WO2008026677A1 - Lens holding device - Google Patents

Lens holding device Download PDF

Info

Publication number
WO2008026677A1
WO2008026677A1 PCT/JP2007/066860 JP2007066860W WO2008026677A1 WO 2008026677 A1 WO2008026677 A1 WO 2008026677A1 JP 2007066860 W JP2007066860 W JP 2007066860W WO 2008026677 A1 WO2008026677 A1 WO 2008026677A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
holding device
lens barrel
optical axis
barrel
Prior art date
Application number
PCT/JP2007/066860
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Kurimoto
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006236103A external-priority patent/JP4027399B2/en
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008026677A1 publication Critical patent/WO2008026677A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/026Mountings, adjusting means, or light-tight connections, for optical elements for lenses using retaining rings or springs

Definitions

  • the present invention relates to a lens holding device for holding a lens in a lens barrel.
  • a lens barrel structure is used as an efficient structure for fixing a lens with high accuracy.
  • a lens barrel having an inner diameter that is approximately equal to the diameter of the lens or smaller than the diameter of the lens is used as a method of fixing a lens having a circular shape.
  • FIG. 7 a structure shown in FIG. 7 is used for fixing a lens used in an optical device or the like that requires extremely high-precision assembly (see Japanese Patent Laid-Open No. 2002-250853).
  • an inclined portion 103 inclined in the direction of the optical axis K is provided on the inner wall portion of the lens barrel 102, and the lens 101 is pushed into the optical axis direction from the opening 107 larger than the lens outer diameter (press-fit). .
  • the lens 101 is held in the lens barrel 102 by engaging the inclined surface of the outer peripheral portion 105 of the lens 101 with the inclined portion 103 of the inner wall portion of the lens barrel 102 at a position where the lens 101 is fixed. .
  • an opening 107 that is an entrance into which the lens 101 is pushed is wider than an opening 108 on the opposite side, and the lens fixing portion 104 between the openings 107 and 108 is a lens outer peripheral portion 105.
  • Engage with As a result, the lens 101 does not move relative to the lens barrel 102, and the lens 101 can be easily fixed to the lens barrel 102.
  • the lens 101 is made of glass and the lens barrel 102 is made of a soft material such as resin
  • the lens 101 is assembled from a wide diameter portion of the inner wall portion 102A to a narrow location.
  • the inner wall 102A of the lens barrel 102 will be scraped at the point where the lens 101 contacts the inner wall 102A of the lens barrel 102.
  • the inner wall 102A of the lens barrel 102 is shaved, the tilt and eccentricity of the lens 101 with respect to the lens barrel 102 are unexpectedly affected by the accumulation of shore IJ grime and the like generated from the lens barrel 102.
  • the lens cannot be fixed at the position.
  • the shavings may adhere to the lens surface and cause a decrease in optical performance.
  • an object of the present invention is to provide a lens holding device capable of improving the positional accuracy for fixing the lens to the lens barrel.
  • a lens holding device is fixed to a lens barrel having an opening at least in one of the optical axis directions, and press-fitted into the lens barrel from the one opening.
  • the lens barrel extends from the one opening portion toward the other side in the optical axis direction, and has a tapered inner peripheral surface extending from the tapered inner peripheral surface to the other in the optical axis direction. And a holding surface that contacts the outer peripheral surface of the lens and holds the lens, and further extends inward in the radial direction intersecting the holding surface and in the optical axis direction of the lens. And a positioning portion including a contact surface for positioning the lens in the optical axis direction by coming into contact with the other surface from the outside in the radial direction.
  • the lens is press-fitted into the lens barrel in a direction in which the inner diameter of the tapered inner peripheral surface increases from one opening, and the positioning portion abuts at a predetermined position.
  • the lens stops at the surface and the holding surface comes into contact with the outer peripheral surface of the lens to hold the lens. Therefore, the holding state of holding the lens at a predetermined position in the lens barrel can be easily and surely achieved, and the positioning of the lens can be made highly accurate.
  • the tapered inner peripheral surface of the lens barrel is expanded in diameter toward the other in the optical axis direction.
  • a lens holding device includes a plurality of lenses press-fitted and fixed in the lens barrel, and is further disposed between two lenses adjacent in the optical axis direction. A spacer is provided to define the distance between the two lenses.
  • the spacer defines the distance between two lenses adjacent in the optical axis direction, a lens in which a plurality of lenses are accurately positioned in the lens barrel. Can be realized.
  • the lens is press-fitted into the tapered inner peripheral surface from one opening in the optical axis direction of the lens barrel, and is elastically deformed by the holding surface. It is held in the lens barrel.
  • the lens holding device of this embodiment even when the lens is held on the holding surface of the lens barrel, the lens is fixed by the elastic force of the lens barrel, so that the lens is fixed with reference to the inner diameter of the lens barrel. Will be. Therefore, in the range where the elastic force of the lens barrel is not lost, it is possible to hold the lens with less eccentricity regardless of the deviation of the outer diameter of the lens.
  • the spacer is integrated with the lens barrel, assembly is easy.
  • the distance between lenses can be changed by replacing the spacer.
  • the positioning portion is integrated with the lens barrel, there is no fear that the positioning portion is displaced from or detached from the lens barrel.
  • the lens holding device since the positioning unit is separate from the lens barrel and attached to the lens barrel, the lens is removed by removing the positioning unit from the lens barrel.
  • the lens is mirrored by pushing it further in the optical axis direction from the holding surface. It can be easily taken out from the other opening of the tube.
  • the inner peripheral surface of the one opening in the optical axis direction has a chamfered portion, so that it is easy to press-fit the lens.
  • the lens is made of glass or resin, when made of glass, the refractive index is high, the thickness can be reduced, and the secular change is small.
  • the lens becomes a lens and is made of a resin lens, it is light and hard to break and easy to process.
  • the lens barrel has an inner peripheral surface showing a substantially circular shape in a cross section by a surface orthogonal to the optical axis, and the lens is orthogonal to the optical axis.
  • the cross section by the surface has a cross section that is substantially circular.
  • a substantially circular lens barrel and a substantially circular lens are provided, and a lens holding device having a substantially cylindrical shape as a whole is obtained.
  • the lens barrel has an inner peripheral surface showing a substantially elliptical shape in a cross section by a surface orthogonal to the optical axis, and the lens is orthogonal to the optical axis.
  • the cross section by the surface has a cross section that is substantially elliptical.
  • a substantially elliptical lens barrel and a substantially elliptical lens are provided, and the lens holding device has a substantially elliptical cylindrical shape as a whole.
  • the lens barrel has an inner peripheral surface showing a substantially square shape in a cross section by a surface orthogonal to the optical axis, and the lens is orthogonal to the optical axis.
  • the cross section by the surface has a cross section having a substantially square shape.
  • the substantially square lens barrel and the substantially quadrangular lens are provided, and the lens holding device has a substantially quadrangular prism shape as a whole.
  • the outer diameter of the lens is Dl (mm)
  • the inner diameter of one opening in the optical axis direction of the lens barrel for press-fitting the lens is D2 (mm) If the inner diameter of the holding surface of the lens barrel is D3 (mm) while holding the lens! /, N! /, 0.990D1 ⁇ D2 0.995D3 (1)
  • the inner diameter of one opening of the lens barrel exceeds 99% of the outer diameter of the lens. Therefore, when the lens is press-fitted into one opening of the lens barrel, the lens can be press-fitted only by elastically deforming the opening by a dimension smaller than 1% of the outer diameter of the lens. Also, since the inner diameter of one opening of the lens barrel is less than 99.5% of the inner diameter of the lens barrel holding surface when the lens is not held, the tapered inner peripheral surface of the lens barrel holds the lens. In the absence, the shape is tapered from the holding surface toward the opening.
  • the holding surface without holding the lens exceeds 99.5% of the outer diameter of the lens and less than 100% of the outer diameter of the lens, the holding surface does not hold the lens.
  • the outer peripheral surface of the lens is held from the radially outer side by elastic deformation.
  • the holding surface of the lens barrel has at least one concave portion that is recessed outward in the radial direction and that extends by a predetermined dimension in the optical axis direction and the circumferential direction.
  • the presence of the concave portion makes it easier to absorb the difference in shape between the holding surface and the outer peripheral surface of the lens.
  • the lens holding device of one embodiment since the lens has a chamfered edge, it is easy to press-fit into the lens barrel from the opening.
  • the lens holding device is disposed between at least two lenses press-fitted into the lens barrel and the two lenses adjacent in the optical axis direction. And two lens surfaces facing each other and three or more spheres contacting the inner peripheral surface of the lens barrel, the spheres including a magnetic material.
  • the three or more spheres serve as a spacer that defines the distance between two lenses adjacent in the optical axis direction. Can be positioned accurately. Further, by disposing a magnet that exerts a magnetic force on the sphere outside the barrel, it is possible to restrict the movement of the sphere in the circumferential direction and the radial direction. In other words, the magnetic force of the magnet can position the sphere at a predetermined position and prevent the spheres from moving. For example, during assembly, the interval between the lenses can be maintained with high accuracy. This makes it possible to maintain the lens and suppress the lens collapse.
  • At least two lenses press-fitted into the lens barrel, the contact surface of the positioning unit, and the positioning unit are adjacent to each other in the optical axis direction.
  • the lens has a contact surface, the lens surface of the lens facing the contact surface, and three or more spheres that contact the inner peripheral surface of the lens barrel.
  • the sphere includes a magnetic material.
  • the three or more spheres are arranged between the positioning portion and the lens, and have a lens surface shape (curved surface shape, planar shape, etc.) or a positioning portion shape of the lens. Regardless, it contacts the lens surface, the inner peripheral surface of the lens barrel, and the contact surface of the positioning portion. Therefore, it is possible to maintain a state in which the distance between the lens and the positioning portion is maintained with high accuracy, and to suppress lens collapse.
  • a lens surface shape curved surface shape, planar shape, etc.
  • a positioning portion shape of the lens it contacts the lens surface, the inner peripheral surface of the lens barrel, and the contact surface of the positioning portion. Therefore, it is possible to maintain a state in which the distance between the lens and the positioning portion is maintained with high accuracy, and to suppress lens collapse.
  • the lens is press-fitted into the lens barrel in a direction in which the inner diameter of the tapered inner peripheral surface increases from one opening, and the positioning portion abuts at a predetermined position.
  • the lens stops at the surface and the holding surface comes into contact with the outer peripheral surface of the lens to hold the lens. Therefore, it is possible to easily and surely achieve a holding state in which the lens is held at a predetermined position in the lens barrel, and to highly accurately position the lens.
  • the tapered inner peripheral surface of the lens barrel expands toward the other in the optical axis direction. This can reduce the risk of the inner peripheral surface of the lens barrel being shaved. Therefore, stable lens press-fitting and lens holding with respect to the lens barrel can be realized. At the same time, it is possible to suppress the possibility of lens tilting or shaving due to the influence of shading and the like, and the deterioration of optical characteristics.
  • FIG. 1 is a cross-sectional view showing a first embodiment of the lens holding device of the present invention.
  • FIG. 2 is a cross-sectional view showing a modification of the first embodiment.
  • FIG. 3 is a cross-sectional view showing another modification of the first embodiment.
  • FIG. 4 is a cross-sectional view showing a second embodiment of the lens holding device of the present invention.
  • FIG. 5 is a cross-sectional view showing a third embodiment of the lens holding device of the present invention.
  • FIG. 6 is a cross-sectional view showing a fourth embodiment of the lens holding device of the present invention.
  • FIG. 7 is a cross-sectional view of a conventional lens holding device.
  • FIG. 8 is a cross-sectional view showing a fifth embodiment of the lens holding device of the invention.
  • FIG. 1 shows a longitudinal section of a lens holding device as a first embodiment of the present invention.
  • the longitudinal section is a section by a plane including the optical wheel.
  • this lens holding device one lens 11 is held in a lens barrel 12.
  • the lens 11 is a biconvex lens having one convex lens surface 11B and the other convex lens surface 11C in the optical axis direction.
  • the lens barrel 12 is hollow and has one opening 14 in the optical axis direction and the other opening 15 in the optical axis direction.
  • the opening 15 is narrower than the opening 14.
  • the lens barrel 12 extends from the opening 14 to the other side in the optical axis direction, and from the tapered inner peripheral surface 16 to the other side in the optical axis direction.
  • a holding surface 17 that holds the lens 11 in contact with the outer peripheral surface 11 A of the lens 11 from the outside in the radial direction.
  • the lens barrel 12 has a positioning portion 18 that forms the other opening 15.
  • the positioning portion 18 has an abutting surface 18A that forms the other end portion of the lens barrel 12 in the optical axis direction and extends inward in the radial direction substantially orthogonal to the holding surface 17.
  • the contact surface 18A contacts the other convex lens surface 11C in the optical axis direction of the lens 11 to position the lens 11 in the optical axis direction.
  • the inner peripheral surface of the lens barrel 12 has a substantially cylindrical shape.
  • the outer peripheral surface 11A of the lens 11 is also substantially cylindrical.
  • the inner diameter of the opening 14 is smaller than the outer diameter of the lens 11 by a predetermined dimension.
  • the holding surface 17 that forms the inner wall of the lens barrel 12 holds the outer peripheral surface 11 A of the lens 11 by pressing the outer peripheral surface 11 A of the lens 11 radially inward with an elastic restoring force radially inward.
  • an adhesive 25 is applied to a portion where the peripheral edge of the convex lens surface 11B of the lens 11 and the inner peripheral surface 16 are in contact with each other, and the holding state of the lens 11 on the lens barrel 12 is further strengthened. You may do it. Further, the holding state of the lens 11 on the lens barrel 12 may be further strengthened by force, crimping or the like.
  • the lens 11 is pressed into the tapered inner peripheral surface 16 from the opening 14 of the lens barrel 12.
  • the lens 11 may be a resin lens or a glass lens.
  • the outer diameter Dl (mm) of the lens 11 is larger than the inner diameter D2 (mm) of the opening 14 of the lens barrel 12 by a predetermined dimension, but the difference between the inner diameter of the opening 14 and the outer diameter of the lens 11 (D1 —D2) and the material of the lens barrel 12 can be made suitable to eliminate the possibility of the lens barrel 12 being scraped when the lens 11 is press-fitted. That is, the lens 11 without plastic deformation of the lens barrel 12 can be inserted into the lens barrel 12, and the lens barrel 12 is limited to elastic deformation.
  • An example of the material of the lens barrel 12 is resin, but it may be made of metal.
  • the lens outer diameter D1 is 4.0 (mm)
  • the inner diameter D2 of the opening 14 is 3.6-3.
  • the lens 11 can be press-fitted without cutting the lens barrel 12. This is due to the selection of an appropriate lens material and lens barrel material, and the setting of the difference between the lens outer diameter D1 and the lens barrel inner diameter D2.
  • the lens 11 is inserted into the tapered inner peripheral surface 16 of the lens barrel 12 whose inner diameter is increased from the opening 14 having the inner diameter D2 in the optical axis direction until the lens 11 contacts the contact surface 18A of the positioning portion 18. It is done.
  • the inner diameter of the taper inner peripheral surface 16 increases toward the other side in the optical axis direction in which the lens 11 is inserted, the case where the lens is pushed in the direction in which the inner diameter is narrowed as in a conventional lens barrel and
  • the inner diameter D3 (mm) of the holding surface 17 adjacent to the contact surface 18A of the positioning portion 18 of the lens barrel 12 is 3.8 to 4.0 (mm).
  • the lens 11 is in a state in which the inner wall of the lens barrel 12 is only elastically deformed and the lens can be held by elastic force.
  • the outer diameter of the lens 11 is Dl (mm)
  • the inner diameter of one opening 14 in the direction of the optical wheel of the lens barrel 12 into which the lens 11 is press-fitted is D2 ( mm)
  • D3 (mm) when the inner diameter of the holding surface 17 of the lens barrel 12 without holding the lens 11 is D3 (mm)
  • the inner diameter D2 of the one opening 14 of the lens barrel 12 exceeds 99% of the outer diameter D1 of the lens 11. Therefore, the lens barrel 12 When the lens 11 is pressed into one of the openings 14, the lens 11 can be press-fitted only by elastically deforming the opening 14 by a dimension smaller than 1% of the outer diameter D1 of the lens 11.
  • the inner diameter D2 of one opening 14 of the lens barrel 12 is less than 99.5% of the inner diameter D3 of the lens 12 on the holding surface 17 of the lens barrel 12 when the lens 11 is not held.
  • the inner peripheral surface 16 is directed toward the opening 14 from the holding surface 17 and has a tapered shape.
  • the inner diameter D3 of the holding surface 17 in the state of holding the lens 11 in a smooth state exceeds 99.5% of the outer diameter D1 of the lens 11! /, And is less than 100% of the outer diameter D1 of the lens 11. Therefore, the holding surface 17 holds the outer peripheral surface 11A of the lens 11 from the outside in the radial direction by elastic deformation when the lens 11 is held.
  • the inner peripheral surface of the opening portion 14 of the lens barrel 12 is chamfered as a structure of the lens barrel 12 that allows the lens 11 to be pushed and pressed more smoothly.
  • a chamfered portion 36 may be formed.
  • the chamfered portion 36 can reduce the difference between the inner diameter D2 of the lens barrel 12 and the outer diameter D1 of the lens 11 at the opening portion 14, and can reduce the pushing pressure required for press-fitting, so that the lens 11 is held more easily. It is possible to push it in.
  • the size and angle of the chamfer 36 of the opening 14 shown in FIG. 3 are not particularly limited, but the optical axis of the lens 11 overlaps the central axis of the lens barrel 12 in the opening 14 at the entrance. In addition, it is desirable that the posture of the lens 11 can be controlled. It is appropriate that the inner diameter D2 of the opening 14 of the lens barrel 12 is approximately equal to the outer diameter D1 of the lens 11 by the chamfered portion 36 of the opening 14.
  • the effect of the chamfer 36 will be reduced. If the inner diameter D2 of the opening 14 of the lens barrel 12 is too small than the outer diameter D1 of the lens 11, the effect of the chamfer 36 will be reduced. If the inner diameter D2 of the opening 14 is larger than the outer diameter D1 of the lens 11, The tilt 11 is easily pushed into the lens barrel 12 in a tilted state, and tilt control becomes difficult.
  • the force described with the lens 11 as a biconvex lens can be applied to any lens shape of the lens 11.
  • the lens can be a plano-convex lens, a meniscus lens, An aspherical lens may be used.
  • the inner peripheral surface of the lens barrel 12 has a cylindrical shape, but the inner peripheral surface of the lens barrel 12 may have an elliptical cylindrical shape or a substantially rectangular cylindrical shape.
  • the lens 11 is circular, but may be elliptical or substantially rectangular.
  • a circumferential groove (not shown) extending in the circumferential direction may be formed on the holding surface 17 of the lens barrel 12.
  • the positional deviation of the lens 11 can be suppressed by the circumferential groove of the holding surface 17. Further, chamfering may be performed on the peripheral edge of at least one of the convex lens surface 11B and the convex lens surface 11C of the lens 11. In this case, it becomes easy to press-fit the lens 11 into the lens barrel 12 from the opening 14.
  • FIG. 4 shows a longitudinal section of a second embodiment of the lens holding device of the present invention.
  • the lens barrel 42 included in the lens holding device of the second embodiment has a hollow cylindrical shape, and has one opening 43 in the optical axis direction and the other opening 44 in the light $ direction.
  • One opening 43 serves as an entrance for press-fitting the lens 41 into the lens barrel 42.
  • annular positioning portion 45 which is a separate body from the lens barrel 42, is attached to the inner peripheral surface of the opening 44 of the lens barrel 42.
  • This second embodiment differs from the first embodiment described above in that it has a positioning portion 45 that is separate from the lens barrel 42.
  • the opening 43 of the lens barrel 42 of the second embodiment has the same configuration as the opening 14 of the lens barrel 12 of the first embodiment, and the lens barrel 42 of the second embodiment has the same structure.
  • the tapered inner peripheral surface 46 and the holding surface 47 have the same configuration as the tapered inner peripheral surface 16 and the holding surface 17 of the first embodiment.
  • the lens 41 included in the second embodiment has the same configuration as the lens 11 included in the first embodiment.
  • the positioning portion 45 separate from the lens barrel 42 has a contact surface 45 A extending inward in the radial direction substantially orthogonal to the holding surface 47.
  • the contact surface 45A contacts the other convex lens surface 41C in the optical axis direction of the lens 41 to position the lens 41 in the optical axis direction.
  • the positioning portion 45 is a separate member from the lens barrel 42.
  • the material of the positioning part 45 can be different from the material of the lens barrel 42. Then, the positioning portion 45 having the contact surface 45A subjected to extremely high precision processing is installed independently of the lens barrel 42.
  • the lens barrel is mainly manufactured by molding from the viewpoint of cost and ease of manufacture. Further, the lens barrel in the present invention can be mainly manufactured by molding which is desirably made of a relatively elastic material such as resin.
  • the lens barrel 42 since the positioning portion 45 having the contact surface 45A is a separate structure from the lens barrel 42, the lens barrel 42 may be a simple cylindrical shape. Can be made easily.
  • the contact surface 45A is provided as a step before the lens 41 is press-fitted from one opening 43 of the lens barrel 42 into the holding position by the holding surface 47 through the tapered inner peripheral surface 46.
  • the positioning portion 45 is attached to the inner peripheral surface of the other opening 44 of the lens barrel 42.
  • the positioning portion 45 has a ring-shaped contact surface 45A, and this ring-shaped contact surface 45A has the same function as the contact surface 18A of the positioning portion 18 of the first embodiment. It is possible to have
  • the shape of the positioning portion is not limited to the ring shape, and may be various shapes such as a film shape, a wire rod shape, a cube shape, and a spherical shape as long as it plays a role of positioning.
  • the power to do S is not limited to the ring shape, and may be various shapes such as a film shape, a wire rod shape, a cube shape, and a spherical shape as long as it plays a role of positioning.
  • the power to do S is not limited to the ring shape, and may be various shapes such as a film shape, a wire rod shape, a cube shape, and a spherical shape as long as it plays a role of positioning.
  • the power to do S is not limited to the ring shape, and may be various shapes such as a film shape, a wire rod shape, a cube shape, and a spherical shape as long as it plays a role of positioning.
  • the positioning portion 45 having the contact surface 45A is made of metal, and the thickness and shape of the positioning portion 45 are processed with extremely high accuracy.
  • the positioning part 45 having the abutment surface 45A is not limited to metal, and it is possible to freely select a material such as resin, metal, glass, etc., and it is optimal depending on the required accuracy and shape. The power is selected by selecting the material.
  • the positioning portion 45 having the contact surface 45A is disposed and attached to the inner peripheral surface of the other opening 44 of the lens barrel 42, and then the lens 41 is made in the same manner as in the first embodiment.
  • mirror The tube 42 is inserted and pressed into the holding surface 47 through the tapered inner peripheral surface 46 from the opening 43.
  • the second embodiment can realize the holding state of the lens 41 as shown in FIG.
  • the lens 41 can be held by the inertial force of the lens barrel 42, and the positioning portion 45 having the contact surface 45A is provided. Both material and shape can be freely selected. Therefore, the positioning unit 45 can serve as a diaphragm in the optical system, for example.
  • a member having a shirter function or the like can be used as the positioning portion 45 having the contact surface 45A. Further, if the contact surface 45A of the positioning portion 45 is a contact surface having a complicated curved surface that is in close contact with the lens surface 41C of the lens 41, the positioning function for the lens 41 can be improved.
  • the positioning portion 45 having the contact surface 45A is separated from the lens barrel 42 as in the second embodiment, the positioning portion 45 having the contact surface 45A is provided on the inner wall of the lens barrel 42.
  • a state in which the lens barrel 42 is held on the inner peripheral side by an elastic force may be employed.
  • the lens 41 press-fitted into the holding surface 47 from one opening 43 is further pushed toward the other opening 44, so that the positioning portion 45 and the lens 41 forming the contact surface 45A are removed from the lens barrel 42. It can be easily removed. Therefore, the lens 41 can be easily reused.
  • FIG. 5 shows a longitudinal section of a third embodiment of the lens holding device of the present invention.
  • the lens holding device according to the third embodiment has a structure that holds two lenses 51 and 52 in a lens barrel 53.
  • the lens barrel 53 of the third embodiment has a hollow cylindrical shape and has one opening 56 in the direction of the optical wheel and the other opening 57 in the optical axis direction.
  • One opening 56 serves as an entrance for press-fitting the lenses 51 and 52 into the lens barrel 53.
  • the first lens 51 is a biconvex lens having one convex lens surface 51B and the other convex lens surface 51C in the optical axis direction.
  • the second lens 52 is a single-convex lens having one convex lens surface 52B in the optical axis direction and the other flat lens surface 52C in the optical axis direction.
  • one opening 56 of the lens barrel 53 is narrower than the other opening 57.
  • the lens barrel 53 is made of a material having an appropriate elastic force, and extends from the opening 56 to the other side in the optical axis direction.
  • a tapered inner peripheral surface 58 having an inner diameter increasing toward the other, and extending from the tapered inner peripheral surface 58 toward the other in the optical axis direction and radially outward to the outer peripheral surfaces 52A and 51A of the lenses 52 and 51.
  • the holding surface 60 holds the lenses 52 and 51 in contact with each other with force.
  • the lens barrel 53 has a positioning portion 61 that forms the other opening 57.
  • the position determining portion 61 has an abutting surface 61A that forms the other end portion of the lens barrel 53 in the optical axis direction and extends inward in the radial direction substantially orthogonal to the holding surface 60.
  • the contact surface 61A contacts the other convex lens surface 51C in the optical axis direction of the first lens 51 to position the first lens 51 in the optical axis direction.
  • the inner peripheral surface of the lens barrel 53 is substantially cylindrical.
  • the outer peripheral surfaces 51A and 52A of the lenses 51 and 52 are also substantially cylindrical.
  • the inner diameter of one opening 56 is smaller than the outer diameters of the lenses 51 and 52 by a predetermined dimension.
  • the holding surface 60 that forms the inner wall of the lens barrel 53 presses the outer peripheral surfaces 51A and 52A of the lenses 51 and 52 radially inward with elastic restoring force radially inward. Hold the outer peripheral surface 51 A, 52A!
  • the ring-shaped spacer 63 is disposed between the first lens 51 and the second lens 52.
  • the ring-shaped spacer 63 has an upper surface 63A as a contact surface that contacts the flat lens surface 52C of the second lens 52 and a lower surface 63B as a contact that contacts the convex lens surface 51B of the first lens 51. It is a surface.
  • This ring-shaped spacer 63 defines the distance between two lenses 51 and 52 adjacent in the optical axis direction.
  • the spacer 63 determines the distance between the lenses 51 and 52 and the position of the second lens 52, it is desirable that the spacer 63 be a high-precision processed product, but achieves the required required accuracy. If possible, the material is not limited and the shape need not be limited to a ring.
  • the first lens 51 is moved from one opening 56 through the tapered inner peripheral surface 58 to the convex lens surface 51C. Is press-fitted until it comes into contact with the contact surface 61A of the positioning portion 61, and the outer peripheral surface 51A is held by the holding surface 60.
  • the lens barrel 53 has moderate elasticity, and plastic deformation does not occur even when the first lens 51 is press-fitted.
  • the inner diameter of the lens barrel 53 is the narrowest in the opening 56 between the one opening 56 where the lens is press-fitted and the position where the lens is fixed (that is, the holding surface 60). In other words, the lens barrel 53 has a tapered inner peripheral surface 58. The state in which the inner diameter of the lens barrel 53 increases as the lens barrel 53 progresses from one opening 56 to the other opening 57 is maintained.
  • the ring-shaped spacer 63 is inserted from one opening 56 into the tapered inner peripheral surface.
  • the holding surface 60 is inserted through 58, and the lower surface 63B is brought into contact with the convex lens surface 51B of the first lens 51.
  • the upper surface 63A of the spacer 63 forms a second contact surface that determines the position of the second lens 52 in the optical axis direction, and also serves to define the distance between the first lens 51 and the second lens 52. Fulfill
  • the second lens 52 is press-fitted from one opening 56 through the tapered inner peripheral surface 58 until it comes into contact with the upper surface 63A of the spacer 63, and the outer peripheral surface 52A is held by the holding surface 60.
  • the outer diameter of the second lens 52 is almost the same as or slightly larger than the inner diameter of the lens barrel 53 at the lens holding position (holding surface 60), and is a large lens that plastically deforms the inside of the lens barrel 53. Does not have a diameter.
  • both the first lens 51 and the second lens 52 can be held with reference to the inner diameter of the lens barrel 53, and there is no indeterminate cause of tilt due to shaving of the lens barrel 53. It becomes possible to assemble so as to determine the distance between them with extremely high accuracy.
  • the positioning portion 61 for positioning the first lens 51 may be formed by a member separate from the lens barrel 53.
  • FIG. 6 is a cross-sectional view of a lens barrel 72 included in the fourth embodiment.
  • the cross-sectional view is a cross-sectional view taken along a plane orthogonal to the direction of the optical wheel.
  • This fourth embodiment corresponds to a modification of the first embodiment, and differs from the first embodiment only in that a lens barrel 72 is provided instead of the lens barrel 12.
  • This lens barrel 72 differs from the lens barrel 12 of the first embodiment only in that it has substantially fan-shaped concave portions 74 at three locations in the circumferential direction on the inner peripheral surface 72A.
  • the substantially fan-shaped recess 74 extends by a predetermined dimension in the optical axis direction. Na Needless to say, the number of recesses 74 is not limited to three, and may be one or four or more.
  • the shape of the recess 74 is not limited to a fan shape, and may be a polygonal shape or a semicircular shape.
  • the inner peripheral surface 73 of the region where the concave portion 74 of the lens barrel 72 is not formed serves as a holding surface.
  • the inner peripheral surface 73 forming the holding surface holds the outer peripheral surface 11A of the lens 11 by pressing the outer peripheral surface 11A of the circular lens 11 radially inward with an elastic restoring force.
  • the lens barrel 72 has the same positioning portion as the lens barrel 12 and its contact surface, and the lens 11 is positioned in the optical axis direction by this contact surface.
  • the shape of the inner peripheral surface 73 forming the holding surface and the shape of the outer peripheral surface 11A of the lens 11 match each other, and even if there is a difference, the recess 74 This makes it easier to absorb the difference in shape between the holding surface 73 and the lens outer peripheral surface 11A.
  • the lens outer peripheral surface 11A is not circular but polygonal (for example, quadrangular)
  • the lens outer peripheral surface is held by the holding surface 73 and the shape that fits in the recess 74 can be within the lens barrel 72. It can be held.
  • the concave portion 74 when the lens barrel 72 and the lens 11 are bonded with an adhesive, the concave portion 74 can be used as a liquid reservoir for the adhesive, and the adhesive can be easily applied. There is an advantage. Further, in the cross section shown in FIG. 6, the three inner peripheral surfaces (holding surfaces) 73 in the circumferential direction of the lens barrel 72 are circular if the outer peripheral surface 11A of the lens 11 abuts. It does not have to be, and may have a polygonal shape such as a quadrangle.
  • the structure of the lens barrel 72 having a recess on the inner wall as in the fourth embodiment can also be adopted in the lens barrels of the second to third embodiments.
  • the lens can be positioned with extremely high precision using the contact surface of the positioning portion, and the shape of the contact surface is changed.
  • the positioning unit can have a role as a diaphragm used in a lens optical system such as a camera.
  • the lens holding device having the same effect as described above can be configured even when the cross-sectional shape of the lens and the lens barrel in the present invention is not particularly limited to an ellipse, a rectangle, or other special shapes.
  • FIG. 8 shows a longitudinal section of a fifth embodiment of the lens holding device of the present invention.
  • the lens holding device according to the fifth embodiment corresponds to a modification of the above-described third embodiment.
  • the fifth embodiment is different from the third embodiment described above in that three or more spheres 83 containing a magnetic material are provided instead of the ring-shaped spacer 63 of FIG. Therefore, in the fifth embodiment, the same parts as those in the third embodiment in FIG. 5 are denoted by the same reference numerals, and different parts from the third embodiment will be mainly described.
  • a magnetic material is included between the first lens 51 and the second lens 52.
  • the spherical body 83 is in contact with the flat lens surface 52 C of the second lens 52, the convex lens surface 51 B of the first lens 51, and the holding surface 60 that forms the inner wall of the lens barrel 53. These three or more spheres 83 define the distance between the two lenses 51 and 52 adjacent in the direction of the optical wheel.
  • the three or more spheres 83 forming a spacer determine the distance between the first lens 51 and the second lens 52 and the position of the second lens 82. Therefore, it is desirable that the sphere 83 is a highly accurate processed product.
  • the material of the sphere 83 should satisfy the required accuracy and include a magnetic material.
  • the first lens 51 is moved from one opening 56 through the tapered inner peripheral surface 58 to the convex lens surface 51C. Is press-fitted until it comes into contact with the contact surface 61A of the positioning portion 61, and the outer peripheral surface 51A is held by the holding surface 60.
  • the lens barrel 53 has moderate elasticity, and plastic deformation does not occur even when the first lens 51 is press-fitted.
  • the inner diameter of the lens barrel 53 is the narrowest in the opening 56 between the one opening 56 where the lens is press-fitted and the position where the lens is fixed (that is, the holding surface 60).
  • the lens barrel 53 has the tapered inner peripheral surface 58, so that the inner diameter of the lens barrel 53 increases as the lens barrel 53 progresses from one opening 56 to the other opening 57. Is maintained.
  • the ring-shaped magnet 88 is arranged so as to surround the outer peripheral surface of the lens barrel 53, and the ring-shaped magnet 88 is positioned at a position in the optical axis direction of the three or more spheres 83.
  • the magnetic attraction force of the ring-shaped magnet 88 is used to replace the three or more spheres 83 with the convex lens of the first lens 51.
  • the surface 51B is brought into contact with the holding surface 60 forming the inner wall of the lens barrel 53.
  • the three or more spheres 83 serve to define the distance between the first lens 51 and the second lens 52.
  • the second lens 52 is press-fitted from one opening 56 through the tapered inner peripheral surface 58 until it comes into contact with the sphere 83, and the outer peripheral surface 52A is held by the holding surface 60 that forms the inner wall of the lens barrel 53.
  • the outer diameter of the second lens 52 is approximately the same as or slightly larger than the inner diameter of the lens barrel 53 at the lens holding position (holding surface 60), and a large lens diameter that causes plastic deformation in the lens barrel 53. It does not have.
  • the second lens 52 is also held in the lens barrel 53 in the same manner as the first lens 51.
  • both the first lens 51 and the second lens 52 can be held on the basis of the inner diameter of the lens barrel 53, and there is no uncertain cause of tilt due to shaving of the lens barrel 53 or the like.
  • the sphere 83 that defines the lens interval is fixed in position by the magnetic attraction force from the outside of the lens barrel 53, so it is possible to assemble so that the distance between the lenses can be determined with extremely high accuracy. become.
  • the three or more spheres 83 are arranged between the positioning portion 61 and the first lens 51, and the three or more spheres 83 are attached to the contact surface 61A.
  • the lens surface 51C and the inner peripheral surface of the lens barrel 53 may be brought into contact with each other.
  • the three or more spheres 83 are spacers that define the distance between the contact surface 61A of the positioning portion 61 and the first lens 51 with high accuracy.
  • the three or more spheres 83 may be disposed between the first lens 51 and the second lens 52 and between the positioning unit 61 and the first lens 51.
  • the first and second lenses 51 and 52 are provided. However, three or more lenses press-fitted into the lens barrel may be provided.
  • the lens holding device having the same effect as described above can be configured even if the cross-sectional shape of the lens and the lens barrel in the present invention is an ellipse, a rectangle, and other special shapes that are not particularly limited.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

A lens holding device having a lens housing (12) with one opening (14) in the direction of the optical axis (J) and a lens (11) press-fitted into the lens housing (12) from the opening (14). The lens housing (12) has a tapered inner peripheral surface (16), a holding surface (17), and a positioning section (18). The lens (11) is press-fitted into the lens housing (12) from the one opening (14) into the direction in which the inner diameter of the tapered inner peripheral surface (16) increases. The lens (11) stops at a predetermined position, or at a contact surface (18A) of the positioning section (18), and a holding surface (17) engages an outer peripheral surface (11A) of the lens (11) to hold it.

Description

明 細 書  Specification
レンズ保持装置  Lens holding device
技術分野  Technical field
[0001] この発明は、レンズを鏡筒に保持するレンズ保持装置に関する。  [0001] The present invention relates to a lens holding device for holding a lens in a lens barrel.
背景技術  Background art
[0002] カメラ等における各種光学機器においては、レンズを精度よく固定する効率的な構 造として鏡筒構造が用いられている。例えば、円形形状を有するレンズを固定する方 法としては、レンズの直径にほぼ等しいか、もしくは、レンズの直径よりも小さい内径を 有する鏡筒が用いられる。  In various optical devices such as cameras, a lens barrel structure is used as an efficient structure for fixing a lens with high accuracy. For example, as a method of fixing a lens having a circular shape, a lens barrel having an inner diameter that is approximately equal to the diameter of the lens or smaller than the diameter of the lens is used.
[0003] また、極めて高精度な組立てが要求される光学機器などに用いられるレンズの固定 においては、図 7に示すような構造が用いられる (特開 2002— 250853号公報参照) 。この従来例においては、鏡筒 102の内壁部に光軸 Kの方向に傾斜した傾斜部 103 を設け、レンズ 101をレンズ外径よりも大きな開口部 107から光軸方向に押し込んで 行く (圧入)。そして、レンズ 101を固定する位置でレンズ 101の外周部 105の傾斜面 と鏡筒 102の内壁部の傾斜部 103とを係合させることによって、レンズ 101を鏡筒 10 2内に保持している。  [0003] Further, a structure shown in FIG. 7 is used for fixing a lens used in an optical device or the like that requires extremely high-precision assembly (see Japanese Patent Laid-Open No. 2002-250853). In this conventional example, an inclined portion 103 inclined in the direction of the optical axis K is provided on the inner wall portion of the lens barrel 102, and the lens 101 is pushed into the optical axis direction from the opening 107 larger than the lens outer diameter (press-fit). . Then, the lens 101 is held in the lens barrel 102 by engaging the inclined surface of the outer peripheral portion 105 of the lens 101 with the inclined portion 103 of the inner wall portion of the lens barrel 102 at a position where the lens 101 is fixed. .
[0004] この保持構造においては、レンズ 101を押し込む入り口である開口部 107が反対 側の開口部 108よりも広くなつており、開口部 107と 108の中間のレンズ固定部 104 はレンズ外周部 105と係合する。これにより、レンズ 101が鏡筒 102に対して動かなく なり、レンズ 101を鏡筒 102に容易に固定できる。  In this holding structure, an opening 107 that is an entrance into which the lens 101 is pushed is wider than an opening 108 on the opposite side, and the lens fixing portion 104 between the openings 107 and 108 is a lens outer peripheral portion 105. Engage with. As a result, the lens 101 does not move relative to the lens barrel 102, and the lens 101 can be easily fixed to the lens barrel 102.
[0005] しかしながら、上記従来例においては、レンズ 101の外周部 105および鏡筒 102の 内壁部 102Aに対する極めて高精度な加工が必要となる。その理由は、もしも、レン ズ 101の外周部 105と鏡筒 102の固定部 104のそれぞれが光軸方向に対して傾斜 してレ、る角度に誤差が発生すると、レンズ 101の鏡筒 102内での固定位置が所定の 位置から大きくずれてしまうことになるからである。  [0005] However, in the conventional example, it is necessary to process the outer peripheral portion 105 of the lens 101 and the inner wall portion 102A of the lens barrel 102 with extremely high accuracy. The reason for this is that if an error occurs in the angle between the outer peripheral portion 105 of the lens 101 and the fixing portion 104 of the lens barrel 102 that is inclined with respect to the optical axis direction, This is because the fixed position at the position is greatly deviated from the predetermined position.
[0006] また、上記従来例では、レンズ 101を鏡筒 102に組み付ける作業は容易であるもの の、上記高精度な加工のためにコストが高くなり、加工作業が容易ではなぐ全体的 としての組立て作業は効率的ではな!/、。 [0006] In the conventional example described above, although the operation of assembling the lens 101 to the lens barrel 102 is easy, the high-precision processing increases the cost and the overall processing is not easy. Assembling work is not efficient! /
[0007] また、レンズ 101がガラス製である一方、鏡筒 102が樹脂のような柔らかい材質で作 製されている場合には、レンズ 101を内壁部 102Aの径の広い箇所から狭い箇所へ 組み込んでいく過程において、レンズ 101が鏡筒 102の内壁部 102Aと接する点に おいて、鏡筒 102の内壁部 102Aが削られる危険性がある。鏡筒 102の内壁部 102 Aが削られると、鏡筒 102から発生する肖 IJりかす等の堆積によって、鏡筒 102に対す るレンズ 101のチルトや偏心は予期せぬ影響を受け、所定の位置でのレンズ固定が 望めなくなる。さらに、肖りかすがレンズ面に付着するなどして光学性能の低下を引き 起こす可能性もある。 [0007] When the lens 101 is made of glass and the lens barrel 102 is made of a soft material such as resin, the lens 101 is assembled from a wide diameter portion of the inner wall portion 102A to a narrow location. In the course of going, there is a risk that the inner wall 102A of the lens barrel 102 will be scraped at the point where the lens 101 contacts the inner wall 102A of the lens barrel 102. When the inner wall 102A of the lens barrel 102 is shaved, the tilt and eccentricity of the lens 101 with respect to the lens barrel 102 are unexpectedly affected by the accumulation of shore IJ grime and the like generated from the lens barrel 102. The lens cannot be fixed at the position. In addition, the shavings may adhere to the lens surface and cause a decrease in optical performance.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] そこで、この発明の課題は、レンズを鏡筒に固定する位置精度を向上できるレンズ 保持装置を提供することにある。 [0008] Therefore, an object of the present invention is to provide a lens holding device capable of improving the positional accuracy for fixing the lens to the lens barrel.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決するため、この発明のレンズ保持装置は、少なくとも光軸方向の一 方に開口部を有する鏡筒と、上記一方の開口部から鏡筒内に圧入されて固定された 少なくとも 1つのレンズを備え、 In order to solve the above-described problem, a lens holding device according to the present invention is fixed to a lens barrel having an opening at least in one of the optical axis directions, and press-fitted into the lens barrel from the one opening. With at least one lens,
上記鏡筒は、上記一方の開口部から光軸方向の他方に向かって内径が増大して いるテーパ内周面と、上記テーパ内周面から光軸方向の他方に向力、つて延在してい ると共に上記レンズの外周面に当接して上記レンズを保持する保持面とを有し、さら に、上記保持面と交差する径方向内方に延在していると共に上記レンズの光軸方向 の他方の面に径方向外側から当接して上記レンズの光軸方向の位置決めを行う当 接面を含む位置決め部を備えることを特徴としている。  The lens barrel extends from the one opening portion toward the other side in the optical axis direction, and has a tapered inner peripheral surface extending from the tapered inner peripheral surface to the other in the optical axis direction. And a holding surface that contacts the outer peripheral surface of the lens and holds the lens, and further extends inward in the radial direction intersecting the holding surface and in the optical axis direction of the lens. And a positioning portion including a contact surface for positioning the lens in the optical axis direction by coming into contact with the other surface from the outside in the radial direction.
[0010] この発明のレンズ保持装置によれば、鏡筒へのレンズの圧入は、一方の開口部か らテーパ内周面の内径が大きくなる方向になされ、所定の位置において位置決め部 の当接面にてレンズが止まると共に保持面がレンズの外周面に当接してレンズを保 持する。よって、鏡筒内の所定位置にレンズを保持する保持状態を容易に確実に達 成でき、かつ、レンズの位置決めをきわめて高精度にすることができる。 [0011] また、鏡筒の光軸方向の一方の開口部からレンズを圧入する際に、鏡筒のテーパ 内周面は光軸方向の他方に向かって拡径しているので、圧入時にレンズの外縁で 鏡筒の内周面が削られるという危険性を抑えることができる。よって、鏡筒に対する安 定したレンズ圧入とレンズ保持を実現可能となる。同時に、肖 IJりかす等の影響による レンズのチルト発生や削りかす等がレンズ面に付着する可能性を抑制でき光学特性 の悪化を防止できる。 According to the lens holding device of the present invention, the lens is press-fitted into the lens barrel in a direction in which the inner diameter of the tapered inner peripheral surface increases from one opening, and the positioning portion abuts at a predetermined position. The lens stops at the surface and the holding surface comes into contact with the outer peripheral surface of the lens to hold the lens. Therefore, the holding state of holding the lens at a predetermined position in the lens barrel can be easily and surely achieved, and the positioning of the lens can be made highly accurate. [0011] Further, when the lens is press-fitted from one opening in the optical axis direction of the lens barrel, the tapered inner peripheral surface of the lens barrel is expanded in diameter toward the other in the optical axis direction. The risk of the inner peripheral surface of the lens barrel being shaved at the outer edge of the lens can be reduced. Therefore, stable lens press-fitting and lens holding with respect to the lens barrel can be realized. At the same time, it is possible to suppress the possibility of lens tilting or shavings adhering to the lens surface due to the influence of Shaw IJ grime, etc., and to prevent deterioration of optical characteristics.
[0012] また、一実施形態のレンズ保持装置は、上記鏡筒内に圧入されて固定された複数 のレンズを備え、さらに、光軸方向に隣り合う 2つの上記レンズの間に配置されて上 記 2つのレンズ間の距離を規定するスぺーサを備える。  [0012] In addition, a lens holding device according to an embodiment includes a plurality of lenses press-fitted and fixed in the lens barrel, and is further disposed between two lenses adjacent in the optical axis direction. A spacer is provided to define the distance between the two lenses.
[0013] この実施形態のレンズ保持装置によれば、スぺーサが光軸方向に隣り合う 2つのレ ンズ間の距離を規定するから、複数のレンズが鏡筒内で正確に位置決めされたレン ズ保持装置を実現できる。 [0013] According to the lens holding device of this embodiment, since the spacer defines the distance between two lenses adjacent in the optical axis direction, a lens in which a plurality of lenses are accurately positioned in the lens barrel. Can be realized.
[0014] また、一実施形態のレンズ保持装置は、上記レンズは、上記鏡筒の光軸方向の一 方の開口部から上記テーパ内周面に圧入され、上記保持面の弾性変形によって、 上記鏡筒内に保持されている。 [0014] In the lens holding device according to one embodiment, the lens is press-fitted into the tapered inner peripheral surface from one opening in the optical axis direction of the lens barrel, and is elastically deformed by the holding surface. It is held in the lens barrel.
[0015] この実施形態のレンズ保持装置によれば、レンズを鏡筒の保持面に保持した状態 においても、鏡筒の弾性力によりレンズの固定を行うので、鏡筒の内径基準でレンズ を固定することとなる。よって、鏡筒の弾性力が失われない範囲においては、レンズ の外径寸法の偏差によらず、偏心を少なくしたレンズ保持が可能となる。 According to the lens holding device of this embodiment, even when the lens is held on the holding surface of the lens barrel, the lens is fixed by the elastic force of the lens barrel, so that the lens is fixed with reference to the inner diameter of the lens barrel. Will be. Therefore, in the range where the elastic force of the lens barrel is not lost, it is possible to hold the lens with less eccentricity regardless of the deviation of the outer diameter of the lens.
[0016] また、一実施形態のレンズ保持装置では、上記スぺーサは、上記鏡筒と一体である ので、組立が容易である。 In the lens holding device of one embodiment, since the spacer is integrated with the lens barrel, assembly is easy.
[0017] また、一実施形態のレンズ保持装置では、上記スぺーサは、上記鏡筒と別体である ので、スぺーサ交換によるレンズ間距離の変更が可能となる。 [0017] In the lens holding device of one embodiment, since the spacer is separate from the lens barrel, the distance between lenses can be changed by replacing the spacer.
[0018] また、一実施形態のレンズ保持装置では、上記位置決め部は、上記鏡筒と一体で あるので、位置決め部が鏡筒からずれたり外れたりする心配が無くなる。 [0018] Further, in the lens holding device of one embodiment, since the positioning portion is integrated with the lens barrel, there is no fear that the positioning portion is displaced from or detached from the lens barrel.
[0019] また、一実施形態のレンズ保持装置では、上記位置決め部は、上記鏡筒と別体で あると共に上記鏡筒に取り付けられているので、この位置決め部を鏡筒から取り外せ ば、レンズを保持面から光軸方向の他方に向かってさらに押し込むことでレンズを鏡 筒の他方の開口部から容易に取り出すことが可能である。 In the lens holding device of one embodiment, since the positioning unit is separate from the lens barrel and attached to the lens barrel, the lens is removed by removing the positioning unit from the lens barrel. The lens is mirrored by pushing it further in the optical axis direction from the holding surface. It can be easily taken out from the other opening of the tube.
[0020] また、一実施形態のレンズ保持装置では、上記光軸方向の一方の開口部の内周 面は、面取り部を有するので、レンズの圧入が容易になる。 [0020] In addition, in the lens holding device of one embodiment, the inner peripheral surface of the one opening in the optical axis direction has a chamfered portion, so that it is easy to press-fit the lens.
[0021] また、一実施形態のレンズ保持装置では、上記レンズは、ガラス製もしくは樹脂製 であるので、ガラス製とした場合には、屈折率が高くて薄肉化を図れ、経年変化が少 ないレンズとなり、樹脂製レンズとした場合には、軽く割れ難く加工が容易である。 In the lens holding device of one embodiment, since the lens is made of glass or resin, when made of glass, the refractive index is high, the thickness can be reduced, and the secular change is small. When it becomes a lens and is made of a resin lens, it is light and hard to break and easy to process.
[0022] また、一実施形態のレンズ保持装置では、上記鏡筒は、光軸と直交する面による断 面において略円形状を示す内周面を有し、上記レンズは、光軸と直交する面による 断面形状が略円形状である断面を有する。 [0022] In the lens holding device of one embodiment, the lens barrel has an inner peripheral surface showing a substantially circular shape in a cross section by a surface orthogonal to the optical axis, and the lens is orthogonal to the optical axis. The cross section by the surface has a cross section that is substantially circular.
[0023] この実施形態によれば、略円形の鏡筒と略円形のレンズとを備え、全体として略円 筒形状のレンズ保持装置となる。 [0023] According to this embodiment, a substantially circular lens barrel and a substantially circular lens are provided, and a lens holding device having a substantially cylindrical shape as a whole is obtained.
[0024] また、一実施形態のレンズ保持装置では、上記鏡筒は、光軸と直交する面による断 面において略楕円形状を示す内周面を有し、上記レンズは、光軸と直交する面によ る断面形状が略楕円形状である断面を有する。 [0024] In the lens holding device according to one embodiment, the lens barrel has an inner peripheral surface showing a substantially elliptical shape in a cross section by a surface orthogonal to the optical axis, and the lens is orthogonal to the optical axis. The cross section by the surface has a cross section that is substantially elliptical.
[0025] この実施形態によれば、略楕円形の鏡筒と略楕円形のレンズとを備え、全体として 略楕円筒形状のレンズ保持装置となる。 [0025] According to this embodiment, a substantially elliptical lens barrel and a substantially elliptical lens are provided, and the lens holding device has a substantially elliptical cylindrical shape as a whole.
[0026] また、一実施形態のレンズ保持装置では、上記鏡筒は、光軸と直交する面による断 面において略四角形状を示す内周面を有し、上記レンズは、光軸と直交する面によ る断面形状が略四角形状である断面を有する。 [0026] In the lens holding device of one embodiment, the lens barrel has an inner peripheral surface showing a substantially square shape in a cross section by a surface orthogonal to the optical axis, and the lens is orthogonal to the optical axis. The cross section by the surface has a cross section having a substantially square shape.
[0027] この実施形態によれば、略四角形の鏡筒と略四角形のレンズとを備え、全体として 略四角柱形状のレンズ保持装置となる。 [0027] According to this embodiment, the substantially square lens barrel and the substantially quadrangular lens are provided, and the lens holding device has a substantially quadrangular prism shape as a whole.
[0028] また、一実施形態のレンズ保持装置では、上記レンズの外径を Dl(mm)とし、上記 レンズを圧入する鏡筒の上記光軸方向の一方の開口部の内径を D2(mm)とし、上記 レンズを保持して!/、な!/、状態での上記鏡筒の保持面の内径を D3(mm)とすると、 0.990D1 < D2く 0.995D3 … (1) [0028] Further, in the lens holding device of one embodiment, the outer diameter of the lens is Dl (mm), and the inner diameter of one opening in the optical axis direction of the lens barrel for press-fitting the lens is D2 (mm) If the inner diameter of the holding surface of the lens barrel is D3 (mm) while holding the lens! /, N! /, 0.990D1 <D2 0.995D3 (1)
0.995DK D3< D1 · · · (2)  0.995DK D3 <D1 (2)
上式 (1)および (2)を満たして!/、る。  Meet the above formulas (1) and (2)!
[0029] この実施形態によれば、鏡筒の一方の開口部の内径はレンズの外径の 99%を超 えているので、鏡筒の一方の開口部へレンズを圧入する際、この開口部がレンズの 外径の 1 %よりも小さい寸法だけ弾性変形するだけでレンズの圧入が可能となる。ま た、鏡筒の一方の開口部の内径は鏡筒の保持面のレンズを保持していない状態で の内径の 99.5%未満であるので、鏡筒のテーパ内周面はレンズを保持していない 状態において保持面から開口部に向かって先細の形状となる。さらに、レンズを保持 していない状態での保持面の内径はレンズの外径の 99.5%を超えていると共にレン ズの外径の 100%未満であるので、保持面はレンズを保持した状態では弾性変形に よって径方向外側からレンズの外周面を保持することとなる。 [0029] According to this embodiment, the inner diameter of one opening of the lens barrel exceeds 99% of the outer diameter of the lens. Therefore, when the lens is press-fitted into one opening of the lens barrel, the lens can be press-fitted only by elastically deforming the opening by a dimension smaller than 1% of the outer diameter of the lens. Also, since the inner diameter of one opening of the lens barrel is less than 99.5% of the inner diameter of the lens barrel holding surface when the lens is not held, the tapered inner peripheral surface of the lens barrel holds the lens. In the absence, the shape is tapered from the holding surface toward the opening. Furthermore, since the inner diameter of the holding surface without holding the lens exceeds 99.5% of the outer diameter of the lens and less than 100% of the outer diameter of the lens, the holding surface does not hold the lens. The outer peripheral surface of the lens is held from the radially outer side by elastic deformation.
[0030] また、一実施形態のレンズ保持装置では、上記鏡筒の保持面は、径方向外方へ窪 んでいると共に光軸方向と周方向に所定寸法だけ延在している凹部を少なくとも 1つ 有する。 [0030] In the lens holding device of one embodiment, the holding surface of the lens barrel has at least one concave portion that is recessed outward in the radial direction and that extends by a predetermined dimension in the optical axis direction and the circumferential direction. Have.
[0031] この実施形態によれば、保持面の形状とレンズの外周面の形状とに差異があっても 、上記凹部の存在により保持面とレンズ外周面との形状の差異を吸収し易くなる。  [0031] According to this embodiment, even if there is a difference between the shape of the holding surface and the shape of the outer peripheral surface of the lens, the presence of the concave portion makes it easier to absorb the difference in shape between the holding surface and the outer peripheral surface of the lens. .
[0032] また、一実施形態のレンズ保持装置では、上記レンズは、面取り加工された縁部を 有するので、開口部から鏡筒内へ圧入し易くなる。  In the lens holding device of one embodiment, since the lens has a chamfered edge, it is easy to press-fit into the lens barrel from the opening.
[0033] また、一実施形態のレンズ保持装置では、上記鏡筒内に圧入された少なくとも 2枚 のレンズと、光軸方向に隣り合う 2枚の上記レンズの間に配置されていると共にこの 2 枚のレンズの互いに向かい合う 2つのレンズ面および上記鏡筒の内周面に当接する 3つ以上の球体とを有し、上記球体は磁性材料を含む。  [0033] In the lens holding device of one embodiment, the lens holding device is disposed between at least two lenses press-fitted into the lens barrel and the two lenses adjacent in the optical axis direction. And two lens surfaces facing each other and three or more spheres contacting the inner peripheral surface of the lens barrel, the spheres including a magnetic material.
[0034] この実施形態によれば、上記 3つ以上の球体が、光軸方向に隣り合う 2枚のレンズ 間の距離を規定するスぺーサの役割を果たすから、鏡筒内で複数のレンズを正確に 位置決めできる。また、上記球体に磁力を及ぼす磁石を上記鏡筒の外に配置するこ とによって、周方向,径方向へ上記球体が移動することを規制可能になる。すなわち、 上記磁石の磁気力によって、上記球体を所定の位置に位置決めでき、複数の球体 を動かないようにできるので、例えば組立時等において、複数のレンズ間の間隔を高 精度に保った状態を維持可能となり、レンズ倒れを抑制することが可能である。  [0034] According to this embodiment, the three or more spheres serve as a spacer that defines the distance between two lenses adjacent in the optical axis direction. Can be positioned accurately. Further, by disposing a magnet that exerts a magnetic force on the sphere outside the barrel, it is possible to restrict the movement of the sphere in the circumferential direction and the radial direction. In other words, the magnetic force of the magnet can position the sphere at a predetermined position and prevent the spheres from moving. For example, during assembly, the interval between the lenses can be maintained with high accuracy. This makes it possible to maintain the lens and suppress the lens collapse.
[0035] また、一実施形態のレンズ保持装置では、上記鏡筒内に圧入された少なくとも 2枚 のレンズと、上記位置決め部の当接面とこの位置決め部に対して光軸方向に隣り合 うレンズとの間に配置されていると共に上記当接面,この当接面と向かい合う上記レン ズのレンズ面,および上記鏡筒の内周面に当接する 3つ以上の球体とを有し、上記球 体は磁性材料を含む。 In the lens holding device of one embodiment, at least two lenses press-fitted into the lens barrel, the contact surface of the positioning unit, and the positioning unit are adjacent to each other in the optical axis direction. The lens has a contact surface, the lens surface of the lens facing the contact surface, and three or more spheres that contact the inner peripheral surface of the lens barrel. The sphere includes a magnetic material.
[0036] この実施形態によれば、上記 3つ以上の球体は、位置決め部とレンズとの間に配置 されて、上記レンズのレンズ面形状 (曲面形状,平面形状等)や位置決め部の形状に 関わらず、レンズ面,鏡筒の内周面,位置決め部の当接面に当接する。よって、上記レ ンズと位置決め部との間の間隔を高精度に保った状態を維持できてレンズ倒れを抑 制可能となる。  [0036] According to this embodiment, the three or more spheres are arranged between the positioning portion and the lens, and have a lens surface shape (curved surface shape, planar shape, etc.) or a positioning portion shape of the lens. Regardless, it contacts the lens surface, the inner peripheral surface of the lens barrel, and the contact surface of the positioning portion. Therefore, it is possible to maintain a state in which the distance between the lens and the positioning portion is maintained with high accuracy, and to suppress lens collapse.
発明の効果  The invention's effect
[0037] この発明のレンズ保持装置によれば、鏡筒へのレンズの圧入は、一方の開口部か らテーパ内周面の内径が大きくなる方向になされ、所定の位置において位置決め部 の当接面にてレンズが止まると共に保持面がレンズの外周面に当接してレンズを保 持する。よって、鏡筒内の所定位置にレンズを保持する保持状態を容易に確実に達 成でき、かつ、レンズの位置決めを高精度にすることができる。また、鏡筒の光軸方 向の一方の開口部からレンズを圧入する際に、鏡筒のテーパ内周面は光軸方向の 他方に向かって拡径しているので、圧入時にレンズの外縁で鏡筒の内周面が削られ るという危険性を抑えること力できる。よって、鏡筒に対する安定したレンズ圧入とレン ズ保持を実現可能となる。同時に、肖りかす等の影響によるレンズのチルト発生や削 りかす等がレンズ面に付着する可能性を抑制でき光学特性の悪化を防止できる。  According to the lens holding device of the present invention, the lens is press-fitted into the lens barrel in a direction in which the inner diameter of the tapered inner peripheral surface increases from one opening, and the positioning portion abuts at a predetermined position. The lens stops at the surface and the holding surface comes into contact with the outer peripheral surface of the lens to hold the lens. Therefore, it is possible to easily and surely achieve a holding state in which the lens is held at a predetermined position in the lens barrel, and to highly accurately position the lens. When the lens is press-fitted from one opening in the optical axis direction of the lens barrel, the tapered inner peripheral surface of the lens barrel expands toward the other in the optical axis direction. This can reduce the risk of the inner peripheral surface of the lens barrel being shaved. Therefore, stable lens press-fitting and lens holding with respect to the lens barrel can be realized. At the same time, it is possible to suppress the possibility of lens tilting or shaving due to the influence of shading and the like, and the deterioration of optical characteristics.
[0038] また、レンズ間の間隔を規定するスぺーサとして磁性材料を含む 3つ以上の球体を 有する場合は、球体の位置制御を磁気力により鏡筒の外部から行うことが可能となる ので、球体の位置ずれに起因するレンズ倒れをレンズ面の形状 (曲面形状や平面形 状)に関わることなく抑制可能となる。また、鏡筒の一方の開口部は圧入の入り口とな るため狭くなつている力 S、 3つ以上の球体をスぺーサとして有する場合、リング状のス ぺーサを有する場合に比べて、鏡筒内へ配置し易くなる。  [0038] Further, in the case of having three or more spheres containing a magnetic material as a spacer for defining the distance between the lenses, it is possible to control the position of the sphere from the outside of the lens barrel by magnetic force. In addition, it is possible to suppress the lens collapse caused by the positional deviation of the sphere without being related to the shape of the lens surface (curved surface shape or planar shape). In addition, one opening of the lens barrel serves as an entrance for press-fitting, so that the force S is narrow, and when there are three or more spheres as the spacer, compared to the case with a ring-shaped spacer, It becomes easy to arrange in the lens barrel.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]この発明のレンズ保持装置の第 1実施形態を示す断面図である。  FIG. 1 is a cross-sectional view showing a first embodiment of the lens holding device of the present invention.
[図 2]上記第 1実施形態の変形例を示す断面図である。 [図 3]上記第 1実施形態のもう 1つの変形例を示す断面図である。 FIG. 2 is a cross-sectional view showing a modification of the first embodiment. FIG. 3 is a cross-sectional view showing another modification of the first embodiment.
[図 4]この発明のレンズ保持装置の第 2実施形態を示す断面図である。  FIG. 4 is a cross-sectional view showing a second embodiment of the lens holding device of the present invention.
[図 5]この発明のレンズ保持装置の第 3実施形態を示す断面図である。  FIG. 5 is a cross-sectional view showing a third embodiment of the lens holding device of the present invention.
[図 6]この発明のレンズ保持装置の第 4実施形態を示す断面図である。  FIG. 6 is a cross-sectional view showing a fourth embodiment of the lens holding device of the present invention.
[図 7]従来のレンズ保持装置の断面図である。  FIG. 7 is a cross-sectional view of a conventional lens holding device.
[図 8]この発明のレンズ保持装置の第 5実施形態を示す断面図である。  FIG. 8 is a cross-sectional view showing a fifth embodiment of the lens holding device of the invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 以下、この発明を図示の実施の形態により詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0041] (第 1の実施の形態)  [0041] (First embodiment)
図 1に、この発明の第 1実施形態としてのレンズ保持装置の縦断面を示す。ここで、 縦断面とは、光車 を含む平面による断面である。このレンズ保持装置では、鏡筒 12 内に 1枚のレンズ 11を保持している。  FIG. 1 shows a longitudinal section of a lens holding device as a first embodiment of the present invention. Here, the longitudinal section is a section by a plane including the optical wheel. In this lens holding device, one lens 11 is held in a lens barrel 12.
[0042] 図 1に示すように、レンズ 11は光軸方向の一方の凸レンズ面 11Bと他方の凸レンズ 面 11Cを有する両凸レンズである。また、鏡筒 12は、中空であり、光軸方向の一方の 開口部 14と光軸方向の他方の開口部 15を有している。開口部 15は開口部 14よりも 狭くなつている。また、鏡筒 12は、開口部 14から光軸方向の他方に向かって内径が 増大しているテーパ内周面 16と、テーパ内周面 16から光軸方向の他方に向かって 延在して!/、ると共にレンズ 11の外周面 11 Aに径方向外側から当接してレンズ 11を保 持する保持面 17とを有している。  As shown in FIG. 1, the lens 11 is a biconvex lens having one convex lens surface 11B and the other convex lens surface 11C in the optical axis direction. The lens barrel 12 is hollow and has one opening 14 in the optical axis direction and the other opening 15 in the optical axis direction. The opening 15 is narrower than the opening 14. Further, the lens barrel 12 extends from the opening 14 to the other side in the optical axis direction, and from the tapered inner peripheral surface 16 to the other side in the optical axis direction. And a holding surface 17 that holds the lens 11 in contact with the outer peripheral surface 11 A of the lens 11 from the outside in the radial direction.
[0043] また、鏡筒 12は、他方の開口部 15を形成している位置決め部 18を有している。位 置決め部 18は、鏡筒 12の光軸方向の他端部をなし、保持面 17と略直交する径方向 内方へ延在している当接面 18Aを有する。当接面 18Aは、レンズ 11の光軸方向の 他方の凸レンズ面 11Cに当接してレンズ 11の光軸方向の位置決めを行う。  Further, the lens barrel 12 has a positioning portion 18 that forms the other opening 15. The positioning portion 18 has an abutting surface 18A that forms the other end portion of the lens barrel 12 in the optical axis direction and extends inward in the radial direction substantially orthogonal to the holding surface 17. The contact surface 18A contacts the other convex lens surface 11C in the optical axis direction of the lens 11 to position the lens 11 in the optical axis direction.
[0044] この実施形態では、鏡筒 12の内周面は略円筒形状である。また、レンズ 11の外周 面 11Aも略円筒形状である。また、開口部 14の内径はレンズ 11の外径よりも所定寸 法だけ小さくなつている。そして、鏡筒 12の内壁をなす保持面 17は、径方向内方へ の弾性復元力でもって、レンズ 11の外周面 11Aを径方向内方へ押圧してレンズ 11 の外周面 11 Aを保持して!/、る。 [0045] なお、図 2に示すように、レンズ 11の凸レンズ面 11Bの周縁と内周面 16とが接する 箇所に接着剤 25を塗布し、鏡筒 12へのレンズ 11の保持状態をより強固にしてもよい 。また、力、しめなどにより鏡筒 12へのレンズ 11の保持状態をより強固にしてもよい。 In this embodiment, the inner peripheral surface of the lens barrel 12 has a substantially cylindrical shape. The outer peripheral surface 11A of the lens 11 is also substantially cylindrical. The inner diameter of the opening 14 is smaller than the outer diameter of the lens 11 by a predetermined dimension. The holding surface 17 that forms the inner wall of the lens barrel 12 holds the outer peripheral surface 11 A of the lens 11 by pressing the outer peripheral surface 11 A of the lens 11 radially inward with an elastic restoring force radially inward. And! Note that, as shown in FIG. 2, an adhesive 25 is applied to a portion where the peripheral edge of the convex lens surface 11B of the lens 11 and the inner peripheral surface 16 are in contact with each other, and the holding state of the lens 11 on the lens barrel 12 is further strengthened. You may do it. Further, the holding state of the lens 11 on the lens barrel 12 may be further strengthened by force, crimping or the like.
[0046] この実施形態では、レンズ 11は、鏡筒 12の開口部 14からテーパ内周面 16内へ圧 入される。なお、レンズ 11は樹脂レンズでもガラスレンズでもよい。また、レンズ 11の 外径 Dl(mm)は、鏡筒 12の開口部 14の内径 D2(mm)よりも所定寸法だけ大きいが 、開口部 14の内径とレンズ 11の外径との差 (D1—D2)と鏡筒 12の材質とを適当なも のとすることで、レンズ 11の圧入時に鏡筒 12が削られる恐れをなくすることができる。 すなわち、鏡筒 12を塑性変形させることなぐレンズ 11を鏡筒 12内に揷入することが でき、鏡筒 12は弾性変形をするにとどめられる。なお、鏡筒 12の材質の一例として は樹脂が挙げられるが金属製であってもよレ、。  In this embodiment, the lens 11 is pressed into the tapered inner peripheral surface 16 from the opening 14 of the lens barrel 12. The lens 11 may be a resin lens or a glass lens. The outer diameter Dl (mm) of the lens 11 is larger than the inner diameter D2 (mm) of the opening 14 of the lens barrel 12 by a predetermined dimension, but the difference between the inner diameter of the opening 14 and the outer diameter of the lens 11 (D1 —D2) and the material of the lens barrel 12 can be made suitable to eliminate the possibility of the lens barrel 12 being scraped when the lens 11 is press-fitted. That is, the lens 11 without plastic deformation of the lens barrel 12 can be inserted into the lens barrel 12, and the lens barrel 12 is limited to elastic deformation. An example of the material of the lens barrel 12 is resin, but it may be made of metal.
[0047] 具体的一例として、レンズ 11がガラスからなり、鏡筒 12がポリカーボネート等の樹脂 力もなつていた場合、レンズ外径 D1が 4.0(mm)で、開口部 14の内径 D2が 3.6〜3. 8(mm)の場合、レンズ 11は鏡筒 12を削ることなく圧入することが可能である。これは 、適切なレンズ材質と鏡筒材質の選定と、レンズ外径 D1と鏡筒内径 D2の差の設定と によるものである。  [0047] As a specific example, when the lens 11 is made of glass and the lens barrel 12 is also made of resin such as polycarbonate, the lens outer diameter D1 is 4.0 (mm), and the inner diameter D2 of the opening 14 is 3.6-3. In the case of 8 mm, the lens 11 can be press-fitted without cutting the lens barrel 12. This is due to the selection of an appropriate lens material and lens barrel material, and the setting of the difference between the lens outer diameter D1 and the lens barrel inner diameter D2.
[0048] レンズ 11は、内径 D2の開口部 14から内径が広くなる鏡筒 12のテーパ内周面 16 内を光軸方向に圧入されて、位置決め部 18の当接面 18Aに当接するまで挿入され る。ここで、テーパ内周面 16は、レンズ 11が揷入される光軸方向の他方に向かって 内径が増大しているので、従来の鏡筒のように内径が狭まる方向にレンズを押し込む 場合とは異なり、レンズ 11の凸レンズ面 11Cの周縁 (エッジ)が鏡筒 12の内壁を強くこ する危険性を低減できて、鏡筒 12の内壁を削る危険性を低減することが可能である 。これにより、肖 IJりかす等の発生によるレンズ 11のチルトや偏心への影響やレンズ表 面への汚れへの影響をなくすことが可能である。  The lens 11 is inserted into the tapered inner peripheral surface 16 of the lens barrel 12 whose inner diameter is increased from the opening 14 having the inner diameter D2 in the optical axis direction until the lens 11 contacts the contact surface 18A of the positioning portion 18. It is done. Here, since the inner diameter of the taper inner peripheral surface 16 increases toward the other side in the optical axis direction in which the lens 11 is inserted, the case where the lens is pushed in the direction in which the inner diameter is narrowed as in a conventional lens barrel and In contrast, it is possible to reduce the risk of the peripheral edge (edge) of the convex lens surface 11C of the lens 11 strongly rubbing the inner wall of the lens barrel 12, and to reduce the risk of scraping the inner wall of the lens barrel 12. As a result, it is possible to eliminate the influence on the tilt and decentering of the lens 11 and the stain on the lens surface due to the occurrence of the shore IJ mark.
[0049] 上記具体的一例においては、鏡筒 12の位置決め部 18の当接面 18Aに隣接する 保持面 17の内径 D3(mm)は、 3.8〜4.0(mm)とすることが望ましぐこの範囲におい ては、レンズ 11は、鏡筒 12の内壁を弾性変形させるにとどめ、弾性力によるレンズ保 持が可能な状態である。 [0050] また、この実施形態のレンズ保持装置において、レンズ 11の外径を Dl(mm)とし、 レンズ 11を圧入する鏡筒 12の光車 の方向の一方の開口部 14の内径を D2(mm)と し、レンズ 11を保持していない状態での鏡筒 12の保持面 17の内径を D3(mm)とした ときに、次式 (1)、(2)を満足することが望ましい。 In the above specific example, it is desirable that the inner diameter D3 (mm) of the holding surface 17 adjacent to the contact surface 18A of the positioning portion 18 of the lens barrel 12 is 3.8 to 4.0 (mm). In the range, the lens 11 is in a state in which the inner wall of the lens barrel 12 is only elastically deformed and the lens can be held by elastic force. In the lens holding device of this embodiment, the outer diameter of the lens 11 is Dl (mm), and the inner diameter of one opening 14 in the direction of the optical wheel of the lens barrel 12 into which the lens 11 is press-fitted is D2 ( mm), and when the inner diameter of the holding surface 17 of the lens barrel 12 without holding the lens 11 is D3 (mm), it is desirable to satisfy the following expressions (1) and (2).
0.990D1 < D2く 0.995D3 … (1)  0.990D1 <D2 0.995D3… (1)
0.995DK D3< D1 · · · (2)  0.995DK D3 <D1 (2)
[0051] この式 (1)、(2)を満足する場合は、鏡筒 12の一方の開口部 14の内径 D2はレンズ 1 1の外径 D1の 99%を超えているので、鏡筒 12の一方の開口部 14へレンズ 11を圧 入する際、この開口部 14がレンズ 11の外径 D1の 1 %よりも小さい寸法だけ弾性変形 するだけでレンズ 11の圧入が可能となる。また、鏡筒 12の一方の開口部 14の内径 D 2は鏡筒 12の保持面 17のレンズ 11を保持していない状態での内径 D3の 99.5%未 満であるので、鏡筒 12のテーパ内周面 16はレンズ 11を保持していない状態におい て保持面 17から開口部 14に向力、つて先細の形状となる。さらに、レンズ 11を保持し てレヽなレ、状態での保持面 17の内径 D3はレンズ 11の外径 D1の 99.5%を超えて!/、る と共にレンズ 11の外径 D 1の 100%未満であるので、保持面 17はレンズ 11を保持し た状態では弾性変形によって径方向外側からレンズ 11の外周面 11Aを保持すること となる。  [0051] When the expressions (1) and (2) are satisfied, the inner diameter D2 of the one opening 14 of the lens barrel 12 exceeds 99% of the outer diameter D1 of the lens 11. Therefore, the lens barrel 12 When the lens 11 is pressed into one of the openings 14, the lens 11 can be press-fitted only by elastically deforming the opening 14 by a dimension smaller than 1% of the outer diameter D1 of the lens 11. In addition, the inner diameter D2 of one opening 14 of the lens barrel 12 is less than 99.5% of the inner diameter D3 of the lens 12 on the holding surface 17 of the lens barrel 12 when the lens 11 is not held. When the lens 11 is not held, the inner peripheral surface 16 is directed toward the opening 14 from the holding surface 17 and has a tapered shape. In addition, the inner diameter D3 of the holding surface 17 in the state of holding the lens 11 in a smooth state exceeds 99.5% of the outer diameter D1 of the lens 11! /, And is less than 100% of the outer diameter D1 of the lens 11. Therefore, the holding surface 17 holds the outer peripheral surface 11A of the lens 11 from the outside in the radial direction by elastic deformation when the lens 11 is held.
[0052] また、レンズ 11の押し込み圧入をよりスムースに行うことができる鏡筒 12の構造とし て、図 3に示すように、鏡筒 12の開口部 14の内周面に面取り加工を施して面取り部 3 6を形成してもよい。この面取り部 36により、開口部 14における鏡筒 12の内径 D2と レンズ 11の外径 D1との差を小さくでき、圧入時において必要な押し込み圧力を小さ くでき、レンズ 11をより容易に保持状態にまで押し入れることが可能となる。  [0052] Further, as shown in Fig. 3, the inner peripheral surface of the opening portion 14 of the lens barrel 12 is chamfered as a structure of the lens barrel 12 that allows the lens 11 to be pushed and pressed more smoothly. A chamfered portion 36 may be formed. The chamfered portion 36 can reduce the difference between the inner diameter D2 of the lens barrel 12 and the outer diameter D1 of the lens 11 at the opening portion 14, and can reduce the pushing pressure required for press-fitting, so that the lens 11 is held more easily. It is possible to push it in.
[0053] 図 3に示す開口部 14の面取り部 36の大きさや角度には特に制限はないが、入り口 の開口部 14において、鏡筒 12の中心軸に対してレンズ 11の光軸が重なるように、レ ンズ 11を姿勢制御できる程度であることが望ましい。開口部 14の面取り部 36により、 鏡筒 12の開口部 14の内径 D2がほぼレンズ 11の外径 D1程度になることが適当であ る。鏡筒 12の開口部 14の内径 D2がレンズ 11の外径 D1よりも小さすぎると面取り部 36の効果が薄ぐ開口部 14の内径 D2がレンズ 11の外径 D1よりも大きすぎるとレン ズ 11が傾いた状態で鏡筒 12に押し込まれ易くなり、チルト制御が困難になる。 The size and angle of the chamfer 36 of the opening 14 shown in FIG. 3 are not particularly limited, but the optical axis of the lens 11 overlaps the central axis of the lens barrel 12 in the opening 14 at the entrance. In addition, it is desirable that the posture of the lens 11 can be controlled. It is appropriate that the inner diameter D2 of the opening 14 of the lens barrel 12 is approximately equal to the outer diameter D1 of the lens 11 by the chamfered portion 36 of the opening 14. If the inner diameter D2 of the opening 14 of the lens barrel 12 is too small than the outer diameter D1 of the lens 11, the effect of the chamfer 36 will be reduced.If the inner diameter D2 of the opening 14 is larger than the outer diameter D1 of the lens 11, The tilt 11 is easily pushed into the lens barrel 12 in a tilted state, and tilt control becomes difficult.
[0054] なお、この第 1実施形態では、レンズ 11を両凸レンズとして説明した力 本発明はレ ンズ 11が如何ようなレンズ形状であっても適用でき、例えば、レンズが平凸レンズ、メ ニスカスレンズ、非球面レンズであってもかまわない。また、上記実施形態では、鏡筒 12の内周面を円筒形状としたが、鏡筒 12の内周面を楕円筒形状もしくは略四角筒 形状としてもよい。また、上記実施形態では、レンズ 11を円形としたが、楕円形もしく は略四角形状としてもよい。また、鏡筒 12の保持面 17に周方向に延在する周溝 (図 示せず)を形成してもよい。この場合には、保持面 17の周溝でもってレンズ 11の位置 ずれを抑制できる。また、レンズ 11の凸レンズ面 11Bと凸レンズ面 11Cの少なくとも 一方の周縁部に面取り加工を施してもよい。この場合には、レンズ 11を開口部 14か ら鏡筒 12内へ圧入し易くなる。  [0054] In the first embodiment, the force described with the lens 11 as a biconvex lens can be applied to any lens shape of the lens 11. For example, the lens can be a plano-convex lens, a meniscus lens, An aspherical lens may be used. Further, in the above embodiment, the inner peripheral surface of the lens barrel 12 has a cylindrical shape, but the inner peripheral surface of the lens barrel 12 may have an elliptical cylindrical shape or a substantially rectangular cylindrical shape. In the above embodiment, the lens 11 is circular, but may be elliptical or substantially rectangular. Further, a circumferential groove (not shown) extending in the circumferential direction may be formed on the holding surface 17 of the lens barrel 12. In this case, the positional deviation of the lens 11 can be suppressed by the circumferential groove of the holding surface 17. Further, chamfering may be performed on the peripheral edge of at least one of the convex lens surface 11B and the convex lens surface 11C of the lens 11. In this case, it becomes easy to press-fit the lens 11 into the lens barrel 12 from the opening 14.
[0055] (第 2の実施の形態)  [0055] (Second embodiment)
次に、図 4に、この発明のレンズ保持装置の第 2実施形態の縦断面を示す。この第 2実施形態のレンズ保持装置が有する鏡筒 42は、中空の円筒状であり、光軸方向の 一方の開口部 43と光 $ の方向の他方の開口部 44を有する。一方の開口部 43は、 レンズ 41を鏡筒 42に圧入する入り口となる。  Next, FIG. 4 shows a longitudinal section of a second embodiment of the lens holding device of the present invention. The lens barrel 42 included in the lens holding device of the second embodiment has a hollow cylindrical shape, and has one opening 43 in the optical axis direction and the other opening 44 in the light $ direction. One opening 43 serves as an entrance for press-fitting the lens 41 into the lens barrel 42.
[0056] この第 2実施形態では、鏡筒 42の開口部 44の内周面には、鏡筒 42とは別体であ る環状の位置決め部 45が取り付けられている。この第 2実施形態は、鏡筒 42とは別 体の位置決め部 45を有する点が、前述の第 1実施形態と異なる。  In the second embodiment, an annular positioning portion 45, which is a separate body from the lens barrel 42, is attached to the inner peripheral surface of the opening 44 of the lens barrel 42. This second embodiment differs from the first embodiment described above in that it has a positioning portion 45 that is separate from the lens barrel 42.
[0057] 一方、この第 2実施形態の鏡筒 42が有する開口部 43は、第 1実施形態の鏡筒 12 の開口部 14と同様の構成であり、この第 2実施形態の鏡筒 42が有するテーパ内周 面 46、保持面 47は、第 1実施形態のテーパ内周面 16、保持面 17と同様の構成であ る。また、この第 2実施形態が有するレンズ 41は、第 1実施形態が有するレンズ 11と 同様の構成である。  On the other hand, the opening 43 of the lens barrel 42 of the second embodiment has the same configuration as the opening 14 of the lens barrel 12 of the first embodiment, and the lens barrel 42 of the second embodiment has the same structure. The tapered inner peripheral surface 46 and the holding surface 47 have the same configuration as the tapered inner peripheral surface 16 and the holding surface 17 of the first embodiment. The lens 41 included in the second embodiment has the same configuration as the lens 11 included in the first embodiment.
[0058] この第 2実施形態では、鏡筒 42とは別体の位置決め部 45は、保持面 47と略直交 する径方向内方へ延在している当接面 45Aを有する。当接面 45Aは、レンズ 41の 光軸方向の他方の凸レンズ面 41Cに当接してレンズ 41の光軸方向の位置決めを行 う。この第 2実施形態では、位置決め部 45は鏡筒 42とは別体の部材であるので、位 置決め部 45の材質を鏡筒 42の材質とは別のものとすることができる。そして、極めて 高精度な加工を施した当接面 45Aを有する位置決め部 45を鏡筒 42と独立に設置 でさることとなる。 In the second embodiment, the positioning portion 45 separate from the lens barrel 42 has a contact surface 45 A extending inward in the radial direction substantially orthogonal to the holding surface 47. The contact surface 45A contacts the other convex lens surface 41C in the optical axis direction of the lens 41 to position the lens 41 in the optical axis direction. In the second embodiment, the positioning portion 45 is a separate member from the lens barrel 42. The material of the positioning part 45 can be different from the material of the lens barrel 42. Then, the positioning portion 45 having the contact surface 45A subjected to extremely high precision processing is installed independently of the lens barrel 42.
[0059] 一般に、鏡筒はコストおよび作りやすさの点から成型加工による製造が主となる。ま た、この発明における鏡筒は、樹脂のような比較的弾性をもつ材質であることが望ま しぐ成型加工による製作が主となり得る。  [0059] In general, the lens barrel is mainly manufactured by molding from the viewpoint of cost and ease of manufacture. Further, the lens barrel in the present invention can be mainly manufactured by molding which is desirably made of a relatively elastic material such as resin.
[0060] しかしながら、成型加工においては、鏡筒の内周面に位置決め部の当接面を形成 する構造では、鏡筒の内周面の形状が複雑化することで製作コストが大きくなり、精 度に対する要求も大きくなる。 However, in the molding process, in the structure in which the contact surface of the positioning portion is formed on the inner peripheral surface of the lens barrel, the manufacturing cost increases due to the complicated shape of the inner peripheral surface of the lens barrel. The demand for the degree also increases.
[0061] これに対し、この第 2実施形態においては、当接面 45Aを有する位置決め部 45を 鏡筒 42とは別体の構造としたので、鏡筒 42を単純な円筒状とすることができ、製作 が容易になる。 On the other hand, in the second embodiment, since the positioning portion 45 having the contact surface 45A is a separate structure from the lens barrel 42, the lens barrel 42 may be a simple cylindrical shape. Can be made easily.
[0062] この第 2実施形態においては、レンズ 41を鏡筒 42の一方の開口部 43からテーパ 内周面 46を経て保持面 47による保持位置に圧入する前段階として、当接面 45Aを 有する位置決め部 45を鏡筒 42の他方の開口部 44の内周面に取り付ける。この第 2 実施形態においては、位置決め部 45はリング形状の当接面 45Aを有し、このリング 形状の当接面 45Aは、第 1実施形態の位置決め部 18の当接面 18Aと同様の機能を 有することが可能である。  [0062] In the second embodiment, the contact surface 45A is provided as a step before the lens 41 is press-fitted from one opening 43 of the lens barrel 42 into the holding position by the holding surface 47 through the tapered inner peripheral surface 46. The positioning portion 45 is attached to the inner peripheral surface of the other opening 44 of the lens barrel 42. In this second embodiment, the positioning portion 45 has a ring-shaped contact surface 45A, and this ring-shaped contact surface 45A has the same function as the contact surface 18A of the positioning portion 18 of the first embodiment. It is possible to have
[0063] なお、位置決め部の形状はリング形状に限定されるものではなぐ位置決めとして の役割を果たすものであれば、フィルム形状、線材形状、立方体形状、球形状といつ たような様々な形状とすること力 Sできる。  [0063] Note that the shape of the positioning portion is not limited to the ring shape, and may be various shapes such as a film shape, a wire rod shape, a cube shape, and a spherical shape as long as it plays a role of positioning. The power to do S.
[0064] この実施形態では、当接面 45Aを有する位置決め部 45を金属製としており、位置 決め部 45の厚みや形状は極めて高精度に加工されている。ただし、当接面 45Aを 有する位置決め部 45は金属製に限らないことは勿論であり、樹脂、金属、ガラスなど 材質を自由に選ぶことが可能であり、必要とされる精度や形状によって最適な材質を 選択すること力でさる。  [0064] In this embodiment, the positioning portion 45 having the contact surface 45A is made of metal, and the thickness and shape of the positioning portion 45 are processed with extremely high accuracy. However, the positioning part 45 having the abutment surface 45A is not limited to metal, and it is possible to freely select a material such as resin, metal, glass, etc., and it is optimal depending on the required accuracy and shape. The power is selected by selecting the material.
[0065] この実施形態では、当接面 45Aを有する位置決め部 45を、鏡筒 42の他方の開口 部 44の内周面に配置し取り付けた後に、レンズ 41を第 1実施形態と同様にして、鏡 筒 42の開口部 43からテーパ内周面 46を経て保持面 47に揷入,圧入する。これによ り、この第 2実施形態は、図 4に示すようなレンズ 41の保持状態を実現することが可 能である。 In this embodiment, the positioning portion 45 having the contact surface 45A is disposed and attached to the inner peripheral surface of the other opening 44 of the lens barrel 42, and then the lens 41 is made in the same manner as in the first embodiment. ,mirror The tube 42 is inserted and pressed into the holding surface 47 through the tapered inner peripheral surface 46 from the opening 43. As a result, the second embodiment can realize the holding state of the lens 41 as shown in FIG.
[0066] この第 2実施形態においては、第 1の実施形態と同様に、レンズ 41を鏡筒 42の弹 性力でもって保持することができる上に、当接面 45Aを有する位置決め部 45の材質, 形状を共に自由に選ぶことが可能になる。したがって、位置決め部 45を、例えば、光 学系における絞りとしての役割をもたせることが可能である。また、この第 2実施形態 では、シャツタ機能等を有する部材を当接面 45Aを有する位置決め部 45として利用 することも可能である。また、位置決め部 45の当接面 45Aを、レンズ 41のレンズ面 4 1Cに密接するような複雑な曲面形状を有する当接面とすれば、レンズ 41に対する位 置決め機能を向上できる。  In the second embodiment, as in the first embodiment, the lens 41 can be held by the inertial force of the lens barrel 42, and the positioning portion 45 having the contact surface 45A is provided. Both material and shape can be freely selected. Therefore, the positioning unit 45 can serve as a diaphragm in the optical system, for example. In the second embodiment, a member having a shirter function or the like can be used as the positioning portion 45 having the contact surface 45A. Further, if the contact surface 45A of the positioning portion 45 is a contact surface having a complicated curved surface that is in close contact with the lens surface 41C of the lens 41, the positioning function for the lens 41 can be improved.
[0067] また、この第 2実施形態のように、当接面 45Aを有する位置決め部 45を鏡筒 42と 別体とした場合、当接面 45Aを有する位置決め部 45を鏡筒 42の内壁の弾性力によ つて鏡筒 42の内周側に保持した状態としてもよい。この場合、一方の開口部 43から 保持面 47に圧入したレンズ 41を、さらに他方の開口部 44に向けて押し込むことで、 当接面 45Aを形成する位置決め部 45およびレンズ 41を鏡筒 42から容易に取り外す ことが可能となる。よって、レンズ 41を再利用し易くすることが可能である。  Further, when the positioning portion 45 having the contact surface 45A is separated from the lens barrel 42 as in the second embodiment, the positioning portion 45 having the contact surface 45A is provided on the inner wall of the lens barrel 42. A state in which the lens barrel 42 is held on the inner peripheral side by an elastic force may be employed. In this case, the lens 41 press-fitted into the holding surface 47 from one opening 43 is further pushed toward the other opening 44, so that the positioning portion 45 and the lens 41 forming the contact surface 45A are removed from the lens barrel 42. It can be easily removed. Therefore, the lens 41 can be easily reused.
[0068] (第 3の実施の形態)  [0068] (Third embodiment)
次に、図 5に、この発明のレンズ保持装置の第 3実施形態の縦断面を示す。この第 3実施形態のレンズ保持装置は、鏡筒 53内に 2枚のレンズ 51,52を保持する構造で ある。この第 3実施形態が有する鏡筒 53は、中空の円筒状であり、光車 の方向の一 方の開口部 56と光軸方向の他方の開口部 57を有する。一方の開口部 56は、レンズ 51,52を鏡筒 53に圧入する入り口をなす。  Next, FIG. 5 shows a longitudinal section of a third embodiment of the lens holding device of the present invention. The lens holding device according to the third embodiment has a structure that holds two lenses 51 and 52 in a lens barrel 53. The lens barrel 53 of the third embodiment has a hollow cylindrical shape and has one opening 56 in the direction of the optical wheel and the other opening 57 in the optical axis direction. One opening 56 serves as an entrance for press-fitting the lenses 51 and 52 into the lens barrel 53.
[0069] 図 5に示すように、第 1のレンズ 51は光軸方向の一方の凸レンズ面 51Bと他方の凸 レンズ面 51Cを有する両凸レンズである。また、第 2のレンズ 52は光軸方向の一方の 凸レンズ面 52Bと光軸方向の他方のフラットなレンズ面 52Cを有する片凸レンズであ る。また、鏡筒 53の一方の開口部 56は他方の開口部 57よりも狭くなつている。また、 鏡筒 53は、適当な弾性力を有する材質からなり、開口部 56から光軸方向の他方に 向かって内径が増大しているテーパ内周面 58と、テーパ内周面 58から光軸方向の 他方に向かって延在していると共にレンズ 52,51の外周面 52A,51Aに径方向外方 力、ら当接してレンズ 52,51を保持する保持面 60を有している。 As shown in FIG. 5, the first lens 51 is a biconvex lens having one convex lens surface 51B and the other convex lens surface 51C in the optical axis direction. The second lens 52 is a single-convex lens having one convex lens surface 52B in the optical axis direction and the other flat lens surface 52C in the optical axis direction. In addition, one opening 56 of the lens barrel 53 is narrower than the other opening 57. The lens barrel 53 is made of a material having an appropriate elastic force, and extends from the opening 56 to the other side in the optical axis direction. A tapered inner peripheral surface 58 having an inner diameter increasing toward the other, and extending from the tapered inner peripheral surface 58 toward the other in the optical axis direction and radially outward to the outer peripheral surfaces 52A and 51A of the lenses 52 and 51. The holding surface 60 holds the lenses 52 and 51 in contact with each other with force.
[0070] また、鏡筒 53は、他方の開口部 57を形成している位置決め部 61を有している。位 置決め部 61は、鏡筒 53の光軸方向の他端部をなし、保持面 60とほぼ直交する径方 向内方へ延在している当接面 61Aを有する。当接面 61Aは、第 1のレンズ 51の光軸 方向の他方の凸レンズ面 51Cに当接して第 1のレンズ 51の光軸方向の位置決めを 行う。 In addition, the lens barrel 53 has a positioning portion 61 that forms the other opening 57. The position determining portion 61 has an abutting surface 61A that forms the other end portion of the lens barrel 53 in the optical axis direction and extends inward in the radial direction substantially orthogonal to the holding surface 60. The contact surface 61A contacts the other convex lens surface 51C in the optical axis direction of the first lens 51 to position the first lens 51 in the optical axis direction.
[0071] この第 3実施形態では、鏡筒 53の内周面は略円筒形状である。また、レンズ 51,52 の外周面 51A,52Aも略円筒形状である。また、一方の開口部 56の内径はレンズ 51 ,52の外径よりも所定寸法だけ小さくなつている。そして、鏡筒 53の内壁をなす保持 面 60は、径方向内方への弾性復元力でもって、レンズ 51,52の外周面 51A,52Aを 径方向内方へ押圧してレンズ 51, 52の外周面 51 A, 52Aを保持して!/、る。  In the third embodiment, the inner peripheral surface of the lens barrel 53 is substantially cylindrical. The outer peripheral surfaces 51A and 52A of the lenses 51 and 52 are also substantially cylindrical. The inner diameter of one opening 56 is smaller than the outer diameters of the lenses 51 and 52 by a predetermined dimension. The holding surface 60 that forms the inner wall of the lens barrel 53 presses the outer peripheral surfaces 51A and 52A of the lenses 51 and 52 radially inward with elastic restoring force radially inward. Hold the outer peripheral surface 51 A, 52A!
[0072] この第 3実施形態では、第 1のレンズ 51と第 2のレンズ 52との間にリング状のスぺー サ 63を配置した。このリング状のスぺーサ 63は、上面 63Aを第 2のレンズ 52の平坦 なレンズ面 52Cに当接する当接面とし、下面 63Bを第 1のレンズ 51の凸レンズ面 51 Bに当接する当接面としている。このリング状のスぺーサ 63によって、光軸方向に隣 り合う 2つのレンズ 51と 52との間の距離を規定している。  In the third embodiment, the ring-shaped spacer 63 is disposed between the first lens 51 and the second lens 52. The ring-shaped spacer 63 has an upper surface 63A as a contact surface that contacts the flat lens surface 52C of the second lens 52 and a lower surface 63B as a contact that contacts the convex lens surface 51B of the first lens 51. It is a surface. This ring-shaped spacer 63 defines the distance between two lenses 51 and 52 adjacent in the optical axis direction.
[0073] ここで、スぺーサ 63は、レンズ 51,52間の間隔および第 2のレンズ 52の位置を決定 するので、高精度な加工品であることが望ましいが、望まれる要求精度を達成できる ならば材質は問わず、形状もリング状に限る必要はない。  [0073] Here, since the spacer 63 determines the distance between the lenses 51 and 52 and the position of the second lens 52, it is desirable that the spacer 63 be a high-precision processed product, but achieves the required required accuracy. If possible, the material is not limited and the shape need not be limited to a ring.
[0074] この第 3実施形態のレンズ保持装置では、まず、第 1レンズ 51を、第 1実施形態で 説明したのと同様に、一方の開口部 56からテーパ内周面 58を経て凸レンズ面 51C が位置決め部 61の当接面 61Aに当接するまで圧入し、保持面 60で外周面 51Aを 保持させる。ここで、鏡筒 53は適度な弾性を有しており、第 1のレンズ 51の圧入によ つても塑性変形は起こらない。そして、レンズ圧入を行う一方の開口部 56からレンズ の固定されている位置 (つまり保持面 60)までの間において、開口部 56において鏡筒 53の内径が最も狭くなつている。つまり、鏡筒 53はテーパ内周面 58を有することで、 鏡筒 53内を一方の開口部 56から他方の開口部 57に向かって進むにしたがって、鏡 筒 53の内径が大きくなるという状態を維持している。 In the lens holding device according to the third embodiment, first, as described in the first embodiment, the first lens 51 is moved from one opening 56 through the tapered inner peripheral surface 58 to the convex lens surface 51C. Is press-fitted until it comes into contact with the contact surface 61A of the positioning portion 61, and the outer peripheral surface 51A is held by the holding surface 60. Here, the lens barrel 53 has moderate elasticity, and plastic deformation does not occur even when the first lens 51 is press-fitted. The inner diameter of the lens barrel 53 is the narrowest in the opening 56 between the one opening 56 where the lens is press-fitted and the position where the lens is fixed (that is, the holding surface 60). In other words, the lens barrel 53 has a tapered inner peripheral surface 58. The state in which the inner diameter of the lens barrel 53 increases as the lens barrel 53 progresses from one opening 56 to the other opening 57 is maintained.
[0075] そして、第 1のレンズ 51が位置決め部 61に当接し所定の位置にて保持面 60で保 持された後に、リング状のスぺーサ 63を一方の開口部 56からテーパ内周面 58を経 て保持面 60まで挿入し、下面 63Bを第 1のレンズ 51の凸レンズ面 51Bに当接させる 。このスぺーサ 63の上面 63Aは第 2のレンズ 52の光軸方向の位置を定める第 2の当 接面をなすと共に、第 1のレンズ 51と第 2のレンズ 52の間隔を規定する役目を果たす [0075] Then, after the first lens 51 abuts the positioning portion 61 and is held by the holding surface 60 at a predetermined position, the ring-shaped spacer 63 is inserted from one opening 56 into the tapered inner peripheral surface. The holding surface 60 is inserted through 58, and the lower surface 63B is brought into contact with the convex lens surface 51B of the first lens 51. The upper surface 63A of the spacer 63 forms a second contact surface that determines the position of the second lens 52 in the optical axis direction, and also serves to define the distance between the first lens 51 and the second lens 52. Fulfill
[0076] 次に、第 2のレンズ 52を一方の開口部 56からテーパ内周面 58を経てスぺーサ 63 の上面 63Aに当接するまで圧入し、外周面 52Aを保持面 60で保持させる。ここで、 第 2のレンズ 52の外径はレンズの保持位置 (保持面 60)における鏡筒 53の内径とほ ぼ同じか少し大きい程度であり、鏡筒 53内を塑性変形させるような大きなレンズ径を 有してはいない。 Next, the second lens 52 is press-fitted from one opening 56 through the tapered inner peripheral surface 58 until it comes into contact with the upper surface 63A of the spacer 63, and the outer peripheral surface 52A is held by the holding surface 60. Here, the outer diameter of the second lens 52 is almost the same as or slightly larger than the inner diameter of the lens barrel 53 at the lens holding position (holding surface 60), and is a large lens that plastically deforms the inside of the lens barrel 53. Does not have a diameter.
[0077] 上述のようにして、第 2のレンズ 52も第 1のレンズ 51と同様に、鏡筒 53内に保持さ れる。この第 3実施形態においては、第 1のレンズ 51、第 2のレンズ 52共に鏡筒 53の 内径を基準として保持でき、鏡筒 53の削り等による不確定なチルト発生要因がない ことから、レンズ間の距離を極めて高精度に定めるように組立を行うことが可能になる  As described above, the second lens 52 is also held in the lens barrel 53 in the same manner as the first lens 51. In the third embodiment, both the first lens 51 and the second lens 52 can be held with reference to the inner diameter of the lens barrel 53, and there is no indeterminate cause of tilt due to shaving of the lens barrel 53. It becomes possible to assemble so as to determine the distance between them with extremely high accuracy.
[0078] なお、この第 3実施形態においても、第 2実施形態のように、第 1のレンズ 51を位置 決めする位置決め部 61を鏡筒 53とは別体の部材によって形成してもよい。 In the third embodiment, as in the second embodiment, the positioning portion 61 for positioning the first lens 51 may be formed by a member separate from the lens barrel 53.
[0079] (第 4の実施の形態)  [0079] (Fourth embodiment)
次に、図 6を参照して、この発明のレンズ保持装置の第 4実施形態について説明す る。図 6は、第 4実施形態が有する鏡筒 72の横断面図である。ここで、横断面図とは 光車 の方向と直交する平面による断面図である。  Next, a fourth embodiment of the lens holding device according to the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view of a lens barrel 72 included in the fourth embodiment. Here, the cross-sectional view is a cross-sectional view taken along a plane orthogonal to the direction of the optical wheel.
[0080] この第 4実施形態は、第 1実施形態の変形例に相当するものであり、鏡筒 12に替え て鏡筒 72を備える点だけが、前述の第 1実施形態と異なる。この鏡筒 72は、内周面 72Aに周方向の 3箇所に略扇状の凹部 74を有している点だけが第 1実施形態の鏡 筒 12と異なる。この略扇状の凹部 74は光軸方向に所定寸法だけ延在している。な お、凹部 74の個数は 3つに限らないのは言うまでもなく 1つでもよく 4つ以上でもよい 。また、凹部 74の形状は扇形状に限らないのは勿論であり、多角形状や半円形でも よい。 This fourth embodiment corresponds to a modification of the first embodiment, and differs from the first embodiment only in that a lens barrel 72 is provided instead of the lens barrel 12. This lens barrel 72 differs from the lens barrel 12 of the first embodiment only in that it has substantially fan-shaped concave portions 74 at three locations in the circumferential direction on the inner peripheral surface 72A. The substantially fan-shaped recess 74 extends by a predetermined dimension in the optical axis direction. Na Needless to say, the number of recesses 74 is not limited to three, and may be one or four or more. In addition, the shape of the recess 74 is not limited to a fan shape, and may be a polygonal shape or a semicircular shape.
[0081] 鏡筒 72の凹部 74が形成されていない領域の内周面 73は保持面をなす。この保持 面をなす内周面 73は弾性復元力でもって円形のレンズ 11の外周面 11Aを径方向 内方へ押圧してレンズ 11の外周面 11Aを保持している。ここで、鏡筒 72は、鏡筒 12 と同様の位置決め部とその当接面を有し、この当接面によって、レンズ 11は光軸方 向の位置決めがなされていることは言うまでもない。  [0081] The inner peripheral surface 73 of the region where the concave portion 74 of the lens barrel 72 is not formed serves as a holding surface. The inner peripheral surface 73 forming the holding surface holds the outer peripheral surface 11A of the lens 11 by pressing the outer peripheral surface 11A of the circular lens 11 radially inward with an elastic restoring force. Here, it goes without saying that the lens barrel 72 has the same positioning portion as the lens barrel 12 and its contact surface, and the lens 11 is positioned in the optical axis direction by this contact surface.
[0082] この実施形態によれば、保持面をなす内周面 73の形状とレンズ 11の外周面 11A の形状とがー致してレ、なくて差異が存在してレ、ても、凹部 74の存在により保持面 73 とレンズ外周面 11Aとの形状の差異を吸収し易くなる。例えば、レンズ外周面 11Aが 円形ではなくて多角形 (例えば四角形)であっても、保持面 73でレンズ外周面が保持 されると共に凹部 74内に収まるような形状であれば鏡筒 72内に保持可能である。  According to this embodiment, the shape of the inner peripheral surface 73 forming the holding surface and the shape of the outer peripheral surface 11A of the lens 11 match each other, and even if there is a difference, the recess 74 This makes it easier to absorb the difference in shape between the holding surface 73 and the lens outer peripheral surface 11A. For example, even if the lens outer peripheral surface 11A is not circular but polygonal (for example, quadrangular), the lens outer peripheral surface is held by the holding surface 73 and the shape that fits in the recess 74 can be within the lens barrel 72. It can be held.
[0083] また、この第 4実施形態では、鏡筒 72とレンズ 11とを接着剤で接着する場合に、凹 部 74を接着剤の液溜り部とすることができ、接着剤を塗布し易いという利点がある。ま た、図 6に示す横断面において、鏡筒 72の周方向の 3箇所の内周面 (保持面) 73は、 レンズ 11の外周面 11Aが当接するならば、横断面形状は円形形状である必要はな く、四角形のような多角形の形状を有していてもよい。  Further, in the fourth embodiment, when the lens barrel 72 and the lens 11 are bonded with an adhesive, the concave portion 74 can be used as a liquid reservoir for the adhesive, and the adhesive can be easily applied. There is an advantage. Further, in the cross section shown in FIG. 6, the three inner peripheral surfaces (holding surfaces) 73 in the circumferential direction of the lens barrel 72 are circular if the outer peripheral surface 11A of the lens 11 abuts. It does not have to be, and may have a polygonal shape such as a quadrangle.
[0084] 尚、この第 4実施形態のような内壁に凹部を有する鏡筒 72の構造は、第 2〜第 3実 施形態の鏡筒においても採用可能である。上述の如ぐ第 1〜第 4実施形態では、位 置決め部の当接面でもって、レンズの位置決めをきわめて高精度に行うことができ、 かつ、上記当接面の形状を変化させる場合にはレンズの位置決めのみならず、カメ ラ等のレンズ光学系で用いられる絞りとしての役割を位置決め部に持たせることも可 能である。また、この発明におけるレンズおよび鏡筒の横断面形状については特に 制限はなぐ楕円、矩形、その他特殊形状であっても上述と同様の効果を有するレン ズ保持装置を構成することが可能である。  Note that the structure of the lens barrel 72 having a recess on the inner wall as in the fourth embodiment can also be adopted in the lens barrels of the second to third embodiments. In the first to fourth embodiments as described above, the lens can be positioned with extremely high precision using the contact surface of the positioning portion, and the shape of the contact surface is changed. In addition to lens positioning, the positioning unit can have a role as a diaphragm used in a lens optical system such as a camera. In addition, the lens holding device having the same effect as described above can be configured even when the cross-sectional shape of the lens and the lens barrel in the present invention is not particularly limited to an ellipse, a rectangle, or other special shapes.
[0085] (第 5の実施形態)  [0085] (Fifth embodiment)
次に、図 8に、この発明のレンズ保持装置の第 5実施形態の縦断面を示す。この第 5実施形態のレンズ保持装置は、前述の第 3実施形態の変形例に相当する。この第 5実施形態は、図 5のリング状のスぺーサ 63に替えて、磁性材料を含む 3つ以上の 球体 83を備えている点が、前述の第 3実施形態と異なる。よって、この第 5実施形態 では、図 5の第 3実施形態と同じ部分には同じ符号を付して、前述の第 3実施形態と 異なる部分を主に説明する。 Next, FIG. 8 shows a longitudinal section of a fifth embodiment of the lens holding device of the present invention. This first The lens holding device according to the fifth embodiment corresponds to a modification of the above-described third embodiment. The fifth embodiment is different from the third embodiment described above in that three or more spheres 83 containing a magnetic material are provided instead of the ring-shaped spacer 63 of FIG. Therefore, in the fifth embodiment, the same parts as those in the third embodiment in FIG. 5 are denoted by the same reference numerals, and different parts from the third embodiment will be mainly described.
[0086] この第 5実施形態では、第 1のレンズ 51と第 2のレンズ 52との間に磁性材料を含む  [0086] In the fifth embodiment, a magnetic material is included between the first lens 51 and the second lens 52.
3つ以上の球体 83を配置した。この球体 83は、第 2のレンズ 52の平坦なレンズ面 52 Cと、第 1のレンズ 51の凸レンズ面 51Bと、鏡筒 53の内壁をなす保持面 60に当接し ている。この 3つ以上の球体 83によって、光車 の方向に隣り合う 2つのレンズ 51と 52 との間の距離を規定している。  Three or more spheres 83 were arranged. The spherical body 83 is in contact with the flat lens surface 52 C of the second lens 52, the convex lens surface 51 B of the first lens 51, and the holding surface 60 that forms the inner wall of the lens barrel 53. These three or more spheres 83 define the distance between the two lenses 51 and 52 adjacent in the direction of the optical wheel.
[0087] ここで、スぺーサをなす 3つ以上の球体 83は、第 1のレンズ 51と第 2のレンズ 52との 間の間隔および第 2のレンズ 82の位置を決定する。よって、球体 83は高精度な加工 品であることが望ましい。この球体 83の材質は、望まれる要求精度を満たすと共に磁 性材料を含むものであればょレ、。  Here, the three or more spheres 83 forming a spacer determine the distance between the first lens 51 and the second lens 52 and the position of the second lens 82. Therefore, it is desirable that the sphere 83 is a highly accurate processed product. The material of the sphere 83 should satisfy the required accuracy and include a magnetic material.
[0088] この第 5実施形態のレンズ保持装置では、まず、第 1レンズ 51を、第 1実施形態で 説明したのと同様に、一方の開口部 56からテーパ内周面 58を経て凸レンズ面 51C が位置決め部 61の当接面 61Aに当接するまで圧入し、保持面 60で外周面 51Aを 保持させる。ここで、鏡筒 53は適度な弾性を有しており、第 1のレンズ 51の圧入によ つても塑性変形は起こらない。そして、レンズ圧入を行う一方の開口部 56からレンズ の固定されている位置 (つまり保持面 60)までの間において、開口部 56において鏡筒 53の内径が最も狭くなつている。つまり、鏡筒 53はテーパ内周面 58を有することで、 鏡筒 53内を一方の開口部 56から他方の開口部 57に向かって進むにしたがって、鏡 筒 53の内径が大きくなるという状態を維持している。  In the lens holding device according to the fifth embodiment, first, as described in the first embodiment, the first lens 51 is moved from one opening 56 through the tapered inner peripheral surface 58 to the convex lens surface 51C. Is press-fitted until it comes into contact with the contact surface 61A of the positioning portion 61, and the outer peripheral surface 51A is held by the holding surface 60. Here, the lens barrel 53 has moderate elasticity, and plastic deformation does not occur even when the first lens 51 is press-fitted. The inner diameter of the lens barrel 53 is the narrowest in the opening 56 between the one opening 56 where the lens is press-fitted and the position where the lens is fixed (that is, the holding surface 60). In other words, the lens barrel 53 has the tapered inner peripheral surface 58, so that the inner diameter of the lens barrel 53 increases as the lens barrel 53 progresses from one opening 56 to the other opening 57. Is maintained.
[0089] そして、第 1のレンズ 51が位置決め部 61に当接し所定の位置にて保持面 60で保 持された後に、 3つ以上の球体 83を一方の開口部 86から揷入する。ここで、リング状 の磁石 88を鏡筒 53の外周面を囲むように配置し、このリング状の磁石 88を、上記 3 つ以上の球体 83の光軸方向の位置に位置させる。これにより、上記リング状の磁石 8 8の磁気吸引力を利用して、上記 3つ以上の球体 83を、第 1のレンズ 51の凸レンズ 面 51Bと鏡筒 53の内壁をなす保持面 60とに当接させる。この 3つ以上の球体 83は 第 1のレンズ 51と第 2のレンズ 52との間隔を規定する役目を果たす。 Then, after the first lens 51 comes into contact with the positioning portion 61 and is held by the holding surface 60 at a predetermined position, three or more spheres 83 are inserted through one opening 86. Here, the ring-shaped magnet 88 is arranged so as to surround the outer peripheral surface of the lens barrel 53, and the ring-shaped magnet 88 is positioned at a position in the optical axis direction of the three or more spheres 83. Thus, the magnetic attraction force of the ring-shaped magnet 88 is used to replace the three or more spheres 83 with the convex lens of the first lens 51. The surface 51B is brought into contact with the holding surface 60 forming the inner wall of the lens barrel 53. The three or more spheres 83 serve to define the distance between the first lens 51 and the second lens 52.
[0090] 次に、第 2のレンズ 52を一方の開口部 56からテーパ内周面 58を経て球体 83に当 接するまで圧入し、外周面 52Aを鏡筒 53の内壁をなす保持面 60で保持させる。ここ で、第 2のレンズ 52の外径はレンズの保持位置 (保持面 60)における鏡筒 53の内径と ほぼ同じか少し大きい程度であり、鏡筒 53内を塑性変形させるような大きなレンズ径 を有してはいない。 [0090] Next, the second lens 52 is press-fitted from one opening 56 through the tapered inner peripheral surface 58 until it comes into contact with the sphere 83, and the outer peripheral surface 52A is held by the holding surface 60 that forms the inner wall of the lens barrel 53. Let Here, the outer diameter of the second lens 52 is approximately the same as or slightly larger than the inner diameter of the lens barrel 53 at the lens holding position (holding surface 60), and a large lens diameter that causes plastic deformation in the lens barrel 53. It does not have.
[0091] 上述のようにして、第 2のレンズ 52も第 1のレンズ 51と同様に、鏡筒 53内に保持さ れる。この第 3実施形態においては、第 1のレンズ 51、第 2のレンズ 52共に鏡筒 53の 内径を基準として保持でき、鏡筒 53の削り等による不確定なチルト発生要因がない。 その上、レンズ間隔を規定する球体 83が鏡筒 53の外部からの磁気吸引力により位 置固定されていることから、レンズ間の距離を極めて高精度に定めるように組立を行 うことが可能になる。  As described above, the second lens 52 is also held in the lens barrel 53 in the same manner as the first lens 51. In the third embodiment, both the first lens 51 and the second lens 52 can be held on the basis of the inner diameter of the lens barrel 53, and there is no uncertain cause of tilt due to shaving of the lens barrel 53 or the like. In addition, the sphere 83 that defines the lens interval is fixed in position by the magnetic attraction force from the outside of the lens barrel 53, so it is possible to assemble so that the distance between the lenses can be determined with extremely high accuracy. become.
[0092] なお、この第 5実施形態において、上記 3つ以上の球体 83を、位置決め部 61と第 1 のレンズ 51との間に配置して、この 3つ以上の球体 83を当接面 61A,レンズ面 51C および鏡筒 53の内周面に当接させてもよい。この場合は、上記 3つ以上の球体 83は 、位置決め部 61の当接面 61Aと第 1レンズ 51との間の間隔を高精度に規定するス ぺーサとなる。さらに、上記 3つ以上の球体 83を、第 1のレンズ 51と第 2のレンズ 52と の間に配置し、かつ、位置決め部 61と第 1のレンズ 51との間に配置してもよいことは 勿論である。また、上記第 5実施形態では、第 1,第 2の 2枚のレンズ 51,52を備えたが 、鏡筒内に圧入された 3枚以上のレンズを備えても良い。この場合、各レンズ間に磁 性材料を含む 3つ以上の球体を配置して、この球体を向かい合うレンズ面と鏡筒の内 周面に当接させる。また、この発明におけるレンズおよび鏡筒の横断面形状につい ては特に制限はなぐ楕円、矩形、その他特殊形状であっても上述と同様の効果を 有するレンズ保持装置を構成することが可能である。  In the fifth embodiment, the three or more spheres 83 are arranged between the positioning portion 61 and the first lens 51, and the three or more spheres 83 are attached to the contact surface 61A. The lens surface 51C and the inner peripheral surface of the lens barrel 53 may be brought into contact with each other. In this case, the three or more spheres 83 are spacers that define the distance between the contact surface 61A of the positioning portion 61 and the first lens 51 with high accuracy. Further, the three or more spheres 83 may be disposed between the first lens 51 and the second lens 52 and between the positioning unit 61 and the first lens 51. Of course. In the fifth embodiment, the first and second lenses 51 and 52 are provided. However, three or more lenses press-fitted into the lens barrel may be provided. In this case, three or more spheres containing a magnetic material are arranged between the lenses, and the spheres are brought into contact with the facing lens surface and the inner peripheral surface of the lens barrel. In addition, the lens holding device having the same effect as described above can be configured even if the cross-sectional shape of the lens and the lens barrel in the present invention is an ellipse, a rectangle, and other special shapes that are not particularly limited.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも光軸方向の一方に開口部 (14,43,56)を有する鏡筒 (12,42,53)と、  [1] A lens barrel (12, 42, 53) having an opening (14, 43, 56) on at least one side in the optical axis direction;
上記一方の開口部から鏡筒内に圧入されて固定された少なくとも 1つのレンズ (11, 41 ,51,52)を備え、  Comprising at least one lens (11, 41, 51, 52) fixed by being press-fitted into the lens barrel from the one opening;
上記鏡筒は、  The lens barrel is
上記一方の開口部から光軸方向の他方に向かって内径が増大しているテーパ内 周面 (16,46,58)と、  A tapered inner peripheral surface (16, 46, 58) having an inner diameter increasing from the one opening to the other in the optical axis direction;
上記テーパ内周面から光軸方向の他方に向力、つて延在していると共に上記レンズ の外周面に径方向外側から当接して上記レンズを保持する保持面 (17,47,60,73)と を有し、  A holding surface (17, 47, 60, 73) that extends from the inner circumferential surface of the taper to the other side in the optical axis direction and that holds the lens by contacting the outer circumferential surface of the lens from the outside in the radial direction. ) And
さらに、上記保持面と交差する径方向内方に延在していると共に上記レンズの光軸 方向の他方の面 (11C,41C,51C)に当接して上記レンズの光軸方向の位置決めを 行う当接面 (18A,45A,61A)を含む位置決め部 (18,45,61)を備えることを特徴とす るレンズ保持装置。  Further, the lens extends inward in the radial direction intersecting the holding surface and contacts the other surface (11C, 41C, 51C) in the optical axis direction of the lens to position the lens in the optical axis direction. A lens holding device comprising a positioning portion (18, 45, 61) including a contact surface (18A, 45A, 61A).
[2] 請求項 1に記載のレンズ保持装置にお!/、て、 [2] The lens holding device according to claim 1! /,
上記鏡筒 (53)内に圧入されて固定された複数のレンズ (51,52)を備え、 さらに、光軸方向に隣り合う 2つの上記レンズの間に配置されて上記 2つのレンズ間 の距離を規定するスぺーサ (63)を備えることを特徴とするレンズ保持装置。  A plurality of lenses (51, 52) that are press-fitted and fixed in the lens barrel (53), and further disposed between the two lenses adjacent in the optical axis direction, and the distance between the two lenses A lens holding device comprising a spacer (63) for defining
[3] 請求項 1に記載のレンズ保持装置にお!/、て、 [3] The lens holding device according to claim 1! /,
上記レンズは、上記鏡筒の光軸方向の一方の開口部から上記テーパ内周面に圧 入され、上記保持面の弾性変形によって、上記鏡筒内に保持されていることを特徴と するレンズ保持装置。  The lens is characterized in that the lens is pressed into the tapered inner peripheral surface from one opening in the optical axis direction of the lens barrel, and is held in the lens barrel by elastic deformation of the holding surface. Holding device.
[4] 請求項 2に記載のレンズ保持装置において、 [4] In the lens holding device according to claim 2,
上記スぺーサは、上記鏡筒と一体であることを特徴とするレンズ保持装置。  The lens holding device, wherein the spacer is integral with the lens barrel.
[5] 請求項 2に記載のレンズ保持装置において、 [5] The lens holding device according to claim 2,
上記スぺーサ (63)は、上記鏡筒 (12,42,53)と別体であることを特徴とするレンズ保 持装置。  The lens holding device, wherein the spacer (63) is separate from the lens barrel (12, 42, 53).
[6] 請求項 1に記載のレンズ保持装置にお!/、て、 上記位置決め部 (18,61)は、上記鏡筒 (12,53)と一体であることを特徴とするレンズ 保持装置。 [6] In the lens holding device according to claim 1,! / The lens holding device, wherein the positioning portion (18, 61) is integral with the lens barrel (12, 53).
[7] 請求項 1に記載のレンズ保持装置にお!/、て、  [7] In the lens holding device according to claim 1,! /
上記位置決め部 (45)は、上記鏡筒 (42)と別体であると共に上記鏡筒に取り付けら れて!/、ることを特徴とするレンズ保持装置。  The lens holding device, wherein the positioning portion (45) is separate from the lens barrel (42) and is attached to the lens barrel! /.
[8] 請求項 1に記載のレンズ保持装置にお!/、て、 [8] In the lens holding device according to claim 1,! /
上記光軸方向の一方の開口部の内周面は、面取り部 (36)を有することを特徴とす るレンズ保持装置。  The lens holding device, wherein an inner peripheral surface of one opening in the optical axis direction has a chamfered portion (36).
[9] 請求項 1に記載のレンズ保持装置にお!/、て、 [9] In the lens holding device according to claim 1,! /
上記レンズは、ガラス製もしくは樹脂製であることを特徴とするレンズ保持装置。  The lens holding device, wherein the lens is made of glass or resin.
[10] 請求項 1に記載のレンズ保持装置にお!/、て、 [10] In the lens holding device according to claim 1,! /
上記鏡筒は、光軸と直交する面による断面において略円形状を示す内周面を有し 上記レンズは、光軸と直交する面による断面形状が略円形状である断面を有するこ とを特徴とするレンズ保持装置。  The lens barrel has an inner peripheral surface showing a substantially circular shape in a cross section by a surface orthogonal to the optical axis, and the lens has a cross section in which the cross sectional shape by a surface orthogonal to the optical axis is substantially circular. A lens holding device.
[11] 請求項 1に記載のレンズ保持装置にお!/、て、 [11] In the lens holding device according to claim 1,! /
上記鏡筒は、光軸と直交する面による断面において略楕円形状を示す内周面を有 し、  The lens barrel has an inner peripheral surface showing a substantially elliptical shape in a cross section by a plane orthogonal to the optical axis,
上記レンズは、光軸と直交する面による断面形状が略楕円形状である断面を有す ることを特徴とするレンズ保持装置。  The lens holding device according to claim 1, wherein the lens has a cross section in which a cross section taken along a plane orthogonal to the optical axis is substantially elliptical.
[12] 請求項 1に記載のレンズ保持装置にお!/、て、 [12] In the lens holding device according to claim 1,! /
上記鏡筒は、光軸と直交する面による断面において略四角形状を示す内周面を有 し、  The lens barrel has an inner peripheral surface showing a substantially square shape in a cross section by a surface orthogonal to the optical axis,
上記レンズは、光軸と直交する面による断面形状が略四角形状である断面を有す ることを特徴とするレンズ保持装置。  The lens holding device according to claim 1, wherein the lens has a cross-section in which a cross-sectional shape by a plane orthogonal to the optical axis is a substantially square shape.
[13] 請求項 10に記載のレンズ保持装置において、 [13] The lens holding device according to claim 10,
上記レンズ (11)の外径を Dl(mm)とし、上記レンズ (11)を圧入する鏡筒の上記光軸 方向の一方の開口部 (14)の内径を D2(mm)とし、上記レンズ (11)を保持していない 状態での上記鏡筒 (12)の保持面 (17)の内径を D3(mm)とすると、 The outer diameter of the lens (11) is Dl (mm), the inner diameter of one opening (14) in the optical axis direction of the lens barrel into which the lens (11) is press-fitted is D2 (mm), and the lens ( 11) does not hold When the inner diameter of the holding surface (17) of the lens barrel (12) in the state is D3 (mm),
0.990D1 < D2く 0.995D3 … (1)  0.990D1 <D2 0.995D3… (1)
0.995DK D2< D1 · · · (2)  0.995DK D2 <D1 (2)
上式 (1)および (2)を満たしていることを特徴とするレンズ保持装置。  A lens holding device characterized by satisfying the above expressions (1) and (2).
[14] 請求項 1に記載のレンズ保持装置にお!/、て、 [14] In the lens holding device according to claim 1,! /
上記鏡筒 (72)の保持面 (73)は、径方向外方へ窪んでいると共に光軸方向と周方向 に所定寸法だけ延在している凹部 (74)を少なくとも 1つ有することを特徴とするレンズ 保持装置。  The holding surface (73) of the lens barrel (72) has at least one recess (74) that is recessed outward in the radial direction and that extends by a predetermined dimension in the optical axis direction and the circumferential direction. A lens holding device.
[15] 請求項 1に記載のレンズ保持装置にお!/、て、  [15] In the lens holding device according to claim 1,! /,
上記レンズは、面取り加工された縁部を有することを特徴とするレンズ保持装置。  The lens holding device, wherein the lens has a chamfered edge.
[16] 請求項 1に記載のレンズ保持装置にお!/、て、 [16] In the lens holding device according to claim 1,! /
上記鏡筒 (53)内に圧入された少なくとも 2枚のレンズ (51,52)と、  At least two lenses (51, 52) press-fitted into the lens barrel (53);
光軸方向に隣り合う 2枚の上記レンズ (51,52)の間に配置されていると共にこの 2枚 のレンズ (51,52)の互いに向かい合う 2つのレンズ面 (51B,52C)および上記鏡筒 (53 )の内周面 (58)に当接する 3つ以上の球体 (83)とを有し、  Two lens surfaces (51B, 52C) and the lens barrel of the two lenses (51, 52) facing each other and disposed between the two lenses (51, 52) adjacent in the optical axis direction Three or more spheres (83) abutting on the inner peripheral surface (58) of (53),
上記球体 (83)は磁性材料を含むことを特徴とするレンズ保持装置。  The lens holding device, wherein the sphere (83) includes a magnetic material.
[17] 請求項 1に記載のレンズ保持装置にお!/、て、 [17] In the lens holding device according to claim 1,! /
上記鏡筒内に圧入された少なくとも 2枚のレンズと、  At least two lenses press-fitted into the lens barrel;
上記位置決め部の当接面とこの位置決め部に対して光軸方向に隣り合うレンズと の間に配置されていると共に上記当接面,この当接面と向かい合う上記レンズのレン ズ面,および上記鏡筒の内周面に当接する 3つ以上の球体とを有し、  The lens is disposed between a contact surface of the positioning portion and a lens adjacent to the positioning portion in the optical axis direction, and the contact surface, the lens surface of the lens facing the contact surface, and the Three or more spheres that contact the inner peripheral surface of the lens barrel,
上記球体は磁性材料を含むことを特徴とするレンズ保持装置。  The lens holding device, wherein the sphere includes a magnetic material.
PCT/JP2007/066860 2006-08-31 2007-08-30 Lens holding device WO2008026677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006236103A JP4027399B2 (en) 2005-12-12 2006-08-31 Lens holding device
JP2006-236103 2006-08-31

Publications (1)

Publication Number Publication Date
WO2008026677A1 true WO2008026677A1 (en) 2008-03-06

Family

ID=39135959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066860 WO2008026677A1 (en) 2006-08-31 2007-08-30 Lens holding device

Country Status (1)

Country Link
WO (1) WO2008026677A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600023A (en) * 2019-10-16 2022-06-07 京瓷株式会社 Lens unit, imaging device, and moving object

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867305U (en) * 1981-10-31 1983-05-07 オリンパス光学工業株式会社 lens holding device
JPS6211817A (en) * 1986-07-18 1987-01-20 Olympus Optical Co Ltd Lens holding device
JPS6267738A (en) * 1985-09-20 1987-03-27 Canon Inc Optical system driving device
JPH0475038A (en) * 1990-07-17 1992-03-10 Fuji Photo Optical Co Ltd Photometric device for camera
JPH04166905A (en) * 1990-10-31 1992-06-12 Olympus Optical Co Ltd Lens barrel
JPH04204408A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Lens holding structure
JPH09318858A (en) * 1996-05-30 1997-12-12 Nikon Corp Lens barrel
JPH10177128A (en) * 1996-12-18 1998-06-30 Nitto Kogaku Kk Lens holding body, lens, and lens assembly
JPH10282389A (en) * 1997-04-10 1998-10-23 Minolta Co Ltd Lens fitting structure
JP2005513523A (en) * 2001-12-14 2005-05-12 レイセオン・カンパニー Precisely aligned lens structure and manufacturing method thereof
JP2006227062A (en) * 2005-02-15 2006-08-31 Tamron Co Ltd Reciprocating drive device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867305U (en) * 1981-10-31 1983-05-07 オリンパス光学工業株式会社 lens holding device
JPS6267738A (en) * 1985-09-20 1987-03-27 Canon Inc Optical system driving device
JPS6211817A (en) * 1986-07-18 1987-01-20 Olympus Optical Co Ltd Lens holding device
JPH0475038A (en) * 1990-07-17 1992-03-10 Fuji Photo Optical Co Ltd Photometric device for camera
JPH04166905A (en) * 1990-10-31 1992-06-12 Olympus Optical Co Ltd Lens barrel
JPH04204408A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Lens holding structure
JPH09318858A (en) * 1996-05-30 1997-12-12 Nikon Corp Lens barrel
JPH10177128A (en) * 1996-12-18 1998-06-30 Nitto Kogaku Kk Lens holding body, lens, and lens assembly
JPH10282389A (en) * 1997-04-10 1998-10-23 Minolta Co Ltd Lens fitting structure
JP2005513523A (en) * 2001-12-14 2005-05-12 レイセオン・カンパニー Precisely aligned lens structure and manufacturing method thereof
JP2006227062A (en) * 2005-02-15 2006-08-31 Tamron Co Ltd Reciprocating drive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600023A (en) * 2019-10-16 2022-06-07 京瓷株式会社 Lens unit, imaging device, and moving object

Similar Documents

Publication Publication Date Title
JP6877354B2 (en) Optical assembly with translational and centered sleeves
EP3198322B1 (en) Mounting of an optical element in a barrel using a flexible ring
US20060171046A1 (en) Passively aligned optical elements
EP3172607B1 (en) Optical assemblies with tilt-controlled mounting of an optical element in a barrel
JP2006284789A (en) Lens barrel
US10775582B2 (en) Lens unit and manufacturing method of metal mold
JP2007188034A (en) Lens holding device
JP7103818B2 (en) Lens unit
US5798876A (en) Lens barrel with peripheral parts of first and second lenses in contact
JP2005258329A (en) Compound lens and molding die therefor
CA3068077C (en) Optical elements with toroidal engagement interfaces and method for assembling such elements
JP4027399B2 (en) Lens holding device
JP7103819B2 (en) Lens unit
JP4521210B2 (en) Lens barrel
CA3128736C (en) Centering of an optical element using edge contact mounting
JP2006126537A (en) Lens barrel
WO2008026677A1 (en) Lens holding device
KR20140136726A (en) Lens unit for camera module
JP4970366B2 (en) Combination lens, lens unit, imaging device and optical apparatus
JPH10123388A (en) Composite lens and optical system with it
JP2002090604A (en) Lens unit
JP2001042192A (en) Cam barrel, optical system drive assembly and optical apparatus
US20240176213A1 (en) Lens barrel and camera equipped with same
JP2005331683A (en) Positioning structure, optical system, and method of optical system
JP6529339B2 (en) Lens barrel and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07806337

Country of ref document: EP

Kind code of ref document: A1