WO2008026472A1 - Cooling box and cooling device mounted thereon - Google Patents

Cooling box and cooling device mounted thereon Download PDF

Info

Publication number
WO2008026472A1
WO2008026472A1 PCT/JP2007/066142 JP2007066142W WO2008026472A1 WO 2008026472 A1 WO2008026472 A1 WO 2008026472A1 JP 2007066142 W JP2007066142 W JP 2007066142W WO 2008026472 A1 WO2008026472 A1 WO 2008026472A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold air
partition
heat
refrigerator
temperature side
Prior art date
Application number
PCT/JP2007/066142
Other languages
French (fr)
Japanese (ja)
Inventor
Masuo Kawabata
Kiyoaki Tanaka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008026472A1 publication Critical patent/WO2008026472A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the present invention relates to a refrigerator and a cooling device mounted on the refrigerator.
  • the term “refrigerator” is used in this specification to mean any device that lowers the temperature of food or other items that are to be cooled. It is called “refrigerator”, “freezer”, “freezer refrigerator”. The name of the product such as “showcase” or “vending machine” may be used.
  • a refrigerator for example, a refrigerator
  • a configuration in which an interior is divided into a plurality of compartments and used separately for a refrigerator compartment and a freezer compartment has become common.
  • a chilled room or an ice greenhouse may be provided with a temperature zone between the normal refrigeration and freezing temperatures.
  • a method of dividing the refrigerator body into left and right is also adopted. An example of this can be seen in Patent Document 1.
  • a compressor of a refrigeration cycle is arranged on the top surface of the main body.
  • Stirling refrigerators that do not use ozone-depleting substances as refrigerants are in the spotlight.
  • Stirling refrigerators use an inert gas such as helium as the working medium, and the piston and displacer are operated by external power to repeatedly compress and expand the working medium, increasing the temperature of the high-temperature head (heat dissipating part) and the low-temperature head. Lower the temperature of the (heat-absorbing part). And heat is dissipated to the surrounding environment with a high-temperature head, and heat is absorbed from the inside with a low-temperature head. is there.
  • Stirling refrigerators also have the characteristics that they can obtain lower refrigeration temperatures than ordinary compressors.
  • An example of a refrigerator equipped with a cooling device using a Stirling refrigerator can be seen in Patent Document 3.
  • a structural example of a Stirling refrigerator can be seen in Patent Document 4.
  • Patent Document 3 describes embodiments of the invention from 1 to 3.
  • the Stirling refrigerator is arranged with its axis line horizontal, that is, in a horizontal state.
  • a configuration in which the axis of the Stirling refrigerator is vertical that is, in a vertical installation state as shown in FIG. 10 of the same document.
  • the arrangement is such that the low temperature part is on top and the high temperature part is on the bottom.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 61050
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2006-105575
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2005-3351
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-345009
  • the cold air cooled by the cooling unit of the cooling device is supplied to each section through the cold air passage to obtain a desired temperature.
  • the cold air passage is usually provided on the front side of the heat insulating wall at the back of the heat insulating casing of the refrigerator.
  • the depth of the internal space of the heat-insulating housing was narrowed toward the front side, preventing effective use of the space.
  • the arrangement portion protrudes into the internal space, and the internal volume is reduced. None of the refrigerators described in the above patent documents has found a solution to this problem.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a refrigerator that can improve the utilization of the internal space of the heat insulating casing.
  • an object of the present invention is to provide a refrigerator that can improve the utilization of the internal space of the heat insulating casing.
  • by devising the flow of cold air it is possible to diversify the storage temperature range and to provide a refrigerator with less energy loss.
  • an object of the present invention is a cooling device including a Stirling refrigerator as a component, in which heat insulation between the low temperature part and the high temperature part is easy, and the refrigerant pipe is also attached. It is to provide what becomes. It is also intended to make it easier to control the force, vibration and noise of the cooling system. By installing such a cooling device, it is to provide a refrigerator having a large effective internal volume.
  • the present invention is characterized in that a part of the cooling device is arranged in a machine room formed in the cooler in the left or right side of the upper part of the back surface of the heat insulating housing.
  • the machine room is provided at a position on the left side or on the right side of the rear upper portion of the heat-insulating housing. Therefore, it is possible to reduce the protrusion into the warehouse and increase the effective internal volume. it can.
  • the present invention provides the cooler configured as described above, wherein the heat insulating casing includes a storage chamber for storing an object to be cooled, and the cool air cooled by the cooling unit of the cooling device is stored in the cooler via the cool air passage.
  • the cool air passage is provided in a partition portion that partitions the storage chamber into a predetermined state.
  • the cool air passage in the partition portion, the cool air passage can be arranged using the space that does not contribute to the storage of the object to be cooled, and the space utilization rate of the refrigerator is improved. . Further, the work for forming the cold air passage is facilitated.
  • the partition portion that partitions the storage chamber into a predetermined state includes a vertical partition portion that partitions the storage chamber into a first partition and a second partition, and the vertical direction At least a part of the cold air passage is formed in the partition portion.
  • the cooler configured as described above, at least a part of the cooling unit of the cooling device is disposed at a level below the lower part of the partition part, and the cool air passage of the partition part is cooled by the cooling part.
  • An up-cooling air passage for raising the cooled air and a down-cooling air passage for lowering the raised cold air are formed, and cold air is supplied from the up-cooling air passage to one of the partitions, and the down-cooling air is supplied to the other. It is characterized by supplying cold air from the passage!
  • the cold air supplied from the descending cold air passage is closer to the cooling device! /, And the temperature is higher than the cold air supplied from the upstream cold air passage! /, So it is stored on both sides of the partition portion.
  • the storage temperature range can be diversified by varying the room temperature.
  • the present invention provides the cooler configured as described above, wherein the cool air discharge port located in the upper part of the storage chamber and the cool air discharge port located in the middle part in the vertical direction of the partitioning part with respect to the cool air passage. It is characterized by being provided!
  • the storage chamber is uniformly cooled by the cool air supplied from the upper part and the cool air supplied from the cutting unit at a lower position.
  • the present invention is characterized in that, in the cooler having the above-described configuration, at least a part of the cold air discharge ports has a horizontal shape and a slit shape in the horizontal direction.
  • the storage chamber is uniformly cooled by the cold air supplied from the horizontally long slit-like cold air discharge port.
  • the present invention is characterized in that, in the cooler configured as described above, at least a part of the heat generating portion of the cooling device is disposed in the machine room.
  • the present invention is characterized in that, in the cooler having the above-described configuration, the machine room is disposed outside the compartment on the side to which the cold air is supplied from the descending cold air passage.
  • the heating unit of the cooling device is adjacent to the compartment where the temperature can be higher in comparison with the other compartment, and there is no contradiction in the setting of the cooling temperature of each compartment.
  • the present invention includes a horizontal partition that divides the heat-insulating housing into upper and lower parts, the cooling device includes a Stirling refrigerator as a component, and the Stirling refrigerator A high temperature side condenser is provided above the cooling section, and the cooling section that cools the air with the cold heat of the Stirling refrigerator is positioned below the horizontal partition section.
  • the present invention is a cooling device mounted in the refrigerator having the above-described configuration, and includes a Stirling refrigerator having a high-temperature head and a low-temperature head as constituent elements, and the high-temperature head is provided for the Stirling refrigerator. Is connected to a high temperature side circulation circuit for extracting heat, and the low temperature head is connected to a low temperature side circulation circuit for extracting heat, so that the high temperature head is on and the low temperature head is on the Stirling refrigerator. It is characterized by having set the attitude of.
  • the heat release cycle including the high temperature head and the high temperature side circulation circuit and the cooling cycle including the low temperature head and the low temperature side circulation circuit can be separated without difficulty. Piping work is also easy. In addition, since the structure near the low-temperature head is not complicated, it is easy to form a heat insulation structure.
  • the secondary refrigerant pipe of the high-temperature side circulation circuit extends upward after being led out from the high-temperature side evaporator thermally connected to the high-temperature head,
  • the secondary refrigerant piping of the circulation circuit is derived from a low-temperature side condenser thermally connected to the low-temperature head and then extends downward.
  • the heat release cycle and the cooling cycle are completely separated, and a sufficient heat insulating space can be secured between them.
  • the present invention provides the cooling device having the above-described configuration, wherein the high-temperature side circulation circuit includes a high-temperature side evaporator thermally connected to the high-temperature head and a high-temperature side condenser for heat dissipation by a secondary refrigerant pipe.
  • the secondary refrigerant is connected to allow natural circulation of the secondary refrigerant, and a power unit of the Stirling refrigerator is arranged between the high temperature side evaporator and the high temperature side condenser.
  • the difference in height between the high-temperature side evaporator and the high-temperature side condenser can be ensured large enough to naturally circulate the secondary refrigerant.
  • the heat dissipation efficiency is improved, and the space between the high temperature side evaporator and the high temperature side condenser is used for the arrangement of the power unit of the Stirling refrigerator, so that the space can be used effectively.
  • the present invention is configured such that the high-temperature side condenser and the heat-dissipating fan for forcibly cooling the support support the mounting legs of the Stirling refrigerator or the Stirling refrigerator itself. It is characterized by being held in space.
  • the high-temperature side condenser and the heat-dissipating fan that forcibly cools the high-temperature side condenser are held in the space with the mounting legs of the Stirling refrigerator as a support, It is characterized in that vibration absorbing means is interposed between the mounting leg and a support member that supports the mounting leg.
  • the action of the vibration absorbing means on the Stirling refrigerator can be exerted on the high-temperature side condenser and the heat dissipating fan, and the force S can be reduced by reducing the vibration level of these components all at once.
  • the Stirling refrigerator of the cooling device having the above-described configuration is disposed in a recess at the upper back of the heat insulating housing, and the heat insulating housing is positioned below the Stirling refrigerator. It is a refrigerator having a heat exchanger for cooling.
  • the Stirling refrigerator is disposed in the recess at the upper back of the heat insulating casing, while the cooling heat exchanger is positioned below the Stirling refrigerator in the heat insulating casing. Therefore, it is possible to provide a cooler with a rational structure in which the heat release cycle and the cooling cycle are separated easily.
  • the piping configuration is also easy to assemble, making assembly work easier.
  • the machine room in which a part of the cooling device is arranged is formed at the left side or the right side above the rear surface of the heat insulating housing, so that the protrusion into the chamber is small and effective.
  • the internal volume can be increased.
  • the cooler according to the present invention has the cool air passage in the partition that partitions the storage chamber into a predetermined state, the space utilization rate of the cooler can be improved, and the interior of the storage chamber of the refrigerator can be covered. It can be used effectively for storing cooling objects.
  • a cool air passage is provided in the partition that partitions the storage chamber, that at least a part of the cool air passage is formed in the vertical partition, and a cooling device at the left or right corner above the back of the heat insulating housing.
  • the inside of the storage chamber can be used effectively for storing the object to be cooled, for example, by forming a recess for arranging a part of the storage space.
  • it is possible to obtain an easy-to-use thin refrigerator by reducing the external dimensions of the refrigerator in the depth direction without compromising the internal volume.
  • the cool air passage of the partition is not a straight line but is continuous from the up cool air passage to the down cool air passage, and is separated from the up cool air passage by the partition portion, and from the down cool air passage to the other Since the cool air is supplied to each, the storage temperature is varied on both sides of the partition using the temperature difference of the cool air that naturally occurs in the ascending cool air passage and the descending cool air passage. In addition, since the compartments are on both sides of the partition, and the cold heat is released to each compartment, a refrigerator with less energy loss can be obtained.
  • the cooling device is connected to a high-temperature head, a high-temperature side circulation circuit for extracting heat, and the low-temperature head is connected to a Stirling refrigerator equipped with a high-temperature head and a low-temperature head.
  • the heat dissipation cycle including the high temperature head and the high temperature side circulation circuit, the low temperature head and The cooling cycle including the low-temperature side circulation circuit can be separated without waste. Piping work is also easy.
  • the structure near the low-temperature head is complicated! /, So it is easy to form a heat insulation structure.
  • the Stirling refrigerator of the cooling device is disposed in the recess at the upper back of the heat insulating casing of the refrigerator, and the cooling casing is used for cooling at a position below the Stirling refrigerator inside the insulating casing. Therefore, it is possible to provide a cooler with a rational structure in which the heat release cycle and the cooling cycle are separated without difficulty and the piping configuration is also satisfactory.
  • FIG. 1 Front view of the refrigerator according to the first embodiment.
  • FIG. 2 Front view with the heat insulation door of the refrigerator of the first embodiment opened.
  • FIG. 3 Vertical sectional view of the refrigerator of the first embodiment
  • FIG. 4 Horizontal sectional view of the refrigerator of the first embodiment taken along line A—A in FIG.
  • FIG. 5 is a schematic configuration diagram of a cooling device mounted in the refrigerator of the first embodiment.
  • FIG. 6 Partial vertical sectional view of the cooling device mounting location of the refrigerator of the first embodiment.
  • FIG. 9 is a partial vertical sectional view showing a first modified embodiment of a cooling device mounting location in the refrigerator of the first embodiment.
  • FIG. 10 is a partial vertical sectional view showing a second modified embodiment of the cooling device mounting location in the refrigerator of the first embodiment.
  • FIG. 11 is a partial vertical sectional view showing a third modified embodiment of the cooling device mounting location in the refrigerator of the first embodiment.
  • FIG. 12 is a partial vertical sectional view showing a fourth modified embodiment of the cooling device mounting location in the refrigerator of the first embodiment.
  • FIG. 13 is a partial vertical sectional view showing a fifth modified embodiment of the cooling device mounting location in the refrigerator of the first embodiment.
  • FIG. 14 is a front view of a refrigerator according to the second embodiment.
  • FIG. 15 Front view of the second embodiment with the heat insulation door removed.
  • FIG. 16 Vertical sectional view of the refrigerator of the second embodiment
  • FIG. 17 Vertical sectional view of different parts of the refrigerator of the second embodiment.
  • FIG. 18 is a diagram illustrating the configuration of the cold air passage of the refrigerator according to the second embodiment.
  • Fig. 19 Horizontal sectional view of the refrigerator of the second embodiment cut along line BB in Fig. 17.
  • FIG. 21 is a schematic configuration diagram of a cooling device mounted in the refrigerator of the second embodiment.
  • FIG. 22 is a partial vertical sectional view of the cooling device mounting portion of the refrigerator of the second embodiment.
  • FIG. 23 is a schematic perspective view of a cooling device mounted in the refrigerator of the second embodiment.
  • FIG. 24 is a block diagram showing the flow of cold air in the refrigerator of the second embodiment.
  • FIG. 25 is a partial vertical sectional view showing a first modified embodiment of a cooling device mounting location in the refrigerator of the second embodiment.
  • FIG. 26 is a partial vertical sectional view showing a second modified embodiment of the cooling device mounting location in the refrigerator of the second embodiment.
  • FIG. 27 is a partial vertical sectional view showing a third modified embodiment of the cooling device mounting location in the refrigerator of the second embodiment.
  • FIG. 28 is a partial vertical sectional view showing a fourth modified embodiment of the cooling device mounting location in the refrigerator of the second embodiment.
  • FIG. 29 is a partial vertical sectional view showing a fifth modified embodiment of the cooling device mounting location in the refrigerator of the second embodiment.
  • FIG. 30 is a vertical sectional view showing a deformation mode of the cold air discharge port in the cooler of the second embodiment.
  • FIG. 31 is a configuration explanatory diagram of a cold air passage showing a deformation mode of the cold air discharge port in the cooler of the second embodiment.
  • FIG. 32 is a horizontal sectional view showing a deformation mode of the vertical partition in the refrigerator of the second embodiment.
  • FIG. 33 is a horizontal sectional view showing another modification of the vertical partition in the refrigerator according to the second embodiment.
  • FIG. 34 is an enlarged horizontal sectional view showing a deformation mode of the vertical partition in the refrigerator of the second embodiment.
  • the refrigerator in this embodiment is used as a refrigerator.
  • the refrigerator 1 includes a heat insulating housing 10.
  • the inside of the heat insulating housing 10 serves as a storage chamber.
  • “storage room” refers to a compartment in the refrigerated temperature zone (0 ° C to 10 ° C) and a temperature zone slightly lower (up to about minus 3 ° C). Excludes temperature zones where chilled and partial names are used, refrigeration temperature zones (minus tens of degrees or less), high temperature zones (eg, 50 ° C to 80 ° C), and refrigeration temperature zones It is a general term for spaces used for storage (for storage) of food (including seasonings), chemicals, and cosmetics that are to be cooled, such as compartments between the high temperature zone and the freezing temperature zone. Further, in this specification, the left side of the observer facing the front surface of the heat insulating housing 10 is defined as the left side of the heat insulating housing 10, and the right side of the observer is defined as the right side of the heat insulating housing 10.
  • the heat insulating casing 10 has an opening for taking in and out food on the front surface, and the opening is closed with a heat insulating door.
  • the interior of the heat insulating housing 10 is divided into upper, lower, left and right, the upper left is the first partition 15, the upper right is the second partition 16, the lower left is the third partition 17, and the lower right is the first.
  • a first heat insulating door 20 is provided at the front opening of the first partition 15, a second heat insulating door 21 is provided at the front opening of the second partition 16, and a front opening of the third partition 17 is provided.
  • a third heat insulating door 22 is provided, and a fourth heat insulating door 23 is provided at the front opening of the fourth partition 18.
  • the 1st heat insulation door 20 and the 3rd heat insulation door 22 rotate centering on the hinge part provided in the left side toward the 2nd heat insulation door 21 and the 4th heat insulation door 23 are the hinge parts provided in the right side toward Rotate around the center.
  • the first heat insulating door 20, the second heat insulating door 21, the third heat insulating door 22, and the fourth heat insulating door 23 are provided with a hand 20H, 21H, 22H, 23H.
  • any one or some of the first partition 15 to the fourth partition 18 may be further divided to install a fifth partition, a sixth partition, etc. Not shown! /,).
  • the first partition 15 and the second partition 16 are used as a refrigerator compartment.
  • the first partition 15 is divided into a plurality of stages by a plurality of shelves 30.
  • a drawer-type case 31 is arranged under the lowest shelf 30.
  • the second partition 16 is also divided into a plurality of stages by a plurality of shelves 32.
  • a drawer-type case 33 is arranged below the lowest shelf 32.
  • a rack 36 (see FIG. 3) for storing bottles and beverage paper packs is attached to the inner surfaces of the first heat insulation door 20 and the second heat insulation door 21.
  • the third partition 17 and the fourth partition 18 are used as freezing rooms.
  • a total of 3 case cases 40a, 40b, 40c force are inserted into the third partition section 17 (a total of 4 case cases 41a, 41b, 41c, 41d forces are inserted so as to overlap each other vertically)
  • 40a, 40b, 40c are supported on the inner surface of the third partition 17 by the edges on both sides
  • cases 41a, 41b, 41c, 41d are supported on the inner surface of the fourth partition 18 by the edges on both sides. Can be pulled out by sliding it forward.
  • the third compartment 17 and the fourth compartment 18 have a heat insulation structure thicker than the refrigeration compartment as a freezer compartment, they are divided as necessary, and an independent compartment specialized in ice making is installed, From quick freezing to thawing, it is possible to set up an independent section suitable for various required temperature settings.
  • the interior of the refrigerator 1 is cooled by the cooling device 100 shown in FIG.
  • the central presence of components included in the cooling device 100 is the S Stirling refrigerator 110.
  • the Stirling refrigerator 110 generates heat and cold by a reverse Stirling cycle.
  • the heat is mainly removed from the high temperature head 111 as waste heat, and the cold is extracted from the low temperature head 112.
  • the structure of the Stirling refrigerator 110 is basically the same as that described in Patent Document 4, in which components such as a displacer, a piston, and a linear motor that drives the piston are arranged, and the external shape is It has a rotating body shape with an axis.
  • the Stirling refrigerator 110 is arranged with its axis vertically set so that the high temperature head 111 is on the top and the low temperature head 112 is on the bottom.
  • the power unit 113 containing the linear motor is further connected to the high temperature head 111. Located on the top.
  • the high temperature side circulation circuit 120 extracts heat from the high temperature head 111 and dissipates it.
  • the high temperature side circulation circuit 120 is filled with water (including an aqueous solution) or a hydrocarbon refrigerant as a secondary refrigerant.
  • Secondary refrigerant is defined by defining the working medium inside Stirling refrigerator 110 as “primary refrigerant” and the working medium used for heat transport outside Stirling refrigerator 110 as “secondary refrigerant”.
  • the “tertiary refrigerant” described later is a refrigerant that exchanges heat with a secondary refrigerant.
  • the high-temperature side circulation circuit 120 is a thermosiphon circulation circuit that naturally circulates the secondary refrigerant.
  • the high-temperature head circuit 120 is a high-temperature head mounted in a state in which heat is transferred between the high-temperature heads 111, that is, in a thermally connected state. It includes a side evaporator 121, a high temperature side condenser 122 disposed on the Stirling refrigerator 110, and a secondary refrigerant pipe 123 connecting the high temperature side evaporator 121 and the high temperature side condenser 122.
  • the high temperature side condenser 122 functions as a heat exchanger for heat dissipation.
  • the high-temperature side evaporator 121 is formed by molding a metal having good heat conductivity such as copper, copper alloy, or aluminum into a hollow ring shape.
  • the high-temperature side evaporator 121 is fitted to the outer peripheral surface of the high-temperature head 111 and heats the high-temperature head 111.
  • a secondary refrigerant pipe 123 is led out from the side surface of the high temperature side evaporator 121.
  • the secondary refrigerant pipe 123 is led out from the side surface of the high temperature side evaporator 121 and then extends upward. And it is connected to the high temperature side condenser 122 above the Stirling refrigerator 110.
  • the secondary refrigerant pipe 123 is composed of a gas phase pipe 123G that sends the vaporized secondary refrigerant to the high temperature side condenser 122 and a secondary refrigerant that has condensed into a liquid at the high temperature side condenser 122 and is on the high temperature side. Divided into a liquid phase pipe 123L that returns to the evaporator 121!
  • the high-temperature side condenser 122 is made of copper or copper alloy! /, Good heat conduction! /, A pipe 122a made of a metal material is bent, and a large number of heat radiation made of a metal material also having good heat conduction is made. It is the structure where fin 1 22b was attached. A heat radiating fan 124 for forced air cooling is combined with the high temperature side condenser 122.
  • the low-temperature head 112 is thermally connected to the low-temperature side circulation circuit 130.
  • the low temperature side circulation circuit 130 is filled with a natural refrigerant such as carbon dioxide (CO 2) as a secondary refrigerant.
  • CO 2 carbon dioxide
  • the 30 includes a low-temperature side condenser 131 mounted in a state of being thermally connected to the low-temperature head 112, a low-temperature side evaporator 132 installed in the heat insulating casing 10 of the refrigerator 1, and a low-temperature side condenser 131
  • a secondary refrigerant pipe 133 connecting the low temperature side evaporator 132 is included.
  • the low temperature side evaporator 132 functions as a cooling unit of the cooling device 100.
  • the low-temperature side condenser 131 is formed by molding a metal having good thermal conductivity such as copper, copper alloy, or aluminum into a hollow ring shape.
  • the low-temperature side condenser 131 is fitted to the outer peripheral surface of the low-temperature head 112, and the low-temperature head 112 is heated.
  • a secondary refrigerant pipe 133 is led out from the side surface of the low temperature side condenser 131.
  • the secondary refrigerant pipe 133 is led out from the side surface of the low-temperature side condenser 131 and then extends downward. Then, it enters the inside of the heat insulating casing 10 and is connected to the low temperature side evaporator 132.
  • the secondary refrigerant pipe 133 is composed of a liquid-phase pipe 133L that causes the secondary refrigerant that has been condensed into a liquid by the low-temperature side condenser 131 to flow down to the low-temperature side evaporator 1 32 and vaporized by the low-temperature side evaporator 132 to form a gas. It is divided into a gas-phase pipe 133G for returning the secondary refrigerant thus obtained to the low-temperature side condenser 131.
  • the low-temperature side evaporator 132 is made of a plurality of heat-absorbing fins made of a metal material having a good heat conductivity after bending a pipe 132a made of a metal material having a good heat conductivity such as copper or a copper alloy. 132b is attached.
  • the temperatures of the power unit 113, the high temperature head 111, and the high temperature side circulation circuit 120 are increased. That is, these become the heat generating part of the cooling device 100.
  • the temperature of the low temperature head 112 and the low temperature side circulation circuit 130 is lowered.
  • the cooling device 100 is mounted in the refrigerator 1 as follows.
  • a recess 46 serving as a machine room is formed in the upper part of the rear surface of the heat insulating casing 10, that is, the corners of the upper surface and the rear surface (see FIGS. 3, 4, and 6).
  • the recess 46 is provided at a position biased to the left when the heat-insulating housing 10 is viewed from the front, that is, at a position on the left side of the back of the first partition portion 15.
  • the recess 46 accommodates a part of the Stirling refrigerator 110, the high temperature side evaporator 121, the high temperature side condenser 122, the secondary refrigerant pipe 123, the heat dissipation fan 124, the low temperature side condenser 131, and the secondary refrigerant pipe 133. . After all the elements to be accommodated are accommodated, the upper and rear openings of the recess 46 are closed with appropriate ventilation grills.
  • the heat generating part of the cooling device 100 is in the first compartment 15 used as a refrigerator compartment, which has a higher temperature than the third compartment 17 and the fourth compartment 18 used as the freezer compartment. Since they are arranged adjacent to each other, the thermal insulation layer between them can be made thinner than in the case where they are arranged next to the third partition part 17 and the fourth partition part 18.
  • the heat generating part of the cooling device 100 is arranged in the concave part 46 formed in the corner on the left side above the rear surface of the heat insulating casing 10, the whole corner part behind the ceiling part of the storage room is disposed therein. However, the protrusion 46 does not protrude into the storage chamber, and the protrusion 46 protrudes into the storage chamber, so that the effective internal volume of the storage chamber can be increased.
  • the heat insulating wall on the left side as viewed from the front of the concave portion 46 can be removed, and the concave portion 46 can be moved to the left side by the thickness of the heat insulating wall. In this way, the protrusion of the recess 46 into the storage chamber is further reduced, the effective internal volume of the storage chamber is increased, and the volumetric efficiency is further improved.
  • the recess 46 can also be formed in the vicinity of the right-hand corner of the upper part of the back surface of the heat insulating housing 10. The effects in this case are the same as described above.
  • a support member 140 In supporting the Stirling refrigerator 110 inside the recess 46, a support member 140 (see FIG. 8) is used.
  • the support member 140 is a frame having a frame shape formed as a separate part from the heat insulating casing 10, and is horizontally fixed to an intermediate height of the recess 46 by appropriate fixing means.
  • An opening 141 through which the secondary refrigerant pipe 123 of the Stirling refrigerator 110 and the high-temperature side circulation circuit 120 passes is formed inside the support member 140.
  • overhanging portions 142 for supporting a vibration absorber described below from below are formed at four locations.
  • a flange-like mounting leg 114 (see Fig. 7) formed by pressing a sheet metal is fixed to the outer surface of the power unit 113 of the Stirling refrigerator 110 by appropriate means such as welding.
  • the mounting leg 114 is formed with four leg portions 114a whose tip ends overlap the overhanging portion 142 of the support member 140 in four radial positions.
  • the mounting legs 114 are not limited to press-formed products. It may be a die-cast product. It may be an injection-molded high strength synthetic resin material such as MC nylon.
  • the Stirling refrigerator 110 is inserted from above into the opening 141 of the support member 140 with the axis line vertical so that the low-temperature head 112 comes to the bottom and the high-temperature head 111 comes on top. Is done.
  • the weight of the Stirling refrigerator 110 is the force supported by the overhanging portion 142 supporting the leg portion 114a of the mounting leg 114.
  • vibration absorbing means is interposed between the overhanging portion 142 and the leg portion 114a.
  • the columnar vibration absorber 143 made of an elastic material such as rubber constitutes the vibration absorbing means.
  • the vibration absorber 143 is provided with a Stirling refrigerator 110 at the center of the four overhanging parts 142.
  • the role of supporting the side surface of the portion 113 so as not to contact the overhanging portion 142 is required. Therefore, the vibration absorber 143 is held by an appropriate connecting means so as not to be displaced or dropped from between the overhanging portion 142 and the leg portion 114a.
  • the connecting means well-known machine elements such as bolts, nuts, and washers can be used.
  • the high temperature side circulation circuit 120 is connected to the high temperature head 111 before the Stirling refrigerator 110 is attached to the support member 140. In that state, the portions of the low temperature head 1 12 and the high temperature head 111 of the Stirling refrigerator 110, the high temperature side evaporator 121, and the secondary refrigerant pipe 123 are inserted into the opening 141 of the support member 140, The leg portion 114 a of the mounting leg 114 is seated on the upper surface of the vibration absorber 143.
  • the high temperature side condenser 122 is positioned above the Stirling refrigerator 110 while being supported by the secondary refrigerant pipe 123.
  • FIG. 5 only one gas-phase pipe 123G and one liquid-phase pipe 123L are shown. However, in the actual configuration, as shown in FIG. 7, two gas-phase pipes 123G and two liquid-phase pipes 123L are shown. Exists.
  • a heat radiating fan 124 is connected to the lower surface of the high temperature side condenser 122 via a duct 125.
  • the blowing direction of the heat release fan 124 may be a direction in which wind is blown to the high temperature side condenser 122 or may be a direction in which wind is taken in through the high temperature side condenser 122.
  • the low temperature side circulation circuit 130 is a stage where the Stirling refrigerator 110 is attached to the support member 140 or in front of it, and the low temperature head 112 passes through the opening 141 and heads under the support member 140. At the stage of taking out, it is connected to the low temperature head 112.
  • the heat radiation efficiency is improved, and the space between the high temperature side evaporator 121 and the high temperature side condenser 122 is used for the arrangement of the power unit 113 of the Stirling refrigerator 110, so that the space can be effectively used.
  • the heat dissipating fan 124 that forcibly air-cools the high temperature side condenser 122 is also on the high temperature side. It is arranged between the evaporator 121 and the high temperature side condenser 122. This configuration also helps to increase the height difference between the high temperature side evaporator 121 and the high temperature side condenser 122.
  • the secondary refrigerant pipe 123 of the high temperature side circulation circuit 120 is led out from the high temperature side evaporator 121 and then extends upward toward the high temperature side condenser 122 above the Stirling refrigerator 110.
  • the secondary refrigerant pipe 133 of the low temperature side circulation circuit 130 is led out from the low temperature side condenser 131 and then extends downward toward the low temperature side evaporator 132 below the Stirling refrigerator 110.
  • the secondary refrigerant pipe 123 from the high-temperature side evaporator 121 on the upper side is directed upward, and the secondary refrigerant pipe 133 from the lower-temperature side condenser 131 on the lower side is directed downward. Because of the composition, the cooling cycle including the low temperature head 112 and the low temperature side circulation circuit 130 and the heat radiation cycle including the high temperature head 111 and the high temperature side circulation circuit 120 can be separated without waste.
  • the piping work is also easy.
  • the secondary refrigerant pipe 133 can be more easily routed, and the circulation efficiency of the secondary refrigerant can be improved. improves.
  • the connection between the secondary refrigerant pipe 133 and the low-temperature side evaporator 132 is also provided on the side where the Stirling refrigerator 110 is provided, the secondary refrigerant pipe 133 can be routed more easily and the circulation efficiency of the secondary refrigerant can be increased. Is further improved.
  • the thermal insulator 144 surrounding the low-temperature head 112 and the secondary refrigerant pipe 133 is indicated by phantom lines.
  • the heat insulator 144 can be formed by a method that encloses a predetermined space and performs urethane foaming in the space, or a combination of a plurality of foamed urethane blocks!
  • the high-temperature side condenser 122, the heat radiating fan 124, and the duct 125 are held in the internal space of the recess 46 by the secondary refrigerant pipe 123, supporting the Stirling refrigerator 110 itself! For this reason, the high temperature side condenser 122 and the heat radiating fan 124 are supported together with the Stirling refrigerator 110, and the vibration absorbing action of the vibration absorber 143 can also be exerted on the high temperature side condenser 122 and the heat radiating fan 124. The vibration level of these components can be reduced at once.
  • the Stirling refrigerator 110 connected to the ring circuit 120 is passed through the opening 141 of the support member 140 from above, and then the low temperature side circulation circuit 130 is connected to the low temperature head 112 to facilitate assembly.
  • the low temperature side evaporator 132 is placed in a position below the Stirling refrigerator 110 inside the heat insulating casing 10. That is, the cooling ducts 250 and 251 force S extending in the vertical direction along the inner wall on the back side are provided inside the heat insulating casing 10.
  • the cooling duct 250 is located on the back side, and the cooling dust 251 is located on the front side thereof. At the lower end of the cooling duct 250, there is an air inlet 252 force S that sucks the air in the cabinet.
  • the low temperature side evaporator 132 is installed in the cooling duct 250 at a position above the air inlet 252.
  • a fan 253 for blowing air to the cooling duct 251 is provided above the low temperature side evaporator 132.
  • the secondary refrigerant inside the high-temperature side evaporator 121 is evaporated by the heat to become a gas, and the heat is held as latent heat.
  • the gasified secondary refrigerant rises in the gas-phase pipe 123G and enters the high-temperature side condenser 122, where it condenses and sensible heat of latent heat.
  • the sensible heat is dissipated from the surface of the high-temperature side condenser 122 to the outside.
  • the wind blown from the heat dissipation fan 124 helps heat dissipation.
  • the secondary refrigerant that has condensed and turned down descends the liquid phase pipe 123L and returns to the high-temperature side evaporator 121.
  • the cold head 112 generates cold heat.
  • the gaseous secondary refrigerant inside the low-temperature side condenser 131 is condensed by the cold and becomes a liquid, and the cold is held as latent heat.
  • the liquefied secondary refrigerant descends through the liquid phase pipe 133L and enters the low temperature side evaporator 132, where it evaporates due to the heat in the refrigerator 1.
  • the cold heat becomes sensible heat by the evaporation of the secondary refrigerant.
  • the secondary refrigerant that has evaporated to gas goes up the gas-phase pipe 133G and returns to the low-temperature side condenser 131.
  • the defrost heater (not shown) is energized at an appropriate timing to defrost the low-temperature evaporator 132.
  • the defrosted water in which the frost has melted is received by the drain pan 260 at the bottom of the cooling duct 250, and then drained through the drain pipe 261 to the evaporating dish 262 outside the refrigerator.
  • the water in the evaporating dish 262 is evaporated by natural evaporation or by forced evaporation by an appropriate heater means.
  • the evaporating dish 262 can be pulled out to throw away water.
  • the refrigerator 1 Since the refrigerator 1 is configured as described above, if the first heat insulating door 20 is opened by placing the hand on the handle 20H, the object can be taken in and out of the first partition 15 and the handle 21H is handled. If you open the second heat insulation door 21, you can put things in and out of the second compartment 16, and if you hold the handle 22H and open the third heat insulation door 22, you can put things in and out of the third compartment 17 and hand in the handle 23H. When the fourth heat insulation door 23 is opened, the object can be taken in and out of the fourth compartment 18.
  • FIG. 1 A modified embodiment of the first embodiment is shown in FIG.
  • most of the structure is the same as that in the embodiment of FIG. 6. Therefore, common parts are denoted by the same reference numerals as those in the previous embodiment, and will not be described unless necessary.
  • the positions of the high temperature side condenser 122 and the heat radiating fan 124 are reversed from those in the embodiment of FIG. That is, in the embodiment of FIG. 6, the heat dissipation fan 124 is disposed below the high temperature side condenser 122, but in the first modified embodiment, the heat dissipation fan 124 is disposed above the high temperature side condenser 122. By doing so, the length of the secondary refrigerant pipe 123 in the height direction can be saved as compared with the case of the first embodiment.
  • the arrangement of the high temperature side condenser 122 and the heat radiating fan 124 is the same as the embodiment of FIG.
  • an L-shaped stay 145 made of sheet metal was fixed to the mounting leg 114, and a duct 125 was fixed to the top of the stay 145.
  • the number of stays 145 is not limited to one, and a plurality of stays 145 may be used.
  • the arrangement of the high temperature side condenser 122 and the heat radiating fan 124 is the same as that of the embodiment of FIG.
  • a sheet metal stay 146 that holds the Stirling refrigerator 110 at the base is fixed to the outer peripheral surface of the power unit 113, and a duct 125 is fixed to the upper part of the stay 146.
  • the number of stays 146 is not limited to one, and a plurality of stays 146 may be used.
  • the arrangement of the high temperature side condenser 122 and the heat radiating fan 124 is the same as that of the first modified embodiment.
  • the stay 145 of the second modified embodiment is fixed to the mounting leg 114, and the high-temperature side condenser 122 is fixed to the upper portion of the stay 145.
  • the number of stays 145 is not limited to one, but more than one may be used! /.
  • the arrangement of the high temperature side condenser 122 and the heat radiating fan 124 is the same as that of the first modified embodiment.
  • an L-shaped stay 147 made of sheet metal is fixed to the upper surface of the power unit 113 of the Stirling refrigerator 110, and the high-temperature side condenser 122 is fixed to the upper part of the stay 147.
  • the number of stays 147 is not limited to one, and a plurality of stays 147 may be used.
  • the Stirling refrigerator 110 is disposed in a recess 46 provided near the left corner of the upper part of the back surface of the heat insulating casing 10.
  • the concave portion 46 When the concave portion 46 is placed at this position, the protrusion of the concave portion 46 into the chamber is reduced, and the effective internal volume in the chamber can be increased. The effect is the same even if the recess 46 is arranged near the right corner of the upper part of the rear surface of the heat insulating housing 10.
  • the heat insulating wall on the left side as viewed from the front of the concave portion 46 can be removed, and the concave portion 46 can be moved to the left side by the thickness of the heat insulating wall. In this way, the protrusion of the recess 46 into the storage is further reduced, the effective internal volume in the storage is increased, and the volumetric efficiency is further improved.
  • the cooling cycle and the heat release cycle can be separated from each other without any waste.
  • the cooling device other than the cooling device equipped with the Stirling refrigerator is also enjoyed. it can.
  • the same effect S can be obtained by replacing the high-temperature head 111 and the high-temperature side condenser 122 with the high-temperature part of the Peltier element by substituting the low-temperature part 112 and the low-temperature evaporator 132 with the low-temperature part of the Peltier element.
  • the above effect is not limited to the refrigerator, and can be said to be an effect obtained only by the positional relationship between the low temperature part and the high temperature part of the cooling device.
  • a cooling device that uses a refrigerant such as HC refrigerant, and includes a compressor, a condenser, a refrigerant pipe, an expansion valve, a capillary tube, an evaporator, and the like.
  • a heat generating part such as a compressor or a condenser is placed in the recess 46 and a part of a cylindrical tube or an evaporator is placed in the cabinet, the heat generating part is located on the upper rear surface of the heat insulating housing 10. This makes it easier for heat to escape upwards, reduces the effect of heat on the storage room, and provides a cooler with less energy loss.
  • the refrigerator 1 includes a heat insulating housing 10.
  • Insulated housing 10 inserts a synthetic resin inner housing inside the sheet metal outer housing, and inserts a heat insulating material in the gap between the outer housing and the inner housing.
  • a heat insulating layer is formed by foaming resin. The method of manufacturing such a heat-insulating housing is well known, and is not the gist of the present invention! /.
  • the storage chamber inside the heat insulating housing 10 is divided into two vertically by a horizontal partition (first partition) 11.
  • the space above and below the horizontal partition 11 is divided into left and right by a vertical partition (second partition) 12 and a vertical partition (third partition) 13.
  • Horizontal partition (first partition) Below 11 and to the left of vertical partition 13 The space is further divided into two vertically by a horizontal partition (fourth partition) 14.
  • the space above the horizontal partition 11 and to the left of the vertical partition 12 is the first partition 15.
  • a space above the horizontal partition 11 and to the right of the vertical partition 12 is a second partition 16.
  • a space below the horizontal partition 14 and to the left of the vertical partition 13 is a third partition 17.
  • the space below the horizontal partition 11 and to the right of the vertical partition 13 is the fourth partition 18.
  • the first compartment 15 and the second compartment 16 are used as a refrigerator compartment.
  • the third compartment 17 and the fourth compartment 18 are used as freezing rooms.
  • the left space part of the vertical partitioning part 13 serves as a temperature switching partitioning part 19 that can be used as a refrigerator compartment or a freezer compartment.
  • a first heat insulation door 20 is provided at the front opening of the first partition 15 and a second heat insulation door 21 is provided at the front opening of the second partition 16, and the front of the third partition 17
  • a third heat insulating door 22 is provided at the opening
  • a fourth heat insulating door 23 is provided at the front opening of the fourth compartment 18, and
  • a fifth heat insulating door 24 is provided at the front opening of the temperature switching compartment 19. Is provided.
  • the first heat insulation door 20, the third heat insulation door 22, and the fifth heat insulation door 24 rotate around the hinge provided on the left side, while the second heat insulation door 21 and the fourth heat insulation door 23 face the right side. It rotates around the hinge part provided in the center.
  • An operation unit 25 for setting the temperature of each part in the storage room is provided below the first heat insulating door 20.
  • the first partition section 15 is partitioned in the vertical direction by a three-stage shelf 30.
  • a drawer-type case 31 is arranged under the lowest shelf 30.
  • the second partition section 16 is also partitioned in the vertical direction by the three-stage shelf 32.
  • the lowermost shelf 32a has a depth dimension larger than the upper two tiers, and underneath the drawer cases 33 and 34 are arranged in two upper and lower tiers.
  • a partition cover 35 (see FIG. 16) is provided for the upper surface opening of the lower case 34.
  • the space between the lowermost shelf 32a and the partition cover 35 constitutes an isolation compartment 16a, and the space below the partition cover 35 constitutes an isolation compartment 16b.
  • a rack 36 for storing bottles and beverage paper packs is attached.
  • the first partition 15 and the second partition 16 are each provided with illumination. 1st section
  • the lighting for section 15 is a downlight 37 (see Fig. 17) placed on the ceiling
  • the lighting for the second section 16 is a lighting panel 38 (see Figure 16) placed on the top of the back wall. ). Both the downlight 37 and the lighting panel 38 use LEDs as a light source.
  • the third compartment 17 has a total of two cases 40a and 40b, and the fourth compartment 18 has a total of three cases.
  • Cases 40a and 40b are supported on the inner surface of the third partition 17 by the edges on both sides, and cases 41a, 41b and 41c are supported on the inner surface of the fourth partition 18 by the edges on both sides. Can be pulled out by sliding to the side.
  • a case 42 is inserted in the temperature switching section 19.
  • An ice making unit 43 is disposed on the ceiling of the fourth partition 18 (see FIGS. 16 and 18). Ice produced by the ice making unit 43 is received in the ice container 44 (see FIG. 15) in the case 41a.
  • a water supply tank 45 for supplying water to the ice making unit 43 is installed on the right side of the case 34 in the isolation section 16b.
  • the third compartment 17 and the fourth compartment 18 are divided as necessary to install independent compartments specialized for ice making, and to suit various temperature settings required from quick freezing to thawing. It is possible to establish an independent division.
  • the storage chamber is cooled by a cooling device 100 shown in FIG.
  • the high-temperature side circulation circuit 120 takes out the heat extracted from the high-temperature head 111 to prevent dew condensation in the dew proof part (the part of the surface of the heat insulating housing 10 where condensation is to be avoided). The This is realized by the high-temperature side second circulation circuit 150.
  • the high temperature side second circulation circuit 150 is thermally connected to the gas-phase refrigerant pipe 123G of the high temperature side circulation circuit 120 via the heat exchanger 151.
  • the tertiary refrigerant is sealed in the high-temperature side second circulation circuit 150 in a non-depressurized state.
  • the tertiary refrigerant is a mixture of water and antifreeze.
  • the tertiary refrigerant needs to have a low viscosity to ensure circulation, so the antifreeze mixing ratio is low.
  • FIGS. 22 and 25-29 show how the heat exchanger 151 is attached to the gas-phase refrigerant pipe 123G.
  • FIGS. 6 and 9-13 correspond to FIGS. 6 and 9-13 in the first embodiment.
  • the pipe 152 of the high-temperature side second circulation circuit 150 follows the path shown in Fig. 23 after exiting the heat exchanger 151. That is, the pipe 152 becomes the down pipe 152D and goes down to the bottom of the heat insulating casing 10, and enters the drain pan 153 installed there.
  • Pipe 152 meanders through drain pan 153 and The temperature of the drain water collected in the renpan 153 is raised. Fan 154 is combined with drain pan 153 to further promote the evaporation of drain water.
  • the pipe 152 exiting the drain pan 153 is divided into two systems at the branch 155, and then both systems enter the lower part of the right side wall of the thermal enclosure 10, pass through the right side wall forward, Reach the lower front.
  • the two routes are separated from each other, and one route rises up the leading edge of the right side wall of the heat insulating housing 10. Enter the front edge of the horizontal partition 11 on the way up, draw a hairpin shape, return to the front edge of the right side wall, and continue rising.
  • the other system enters the bottom wall from the front edge of the right side wall, passes through the front edge of the bottom wall from right to left, and reaches the lower end of the vertical partition 13.
  • Pipe 152 then turns upward and passes through the front edges of vertical dividers 13 and 12 from bottom to top.
  • the pipe 152 that reaches the upper end of the vertical partition 12 is folded and lowered. In the middle of descending, it enters the front edge of the horizontal partition 11, draws a hairpin shape, and then returns to the front edge of the vertical partition 13.
  • the pipe 152 then enters the front edge of the horizontal partition 14 and draws a hairpin shape, and then returns to the front edge of the vertical partition 13 and continues to descend to the bottom wall. Piping 152 then enters the left side wall with a right force at the front edge of the bottom wall.
  • the pipes 152 unified at the gathering section 156 enter the piezoelectric circulation pump 157 installed at the bottom of the heat insulating casing 10.
  • the pipe 152 exiting the circulation pump 157 returns to the heat exchanger 151 as an up pipe 152U.
  • the dew proof portion 160 (see Fig. 21) includes the right and left walls, the ceiling wall and the bottom wall, and the front edges of the horizontal partition and the vertical partition.
  • the piping 152 passes near the surface of the heat insulating housing 10 in the dew-proofing section 160, and transmits the heat obtained from the high-temperature side circulation circuit 120 through the heat exchanger 151 to the location. As a result, the temperature of the dew proof part 160 is maintained higher than the dew point.
  • the low-temperature side evaporator 132 is lower than the Stirling refrigerator 110 inside the heat insulating enclosure 10. Placed in the table. Furthermore, it is arranged at a level below the lower part of the vertical partition 12. Thereby, the natural circulation of the secondary refrigerant is performed more stably.
  • the low temperature side evaporator 132 is disposed in the cold air passage 50 (see FIG. 16) provided in front of the wall at the back of the fourth partition section 18. Another cold air passage 51 is provided in front of the cold air passage 50. In the lower part of the cool air passage 50, an air inlet 52 for sucking the return air that has finished the role of cooling the storage room is formed.
  • the low temperature side evaporator 132 is installed in the cold air passage 50 above the intake port 52. Above the low-temperature side evaporator 132, a fan 53 for blowing air into the cool air passage 51 is provided.
  • Three cold air passages serving as branch lines extend from the cold air passage 51.
  • the first one is a cold air passage 54 that sends cold air to the first compartment 15 and the second compartment 16.
  • a discharge damper 55 and a fan 56 are provided in the cold air passage 54.
  • the cool air passage 54 past the fan 56 enters the vertical cut portion 12 and rises as an up cool air passage 54U (see FIG. 16) inside the vertical partition portion 12.
  • the ascending cool air passage 54U reaching the upper part of the vertical partition 12 continues to the descending cool air passage 54D via a short horizontal connecting passage 54H.
  • the descending cold air passage 54D descends to the lower side of the vertical partition 12 and the front side of the ascending cold air passage 54U.
  • the ascending cold air passage 54U, the horizontal communication passage 54H, and the descending cold air passage 54D have an inverted U-shape.
  • the vertical partition 12 does not require the cold air passage to be completely embedded in the partition. Only a part of the cold air passage may be embedded in the partition part, or may be provided so as to cover the outer surface of the partition part.
  • a plurality of cold air discharge ports 57 for discharging cold air to the second partition portion 16 are formed at intervals in the upward and downward directions.
  • a plurality of cold air discharge ports 58 for discharging cold air to the first partition portion 15 are formed at intervals in the vertical direction.
  • the cold air outlets 5 7 and 58 are located in the vertical partition 12.
  • the plurality of cold air outlets 57 and the plurality of cold air outlets 58 are aligned with each other along a vertical line. Such arrangement is not necessarily required. Multiple cold air outlets 57 and multiple cold air outlets 58 can be shifted in the front-rear direction. It may be distributed.
  • the ascending cold air passage 54U and the descending cold air passage 54D need only be capable of uniformly delivering cold air to the cold air discharge ports 57 and the cold air discharge ports 58 distributed in this manner.
  • a plurality of cool air discharge ports 57 may be provided in each of the regions partitioned by the shelf 32 and the shelf 32a so as to be shifted in the front-rear direction.
  • a cool air passage projecting as a branch line from the ascending cool air passage 54U is prepared.
  • the cold air discharge port 58 a plurality of the regions can be provided for each region partitioned by the shelf 30, and the positions can be shifted in the front-rear direction.
  • a cold air passage extending as a branch line from the descending cold air passage 54D is prepared.
  • a plurality of cold air discharge ports 57 are provided in the front and rear direction of each region partitioned by the shelves 32 and 32a, and a plurality of cold air discharge ports 58 are positioned in the front and rear direction for each region partitioned by the shelf 30.
  • the vertical positions of the shelves 32 and 32a should be shifted so that the shelves 30 and 32a do not have the same height. If the cold air outlet 5 7 is placed at a height corresponding to the height of the shelves 32 and 32a, and the cold air outlet 58 is placed at a height corresponding to the height of the shelf 30, the above configuration can be easily achieved. realizable.
  • the force S that the horizontal connecting passage 54H connects the vertical cooling air passage 54D to the vertical cooling air passage 54D and the vertical cooling air passage 54D directly connects the cooling air passage 54U and the downstream cooling air passage 54D. It is possible to omit the horizontal communication passage 54H.
  • the upper cold air passage 54U and the lower cold air passage 54D are connected by bending or curving the upper end, or the upstream cold air passage 54U and the downstream cold air passage 54D are inclined to form an inverted V shape. This can be achieved by a method such as linking.
  • the total opening area of the plurality of cold air discharge ports 57 and the total opening area of the plurality of cold air discharge ports 58 may be distributed according to the volume ratio of the second partition portion 16 and the first partition portion 15. Further, a plurality of cold air discharge ports 57 are provided in the second partition part 16 and a plurality of cold air discharge ports are provided in the first partition part 15. 58 are arranged so that the indoor temperature is made uniform. It is desirable to determine the location of the cold air outlet through experiments.
  • the amount of cold air flowing through the upstream cold air passage 54U is the sum of the amount of cold air supplied from the cold air outlet 57 and the amount of cold air supplied from the cold air outlet 58. Therefore, the upstream cool air passage 54U needs a larger cross-sectional area than the downstream cool air passage 54D. It is desirable to determine the cross-sectional area ratio between the upstream cool air passage 54U and the downstream cold air passage 54D through experiments.
  • the first partition 15 and the second partition 16 of the storage room are on both sides of the vertical partition 12 which is a partition, and the release of cold heat is made to the first partition 15 and the second partition 16. Therefore, the refrigerator 1 with less energy loss can be obtained. Furthermore, although the heat generation part of the cooling device 100 exists in the recessed part 46, since the 1st division part 15 and the 2nd division part 16 are division parts with comparatively high temperature like a refrigerator compartment, the temperature of the recessed part 46 vicinity is shown. And the temperature difference between the storage chambers is reduced. If the heat insulation walls of the first compartment 15 and the second compartment 16 are the same as the thickness set as the heat insulation wall of the refrigerator compartment, the amount of heat entering from the outside can be reduced. This contributes to reducing energy loss.
  • the cold air passage 54 is connected to two transverse cold air passages.
  • One is a transverse cold air passage 59 that branches before the cold air passage 54 enters the vertical partition 12, and crawls the wall behind the isolation compartment 16 a along the bottom surface of the bottom shelf 32.
  • a cold air discharge port 60 is formed at a position away from the vertical partition 12 by a predetermined distance.
  • a plurality of cold air outlets 60 are formed in the isolation section 16a at intervals in the left-right direction.
  • two cold air discharge ports 60 are provided.
  • the cold air outlet 60 supplies cold air toward the inside of the case 33. It is preferable that the cold air discharge port 60 has a larger opening area as it is arranged on the downstream side of the horizontal cold air passage 59 so that the temperature is made uniform between the left side portion and the right side portion of the isolation section 16a.
  • the other transverse cold air passage is a transverse cold air passage 61 that branches off from the ascending cold air passage 54U.
  • a cold air discharge port 62 is formed in the lateral cold air passage 61 at a position away from the vertical partition 12 by a predetermined distance.
  • a plurality of the cold air discharge ports 62 are formed in the second partition part 16 at intervals in the left-right direction. In the present embodiment, two cold air discharge ports 62 are provided.
  • the cold air outlet 62 is It is preferable to increase the opening area of the air passage 61 on the downstream side so that the temperature is made uniform between the left side portion and the right side portion of the second partition portion 16.
  • the second one is the cold air passage 63 that sends the cold air to the third section 17.
  • the cool air passage 63 is provided with a discharge damper 64, and a cool air discharge port 65 is formed downstream thereof.
  • the third one is a cold air passage 66 for sending cold air to the temperature switching section 19.
  • the cold air passage 66 is provided with a discharge damper 67, a fan 68, a heater 69, and a cold air discharge port 70 from upstream to downstream.
  • the cold air passage 51 is also formed with a cold air discharge port (not shown) for directly discharging cold air to the fourth partition section 18 formed by only the cold air passages 54, 63, 66.
  • a return passage 71 is provided for the second section 16.
  • the return passage 71 has intakes at two locations. The first is an air inlet 72 opened in the isolation section 16a. The second is an air inlet 73 opened in the isolation section 16b.
  • an opening that penetrates the lower rear of the vertical partition part 12 and exits to the isolation partition part 16b is a return passage 74.
  • the cold air in the first partition 15 also has the return passage 74 force entering the isolation partition 16b and sucked into the air inlet 73.
  • a return passage 75 is provided for the temperature switching section 19.
  • the return passage 75 is provided with a return damper 76.
  • the defrosting heater 77 is energized at an appropriate timing to defrost the low temperature side evaporator 132. Moisture generated by melting of the frost is dripped as drain water from the funnel 78 at the bottom of the cold air passage 50 to the drain pan 153. Drain water is then generated by heat from pipe 152 and wind from fan 154. It can be evaporated.
  • the control unit 80 shown in FIG. 21 controls the overall control of the refrigerator 1.
  • the control unit 80 is based on the temperature setting command or operation command made through the operation unit 25, and on the basis of a signal from a temperature sensor (not shown) arranged in each unit, and the Stirling refrigerator 110, the ice making unit 43, Fan 53, discharge damper 55, fan 56, discharge damper 64, discharge damper 67, fan 68, heater 69, return damper 76, defrost heater 77, fan 154, circulation pump 157, etc. Adjust the temperature, and make ice and defrost.
  • the electrical components constituting the control unit 80 are housed in an electrical box 81 (see FIGS. 16 and 17) installed on the ceiling of the heat insulating casing 10.
  • the high temperature head 111 When the controller 80 starts the operation of the Stirling refrigerator 110, the high temperature head 111 generates heat.
  • the secondary refrigerant in the high temperature side evaporator 121 is evaporated by the heat to become a gas, and the heat is held as latent heat.
  • the gasified secondary refrigerant ascends the gas-phase pipe 123G and enters the high-temperature side condenser 122, where it condenses to sensible heat.
  • the sensible heat is dissipated from the surface of the high-temperature side condenser 122 to the outside.
  • the wind blown from the heat dissipation fan 124 helps to release heat.
  • the secondary refrigerant that has condensed and turned down descends the liquid phase pipe 123L and returns to the high-temperature side evaporator 121.
  • the cooling device 100 can realize a cold air temperature with an average discharge temperature of minus 42 to 43 ° C, and in some cases, a discharge temperature of around minus 50 ° C. Therefore, the cool air from fan 53
  • the fourth section 18 that blows out directly can reduce the room temperature to about minus 40 ° C. Even with a normal compressor cooling device, it is possible to achieve the cryogenic temperature as described above by using ammonia as the refrigerant.
  • An ice making fan (not shown) in the ice making unit 43 blows the cryogenic air into the water to make ice, and the ice making proceeds quickly. Note that by adjusting the refrigeration capacity of the cooling device 100, a cold air temperature of about minus 18 ° C can be achieved.
  • the third section 17 can control the amount of cool air flowing in by adjusting the opening degree of the discharge damper 64 S. For this reason, irrespective of the 4th division part 18, the temperature of the 3rd division part 17 can be maintained at minus 18 degreeC which is a normal freezing temperature.
  • the temperature switching section 19 is used in a wide temperature range from the chilled temperature to minus 18 ° C, and its temperature adjustment controls the amount of cold air flowing in by the discharge damper 67 and the return damper 76, Further, it is performed by heating the cold air with a heater 69 as necessary.
  • the temperature switching section 19 is also used for thawing frozen food, there may be a large temperature difference from the fourth section 18.
  • the heat insulating layer is particularly thick in the vertical partition section 13 between the temperature switching section 19 and the fourth section section 18.
  • the return passage 75 is independent from the fourth partition section 18 so that the air returning from the temperature switching section 19 to the intake port 52 is not mixed with the air in the fourth partition section 18.
  • the force S that cool air is sent from the fan 56 to the first partition 15 and the second partition 16 through the cool air passage 54, and the cool air cools the first partition 15 and the second partition 16.
  • the amount of cold air is adjusted by the discharge damper 55 so that it does not become too much.
  • the cold air rises from the cold air passage 54, enters the cold air passage 54U, and blows out from the cold air discharge port 57 to the second partition section 16 while ascending there.
  • the cold air discharge port 57 has a vertical space in the space above the isolation section 16a. Since the number is formed, the space is uniformly cooled.
  • a part of the cold air enters the transverse cold air passage 61 near the upper end of the ascending cold air passage 54U and blows out from the cold air outlet 62. Since the cold air discharge port 62 is provided at a predetermined distance from the vertical partition 12, the cold air discharged from the cold air discharge port 57 and the cold air discharged from the cold air discharge port 62 are above the isolation compartment 16a. The space is uniformly cooled. Since the two cold air outlets 62 are formed at intervals in the horizontal direction, the function of uniform cooling is further enhanced.
  • the cold air that has reached the upper end of the upstream cool air passage 54U enters the downstream cold air passage 54D via the horizontal communication passage 54H. Then, while descending the descending cold air passage 54D, the air is blown out from the cold air discharge port 58 to the first partition portion 15. Since a plurality of the cold air discharge ports 58 are formed at intervals in the vertical direction, the first partition portion 15 is uniformly cooled.
  • the cold air indirectly releases the cold heat to the left and right compartments as it goes up the ascending cold air passage 54U.
  • the cold air entering the descending cold air passage 54D has a higher temperature than when it entered the upstream cold air passage 54U.
  • the temperature of the first partition 15 is higher than the temperature of the second partition 16.
  • the temperature of the first partition 15 is higher than that of the second partition 16, so that the first partition 15 is located between the first partition 15 and the recess 46 that is less susceptible to the influence of the heat generating part of the cooling device 100 than the second partition 16 is.
  • the thickness of the heat insulating layer can be reduced as compared with the case where the recess 46 is adjacent to the second partition part 16.
  • the internal space of the vertical partition portion 12 that has not been considered so far can be effectively used, and the first partition portion 15 and the first partition portion 15 can be used.
  • the depth of the two compartments 16 can be expanded.
  • an ascending cool air passage 54U for raising the cool air cooled by the low temperature side evaporator 132 and a descending cool air passage 54D for lowering the cool air rising above are formed.
  • the compartment 16 is supplied with cold air from the upstream cool air passage 54U, and the first compartment 15 is supplied with cold air from the downstream cold air passage 54D.
  • FIG. 20 shows a detailed structure of the vertical partition 12.
  • the vertical partition 12 is constituted by a vertical partition front part 12A and a vertical partition rear part 12B.
  • the vertical partition front part 12A has a structure in which the heat insulator 170 is sandwiched between the left shell 171L and the right shell 17 1R, and the vertical partition rear part 12B has the heat insulator 172 sandwiched between the left shell 1 73L and the right shell 173R.
  • the heat insulators 170 and 172 are made by foaming a resin such as styrene or urethane.
  • the left chenole 171L, the right chenole 171R, the left chenole 173L, and the right shell 173R are formed of a resin such as polypropylene or polystyrene.
  • the left shell 171L and the right shell 171R, and the left chenole 173L and the right shell 173R are coupled to each other by claw engagement, screwing, adhesion, or the like.
  • the front surface of the vertical partition front portion 12A is covered with a cover 174.
  • the cover 174 is made of a high-strength steel plate. Needless to say, this is a magnetic material, so that the magnet-mounted gaskets attached to the back surfaces of the first heat insulation door 20 and the second heat insulation door 21 are adsorbed exactly. Thereby, the sealing performance of the first heat insulating door 20 and the second heat insulating door 21 is improved.
  • the cover 174 is coupled to the left shell 171L and the right shell 171R by claw engagement, screwing, adhesion, or the like.
  • a pipe 152 is arranged in the vicinity of the back surface of the cover 174.
  • the self-pipe 152 is disposed in a recess 175 formed in the heat insulator 170.
  • the pipe 152 may be in direct contact with the cover 174, or a butyl rubber sheet may be attached to the back surface of the cover 174, and the cover 174 may be contacted via the butyl rubber sheet.
  • the butyl rubber sheet also reinforces the mounting of the cover 174.
  • FIG. 34 shows a modification of the vertical partition 12.
  • the left shell 171L and the right shell 171R are not distinguished from each other in the vertical partition front portion 12A, and the heat insulator 170 is inserted from the front into the single-shell shell 171 with the front open.
  • the forward-direction partition portion front portion 12A was formed. With this configuration, it is possible to obtain the vertical partition front portion 12A with further improved strength.
  • the method for forming the vertical partition 12 described so far is also applied to the formation of the horizontal partitions 11 and 14 and the vertical partition 13.
  • a concave portion 176 is formed on the side facing the left shell 173L, which is shaped like the up cold air passage 54U, the horizontal communication passage 54H, and the down cold air passage 54D.
  • This recess 176 Is covered with the left shell 173L, so that an ascending cool air passage 54U, a horizontal communication passage 54H, and a descending cool air passage 54D are formed.
  • the descending cold air passage 54D is slightly shifted to the right. Accordingly, the thickness of the insulation 172 between the right shell 173R and the thickness is reduced. The temperature of the cold air flowing through the descending cold air passage 54D is higher than that of the cold air flowing through the upstream cold air passage 54U, so there are few problems. .
  • the upstream cool air passage 54U is also provided with a heat insulator equivalent to the heat insulator 177 if necessary. For example, this may be the case when there is a part that is not aligned side by side with the right partition wall 46a.
  • the amount of cold air supplied to the first partition 15 is the second.
  • the amount of cool air supplied to the compartment 16 can be reduced. That is, the cross-sectional area of the descending cold air passage 54D can be made smaller than the cross-sectional area of the ascending cold air passage 54U.
  • the cross-sectional area of the down cool air passage 54D is reduced by compressing the width of the down cool air passage 54D in the left-right direction, the space between the right shell 173R and Can restore the thickness of insulation 172
  • the cold air flowing through the cold air passage 54 is partially cooled in the lateral direction before entering the ascending cold air passage 54U. Enter passage 59.
  • the cold air that has entered the transverse cold air passage 59 is blown out into the case 33 from two cold air outlets 60 that are spaced apart in the horizontal direction, and the inside of the case 33 in the isolation section 16a is uniformly cooled. To do.
  • the temperature of the isolation section 16a is made lower than the space above it, and is isolated as a chilled room or an ice greenhouse, for example, the internal temperature is 0 ° C 3 ° C.
  • a compartment 16a can be used.
  • the adjustment of the amount of cold air can be achieved by setting the cross-sectional area of the horizontal cold air passage 59, setting the opening area of the cold air discharge port 60, or installing a damper in the horizontal cold air passage 59! /.
  • the cold air discharge port formed in the transverse cold air passage 61 can have a different force S from the cold air discharge port 62 of FIG. The modification is shown in FIG.
  • the horizontal cold air passage 61 is provided with a slit-like cold air discharge port 62A that is long in the horizontal direction.
  • the cold air discharge port 62A is located on the back wall of the second partition 16 and the ceiling. Open in the corner with the well. Since the cold air is discharged from the wide cold air discharge port 62A in this way, the space above the isolation section 16a is uniformly cooled.
  • FIG. 32 The configuration of the vertical partition 12 can be changed from FIG. The modification is shown in FIGS. 32 and 33.
  • FIG. 32 The modification is shown in FIGS. 32 and 33.
  • the descending cold air passage 54D is moved to the front side.
  • the heat insulation layer between the front surface of the vertical partition 12 and the descending cool air passage 54D becomes thin, but the temperature of the cool air flowing through the descending cool air passage 54D is relatively high, so even if the insulation layer becomes thin, the vertical partition The front surface of part 12 is unlikely to be overcooled.
  • the distance between the up cool air passage 54U and the down cool air passage 54D is widened. Decrease with S.
  • the concave portion 178 serves as a communication path between the upper and lower spaces of the shelf 32, and causes cold air circulation in the second partition portion 16, thereby helping to equalize the temperature of the second partition portion 16.
  • the concave portion 178 is entirely used as a communication path in the upper and lower spaces of the shelf 32, so that a portion having the same height as the shelf 32 is closed with a horizontal rib 179, and the rib 179 is cooled with air.
  • a thread 179A was formed. By adjusting the area of the slit 179A, it is possible to adjust the amount of cool air circulation S.
  • the rib 179 may be formed on the vertical partition 12 or on the shelf 32.
  • the lowermost shelf 32a that separates the second partition part 16 and the isolation partition part 16a and the partition cover 35 that separates the isolation partition part 16a and the separation partition part 16b close the recess 178. This prevents cold air from mixing between the second compartment 16 and the isolation compartment 16a, and also prevents cold air from mixing between the isolation compartment 16a and the isolation compartment 16b. Make sure that the specified temperature difference set in is not lost. Closing the recess 178 can be realized by providing a rib there or by inserting a heat insulating material. There should be no recess 178 for the isolation compartments 16a, 16b!
  • the effect of the cool air passage provided in the partition not related to the heat generation of the cooling device is
  • the cooling device is not limited to the case where the cooling device is disposed on the back upper portion of the heat insulating casing. The same effect can be obtained even when the cooling device is arranged at other positions.
  • the present invention can be widely used in a refrigerator for home use or business use.
  • it can be widely used in cooling devices that are installed in such refrigerators and that include a Stirling refrigerator as a component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A machine chamber is formed at a position on the right side or left side of the upper part of the back side of a heat-insulated housing of a cooling box, and a part of a cooling device is disposed in the machine chamber. Cool air from a cooling section of the cooling device is supplied to a receiving chamber in the heat- insulated housing through a cool air passage. At least a part of the cool air passage is provided in a section for partitioning the receiving chamber into a predetermined state. The cooling device includes a Stirling refrigerating machine as a constituting element. A high temperature side circulation circuit for taking out hot heat is connected to the high temperature head of the Stirling refrigerating machine, a low temperature side circulation circuit for taking out cold heat is connected to the low temperature head, and the attitude of the Stirling refrigerating machine is set such that the high temperature head is on the top side and the low temperature head is on the bottom side.

Description

明 細 書  Specification
冷却庫及びこれに搭載する冷却装置  Refrigerator and cooling device mounted on it
技術分野  Technical field
[0001] 本発明は冷却庫及びこれに搭載する冷却装置に関する。「冷却庫」とは、本明細書 にお!/、ては、被冷却物である食品その他の物品の温度を下げる装置全般を指す概 念であり、「冷蔵庫」「冷凍庫」「冷凍冷蔵庫」「ショーケース」「自動販売機」といった商 品としての名称を問わない。  The present invention relates to a refrigerator and a cooling device mounted on the refrigerator. The term “refrigerator” is used in this specification to mean any device that lowers the temperature of food or other items that are to be cooled. It is called “refrigerator”, “freezer”, “freezer refrigerator”. The name of the product such as “showcase” or “vending machine” may be used.
背景技術  Background art
[0002] 冷却庫、例えば冷蔵庫においては、内部を複数の区画に仕切り、冷蔵室と冷凍室 に使い分けるという構成が普通になっている。チルド室や氷温室など、通常の冷蔵温 度と冷凍温度の中間の温度帯の区画を設けることもある。複数の区画を形成するに あたっては、冷蔵庫本体を左右に区画するという手法も採用される。その例を特許文 献 1に見ることができる。  [0002] In a refrigerator, for example, a refrigerator, a configuration in which an interior is divided into a plurality of compartments and used separately for a refrigerator compartment and a freezer compartment has become common. In some cases, a chilled room or an ice greenhouse may be provided with a temperature zone between the normal refrigeration and freezing temperatures. In forming a plurality of compartments, a method of dividing the refrigerator body into left and right is also adopted. An example of this can be seen in Patent Document 1.
[0003] また冷却庫にあっては、例えば特許文献 2に記載された例のように、冷凍サイクル の圧縮機を本体の天面部に配置したものもある。  [0003] In some refrigerators, as in the example described in Patent Document 2, for example, a compressor of a refrigeration cycle is arranged on the top surface of the main body.
[0004] さらに、通常のコンプレッサでなくスターリング冷凍機で冷却装置を構成した冷却庫 も見受けられるようになつている。通常のコンプレッサで使用されている冷媒は特定フ ロノ (Cr C: chlorofluorocarbon)や代脊フロン (HCrC: hydrochlorofluorocarbon、 HFし : hydrofluorocarbon)であり、 CFCと HCFCは大気中に放出されると程度の差こそあ れオゾン層の破壊につながるので、その生産及び使用は国際的な規制の対象となつ ている。また、オゾン層を破壊しない HFCにも地球温暖化を促進するという問題があ  [0004] Furthermore, a refrigerator in which a cooling device is configured not by a normal compressor but by a Stirling refrigerator has come to be seen. The refrigerants used in ordinary compressors are specific fluorocarbons (Cr C: chlorofluorocarbon) and prosthetic chlorofluorocarbons (HCrC: hydrochlorofluorocarbon, HF: hydrofluorocarbon). As such, it leads to the destruction of the ozone layer, so its production and use is subject to international regulations. HFCs that do not destroy the ozone layer also have the problem of promoting global warming.
[0005] そこで、冷媒としてオゾン破壊物質を使用しないスターリング冷凍機が脚光を浴び ている。スターリング冷凍機ではヘリウム等の不活性ガスを作動媒体として使用し、外 部動力によりピストンとディスプレーサを動作させて作動媒体の圧縮 ·膨張を繰り返し 、高温ヘッド(放熱部)の温度を高めるとともに低温ヘッド(吸熱部)の温度を下げる。 そして高温ヘッドで周囲環境に放熱を行い、低温ヘッドで庫内から吸熱を行うもので ある。スターリング冷凍機には通常のコンプレッサよりさらに低い冷凍温度が得られる とレ、う特徴もある。スターリング冷凍機による冷却装置を備えた冷却庫の例は特許文 献 3に見ること力 Sできる。またスターリング冷凍機の構造例を特許文献 4に見ることが できる。 [0005] In view of this, Stirling refrigerators that do not use ozone-depleting substances as refrigerants are in the spotlight. Stirling refrigerators use an inert gas such as helium as the working medium, and the piston and displacer are operated by external power to repeatedly compress and expand the working medium, increasing the temperature of the high-temperature head (heat dissipating part) and the low-temperature head. Lower the temperature of the (heat-absorbing part). And heat is dissipated to the surrounding environment with a high-temperature head, and heat is absorbed from the inside with a low-temperature head. is there. Stirling refrigerators also have the characteristics that they can obtain lower refrigeration temperatures than ordinary compressors. An example of a refrigerator equipped with a cooling device using a Stirling refrigerator can be seen in Patent Document 3. A structural example of a Stirling refrigerator can be seen in Patent Document 4.
[0006] 特許文献 3には、発明の実施の形態が 1から 3まで記載されている。実施の形態 1と 2では、スターリング冷凍機は軸線を水平にした、すなわち横置きの状態で配置され ている。実施の形態 3では、同文献の図 8、 11に記載された横置き状態の他、同文献 の図 10のようにスターリング冷凍機の軸線を垂直にした、すなわち縦置きの状態で 配置した構成も開示されている。縦置きの場合、低温部を上に、高温部を下にした配 置となっている。  [0006] Patent Document 3 describes embodiments of the invention from 1 to 3. In Embodiments 1 and 2, the Stirling refrigerator is arranged with its axis line horizontal, that is, in a horizontal state. In the third embodiment, in addition to the horizontal installation state described in FIGS. 8 and 11 of the same document, a configuration in which the axis of the Stirling refrigerator is vertical, that is, in a vertical installation state as shown in FIG. 10 of the same document. Is also disclosed. In the case of vertical installation, the arrangement is such that the low temperature part is on top and the high temperature part is on the bottom.
特許文献 1:特開平 9 61050号公報  Patent Document 1: Japanese Patent Laid-Open No. 9 61050
特許文献 2:特開 2006— 105575号公報  Patent Document 2: Japanese Unexamined Patent Publication No. 2006-105575
特許文献 3 :特開 2005— 3351号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2005-3351
特許文献 4 :特開 2005— 345009号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-345009
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 冷却庫では、冷却装置の冷却部で冷却された冷気を冷気通路経由で各区画に供 給し、所望の温度を得る。冷気通路は、通常、冷却庫の断熱筐体の奥の断熱壁の手 前側に設けられる。このことにより、断熱筐体の内部空間の奥行きが手前側に向かつ て狭められ、空間の有効活用が妨げられていた。また断熱筐体の天面部に圧縮機を 配置する構成では、その配置部分が庫内空間に突き出す形になり、庫内容積を減少 させていた。上記特許文献に記載された冷却庫のいずれも、この問題に関しては解 決策を見出せていない。  [0007] In the refrigerator, the cold air cooled by the cooling unit of the cooling device is supplied to each section through the cold air passage to obtain a desired temperature. The cold air passage is usually provided on the front side of the heat insulating wall at the back of the heat insulating casing of the refrigerator. As a result, the depth of the internal space of the heat-insulating housing was narrowed toward the front side, preventing effective use of the space. Moreover, in the configuration in which the compressor is arranged on the top surface portion of the heat insulating casing, the arrangement portion protrudes into the internal space, and the internal volume is reduced. None of the refrigerators described in the above patent documents has found a solution to this problem.
[0008] 特許文献 3記載の装置で、スターリング冷凍機を横置きにした構成では、高温部か らの放熱を行う凝縮器に外気がスムーズに流れるようにするため、スターリング冷却シ ステムの水平方向の占有スペースをある程度広げる必要がある。また高温部の熱が 低温部に伝わらないよう、十分な断熱スペースあるいは断熱構造が必要である。スタ 一リング冷凍機を縦置きにした構成では、上側の低温部の冷熱を冷媒で装置下方の 冷却器に運搬し、下側の高温部の温熱を冷媒で装置上方の凝縮器に運搬するので 、冷媒配管が交錯する形になり、配管作業がしにくい。また低温部及びその付近の 配管を断熱するにあたって断熱材を複雑に組み合わせねばならず、手間がかかる。 さらに特許文献 3記載の装置は、スターリング冷凍機が発する振動や騒音に対し十 分に配慮がなされて!/、るとは言!/、難レ、。 [0008] In the apparatus described in Patent Document 3, in a configuration in which the Stirling refrigerator is placed horizontally, the horizontal direction of the Stirling cooling system is used to allow the outside air to smoothly flow to the condenser that radiates heat from the high-temperature part. It is necessary to expand the space occupied by In addition, sufficient heat insulation space or heat insulation structure is necessary so that heat in the high temperature part is not transmitted to the low temperature part. In a configuration in which a Stirling refrigerator is installed vertically, the cold in the upper low-temperature part is cooled with a refrigerant at the bottom of the device. Since it is transported to the cooler and the heat of the lower high-temperature part is transported to the condenser above the device by the refrigerant, the refrigerant pipes are interlaced and the piping work is difficult. Insulating the low-temperature part and the piping in the vicinity of it requires complicated combinations of heat-insulating materials, which takes time. Furthermore, the device described in Patent Document 3 is sufficiently considered for the vibration and noise generated by the Stirling refrigerator! /!
[0009] 本発明は上記の点に鑑みなされたものであり、その目的とするところは、断熱筐体 の内部空間活用度を向上させられるようにした冷却庫を提供することにある。また、冷 気の流し方を工夫することにより、貯蔵温度帯を多様化できるようにするとともに、ェ ネルギーロスの少ない冷却庫を提供することにある。 [0009] The present invention has been made in view of the above points, and an object of the present invention is to provide a refrigerator that can improve the utilization of the internal space of the heat insulating casing. In addition, by devising the flow of cold air, it is possible to diversify the storage temperature range and to provide a refrigerator with less energy loss.
[0010] さらに本発明の目的とするところは、スターリング冷凍機を構成要素に含む冷却装 置であって、低温部と高温部の間の断熱が容易であり、冷媒配管もすつきりした形に なるものを提供することにある。また、力、かる冷却装置の振動や騒音を制御しやすく することにある。そして、このような冷却装置を搭載することで、有効内容積の大きい 冷却庫を提供することにある。  [0010] Further, an object of the present invention is a cooling device including a Stirling refrigerator as a component, in which heat insulation between the low temperature part and the high temperature part is easy, and the refrigerant pipe is also attached. It is to provide what becomes. It is also intended to make it easier to control the force, vibration and noise of the cooling system. By installing such a cooling device, it is to provide a refrigerator having a large effective internal volume.
課題を解決するための手段  Means for solving the problem
[0011] 上記目的を達成するために本発明は、冷却庫において、断熱筐体の背面上部の 左寄りまたは右寄りに形成した機械室に冷却装置の一部を配置することを特徴として いる。  In order to achieve the above object, the present invention is characterized in that a part of the cooling device is arranged in a machine room formed in the cooler in the left or right side of the upper part of the back surface of the heat insulating housing.
[0012] この構成によると、機械室が設けられるのが断熱筐体の背面上部の左寄りまたは右 寄りの位置であるから、庫内への突き出しを小さくして、有効内容積を大きくとることが できる。  [0012] According to this configuration, the machine room is provided at a position on the left side or on the right side of the rear upper portion of the heat-insulating housing. Therefore, it is possible to reduce the protrusion into the warehouse and increase the effective internal volume. it can.
[0013] 本発明は、上記構成の冷却庫において、前記断熱筐体は被冷却物を収納する収 納室を備え、冷却装置の冷却部にて冷却された冷気が冷気通路を介して前記収納 室に供給されるものであり、前記収納室を所定状態に仕切る仕切り部に前記冷気通 路の少なくとも一部を設けたことを特徴としている。  [0013] The present invention provides the cooler configured as described above, wherein the heat insulating casing includes a storage chamber for storing an object to be cooled, and the cool air cooled by the cooling unit of the cooling device is stored in the cooler via the cool air passage. The cool air passage is provided in a partition portion that partitions the storage chamber into a predetermined state.
[0014] この構成によると、仕切り部に冷気通路を設けたことにより、被冷却物の収納に寄与 しない空間を利用して冷気通路を配置することができ、冷却庫の空間活用率が向上 する。また冷気通路形成作業も容易になる。 [0015] 本発明は、上記構成の冷却庫において、前記収納室を所定状態に仕切る仕切り部 は収納室を第 1の区画と第 2の区画に仕切る垂直方向仕切り部を含み、前記垂直方 向仕切り部に前記冷気通路の少なくとも一部を形成したことを特徴としている。 [0014] According to this configuration, by providing the cool air passage in the partition portion, the cool air passage can be arranged using the space that does not contribute to the storage of the object to be cooled, and the space utilization rate of the refrigerator is improved. . Further, the work for forming the cold air passage is facilitated. [0015] In the refrigerator having the above-described configuration, the partition portion that partitions the storage chamber into a predetermined state includes a vertical partition portion that partitions the storage chamber into a first partition and a second partition, and the vertical direction At least a part of the cold air passage is formed in the partition portion.
[0016] この構成によると、冷気通路を収納室の奥の壁から第 1の区画と第 2の区画を隔て る垂直方向仕切り部に移したことにより、これまで顧みられな力、つた垂直方向仕切り 部を有効活用し、収納室の奥行きを拡大できる。そしてこれにより、冷却庫の薄型化 を実現できる。  [0016] According to this configuration, since the cool air passage is moved from the inner wall of the storage chamber to the vertical partition that separates the first compartment and the second compartment, the force that has been neglected so far, the vertical direction The partition can be used effectively to increase the depth of the storage room. This makes it possible to reduce the thickness of the refrigerator.
[0017] 本発明は、上記構成の冷却庫において、前記冷却装置の少なくとも一部の冷却部 を前記仕切り部の下部以下のレベルに配置し、前記仕切り部の冷気通路には前記 冷却部で冷却された冷気を上げる上り冷気通路と、上がった冷気を下ろす下り冷気 通路とを形成し、前記仕切り部にて仕切られた一方には前記上り冷気通路から冷気 を供給し、他方には前記下り冷気通路から冷気を供給することを特徴として!/、る。  [0017] According to the present invention, in the cooler configured as described above, at least a part of the cooling unit of the cooling device is disposed at a level below the lower part of the partition part, and the cool air passage of the partition part is cooled by the cooling part. An up-cooling air passage for raising the cooled air and a down-cooling air passage for lowering the raised cold air are formed, and cold air is supplied from the up-cooling air passage to one of the partitions, and the down-cooling air is supplied to the other. It is characterized by supplying cold air from the passage!
[0018] この構成によると、下り冷気通路から供給される冷気は、冷却装置に近!/、上り冷気 通路から供給される冷気より温度が上がって!/、るので、仕切り部の両側で収納室の 温度を異ならせ、貯蔵温度帯を多様化できる。 [0018] According to this configuration, the cold air supplied from the descending cold air passage is closer to the cooling device! /, And the temperature is higher than the cold air supplied from the upstream cold air passage! /, So it is stored on both sides of the partition portion. The storage temperature range can be diversified by varying the room temperature.
[0019] 本発明は、上記構成の冷却庫において、前記冷気通路に対し、前記収納室の上 部に位置する冷気吐出口と、前記仕切り部の上下方向中間部に位置する冷気吐出 口とが設けられることを特徴として!/、る。 [0019] The present invention provides the cooler configured as described above, wherein the cool air discharge port located in the upper part of the storage chamber and the cool air discharge port located in the middle part in the vertical direction of the partitioning part with respect to the cool air passage. It is characterized by being provided!
[0020] この構成によると、収納室は、上部から供給される冷気と、それより下の箇所で、仕 切り部から供給される冷気とにより、均一に冷却される。 [0020] According to this configuration, the storage chamber is uniformly cooled by the cool air supplied from the upper part and the cool air supplied from the cutting unit at a lower position.
[0021] 本発明は、上記構成の冷却庫において、前記冷気吐出口のうち、少なくとも一部の ものを、水平方向に長レ、スリットの形状としたことを特徴として!/、る。 [0021] The present invention is characterized in that, in the cooler having the above-described configuration, at least a part of the cold air discharge ports has a horizontal shape and a slit shape in the horizontal direction.
[0022] この構成によると、収納室は、横長のスリット状の冷気吐出口から供給される冷気に より、均一に冷却される。 According to this configuration, the storage chamber is uniformly cooled by the cold air supplied from the horizontally long slit-like cold air discharge port.
[0023] 本発明は、上記構成の冷却庫において、前記冷却装置の発熱部の少なくとも一部 を、前記機械室に配置したことを特徴として!/、る。 [0023] The present invention is characterized in that, in the cooler configured as described above, at least a part of the heat generating portion of the cooling device is disposed in the machine room.
[0024] この構成によると、冷却装置の発熱部が収納室の外部上方に位置するため、発熱 部が下の方にある場合に比べ、収納室内への温熱の伝わり方が少なぐ冷却効率が 損なわれにくい。 [0024] According to this configuration, since the heat generating part of the cooling device is located above the outside of the storage room, the cooling efficiency with less heat transmitted to the storage room is lower than when the heat generating part is on the lower side. Hard to be damaged.
[0025] 本発明は、上記構成の冷却庫において、前記機械室は、前記下り冷気通路から冷 気を供給される側の区画の外部上方に配置されることを特徴としている。  [0025] The present invention is characterized in that, in the cooler having the above-described configuration, the machine room is disposed outside the compartment on the side to which the cold air is supplied from the descending cold air passage.
[0026] この構成によると、冷却装置の発熱部が隣り合うのは、他方の区画との比較におい て温度が高くなり得る方の区画であり、各区画の冷却温度の設定に矛盾をきたさない  [0026] According to this configuration, the heating unit of the cooling device is adjacent to the compartment where the temperature can be higher in comparison with the other compartment, and there is no contradiction in the setting of the cooling temperature of each compartment.
[0027] 本発明は、上記構成の冷却庫において、前記断熱筐体を上下に分割する水平方 向仕切り部を設け、前記冷却装置はスターリング冷凍機を構成要素に含み、前記ス ターリング冷凍機の上方に高温側凝縮器を設け、前記スターリング冷凍機の冷熱で 空気を冷却する前記冷却部は、前記水平方向仕切り部の下方に位置させることを特 徴としている。 [0027] In the refrigerator having the above-described configuration, the present invention includes a horizontal partition that divides the heat-insulating housing into upper and lower parts, the cooling device includes a Stirling refrigerator as a component, and the Stirling refrigerator A high temperature side condenser is provided above the cooling section, and the cooling section that cools the air with the cold heat of the Stirling refrigerator is positioned below the horizontal partition section.
[0028] この構成によると、冷媒の自然循環が更に安定して行われることになる。またスター リング冷凍機の放熱部の位置と冷却部の位置が上下に大きく隔てられるから、放熱し た温熱が冷却部の方へ伝わり、スターリング冷凍機に期待される超低温冷却の実現 を妨げるといった事態を防ぐことができる。  [0028] According to this configuration, the natural circulation of the refrigerant is performed more stably. Also, since the position of the heat dissipating part and the cooling part of the Stirling refrigerator are largely separated from each other, the heat dissipated is transferred to the cooling part, preventing the realization of the ultra-low temperature cooling expected for Stirling refrigerators. Can be prevented.
[0029] 本発明は、上記構成の冷却庫に搭載する冷却装置であって、高温ヘッドと低温へ ッドを備えたスターリング冷凍機を構成要素に含み、前記スターリング冷凍機に対し、 前記高温ヘッドには温熱取出用の高温側循環回路を接続し、前記低温ヘッドには 冷熱取出用の低温側循環回路を接続し、前記高温ヘッドが上、前記低温ヘッドが下 となるように前記スターリング冷凍機の姿勢を設定したことを特徴としている。  [0029] The present invention is a cooling device mounted in the refrigerator having the above-described configuration, and includes a Stirling refrigerator having a high-temperature head and a low-temperature head as constituent elements, and the high-temperature head is provided for the Stirling refrigerator. Is connected to a high temperature side circulation circuit for extracting heat, and the low temperature head is connected to a low temperature side circulation circuit for extracting heat, so that the high temperature head is on and the low temperature head is on the Stirling refrigerator. It is characterized by having set the attitude of.
[0030] この構成によると、高温ヘッド及び高温側循環回路を含む放熱サイクルと、低温へ ッド及び低温側循環回路を含む冷却サイクルとを無理 ·無駄なく分離できる。配管作 業も容易である。また低温ヘッド付近の構造が複雑化していないので、断熱構造の 形成も容易である。  [0030] According to this configuration, the heat release cycle including the high temperature head and the high temperature side circulation circuit and the cooling cycle including the low temperature head and the low temperature side circulation circuit can be separated without difficulty. Piping work is also easy. In addition, since the structure near the low-temperature head is not complicated, it is easy to form a heat insulation structure.
[0031] 本発明は、上記構成の冷却装置において、前記高温側循環回路の二次冷媒配管 は前記高温ヘッドに熱接続した高温側蒸発器から導出された後上に向かって延び、 前記低温側循環回路の二次冷媒配管は前記低温ヘッドに熱接続した低温側凝縮 器から導出された後下に向かって延びることを特徴としている。 [0032] この構成によると、放熱サイクルと冷却サイクルが完全に分離され、両者間に十分 な断熱スペースを確保することができる。 [0031] In the cooling device having the above-described configuration, the secondary refrigerant pipe of the high-temperature side circulation circuit extends upward after being led out from the high-temperature side evaporator thermally connected to the high-temperature head, The secondary refrigerant piping of the circulation circuit is derived from a low-temperature side condenser thermally connected to the low-temperature head and then extends downward. [0032] According to this configuration, the heat release cycle and the cooling cycle are completely separated, and a sufficient heat insulating space can be secured between them.
[0033] 本発明は、上記構成の冷却装置において、前記高温側循環回路は、前記高温へ ッドに熱接続した高温側蒸発器と、放熱用の高温側凝縮器とを二次冷媒配管で接続 し、二次冷媒を自然循環させるものであり、前記高温側蒸発器と高温側凝縮器の間 に、前記スターリング冷凍機の動力部が配置されることを特徴としている。 [0033] The present invention provides the cooling device having the above-described configuration, wherein the high-temperature side circulation circuit includes a high-temperature side evaporator thermally connected to the high-temperature head and a high-temperature side condenser for heat dissipation by a secondary refrigerant pipe. The secondary refrigerant is connected to allow natural circulation of the secondary refrigerant, and a power unit of the Stirling refrigerator is arranged between the high temperature side evaporator and the high temperature side condenser.
[0034] この構成によると、高温側蒸発器と高温側凝縮器の間の高低差を、二次冷媒を自 然循環させるに十分な程度に大きく確保することができる。これにより、放熱効率が向 上するとともに、高温側蒸発器と高温側凝縮器の間の空間を、スターリング冷凍機の 動力部の配置に利用するので、空間を有効に活用できる。 [0034] According to this configuration, the difference in height between the high-temperature side evaporator and the high-temperature side condenser can be ensured large enough to naturally circulate the secondary refrigerant. As a result, the heat dissipation efficiency is improved, and the space between the high temperature side evaporator and the high temperature side condenser is used for the arrangement of the power unit of the Stirling refrigerator, so that the space can be used effectively.
[0035] 本発明は、上記構成の冷却装置にお!/、て、前記高温側凝縮器とそれを強制冷却 する放熱ファンが、前記スターリング冷凍機の取付脚、またはスターリング冷凍機自 体を支えとして空間内に保持されることを特徴としている。 [0035] In the cooling apparatus having the above-described configuration, the present invention is configured such that the high-temperature side condenser and the heat-dissipating fan for forcibly cooling the support support the mounting legs of the Stirling refrigerator or the Stirling refrigerator itself. It is characterized by being held in space.
[0036] この構成によると、高温側凝縮器と送風機がスターリング冷凍機と共に支持される から、スターリング冷凍機を運転する際、これらが一体となって振動することになり、振 動対策を立てやすい。 [0036] According to this configuration, since the high-temperature side condenser and the blower are supported together with the Stirling refrigerator, when the Stirling refrigerator is operated, they integrally vibrate, and it is easy to take measures against vibration. .
[0037] 本発明は、上記構成の冷却装置にお!/、て、前記高温側凝縮器とそれを強制冷却 する放熱ファンが、前記スターリング冷凍機の取付脚を支えとして空間内に保持され 、前記取付脚と、それを支持する支持部材の間に振動吸収手段が介在することを特 徴としている。  [0037] According to the present invention, in the cooling device having the above-described configuration, the high-temperature side condenser and the heat-dissipating fan that forcibly cools the high-temperature side condenser are held in the space with the mounting legs of the Stirling refrigerator as a support, It is characterized in that vibration absorbing means is interposed between the mounting leg and a support member that supports the mounting leg.
[0038] この構成によると、スターリング冷凍機に対する振動吸収手段の作用を高温側凝縮 器と放熱ファンにも及ぼすことができ、これらの構成要素の振動レベルを一挙に低下 させること力 Sでさる。  [0038] According to this configuration, the action of the vibration absorbing means on the Stirling refrigerator can be exerted on the high-temperature side condenser and the heat dissipating fan, and the force S can be reduced by reducing the vibration level of these components all at once.
[0039] 本発明は、上記構成の冷却装置の前記スターリング冷凍機を、断熱筐体背面上部 の凹部に配置するとともに、前記断熱筐体の内部には、前記スターリング冷凍機より も下の位置に冷却用の熱交換器を配置した冷却庫であることを特徴としている。  In the present invention, the Stirling refrigerator of the cooling device having the above-described configuration is disposed in a recess at the upper back of the heat insulating housing, and the heat insulating housing is positioned below the Stirling refrigerator. It is a refrigerator having a heat exchanger for cooling.
[0040] この構成によると、断熱筐体背面上部の凹部にスターリング冷凍機を配置する一方 、冷却用の熱交換器を断熱筐体の内部で、前記スターリング冷凍機よりも下の位置 に配置するものであるから、放熱サイクルと冷却サイクルとが無理なく分離した、合理 的構造の冷却庫を提供できる。配管構成もすつきりしており、組立作業がやりやすい 発明の効果 [0040] According to this configuration, the Stirling refrigerator is disposed in the recess at the upper back of the heat insulating casing, while the cooling heat exchanger is positioned below the Stirling refrigerator in the heat insulating casing. Therefore, it is possible to provide a cooler with a rational structure in which the heat release cycle and the cooling cycle are separated easily. The piping configuration is also easy to assemble, making assembly work easier.
[0041] 本発明による冷却庫は、冷却装置の一部を配置する機械室が、断熱筐体の背面 上方の左寄りまたは右寄りの位置に形成されているから、庫内への突き出しが小さく 、有効内容積を大きくとることができる。  [0041] In the refrigerator according to the present invention, the machine room in which a part of the cooling device is arranged is formed at the left side or the right side above the rear surface of the heat insulating housing, so that the protrusion into the chamber is small and effective. The internal volume can be increased.
[0042] また本発明による冷却庫は、収納室を所定状態に仕切る仕切り部に冷気通路を設 けたので、冷却庫の空間活用率を向上させることができ、冷却庫の収納室の内部を 被冷却物の収納用に有効活用できる。例えば、収納室を仕切る仕切り部に冷気通路 を設けたことや、冷気通路の少なくとも一部を垂直方向仕切り部に形成したこと、また 断熱筐体の背面上方の左寄りまたは右寄りの角部に冷却装置の一部を配置する凹 部を形成したことなどにより、収納室の内部を被冷却物の収納用に有効活用できる。 また、冷却庫の奥行き方向の外形寸法を、内容積に大きな犠牲を強いることなく小さ くして、使いやすい、薄型の冷却庫を得ることができる。  [0042] In addition, since the cooler according to the present invention has the cool air passage in the partition that partitions the storage chamber into a predetermined state, the space utilization rate of the cooler can be improved, and the interior of the storage chamber of the refrigerator can be covered. It can be used effectively for storing cooling objects. For example, a cool air passage is provided in the partition that partitions the storage chamber, that at least a part of the cool air passage is formed in the vertical partition, and a cooling device at the left or right corner above the back of the heat insulating housing. The inside of the storage chamber can be used effectively for storing the object to be cooled, for example, by forming a recess for arranging a part of the storage space. In addition, it is possible to obtain an easy-to-use thin refrigerator by reducing the external dimensions of the refrigerator in the depth direction without compromising the internal volume.
[0043] さらにまた、仕切り部の冷気通路は一直線ではなく上り冷気通路から下り冷気通路 へと連続する形にし、上り冷気通路からは仕切り部にて仕切られた一方に、下り冷気 通路からは他方に、それぞれ冷気を供給するものとしたから、上り冷気通路と下り冷 気通路に自然に生じる冷気の温度差を利用して、仕切り部の両側で貯蔵温度を異な らせ、貯蔵温度帯を多様化できるとともに、区画部が仕切り部の両側にあり、冷熱の 放出が各区画部になされるため、エネルギーロスの少ない冷却庫が得られる。  [0043] Furthermore, the cool air passage of the partition is not a straight line but is continuous from the up cool air passage to the down cool air passage, and is separated from the up cool air passage by the partition portion, and from the down cool air passage to the other Since the cool air is supplied to each, the storage temperature is varied on both sides of the partition using the temperature difference of the cool air that naturally occurs in the ascending cool air passage and the descending cool air passage. In addition, since the compartments are on both sides of the partition, and the cold heat is released to each compartment, a refrigerator with less energy loss can be obtained.
[0044] また本発明による冷却装置は、高温ヘッドと低温ヘッドを備えたスターリング冷凍機 に対し、高温ヘッドには温熱取出用の高温側循環回路を接続し、低温ヘッドには冷 熱取出用の低温側循環回路を接続するとともに、高温ヘッドが上、低温ヘッドが下と なるようにスターリング冷凍機の姿勢を設定したことにより、高温ヘッド及び高温側循 環回路を含む放熱サイクルと、低温ヘッド及び低温側循環回路を含む冷却サイクル とを無理 ·無駄なく分離できる。配管作業も容易である。また低温ヘッド付近の構造が 複雑化して!/、な!/、ので、断熱構造の形成も容易である。 [0045] さらに本発明によると、冷却庫の断熱筐体背面上部の凹部に冷却装置のスターリン グ冷凍機を配置し、断熱筐体の内部には、スターリング冷凍機よりも下の位置に冷却 用の熱交換器を配置したものであるから、放熱サイクルと冷却サイクルとが無理なく 分離し、配管構成もすつきりした、合理的構造の冷却庫を提供できる。 [0044] Further, the cooling device according to the present invention is connected to a high-temperature head, a high-temperature side circulation circuit for extracting heat, and the low-temperature head is connected to a Stirling refrigerator equipped with a high-temperature head and a low-temperature head. By connecting the low temperature side circulation circuit and setting the attitude of the Stirling refrigerator so that the high temperature head is up and the low temperature head is down, the heat dissipation cycle including the high temperature head and the high temperature side circulation circuit, the low temperature head and The cooling cycle including the low-temperature side circulation circuit can be separated without waste. Piping work is also easy. In addition, the structure near the low-temperature head is complicated! /, So it is easy to form a heat insulation structure. [0045] Further, according to the present invention, the Stirling refrigerator of the cooling device is disposed in the recess at the upper back of the heat insulating casing of the refrigerator, and the cooling casing is used for cooling at a position below the Stirling refrigerator inside the insulating casing. Therefore, it is possible to provide a cooler with a rational structure in which the heat release cycle and the cooling cycle are separated without difficulty and the piping configuration is also satisfactory.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 1]第 1実施形態に係る冷却庫の正面図  [FIG. 1] Front view of the refrigerator according to the first embodiment.
[図 2]第 1実施形態の冷却庫の断熱扉を開放した状態の正面図  [Fig. 2] Front view with the heat insulation door of the refrigerator of the first embodiment opened.
[図 3]第 1実施形態の冷却庫の垂直断面図  [Fig. 3] Vertical sectional view of the refrigerator of the first embodiment
[図 4]第 1実施形態の冷却庫を図 3の A— A線に沿って切断した水平断面図  [Fig. 4] Horizontal sectional view of the refrigerator of the first embodiment taken along line A—A in FIG.
[図 5]第 1実施形態の冷却庫に搭載される冷却装置の概略構成図  FIG. 5 is a schematic configuration diagram of a cooling device mounted in the refrigerator of the first embodiment.
[図 6]第 1実施形態の冷却庫の冷却装置搭載箇所の部分垂直断面図  [Fig. 6] Partial vertical sectional view of the cooling device mounting location of the refrigerator of the first embodiment.
[図 7]支持部材に支持されたスターリング冷凍機の上面図  [Fig. 7] Top view of Stirling refrigerator supported by support member
[図 8]支持部材の上面図  [Figure 8] Top view of support member
[図 9]第 1実施形態の冷却庫における冷却装置搭載箇所の第 1変形実施態様を示す 部分垂直断面図  FIG. 9 is a partial vertical sectional view showing a first modified embodiment of a cooling device mounting location in the refrigerator of the first embodiment.
[図 10]第 1実施形態の冷却庫における冷却装置搭載箇所の第 2変形実施態様を示 す部分垂直断面図  FIG. 10 is a partial vertical sectional view showing a second modified embodiment of the cooling device mounting location in the refrigerator of the first embodiment.
[図 11]第 1実施形態の冷却庫における冷却装置搭載箇所の第 3変形実施態様を示 す部分垂直断面図  FIG. 11 is a partial vertical sectional view showing a third modified embodiment of the cooling device mounting location in the refrigerator of the first embodiment.
[図 12]第 1実施形態の冷却庫における冷却装置搭載箇所の第 4変形実施態様を示 す部分垂直断面図  FIG. 12 is a partial vertical sectional view showing a fourth modified embodiment of the cooling device mounting location in the refrigerator of the first embodiment.
[図 13]第 1実施形態の冷却庫における冷却装置搭載箇所の第 5変形実施態様を示 す部分垂直断面図  FIG. 13 is a partial vertical sectional view showing a fifth modified embodiment of the cooling device mounting location in the refrigerator of the first embodiment.
[図 14]第 2実施形態に係る冷却庫の正面図  FIG. 14 is a front view of a refrigerator according to the second embodiment.
[図 15]第 2実施形態の冷却庫の断熱扉を取り除いた状態の正面図  [Fig. 15] Front view of the second embodiment with the heat insulation door removed.
[図 16]第 2実施形態の冷却庫の垂直断面図  [FIG. 16] Vertical sectional view of the refrigerator of the second embodiment
[図 17]第 2実施形態の冷却庫の異なる部位における垂直断面図  [Fig. 17] Vertical sectional view of different parts of the refrigerator of the second embodiment.
[図 18]第 2実施形態の冷却庫の冷気通路の構成説明図 [図 19]第 2実施形態の冷却庫を図 17の B— B線に沿って切断した水平断面図 FIG. 18 is a diagram illustrating the configuration of the cold air passage of the refrigerator according to the second embodiment. [Fig. 19] Horizontal sectional view of the refrigerator of the second embodiment cut along line BB in Fig. 17.
[図 20]垂直方向仕切り部の拡大水平断面図 [Fig.20] Enlarged horizontal sectional view of the vertical partition
[図 21]第 2実施形態の冷却庫に搭載される冷却装置の概略構成図  FIG. 21 is a schematic configuration diagram of a cooling device mounted in the refrigerator of the second embodiment.
[図 22]第 2実施形態の冷却庫の冷却装置搭載箇所の部分垂直断面図  FIG. 22 is a partial vertical sectional view of the cooling device mounting portion of the refrigerator of the second embodiment.
[図 23]第 2実施形態の冷却庫に搭載される冷却装置の概略斜視図  FIG. 23 is a schematic perspective view of a cooling device mounted in the refrigerator of the second embodiment.
[図 24]第 2実施形態の冷却庫における冷気の流れを示すブロック構成図  FIG. 24 is a block diagram showing the flow of cold air in the refrigerator of the second embodiment.
[図 25]第 2実施形態の冷却庫における冷却装置搭載箇所の第 1変形実施態様を示 す部分垂直断面図  FIG. 25 is a partial vertical sectional view showing a first modified embodiment of a cooling device mounting location in the refrigerator of the second embodiment.
[図 26]第 2実施形態の冷却庫における冷却装置搭載箇所の第 2変形実施態様を示 す部分垂直断面図  FIG. 26 is a partial vertical sectional view showing a second modified embodiment of the cooling device mounting location in the refrigerator of the second embodiment.
[図 27]第 2実施形態の冷却庫における冷却装置搭載箇所の第 3変形実施態様を示 す部分垂直断面図  FIG. 27 is a partial vertical sectional view showing a third modified embodiment of the cooling device mounting location in the refrigerator of the second embodiment.
[図 28]第 2実施形態の冷却庫における冷却装置搭載箇所の第 4変形実施態様を示 す部分垂直断面図  FIG. 28 is a partial vertical sectional view showing a fourth modified embodiment of the cooling device mounting location in the refrigerator of the second embodiment.
[図 29]第 2実施形態の冷却庫における冷却装置搭載箇所の第 5変形実施態様を示 す部分垂直断面図  FIG. 29 is a partial vertical sectional view showing a fifth modified embodiment of the cooling device mounting location in the refrigerator of the second embodiment.
[図 30]第 2実施形態の冷却庫における冷気吐出口の変形態様を示す垂直断面図 [図 31]第 2実施形態の冷却庫における冷気吐出口の変形態様を示す冷気通路の構 成説明図  FIG. 30 is a vertical sectional view showing a deformation mode of the cold air discharge port in the cooler of the second embodiment. FIG. 31 is a configuration explanatory diagram of a cold air passage showing a deformation mode of the cold air discharge port in the cooler of the second embodiment.
[図 32]第 2実施形態の冷却庫における垂直方向仕切り部の変形態様を示す水平断 面図  FIG. 32 is a horizontal sectional view showing a deformation mode of the vertical partition in the refrigerator of the second embodiment.
[図 33]第 2実施形態の冷却庫における垂直方向仕切り部の他の変形態様を示す水 平断面図  FIG. 33 is a horizontal sectional view showing another modification of the vertical partition in the refrigerator according to the second embodiment.
[図 34]第 2実施形態の冷却庫における垂直方向仕切り部の変形態様を示す拡大水 平断面図  FIG. 34 is an enlarged horizontal sectional view showing a deformation mode of the vertical partition in the refrigerator of the second embodiment.
符号の説明 Explanation of symbols
1 冷却庫 、 14 水平方向仕切り部 1 Refrigerator , 14 Horizontal partition
、 13 垂直方向仕切り部 , 13 Vertical partition
第 1区画部  First division
第 2区画部  Second division
第 3区画部  Section 3
第 4区画部  4th section
温度切替区画部  Temperature switching section
第 1断熱扉  First insulated door
第 2断熱扉  Second insulated door
第 3断熱扉  Third insulated door
第 4断熱扉  4th insulation door
第 5断熱扉  5th insulation door
凹部 (機械室)  Concave (machine room)
、 51、 54、 63、 66 冷気通路51, 54, 63, 66 Cold air passage
U 上り冷気通路U Ascending cold passage
D 下り冷気通路 D Down cold air passage
、 61 横方向冷気通路 61 transverse cold air passage
、 58、 60、 62、 62A、 65、 70 冷気吐出 P0 冷却装置58, 60, 62, 62A, 65, 70 Cold air discharge P0 Cooling device
0 スターリング冷凍機0 Stirling refrigerator
1 高温ヘッド1 High temperature head
2 低温ヘッド2 Low temperature head
0 高温側循環回路0 Hot side circulation circuit
1 高温側蒸発器1 Hot side evaporator
2 高温側凝縮器2 High temperature side condenser
3 二次冷媒配管3 Secondary refrigerant piping
4 放熱ファン4 Heat dissipation fan
5 ダクト 130 低温側循環回路 5 Duct 130 Low temperature side circulation circuit
131 低温側凝縮器  131 Low temperature side condenser
132 低温側蒸発器  132 Low temperature evaporator
133 二次冷媒配管  133 Secondary refrigerant piping
150 高温側第 2循環回路  150 High-temperature side second circulation circuit
151 熱交換器  151 heat exchanger
160 防露部  160 Dew protection section
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 以下本発明の第 1実施形態を図 1 8に基づき説明する。本実施形態における冷 却庫は冷蔵庫として用いられるものである。冷却庫 1は断熱筐体 10を備える。  Hereinafter, a first embodiment of the present invention will be described with reference to FIG. The refrigerator in this embodiment is used as a refrigerator. The refrigerator 1 includes a heat insulating housing 10.
[0049] 断熱筐体 10の内部は収納室となる。本明細書において「収納室」とは、冷蔵温度 帯(0°C〜; 10°C)の区画、それよりもやや低い(マイナス 3°C程度まで)温度帯である、 「氷温」「チルド」「パーシャル」などの呼称が用いられる温度帯の区画、冷凍温度帯( マイナス十数度以下)の区画、高温帯 (例えば 50°C〜80°C)の区画、冷蔵温度帯を 除ぐ高温帯と冷凍温度帯の中間の温度帯の区画など、被冷却物である食品(調味 料を含む)、薬品、化粧品などの貯蔵用(収納用)に用いられる空間の総称である。ま た本明細書では断熱筐体 10の前面に正対した観察者の左側を断熱筐体 10の左側 、観察者の右側を断熱筐体 10の右側と定義する。  [0049] The inside of the heat insulating housing 10 serves as a storage chamber. In this specification, “storage room” refers to a compartment in the refrigerated temperature zone (0 ° C to 10 ° C) and a temperature zone slightly lower (up to about minus 3 ° C). Excludes temperature zones where chilled and partial names are used, refrigeration temperature zones (minus tens of degrees or less), high temperature zones (eg, 50 ° C to 80 ° C), and refrigeration temperature zones It is a general term for spaces used for storage (for storage) of food (including seasonings), chemicals, and cosmetics that are to be cooled, such as compartments between the high temperature zone and the freezing temperature zone. Further, in this specification, the left side of the observer facing the front surface of the heat insulating housing 10 is defined as the left side of the heat insulating housing 10, and the right side of the observer is defined as the right side of the heat insulating housing 10.
[0050] 断熱筐体 10は前面に食品出し入れ用の開口部を有し、この開口部を断熱扉で閉 ざす。図 2に示すように、断熱筐体 10の内部は上下左右に区分されていて、左上が 第 1区画部 15、右上が第 2区画部 16、左下が第 3区画部 17、右下が第 4区画部 18 となっている。第 1区画部 15の前面開口部には第 1断熱扉 20が設けられ、第 2区画 部 16の前面開口部には第 2断熱扉 21が設けられ、第 3区画部 17の前面開口部に は第 3断熱扉 22が設けられ、第 4区画部 18の前面開口部には第 4断熱扉 23が設け られている。第 1断熱扉 20と第 3断熱扉 22は向かって左側に設けられたヒンジ部を中 心として回動し、第 2断熱扉 21と第 4断熱扉 23は向かって右側に設けられたヒンジ部 を中心として回動する。第 1断熱扉 20、第 2断熱扉 21、第 3断熱扉 22、及び第 4断熱 扉 23には巴手 20H、 21H, 22H、 23Hカ取り付けられている。 [0051] なお、第 1区画部 15から第 4区画部 18の何れか若しくは幾つかを更に分割して、 第 5区画部、第 6区画部等を設置してもよレ、 (この構成は図示しな!/、)。 [0050] The heat insulating casing 10 has an opening for taking in and out food on the front surface, and the opening is closed with a heat insulating door. As shown in FIG. 2, the interior of the heat insulating housing 10 is divided into upper, lower, left and right, the upper left is the first partition 15, the upper right is the second partition 16, the lower left is the third partition 17, and the lower right is the first. There are four compartments. A first heat insulating door 20 is provided at the front opening of the first partition 15, a second heat insulating door 21 is provided at the front opening of the second partition 16, and a front opening of the third partition 17 is provided. A third heat insulating door 22 is provided, and a fourth heat insulating door 23 is provided at the front opening of the fourth partition 18. The 1st heat insulation door 20 and the 3rd heat insulation door 22 rotate centering on the hinge part provided in the left side toward the 2nd heat insulation door 21 and the 4th heat insulation door 23 are the hinge parts provided in the right side toward Rotate around the center. The first heat insulating door 20, the second heat insulating door 21, the third heat insulating door 22, and the fourth heat insulating door 23 are provided with a hand 20H, 21H, 22H, 23H. [0051] It should be noted that any one or some of the first partition 15 to the fourth partition 18 may be further divided to install a fifth partition, a sixth partition, etc. Not shown! /,).
[0052] 第 1区画部 15及び第 2区画部 16は冷蔵室として用いられる。第 1区画部 15は複数 の棚 30により複数段に仕切られる。最下段の棚 30の下には引き出し式のケース 31 が配置される。第 2区画部 16も複数の棚 32により複数段に仕切られる。最下段の棚 32の下には引き出し式のケース 33が配置される。また第 1断熱扉 20と第 2断熱扉 21 の内面にはボトル類や飲料の紙パックなどを収納するラック 36 (図 3参照)が取り付け られている。  [0052] The first partition 15 and the second partition 16 are used as a refrigerator compartment. The first partition 15 is divided into a plurality of stages by a plurality of shelves 30. A drawer-type case 31 is arranged under the lowest shelf 30. The second partition 16 is also divided into a plurality of stages by a plurality of shelves 32. A drawer-type case 33 is arranged below the lowest shelf 32. A rack 36 (see FIG. 3) for storing bottles and beverage paper packs is attached to the inner surfaces of the first heat insulation door 20 and the second heat insulation door 21.
[0053] 第 3区画部 17及び第 4区画部 18は冷凍室として用いられる。第 3区画部 17には計 3ί固のケース 40a、 40b、 40c力 第 4区画咅 に (ま計 4固のケース 41a、 41b, 41c 、 41d力 それぞれ上下に重なる形で挿入されている。ケース 40a、 40b、 40cは両側 縁部によって第 3区画部 17の内面に、ケース 41a、 41b, 41c, 41dは両側縁部によ つて第 4区画部 18の内面に、それぞれ支持されており、いずれも手前側にスライドさ せて引き出すことができる。  [0053] The third partition 17 and the fourth partition 18 are used as freezing rooms. A total of 3 case cases 40a, 40b, 40c force are inserted into the third partition section 17 (a total of 4 case cases 41a, 41b, 41c, 41d forces are inserted so as to overlap each other vertically) 40a, 40b, 40c are supported on the inner surface of the third partition 17 by the edges on both sides, and cases 41a, 41b, 41c, 41d are supported on the inner surface of the fourth partition 18 by the edges on both sides. Can be pulled out by sliding it forward.
[0054] 第 3区画部 17及び第 4区画部 18は冷凍室として冷蔵室よりも断熱構造を厚くして いるため、必要に応じて分割し、製氷に特化した独立区分を設置したり、急速冷凍か ら解凍まで、求められる様々な温度設定に適合した独立区分を設置したりすることが 可能である。  [0054] Since the third compartment 17 and the fourth compartment 18 have a heat insulation structure thicker than the refrigeration compartment as a freezer compartment, they are divided as necessary, and an independent compartment specialized in ice making is installed, From quick freezing to thawing, it is possible to set up an independent section suitable for various required temperature settings.
[0055] 冷却庫 1の庫内は図 5に示す冷却装置 100によって冷却される。冷却装置 100に 含まれる構成要素の中心的存在力 Sスターリング冷凍機 110である。スターリング冷凍 機 110は逆スターリングサイクルにより温熱と冷熱を発生するものであり、温熱は廃熱 として主として高温ヘッド 111から取り出され、冷熱は低温ヘッド 112から取り出され  [0055] The interior of the refrigerator 1 is cooled by the cooling device 100 shown in FIG. The central presence of components included in the cooling device 100 is the S Stirling refrigerator 110. The Stirling refrigerator 110 generates heat and cold by a reverse Stirling cycle. The heat is mainly removed from the high temperature head 111 as waste heat, and the cold is extracted from the low temperature head 112.
[0056] スターリング冷凍機 110の構造は特許文献 4に記載のものと基本的に同じであって 、内部にはディスプレーサ、ピストン、ピストンを駆動するリニアモータなどの構成要素 が配置され、外部形状は軸線を備えた回転体形状となっている。スターリング冷凍機 110は、高温ヘッド 111が上、低温ヘッド 112が下となるように、軸線を垂直に立てた 状態で配置される。前記リニアモータを内蔵する動力部 113は高温ヘッド 111のさら に上に位置する。 [0056] The structure of the Stirling refrigerator 110 is basically the same as that described in Patent Document 4, in which components such as a displacer, a piston, and a linear motor that drives the piston are arranged, and the external shape is It has a rotating body shape with an axis. The Stirling refrigerator 110 is arranged with its axis vertically set so that the high temperature head 111 is on the top and the low temperature head 112 is on the bottom. The power unit 113 containing the linear motor is further connected to the high temperature head 111. Located on the top.
[0057] 高温ヘッド 111から温熱を取り出して放熱するのは高温側循環回路 120である。高 温側循環回路 120には二次冷媒として水(水溶液を含む)あるいは炭化水素系の冷 媒が封入されている。なお「二次冷媒」とは、スターリング冷凍機 110の内部の作動媒 体を「一次冷媒」、スターリング冷凍機 110の外部で熱輸送に用いられる作動媒体を 「二次冷媒」と定義することによる。ちなみに後述の「三次冷媒」は、二次冷媒との間 で熱交換を行う冷媒の意である。  The high temperature side circulation circuit 120 extracts heat from the high temperature head 111 and dissipates it. The high temperature side circulation circuit 120 is filled with water (including an aqueous solution) or a hydrocarbon refrigerant as a secondary refrigerant. “Secondary refrigerant” is defined by defining the working medium inside Stirling refrigerator 110 as “primary refrigerant” and the working medium used for heat transport outside Stirling refrigerator 110 as “secondary refrigerant”. . Incidentally, the “tertiary refrigerant” described later is a refrigerant that exchanges heat with a secondary refrigerant.
[0058] 高温側循環回路 120は二次冷媒を自然循環させるサーモサイフォン循環回路であ り、高温ヘッド 111に対し互いの間で熱を授受する状態、すなわち熱接続された状態 で装着された高温側蒸発器 121と、スターリング冷凍機 110の上に配置された高温 側凝縮器 122と、高温側蒸発器 121と高温側凝縮器 122とを接続する二次冷媒配 管 123を含む。高温側凝縮器 122は放熱用の熱交換器として機能する。  [0058] The high-temperature side circulation circuit 120 is a thermosiphon circulation circuit that naturally circulates the secondary refrigerant. The high-temperature head circuit 120 is a high-temperature head mounted in a state in which heat is transferred between the high-temperature heads 111, that is, in a thermally connected state. It includes a side evaporator 121, a high temperature side condenser 122 disposed on the Stirling refrigerator 110, and a secondary refrigerant pipe 123 connecting the high temperature side evaporator 121 and the high temperature side condenser 122. The high temperature side condenser 122 functions as a heat exchanger for heat dissipation.
[0059] 高温側蒸発器 121は銅や銅合金、アルミニウムなど熱伝導の良い金属を中空のリ ング状に成形したものであり、高温ヘッド 111の外周面に嵌合し、高温ヘッド 111に 熱接続される。高温側蒸発器 121の側面からは二次冷媒配管 123が導出される。二 次冷媒配管 123は、高温側蒸発器 121の側面から導出された後、上に向かって延 びる。そしてスターリング冷凍機 110の上方で高温側凝縮器 122に接続される。二次 冷媒配管 123は、蒸発して気体となった二次冷媒を高温側凝縮器 122に送る気相 配管 123Gと、高温側凝縮器 122で凝縮して液体となった二次冷媒を高温側蒸発器 121に戻す液相配管 123Lとに分かれて!/、る。  [0059] The high-temperature side evaporator 121 is formed by molding a metal having good heat conductivity such as copper, copper alloy, or aluminum into a hollow ring shape. The high-temperature side evaporator 121 is fitted to the outer peripheral surface of the high-temperature head 111 and heats the high-temperature head 111. Connected. A secondary refrigerant pipe 123 is led out from the side surface of the high temperature side evaporator 121. The secondary refrigerant pipe 123 is led out from the side surface of the high temperature side evaporator 121 and then extends upward. And it is connected to the high temperature side condenser 122 above the Stirling refrigerator 110. The secondary refrigerant pipe 123 is composed of a gas phase pipe 123G that sends the vaporized secondary refrigerant to the high temperature side condenser 122 and a secondary refrigerant that has condensed into a liquid at the high temperature side condenser 122 and is on the high temperature side. Divided into a liquid phase pipe 123L that returns to the evaporator 121!
[0060] 高温側凝縮器 122は、銅や銅合金と!/、つた熱伝導の良!/、金属材料からなるパイプ 122aを折り曲げ、これに、同じく熱伝導の良い金属材料からなる多数の放熱フィン 1 22bを取り付けた構造である。高温側凝縮器 122には強制空冷用の放熱ファン 124 が組み合わせられる。  [0060] The high-temperature side condenser 122 is made of copper or copper alloy! /, Good heat conduction! /, A pipe 122a made of a metal material is bent, and a large number of heat radiation made of a metal material also having good heat conduction is made. It is the structure where fin 1 22b was attached. A heat radiating fan 124 for forced air cooling is combined with the high temperature side condenser 122.
[0061] 低温ヘッド 112には低温側循環回路 130が熱接続される。低温側循環回路 130に は二次冷媒として二酸化炭素(CO )などの自然冷媒を封入する。低温側循環回路 1  The low-temperature head 112 is thermally connected to the low-temperature side circulation circuit 130. The low temperature side circulation circuit 130 is filled with a natural refrigerant such as carbon dioxide (CO 2) as a secondary refrigerant. Low temperature circuit 1
2  2
30は、低温ヘッド 112に対し熱接続された状態で装着された低温側凝縮器 131と、 冷却庫 1の断熱筐体 10内に設置された低温側蒸発器 132と、低温側凝縮器 131と 低温側蒸発器 132とを接続する二次冷媒配管 133を含む。低温側蒸発器 132は冷 却装置 100の冷却部として機能する。 30 includes a low-temperature side condenser 131 mounted in a state of being thermally connected to the low-temperature head 112, a low-temperature side evaporator 132 installed in the heat insulating casing 10 of the refrigerator 1, and a low-temperature side condenser 131 A secondary refrigerant pipe 133 connecting the low temperature side evaporator 132 is included. The low temperature side evaporator 132 functions as a cooling unit of the cooling device 100.
[0062] 低温側凝縮器 131は銅や銅合金、アルミニウムなど熱伝導の良い金属を中空のリ ング状に成形したものであり、低温ヘッド 112の外周面に嵌合し、低温ヘッド 112に 熱接続される。低温側凝縮器 131の側面からは二次冷媒配管 133が導出される。二 次冷媒配管 133は、低温側凝縮器 131の側面から導出された後、下に向かって延 びる。そして断熱筐体 10の内部に入り、低温側蒸発器 132に接続される。二次冷媒 配管 133は、低温側凝縮器 131で凝縮して液体となった二次冷媒を低温側蒸発器 1 32に流下させる液相配管 133Lと、低温側蒸発器 132で蒸発して気体となった二次 冷媒を低温側凝縮器 131に戻す気相配管 133Gとに分かれている。  [0062] The low-temperature side condenser 131 is formed by molding a metal having good thermal conductivity such as copper, copper alloy, or aluminum into a hollow ring shape. The low-temperature side condenser 131 is fitted to the outer peripheral surface of the low-temperature head 112, and the low-temperature head 112 is heated. Connected. A secondary refrigerant pipe 133 is led out from the side surface of the low temperature side condenser 131. The secondary refrigerant pipe 133 is led out from the side surface of the low-temperature side condenser 131 and then extends downward. Then, it enters the inside of the heat insulating casing 10 and is connected to the low temperature side evaporator 132. The secondary refrigerant pipe 133 is composed of a liquid-phase pipe 133L that causes the secondary refrigerant that has been condensed into a liquid by the low-temperature side condenser 131 to flow down to the low-temperature side evaporator 1 32 and vaporized by the low-temperature side evaporator 132 to form a gas. It is divided into a gas-phase pipe 133G for returning the secondary refrigerant thus obtained to the low-temperature side condenser 131.
[0063] 低温側蒸発器 132も高温側凝縮器 122と同様、銅や銅合金といった熱伝導の良い 金属材料からなるパイプ 132aを折り曲げたうえで熱伝導の良い金属材料からなる多 数の吸熱フィン 132bを取り付けた構造である。  [0063] Similarly to the high-temperature side condenser 122, the low-temperature side evaporator 132 is made of a plurality of heat-absorbing fins made of a metal material having a good heat conductivity after bending a pipe 132a made of a metal material having a good heat conductivity such as copper or a copper alloy. 132b is attached.
[0064] スターリング冷凍機 110を運転すると、動力部 113と高温ヘッド 111、それに高温側 循環回路 120の温度が上昇する。すなわちこれらが冷却装置 100の発熱部となる。 他方で低温ヘッド 112と低温側循環回路 130の温度は下降する。  When the Stirling refrigerator 110 is operated, the temperatures of the power unit 113, the high temperature head 111, and the high temperature side circulation circuit 120 are increased. That is, these become the heat generating part of the cooling device 100. On the other hand, the temperature of the low temperature head 112 and the low temperature side circulation circuit 130 is lowered.
[0065] 冷却装置 100は、次のようにして冷却庫 1に搭載される。  The cooling device 100 is mounted in the refrigerator 1 as follows.
[0066] 断熱筐体 10の背面上部、すなわち上面と背面の角に機械室となる凹部 46を形成 する(図 3、 4、 6参照)。凹部 46は断熱筐体 10を正面から見た場合左に偏った位置、 すなわち第 1区画部 15の奥の左寄りの位置に設けられている。凹部 46は、スターリ ング冷凍機 110、高温側蒸発器 121、高温側凝縮器 122、二次冷媒配管 123、放熱 ファン 124、低温側凝縮器 131と、二次冷媒配管 133の一部を収容する。収容すベ き要素を全て収容した後、凹部 46の上面開口と背面開口は適宜の通風グリルで閉 ざされる。  [0066] A recess 46 serving as a machine room is formed in the upper part of the rear surface of the heat insulating casing 10, that is, the corners of the upper surface and the rear surface (see FIGS. 3, 4, and 6). The recess 46 is provided at a position biased to the left when the heat-insulating housing 10 is viewed from the front, that is, at a position on the left side of the back of the first partition portion 15. The recess 46 accommodates a part of the Stirling refrigerator 110, the high temperature side evaporator 121, the high temperature side condenser 122, the secondary refrigerant pipe 123, the heat dissipation fan 124, the low temperature side condenser 131, and the secondary refrigerant pipe 133. . After all the elements to be accommodated are accommodated, the upper and rear openings of the recess 46 are closed with appropriate ventilation grills.
[0067] このように冷却装置 100の発熱部は、冷凍室として使用される第 3区画部 17や第 4 区画部 18に比べて温度の高い、冷蔵室として使用される第 1区画部 15に隣り合う形 で配置されるから、第 3区画部 17や第 4区画部 18の隣に配置した場合に比べ、間の 断熱層を薄くできる。 [0068] さらに、断熱筐体 10の背面上方の左寄りの角部に形成した凹部 46とし、その中に 冷却装置 100の発熱部を配置しているから、収納室の天井部後方の隅部全体が収 納室に突き出すことにはならず、収納室への凹部 46の突き出しは比較的小さなもの となり、収納室の有効内容積を大きくとることができる。 [0067] In this way, the heat generating part of the cooling device 100 is in the first compartment 15 used as a refrigerator compartment, which has a higher temperature than the third compartment 17 and the fourth compartment 18 used as the freezer compartment. Since they are arranged adjacent to each other, the thermal insulation layer between them can be made thinner than in the case where they are arranged next to the third partition part 17 and the fourth partition part 18. [0068] Further, since the heat generating part of the cooling device 100 is arranged in the concave part 46 formed in the corner on the left side above the rear surface of the heat insulating casing 10, the whole corner part behind the ceiling part of the storage room is disposed therein. However, the protrusion 46 does not protrude into the storage chamber, and the protrusion 46 protrudes into the storage chamber, so that the effective internal volume of the storage chamber can be increased.
[0069] 凹部 46の正面から見て左側の断熱壁を取り除き、断熱壁の厚さの分だけ凹部 46 を左側へ移動させることもできる。このようにすると、収納室への凹部 46の突き出しは さらに小さくなり、収納室の有効内容積が増加し、容積効率が一段と向上する。  [0069] The heat insulating wall on the left side as viewed from the front of the concave portion 46 can be removed, and the concave portion 46 can be moved to the left side by the thickness of the heat insulating wall. In this way, the protrusion of the recess 46 into the storage chamber is further reduced, the effective internal volume of the storage chamber is increased, and the volumetric efficiency is further improved.
[0070] 凹部 46を断熱筐体 10の背面上部の右寄りの角部付近に形成することもできる。こ の場合の作用効果も上記と同様である。  The recess 46 can also be formed in the vicinity of the right-hand corner of the upper part of the back surface of the heat insulating housing 10. The effects in this case are the same as described above.
[0071] スターリング冷凍機 110を凹部 46の内部に支持するにあたっては支持部材 140 ( 図 8参照)を用いる。支持部材 140は断熱筐体 10とは別の部品として形成される額 縁状の枠であって、凹部 46の中ほどの高さに適宜の固定手段により水平に固定され る。支持部材 140の内部には、スターリング冷凍機 110及び高温側循環回路 120の 二次冷媒配管 123を通す開口部 141が形成されている。開口部 141の中には、後 述する振動吸収体を下から支える張出部 142が 4箇所に形成されている。  [0071] In supporting the Stirling refrigerator 110 inside the recess 46, a support member 140 (see FIG. 8) is used. The support member 140 is a frame having a frame shape formed as a separate part from the heat insulating casing 10, and is horizontally fixed to an intermediate height of the recess 46 by appropriate fixing means. An opening 141 through which the secondary refrigerant pipe 123 of the Stirling refrigerator 110 and the high-temperature side circulation circuit 120 passes is formed inside the support member 140. In the opening 141, overhanging portions 142 for supporting a vibration absorber described below from below are formed at four locations.
[0072] スターリング冷凍機 110の動力部 113の外面には、板金をプレス加工してなるフラ ンジ状の取付脚 114 (図 7参照)を溶接等適宜手段で固定する。取付脚 114には、先 端が支持部材 140の張出部 142に重なる脚部 114aが 4箇所に放射状に形成されて いる。なお、取付脚 114はプレス成形品に限定されるものではない。ダイカスト成形 品であってもよぐ MCナイロン等高強度の合成樹脂材料を射出成形したものであつ てもよい。  [0072] A flange-like mounting leg 114 (see Fig. 7) formed by pressing a sheet metal is fixed to the outer surface of the power unit 113 of the Stirling refrigerator 110 by appropriate means such as welding. The mounting leg 114 is formed with four leg portions 114a whose tip ends overlap the overhanging portion 142 of the support member 140 in four radial positions. The mounting legs 114 are not limited to press-formed products. It may be a die-cast product. It may be an injection-molded high strength synthetic resin material such as MC nylon.
[0073] スターリング冷凍機 110は、低温ヘッド 112が一番下に来て、その上に高温ヘッド 1 11が来るよう、軸線を垂直にした姿勢で支持部材 140の開口部 141に上方から揷入 される。スターリング冷凍機 110の重量は、張出部 142が取付脚 114の脚部 114aを 支持することにより支えられる力 その際、張出部 142と脚部 114aの間には振動吸 収手段を介在させる。実施形態では、ゴムのような弾性物質からなる円柱状の振動 吸収体 143が振動吸収手段を構成する。  [0073] The Stirling refrigerator 110 is inserted from above into the opening 141 of the support member 140 with the axis line vertical so that the low-temperature head 112 comes to the bottom and the high-temperature head 111 comes on top. Is done. The weight of the Stirling refrigerator 110 is the force supported by the overhanging portion 142 supporting the leg portion 114a of the mounting leg 114. At that time, vibration absorbing means is interposed between the overhanging portion 142 and the leg portion 114a. . In the embodiment, the columnar vibration absorber 143 made of an elastic material such as rubber constitutes the vibration absorbing means.
[0074] 振動吸収体 143には、 4個の張出部 142の中心にスターリング冷凍機 110を、動力 部 113の側面が張出部 142に接触することのないように支持する役割が求められる。 そのため振動吸収体 143は、適宜の連結手段により、位置ずれや張出部 142と脚部 114aの間からの脱落が生じないように保持される。連結手段としてはボルト、ナット、 ヮッシャなど周知の機械要素を用いることができる。 [0074] The vibration absorber 143 is provided with a Stirling refrigerator 110 at the center of the four overhanging parts 142. The role of supporting the side surface of the portion 113 so as not to contact the overhanging portion 142 is required. Therefore, the vibration absorber 143 is held by an appropriate connecting means so as not to be displaced or dropped from between the overhanging portion 142 and the leg portion 114a. As the connecting means, well-known machine elements such as bolts, nuts, and washers can be used.
[0075] 高温側循環回路 120は、スターリング冷凍機 110を支持部材 140に取り付ける前の 段階で高温ヘッド 111に接続しておく。その状態でスターリング冷凍機 110の低温へ ッド 1 12及び高温ヘッド 111の部分と、高温側蒸発器 121と、二次冷媒配管 123の 一部を支持部材 140の開口部 141に揷入し、取付脚 114の脚部 114aを振動吸収 体 143の上面に着座させる。  The high temperature side circulation circuit 120 is connected to the high temperature head 111 before the Stirling refrigerator 110 is attached to the support member 140. In that state, the portions of the low temperature head 1 12 and the high temperature head 111 of the Stirling refrigerator 110, the high temperature side evaporator 121, and the secondary refrigerant pipe 123 are inserted into the opening 141 of the support member 140, The leg portion 114 a of the mounting leg 114 is seated on the upper surface of the vibration absorber 143.
[0076] 高温側凝縮器 122は二次冷媒配管 123により支えられた状態でスターリング冷凍 機 110の上方に位置している。なお、図 5では気相配管 123Gと液相配管 123Lは 1 本ずつしか示されていないが、現実の構成では、図 7に示すように、気相配管 123G と液相配管 123Lは 2本ずつ存在する。  The high temperature side condenser 122 is positioned above the Stirling refrigerator 110 while being supported by the secondary refrigerant pipe 123. In FIG. 5, only one gas-phase pipe 123G and one liquid-phase pipe 123L are shown. However, in the actual configuration, as shown in FIG. 7, two gas-phase pipes 123G and two liquid-phase pipes 123L are shown. Exists.
[0077] 高温側凝縮器 122の下面には放熱ファン 124がダクト 125を介して連結される。放 熱ファン 124の送風方向は、高温側凝縮器 122に風を吹き付ける方向であってもよく 、高温側凝縮器 122を通じて風を取り入れる方向であってもよい。  A heat radiating fan 124 is connected to the lower surface of the high temperature side condenser 122 via a duct 125. The blowing direction of the heat release fan 124 may be a direction in which wind is blown to the high temperature side condenser 122 or may be a direction in which wind is taken in through the high temperature side condenser 122.
[0078] 低温側循環回路 130は、スターリング冷凍機 110を支持部材 140に取り付けた段 階で、あるいはそれより前の、低温ヘッド 112が開口部 141を通り抜けて支持部材 14 0の下に頭を出した段階で、低温ヘッド 112に接続される。  The low temperature side circulation circuit 130 is a stage where the Stirling refrigerator 110 is attached to the support member 140 or in front of it, and the low temperature head 112 passes through the opening 141 and heads under the support member 140. At the stage of taking out, it is connected to the low temperature head 112.
[0079] 支持部材 140に対するスターリング冷凍機 110の組み付けと、スターリング冷凍機 1 10に対する高温側循環回路 120と低温側循環回路 130の接続が完了した状態では 、すなわち図 6の状態では、高温側蒸発器 121と高温側凝縮器 122の間にスターリ ング冷凍機 110の動力部 113が配置されている。この構成により、高温側蒸発器 12 1と高温側凝縮器 122の間の高低差を、二次冷媒を自然循環させるに十分な程度に 大きく確保すること力できる。これにより、放熱効率が向上するとともに、高温側蒸発 器 121と高温側凝縮器 122の間の空間を、スターリング冷凍機 110の動力部 113の 配置に利用するので、空間を有効に活用できる。  [0079] When the Stirling refrigerator 110 is assembled to the support member 140 and the connection of the high temperature side circulation circuit 120 and the low temperature side circulation circuit 130 to the Stirling refrigerator 110 is completed, that is, in the state of FIG. The power unit 113 of the Stirling refrigerator 110 is disposed between the condenser 121 and the high temperature side condenser 122. With this configuration, the height difference between the high-temperature side evaporator 121 and the high-temperature side condenser 122 can be ensured to be large enough to naturally circulate the secondary refrigerant. As a result, the heat radiation efficiency is improved, and the space between the high temperature side evaporator 121 and the high temperature side condenser 122 is used for the arrangement of the power unit 113 of the Stirling refrigerator 110, so that the space can be effectively used.
[0080] また図 6の状態では、高温側凝縮器 122を強制空冷する放熱ファン 124も高温側 蒸発器 121と高温側凝縮器 122の間に配置されている。この構成も高温側蒸発器 1 21と高温側凝縮器 122の間の高低差を大きくするのに役立つ。 [0080] In the state shown in FIG. 6, the heat dissipating fan 124 that forcibly air-cools the high temperature side condenser 122 is also on the high temperature side. It is arranged between the evaporator 121 and the high temperature side condenser 122. This configuration also helps to increase the height difference between the high temperature side evaporator 121 and the high temperature side condenser 122.
[0081] 高温側循環回路 120の二次冷媒配管 123は、高温側蒸発器 121から導出された 後、スターリング冷凍機 110の上方にある高温側凝縮器 122に向かって上に延びる 。低温側循環回路 130の二次冷媒配管 133は、低温側凝縮器 131から導出された 後、スターリング冷凍機 110の下方にある低温側蒸発器 132に向かって下に延びる 。上にある高温側蒸発器 121からの二次冷媒配管 123が上に向力、い、下にある低温 側凝縮器 131からの二次冷媒配管 133が下に向力、うという、きわめて単純な構図な ので、低温ヘッド 112及び低温側循環回路 130を含む冷却サイクルと、高温ヘッド 1 11及び高温側循環回路 120を含む放熱サイクルとを無理 '無駄なく分離できる。配 管作業も容易である。 [0081] The secondary refrigerant pipe 123 of the high temperature side circulation circuit 120 is led out from the high temperature side evaporator 121 and then extends upward toward the high temperature side condenser 122 above the Stirling refrigerator 110. The secondary refrigerant pipe 133 of the low temperature side circulation circuit 130 is led out from the low temperature side condenser 131 and then extends downward toward the low temperature side evaporator 132 below the Stirling refrigerator 110. The secondary refrigerant pipe 123 from the high-temperature side evaporator 121 on the upper side is directed upward, and the secondary refrigerant pipe 133 from the lower-temperature side condenser 131 on the lower side is directed downward. Because of the composition, the cooling cycle including the low temperature head 112 and the low temperature side circulation circuit 130 and the heat radiation cycle including the high temperature head 111 and the high temperature side circulation circuit 120 can be separated without waste. The piping work is also easy.
[0082] なお低温側蒸発器 132は、正面から見てスターリング冷凍機 110のある側に偏らせ ておくと、二次冷媒配管 133の引回しが更に容易になり、二次冷媒の循環効率が向 上する。また、二次冷媒配管 133と低温側蒸発器 132の接続部もスターリング冷凍機 110のある側に設けておけば、二次冷媒配管 133の引回しが一層容易になり、二次 冷媒の循環効率が更に向上する。  [0082] If the low temperature side evaporator 132 is biased to the side where the Stirling refrigerator 110 is present when viewed from the front, the secondary refrigerant pipe 133 can be more easily routed, and the circulation efficiency of the secondary refrigerant can be improved. improves. In addition, if the connection between the secondary refrigerant pipe 133 and the low-temperature side evaporator 132 is also provided on the side where the Stirling refrigerator 110 is provided, the secondary refrigerant pipe 133 can be routed more easily and the circulation efficiency of the secondary refrigerant can be increased. Is further improved.
[0083] 低温ヘッド 112付近の構造、特に配管構造が複雑化していないので、それを取り囲 むように断熱構造を形成することも容易である。図 6には低温ヘッド 112と二次冷媒 配管 133を囲む断熱体 144を仮想線で示す。断熱体 144は、所定の空間を囲って おいてその中でウレタン発泡を行わせる、あるいは複数の発泡ウレタンブロックを組 み合わせると!/、つた手法で形成できる。  [0083] Since the structure in the vicinity of the low-temperature head 112, in particular, the piping structure is not complicated, it is easy to form a heat insulating structure so as to surround it. In FIG. 6, the thermal insulator 144 surrounding the low-temperature head 112 and the secondary refrigerant pipe 133 is indicated by phantom lines. The heat insulator 144 can be formed by a method that encloses a predetermined space and performs urethane foaming in the space, or a combination of a plurality of foamed urethane blocks!
[0084] 高温側凝縮器 122と放熱ファン 124、それにダクト 125は、二次冷媒配管 123によ り、スターリング冷凍機 110自体を支えとして凹部 46の内部空間に保持されて!/、る。 このため、高温側凝縮器 122と放熱ファン 124がスターリング冷凍機 110と共に支持 されることになり、振動吸収体 143の振動吸収作用を高温側凝縮器 122と放熱ファン 124にも及ぼすことができ、これらの構成要素の振動レベルを一挙に低下させること ができる。  [0084] The high-temperature side condenser 122, the heat radiating fan 124, and the duct 125 are held in the internal space of the recess 46 by the secondary refrigerant pipe 123, supporting the Stirling refrigerator 110 itself! For this reason, the high temperature side condenser 122 and the heat radiating fan 124 are supported together with the Stirling refrigerator 110, and the vibration absorbing action of the vibration absorber 143 can also be exerted on the high temperature side condenser 122 and the heat radiating fan 124. The vibration level of these components can be reduced at once.
[0085] また支持部材 140にスターリング冷凍機 110を取り付けるにあたっては、高温側循 環回路 120を接続した形のスターリング冷凍機 110を上から支持部材 140の開口部 141に通し、その上で低温ヘッド 112に低温側循環回路 130を接続すればよぐ組 立が容易である。 In addition, when attaching the Stirling refrigerator 110 to the support member 140, The Stirling refrigerator 110 connected to the ring circuit 120 is passed through the opening 141 of the support member 140 from above, and then the low temperature side circulation circuit 130 is connected to the low temperature head 112 to facilitate assembly.
[0086] 低温側蒸発器 132は断熱筐体 10の内部でスターリング冷凍機 110よりも下の位置 に置かれる。すなわち、断熱筐体 10の内部には、背面側の内壁に沿って垂直方向 に延びる冷却ダクト 250、 251力 S設けられる。冷却ダクト 250は奥側に位置し、冷却ダ タト 251はその手前側に位置する。冷却ダクト 250の下端には庫内空気を吸い込む 吸気口 252力 S設けられる。低温側蒸発器 132は冷却ダクト 250の中で吸気口 252の 上方の位置に設置される。低温側蒸発器 132の上方には冷却ダクト 251に空気を吹 き出すファン 253が設けられる。  The low temperature side evaporator 132 is placed in a position below the Stirling refrigerator 110 inside the heat insulating casing 10. That is, the cooling ducts 250 and 251 force S extending in the vertical direction along the inner wall on the back side are provided inside the heat insulating casing 10. The cooling duct 250 is located on the back side, and the cooling dust 251 is located on the front side thereof. At the lower end of the cooling duct 250, there is an air inlet 252 force S that sucks the air in the cabinet. The low temperature side evaporator 132 is installed in the cooling duct 250 at a position above the air inlet 252. A fan 253 for blowing air to the cooling duct 251 is provided above the low temperature side evaporator 132.
[0087] スターリング冷凍機 110の運転が始まると、高温ヘッド 111には温熱が発生する。  [0087] When the operation of the Stirling refrigerator 110 starts, heat is generated in the high-temperature head 111.
温熱により高温側蒸発器 121の内部の二次冷媒は蒸発して気体となり、温熱を潜熱 として保持する。気体化した二次冷媒は気相配管 123Gを上昇して高温側凝縮器 12 2に入り、そこで凝縮して潜熱を顕熱化する。顕熱となった温熱は高温側凝縮器 122 の表面から庫外に放熱される。放熱ファン 124から吹き付ける風が放熱を助ける。凝 縮し、液体になった二次冷媒は液相配管 123Lを下降して高温側蒸発器 121に戻る The secondary refrigerant inside the high-temperature side evaporator 121 is evaporated by the heat to become a gas, and the heat is held as latent heat. The gasified secondary refrigerant rises in the gas-phase pipe 123G and enters the high-temperature side condenser 122, where it condenses and sensible heat of latent heat. The sensible heat is dissipated from the surface of the high-temperature side condenser 122 to the outside. The wind blown from the heat dissipation fan 124 helps heat dissipation. The secondary refrigerant that has condensed and turned down descends the liquid phase pipe 123L and returns to the high-temperature side evaporator 121.
Yes
[0088] 低温ヘッド 112には冷熱が発生する。冷熱により低温側凝縮器 131の内部の気体 状の二次冷媒は凝縮して液体となり、冷熱を潜熱として保持する。液体化した二次冷 媒は液相配管 133Lを下降して低温側蒸発器 132に入り、そこで冷却庫 1の庫内の 熱により蒸発する。二次冷媒の蒸発により、冷熱が顕熱化する。蒸発し、気体になつ た二次冷媒は気相配管 133Gを上昇して低温側凝縮器 131に戻る。  The cold head 112 generates cold heat. The gaseous secondary refrigerant inside the low-temperature side condenser 131 is condensed by the cold and becomes a liquid, and the cold is held as latent heat. The liquefied secondary refrigerant descends through the liquid phase pipe 133L and enters the low temperature side evaporator 132, where it evaporates due to the heat in the refrigerator 1. The cold heat becomes sensible heat by the evaporation of the secondary refrigerant. The secondary refrigerant that has evaporated to gas goes up the gas-phase pipe 133G and returns to the low-temperature side condenser 131.
[0089] 低温側蒸発器 132で冷熱が顕熱化した状態でファン 253を運転すると、冷却ダクト 250の下端の吸気口 252から吸い込まれた空気が低温側蒸発器 132によって冷却 され、冷気となって冷却ダクト 251に送り込まれる。冷気は冷却ダクト 251の所定箇所 に形成された吹出口 254を通じて第 1区画部 15、第 2区画部 16、第 3区画部 17、第 4区画部 18に吹き出し、各区画部を所定の温度に冷却する。  [0089] When the fan 253 is operated in a state where the cold heat is sensible in the low temperature side evaporator 132, the air sucked from the intake port 252 at the lower end of the cooling duct 250 is cooled by the low temperature side evaporator 132 and becomes cold air. Into the cooling duct 251. The cold air is blown out to the first partition 15, the second partition 16, the third partition 17, and the fourth partition 18 through the air outlet 254 formed at a predetermined location of the cooling duct 251, and each partition is brought to a predetermined temperature. Cooling.
[0090] スターリング冷凍機 110の運転を続けていると、断熱筐体 10内の空気中の水分が 霜となって低温側蒸発器 132に付着する。霜は低温側蒸発器 132の熱交換効率を 低下させるので、適宜のタイミングで霜取りヒータ(図示せず)に通電し、低温側蒸発 器 132の除霜を行う。霜が溶けた除霜水は冷却ダクト 250の底部のドレンパン 260に 受けられ、そこからドレンパイプ 261を通じて庫外の蒸発皿 262に排水される。蒸発 皿 262内の水は自然蒸発により、あるいは適宜のヒータ手段による強制蒸発により、 蒸発せしめられる。蒸発皿 262を手前側に引き出して水を捨てることもできる。 [0090] When the operation of the Stirling refrigerator 110 is continued, the moisture in the air in the heat insulating housing 10 It forms frost and adheres to the low-temperature evaporator 132. Since frost lowers the heat exchange efficiency of the low-temperature evaporator 132, the defrost heater (not shown) is energized at an appropriate timing to defrost the low-temperature evaporator 132. The defrosted water in which the frost has melted is received by the drain pan 260 at the bottom of the cooling duct 250, and then drained through the drain pipe 261 to the evaporating dish 262 outside the refrigerator. The water in the evaporating dish 262 is evaporated by natural evaporation or by forced evaporation by an appropriate heater means. The evaporating dish 262 can be pulled out to throw away water.
[0091] 冷却庫 1は上記のように構成されているので、把手 20Hに手を掛けて第 1断熱扉 2 0を開けば第 1区画部 15に物を出し入れでき、把手 21Hに手を掛けて第 2断熱扉 21 を開けば第 2区画部 16に物を出し入れでき、把手 22Hに手を掛けて第 3断熱扉 22 を開けば第 3区画部 17に物を出し入れでき、把手 23Hに手を掛けて第 4断熱扉 23 を開けば第 4区画部 18に物を出し入れできる。  [0091] Since the refrigerator 1 is configured as described above, if the first heat insulating door 20 is opened by placing the hand on the handle 20H, the object can be taken in and out of the first partition 15 and the handle 21H is handled. If you open the second heat insulation door 21, you can put things in and out of the second compartment 16, and if you hold the handle 22H and open the third heat insulation door 22, you can put things in and out of the third compartment 17 and hand in the handle 23H. When the fourth heat insulation door 23 is opened, the object can be taken in and out of the fourth compartment 18.
[0092] 第 1実施形態の変形実施態様を図 9 13に示す。各変形実施態様において、構 造の大半は図 6の実施態様と共通なので、共通部分には前と同じ符号を付し、必要 があるとき以外説明は加えない。  A modified embodiment of the first embodiment is shown in FIG. In each modified embodiment, most of the structure is the same as that in the embodiment of FIG. 6. Therefore, common parts are denoted by the same reference numerals as those in the previous embodiment, and will not be described unless necessary.
[0093] 図 9に示す第 1変形実施態様では、高温側凝縮器 122と放熱ファン 124の位置を 図 6の実施態様と逆にした。すなわち図 6の実施態様では放熱ファン 124は高温側 凝縮器 122の下に放熱ファン 124が配置されていたが、第 1変形実施態様では高温 側凝縮器 122の上に放熱ファン 124を配置した。このようにすることにより、二次冷媒 配管 123の高さ方向の長さを第 1実施形態の場合よりも節約できる。  In the first modified embodiment shown in FIG. 9, the positions of the high temperature side condenser 122 and the heat radiating fan 124 are reversed from those in the embodiment of FIG. That is, in the embodiment of FIG. 6, the heat dissipation fan 124 is disposed below the high temperature side condenser 122, but in the first modified embodiment, the heat dissipation fan 124 is disposed above the high temperature side condenser 122. By doing so, the length of the secondary refrigerant pipe 123 in the height direction can be saved as compared with the case of the first embodiment.
[0094] 図 6の実施態様及び図 9の第 1変形実施態様では、高温側凝縮器 122と放熱ファ ン 124の保持に関しては格別の配慮が払われていない。この点を工夫したのが第 2 変形実施態様以下の変形実施態様である。  In the embodiment of FIG. 6 and the first modified embodiment of FIG. 9, no special consideration is given to the holding of the high-temperature side condenser 122 and the heat dissipating fan 124. The modified embodiment below the second modified embodiment devised this point.
[0095] 図 10に示す第 2変形実施態様は、高温側凝縮器 122と放熱ファン 124の配置が図 6の実施態様と同じである。ここでは板金製の L字形のステー 145を取付脚 114に固 定し、ステー 145の上部にダクト 125を固定した。これにより、ダクト 125及びそれに 連結されている高温側凝縮器 122と放熱ファン 124とは凹部 46の内部でしつ力、りと 保持されることになる。なおステー 145の数は 1個に限定されるものではなぐ複数個 用いても構わない。 [0096] 図 11に示す第 3変形実施態様は、高温側凝縮器 122と放熱ファン 124の配置が図 6の実施態様と同じである。ここでは根元でスターリング冷凍機 110を抱え込む形の 板金製ステー 146を動力部 113の外周面に固定し、ステー 146の上部にダクト 125 を固定した。ステー 146の数は 1個に限定されるものではなぐ複数個用いても構わ ない。 In the second modified embodiment shown in FIG. 10, the arrangement of the high temperature side condenser 122 and the heat radiating fan 124 is the same as the embodiment of FIG. Here, an L-shaped stay 145 made of sheet metal was fixed to the mounting leg 114, and a duct 125 was fixed to the top of the stay 145. As a result, the duct 125 and the high-temperature side condenser 122 and the radiating fan 124 connected to the duct 125 are held firmly in the recess 46. The number of stays 145 is not limited to one, and a plurality of stays 145 may be used. In the third modified embodiment shown in FIG. 11, the arrangement of the high temperature side condenser 122 and the heat radiating fan 124 is the same as that of the embodiment of FIG. Here, a sheet metal stay 146 that holds the Stirling refrigerator 110 at the base is fixed to the outer peripheral surface of the power unit 113, and a duct 125 is fixed to the upper part of the stay 146. The number of stays 146 is not limited to one, and a plurality of stays 146 may be used.
[0097] 図 12に示す第 4変形実施態様は、高温側凝縮器 122と放熱ファン 124の配置が第 1変形実施態様と同じである。ここでは第 2変形実施態様のステー 145を取付脚 114 に固定し、ステー 145の上部に高温側凝縮器 122を固定した。ステー 145の数は 1 個に限定されるものではなぐ複数個用いても構わな!/、。  In the fourth modified embodiment shown in FIG. 12, the arrangement of the high temperature side condenser 122 and the heat radiating fan 124 is the same as that of the first modified embodiment. Here, the stay 145 of the second modified embodiment is fixed to the mounting leg 114, and the high-temperature side condenser 122 is fixed to the upper portion of the stay 145. The number of stays 145 is not limited to one, but more than one may be used! /.
[0098] 図 13に示す第 5変形実施態様は、高温側凝縮器 122と放熱ファン 124の配置が第 1変形実施態様と同じである。ここでは、板金製の L次形のステー 147をスターリング 冷凍機 110の動力部 113の上面に固定し、ステー 147の上部に高温側凝縮器 122 を固定した。ステー 147の数は 1個に限定されるものではなぐ複数個用いても構わ ない。  In the fifth modified embodiment shown in FIG. 13, the arrangement of the high temperature side condenser 122 and the heat radiating fan 124 is the same as that of the first modified embodiment. Here, an L-shaped stay 147 made of sheet metal is fixed to the upper surface of the power unit 113 of the Stirling refrigerator 110, and the high-temperature side condenser 122 is fixed to the upper part of the stay 147. The number of stays 147 is not limited to one, and a plurality of stays 147 may be used.
[0099] その他の変形実施態様として、取付脚 114に固定するステー 145と、スターリング 冷凍機 110の動力部 113に固定するステー 146、 147とを組み合わる構成も可能で ある。  [0099] As another modified embodiment, a structure in which the stay 145 fixed to the mounting leg 114 and the stays 146 and 147 fixed to the power unit 113 of the Stirling refrigerator 110 can be combined.
[0100] 上記各実施態様において、スターリング冷凍機 110は断熱筐体 10の背面上部の 左寄りの角部付近に設けた凹部 46に配置されている。凹部 46をこの位置に置くと、 庫内への凹部 46の突き出しが小さくなり、庫内の有効内容積を大きくとることができる 。凹部 46を断熱筐体 10の背面上部の右寄りの角部付近に配置しても効果は同じで ある。  [0100] In each of the above embodiments, the Stirling refrigerator 110 is disposed in a recess 46 provided near the left corner of the upper part of the back surface of the heat insulating casing 10. When the concave portion 46 is placed at this position, the protrusion of the concave portion 46 into the chamber is reduced, and the effective internal volume in the chamber can be increased. The effect is the same even if the recess 46 is arranged near the right corner of the upper part of the rear surface of the heat insulating housing 10.
[0101] 凹部 46の正面から見て左側の断熱壁を取り除き、断熱壁の厚さの分だけ凹部 46 を左側へ移動させることもできる。このようにすると、庫内への凹部 46の突き出しはさ らに小さくなり、庫内の有効内容積が増加し、容積効率が一段と向上する。  [0101] The heat insulating wall on the left side as viewed from the front of the concave portion 46 can be removed, and the concave portion 46 can be moved to the left side by the thickness of the heat insulating wall. In this way, the protrusion of the recess 46 into the storage is further reduced, the effective internal volume in the storage is increased, and the volumetric efficiency is further improved.
[0102] 低温部を下に置き、高温部を上に置くことにより、冷却サイクルと放熱サイクルを無 理-無駄なく分離できるという効果は、スターリング冷凍機を備えた冷却装置以外の 冷却装置でも享受できる。例えばペルチェ素子を用いた冷却装置の場合、低温へッ ド 112や低温側蒸発器 132をペルチェ素子の低温部に置き換え、高温ヘッド 111や 高温側凝縮器 122をペルチェ素子の高温部に置き換えることにより、同様の効果を 得ること力 Sできる。そして前記の効果は冷却庫に限られるものではなぐ冷却装置の 低温部と高温部の位置関係のみで得られる効果と言うことができる。 [0102] By placing the low temperature part down and the high temperature part up, the cooling cycle and the heat release cycle can be separated from each other without any waste. The cooling device other than the cooling device equipped with the Stirling refrigerator is also enjoyed. it can. For example, in the case of a cooling device using a Peltier element, The same effect S can be obtained by replacing the high-temperature head 111 and the high-temperature side condenser 122 with the high-temperature part of the Peltier element by substituting the low-temperature part 112 and the low-temperature evaporator 132 with the low-temperature part of the Peltier element. The above effect is not limited to the refrigerator, and can be said to be an effect obtained only by the positional relationship between the low temperature part and the high temperature part of the cooling device.
[0103] HC冷媒等の冷媒を用いる冷却装置であって、圧縮機、凝縮器、冷媒管、膨張弁、 キヤビラリ一チューブ、蒸発器等を備えたものを冷却装置とする場合も同様のことが 言える。圧縮機や凝縮器等の発熱部を凹部 46に置き、庫内にはキヤビラリーチユー ブの一部や蒸発器を置くこととすれば、断熱筐体 10の上部背面に発熱部があるため 、熱が上方に逃げやすくなり、収納室への熱の影響も少なくなり、エネルギーロスの 少ない冷却庫が得られる。  The same applies to a cooling device that uses a refrigerant such as HC refrigerant, and includes a compressor, a condenser, a refrigerant pipe, an expansion valve, a capillary tube, an evaporator, and the like. I can say that. If a heat generating part such as a compressor or a condenser is placed in the recess 46 and a part of a cylindrical tube or an evaporator is placed in the cabinet, the heat generating part is located on the upper rear surface of the heat insulating housing 10. This makes it easier for heat to escape upwards, reduces the effect of heat on the storage room, and provides a cooler with less energy loss.
[0104] 機械室となる凹部 46を断熱筐体 10の背面上部の左寄りまたは右寄りの角部に設 けることによる効果は、スターリング冷凍機を搭載する冷却庫に特有のものではない。 HC冷媒等の冷媒を用いた圧縮機タイプの冷却装置でも、凹部の庫内への突き出し を小さくし、容積効率の良い冷却庫を得ることができる。凝縮器ゃ冷媒配管を断熱筐 体の天井部に設けることとすれば、凹部の庫内への突き出しは更に小さくなり、庫内 の有効内容積が増す。  [0104] The effect of providing the recess 46 serving as the machine room at the left or right corner of the rear upper part of the heat insulating housing 10 is not unique to the refrigerator equipped with the Stirling refrigerator. Even with a compressor-type cooling device using a refrigerant such as HC refrigerant, the protrusion of the concave portion into the chamber can be reduced, and a refrigerator with good volumetric efficiency can be obtained. If the condenser and the refrigerant pipe are provided on the ceiling of the heat insulating housing, the protrusion of the recess into the storage is further reduced, and the effective internal volume in the storage is increased.
[0105] 続いて本発明の第 2実施形態を図 14— 24に基づき説明する。第 2実施形態の構 成要素で、第 1実施形態の構成要素と機能的に共通する構成要素については、第 1 実施形態と同じ符号を付す。  [0105] Next, a second embodiment of the present invention will be described with reference to Figs. Constituent elements in the second embodiment that are functionally common to the constituent elements in the first embodiment are denoted by the same reference numerals as in the first embodiment.
[0106] 冷却庫 1は断熱筐体 10を備える。断熱筐体 10は、板金製アウターハウジングの内 部に合成樹脂製インナーハウジングを揷入し、アウターハウジングとインナーハウジ ングの間の隙間に断熱材を揷入、ある!/、はその隙間で合成樹脂を発泡させて断熱 層を形成したものである。このような断熱筐体の製作手法は周知であり、本発明の要 点ではな!/、ことから、立ち入った説明はしな!/、。  The refrigerator 1 includes a heat insulating housing 10. Insulated housing 10 inserts a synthetic resin inner housing inside the sheet metal outer housing, and inserts a heat insulating material in the gap between the outer housing and the inner housing. A heat insulating layer is formed by foaming resin. The method of manufacturing such a heat-insulating housing is well known, and is not the gist of the present invention! /.
[0107] 断熱筐体 10の内部の収納室は、図 15に示すように、水平方向仕切り部(第 1仕切 り部) 11により上下に二分割される。水平方向仕切り部 11の上下の空間は垂直方向 仕切り部(第 2仕切り部) 12と垂直方向仕切り部(第 3仕切り部) 13により左右に区画 される。水平方向仕切り部(第 1仕切り部) 11より下で、垂直方向仕切り部 13の左側 の空間は、水平方向仕切り部(第 4仕切り部) 14によりさらに上下に二分割されているAs shown in FIG. 15, the storage chamber inside the heat insulating housing 10 is divided into two vertically by a horizontal partition (first partition) 11. The space above and below the horizontal partition 11 is divided into left and right by a vertical partition (second partition) 12 and a vertical partition (third partition) 13. Horizontal partition (first partition) Below 11 and to the left of vertical partition 13 The space is further divided into two vertically by a horizontal partition (fourth partition) 14.
Yes
[0108] 水平方向仕切り部 11の上、垂直方向仕切り部 12の左の空間は第 1区画部 15とな る。水平方向仕切り部 11の上、垂直方向仕切り部 12の右の空間は第 2区画部 16と なる。水平方向仕切り部 14の下、垂直方向仕切り部 13の左の空間は第 3区画部 17 となる。水平方向仕切り部 1 1の下、垂直方向仕切り部 13の右の空間は第 4区画部 1 8となる。第 1区画部 15と第 2区画部 16は冷蔵室として用いられる。第 3区画部 17と 第 4区画部 18は冷凍室として用いられる。水平方向仕切り部 11、 14の間で、垂直方 向仕切り部 13の左の空間部は、冷蔵室としても冷凍室としても使用可能な温度切替 区画部 19となる。  The space above the horizontal partition 11 and to the left of the vertical partition 12 is the first partition 15. A space above the horizontal partition 11 and to the right of the vertical partition 12 is a second partition 16. A space below the horizontal partition 14 and to the left of the vertical partition 13 is a third partition 17. The space below the horizontal partition 11 and to the right of the vertical partition 13 is the fourth partition 18. The first compartment 15 and the second compartment 16 are used as a refrigerator compartment. The third compartment 17 and the fourth compartment 18 are used as freezing rooms. Between the horizontal partitioning parts 11 and 14, the left space part of the vertical partitioning part 13 serves as a temperature switching partitioning part 19 that can be used as a refrigerator compartment or a freezer compartment.
[0109] 第 1区画部 15の前面開口部には第 1断熱扉 20が設けられ、第 2区画部 16の前面 開口部には第 2断熱扉 21が設けられ、第 3区画部 17の前面開口部には第 3断熱扉 22が設けられ、第 4区画部 18の前面開口部には第 4断熱扉 23が設けられ、温度切 替区画部 19の前面開口部には第 5断熱扉 24が設けられる。第 1断熱扉 20、第 3断 熱扉 22、第 5断熱扉 24は向かって左側に設けられたヒンジ部を中心として回動し、 第 2断熱扉 21、第 4断熱扉 23は向かって右側に設けられたヒンジ部を中心として回 動する。第 1断熱扉 20の下部には収納室内の各部の温度を設定する操作部 25が設 けられている。  [0109] A first heat insulation door 20 is provided at the front opening of the first partition 15 and a second heat insulation door 21 is provided at the front opening of the second partition 16, and the front of the third partition 17 A third heat insulating door 22 is provided at the opening, a fourth heat insulating door 23 is provided at the front opening of the fourth compartment 18, and a fifth heat insulating door 24 is provided at the front opening of the temperature switching compartment 19. Is provided. The first heat insulation door 20, the third heat insulation door 22, and the fifth heat insulation door 24 rotate around the hinge provided on the left side, while the second heat insulation door 21 and the fourth heat insulation door 23 face the right side. It rotates around the hinge part provided in the center. An operation unit 25 for setting the temperature of each part in the storage room is provided below the first heat insulating door 20.
[0110] 第 1区画部 15は 3段の棚 30により上下方向に仕切られる。最下段の棚 30の下には 引き出し式のケース 31が配置される。  [0110] The first partition section 15 is partitioned in the vertical direction by a three-stage shelf 30. A drawer-type case 31 is arranged under the lowest shelf 30.
[0111] 第 2区画部 16も 3段の棚 32により上下方向に仕切られる。最下段の棚 32aはその 上の 2段よりも奥行き寸法が大きぐその下には上下二段に重なる引き出し式のケー ス 33、 34が配置される。下方のケース 34の上面開口部に対しては仕切カバー 35 ( 図 16参照)が設けられている。最下段の棚 32aと仕切カバー 35の間の空間は隔離 区画部 16aを構成し、仕切カバー 35の下の空間は隔離区画部 16bを構成する。第 2 断熱扉 21の内面にはボトル類や飲料の紙パックなどを収納するラック 36が取り付け られている。  [0111] The second partition section 16 is also partitioned in the vertical direction by the three-stage shelf 32. The lowermost shelf 32a has a depth dimension larger than the upper two tiers, and underneath the drawer cases 33 and 34 are arranged in two upper and lower tiers. A partition cover 35 (see FIG. 16) is provided for the upper surface opening of the lower case 34. The space between the lowermost shelf 32a and the partition cover 35 constitutes an isolation compartment 16a, and the space below the partition cover 35 constitutes an isolation compartment 16b. On the inner surface of the second heat insulating door 21, a rack 36 for storing bottles and beverage paper packs is attached.
[0112] 第 1区画部 15及び第 2区画部 16に対してはそれぞれ照明が設けられる。第 1区画 部 15用の照明はその天井部に配置されたダウンライト 37 (図 17参照)であり、第 2区 画部 16用の照明は奥の壁の上部に配置された照明パネル 38 (図 16参照)である。 ダウンライト 37と照明パネル 38はいずれも LEDを光源とする。 [0112] The first partition 15 and the second partition 16 are each provided with illumination. 1st section The lighting for section 15 is a downlight 37 (see Fig. 17) placed on the ceiling, and the lighting for the second section 16 is a lighting panel 38 (see Figure 16) placed on the top of the back wall. ). Both the downlight 37 and the lighting panel 38 use LEDs as a light source.
[0113] 第 3区画部 17には計 2個のケース 40a、 40bが、第 4区画部 18には計 3個のケース  [0113] The third compartment 17 has a total of two cases 40a and 40b, and the fourth compartment 18 has a total of three cases.
41 a, 41b、 41cが、それぞれ上下に重なる形で挿入されている。ケース 40a、 40bは 両側縁部によって第 3区画部 17の内面に、ケース 41a、 41b, 41cは両側縁部によつ て第 4区画部 18の内面に、それぞれ支持されており、いずれも手前側にスライドさせ て引き出すことができる。温度切替区画部 19にはケース 42が揷入されている。  41a, 41b, and 41c are inserted so as to overlap each other. Cases 40a and 40b are supported on the inner surface of the third partition 17 by the edges on both sides, and cases 41a, 41b and 41c are supported on the inner surface of the fourth partition 18 by the edges on both sides. Can be pulled out by sliding to the side. A case 42 is inserted in the temperature switching section 19.
[0114] 第 4区画部 18の天井部には製氷ユニット 43が配置される(図 16、 18参照)。製氷 ユニット 43で製造した氷はケース 41aの中の氷容器 44 (図 15参照)に受けられる。製 氷ユニット 43に水を供給する給水タンク 45は隔離区画部 16bの中、ケース 34の右側 に設置される。  [0114] An ice making unit 43 is disposed on the ceiling of the fourth partition 18 (see FIGS. 16 and 18). Ice produced by the ice making unit 43 is received in the ice container 44 (see FIG. 15) in the case 41a. A water supply tank 45 for supplying water to the ice making unit 43 is installed on the right side of the case 34 in the isolation section 16b.
[0115] 第 3区画部 17及び第 4区画部 18は必要に応じて分割し、製氷に特化した独立区 分を設置したり、急速冷凍から解凍まで、求められる様々な温度設定に適合した独 立区分を設置したりすることが可能である。  [0115] The third compartment 17 and the fourth compartment 18 are divided as necessary to install independent compartments specialized for ice making, and to suit various temperature settings required from quick freezing to thawing. It is possible to establish an independent division.
[0116] 収納室は図 21に示す冷却装置 100によって冷却される。図 21の冷却装置 100で は、高温側循環回路 120が高温ヘッド 111から取り出した温熱は防露部(断熱筐体 1 0の表面のうち、結露を避けたい箇所)の結露防止にも利用される。これを実現する のが高温側第 2循環回路 150である。  [0116] The storage chamber is cooled by a cooling device 100 shown in FIG. In the cooling device 100 of FIG. 21, the high-temperature side circulation circuit 120 takes out the heat extracted from the high-temperature head 111 to prevent dew condensation in the dew proof part (the part of the surface of the heat insulating housing 10 where condensation is to be avoided). The This is realized by the high-temperature side second circulation circuit 150.
[0117] 高温側第 2循環回路 150は高温側循環回路 120の気相冷媒配管 123Gに熱交換 器 151を介して熱接続される。高温側第 2循環回路 150内には三次冷媒が非減圧状 態で封入される。三次冷媒は水と不凍液の混合液である。三次冷媒は循環量確保の ため低粘度にする必要があるので、不凍液の混合比は低くなつている。  The high temperature side second circulation circuit 150 is thermally connected to the gas-phase refrigerant pipe 123G of the high temperature side circulation circuit 120 via the heat exchanger 151. The tertiary refrigerant is sealed in the high-temperature side second circulation circuit 150 in a non-depressurized state. The tertiary refrigerant is a mixture of water and antifreeze. The tertiary refrigerant needs to have a low viscosity to ensure circulation, so the antifreeze mixing ratio is low.
[0118] 熱交換器 151の気相冷媒配管 123Gへの取付状況を図 22及び 25— 29に示す。  [0118] FIGS. 22 and 25-29 show how the heat exchanger 151 is attached to the gas-phase refrigerant pipe 123G.
図 22及び 25— 29は第 1実施形態における図 6及び 9— 13に対応するものである。  22 and 25-29 correspond to FIGS. 6 and 9-13 in the first embodiment.
[0119] 高温側第 2循環回路 150の配管 152は、熱交換器 151を出た後、図 23に示す経 路をたどる。すなわち配管 152は下り管 152Dとなって断熱筐体 10の底部へと下り、 そこに設置されたドレンパン 153に入る。配管 152はドレンパン 153の中を蛇行し、ド レンパン 153に溜まったドレン水の温度を上昇させる。ドレンパン 153に対してはファ ン 154が組み合わせられ、ドレン水の蒸発をさらに促進するようになっている。 [0119] The pipe 152 of the high-temperature side second circulation circuit 150 follows the path shown in Fig. 23 after exiting the heat exchanger 151. That is, the pipe 152 becomes the down pipe 152D and goes down to the bottom of the heat insulating casing 10, and enters the drain pan 153 installed there. Pipe 152 meanders through drain pan 153 and The temperature of the drain water collected in the renpan 153 is raised. Fan 154 is combined with drain pan 153 to further promote the evaporation of drain water.
[0120] ドレンパン 153を出た配管 152は分岐部 155で 2系統に分かれた後、 2系統とも断 熱筐体 10の右側壁の下部に入り、右側壁を前方に抜けて断熱筐体 10の前面下部 に達する。 2系統の進路はそこから分かれ、一方の系統は断熱筐体 10の右側壁の 前縁を上昇する。上昇途中で水平方向仕切り部 11の前縁に入り、ヘアピン形状を描 いた後、右側壁の前縁に戻り、上昇を続ける。右側壁の上端に達した配管 152は天 井壁に入り、天井壁の前縁を右から左に抜けて左側壁に至り、左側壁の前縁を下降 し、さらに左側壁の下部を背面側に抜けて集合部 156に達する。  [0120] The pipe 152 exiting the drain pan 153 is divided into two systems at the branch 155, and then both systems enter the lower part of the right side wall of the thermal enclosure 10, pass through the right side wall forward, Reach the lower front. The two routes are separated from each other, and one route rises up the leading edge of the right side wall of the heat insulating housing 10. Enter the front edge of the horizontal partition 11 on the way up, draw a hairpin shape, return to the front edge of the right side wall, and continue rising. The pipe 152 that reaches the upper end of the right side wall enters the ceiling wall, passes the front edge of the ceiling wall from right to left, reaches the left side wall, descends the front edge of the left side wall, and further lowers the lower side of the left side wall on the rear side. To the gathering part 156.
[0121] 他方の系統は右側壁の前縁から底部壁に入り、底部壁の前縁を右から左に抜けて 垂直方向仕切り部 13の下端に達する。配管 152はそこで上方へと向きを変え、垂直 方向仕切り部 13、 12の前縁を下から上に抜ける。垂直方向仕切り部 12の上端に達 した配管 152は折り返して下降する。下降途中で水平方向仕切り部 11の前縁に入り 、ヘアピン形状を描いた後、垂直方向仕切り部 13の前縁に戻る。配管 152はその後 水平方向仕切り部 14の前縁にも入り、ヘアピン形状を描いた後、垂直方向仕切り部 13の前縁に戻って底部壁まで下降を続ける。配管 152はその後底部壁の前縁を右 力、ら左に抜けて左側壁に入り、左側壁の下部を背面側に抜けて集合部 156に達する The other system enters the bottom wall from the front edge of the right side wall, passes through the front edge of the bottom wall from right to left, and reaches the lower end of the vertical partition 13. Pipe 152 then turns upward and passes through the front edges of vertical dividers 13 and 12 from bottom to top. The pipe 152 that reaches the upper end of the vertical partition 12 is folded and lowered. In the middle of descending, it enters the front edge of the horizontal partition 11, draws a hairpin shape, and then returns to the front edge of the vertical partition 13. The pipe 152 then enters the front edge of the horizontal partition 14 and draws a hairpin shape, and then returns to the front edge of the vertical partition 13 and continues to descend to the bottom wall. Piping 152 then enters the left side wall with a right force at the front edge of the bottom wall.
Yes
[0122] 集合部 156で一本化された配管 152は断熱筐体 10の底部に設置された圧電式の 循環ポンプ 157に入る。循環ポンプ 157を出た配管 152は上り管 152Uとなって熱交 換器 151に戻る。  [0122] The pipes 152 unified at the gathering section 156 enter the piezoelectric circulation pump 157 installed at the bottom of the heat insulating casing 10. The pipe 152 exiting the circulation pump 157 returns to the heat exchanger 151 as an up pipe 152U.
[0123] 右側壁と左側壁、天井壁と底部壁、及び水平方向仕切り部と垂直方向仕切り部の 各前縁を包括したものが防露部 160 (図 21参照)となる。配管 152は防露部 160で は断熱筐体 10の表面近くを通り、高温側循環回路 120より熱交換器 151を介して得 た温熱をその箇所に伝える。これにより防露部 160の温度は結露点より高く維持され  [0123] The dew proof portion 160 (see Fig. 21) includes the right and left walls, the ceiling wall and the bottom wall, and the front edges of the horizontal partition and the vertical partition. The piping 152 passes near the surface of the heat insulating housing 10 in the dew-proofing section 160, and transmits the heat obtained from the high-temperature side circulation circuit 120 through the heat exchanger 151 to the location. As a result, the temperature of the dew proof part 160 is maintained higher than the dew point.
[0124] 続いて低温側蒸発器 132及び冷気通路の配置を、主に図 18を参照しつつ説明す る。低温側蒸発器 132は断熱筐体 10の内部でスターリング冷凍機 110よりも下の位 置に置かれる。さらに言えば、垂直方向仕切り部 12の下部以下のレベルに配置され る。これにより、二次冷媒の自然循環が更に安定して行われることになる。 [0124] Next, the arrangement of the low temperature side evaporator 132 and the cold air passage will be described mainly with reference to FIG. The low-temperature side evaporator 132 is lower than the Stirling refrigerator 110 inside the heat insulating enclosure 10. Placed in the table. Furthermore, it is arranged at a level below the lower part of the vertical partition 12. Thereby, the natural circulation of the secondary refrigerant is performed more stably.
[0125] 低温側蒸発器 132が配置されるのは、第 4区画部 18の奥の壁の手前に設けられた 冷気通路 50 (図 16参照)の中である。冷気通路 50の手前には別の冷気通路 51が設 けられる。冷気通路 50の下部には収納室内冷却の役目を終えた戻り空気を吸い込 む吸気口 52が形成される。低温側蒸発器 132は冷気通路 50の中で吸気口 52の上 方の位置に設置される。低温側蒸発器 132の上方には冷気通路 51に空気を吹き出 すファン 53が設けられる。  [0125] The low temperature side evaporator 132 is disposed in the cold air passage 50 (see FIG. 16) provided in front of the wall at the back of the fourth partition section 18. Another cold air passage 51 is provided in front of the cold air passage 50. In the lower part of the cool air passage 50, an air inlet 52 for sucking the return air that has finished the role of cooling the storage room is formed. The low temperature side evaporator 132 is installed in the cold air passage 50 above the intake port 52. Above the low-temperature side evaporator 132, a fan 53 for blowing air into the cool air passage 51 is provided.
[0126] 冷気通路 51から、支線となる 3本の冷気通路が延び出す。 1番目のものは第 1区画 部 15及び第 2区画部 16に冷気を送る冷気通路 54である。冷気通路 54内には吐出 ダンバ 55とファン 56が設けられている。ファン 56を過ぎた冷気通路 54は垂直方向仕 切り部 12の中に入り、垂直方向仕切り部 12の内部を上り冷気通路 54U (図 16参照) となって上昇する。  [0126] Three cold air passages serving as branch lines extend from the cold air passage 51. The first one is a cold air passage 54 that sends cold air to the first compartment 15 and the second compartment 16. A discharge damper 55 and a fan 56 are provided in the cold air passage 54. The cool air passage 54 past the fan 56 enters the vertical cut portion 12 and rises as an up cool air passage 54U (see FIG. 16) inside the vertical partition portion 12.
[0127] 垂直方向仕切り部 12の上部に達した上り冷気通路 54Uは、短い水平連絡通路 54 Hを経て下り冷気通路 54Dに連続する。下り冷気通路 54Dは垂直方向仕切り部 12 の下部へと上り冷気通路 54Uの手前側を降下する。上り冷気通路 54U、水平連絡 通路 54H、及び下り冷気通路 54Dは倒立した略 Uの字状となる。  [0127] The ascending cool air passage 54U reaching the upper part of the vertical partition 12 continues to the descending cool air passage 54D via a short horizontal connecting passage 54H. The descending cold air passage 54D descends to the lower side of the vertical partition 12 and the front side of the ascending cold air passage 54U. The ascending cold air passage 54U, the horizontal communication passage 54H, and the descending cold air passage 54D have an inverted U-shape.
[0128] 垂直方向仕切り部 12に限らず、仕切り部に冷気通路を設けるにあたっては、仕切り 部に冷気通路を完全に埋設することを要しない。冷気通路の一部のみ仕切り部に埋 設された形態であってもよぐ仕切り部の外面を這うように設けた形態であってもよい [0128] Not only the vertical partition 12 but also the provision of the cold air passage in the partition does not require the cold air passage to be completely embedded in the partition. Only a part of the cold air passage may be embedded in the partition part, or may be provided so as to cover the outer surface of the partition part.
Yes
[0129] 上り冷気通路 54Uには、第 2区画部 16に冷気を吐出する冷気吐出口 57が上下方 向に間隔を置いて複数形成される。下り冷気通路 54Dには、第 1区画部 15に冷気を 吐出する冷気吐出口 58が上下方向に間隔を置いて複数形成される。冷気吐出口 5 7、 58は垂直方向仕切り部 12内に位置する。  [0129] In the ascending cold air passage 54U, a plurality of cold air discharge ports 57 for discharging cold air to the second partition portion 16 are formed at intervals in the upward and downward directions. In the descending cold air passage 54D, a plurality of cold air discharge ports 58 for discharging cold air to the first partition portion 15 are formed at intervals in the vertical direction. The cold air outlets 5 7 and 58 are located in the vertical partition 12.
[0130] 図 16において、複数の冷気吐出口 57と複数の冷気吐出口 58はそれぞれ垂直なラ インに沿って整列している力 必ずしもこのような配置にする必要はない。複数の冷 気吐出口 57同士、また複数の冷気吐出口 58同士、前後方向に位置をずらす形で 分散配置してもよい。そして上り冷気通路 54U及び下り冷気通路 54Dは、このように 分散配置した冷気吐出口 57及び冷気吐出口 58に満遍なく冷気を送り届けられるも のであればよい。 In FIG. 16, the plurality of cold air outlets 57 and the plurality of cold air outlets 58 are aligned with each other along a vertical line. Such arrangement is not necessarily required. Multiple cold air outlets 57 and multiple cold air outlets 58 can be shifted in the front-rear direction. It may be distributed. The ascending cold air passage 54U and the descending cold air passage 54D need only be capable of uniformly delivering cold air to the cold air discharge ports 57 and the cold air discharge ports 58 distributed in this manner.
[0131] 冷気吐出口 57について言えば、棚 32や棚 32aによって仕切られる領域毎に複数 個ずつ、前後方向に位置をずらして設けてもよい。上り冷気通路 54Uの領分から外 れた箇所に設けられる冷気吐出口 57については、上り冷気通路 54Uから支線として 張り出す冷気通路を用意する。このような構成とすることにより、第 2区画部 16の内部 温度分布の更なる均一化を図ることができる。  [0131] With regard to the cold air discharge port 57, a plurality of cool air discharge ports 57 may be provided in each of the regions partitioned by the shelf 32 and the shelf 32a so as to be shifted in the front-rear direction. For the cool air outlet 57 provided at a location outside the territory of the ascending cool air passage 54U, a cool air passage projecting as a branch line from the ascending cool air passage 54U is prepared. By adopting such a configuration, the internal temperature distribution of the second partition part 16 can be made more uniform.
[0132] 冷気吐出口 58についても同様であり、棚 30によって仕切られる領域毎に複数個ず つ、前後方向に位置をずらして設けることができる。下り冷気通路 54Dの領分から外 れた箇所に設けられる冷気吐出口 58については下り冷気通路 54Dから支線として 張り出す冷気通路を用意する。このような構成とすることにより、第 1区画部 15の内部 温度分布の更なる均一化を図ることができる。  [0132] The same applies to the cold air discharge port 58, and a plurality of the regions can be provided for each region partitioned by the shelf 30, and the positions can be shifted in the front-rear direction. For the cool air discharge port 58 provided at a location outside the area of the descending cold air passage 54D, a cold air passage extending as a branch line from the descending cold air passage 54D is prepared. By adopting such a configuration, the internal temperature distribution of the first partition portion 15 can be made more uniform.
[0133] 棚 32、 32aで仕切られる領域毎に複数の冷気吐出口 57を前後方向に位置をずら して設け、また棚 30で仕切られる領域毎に複数の冷気吐出口 58を前後方向に位置 をずらして設けるという構成を実施するにあたっては、棚 32、 32aの高さと棚 30の高 さが揃わないように、互いの上下方向位置をずらしておくとよい。そして冷気吐出口 5 7を棚 32、 32aの高さに見合った高さに置き、冷気吐出口 58を棚 30の高さに見合つ た高さに置くこととすれば、上記構成を容易に実現できる。  [0133] A plurality of cold air discharge ports 57 are provided in the front and rear direction of each region partitioned by the shelves 32 and 32a, and a plurality of cold air discharge ports 58 are positioned in the front and rear direction for each region partitioned by the shelf 30. When implementing a configuration in which the shelves are shifted, the vertical positions of the shelves 32 and 32a should be shifted so that the shelves 30 and 32a do not have the same height. If the cold air outlet 5 7 is placed at a height corresponding to the height of the shelves 32 and 32a, and the cold air outlet 58 is placed at a height corresponding to the height of the shelf 30, the above configuration can be easily achieved. realizable.
[0134] 第 2実施形態では、垂直な上り冷気通路 54Uと垂直な下り冷気通路 54Dを水平連 絡通路 54Hが連結している力 S、上り冷気通路 54Uと下り冷気通路 54Dを直接連結し 、水平連絡通路 54Hを省く構成とすることも可能である。例えば上り冷気通路 54Uと 下り冷気通路 54Dの上端を屈曲させたり湾曲させたりして連結する、あるいは上り冷 気通路 54Uと下り冷気通路 54Dそのものを傾斜させ、倒立した Vの字状となるように 連結するなどの手法でこれを実現できる。  [0134] In the second embodiment, the force S that the horizontal connecting passage 54H connects the vertical cooling air passage 54D to the vertical cooling air passage 54D and the vertical cooling air passage 54D directly connects the cooling air passage 54U and the downstream cooling air passage 54D. It is possible to omit the horizontal communication passage 54H. For example, the upper cold air passage 54U and the lower cold air passage 54D are connected by bending or curving the upper end, or the upstream cold air passage 54U and the downstream cold air passage 54D are inclined to form an inverted V shape. This can be achieved by a method such as linking.
[0135] 複数の冷気吐出口 57の総開口面積と、複数の冷気吐出口 58の総開口面積は、第 2区画部 16と第 1区画部 15の容積比に応じて配分するのがよい。また、第 2区画部 1 6においては複数の冷気吐出口 57を、第 1区画部 15においては複数の冷気吐出口 58を、それぞれ室内温度の均一化が進むように配置する。実験を通じて冷気吐出口 の位置を決定するのが望ましレ、。 [0135] The total opening area of the plurality of cold air discharge ports 57 and the total opening area of the plurality of cold air discharge ports 58 may be distributed according to the volume ratio of the second partition portion 16 and the first partition portion 15. Further, a plurality of cold air discharge ports 57 are provided in the second partition part 16 and a plurality of cold air discharge ports are provided in the first partition part 15. 58 are arranged so that the indoor temperature is made uniform. It is desirable to determine the location of the cold air outlet through experiments.
[0136] 上り冷気通路 54Uを流れる冷気の量は、冷気吐出口 57から供給される冷気の量と 冷気吐出口 58から供給される冷気の量の合計である。従って、上り冷気通路 54Uに は下り冷気通路 54Dよりも大きな断面積が必要になる。上り冷気通路 54Uと下り冷気 通路 54Dの断面積比も実験を通じて決定するのが望ましい。  The amount of cold air flowing through the upstream cold air passage 54U is the sum of the amount of cold air supplied from the cold air outlet 57 and the amount of cold air supplied from the cold air outlet 58. Therefore, the upstream cool air passage 54U needs a larger cross-sectional area than the downstream cool air passage 54D. It is desirable to determine the cross-sectional area ratio between the upstream cool air passage 54U and the downstream cold air passage 54D through experiments.
[0137] 収納室の第 1区画部 15と第 2区画部 16とが仕切り部である垂直方向仕切り部 12の 両側にあり、冷熱の放出が第 1区画部 15と第 2区画部 16になされるため、エネルギ 一ロスの少ない冷却庫 1が得られる。さらに、凹部 46に冷却装置 100の発熱部が存 在するが、第 1区画部 15や第 2区画部 16が冷蔵室のように比較的温度の高い区画 部であるため、凹部 46付近の温度と収納室の温度の差が少なくなる。第 1区画部 15 と第 2区画部 16の断熱壁が冷蔵室の断熱壁として設定した厚さと同じ厚さであれば、 外部からの熱の侵入量が少なくて済み、これもまた冷却庫 1のエネルギーロス低減に 寄与する。  [0137] The first partition 15 and the second partition 16 of the storage room are on both sides of the vertical partition 12 which is a partition, and the release of cold heat is made to the first partition 15 and the second partition 16. Therefore, the refrigerator 1 with less energy loss can be obtained. Furthermore, although the heat generation part of the cooling device 100 exists in the recessed part 46, since the 1st division part 15 and the 2nd division part 16 are division parts with comparatively high temperature like a refrigerator compartment, the temperature of the recessed part 46 vicinity is shown. And the temperature difference between the storage chambers is reduced. If the heat insulation walls of the first compartment 15 and the second compartment 16 are the same as the thickness set as the heat insulation wall of the refrigerator compartment, the amount of heat entering from the outside can be reduced. This contributes to reducing energy loss.
[0138] 冷気通路 54には 2本の横方向冷気通路が連通する。 1本は冷気通路 54が垂直方 向仕切り部 12に入る前に枝分かれする横方向冷気通路 59で、最下段の棚板 32の 下面に沿うように隔離区画部 16aの奥の壁を這う。横方向冷気通路 59には垂直方向 仕切り部 12から所定距離離れた場所に冷気吐出口 60が形成される。冷気吐出口 6 0は隔離区画部 16 aの中で左右方向に間隔を置!/、て複数形成する。本実施形態で は、冷気吐出口 60は 2個設けられている。冷気吐出口 60はケース 33の内部に向け て冷気を供給する。冷気吐出口 60は、横方向冷気通路 59の下流側に配置されたも のほど開口面積を大きくし、隔離区画部 16aの左側部分と右側部分で温度が均一化 するようにしておくとよい。  [0138] The cold air passage 54 is connected to two transverse cold air passages. One is a transverse cold air passage 59 that branches before the cold air passage 54 enters the vertical partition 12, and crawls the wall behind the isolation compartment 16 a along the bottom surface of the bottom shelf 32. In the transverse cold air passage 59, a cold air discharge port 60 is formed at a position away from the vertical partition 12 by a predetermined distance. A plurality of cold air outlets 60 are formed in the isolation section 16a at intervals in the left-right direction. In the present embodiment, two cold air discharge ports 60 are provided. The cold air outlet 60 supplies cold air toward the inside of the case 33. It is preferable that the cold air discharge port 60 has a larger opening area as it is arranged on the downstream side of the horizontal cold air passage 59 so that the temperature is made uniform between the left side portion and the right side portion of the isolation section 16a.
[0139] もう 1本の横方向冷気通路は上り冷気通路 54Uから枝分かれする横方向冷気通路 61で、第 2区画部 16の奥の壁と天井とのなすコーナー部を這う。横方向冷気通路 6 1には垂直方向仕切り部 12から所定距離離れた場所に冷気吐出口 62が形成される 。冷気吐出口 62は第 2区画部 16の中で左右方向に間隔を置いて複数形成する。本 実施形態では、冷気吐出口 62は 2個設けられている。冷気吐出口 62は、横方向冷 気通路 61の下流側に配置されたものほど開口面積を大きくし、第 2区画部 16の左側 部分と右側部分で温度が均一化するようにしておくとよい。 [0139] The other transverse cold air passage is a transverse cold air passage 61 that branches off from the ascending cold air passage 54U. A cold air discharge port 62 is formed in the lateral cold air passage 61 at a position away from the vertical partition 12 by a predetermined distance. A plurality of the cold air discharge ports 62 are formed in the second partition part 16 at intervals in the left-right direction. In the present embodiment, two cold air discharge ports 62 are provided. The cold air outlet 62 is It is preferable to increase the opening area of the air passage 61 on the downstream side so that the temperature is made uniform between the left side portion and the right side portion of the second partition portion 16.
[0140] 冷気通路 51から支線として延び出す 3本の冷気通路のうち、 2番目のものは第 3区 画部 17に冷気を送る冷気通路 63である。冷気通路 63には吐出ダンバ 64が設けら れ、その下流に冷気吐出口 65が形成されている。 Of the three cold air passages that extend from the cold air passage 51 as a branch line, the second one is the cold air passage 63 that sends the cold air to the third section 17. The cool air passage 63 is provided with a discharge damper 64, and a cool air discharge port 65 is formed downstream thereof.
[0141] 冷気通路 51から支線として延び出す 3本の冷気通路のうち、 3番目のものは温度切 替区画部 19に冷気を送る冷気通路 66である。冷気通路 66には上流から下流へ、吐 出ダンバ 67、ファン 68、ヒータ 69、及び冷気吐出口 70が設けられている。 [0141] Of the three cold air passages extending from the cold air passage 51 as a branch line, the third one is a cold air passage 66 for sending cold air to the temperature switching section 19. The cold air passage 66 is provided with a discharge damper 67, a fan 68, a heater 69, and a cold air discharge port 70 from upstream to downstream.
[0142] 冷気通路 51には、冷気通路 54、 63、 66だけでなぐ第 4区画部 18に直接冷気を 吐出する冷気吐出口(図示せず)も形成される。 [0142] The cold air passage 51 is also formed with a cold air discharge port (not shown) for directly discharging cold air to the fourth partition section 18 formed by only the cold air passages 54, 63, 66.
[0143] 各区画部を冷却した冷気は、それぞれに戻り通路を介して冷気通路 50の吸気口 5[0143] The cold air that has cooled each compartment returns to the air intake 50 of the cold air passage 50 through the return passage.
2に戻される。第 2区画部 16に対しては戻り通路 71が用意される。戻り通路 71は 2箇 所に吸気口を有する。その 1は隔離区画部 16aに開口した吸気口 72である。その 2 は隔離区画部 16bに開口した吸気口 73である。 Returned to 2. A return passage 71 is provided for the second section 16. The return passage 71 has intakes at two locations. The first is an air inlet 72 opened in the isolation section 16a. The second is an air inlet 73 opened in the isolation section 16b.
[0144] 第 1区画部 15に対しては、垂直方向仕切り部 12の下部後方を貫通して隔離区画 部 16bへと抜ける開口部が戻り通路 74となる。第 1区画部 15内の冷気は戻り通路 74 力も隔離区画部 16bに入り、吸気口 73に吸い込まれる。 [0144] With respect to the first partition part 15, an opening that penetrates the lower rear of the vertical partition part 12 and exits to the isolation partition part 16b is a return passage 74. The cold air in the first partition 15 also has the return passage 74 force entering the isolation partition 16b and sucked into the air inlet 73.
[0145] 温度切替区画部 19に対しては戻り通路 75が用意される。戻り通路 75には戻りダン ノ 76が設けられている。 A return passage 75 is provided for the temperature switching section 19. The return passage 75 is provided with a return damper 76.
[0146] 第 3区画部 17に対しても吸気口 52に連結する戻り通路が用意される力 これは図 示せず、図 18に点線矢印で冷気の流れを示すにとどめる。第 4区画部 18の内部の 冷気は直接吸気口 52に吸い込まれる。 [0146] Force for providing a return passage connected to the intake port 52 for the third partition part 17 as well. This is not shown, and only the flow of cold air is shown by a dotted arrow in FIG. The cold air inside the fourth partition 18 is directly sucked into the intake port 52.
[0147] スターリング冷凍機 110の運転を続けていると、断熱筐体 10内の空気中の水分が 霜となって低温側蒸発器 132に付着する。霜は低温側蒸発器 132の熱交換効率を 低下させる。これを防ぐため、低温側蒸発器 132の下方に霜取りヒータ 77を配置する[0147] When the operation of the Stirling refrigerator 110 is continued, moisture in the air in the heat insulating casing 10 becomes frost and adheres to the low temperature side evaporator 132. Frost reduces the heat exchange efficiency of the low-temperature evaporator 132. To prevent this, a defrost heater 77 is placed below the low-temperature side evaporator 132.
。霜取りヒータ 77は適宜のタイミングで通電され、低温側蒸発器 132の除霜を行う。 霜が溶けて生じた水分は冷気通路 50の底部の漏斗部 78からドレンパン 153にドレ ン水として滴下する。ドレン水はそこで配管 152からの熱とファン 154からの風により 蒸発せしめられる。 . The defrosting heater 77 is energized at an appropriate timing to defrost the low temperature side evaporator 132. Moisture generated by melting of the frost is dripped as drain water from the funnel 78 at the bottom of the cold air passage 50 to the drain pan 153. Drain water is then generated by heat from pipe 152 and wind from fan 154. It can be evaporated.
[0148] 冷却庫 1の全体制御を司るのは図 21に示す制御部 80である。制御部 80は、操作 部 25を通じてなされた温度設定指令あるいは運転指令に基づき、また各部に配置さ れた温度センサ(図示せず)からの信号に基づき、スターリング冷凍機 110、製氷ュ ニット 43、ファン 53、吐出ダンバ 55、ファン 56、吐出ダンバ 64、吐出ダンバ 67、ファ ン 68、ヒータ 69、戻りダンノ 76、霜取りヒータ 77、ファン 154、循環ポンプ 157などの 要素を制御して各区画部の温度を調節し、また製氷、霜取りを行う。なお制御部 80を 構成する電装部品は断熱筐体 10の天井部の上に設置された電装ボックス 81 (図 16 、 17参照)の内部に収納される。  The control unit 80 shown in FIG. 21 controls the overall control of the refrigerator 1. The control unit 80 is based on the temperature setting command or operation command made through the operation unit 25, and on the basis of a signal from a temperature sensor (not shown) arranged in each unit, and the Stirling refrigerator 110, the ice making unit 43, Fan 53, discharge damper 55, fan 56, discharge damper 64, discharge damper 67, fan 68, heater 69, return damper 76, defrost heater 77, fan 154, circulation pump 157, etc. Adjust the temperature, and make ice and defrost. Note that the electrical components constituting the control unit 80 are housed in an electrical box 81 (see FIGS. 16 and 17) installed on the ceiling of the heat insulating casing 10.
[0149] 制御部 80がスターリング冷凍機 110の運転を始めると、高温ヘッド 111には温熱が 発生する。温熱により高温側蒸発器 121の内部の二次冷媒は蒸発して気体となり、 温熱を潜熱として保持する。気体化した二次冷媒は気相配管 123Gを上昇して高温 側凝縮器 122に入り、そこで凝縮して潜熱を顕熱化する。顕熱となった温熱は高温 側凝縮器 122の表面から庫外に放熱される。放熱ファン 124から吹き付ける風が放 熱を助ける。凝縮し、液体になった二次冷媒は液相配管 123Lを下降して高温側蒸 発器 121に戻る。  [0149] When the controller 80 starts the operation of the Stirling refrigerator 110, the high temperature head 111 generates heat. The secondary refrigerant in the high temperature side evaporator 121 is evaporated by the heat to become a gas, and the heat is held as latent heat. The gasified secondary refrigerant ascends the gas-phase pipe 123G and enters the high-temperature side condenser 122, where it condenses to sensible heat. The sensible heat is dissipated from the surface of the high-temperature side condenser 122 to the outside. The wind blown from the heat dissipation fan 124 helps to release heat. The secondary refrigerant that has condensed and turned down descends the liquid phase pipe 123L and returns to the high-temperature side evaporator 121.
[0150] 低温ヘッド 112には冷熱が発生する。冷熱により低温側凝縮器 131の内部の気体 状の二次冷媒は凝縮して液体となり、冷熱を潜熱として保持する。液体化した二次冷 媒は液相配管 133Lを下降して低温側蒸発器 132に入り、そこで冷却庫 1の庫内の 熱により蒸発する。二次冷媒の蒸発により、冷熱が顕熱化する。蒸発し、気体になつ た二次冷媒は気相配管 133Gを上昇して低温側凝縮器 131に戻る。  [0150] Cold heat is generated in the low-temperature head 112. The gaseous secondary refrigerant inside the low-temperature side condenser 131 is condensed by the cold and becomes a liquid, and the cold is held as latent heat. The liquefied secondary refrigerant descends through the liquid phase pipe 133L and enters the low temperature side evaporator 132, where it evaporates due to the heat in the refrigerator 1. The cold heat becomes sensible heat by the evaporation of the secondary refrigerant. The secondary refrigerant that has evaporated to gas goes up the gas-phase pipe 133G and returns to the low-temperature side condenser 131.
[0151] 低温側蒸発器 132で冷熱が顕熱化した状態でファン 53を運転すると、冷気通路 5 0の下端の吸気口 52から吸い込まれた空気が低温側蒸発器 132によって冷却され、 冷気となる。冷気はファン 53により冷気通路 51に送り込まれ、そこからさらに冷気通 路 54、 63、 66へと送り込まれる。また図示しない冷気吐出口から第 4区画部 18に吹 き出される。  [0151] When the fan 53 is operated in a state where the cold heat is sensible in the low temperature side evaporator 132, the air sucked from the inlet 52 at the lower end of the cold air passage 50 is cooled by the low temperature side evaporator 132, Become. The cold air is sent to the cold air passage 51 by the fan 53 and further sent to the cold air passages 54, 63 and 66. Further, it is blown out from the cold air discharge port (not shown) to the fourth partition section 18.
[0152] 冷却装置 100は、平均でマイナス 42〜43°C、場合によっては局部的にマイナス 50 °C程度の吐出温度の冷気温度が実現可能である。このため、ファン 53からの冷気が 直接吹き出す第 4区画部 18は室内温度をマイナス 40°C程度にまで下げることができ る。なお、通常のコンプレッサ方式冷却装置であっても、冷媒をアンモニアにすること 等により、上記のような極低温の達成は可能である。そして製氷ユニット 43の中の製 氷ファン(図示せず)はこの極低温の冷気を水に吹き付けて製氷を行うものであり、製 氷は迅速に進む。なお冷却装置 100の冷凍能力を加減することにより、マイナス 18 °C程度の冷気温度とすることもできる。 [0152] The cooling device 100 can realize a cold air temperature with an average discharge temperature of minus 42 to 43 ° C, and in some cases, a discharge temperature of around minus 50 ° C. Therefore, the cool air from fan 53 The fourth section 18 that blows out directly can reduce the room temperature to about minus 40 ° C. Even with a normal compressor cooling device, it is possible to achieve the cryogenic temperature as described above by using ammonia as the refrigerant. An ice making fan (not shown) in the ice making unit 43 blows the cryogenic air into the water to make ice, and the ice making proceeds quickly. Note that by adjusting the refrigeration capacity of the cooling device 100, a cold air temperature of about minus 18 ° C can be achieved.
[0153] 第 3区画部 17は、吐出ダンバ 64の開度を調整することにより、流入する冷気の量を 制御すること力 Sできる。このため、第 4区画部 18と無関係に、第 3区画部 17の温度を 通常の冷凍温度であるマイナス 18°Cに維持することができる。  [0153] The third section 17 can control the amount of cool air flowing in by adjusting the opening degree of the discharge damper 64 S. For this reason, irrespective of the 4th division part 18, the temperature of the 3rd division part 17 can be maintained at minus 18 degreeC which is a normal freezing temperature.
[0154] 温度切替区画部 19は、チルド温度からマイナス 18°Cまで、幅広い温度帯で使用さ れるカ S、その温度調整は、吐出ダンバ 67及び戻りダンバ 76により流入する冷気量を 制御し、また必要に応じヒータ 69で冷気を加温することによって行われる。  [0154] The temperature switching section 19 is used in a wide temperature range from the chilled temperature to minus 18 ° C, and its temperature adjustment controls the amount of cold air flowing in by the discharge damper 67 and the return damper 76, Further, it is performed by heating the cold air with a heater 69 as necessary.
[0155] 温度切替区画部 19は冷凍食品の解凍にも用いられるため、第 4区画部 18と大きな 温度差がつくことがある。温度切替区画部 19の高い温度が第 4区画部 18に影響を 及ぼさないように、垂直方向仕切り部 13の中でも温度切替区画部 19と第 4区画部 18 の間の部分は特に断熱層が厚くされている。また温度切替区画部 19から吸気口 52 に戻る空気が第 4区画部 18の中の空気に混じらないよう、戻り通路 75は第 4区画部 1 8から独立している。  [0155] Since the temperature switching section 19 is also used for thawing frozen food, there may be a large temperature difference from the fourth section 18. In order to prevent the high temperature in the temperature switching section 19 from affecting the fourth partition section 18, the heat insulating layer is particularly thick in the vertical partition section 13 between the temperature switching section 19 and the fourth section section 18. Has been. Further, the return passage 75 is independent from the fourth partition section 18 so that the air returning from the temperature switching section 19 to the intake port 52 is not mixed with the air in the fourth partition section 18.
[0156] なお、吐出ダンバ 67と戻りダンバ 76を閉じ、ファン 68を運転すると、温度切替区画 部 19の中で空気が循環する。この状態でヒータ 69に通電すると、温度切替区画部 1 9の温度を、チルド温度をはるかに超える 50〜80°Cと!/、つた高温にすることができる 。このような高温では腐敗菌の増殖が抑えられるので、食品その他を保温状態で衛 生的に貯蔵することができる。  Note that when the discharge damper 67 and the return damper 76 are closed and the fan 68 is operated, air circulates in the temperature switching section 19. When the heater 69 is energized in this state, the temperature of the temperature switching section 19 can be increased to 50-80 ° C, much higher than the chilled temperature! At such a high temperature, the growth of spoilage bacteria can be suppressed, so that foods and others can be stored hygienically in a warm state.
[0157] 第 1区画部 15と第 2区画部 16に対しては冷気通路 54を通じファン 56より冷気が送 り込まれる力 S、その冷気が第 1区画部 15と第 2区画部 16を冷却しすぎることにならな いように、冷気量は吐出ダンバ 55によって調整される。冷気は冷気通路 54から上り 冷気通路 54Uに入り、その中を上昇しつつ冷気吐出口 57から第 2区画部 16に吹き 出す。冷気吐出口 57は隔離区画部 16aより上の空間に上下方向に間隔を置いて複 数形成されているので、その空間は均一に冷却される。 [0157] The force S that cool air is sent from the fan 56 to the first partition 15 and the second partition 16 through the cool air passage 54, and the cool air cools the first partition 15 and the second partition 16. The amount of cold air is adjusted by the discharge damper 55 so that it does not become too much. The cold air rises from the cold air passage 54, enters the cold air passage 54U, and blows out from the cold air discharge port 57 to the second partition section 16 while ascending there. The cold air discharge port 57 has a vertical space in the space above the isolation section 16a. Since the number is formed, the space is uniformly cooled.
[0158] 冷気の一部は上り冷気通路 54Uの上端付近で横方向冷気通路 61に入り、冷気吐 出口 62から吹き出す。冷気吐出口 62は垂直方向仕切り部 12から所定距離離れた 場所に設けられているので、冷気吐出口 57が吐出する冷気と、冷気吐出口 62が吐 出する冷気により、隔離区画部 16aより上の空間は均一に冷却される。冷気吐出口 6 2が水平方向に間隔を置いて 2個形成されているので、均一冷却の働きは一層強ま る。横方向冷気通路 61の下流側、すなわち右側の冷気吐出口 62の開口面積を左 側のものより大きくしておけば、第 2区画部 16の左側部分と右側部分の温度均一化 を一層促進することができる。  [0158] A part of the cold air enters the transverse cold air passage 61 near the upper end of the ascending cold air passage 54U and blows out from the cold air outlet 62. Since the cold air discharge port 62 is provided at a predetermined distance from the vertical partition 12, the cold air discharged from the cold air discharge port 57 and the cold air discharged from the cold air discharge port 62 are above the isolation compartment 16a. The space is uniformly cooled. Since the two cold air outlets 62 are formed at intervals in the horizontal direction, the function of uniform cooling is further enhanced. If the opening area of the cold air outlet 62 on the downstream side of the lateral cold air passage 61, that is, on the right side is made larger than that on the left side, temperature uniformity in the left and right portions of the second partition 16 is further promoted. be able to.
[0159] 上り冷気通路 54Uの上端に達した冷気は水平連絡通路 54Hを経て下り冷気通路 54Dに入る。そして下り冷気通路 54Dの中を下降しつつ冷気吐出口 58から第 1区画 部 15に吹き出す。冷気吐出口 58は上下方向に間隔を置いて複数形成されているの で、第 1区画部 15は均一に冷却される。  [0159] The cold air that has reached the upper end of the upstream cool air passage 54U enters the downstream cold air passage 54D via the horizontal communication passage 54H. Then, while descending the descending cold air passage 54D, the air is blown out from the cold air discharge port 58 to the first partition portion 15. Since a plurality of the cold air discharge ports 58 are formed at intervals in the vertical direction, the first partition portion 15 is uniformly cooled.
[0160] 冷気は、上り冷気通路 54Uを上昇するに従い左右の区画部に間接的に冷熱を放 出する。逆に言えば温熱を受け取るので、下り冷気通路 54Dに入る冷気は上り冷気 通路 54Uに入ったば力、りの頃よりも温度が上昇している。このため、第 1区画部 15の 温度は第 2区画部 16の温度より高くなる。  [0160] The cold air indirectly releases the cold heat to the left and right compartments as it goes up the ascending cold air passage 54U. In other words, since the heat is received, the cold air entering the descending cold air passage 54D has a higher temperature than when it entered the upstream cold air passage 54U. For this reason, the temperature of the first partition 15 is higher than the temperature of the second partition 16.
[0161] このように第 1区画部 15は第 2区画部 16より温度が高くなるので、冷却装置 100の 発熱部からの影響を第 2区画部 16以上に受けにくぐ凹部 46との間の断熱層の厚さ を、凹部 46が第 2区画部 16に隣り合つている場合に比べ、薄くできる。  [0161] As described above, the temperature of the first partition 15 is higher than that of the second partition 16, so that the first partition 15 is located between the first partition 15 and the recess 46 that is less susceptible to the influence of the heat generating part of the cooling device 100 than the second partition 16 is. The thickness of the heat insulating layer can be reduced as compared with the case where the recess 46 is adjacent to the second partition part 16.
[0162] このように、垂直方向仕切り部 12の内部に冷気通路を設けたことにより、これまで顧 みられなかった垂直方向仕切り部 12の内部空間を有効活用し、第 1区画部 15及び 第 2区画部 16の奥行きを拡大できる。また垂直方向仕切り部 12内には、低温側蒸発 器 132で冷却された冷気を上に上げる上り冷気通路 54Uと、上に上がった冷気を下 に下ろす下り冷気通路 54Dとを形成し、第 2区画部 16には上り冷気通路 54Uから冷 気を供給し、第 1区画部 15には下り冷気通路 54Dから冷気を供給するから、流動過 程で自然に生じる冷気の温度上昇を利用して、第 2区画部 16と第 1区画部 15とで温 度を異ならせることができる。 [0163] 図 20には垂直方向仕切り部 12の詳細構造が示されている。垂直方向仕切り部 12 は垂直方向仕切り部前方部分 12Aと垂直方向仕切り部後方部分 12Bにより構成さ れる。垂直方向仕切り部前方部分 12Aは断熱体 170を左シェル 171Lと右シェル 17 1Rで挟んだ構造であり、垂直方向仕切り部後方部分 12Bは断熱体 172を左シェル 1 73Lと右シェル 173Rで挟んだ構造である。断熱体 170、 172はスチロールやウレタ ンなどの樹脂を発泡させたものである。左シェノレ 171L、右シェノレ 171R、左シェノレ 17 3L、右シェル 173Rはポリプロピレンやポリスチレンなどの樹脂により形成される。左 シェル 171Lと右シェル 171R、左シェノレ 173Lと右シェル 173Rは爪係合やねじ止め 、接着などにより互いに結合される。 [0162] As described above, by providing the cool air passage inside the vertical partition portion 12, the internal space of the vertical partition portion 12 that has not been considered so far can be effectively used, and the first partition portion 15 and the first partition portion 15 can be used. The depth of the two compartments 16 can be expanded. Further, in the vertical partition section 12, an ascending cool air passage 54U for raising the cool air cooled by the low temperature side evaporator 132 and a descending cool air passage 54D for lowering the cool air rising above are formed. The compartment 16 is supplied with cold air from the upstream cool air passage 54U, and the first compartment 15 is supplied with cold air from the downstream cold air passage 54D. Therefore, by utilizing the temperature rise of the cold air naturally generated during the flow process, The second compartment 16 and the first compartment 15 can have different temperatures. FIG. 20 shows a detailed structure of the vertical partition 12. The vertical partition 12 is constituted by a vertical partition front part 12A and a vertical partition rear part 12B. The vertical partition front part 12A has a structure in which the heat insulator 170 is sandwiched between the left shell 171L and the right shell 17 1R, and the vertical partition rear part 12B has the heat insulator 172 sandwiched between the left shell 1 73L and the right shell 173R. Structure. The heat insulators 170 and 172 are made by foaming a resin such as styrene or urethane. The left chenole 171L, the right chenole 171R, the left chenole 173L, and the right shell 173R are formed of a resin such as polypropylene or polystyrene. The left shell 171L and the right shell 171R, and the left chenole 173L and the right shell 173R are coupled to each other by claw engagement, screwing, adhesion, or the like.
[0164] 垂直方向仕切り部前方部分 12Aの前面はカバー 174で覆われる。カバー 174は力 ラー鋼板からなり、言うまでもなくこれは磁性体なので、第 1断熱扉 20及び第 2断熱 扉 21の裏面に取り付けた磁石入りのガスケットがぴったりと吸着する。これにより、第 1断熱扉 20と第 2断熱扉 21の密閉性が向上する。カバー 174の左シェル 171Lと右 シェル 171Rに対する結合も、爪係合やねじ止め、接着などにより行われる。  [0164] The front surface of the vertical partition front portion 12A is covered with a cover 174. The cover 174 is made of a high-strength steel plate. Needless to say, this is a magnetic material, so that the magnet-mounted gaskets attached to the back surfaces of the first heat insulation door 20 and the second heat insulation door 21 are adsorbed exactly. Thereby, the sealing performance of the first heat insulating door 20 and the second heat insulating door 21 is improved. The cover 174 is coupled to the left shell 171L and the right shell 171R by claw engagement, screwing, adhesion, or the like.
[0165] カバー 174の裏面に近接して、配管 152が配置されている。酉己管 152は、断熱体 1 70に形成された凹部 175の中に配置されて!/、る。配管 152はカバー 174に直接接 触させても良いし、カバー 174の裏面にブチルゴムシートを貼り付け、このブチルゴム シートを介してカバー 174に接触させても良い。ブチルゴムシートはカバー 174の取 り付けの補強にもなる。  [0165] In the vicinity of the back surface of the cover 174, a pipe 152 is arranged. The self-pipe 152 is disposed in a recess 175 formed in the heat insulator 170. The pipe 152 may be in direct contact with the cover 174, or a butyl rubber sheet may be attached to the back surface of the cover 174, and the cover 174 may be contacted via the butyl rubber sheet. The butyl rubber sheet also reinforces the mounting of the cover 174.
[0166] 図 34に示すのは垂直方向仕切り部 12の変形態様である。この変形態様では垂直 方向仕切り部前方部分 12Aにおいて左シェル 171Lと右シェル 171Rの区別をなくし 、前方部が開いた単一構造のシェル 171の中に、前方から断熱体 170を揷入して垂 直方向仕切り部前方部分 12Aを形成することとした。このように構成することにより、 更に強度が向上した垂直方向仕切り部前方部分 12Aを得ることができる。  FIG. 34 shows a modification of the vertical partition 12. In this modification, the left shell 171L and the right shell 171R are not distinguished from each other in the vertical partition front portion 12A, and the heat insulator 170 is inserted from the front into the single-shell shell 171 with the front open. The forward-direction partition portion front portion 12A was formed. With this configuration, it is possible to obtain the vertical partition front portion 12A with further improved strength.
[0167] ここまで説明した垂直方向仕切り部 12の形成手法は、水平方向仕切り部 11、 14と 垂直方向仕切り部 13の形成にも適用される。  The method for forming the vertical partition 12 described so far is also applied to the formation of the horizontal partitions 11 and 14 and the vertical partition 13.
[0168] 断熱体 172には、左シェル 173Lに面する側に、上り冷気通路 54U、水平連絡通 路 54H、及び下り冷気通路 54Dをかたどった凹部 176が形成される。この凹部 176 を左シェル 173Lで覆うことにより、上り冷気通路 54U、水平連絡通路 54H、及び下り 冷気通路 54Dが形成されるものである。 [0168] In the heat insulator 172, a concave portion 176 is formed on the side facing the left shell 173L, which is shaped like the up cold air passage 54U, the horizontal communication passage 54H, and the down cold air passage 54D. This recess 176 Is covered with the left shell 173L, so that an ascending cool air passage 54U, a horizontal communication passage 54H, and a descending cool air passage 54D are formed.
[0169] 上り冷気通路 54Uを外部から隔てるのは左シェル 173Lのみである。従って、上り 冷気通路 54Uを通る冷気で左シェル 173Lの表面が冷却され、そこに結露の可能性 が生じるが、図 19に示すように、この部分は凹部 46の右側隔壁 46aに密着している ため、結露は防止される。なお、左シェル 173Lと右側隔壁 46aの間に空気が入り込 むと、空気中の水分が結露するので、この箇所に空気が入り込まないようにシール材 (例えばブチルゴム、シリコンゴム、軟質ウレタン発泡体等)でシールしておくとよい。  [0169] Only the left shell 173L separates the upstream cold air passage 54U from the outside. Therefore, the surface of the left shell 173L is cooled by the cold air passing through the ascending cold air passage 54U, and there is a possibility of condensation, but this portion is in close contact with the right partition 46a of the recess 46 as shown in FIG. Therefore, condensation is prevented. Note that if air enters between the left shell 173L and the right partition wall 46a, moisture in the air will condense, so a sealing material (for example, butyl rubber, silicone rubber, soft urethane foam, etc.) will prevent air from entering this area. ).
[0170] 水平連絡通路 54Hのうち、右側隔壁 46aから外れる部分と、下り冷気通路 54Dに ついては、外部から隔てるのが左シェル 173Lだけということになると、左シェル 173L の表面に結露が発生する。そこで、これらの箇所については左シェル 173Lの裏側に 断熱体 177を配置し、水平連絡通路 54Hと下り冷気通路 54Dを通る冷気が左シェル 173Lに接触しないようにする。  [0170] Condensation occurs on the surface of the left shell 173L when only the left shell 173L is separated from the outside of the horizontal connecting passage 54H that is separated from the right partition wall 46a and the cold air passage 54D. Therefore, for these portions, a heat insulator 177 is disposed on the back side of the left shell 173L so that the cold air passing through the horizontal communication passage 54H and the descending cold air passage 54D does not contact the left shell 173L.
[0171] 断熱体 177を配置する結果、下り冷気通路 54Dは多少右側にずれる。その分、右 シェル 173Rとの間の断熱体 172の厚さが薄くなる力 下り冷気通路 54Dを流れる冷 気は上り冷気通路 54Uを流れる冷気に比べ温度が上昇しているので、問題は少な い。  [0171] As a result of disposing the heat insulator 177, the descending cold air passage 54D is slightly shifted to the right. Accordingly, the thickness of the insulation 172 between the right shell 173R and the thickness is reduced. The temperature of the cold air flowing through the descending cold air passage 54D is higher than that of the cold air flowing through the upstream cold air passage 54U, so there are few problems. .
[0172] 上り冷気通路 54Uについても、必要があれば断熱体 177に相当する断熱体を設け る。例えば右側隔壁 46aと横並びでなくなる箇所が生じたような場合がこれに該当す  [0172] The upstream cool air passage 54U is also provided with a heat insulator equivalent to the heat insulator 177 if necessary. For example, this may be the case when there is a part that is not aligned side by side with the right partition wall 46a.
[0173] また、第 2実施形態のように、第 1区画部 15の容積が第 2区画部 16の容積に比べ て大幅に小さい場合は、第 1区画部 15に供給する冷気量を第 2区画部 16に供給す る冷気量より少なくできる。すなわち下り冷気通路 54Dの断面積を上り冷気通路 54U の断面積より小さくできる。下り冷気通路 54Dの断面積を冷気通路 54Uの断面積より も小さくするにあたり、下り冷気通路 54Dの左右方向の幅を圧縮して断面積縮小を 図ることとすれば、右シェル 173Rとの間の断熱体 172の厚さを回復させることができ [0173] Further, as in the second embodiment, when the volume of the first partition 15 is significantly smaller than the volume of the second partition 16, the amount of cold air supplied to the first partition 15 is the second. The amount of cool air supplied to the compartment 16 can be reduced. That is, the cross-sectional area of the descending cold air passage 54D can be made smaller than the cross-sectional area of the ascending cold air passage 54U. In order to make the cross-sectional area of the down cool air passage 54D smaller than the cross sectional area of the cool air passage 54U, if the cross-sectional area is reduced by compressing the width of the down cool air passage 54D in the left-right direction, the space between the right shell 173R and Can restore the thickness of insulation 172
[0174] 冷気通路 54を流れる冷気は、上り冷気通路 54Uに入る手前で一部が横方向冷気 通路 59に入る。横方向冷気通路 59に入った冷気は水平方向に間隔を置いて配置 された 2個の冷気吐出口 60からケース 33内へ吹き出し、隔離区画部 16a内にあるケ ース 33内を均一に冷却する。冷気通路 59から吹き出す冷気の量を調整することによ り、隔離区画部 16aの温度をそれより上の空間より低くし、例えば庫内温度 0°C 3 °Cといったチルド室や氷温室として隔離区画部 16aを使用することができる。冷気量 の調整は、横方向冷気通路 59の断面積の設定、冷気吐出口 60の開口面積の設定 、あるいは横方向冷気通路 59へのダンバの設置などと!/、つた手法で実現できる。 [0174] The cold air flowing through the cold air passage 54 is partially cooled in the lateral direction before entering the ascending cold air passage 54U. Enter passage 59. The cold air that has entered the transverse cold air passage 59 is blown out into the case 33 from two cold air outlets 60 that are spaced apart in the horizontal direction, and the inside of the case 33 in the isolation section 16a is uniformly cooled. To do. By adjusting the amount of cold air blown out from the cold air passage 59, the temperature of the isolation section 16a is made lower than the space above it, and is isolated as a chilled room or an ice greenhouse, for example, the internal temperature is 0 ° C 3 ° C. A compartment 16a can be used. The adjustment of the amount of cold air can be achieved by setting the cross-sectional area of the horizontal cold air passage 59, setting the opening area of the cold air discharge port 60, or installing a damper in the horizontal cold air passage 59! /.
[0175] 隔離区画部 16b内のケース 34の周囲には、特にその下側には、比較的温度が高く なった第 1区画部 15からの戻り空気と第 2区画部 16からの戻り空気が流れる。第 1区 画部 15からの戻り空気と第 2区画部 16からの戻り空気が流れることにより、隔離区画 部 16aの温度低下は小さぐ例えば内部温度が 5°Cといったレベルになる。そのため 、隔離区画部 16bは野菜貯蔵空間として利用することができる。また、仕切カバー 35 はケース 34の上面開口部をぴったりと閉ざすものであり、これによりケース 34内の食 品の水分蒸発が抑制される。そのためケース 34の内部は野菜貯蔵に一層適した空 間となる。 [0175] Around the case 34 in the isolation compartment 16b, particularly in the lower part thereof, return air from the first compartment 15 and return air from the second compartment 16 that have relatively high temperatures are present. Flowing. As the return air from the first section 15 and the return air from the second section 16 flow, the temperature drop of the isolation section 16a is small, for example, the internal temperature becomes a level of 5 ° C. Therefore, the isolation section 16b can be used as a vegetable storage space. Further, the partition cover 35 closes the upper surface opening of the case 34 tightly, thereby suppressing the evaporation of water in the food in the case 34. For this reason, the interior of case 34 is more suitable for vegetable storage.
[0176] なお、第 2区画部 16からの戻り空気の一部を仕切カバー 35の上面とケース 33の下 面の間の隙間に流すようにすれば、比較的温度が高くなつた戻り空気による空気断 熱の効果により、隔離区画部 16aがチルド室や氷温室に設定されていたとしても、そ の低温が隔離区画部 16bにまで伝わりに《なり、ケース 34内の野菜の凍結防止に 役立つ。断熱効果を高めるため、断熱材を貼り付けるなどして仕切カバー 35に断熱 層を形成してもよい。  [0176] It should be noted that if a part of the return air from the second partition part 16 is caused to flow in the gap between the upper surface of the partition cover 35 and the lower surface of the case 33, the return air is heated relatively. Even if the isolation section 16a is set in a chilled room or an ice greenhouse due to the effect of air heat insulation, the low temperature is transmitted to the isolation section 16b, which helps prevent the vegetables in the case 34 from freezing. . In order to enhance the heat insulating effect, a heat insulating layer may be formed on the partition cover 35 by attaching a heat insulating material or the like.
[0177] 上記の実施形態と異なり、冷却装置の全てを断熱筐体の下部に、具体的には仕切 り部の下部以下のレベルに配置する構成とすることも可能である。上り冷気通路に冷 気を供給するとレ、う点では、この構成でも特に不都合はなレ、。  [0177] Unlike the above-described embodiment, it is also possible to adopt a configuration in which all of the cooling device is arranged at the lower part of the heat insulating casing, specifically, at a level below the lower part of the partition part. This is not particularly inconvenient in this configuration, because it is necessary to supply cold air to the upstream cold air passage.
[0178] 横方向冷気通路 61に形成する冷気吐出口は、図 18の冷気吐出口 62と異なる形 状にすること力 Sできる。その変形態様を図 30 31に示す。 [0178] The cold air discharge port formed in the transverse cold air passage 61 can have a different force S from the cold air discharge port 62 of FIG. The modification is shown in FIG.
[0179] 図 30 31の変形態様では、横方向冷気通路 61には水平方向に長いスリット状の 冷気吐出口 62Aが設けられている。冷気吐出口 62Aは第 2区画部 16の奥の壁と天 井とのなすコーナー部に開口している。このように幅広の冷気吐出口 62Aから冷気 が吐出されるので、隔離区画部 16aより上の空間は均一に冷却される。 [0179] In the modification of FIG. 3031, the horizontal cold air passage 61 is provided with a slit-like cold air discharge port 62A that is long in the horizontal direction. The cold air discharge port 62A is located on the back wall of the second partition 16 and the ceiling. Open in the corner with the well. Since the cold air is discharged from the wide cold air discharge port 62A in this way, the space above the isolation section 16a is uniformly cooled.
[0180] 垂直方向仕切り部 12の構成を図 19から変化させることができる。その変形態様を 図 32及び図 33に示す。  [0180] The configuration of the vertical partition 12 can be changed from FIG. The modification is shown in FIGS. 32 and 33. FIG.
[0181] 図 32の変形態様では、下り冷気通路 54Dを手前側に移動させた。こうすると垂直 方向仕切り部 12の前面部と下り冷気通路 54Dの間の断熱層が薄くなるが、下り冷気 通路 54Dを流れる冷気の温度は比較的高いので、断熱層が薄くなつても垂直方向 仕切り部 12の前面が過度に冷却されることにはなりにくい。下り冷気通路 54Dをこの ように移動させることにより、上り冷気通路 54Uと下り冷気通路 54Dの間隔が広がる ので、上り冷気通路 54Uと下り冷気通路 54Dの前後方向の幅を拡大し、流路抵抗を 減らすこと力 Sでさる。  [0181] In the modification of Fig. 32, the descending cold air passage 54D is moved to the front side. In this way, the heat insulation layer between the front surface of the vertical partition 12 and the descending cool air passage 54D becomes thin, but the temperature of the cool air flowing through the descending cool air passage 54D is relatively high, so even if the insulation layer becomes thin, the vertical partition The front surface of part 12 is unlikely to be overcooled. By moving the down cool air passage 54D in this way, the distance between the up cool air passage 54U and the down cool air passage 54D is widened. Decrease with S.
[0182] 図 32に示すように、上り冷気通路 54Uと下り冷気通路 54Dの間で垂直方向仕切り 部 12の厚さを減らして凹部 178を形成し、収納室の容積を拡大することも可能である 。凹部 178は棚 32の上下の空間の連通路となり、第 2区画部 16内に冷気循環を生じ させ、第 2区画部 16の温度を均一化するのに役立つ。  [0182] As shown in FIG. 32, it is possible to reduce the thickness of the vertical partition 12 between the upstream cool air passage 54U and the downstream cold air passage 54D to form a recess 178, thereby increasing the volume of the storage chamber. is there . The concave portion 178 serves as a communication path between the upper and lower spaces of the shelf 32, and causes cold air circulation in the second partition portion 16, thereby helping to equalize the temperature of the second partition portion 16.
[0183] 図 33の変形態様では、凹部 178を全面的に棚 32の上下空間の連通路とするので なぐ棚 32と同一高さの箇所を水平なリブ 179で塞ぎ、リブ 179には冷気を通すスリツ ト 179Aを形成した。スリット 179Aの面積を加減することにより、冷気循環量を調節す ること力 Sできる。リブ 179は垂直方向仕切り部 12に形成してもよぐ棚 32に形成しても よい。  In the modification shown in FIG. 33, the concave portion 178 is entirely used as a communication path in the upper and lower spaces of the shelf 32, so that a portion having the same height as the shelf 32 is closed with a horizontal rib 179, and the rib 179 is cooled with air. A thread 179A was formed. By adjusting the area of the slit 179A, it is possible to adjust the amount of cool air circulation S. The rib 179 may be formed on the vertical partition 12 or on the shelf 32.
[0184] 第 2区画部 16と隔離区画部 16aを隔てる最下段の棚 32aと、隔離区画部 16aと隔 離区画部 16bを隔てる仕切カバー 35のところでは、凹部 178を塞ぐ。これにより、第 2 区画部 16と隔離区画部 16aの間で冷気が混じり合い、また隔離区画部 16aと隔離区 画部 16bの間で冷気が混じり合うのを防いで、隔離区画部 16a、 16bに設定した所定 の温度差が消滅してしまわないようにする。凹部 178を塞ぐのは、そこにリブを設ける 、あるいは断熱材をはめ込むといった手段で実現できる。隔離区画部 16a、 16bに対 しては凹部 178を全く設けな!/、こととしてもよ!/、。  The lowermost shelf 32a that separates the second partition part 16 and the isolation partition part 16a and the partition cover 35 that separates the isolation partition part 16a and the separation partition part 16b close the recess 178. This prevents cold air from mixing between the second compartment 16 and the isolation compartment 16a, and also prevents cold air from mixing between the isolation compartment 16a and the isolation compartment 16b. Make sure that the specified temperature difference set in is not lost. Closing the recess 178 can be realized by providing a rib there or by inserting a heat insulating material. There should be no recess 178 for the isolation compartments 16a, 16b!
[0185] なお、冷却装置の発熱と関連しない仕切り部に設けた冷気通路についての効果は 、冷却装置を断熱筐体の背面上部に配置した場合に限られるものではない。その他 の位置に冷却装置を配置した場合でも同様の効果が得られる。 [0185] The effect of the cool air passage provided in the partition not related to the heat generation of the cooling device is The cooling device is not limited to the case where the cooling device is disposed on the back upper portion of the heat insulating casing. The same effect can be obtained even when the cooling device is arranged at other positions.
[0186] 以上、本発明の各実施形態につき説明したが、本発明の範囲はこれに限定される ものではなぐ発明の主旨を逸脱しない範囲で種々の変更を加えて実施することがで きる。 [0186] While the embodiments of the present invention have been described above, the scope of the present invention is not limited thereto, and various modifications can be made without departing from the spirit of the invention.
産業上の利用可能性  Industrial applicability
[0187] 本発明は家庭用または業務用の冷却庫に広く利用可能である。また、かかる冷却 庫に搭載する、スターリング冷凍機を構成要素に含む冷却装置に広く利用可能であ [0187] The present invention can be widely used in a refrigerator for home use or business use. In addition, it can be widely used in cooling devices that are installed in such refrigerators and that include a Stirling refrigerator as a component.

Claims

請求の範囲 The scope of the claims
[1] 断熱筐体の背面上部の左寄りまたは右寄りに形成した機械室に冷却装置の一部を 配置することを特徴とする冷却庫。  [1] A cooler characterized in that a part of the cooling device is arranged in a machine room formed on the left or right side of the upper part of the rear surface of the heat insulating housing.
[2] 前記断熱筐体は被冷却物を収納する収納室を備え、冷却装置の冷却部にて冷却さ れた冷気が冷気通路を介して前記収納室に供給されるものであり、前記収納室を所 定状態に仕切る仕切り部に前記冷気通路の少なくとも一部を設けたことを特徴とする 請求項 1に記載の冷却庫。  [2] The heat insulating housing includes a storage chamber for storing an object to be cooled, and cold air cooled by a cooling unit of a cooling device is supplied to the storage chamber through a cold air passage. The refrigerator according to claim 1, wherein at least a part of the cold air passage is provided in a partition portion that partitions the chamber into a predetermined state.
[3] 前記収納室を所定状態に仕切る仕切り部は収納室を第 1の区画と第 2の区画に仕切 る垂直方向仕切り部を含み、前記垂直方向仕切り部に前記冷気通路の少なくとも一 部を形成したことを特徴とする請求項 2に記載の冷却庫。  [3] The partition section that partitions the storage chamber into a predetermined state includes a vertical partition section that partitions the storage chamber into a first partition and a second partition, and at least a part of the cold air passage is provided in the vertical partition section. The refrigerator according to claim 2, wherein the refrigerator is formed.
[4] 前記冷却装置の少なくとも一部の冷却部を前記仕切り部の下部以下のレベルに配 置し、前記仕切り部には前記冷却部で冷却された冷気を上げる上り冷気通路と、上 力 Sつた冷気を下ろす下り冷気通路とを形成し、前記仕切り部にて仕切られた一方に は前記上り冷気通路から冷気を供給し、他方には前記下り冷気通路から冷気を供給 することを特徴とする請求項 3に記載の冷却庫。  [4] At least a part of the cooling unit of the cooling device is arranged at a level below the lower part of the partition part, and an upward cool air passage for raising the cool air cooled by the cooling part and an upper force S are provided in the partition part. A cold air passage for lowering the cold air is formed, one side partitioned by the partition portion is supplied with cold air from the upstream cold air passage, and the other side is supplied with cold air from the downstream cold air passage. The refrigerator according to claim 3.
[5] 前記冷気通路に対し、前記収納室の上部に位置する冷気吐出口と、前記仕切り部 の上下方向中間部に位置する冷気吐出口とが設けられることを特徴とする請求項 3 に記載の冷却庫。  [5] The cool air discharge port located in the upper part of the storage chamber and the cool air discharge port located in the middle in the vertical direction of the partition are provided for the cold air passage. Refrigerator.
[6] 前記冷気吐出口のうち、少なくとも一部のものを、水平方向に長いスリットの形状とし たことを特徴とする請求項 5に記載の冷却庫。  [6] The refrigerator according to claim 5, wherein at least some of the cold air discharge ports have a shape of a slit that is long in a horizontal direction.
[7] 前記冷却装置の発熱部の少なくとも一部を、前記機械室に配置したことを特徴とする 請求項 2に記載の冷却庫。  7. The refrigerator according to claim 2, wherein at least a part of the heat generating part of the cooling device is disposed in the machine room.
[8] 前記機械室は、前記下り冷気通路から冷気を供給される側の区画の外部上方に配 置されることを特徴とする請求項 7に記載の冷却庫。  8. The refrigerator according to claim 7, wherein the machine room is arranged above the outside of the compartment to which cold air is supplied from the down cold air passage.
[9] 前記断熱筐体を上下に分割する水平方向仕切り部を設け、前記冷却装置はスターリ ング冷凍機を構成要素に含み、前記スターリング冷凍機の上方に高温側凝縮器を設 け、前記スターリング冷凍機の冷熱で空気を冷却する前記冷却部は、前記水平方向 仕切り部の下方に位置させることを特徴とする請求項 2に記載の冷却庫。 [9] A horizontal partition that divides the heat-insulating housing into upper and lower parts is provided, the cooling device includes a Stirling refrigerator as a component, a high-temperature side condenser is provided above the Stirling refrigerator, and the Stirling 3. The refrigerator according to claim 2, wherein the cooling unit that cools the air with cold heat of a refrigerator is positioned below the horizontal partition.
[10] 請求項 1に記載の冷却庫に搭載する冷却装置であって、 [10] A cooling device mounted in the refrigerator according to claim 1,
高温ヘッドと低温ヘッドを備えたスターリング冷凍機を構成要素に含み、前記スター リング冷凍機に対し、前記高温ヘッドには温熱取出用の高温側循環回路を接続し、 前記低温ヘッドには冷熱取出用の低温側循環回路を接続し、前記高温ヘッドが上、 前記低温ヘッドが下となるように前記スターリング冷凍機の姿勢を設定したことを特徴 とする冷却装置。  A Stirling refrigerator having a high-temperature head and a low-temperature head is included as a component, and a high-temperature circulation circuit for extracting heat is connected to the high-temperature head with respect to the Stirling refrigerator, The low temperature side circulation circuit is connected, and the attitude of the Stirling refrigerator is set so that the high temperature head is up and the low temperature head is down.
[11] 前記高温側循環回路の二次冷媒配管は前記高温ヘッドに熱接続した高温側蒸発 器から導出された後上に向かって延び、前記低温側循環回路の二次冷媒配管は前 記低温ヘッドに熱接続した低温側凝縮器から導出された後下に向かって延びること を特徴とする請求項 10に記載の冷却装置。  [11] The secondary refrigerant pipe of the high temperature side circulation circuit extends upward after being led out from the high temperature side evaporator thermally connected to the high temperature head, and the secondary refrigerant pipe of the low temperature side circulation circuit is the low temperature mentioned above 11. The cooling device according to claim 10, wherein the cooling device extends downward after being led out from a low-temperature side condenser thermally connected to the head.
[12] 前記高温側循環回路は、前記高温ヘッドに熱接続した高温側蒸発器と、放熱用の 高温側凝縮器とを二次冷媒配管で接続し、二次冷媒を自然循環させるものであり、 前記高温側蒸発器と高温側凝縮器の間に、前記スターリング冷凍機の動力部が配 置されることを特徴とする請求項 10に記載の冷却装置。 [12] The high temperature side circulation circuit connects a high temperature side evaporator thermally connected to the high temperature head and a high temperature side condenser for heat dissipation with a secondary refrigerant pipe, and naturally circulates the secondary refrigerant. 11. The cooling device according to claim 10, wherein a power section of the Stirling refrigerator is disposed between the high temperature side evaporator and the high temperature side condenser.
[13] 前記高温側凝縮器とそれを強制冷却する放熱ファンが、前記スターリング冷凍機の 取付脚、またはスターリング冷凍機自体を支えとして空間内に保持されることを特徴と する請求項 11に記載の冷却装置。 [13] The high-temperature side condenser and the heat-dissipating fan that forcibly cools the high-temperature side condenser are supported in the space with the mounting legs of the Stirling refrigerator or the Stirling refrigerator itself as a support. Cooling system.
[14] 前記高温側凝縮器とそれを強制冷却する放熱ファンが、前記スターリング冷凍機の 取付脚を支えとして空間内に保持され、前記取付脚と、それを支持する支持部材の 間に振動吸収手段が介在することを特徴とする請求項 11に記載の冷却装置。 [14] The high-temperature side condenser and the heat-dissipating fan that forcibly cools the condenser are held in space with the mounting legs of the Stirling refrigerator as a support, and vibration is absorbed between the mounting legs and the supporting members that support the mounting legs. 12. The cooling device according to claim 11, wherein means are interposed.
[15] 請求項 10〜; 14のいずれ力、 1項に記載の冷却装置の前記スターリング冷凍機を、断 熱筐体背面上部の凹部に配置するとともに、前記断熱筐体の内部には、前記スター リング冷凍機よりも下の位置に冷却用の熱交換器を配置したことを特徴とする冷却庫 [15] The force of any one of claims 10 to 14; wherein the Stirling refrigerator of the cooling device according to claim 1 is disposed in a recessed portion at the upper back of the heat-insulating housing, A cooler characterized in that a heat exchanger for cooling is arranged below the Stirling refrigerator.
PCT/JP2007/066142 2006-08-29 2007-08-21 Cooling box and cooling device mounted thereon WO2008026472A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006232482 2006-08-29
JP2006-232482 2006-08-29
JP2007-012950 2007-01-23
JP2007012950 2007-01-23

Publications (1)

Publication Number Publication Date
WO2008026472A1 true WO2008026472A1 (en) 2008-03-06

Family

ID=39135754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066142 WO2008026472A1 (en) 2006-08-29 2007-08-21 Cooling box and cooling device mounted thereon

Country Status (1)

Country Link
WO (1) WO2008026472A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161124A (en) * 2016-03-08 2017-09-14 日立アプライアンス株式会社 refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115677A (en) * 1988-10-25 1990-04-27 Mitsubishi Electric Corp Refrigerator
JPH03236579A (en) * 1990-02-13 1991-10-22 Matsushita Refrig Co Ltd Refrigerator
JP2004156802A (en) * 2002-11-05 2004-06-03 Sharp Corp Cooling storage
JP2006057872A (en) * 2004-08-17 2006-03-02 Shinei Kk Free-piston type sterling refrigerating machine module
JP2006090684A (en) * 2004-09-27 2006-04-06 Toshiba Corp Refrigerator
JP2006214709A (en) * 2005-01-04 2006-08-17 Sharp Corp Stirling cooling storage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115677A (en) * 1988-10-25 1990-04-27 Mitsubishi Electric Corp Refrigerator
JPH03236579A (en) * 1990-02-13 1991-10-22 Matsushita Refrig Co Ltd Refrigerator
JP2004156802A (en) * 2002-11-05 2004-06-03 Sharp Corp Cooling storage
JP2006057872A (en) * 2004-08-17 2006-03-02 Shinei Kk Free-piston type sterling refrigerating machine module
JP2006090684A (en) * 2004-09-27 2006-04-06 Toshiba Corp Refrigerator
JP2006214709A (en) * 2005-01-04 2006-08-17 Sharp Corp Stirling cooling storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161124A (en) * 2016-03-08 2017-09-14 日立アプライアンス株式会社 refrigerator

Similar Documents

Publication Publication Date Title
JP2008190815A (en) Cooling storage
KR102290827B1 (en) A Refrigerator
US10935301B2 (en) Refrigerator
JP2013200074A (en) Icebox and running method thereof
CN101986067A (en) Refrigerator
JP2008267654A (en) Cooling storage
JP2008180450A (en) Refrigerator
US6865905B2 (en) Refrigerator methods and apparatus
JP2007064596A (en) Refrigerator
JP5964702B2 (en) Refrigerator
WO2008026472A1 (en) Cooling box and cooling device mounted thereon
JP2006189209A (en) Cooling storage
JP4488977B2 (en) refrigerator
JP2007057193A (en) Refrigerator
JP2008202882A (en) Refrigerator
JP2008180442A (en) Cooling storage
JP2008180441A (en) Refrigerator
JP2008309448A (en) Loop type thermo-siphon and cooling storage loaded with the same
JP2007113800A (en) Refrigerator
JP2008215745A (en) Refrigerator
JP2008309447A (en) Cooling storage
JP4701909B2 (en) refrigerator
JP5922541B2 (en) Refrigerator
JP2008196835A (en) Refrigerator
JP4746018B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP