設設定定ししたた場場合合ににはは、、 無無損損失失線線路路 のの等等価価回回路路にに該該当当すするる。。  As described above, the lightning arrester device 11 and the grounded electrode electrode 110011 are connected to the lossy loss line shown in Figs. 44 and 1122. Since it can be regarded as an equivalent equivalent circuit circuit of the track, in the following, a trial calculation is made by appropriately applying one general formula of publicly known knowledge. Do arithmetic. . It should be noted that the resistance resistance RR and the conductance GG are set to 00 and set to 00 in the equivalent equivalent circuit of the lossy and broken line. In such a case, it falls under the equivalent equivalent circuit path of a lossless lossless line. .
一一般般的的にに、、 図図 1188にに示示すすよよううにに、、 内内部部導導体体 9911のの外外径径がが aa、、 外外部部導導体体 9911のの内内径径がが bbででああるる同同軸軸ケケーーブブルル 9955はは、、 ここれれらら内内部部導導体体 9911及及びび外外部部 導導体体 9922がが空空気気絶絶縁縁さされれてていいるる状状態態ににおおいいてて、、 周周波波数数 ((HHzz)) のの電電流流 をを流流ししたた場場合合ににはは、、 ここのの同同軸軸ケケーーブブルル 9955のの単単位位長長ささ当当たたりりののイイ ンンダダ ククタタンンスス LL (( ii HH//mm)) 、、 キキャャパパシシタタンンスス CC ((ppFF//mm)) 及及びび抵抵抗抗 RR Generally, as shown in FIG. 1188, the inner and outer conductors 9911 have outer and outer diameters of aa and 9911, respectively. The coaxial shaft cable 9955, whose inner diameter is bb, has an inner air conductor 9911 and an outer outer conductor 9922 that are insulated with air and air. If the electric current of the frequency of the frequency ((HHzz)) is applied, the coaxial cable cable is used. Inductor inductance LL ((ii HH // mm)), capacitance capacitor CC ((ppFF // mm)) and resistance per unit length of 9955 Resistance resistance RR
(( ΩΩ//mm)) 、、 並並びびににイインンピピーーダダンンスス ΖΖοο ((ΩΩ)) はは、、 各各々々下下記記式式 (( 11 )) 〜〜 (( 44 )) でで得得らられれるるここととはは公公知知ででああるる。。((ΩΩ // mm)),, and ピ ピ ー ΖΖ ((ΩΩ)) are the following formulas ((11)) to ((44)) This is a publicly known knowledge. .
Figure imgf000030_0001
Figure imgf000030_0001
CC == ((5555..66XX εε ss )) // {{ IInn (( bb // aa )) }} (( 22 )) R = { 4. 15 X 10" 8 X ( a + b ) X Λ f } / ( a X b ) · · ( 3 )CC == ((5555..66XX εε ss)) // {{IInn ((bb // aa))}} ((22)) R = {4.15 X 10 " 8 X (a + b) X Λ f} / (a X b) · (3)
Zo= 60X In ( b / a ) ( 4 ) なお、 上式 ( 2 ) における ε sは誘電率である。 Zo = 60X In (b / a) (4) In the above equation (2), ε s is the dielectric constant.
また、 図 18に示す同軸ケーブル 95の内部導体 91及び外部導体 92の 間に空気の代わりにポリエチレンを充填し、 同軸ケーブル 95に周波 数 i = 3 X 109 (Hz) の電流を流した場合には、 同軸ケーブル 95の コンダクタンス G ( S /m) が下記式 ( 5 ) で得られることが分か つている。 The polyethylene was filled instead of air between the inner conductor 91 and outer conductor 92 of the coaxial cable 95 shown in FIG. 18, when a current is flowed in the frequency i = 3 X 10 9 (Hz ) to a coaxial cable 95 Shows that the conductance G (S / m) of the coaxial cable 95 can be obtained by the following equation (5).
G = (7.35X 10-' °) / { In ( b Z a ) } ( 5 ) しかしながら、 本発明の場合、 避雷装置 1 の導体 4及び鋼管 3の 間の充填材 10、 あるいは、 接地電極 101の導体 134及び鋼管 133の間 の充填材 140は、 導電性が支配的であるため、 避雷装置 1 あるいは 接地電極 101のコンダクタンス Gは、 充填材 10又は 140の導電率 σ ( S Zm) に対して下記式 ( 6 ) で求めるのが適切である。  G = (7.35X 10- '°) / {In (b Z a)} (5) However, in the present invention, the filler 10 between the conductor 4 of the lightning arrester 1 and the steel pipe 3, or the ground electrode 101 The filler 140 between the conductor 134 and the steel pipe 133 is dominated by conductivity, so that the conductance G of the lightning arrester 1 or ground electrode 101 is less than the conductivity σ (S Zm) of the filler 10 or 140. Therefore, it is appropriate to calculate by the following formula (6).
G = ( σ X 2 7t ) / { In ( b / a ) } ( 6 ) 表 1 には、 (抵抗体、 誘電体及び磁性体を含有する) 充填材 1又 は 140として種々の導電率 σ ( S /m) の物質を用いた場合につい て、 上式 ( 6 ) から計算される避雷装置 1あるいは接地電極 101の コンダクタンス G ( S Zm) の各値が示されている。 なお、 表 1 に おいては、 内部導体 91の外径を a = 10 (mm) 、 外部導体 92の内径を b = 1000 (mi) としている。 表 1 G = (σ X 2 7t) / {In (b / a)} (6) Table 1 shows various conductivity σ as filler 1 or 140 (containing resistor, dielectric and magnetic) When the substance of (S / m) is used, each value of the conductance G (S Zm) of the lightning arrester 1 or the ground electrode 101 calculated from the above equation (6) is shown. In Table 1, the inner conductor 91 has an outer diameter of a = 10 (mm) and the outer conductor 92 has an inner diameter of b = 1000 (mi). table 1
Figure imgf000032_0002
さて、 図 4 12に示す等価回路において、 下記式 ( 7) で示すァ は一般に伝播係数と呼ばれている。
Figure imgf000032_0002
Now, in the equivalent circuit shown in Fig. 412, ァ shown in the following equation (7) is generally called the propagation coefficient.
7 = { (R + j ω L) X ( G + j ω C) } ( 7) なお、 ω (radZ s ) 'は等価回路を流れる電流の角周波数であり C = 2 T f である。 r = + j β ( 8 ) と α ]6を設定すると、 電流が等価回路を 1 (m) 流れた際の外 部導体 92に対する内部導体 91の電圧成分の比は、 下記式 ( 9) で得 られることが知られている。  7 = {(R + j ω L) X (G + j ω C)} (7) where ω (radZ s) 'is the angular frequency of the current flowing through the equivalent circuit, and C = 2 T f. When r = + j β (8) and α] 6 are set, the ratio of the voltage component of the inner conductor 91 to the outer conductor 92 when current flows through the equivalent circuit for 1 (m) is expressed by the following equation (9). It is known that it can be obtained.
I { v ( x) / y (x + 1 ) } I = e ffi 1 ( 9 ) 但し、 電流が等価回路を位置 xから位置 ( x + 1 ) まで 1 (m) 流れたと仮定し、 位置 Xの電圧成分の値を V ( X ) 、 位置 (x + 1I {v (x) / y (x + 1)} I = e ffi 1 (9) However, assuming that current flows 1 (m) from the position x to the position (x + 1), the position X The value of the voltage component of V (X), position (x + 1
) の電圧成分の値を V ( + 1 ) とする。 これにより、 減衰率 D (d) Is the voltage component value V (+ 1). As a result, the attenuation factor D (d
B) は、 下記式 (10) で得られる。 B) is obtained by the following equation (10).
D = 20X log, 0 e α 1 D = 20X log, 0 e α 1
Figure imgf000032_0001
W
Figure imgf000032_0001
W
=8.686 X ( 1 ) ( 10) 従って、 上式 ( 1 ) 〜 ( 3 ) , ( 6 ) から各々得られる L, C , R及び Gの値を上式 ( 7 ) に代入し、 伝播係数ァの値を計算してか ら、 上式 ( 8 ) を用いてひの値を算出すると、 上式 (10) から避雷 装置 1 あるいは接地電極 101の導体 4あるいは 134を流れる雷サージ 電流の電圧成分の減衰率 D (dB) を求めることができる。 なお、 上 式 (10) では、 電圧成分を対象にしたものであるが、 電流の減衰率 に対しても同様である。 = 8.686 X (1) (10) Therefore, the values of L, C, R and G obtained from the above equations (1) to (3) and (6) are substituted into the above equation (7), and the propagation coefficient After calculating the value of Eq. (8), the voltage value of the lightning surge current flowing through the lightning arrester 1 or the conductor 4 or 134 of the ground electrode 101 can be calculated from the above formula (8). The attenuation factor D (dB) can be obtained. The above equation (10) is for the voltage component, but the same applies to the current decay rate.
ここでの計算は、 導体 4あるいは 134の外径が 10 (mi) 、 鋼管 3 あるいは 133の内径が 1000 (mm) であると仮定する。 従って、 a = l 0, b = 1000を上式 ( 1 ) , ( 2 ) に適用することによって、 避雷 装置 1 あるいは接地電極 1のインダクタンス L及びキャパシタンス Cは、 L = l ( H H/m) 、 C = 12 (pF/m) となる。 また、 表 1 を参照し、 試算に最適であるコンダクタンス Gの値を G = 0.01, 0. 1, 1.0, 10.0 ( S /m) (即ち、 導電率 σ = 0.00733, 0.0733、 0.7 33, 7.33 ( S /m) ) に設定して試算を行う。 図 19は、 これら 4種 類のコンダクタンス Gの各値について、 3種類の周波数 f =104, 1 05 , 106 (Hz) の雷サージ電流が避雷装置 1の導体 4あるいは接地 電極 101の導体 134を流れる際の単位長さ当たりの減衰率 D (dB) を 各々試算した結果を示したものである。 The calculation here assumes that the outer diameter of conductor 4 or 134 is 10 (mi) and the inner diameter of steel pipe 3 or 133 is 1000 (mm). Therefore, by applying a = l 0 and b = 1000 to the above formulas (1) and (2), the inductance L and capacitance C of the lightning arrester 1 or ground electrode 1 can be expressed as L = l (HH / m), C = 12 (pF / m). Also, referring to Table 1, the conductance G value that is optimal for the estimation is G = 0.01, 0.1, 1.0, 10.0 (S / m) (that is, conductivity σ = 0.00733, 0.0733, 0.7 33, 7.33 ( Set to S / m)) for trial calculation. Figure 19 shows the lightning surge currents at three frequencies f = 10 4 , 1 0 5 , 10 6 (Hz) for each of these four types of conductance G. The conductor 4 of the lightning arrester 1 or the ground electrode 101 It shows the result of trial calculation of the attenuation factor D (dB) per unit length when flowing through the conductor 134.
図 19に示されるように、 コンダクタンス G (即ち、 導電率ひ ) の 値が (金属のコンダクタンス程極端に大きくない範囲内で) 大きく なるほど導体 4あるいは 134を流れる雷サージ電流の減衰率 D (dB ) が増大することが分かる。 従って、 本発明のように、 避雷装置 1 あるいは接地電極 101を同軸ケーブルに構成した上で、 充填材 10あ るいは 140が抵抗体 15あるいは 145を有するようにして導電率 σ を高 くすると、 導体 4あるいは 134を流れる雷サ一ジ電流が相対的に減 衰し、 内部導体の外側 (即ち、 充填材及び鋼管) により分流させる 効果があることが分かる。 As shown in Fig. 19, the attenuation factor D (dB) of the lightning surge current flowing through the conductor 4 or 134 as the value of the conductance G (ie, conductivity) increases (within a range that is not extremely large as the conductance of the metal). ) Increases. Therefore, when the lightning arrester 1 or the ground electrode 101 is configured as a coaxial cable as in the present invention, and the conductivity σ is increased so that the filler 10 or 140 has the resistor 15 or 145, Lightning surge current flowing through conductor 4 or 134 is relatively reduced It can be seen that the effect is diminished and diverted by the outside of the inner conductor (ie, filler and steel pipe).
また、 図 19に示すように、 G = 0.01 ( S /m) (即ち、 導電率 σ =0.00733 ( S Zm) ) である場合に、 減衰率 Dは、 周波数 f = 104 (Hz) の雷サージ電流が D = 0.2 (dB) 、 周波数 f = 105 (Hz) の雷 サージ電流が D -0.5 (dB) 、 周波数 f = 106 (Hz) の雷サージ電流 が D = l.5 (dB) であることが分かる。 これは、 内部導体を流れる 雷サージ電流のうちで、 より周波数の高い高周波成分がより減衰し 、 内部導体の外側 (即ち、 充填材及び鋼管) により分流することを 示している。 As shown in Fig. 19, when G = 0.01 (S / m) (ie, conductivity σ = 0.00733 (S Zm)), the attenuation factor D is the lightning frequency f = 10 4 (Hz). Lightning surge current of D = 0.2 (dB), frequency f = 10 5 (Hz) Lightning surge current of D -0.5 (dB), frequency f = 10 6 (Hz) D = l.5 (dB ) This indicates that, among the lightning surge currents flowing through the inner conductor, the higher frequency components with higher frequency are attenuated and shunted by the outside of the inner conductor (ie, filler and steel pipe).
図 20は、 上記 4種類のコンダクタンス Gの値に、 G = 0 ( σ = 0 ) の値を加えた 5種類のコンダクタンス Gの各値について、 3種類 の周波数: f = 104, 105 , 106 (Hz) の雷サージ電流が導体 4あるい は 134を流れる際の避雷装置 1 あるいは接地電極 1の特性インピー ダンス Zoを上式 (4 ) を用いて各々試算した結果を示したものであ る。 これは、 整合器の抵抗に対応したものである。 Figure 20 shows the three types of frequency: f = 10 4 , 10 5 , for each of the five types of conductance G by adding the value of G = 0 (σ = 0) to the above four types of conductance G. The figure shows the results of trial calculations of the characteristic impedance Zo of the lightning arrester 1 or ground electrode 1 when a lightning surge current of 10 6 (Hz) flows through the conductor 4 or 134 using the above equation (4). is there. This corresponds to the resistance of the matcher.
図 20は、 本発明の整合インピーダンスに目安を与えるグラフであ る。 無損失の場合 (G = 0 ( σ = 0 ) ) には、 図 20に示すように、 特性インピーダンス Zoは、 288.7 ( Ω) となる。 このように無損失 である場合に、 特性ィンピーダンスが周波数に依存せずに一定であ ることは周知であり、 このことは、 無損失である場合、 整合抵抗を 288.7 (Ω) とすることが電圧一電流特性が乱れることなく、 終端 で消費されることを意味する。 一方、 有損失である場合には、 図 20 に示されるコンダクタンス G (即ち、 誘電率 σ ) の値によって、 特 性インピーダンスは異なり、 また、 周波数に依存する。 これが整合 インピーダンスである。 図 20に示すように、 避雷装置 1 あるいは接 地電極 101のインピーダンス Zoは、 コンダクタンス G (即ち、 導電 率 σ ) の値が大きくなるほど避雷装置 1 あるいは接地電極 1のイン ピ一ダンス Ζοの値が無損失である場合 (G= 0 ( σ = 0 ) ) の 288. 7 ( Ω ) より低くなつており、 整合インピ一ダンスの目安が得られ ている。 FIG. 20 is a graph giving a guide to the matching impedance of the present invention. In the case of lossless (G = 0 (σ = 0)), the characteristic impedance Zo is 288.7 (Ω) as shown in Fig. 20. It is well known that the characteristic impedance is constant regardless of frequency when it is lossless, and this means that the matching resistance is 288.7 (Ω) when lossless. Means that it is consumed at the end without disturbing the voltage-current characteristics. On the other hand, in the case of loss, the characteristic impedance differs depending on the value of conductance G (ie, dielectric constant σ) shown in Fig. 20, and also depends on the frequency. This is the matching impedance. As shown in FIG. 20, the impedance Zo of the lightning arrester 1 or the ground electrode 101 is the conductance G (that is, the conductive The larger the value of the rate σ), the lower the impedance Ζο of the lightning arrester 1 or the ground electrode 1 is less than 288.7 (Ω) in the case of no loss (G = 0 (σ = 0)) Therefore, a guideline for consistent impedance is obtained.
次に、 本発明の第 4〜第 7の実施の形態に係る接地電極 101を用 いた場合に、 従来公知の接地電極を用いた場合と比較して雷サージ 電圧の値をどれだけ低減することができるか試算を行ってみる。 こ の試算では、 本発明の接地電極は、 図 8に示す接地電極 101の導体 1 34の外径が 10 (mm) 、 鋼管 133の内径が 1000 (mm) の同軸ケーブル であると仮定する。 即ち、 図 18において a =10、 b = 1000になる。 これに対して、 従来公知の接地電極は鋼管を有さずに外径 10 (mm) の導体が剥き出しになっているケ一ブルであると仮定する。 雷サー ジ電流が流れる大気領域を同軸モデルで扱うとして、 その外周半径 を 50 (m) と仮定すると、 図 18において a = 10、 b = 50000になる 以上のように仮定した本発明の接地電極 101と従来公知の接地電 極とについて、 周波数が 1 (MHz) 、 大きさが 20 (kA) の電流がケ —ブルの軸方向に沿って長さ 5 (m) の距離を流れた場合の、 各々 の雷サージ電圧を具体的に算出する。 既述したように、 本発明の接 地電極 1のコンダクタンス Lは、 上式 ( 1 ) から L = l ( pi H/m ) と求められる。 同様にして、 上式 ( 1 ) から従来公知の接地電極 のコンダクタンス Lを求めると L = 1.7 ( // H/m) と約 2倍の値 になる。  Next, when the ground electrode 101 according to the fourth to seventh embodiments of the present invention is used, how much the value of the lightning surge voltage is reduced as compared with the case where the conventionally known ground electrode is used. Try to calculate if you can. In this trial calculation, it is assumed that the ground electrode of the present invention is a coaxial cable in which the outer diameter of the conductor 134 of the ground electrode 101 shown in FIG. 8 is 10 (mm) and the inner diameter of the steel pipe 133 is 1000 (mm). In other words, a = 10 and b = 1000 in Fig.18. On the other hand, it is assumed that the conventionally known ground electrode is a cable in which a conductor having an outer diameter of 10 (mm) is exposed without having a steel pipe. Assuming that the atmospheric region where the lightning surge current flows is handled by the coaxial model, assuming that the outer radius is 50 (m), the grounding electrode of the present invention assumed as above in Fig. 18 is a = 10 and b = 50000. 101 and a known ground electrode, when a current with a frequency of 1 (MHz) and a magnitude of 20 (kA) flows a distance of 5 (m) along the cable axis. Calculate each lightning surge voltage specifically. As described above, the conductance L of the ground electrode 1 of the present invention can be obtained as L = l (pi H / m) from the above equation (1). Similarly, when the conductance L of the conventionally known ground electrode is obtained from the above equation (1), L = 1.7 (// H / m), which is about twice as large.
まず、 全ての電流が導体を流れると想定すると、 雷サージ電圧 V は、 ケーブル間に発生する電圧として下記式 (11) から算出できる  First, assuming that all current flows through the conductor, the lightning surge voltage V can be calculated from the following equation (11) as the voltage generated between the cables.
V = j X ω X L X I (11) 即ち、 本発明の接地電極 1の場合には、 雷サージ電圧 Vは v = 2 π X 1 X 106 X 1 X 10" 6 X 20 X 103 = 600 (kV) になる。 これに対して 、 従来公知の接地電極の場合には、 コンダクタンス Lの値が約 1.7 倍であるので、 雷サージ電圧 Vも 1.7倍の値、 即ち、 v = 1020 (kv ) と非常に高い値になっている。 V = j X ω XLXI (11) That is, when the ground electrode 1 of the present invention, the lightning surge voltage V becomes v = 2 π X 1 X 10 6 X 1 X 10 "6 X 20 X 10 3 = 600 (kV). In contrast In the case of a conventionally known ground electrode, the conductance L value is about 1.7 times, so the lightning surge voltage V is also 1.7 times, that is, v = 1020 (kv), which is a very high value. .
さらに、 本発明の接地電極 1では、 G = 1.0 ( S /m) とした場 合に、 図 19に示すように、 雷サージ電圧が分流効果によって単位長 さ当たりで減衰率 D = 15 (dB) 程度減衰するので、 雷サージ電流が 軸方向に沿って 5 (m) 流れる際には、 その減衰率が D = 5 X 15 = 75 (dB) になる。 75 (dB) は 1000分の 1以下に相当するので、 本発 明の接地電極 1 を用いた場合の雷サージ電圧 Vは、 周波数が 1 (MH z) であると仮定すると、 600 (kV) の 1000分の 1以下、 即ち、 v = 1 (kV) と非常に小さい値に抑制されていることが理論的に算定さ れる。  Furthermore, in the ground electrode 1 of the present invention, when G = 1.0 (S / m), as shown in Fig. 19, the lightning surge voltage is attenuated per unit length by the shunt effect D = 15 (dB ) When the lightning surge current flows 5 (m) along the axial direction, the attenuation rate becomes D = 5 X 15 = 75 (dB). Since 75 (dB) is equivalent to 1/1000 or less, the lightning surge voltage V when the ground electrode 1 of the present invention is used is 600 (kV) assuming that the frequency is 1 (MHz). It is theoretically calculated that it is suppressed to 1/1000 or less, that is, v = 1 (kV).
なお、 上述のようにして説明した雷サージ電圧は、 接地電極 1の 出口端に発生する雷サージ電圧に相当する。 従って、 この値が低い ことから雷サージ電圧の周辺への影響を非常に小さくすることがで き、 且つ、 接触電圧及び歩幅電圧を低減させ、 感電事故災害の効果 的に減少させることが可能になる。 産業上の利用可能性  Note that the lightning surge voltage described above corresponds to the lightning surge voltage generated at the outlet end of the ground electrode 1. Therefore, since this value is low, the influence of lightning surge voltage on the surroundings can be made very small, and the contact voltage and stride voltage can be reduced to effectively reduce the electric shock accident disaster. Become. Industrial applicability
本発明は、 落雷による雷サージ電流を大地に流し、 雷害を防止す る避雷装置、 接地電極に特に有用である。 例えば、 電力系統分野に おける配線系統の配電柱等の避雷装置、 接地電極、 電気鉄道分野に おける架線支持柱等の避雷装置、 接地電極、 道路分野における道路 照明柱及び交通信号柱等の避雷装置、 接地電極、 情報通信分野にお ける移動体通信基地極のアンテナ用の接地電極や監視カメラ等の避 雷装置、 接地電極、 エンジニアリング分野における各種製造工場や 備蓄設備等の避雷装置、 接地電極に非常に有用である。 INDUSTRIAL APPLICABILITY The present invention is particularly useful for a lightning arrester and a grounding electrode that prevent lightning damage by flowing a lightning surge current caused by a lightning strike to the ground. For example, lightning arresters such as power distribution poles in the power system field, ground electrodes, lightning arresters such as overhead support poles in the electric railway field, ground electrodes, lightning arresters such as road lighting pillars and traffic signal pillars in the road field , Ground electrodes, ground electrodes for antennas of mobile communication base poles in the information communication field, surveillance cameras, etc. It is very useful for lightning devices, grounding electrodes, lightning protection devices such as various manufacturing factories and storage facilities in the engineering field, and grounding electrodes.

Claims

請 求 の 範 囲 The scope of the claims
1 . 落雷による雷サージ電流を接地側に流す避雷装置であって、 鋼管と、 · 1. A lightning arrester that sends a lightning surge current from lightning to the ground side,
前記鋼管内に同軸配置された導体と、  A conductor arranged coaxially in the steel pipe;
前記鋼管と前記導体の間に充填された、 導電性を有する充填材と 、 を有し、  A conductive filler filled between the steel pipe and the conductor; and
前記落雷による雷サージ電流が分流され、 その低周波成分が前記 導体を流れ、 且つその高周波成分が前記鋼管及び前記充填材を流れ ることを特徴とする、 避雷装置。  A lightning arrester, wherein a lightning surge current caused by a lightning strike is shunted, a low frequency component thereof flows through the conductor, and a high frequency component thereof flows through the steel pipe and the filler.
2 . 前記充填材は、 抵抗体、 誘電体及び磁性体より成る群から選 択した 1以上の材料を含有することを特徴とする、 請求項 1 に記載 の避雷装置。  2. The lightning arrester according to claim 1, wherein the filler contains one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
3 . 前記鋼管と前記導体が、 同軸系の特性インピーダンスにより 終端された後に接地されていることを特徴とする、 請求項 1又は 2 に記載の避雷装置。  3. The lightning arrester according to claim 1 or 2, wherein the steel pipe and the conductor are grounded after being terminated by a characteristic impedance of a coaxial system.
4 . 前記導体、 前記鋼管及び前記充填材が既設の設備に付設され ていることを特徴とする、 請求項 1〜 3のいずれかに記載の避雷装 置。  4. The lightning arrester according to any one of claims 1 to 3, wherein the conductor, the steel pipe, and the filler are attached to an existing facility.
5 . 落雷による雷サージ電流を接地側に流す避雷機能を有する構 造柱であって、  5. A structural pillar with a lightning protection function that sends lightning surge current due to lightning to the ground side,
避雷機能を有する支持部と、  A support portion having a lightning protection function;
前記支持部によって支持された、 前記避雷機能とは別の機能を有 する被支持部と、 を有し、  A supported part supported by the support part and having a function different from the lightning protection function;
前記避雷機能を有する支持部は、 鋼管、 前記鋼管内に同軸配置さ れた導体、 及び前記鋼管と前記導体の間に充填された、 導電性を有 する充填材を備え、 前記落雷による雷サージ電流が分流され、 その 低周波成分が前記導体を流れ、 且つその高周波成分が前記鋼管及び 前記充填材を流れることを特徴とする、 避雷機能を有する構造柱。 The support portion having the lightning protection function includes a steel pipe, a conductor coaxially arranged in the steel pipe, and a conductive filler filled between the steel pipe and the conductor, and a lightning surge caused by the lightning strike. The current is shunted, A structural column having a lightning protection function, wherein a low frequency component flows through the conductor, and a high frequency component flows through the steel pipe and the filler.
6 . 前記充填材は、 抵抗体、 誘電体及び磁性体より成る群から選 択した 1以上の材料を含有することを特徴とする、 請求項 5に記載 の避雷機能を有する構造柱。  6. The structural pillar having a lightning protection function according to claim 5, wherein the filler contains one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
7 . 前記鋼管と前記導体が、 同軸系の特性インピーダンスにより 終端された後に接地されていることを特徴とする、 請求項 5又は 6 に記載の避雷機能を有する構造柱。  7. The structural pillar having a lightning protection function according to claim 5, wherein the steel pipe and the conductor are grounded after being terminated by a characteristic impedance of a coaxial system.
8 . 落雷による雷サージ電流を接地側に流す際に雷サージ電圧を 低減する方法であって、  8. A method of reducing lightning surge voltage when lightning surge current caused by lightning strikes to the ground side,
前記雷サージ電流の高周波成分に対するインピーダンスが第 1 の 電流路より も低い第 2の電流路を設け、  Providing a second current path whose impedance to the high frequency component of the lightning surge current is lower than that of the first current path;
前記雷サージ電流の低周波成分が第 1の電流路に流れ、 且つ高周 波成分が第 2の電流路に流れるように、 雷サージ電流を分流させる ことにより前記第 1の電流路の雷サージ電圧を低減することを特徴 とする、 雷サージ電圧の低減方法。  By dividing the lightning surge current so that the low-frequency component of the lightning surge current flows in the first current path and the high-frequency component flows in the second current path, the lightning surge in the first current path A method of reducing lightning surge voltage, characterized by reducing voltage.
9 . 前記第 1 の電流路は、 導体で構成され、  9. The first current path comprises a conductor,
前記第 2の電流路は、 前記導体の外周を被覆するように同軸配置 した鋼管と、 前記鋼管及び前記導体の間に充填された、 導電性を有 する充填材とで構成されていることを特徴とする、 請求項 8 に記載 の雷サージ電圧の低減方法。  The second current path is composed of a steel pipe coaxially arranged so as to cover the outer periphery of the conductor, and a conductive filler filled between the steel pipe and the conductor. The lightning surge voltage reduction method according to claim 8, characterized in that it is characterized in that:
10. 前記充填材は、 抵抗体、 誘電体及び磁性体より成る群から選 択した 1以上の材料を含有することを特徴とする、 請求項 8又は 9 に記載の雷サージ電圧の低減方法。  10. The lightning surge voltage reduction method according to claim 8, wherein the filler contains one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
1 1. 落雷による雷サージ電流を大地に流す接地電極であって、 少なく とも一部分が大地に埋設された管状導体と、  1 1. A grounding electrode that carries lightning surge current from lightning to the ground, and at least a part of the tubular conductor buried in the ground,
前記管状導体内に同軸配置された内部導体と、 前記管状導体と前記内部導体の間に充填された、 高周波成分に対 する導電性を有する充填材と、 を有し、 An inner conductor coaxially disposed within the tubular conductor; A filler filled between the tubular conductor and the inner conductor and having conductivity with respect to a high-frequency component;
前記落雷による雷サージ電流が分流され、 その低周波成分が主と して前記内部導体を流れ、 且つその高周波成分が主として前記管状 導体及び前記充填材を流れることを特徴とする、 接地電極。  A ground electrode, wherein a lightning surge current caused by a lightning strike is shunted, a low-frequency component mainly flows through the inner conductor, and a high-frequency component mainly flows through the tubular conductor and the filler.
12. 前記充填材は、 抵抗体、 誘電体及び磁性体より成る群から選 択した 1以上の材料を含有することを特徴とする、 請求項 11に記載 の接地電極。  12. The ground electrode according to claim 11, wherein the filler contains one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
13. 前記管状導体と前記内部導体が、 同軸系の特性インピーダン スにより終端された後に接地されていることを特徴とする、 請求項 11又は 12に記載の接地電極。  13. The ground electrode according to claim 11 or 12, wherein the tubular conductor and the inner conductor are grounded after being terminated by a characteristic impedance of a coaxial system.
14. 落雷による雷サージ電流を接地側に流す避雷装置に接続され ていることを特徴とする、 請求項 11〜 13のいずれかに記載の接地電 極。  14. The grounding electrode according to any one of claims 11 to 13, wherein the grounding electrode is connected to a lightning arrester that sends a lightning surge current caused by a lightning strike to the ground side.
15. 前記避雷装置と一体型の同軸形状に形成されていることを特 徴とする、 請求項 14に記載の接地電極。  15. The ground electrode according to claim 14, wherein the ground electrode is formed in a coaxial shape integrated with the lightning arrester.
16. 前記管状導体は、 軸方向を鉛直方向にして埋設されているこ とを特徴とする、 請求項 11〜 15のいずれかに記載の接地電極。  16. The ground electrode according to any one of claims 11 to 15, wherein the tubular conductor is embedded with the axial direction being a vertical direction.
17. 前記管状導体は、 軸方向を水平方向にして埋設されているこ とを特徴とする、 請求項 11〜 16のいずれかに記載の接地電極。  17. The ground electrode according to any one of claims 11 to 16, wherein the tubular conductor is embedded with the axial direction being a horizontal direction.
18. 前記管状導体と前記内部導体は、 等電位ボンディ ング導体に 接続されていることを特徴とする、 請求項 11〜 17のいずれかに記載 の接地電極。  18. The ground electrode according to any one of claims 11 to 17, wherein the tubular conductor and the inner conductor are connected to an equipotential bonding conductor.
19. 請求項 11〜 18のいずれかに記載の接地電極を複数有すること を特徴とする、 接地電極群。  19. A ground electrode group comprising a plurality of ground electrodes according to any one of claims 11 to 18.
20. 落雷による雷サージ電流を大地に流す際に雷サージ電圧を低 減する方法であって、 第 1 の電流路をその一端が大地の中に配置されるように設けると 共に、 前記雷サージ電流の高周波成分に対するインピーダンスが前 記第 1 の電流路よりも低い第 2の電流路を設け、 20. A method of reducing lightning surge voltage when a lightning surge current caused by lightning strikes the ground. A first current path is provided so that one end of the first current path is disposed in the ground, and a second current path having a lower impedance than the first current path is provided for the high-frequency component of the lightning surge current.
前記雷サージ電流の低周波成分が主として第 1の電流路に流れ、 且つ高周波成分が主として第 2の電流路に流れるように、 雷サージ 電流を周波成分に応じて分流させることにより前記第 1の電流路の 雷サージ電圧を低減することを特徴とする、 雷サージ電圧の低減方 法。  The lightning surge current is shunted according to the frequency component so that the low frequency component of the lightning surge current mainly flows in the first current path and the high frequency component mainly flows in the second current path. A method of reducing lightning surge voltage, characterized by reducing lightning surge voltage in the current path.
2 1 . 前記第 1の電流路は、 内部導体で構成され、  2 1. The first current path comprises an inner conductor,
前記第 2の電流路は、 前記内部導体の外周を被覆するように同軸 配置した管状導体と、 前記管状導体及び前記内部導体の間に充填さ れた、 導電性を有する充填材とで構成されていることを特徴とする 、 請求項 2 0に記載の雷サージ電圧の低減方法。  The second current path is composed of a tubular conductor arranged coaxially so as to cover the outer periphery of the inner conductor, and a conductive filler filled between the tubular conductor and the inner conductor. The method for reducing a lightning surge voltage according to claim 20, wherein the lightning surge voltage is reduced.
2 2 . 前記充填材は、 抵抗体、 誘電体及び磁性体より成る群から選 択した 1以上の材料を含有することを特徴とする、 請求項 2 1に記載 の雷サージ電圧の低減方法。  2 2. The lightning surge voltage reduction method according to claim 21, wherein the filler contains one or more materials selected from the group consisting of a resistor, a dielectric, and a magnetic material.
23 . 前記同軸配置した管状導体の外周に外皮を設けることを特徴 とする、 請求項 2 1又は 22に記載の雷サージ電圧の低減方法。  23. The method of reducing lightning surge voltage according to claim 21 or 22, wherein an outer skin is provided on an outer periphery of the coaxially arranged tubular conductor.
PCT/JP2007/067245 2006-08-30 2007-08-29 Lightning arrestor, grounding electrode, and thunder surge voltage reducing method WO2008026766A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800320188A CN101513133B (en) 2006-08-30 2007-08-29 Lightning arrester, grounding electrode, and reduction method of lightning surge voltage
HK10100520.7A HK1133524A1 (en) 2006-08-30 2010-01-18 Lightning arrestor, ground electrode, and method for reducing lightning surge voltage

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006234625A JP4709715B2 (en) 2006-08-30 2006-08-30 Lightning arrester, structural pillar having lightning protection function, and method of reducing lightning surge voltage
JP2006-234625 2006-08-30
JP2006354186A JP2008166104A (en) 2006-12-28 2006-12-28 Grounding electrode, grounding electrode group, and reduction method of lightning surge voltage
JP2006-354186 2006-12-28

Publications (1)

Publication Number Publication Date
WO2008026766A1 true WO2008026766A1 (en) 2008-03-06

Family

ID=39136040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067245 WO2008026766A1 (en) 2006-08-30 2007-08-29 Lightning arrestor, grounding electrode, and thunder surge voltage reducing method

Country Status (3)

Country Link
HK (1) HK1133524A1 (en)
TW (1) TWI369696B (en)
WO (1) WO2008026766A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013041074A1 (en) * 2011-09-19 2013-03-28 Obo Bettermann Gmbh & Co. Kg Lightning conductor device
WO2014063870A1 (en) * 2012-10-26 2014-05-01 Dehn + Söhne Gmbh + Co.Kg Lightning protection device having an insulated diverter
JP2017013547A (en) * 2015-06-29 2017-01-19 東日本旅客鉄道株式会社 Ground fault protection device and ground fault protection system
JP2017062899A (en) * 2015-09-24 2017-03-30 強 宮沢 Lighting rod device
US11251595B2 (en) 2018-07-03 2022-02-15 Erico International Corporation Lightning protection system and method
EP4010946A4 (en) * 2019-08-06 2023-11-01 GLXT Holdings, LLC Systems and methods for electrical earthing systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992365B (en) * 2017-05-08 2023-04-28 河南中多科技发展有限公司 Expansion type grounding device and grounding method thereof
TWI633728B (en) * 2017-10-11 2018-08-21 呂承彰 Lightning protection device and transmission module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956399A (en) * 1982-09-06 1984-03-31 ソシエテ・フランセーズ・エリタ Arrester for ionizing by corona action
JPS6252900A (en) * 1985-08-30 1987-03-07 関西電力株式会社 Low impedance ground lightning conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956399A (en) * 1982-09-06 1984-03-31 ソシエテ・フランセーズ・エリタ Arrester for ionizing by corona action
JPS6252900A (en) * 1985-08-30 1987-03-07 関西電力株式会社 Low impedance ground lightning conductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013041074A1 (en) * 2011-09-19 2013-03-28 Obo Bettermann Gmbh & Co. Kg Lightning conductor device
WO2014063870A1 (en) * 2012-10-26 2014-05-01 Dehn + Söhne Gmbh + Co.Kg Lightning protection device having an insulated diverter
JP2017013547A (en) * 2015-06-29 2017-01-19 東日本旅客鉄道株式会社 Ground fault protection device and ground fault protection system
JP2017062899A (en) * 2015-09-24 2017-03-30 強 宮沢 Lighting rod device
US11251595B2 (en) 2018-07-03 2022-02-15 Erico International Corporation Lightning protection system and method
EP4010946A4 (en) * 2019-08-06 2023-11-01 GLXT Holdings, LLC Systems and methods for electrical earthing systems

Also Published As

Publication number Publication date
TW200820272A (en) 2008-05-01
HK1133524A1 (en) 2010-03-26
TWI369696B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4709715B2 (en) Lightning arrester, structural pillar having lightning protection function, and method of reducing lightning surge voltage
WO2008026766A1 (en) Lightning arrestor, grounding electrode, and thunder surge voltage reducing method
JP2008166104A (en) Grounding electrode, grounding electrode group, and reduction method of lightning surge voltage
EP2870609B1 (en) Electric cables having self-protective properties and immunity to magnetic interferences
JP6212465B2 (en) Limiting device for interphase current and leakage current of submerged electrical equipment
US11834309B2 (en) Inductor to control transient currents during energized bond on
KR100680644B1 (en) Lighteng arrester system employing the triangle method of lighting protection
OA11545A (en) Lightning retardant cable.
JP4362812B2 (en) Grounding body
JP2008535448A (en) Lightning strike current emission device
JP5419030B2 (en) Grounding system connection status confirmation method
US11165236B2 (en) Suppressing circulating currents in conductive structures in buildings
JP6450293B2 (en) Electrical equipment grounding structure
JP2008262885A (en) Multilayer shielded wire for lightning arresting
Patel Effect of lightning on building and its protection measures
JP2014007136A (en) Shield ground wire
JPH10112397A (en) Lightening arresting device
JPH0831668A (en) Method for withstanding lightning using transformer
JP2004278118A (en) Lightning trouble arrester in building
AU2018366282B2 (en) Inductor to control transient currents during energized bond on
Durham et al. Lightning, grounding, and protection for control and communications systems: Re-evaluated
JP7078930B2 (en) Insulated lightning protection system
CN206272067U (en) Semi-shielded formula lightning rod screening arrangement
JP2021192567A (en) Shunt current suppression device
JP2003079044A (en) Lightning damage prevention method and device for installation to be grounded

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032018.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07806700

Country of ref document: EP

Kind code of ref document: A1