WO2008026268A1 - Generator and gas turbine power generation facility - Google Patents

Generator and gas turbine power generation facility Download PDF

Info

Publication number
WO2008026268A1
WO2008026268A1 PCT/JP2006/317164 JP2006317164W WO2008026268A1 WO 2008026268 A1 WO2008026268 A1 WO 2008026268A1 JP 2006317164 W JP2006317164 W JP 2006317164W WO 2008026268 A1 WO2008026268 A1 WO 2008026268A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
generator
thrust
axial direction
gas turbine
Prior art date
Application number
PCT/JP2006/317164
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Hayasaka
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2006/317164 priority Critical patent/WO2008026268A1/en
Priority to JP2008531925A priority patent/JP4808256B2/en
Publication of WO2008026268A1 publication Critical patent/WO2008026268A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/26Means for adjusting casings relative to their supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines

Definitions

  • the present invention relates to a generator and a gas turbine power generation facility using the same, and more particularly to a generator equipped with a thrust bearing and a gas turbine power generation facility using the same.
  • the gas turbine power generation facility disclosed in Patent Document 1 described above is provided with a thrust bearing, so that axial displacement of the rotating shaft can be suppressed when thrust is generated.
  • the thrust acting on the thrust bearing generates a large frictional force on the thrust bearing, which has been one of the factors that reduce the efficiency of gas turbine generator equipment.
  • it is necessary to forcibly supply the lubricant to the thrust bearing and it is necessary to secure a dedicated lubrication facility and lubricant supply power for that purpose, which is also a gas turbine. This was a factor that reduced the efficiency of the generator equipment.
  • even a slight bearing loss due to friction generated in the thrust bearing greatly affects the efficiency, so it is desirable not to apply a large thrust.
  • An object of the present invention is to provide a generator capable of reducing the thrust acting on the thrust bearing and improving the efficiency, and a gas turbine power generation facility using the generator.
  • FIG. 2 is a partial longitudinal side view of a generator showing a second embodiment of a gas turbine power generation facility according to the present invention.
  • FIG. 4 is a partial longitudinal side view of a generator showing a third embodiment of a gas turbine power generation facility according to the present invention.
  • FIG. 5 is a partial longitudinal side view of a generator showing a fourth embodiment of a gas turbine power generation facility according to the present invention.
  • the gas turbine power generation facility 1 in the present embodiment is configured such that the gas turbine 2, the compressor 3, and the generator 4 are arranged in the axial direction around a common rotating shaft 5.
  • the gas turbine 2 guides and supplies the turbine blades 6 fixed on the rotating shaft 5 and the combustion blades combusted by a soot combustor (not shown) to the turbine blades 6 to guide the exhaust.
  • a turbine inner casing 7 and a turbine outer casing 8 are provided.
  • the compressor 3 includes a compressor blade 9 fixed on the rotary shaft 5, and a compressor casing 10 that supplies combustion air to the compressor blade 9 and discharges the compressed combustion air. Yes.
  • the turbine inner casing 7 and the turbine outer casing 8 and the compressor casing 10 are integrally connected by known fastening means such as bolts and nuts, and the rotating shaft 5 is connected by a common support base 11. It is fixed to the ground 12 so that it is horizontal.
  • the generator 4 includes a rotor 14 abutted on the other end of a shaft collar 13 abutted on one end of the compressor blade 9 on the outer peripheral portion of the rotating shaft 5, and this rotation.
  • a stator 15 is disposed on the outer peripheral side of the child 14 via a gap.
  • the turbine blade 6, the compression blade 9, and the rotor 14 having the above-described configuration are coupled by screwing a nut 20 into one end of the rotating shaft 5 and fastening the nut.
  • the stator 15 includes a stator core 21 and a stator winding attached to the stator core 21.
  • a thrust bearing 28 is formed between the end plate 24A and the end bracket 25A and the shaft collar 13, and between the end plate 24B and the end bracket 25B and the outer periphery of the end plate 19B.
  • a radial bearing 29 is formed.
  • the thrust bearing 28 is supported by an inner bearing member 30 having an outer peripheral surface concentric with the rotary shaft 5 and a disk protruding from the outer peripheral surface in a direction perpendicular to the rotary shaft 5, and the end plate 24A and the end bracket 25A.
  • Thrust members 31A and 31B facing the disk surfaces on both sides of the disk formed on the inner bearing member 30, and radial members 32 supported by the end bracket 25A and facing the outer peripheral surface of the inner bearing member 30.
  • the radial bearing 29 has an inner radial member 33 provided on the outer peripheral surface of the end plate 19B and an outer radial member 34 opposed to the outer peripheral surface of the inner radial member 33 and supported by the end plate 24B. And then.
  • the generator 4 is cantilevered by the support base 11 by connecting the end bracket 25A and the compressor casing 10 with a connecting member 35.
  • the compressor 3 sucks the combustion air as indicated by the arrow A and compresses it with the compression blades 9, and the compressed combustion air is provided separately as indicated by the arrow B. Supply to the regenerator and heat.
  • the compressed combustion air heated by the regenerator is introduced between the turbine inner casing 7 and the turbine outer casing 8 of the gas turbine 2 as indicated by an arrow C, and then the compressed combustion air and fuel are mixed and burned by the combustor.
  • the gas is supplied into the casing 7 to rotate the turbine blade 6 and exhausted as shown by an arrow E.
  • the compressor blade 9 coaxial with the turbine blade 6 and the rotor 14 of the generator 4 also rotate.
  • the generator 1 induces an alternating current in the stator winding 22 by the rotation of the rotor 14.
  • the induced alternating current is, for example, once converted into a direct current by the conversion means, and then converted again into an alternating current by another conversion means and supplied to the demand side.
  • the axial magnetic center C1 of the rotor 14 and the thrust bearing 28 are specified.
  • the rotor 14 may be assembled with the magnetic center C2 shifted.
  • an axial magnetic attractive force acts between the rotor 14 and the stator 15.
  • the magnetic attractive force G is a magnetic attractive force acting on the rotor 14
  • the magnetic attractive force H is a magnetic attractive force acting on the stator 15.
  • the stator core 21 is configured to move in the axial direction with respect to the stator frame 23 in the present embodiment, so that when the magnetic attraction force is generated, Due to the magnetic attraction force, the entire stator 15 is displaced leftward in the figure. Due to the axial displacement of the stator 15, the magnetic attraction force between the rotor 15 and the rotor 14 is reduced, and as a result, the thrust for pressing the disk of the inner bearing member 30 against the thrust member 31 A is also reduced. Along with this, the frictional force of the thrust bearing 28 is also reduced, so that the bearing loss can be reduced and the efficiency of the generator 4 can be prevented from lowering.
  • the stator 15 is suddenly displaced by the magnetic attractive force when the generator 4 is started. Therefore, the stator core 21 may collide with the end plate 14A due to its inertia. is there.
  • an elastic body 36A, 36B such as a leaf spring or a coil spring having a small spring constant is interposed between both ends of the stator core 21 in the axial direction and the end plates 24A, 24B. The collision of the stator core 21 with the end plates 24A and 24B without hindering the axial displacement of the child 15 can be prevented.
  • the spring constants of the elastic bodies 36A, 36B are the above-described magnetic attractive force, the rotor 14 and the fixed body. It can be determined by the deviation of the magnetic center in the axial direction of the stator 15 and can be expressed as kl + k2 ⁇ FZd.
  • kl is the spring constant of the elastic body 36A
  • k2 is the spring constant of the elastic body 36B
  • F is the magnetic attractive force
  • d is the deviation of the magnetic center in the axial direction of the rotor 14 and the stator 15.
  • FIG. 2 shows a second embodiment of the gas turbine power generation facility according to the present invention.
  • the same reference numerals as those in FIG. 1 denote the same components, and thus detailed description thereof is omitted.
  • the first configuration different from the first embodiment is that elastic bodies 36A, 36B are disposed between the axial ends of the stator core 21 and the end plates 24A, 24B.
  • it has a configuration in which damping means 37A and 37B such as a high-viscosity, fluid-filled flexible container or an oil damper are interposed.
  • damping means 37A and 37B such as a high-viscosity, fluid-filled flexible container or an oil damper are interposed.
  • a second configuration different from that of the first embodiment is that a low friction material 38 is interposed between the stator core 21 and the stator frame 23 so that the axial displacement of the stator 15 is reduced.
  • a low friction material 38 a cylindrical body molded from a fluorocarbon fiber reinforced plastic and made to slide by contacting the outer peripheral surface of the stator core 21, or an outer peripheral surface of the stator core 21 molded from the same material.
  • rail bodies that slide in contact with multiple locations, and the rail bodies are installed over the entire length of the stator frame 23 in the axial direction, and are installed on the inner diameter side of the stator frame 23 at intervals in the circumferential direction. It is.
  • the thrust members 31A and 31B are provided with the calorie weight sensors 43A and 43B and the temperature sensors 44A and 44B, and the output signals thereof are as shown in FIG. Lead to the arithmetic processing unit 45, measure the thrust received by the thrust members 31A, 31B, Also, the thrust acting on the thrust bearing 28 is estimated based on the temperature.
  • the weight sensors 43A and 43B, the temperature sensors 44A and 44B, and the arithmetic processing unit 45 constitute a thrust measuring means according to the present invention.
  • the thrust is displayed on the display device 46, and the operator looks at the display device 46 and rotates the adjustment bolt 41 so that the measured value is within the appropriate range, thereby moving the stator 15 in the axial direction.
  • the position is moved and fixed, and fixed with a double nut 42.
  • the axial position of the stator 15 is adjusted so that the calculated thrust is in the vicinity of “zero”.
  • the operator manually adjusts the stator 15 with respect to the stator frame 23 in the axial direction, thereby reducing the thrust acting on the thrust members 31A and 31B of the thrust bearing 28.
  • the bearing loss can be reduced, and as a result, the efficiency of the generator and the gas turbine power generation facility using the generator can be improved.
  • FIG. 1 a third embodiment of the gas turbine power generation facility according to the present invention will be described with reference to FIG.
  • the same reference numerals as those in FIGS. 1 and 2 indicate the same components, and detailed description thereof will not be repeated.
  • the position adjusting mechanism 39 using the adjusting bolt 41 and the double nut 42 in the second embodiment is replaced with a position adjusting mechanism 47 using a piston 48 and its driving means 49.
  • one end of the piston 48 is connected to the end of the stator core 21 through a through hole 40A provided in the end plate 24B, and the piston 48 is advanced and retracted in the axial direction by the driving means 49, so that the thrust member 31A,
  • the position of the stator 15 in the axial direction is adjusted so that the thrust received by 31B is within the appropriate range.
  • the drive means 49 is not limited in its kind as long as it drives the piston 48 in the axial direction to advance and retreat. For example, it supplies and discharges fluid such as water, air and oil.
  • Well-known driving means such as a fluid cylinder for driving the piston 48, a magnetic driving means for magnetically driving the piston 48, and a rotational driving means for driving the piston 48 by rotating a screw can be used. Then, as shown in FIG. 3, such driving means 49 is driven based on weight sensors 43A, 43B and temperature sensors 44A, 44B provided on the thrust members 31A, 31B and the arithmetic processing unit 45. Thus, the axial position of the stator 15 can be automatically adjusted.
  • the output signals of the weight sensors 43A and 43B and the temperature sensors 44A and 44B are processed by the arithmetic processing unit 45, and the thrust force received by the thrust member 31 A and 31B force S And the thrust acting on the thrust bearing 28 is estimated based on the temperature. Then, a drive command is given to the drive means 49 so that the thrust value is in the vicinity of the zero value of the thrust force, the piston 48 is advanced and retracted, and the axial position of the stator 15 is automatically adjusted.
  • another position adjusting mechanism 50 is provided in place of the position adjusting mechanisms 39 and 47 according to the second and third embodiments.
  • This position adjustment mechanism 50 is connected across the end of the stator core 21 and the end plate 24B, and a flexible container 51 such as a diaphragm that changes the volume by supplying and discharging fluid, and this
  • a conduit 52 that supplies and discharges fluid such as air, oil, and water to the flexible container 51
  • pressurizing means 53 that pressurizes and supplies the fluid connected to the conduit 52
  • an electromagnetic valve 54 having a two-way switching function for adjusting the pressure of the fluid supplied and discharged.
  • the opening degree of the electromagnetic valve 54 is set to the weight sensors 43A, 43B and the temperature sensor 44A provided in the thrust members 31A, 31B in the same manner as in the second and third embodiments.
  • the fluid is supplied to and discharged from the flexible container 51 by changing it based on the output signal of the 44B force.
  • the stator 15 can be moved in the axial direction to adjust the position.
  • Processing of output signals from the weight sensors 43A and 43B and the temperature sensors 44A and 44B is performed in the same manner as in the second and third embodiments. That is, as shown in FIG. 3, the arithmetic processing unit 45 uses the output signals from the weight sensors 43A and 43B and the temperature sensors 44A and 44B. Then, the thrust applied to the thrust members 31A and 31B is measured, and the thrust acting on the thrust bearing 28 is estimated based on the temperature. Then, a two-way switching command or an opening command is given to the solenoid valve 54 so that the thrust value is close to zero, and the fluid is supplied to or discharged from the flexible container 51 and fixed. The position of the child 15 in the axial direction is automatically adjusted.
  • weight sensors 43A and 43B and temperature sensors 44A and 44B are provided, and the gas turbine 2 acting on the thrust bearing 28 and the compression are measured from these measured values. If the total thrust of the mechanical thrust by the machine 3 and the magnetic thrust by the generator 4 is measured by the processor 45 and the stator 15 is adjusted manually or automatically in the axial direction so as to reduce the sum of these thrusts. Good. Note that the mechanical thrust generated by the gas turbine 2 and the compressor 3 changes depending on changes in the rotational speed, generator output, and outside air temperature, so the position of the stator 15 is simply changed when the total thrust exceeds the allowable value. Adjustment may be made to reduce the total thrust within an allowable value, or the total thrust during the most frequent operation may be reduced by adjusting the position of the stator 15.
  • the permanent magnet 17 is used as the rotor 14 of the generator 4.
  • a rotor wire may be attached to the rotor core 16, and an excitation current may be supplied to the rotor wire.
  • the present invention is essential for improving the efficiency of a generator or a gas turbine power generation facility equipped with a thrust bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

In order to provide a generator in which efficiency can be enhanced by reducing thrust acting on a thrust bearing, and a gas turbine power generation facility employing it, the stator of the generator is arranged to be able to move in the axial direction of the thrust bearing. When thrust is generated in the thrust bearing due to displacement of the magnetic centers of the stator and rotor of the generator, for example, the stator is moved in the axial direction to bring the magnetic centers of the stator and rotor closer to each other. When thrust is generated in the thrust bearing due to the difference in thrust force between a gas turbineand an air compressor, thrust is suppressed by utilizing magnetic attraction force between the stator and rotor of the generator and the thrust acting on the thrust bearing is reduced, as a result, thus reducing bearing loss and suppressing fall of efficiency.

Description

明 細 書  Specification
発電機及びそれを用いたガスタービン発電設備  Generator and gas turbine power generation equipment using the same
技術分野  Technical field
[0001] 本発明は発電機及びそれを用いたガスタービン発電設備に係り、特に、スラスト軸 受を備えた発電機及びそれを用いたガスタービン発電設備に関する。  TECHNICAL FIELD [0001] The present invention relates to a generator and a gas turbine power generation facility using the same, and more particularly to a generator equipped with a thrust bearing and a gas turbine power generation facility using the same.
背景技術  Background art
[0002] 近年、ガスタービン発電設備として、ガスタービンと空気圧縮機と発電機の回転部 分を一軸上あるいは同軸上に連結しマイクロガスタービン発電設備が普及して 、る。 そして、この種ガスタービン発電設備は、例えば特許文献 1に開示されているように、 例えば運転中の磁気的影響や熱的影響等の理由で、回転軸に対して軸方向の力、 云い代えれば推力が発生し、この推力を受けるために少なくとも一箇所にスラスト軸 受を備え、容易に回転軸が推力によって軸方向に変位しな 、ようにして 、る。  In recent years, as a gas turbine power generation facility, a micro gas turbine power generation facility has become widespread by connecting a rotating portion of a gas turbine, an air compressor, and a generator on one axis or the same axis. And this kind of gas turbine power generation equipment, in other words, as disclosed in Patent Document 1, for example, a force in the axial direction with respect to the rotating shaft, for example, due to magnetic influence or thermal influence during operation, can be changed. For example, thrust is generated, and at least one thrust bearing is provided to receive this thrust, so that the rotating shaft is not easily displaced in the axial direction by the thrust.
[0003] 特許文献 l :WO 01/86130 A1  [0003] Patent Literature l: WO 01/86130 A1
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記特許文献 1に開示のガスタービン発電設備にぉ ヽては、スラスト軸受を備える ことで、推力発生時に回転軸の軸方向の変位を抑制することができる。しかし、スラス ト軸受に推力が作用することは、スラスト軸受に大きな摩擦力が発生することであり、 これがガスタービン発電機設備の効率を低下させる要因の一つになっていた。さらに 、摩擦力を低減するためにスラスト軸受に潤滑材を強制的に供給したりする必要があ り、そのための専用の潤滑設備や潤滑材供給動力を確保しなければならず、これも ガスタービン発電機設備の効率を低下させる要因となっていた。このように、この種、 ガスタービン発電設備では、スラスト軸受に発生する摩擦などによる僅かな軸受損失 でも、効率を大きく左右するので大きな推力を作用させないことが望ましい。  [0004] The gas turbine power generation facility disclosed in Patent Document 1 described above is provided with a thrust bearing, so that axial displacement of the rotating shaft can be suppressed when thrust is generated. However, the thrust acting on the thrust bearing generates a large frictional force on the thrust bearing, which has been one of the factors that reduce the efficiency of gas turbine generator equipment. Furthermore, in order to reduce the frictional force, it is necessary to forcibly supply the lubricant to the thrust bearing, and it is necessary to secure a dedicated lubrication facility and lubricant supply power for that purpose, which is also a gas turbine. This was a factor that reduced the efficiency of the generator equipment. As described above, in this type of gas turbine power generation equipment, even a slight bearing loss due to friction generated in the thrust bearing greatly affects the efficiency, so it is desirable not to apply a large thrust.
[0005] 本発明の目的は、スラスト軸受に作用する推力を低減して効率の向上を図ることが できる発電機及びそれを用いたガスタービン発電設備を提供することにある。  [0005] An object of the present invention is to provide a generator capable of reducing the thrust acting on the thrust bearing and improving the efficiency, and a gas turbine power generation facility using the generator.
課題を解決するための手段 [0006] 本発明は上記目的を達成するために、発電機の固定子をスラスト軸受に対して軸 方向に移動できるように構成したのである。 Means for solving the problem In order to achieve the above object, the present invention is configured such that the stator of the generator can be moved in the axial direction with respect to the thrust bearing.
発明の効果  The invention's effect
[0007] このように、発電機の固定子をスラスト軸受に対して軸方向に移動させることで、例 えば、固定子と回転子との磁気的中心が変位することで発生する磁気吸引力によつ てスラスト軸受に推力が発生した場合には、回転子と固定子との磁気的中心を接近 させるように固定子を軸方向に移動させて磁気吸引力を低下させて推力を抑制し、 また、ガスタービンと空気圧縮機のスラスト力の差異によりスラスト軸受に推力が発生 した場合には、固定子と回転子間の磁気吸引力を利用して推力を低減させる方向に 回転子を引っ張ることで推力を抑制し、結果的に、スラスト軸受に作用する推力を低 減させて、軸受損失の低減を図り、効率の低下を抑制するのである。  [0007] In this way, by moving the stator of the generator in the axial direction with respect to the thrust bearing, for example, the magnetic attraction force generated by the displacement of the magnetic center between the stator and the rotor is reduced. Therefore, when thrust is generated in the thrust bearing, the stator is moved in the axial direction so that the magnetic centers of the rotor and the stator are close to each other, and the magnetic attractive force is reduced to suppress the thrust. Also, when thrust is generated in the thrust bearing due to the difference in thrust force between the gas turbine and the air compressor, the rotor is pulled in the direction to reduce the thrust by using the magnetic attractive force between the stator and the rotor. In this way, the thrust is suppressed, and as a result, the thrust acting on the thrust bearing is reduced, bearing loss is reduced, and the decrease in efficiency is suppressed.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明によるガスタービン発電設備の第 1の実施の形態を示す一部縦断側面 図。  [0008] FIG. 1 is a partially longitudinal side view showing a first embodiment of a gas turbine power generation facility according to the present invention.
[図 2]本発明によるガスタービン発電設備の第 2の実施の形態を示す発電機の一部 縦断側面図。  FIG. 2 is a partial longitudinal side view of a generator showing a second embodiment of a gas turbine power generation facility according to the present invention.
[図 3]スラスト軸受に発生する推力の推定に基づいて固定子を駆動するための制御 ブロック図。  FIG. 3 is a control block diagram for driving the stator based on estimation of thrust generated in the thrust bearing.
[図 4]本発明によるガスタービン発電設備の第 3の実施の形態を示す発電機の一部 縦断側面図。  FIG. 4 is a partial longitudinal side view of a generator showing a third embodiment of a gas turbine power generation facility according to the present invention.
[図 5]本発明によるガスタービン発電設備の第 4の実施の形態を示す発電機の一部 縦断側面図。  FIG. 5 is a partial longitudinal side view of a generator showing a fourth embodiment of a gas turbine power generation facility according to the present invention.
符号の説明  Explanation of symbols
[0009] 1…ガスタービン発電設備、 2…ガスタービン、 3· "圧縮機、 4…発電機、 5…回転軸 、 6…タービン翼、 7…タービン内側ケーシング、 8…タービン外側ケーシング、 9· "圧 縮翼、 10· ··圧縮機ケーシング、 11· ··支持台。 12· ··地盤、 13· ··シャフトカラー、 14· ·· 回転子、 15· ··固定子、 16…回転子鉄心、 17· ··永久磁石、 18· ··保持筒、 19A, 19B , 24A, 24Β· ··端板、 20· "ナット、 21 · ··固定子鉄心、 22· ··固定子卷線、 23· "固定 子枠、 25A, 25Β· ··エンド、ブラケット、 26· ··ボル卜、 27· ··ナツ卜、 28· ··スラス卜軸受、 2 9· ··ラジアル軸受、 30· ··内側軸受部材、 31A, 31Β· ··スラスト部材、 32· ··ラジアル部 材、 33· ··内側ラジアル部材、 34…外側ラジアル部材、 35· ··連結部材、 36A, 36B …弾性体、 37A, 37B…減衰手段、 38· ··低摩擦材、 39, 47, 50· ··位置調整機構、 40· ··ねじ孔、 40Α· ··貫通穴、 41· ··調整ボルト、 42· ··ダブルナット、 43A, 43Β· ··カロ 重センサ、 44A, 44Β· ··温度センサ、 45· ··演算処理装置、 46· ··表示装置、 48· ··ピ ストン、 49· ··駆動手段、 51· ··可撓性容器、 52· ··管路、 53· ··加圧手段、 54· ··電磁弁 発明を実施するための最良の形態 [0009] 1 ... gas turbine power generation equipment, 2 ... gas turbine, 3 "compressor, 4 ... generator, 5 ... rotating shaft, 6 ... turbine blade, 7 ... turbine inner casing, 8 ... turbine outer casing, 9 ... "Compressed blades, 10 ... compressor casing, 11 ... support. 12 ... Ground, 13 ... Shaft collar, 14 ... Rotor, 15 ... Stator, 16 ... Rotor core, 17 ... Permanent magnet, 18 ... Holding cylinder, 19A, 19B , 24A, 24Β ··· End plate, 20 "Nut, 21 ··· Stator core, 22 ··· Stator wire, 23" Child frame, 25A, 25Β · End, bracket, ··········································, 31A, 31Β ··· Thrust member, 32 ··· Radial member, 33 ··· Inside radial member, 34 ··· Outside radial member, 35 ··· Connecting member, 36A, 36B ... Elastic body, 37A, 37B ... Damping means, 38 ... Low friction material, 39, 47, 50 ... Position adjusting mechanism, 40 ... Screw hole, 40mm ... Through hole, 41 ... Adjust bolt, 42 ... Double nut , 43A, 43Β ··· Calo-heavy sensor, 44A, 44 温度 ··· Temperature sensor, 45 ··· Processing device, 46 ··· Display device, 48 ··· Piston, 49 ··· Drive means, 51 ··· Flexible container, 52 ··· Pipe line, 53 ··· Pressurizing means, 54 ··· Solenoid valve Best mode for carrying out the invention
[0010] 以下本発明によるガスタービン発電設備の第 1の実施の形態を図 1に基づいて説 明する。 Hereinafter, a first embodiment of a gas turbine power generation facility according to the present invention will be described with reference to FIG.
[0011] 本実施の形態におけるガスタービン発電設備 1は、ガスタービン 2と圧縮機 3と発電 機 4とが共通の回転軸 5を中心として軸方向に並んで構成されて 、る。  The gas turbine power generation facility 1 in the present embodiment is configured such that the gas turbine 2, the compressor 3, and the generator 4 are arranged in the axial direction around a common rotating shaft 5.
[0012] ガスタービン 2は、回転軸 5上に固定されたタービン翼 6と、このタービン翼 6に、図 示しな ヽ燃焼器によって燃焼された燃焼ガスを案内して供給し、排気を案内して排 出するタービン内側ケーシング 7及びタービン外側ケーシング 8を備えている。  [0012] The gas turbine 2 guides and supplies the turbine blades 6 fixed on the rotating shaft 5 and the combustion blades combusted by a soot combustor (not shown) to the turbine blades 6 to guide the exhaust. A turbine inner casing 7 and a turbine outer casing 8 are provided.
[0013] 前記圧縮機 3は、回転軸 5上に固定された圧縮翼 9と、この圧縮翼 9に燃焼用空気 を供給し、圧縮された燃焼用空気を排出する圧縮機ケーシング 10を備えている。  [0013] The compressor 3 includes a compressor blade 9 fixed on the rotary shaft 5, and a compressor casing 10 that supplies combustion air to the compressor blade 9 and discharges the compressed combustion air. Yes.
[0014] これらタービン内側ケーシング 7及びタービン外側ケーシング 8と圧縮機ケーシング 10とは、ボルト及びナット等の周知の締結手段で一体に連結されており、共通の支 持台 11によって前記回転軸 5が水平となるように、地盤 12に固定されて 、る。  The turbine inner casing 7 and the turbine outer casing 8 and the compressor casing 10 are integrally connected by known fastening means such as bolts and nuts, and the rotating shaft 5 is connected by a common support base 11. It is fixed to the ground 12 so that it is horizontal.
[0015] 一方、前記発電機 4は、前記回転軸 5の外周部に、前記圧縮翼 9に一端が当接さ れたシャフトカラー 13の他端に当接された回転子 14と、この回転子 14の外周側に空 隙を介して配置された固定子 15とを有している。  On the other hand, the generator 4 includes a rotor 14 abutted on the other end of a shaft collar 13 abutted on one end of the compressor blade 9 on the outer peripheral portion of the rotating shaft 5, and this rotation. A stator 15 is disposed on the outer peripheral side of the child 14 via a gap.
[0016] 前記回転子 14は、珪素鋼板を軸方向に積層して形成した回転子鉄心 16と、その 外周に周方向に複数の磁極を形成するように設置された複数の永久磁石 17と、これ ら永久磁石 17を回転子鉄心 16上に保持するために装着されるニッケル基合金製の 非磁性金属筒や繊維強化プラスチック製の絶縁筒などの保持筒 18と、これらを軸方 向の両側から挟持する端板 19A, 19Bとを有している。 The rotor 14 includes a rotor core 16 formed by laminating silicon steel plates in the axial direction, a plurality of permanent magnets 17 installed so as to form a plurality of magnetic poles in the circumferential direction on the outer periphery thereof, A holding cylinder 18 such as a non-magnetic metal cylinder made of nickel base alloy or an insulating cylinder made of fiber reinforced plastic, which is mounted to hold the permanent magnet 17 on the rotor core 16, and these are axially mounted. And end plates 19A and 19B sandwiched from opposite sides.
[0017] そして、タービン翼 6と、圧縮翼 9と、上記構成の回転子 14とは、前記回転軸 5の一 端にナット 20をねじ込んで締結することで、連結される。 [0017] The turbine blade 6, the compression blade 9, and the rotor 14 having the above-described configuration are coupled by screwing a nut 20 into one end of the rotating shaft 5 and fastening the nut.
[0018] 前記固定子 15は、固定子鉄心 21と、この固定子鉄心 21に装着された固定子卷線The stator 15 includes a stator core 21 and a stator winding attached to the stator core 21.
22とを有して!/ヽる。 With 22!
[0019] そして、前記固定子鉄心 21は、その外周を固定子枠 23で覆われており、この固定 子枠 23に対して周方向には回らな!/、ように支持され、軸方向には移動できるように支 持されている。このような固定子枠 23の両側は端板 24A, 24Bで塞がれ、さらにその 外側にはエンドブラケット 25A, 25Bが位置し、これら固定子枠 23と、端板 24A, 24 Bと、エンドブラケット 25A, 25Bとは、ボルト 26及びナット 27で一体に固定されてい る。  [0019] The outer periphery of the stator core 21 is covered with a stator frame 23. The stator core 21 is supported so as not to rotate in the circumferential direction with respect to the stator frame 23. Is supported so that it can move. Both sides of such a stator frame 23 are closed by end plates 24A and 24B, and end brackets 25A and 25B are positioned outside the stator frames 23, end plates 24A and 24B and end plates. The brackets 25A and 25B are integrally fixed with bolts 26 and nuts 27.
[0020] また、前記端板 24A及びエンドブラケット 25Aとシャフトカラー 13との間には、スラス ト軸受 28が形成され、前記端板 24B及びエンドブラケット 25Bと端板 19Bの外周との 間には、ラジアル軸受 29が形成されている。前記スラスト軸受 28は、回転軸 5と同心 の外周面と、この外周面から回転軸 5と直行する方向に突出する円盤を有する内側 軸受部材 30と、前記端板 24A及びエンドブラケット 25Aに支持され前記内側軸受部 材 30に形成した円盤の両側の盤面に対向するスラスト部材 31A, 31Bと、前記ェン ドブラケット 25Aに支持され前記内側軸受部材 30外周面と対向するラジアル部材 32 とを有している。前記ラジアル軸受 29は、前記端板 19Bの外周面に設けられた内側 ラジアル部材 33と、この内側ラジアル部材 33の外周面に対向し前記端板 24Bに支 持される外側ラジアル部材 34とを有して 、る。  [0020] A thrust bearing 28 is formed between the end plate 24A and the end bracket 25A and the shaft collar 13, and between the end plate 24B and the end bracket 25B and the outer periphery of the end plate 19B. A radial bearing 29 is formed. The thrust bearing 28 is supported by an inner bearing member 30 having an outer peripheral surface concentric with the rotary shaft 5 and a disk protruding from the outer peripheral surface in a direction perpendicular to the rotary shaft 5, and the end plate 24A and the end bracket 25A. Thrust members 31A and 31B facing the disk surfaces on both sides of the disk formed on the inner bearing member 30, and radial members 32 supported by the end bracket 25A and facing the outer peripheral surface of the inner bearing member 30. ing. The radial bearing 29 has an inner radial member 33 provided on the outer peripheral surface of the end plate 19B and an outer radial member 34 opposed to the outer peripheral surface of the inner radial member 33 and supported by the end plate 24B. And then.
[0021] そして、前記エンドブラケット 25Aと前記圧縮機ケーシング 10とを連結部材 35で連 結することで、発電機 4は、支持台 11に片持ち支持される。  Then, the generator 4 is cantilevered by the support base 11 by connecting the end bracket 25A and the compressor casing 10 with a connecting member 35.
[0022] 上記構成のガスタービン発電設備 1の運転中は、圧縮機 3は矢印 Aのように燃焼空 気を吸い込んで圧縮翼 9で圧縮し、圧縮燃焼空気を矢印 Bのように別置の再生器に 供給して加熱する。再生器で加熱された圧縮燃焼空気は、矢印 Cのように、ガスター ビン 2のタービン内側ケーシング 7及びタービン外側ケーシング 8間に導入された後、 燃焼器で圧縮燃焼空気と燃料が混合されて燃焼され、矢印 Dのようにタービン内側 ケーシング 7内に供給されてタービン翼 6を回転させ、矢印 Eのように排気される。 [0022] During operation of the gas turbine power generation facility 1 configured as described above, the compressor 3 sucks the combustion air as indicated by the arrow A and compresses it with the compression blades 9, and the compressed combustion air is provided separately as indicated by the arrow B. Supply to the regenerator and heat. The compressed combustion air heated by the regenerator is introduced between the turbine inner casing 7 and the turbine outer casing 8 of the gas turbine 2 as indicated by an arrow C, and then the compressed combustion air and fuel are mixed and burned by the combustor. Inside the turbine as shown by arrow D The gas is supplied into the casing 7 to rotate the turbine blade 6 and exhausted as shown by an arrow E.
[0023] タービン翼 6の回転により、タービン翼 6と同軸の圧縮翼 9及び発電機 4の回転子 1 4も回転する。発電機 1は、回転子 14の回転により、固定子卷線 22に交流電流を誘 起する。誘起された交流電流は、例えば、変換手段により一旦直流電流に変換した 後、再度別の変換手段で交流電流に変換されて需要側に供給される。  As the turbine blade 6 rotates, the compressor blade 9 coaxial with the turbine blade 6 and the rotor 14 of the generator 4 also rotate. The generator 1 induces an alternating current in the stator winding 22 by the rotation of the rotor 14. The induced alternating current is, for example, once converted into a direct current by the conversion means, and then converted again into an alternating current by another conversion means and supplied to the demand side.
[0024] このようなガスタービン発電設備 1にお 、て、例えば、発電機 4の製造上及び組立 上の誤差で、回転子 14の軸方向の磁気中心 C1と、スラスト軸受 28により規定された 回転子 14の磁気中心 C2とがずれた状態で組み立てられる場合がある。このような場 合、ガスタービン発電設備 1の運転中に、回転子 14と固定子 15との間には、軸方向 の磁気吸引力が働く。磁気吸引力 Gは、回転子 14に働く磁気吸引力であり、磁気吸 引力 Hは、固定子 15に働く磁気吸引力である。  [0024] In such a gas turbine power generation facility 1, for example, due to an error in manufacturing and assembly of the generator 4, the axial magnetic center C1 of the rotor 14 and the thrust bearing 28 are specified. The rotor 14 may be assembled with the magnetic center C2 shifted. In such a case, during the operation of the gas turbine power generation facility 1, an axial magnetic attractive force acts between the rotor 14 and the stator 15. The magnetic attractive force G is a magnetic attractive force acting on the rotor 14, and the magnetic attractive force H is a magnetic attractive force acting on the stator 15.
[0025] このような磁気吸引力 H, Gが作用すると、本来なら、回転子 14は図中右方向に推 力が作用して内側軸受部材 30の円盤をスラスト部材 31Aに押し付ける力、即ち、推 力が大きくなり、摩擦力が大きくなつて軸受損失を増大させることになる。  [0025] When such magnetic attraction forces H, G are applied, the rotor 14 is normally forced in the right direction in the figure to press the disk of the inner bearing member 30 against the thrust member 31A, that is, As the thrust increases and the frictional force increases, bearing loss increases.
[0026] し力しながら、本実施の形態においては、固定子鉄心 21が固定子枠 23に対して軸 方向に移動できるように構成されているので、前記磁気吸引力が発生した場合には 、その磁気吸引力によって固定子 15全体が図中左方向に変位する。この固定子 15 の軸方向の変位により、回転子 14との間に磁気吸引力は小さくなり、その結果、前記 内側軸受部材 30の円盤をスラスト部材 31Aに押し付ける推力も小さくなる。それに伴 つて、スラスト軸受 28の摩擦力も低減するので、軸受損失を低減でき、発電機 4の効 率の低下を防止できるのである。  [0026] However, in the present embodiment, the stator core 21 is configured to move in the axial direction with respect to the stator frame 23 in the present embodiment, so that when the magnetic attraction force is generated, Due to the magnetic attraction force, the entire stator 15 is displaced leftward in the figure. Due to the axial displacement of the stator 15, the magnetic attraction force between the rotor 15 and the rotor 14 is reduced, and as a result, the thrust for pressing the disk of the inner bearing member 30 against the thrust member 31 A is also reduced. Along with this, the frictional force of the thrust bearing 28 is also reduced, so that the bearing loss can be reduced and the efficiency of the generator 4 can be prevented from lowering.
[0027] 尚、上記実施の形態においては、発電機 4の運転開始とともに、固定子 15が磁気 吸引力によって急激に変位するので、その惰性で端板 14Aに固定子鉄心 21が激突 する恐れがある。その場合には、固定子鉄心 21の軸方向両端と端板 24A, 24Bとの 間に、夫々例えば、ばね定数の小さい板ばねやコイルばね等の弾性体 36A, 36Bを 介在させることで、固定子 15の軸方向の変位を妨げることなぐ固定子鉄心 21の端 板 24A, 24Bへの激突を防止することができる。  [0027] In the above-described embodiment, the stator 15 is suddenly displaced by the magnetic attractive force when the generator 4 is started. Therefore, the stator core 21 may collide with the end plate 14A due to its inertia. is there. In this case, for example, an elastic body 36A, 36B such as a leaf spring or a coil spring having a small spring constant is interposed between both ends of the stator core 21 in the axial direction and the end plates 24A, 24B. The collision of the stator core 21 with the end plates 24A and 24B without hindering the axial displacement of the child 15 can be prevented.
[0028] ところで、弾性体 36A, 36Bのばね定数は、上述の磁気吸引力と、回転子 14と固 定子 15の軸方向の磁気中心の偏差によって決めることができ、 kl +k2≤FZdで表 すことができる。ここで、 klは弾性体 36Aのばね定数、 k2は弾性体 36Bのばね定数 、 Fは磁気吸引力、 dは回転子 14と固定子 15の軸方向の磁気中心の偏差である。 [0028] Incidentally, the spring constants of the elastic bodies 36A, 36B are the above-described magnetic attractive force, the rotor 14 and the fixed body. It can be determined by the deviation of the magnetic center in the axial direction of the stator 15 and can be expressed as kl + k2≤FZd. Here, kl is the spring constant of the elastic body 36A, k2 is the spring constant of the elastic body 36B, F is the magnetic attractive force, and d is the deviation of the magnetic center in the axial direction of the rotor 14 and the stator 15.
[0029] 図 2は、本発明によるガスタービン発電設備の第 2の実施の形態を示すもので、図 1 と同一符号は同一構成部品を示すので、再度の詳細な説明は省略する。  FIG. 2 shows a second embodiment of the gas turbine power generation facility according to the present invention. The same reference numerals as those in FIG. 1 denote the same components, and thus detailed description thereof is omitted.
[0030] 第 2の実施の形態において、第 1の実施の形態と異なる構成の一つ目は、固定子 鉄心 21の軸方向両端と端板 24A, 24Bとの間に、弾性体 36A, 36Bを介在させるほ 力 例えば粘度の高 、流体を封入した柔軟性の容器やオイルダンパーなどの減衰 手段 37A, 37Bを介在させた構成である。減衰手段 37A, 37Bを介在させることで、 ばね定数が小さい弾性体 36A, 36Bで両側を支持された固定子 15が、回転子 14の 回転に伴って軸方向に振動するのを防止することができる。  [0030] In the second embodiment, the first configuration different from the first embodiment is that elastic bodies 36A, 36B are disposed between the axial ends of the stator core 21 and the end plates 24A, 24B. For example, it has a configuration in which damping means 37A and 37B such as a high-viscosity, fluid-filled flexible container or an oil damper are interposed. By interposing the damping means 37A, 37B, it is possible to prevent the stator 15 supported on both sides by the elastic bodies 36A, 36B having a small spring constant from vibrating in the axial direction as the rotor 14 rotates. it can.
[0031] 第 1の実施の形態と異なる構成の二つ目は、固定子鉄心 21と固定子枠 23との間に 、低摩擦材 38を介在させて、固定子 15の軸方向の変位を容易にした構成である。そ して、低摩擦材 38としては、フッ素系榭脂ゃ繊維強化プラスチックで成型され固定子 鉄心 21の外周面を接触させて滑らす筒体や、同材料で成型され固定子鉄心 21の 外周面の複数箇所を接触させて滑らすレール体などがあり、レール体は固定子枠 23 の軸方向全長にわたって設置され、固定子枠 23の内径側に周方向に間隔を置いて 複数本設置されるものである。  [0031] A second configuration different from that of the first embodiment is that a low friction material 38 is interposed between the stator core 21 and the stator frame 23 so that the axial displacement of the stator 15 is reduced. This is an easy configuration. As the low friction material 38, a cylindrical body molded from a fluorocarbon fiber reinforced plastic and made to slide by contacting the outer peripheral surface of the stator core 21, or an outer peripheral surface of the stator core 21 molded from the same material. There are rail bodies that slide in contact with multiple locations, and the rail bodies are installed over the entire length of the stator frame 23 in the axial direction, and are installed on the inner diameter side of the stator frame 23 at intervals in the circumferential direction. It is.
[0032] 第 1の実施の形態と異なる構成の三つ目は、固定子 15の軸方向の位置を調整する 位置調整機構 39を設けた構成である。位置調整機構 39は、端板 24Bに軸方向に設 けたねじ孔 40と、このねじ孔 40にねじ込まれ先端を固定子鉄心 21に連結した調整 ボルト 41と、前記ねじ孔 40の外側に突出した前記調整ボルト 41にねじ込んだダブル ナット 42とで構成したものである。調整ボルト 41を左右に回転させることで、固定子 鉄心 21を軸方向に移動させて位置を調整することが可能であり、位置調整後、ダブ ルナット 42をねじ込むことで、調整位置を固定することができる。  A third configuration different from that of the first embodiment is a configuration in which a position adjustment mechanism 39 that adjusts the position of the stator 15 in the axial direction is provided. The position adjustment mechanism 39 includes a screw hole 40 provided in the end plate 24B in the axial direction, an adjustment bolt 41 screwed into the screw hole 40 and connected to the stator core 21, and protruded outside the screw hole 40. A double nut 42 screwed into the adjusting bolt 41 is used. By rotating the adjustment bolt 41 to the left and right, it is possible to adjust the position by moving the stator core 21 in the axial direction.After adjusting the position, screw the double nut 42 to fix the adjustment position. Can do.
[0033] ところで、固定子 15の軸方向の位置調整方法として、スラスト部材 31A, 31Bにカロ 重センサ 43A, 43Bや温度センサ 44A, 44Bを設けて、その出力信号を図 3に示す ように、演算処理装置 45に導いて、スラスト部材 31A, 31Bが受ける推力を測定し、 また温度によってスラスト軸受 28に作用している推力を推定する。ここで、前記加重 センサ 43A, 43Bや温度センサ 44A, 44B及び演算処理装置 45が本発明による推 力測定手段を構成する。 Incidentally, as a method of adjusting the axial position of the stator 15, the thrust members 31A and 31B are provided with the calorie weight sensors 43A and 43B and the temperature sensors 44A and 44B, and the output signals thereof are as shown in FIG. Lead to the arithmetic processing unit 45, measure the thrust received by the thrust members 31A, 31B, Also, the thrust acting on the thrust bearing 28 is estimated based on the temperature. Here, the weight sensors 43A and 43B, the temperature sensors 44A and 44B, and the arithmetic processing unit 45 constitute a thrust measuring means according to the present invention.
[0034] そして、その推力を表示装置 46に表示し、操作員は表示装置 46を見ながら測定 値が適正範囲内になるように、前記調整ボルト 41を回転させ、固定子 15を軸方向に 移動させて位置を決め、ダブルナット 42で固定するのである。具体的には、演算した 推力が「ゼロ」近傍になるように、固定子 15の軸方向の位置を調整する。そして、前 記位置調整機構 39は、固定子鉄心 21が固定子枠 23内で傾くことなく円滑に軸方向 に移動できるように、少なくとも周方向に間隔を空けて 3組設けることが望ましい。さら に、前記位置調整機構 39を設ける場合には、弾性体 36A, 36Bや減衰手段 37A, 37Bを設ける必要はない。  [0034] Then, the thrust is displayed on the display device 46, and the operator looks at the display device 46 and rotates the adjustment bolt 41 so that the measured value is within the appropriate range, thereby moving the stator 15 in the axial direction. The position is moved and fixed, and fixed with a double nut 42. Specifically, the axial position of the stator 15 is adjusted so that the calculated thrust is in the vicinity of “zero”. Further, it is desirable to provide three sets of the position adjusting mechanisms 39 at intervals in at least the circumferential direction so that the stator core 21 can smoothly move in the axial direction without tilting in the stator frame 23. Further, when the position adjusting mechanism 39 is provided, it is not necessary to provide the elastic bodies 36A and 36B and the damping means 37A and 37B.
[0035] 以上説明したように、固定子 15を固定子枠 23に対して操作員が手動で軸方向に 調整して、スラスト軸受 28のスラスト部材 31A, 31Bに作用する推力を低減させること で軸受損失を低減させることができ、その結果、発電機及びそれを用いたガスタービ ン発電設備の効率を向上することができる。  [0035] As described above, the operator manually adjusts the stator 15 with respect to the stator frame 23 in the axial direction, thereby reducing the thrust acting on the thrust members 31A and 31B of the thrust bearing 28. The bearing loss can be reduced, and as a result, the efficiency of the generator and the gas turbine power generation facility using the generator can be improved.
[0036] 次に、本発明によるガスタービン発電設備の第 3の実施の形態を図 4に基づいて説 明する。尚、図 1及び図 2と同符号は同一構成部品を示すので、再度の詳細な説明 は省略する。  Next, a third embodiment of the gas turbine power generation facility according to the present invention will be described with reference to FIG. The same reference numerals as those in FIGS. 1 and 2 indicate the same components, and detailed description thereof will not be repeated.
[0037] 本実施の形態は、上記第 2に実施の形態における調整ボルト 41とダブルナット 42 による位置調整機構 39を、ピストン 48とその駆動手段 49による位置調整機構 47に 置換した構成である。そして、前記ピストン 48は、その一端を端板 24Bに設けた貫通 孔 40Aを通して固定子鉄心 21の端部に連結し、駆動手段 49でそのピストン 48を軸 方向に進退させて、スラスト部材 31A, 31Bが受ける推力の値が適正範囲内になるよ うに固定子 15の軸方向の位置を調整している。ところで、前記駆動手段 49は、ピスト ン 48を軸方向に駆動して進退させるものであれば、その種類は限定されるものでは なぐ例えば、水,空気,油などの流体を供給'排出してピストン 48を駆動する流体シ リンダや、磁気的にピストン 48を駆動する磁気駆動手段や、ねじを回転させてピスト ン 48を駆動する回転駆動手段など周知の駆動手段を用いることができる。 [0038] そして、このような駆動手段 49を、図 3に示すように、スラスト部材 31A, 31Bに設け た加重センサ 43A, 43Bや温度センサ 44A, 44Bと演算処理装置 45に基づいて駆 動することで、自動的に固定子 15の軸方向の位置調整を行なうことができる。具体的 には第 2の実施の形態と同じように、加重センサ 43A, 43Bや温度センサ 44A, 44B 力 の出力信号の処理を演算処理装置 45によって行い、スラスト部材 31 A, 31B力 S 受ける推力を測定し、また温度によってスラスト軸受 28に作用している推力を推定す る。そして、その推力の値力 ^ゼロ」近傍になるように、前記駆動手段 49に駆動指令を 与えてピストン 48を進退させ、固定子 15の軸方向の位置調整を自動的に行なうので ある。 In the present embodiment, the position adjusting mechanism 39 using the adjusting bolt 41 and the double nut 42 in the second embodiment is replaced with a position adjusting mechanism 47 using a piston 48 and its driving means 49. Then, one end of the piston 48 is connected to the end of the stator core 21 through a through hole 40A provided in the end plate 24B, and the piston 48 is advanced and retracted in the axial direction by the driving means 49, so that the thrust member 31A, The position of the stator 15 in the axial direction is adjusted so that the thrust received by 31B is within the appropriate range. By the way, the drive means 49 is not limited in its kind as long as it drives the piston 48 in the axial direction to advance and retreat. For example, it supplies and discharges fluid such as water, air and oil. Well-known driving means such as a fluid cylinder for driving the piston 48, a magnetic driving means for magnetically driving the piston 48, and a rotational driving means for driving the piston 48 by rotating a screw can be used. Then, as shown in FIG. 3, such driving means 49 is driven based on weight sensors 43A, 43B and temperature sensors 44A, 44B provided on the thrust members 31A, 31B and the arithmetic processing unit 45. Thus, the axial position of the stator 15 can be automatically adjusted. Specifically, as in the second embodiment, the output signals of the weight sensors 43A and 43B and the temperature sensors 44A and 44B are processed by the arithmetic processing unit 45, and the thrust force received by the thrust member 31 A and 31B force S And the thrust acting on the thrust bearing 28 is estimated based on the temperature. Then, a drive command is given to the drive means 49 so that the thrust value is in the vicinity of the zero value of the thrust force, the piston 48 is advanced and retracted, and the axial position of the stator 15 is automatically adjusted.
[0039] さらに、本発明によるガスタービン発電設備の第 4の実施の形態を図 5に基づいて 説明する。尚、図 1〜図 3と同符号は同一構成部品を示すので、再度の詳細な説明 は省略する。  Furthermore, a fourth embodiment of the gas turbine power generation facility according to the present invention will be described with reference to FIG. The same reference numerals as those in FIGS. 1 to 3 indicate the same components, and detailed description thereof will not be repeated.
[0040] 本実施の形態では、第 2及び第 3の実施の形態による位置調整機構 39, 47に代え て、別の位置調整機構 50を設けたのである。この位置調整機構 50は、固定子鉄心 2 1の端部と端板 24Bとの間に跨って接続され、流体の供給'排出により体積を変化さ せるダイヤフラム等の可撓性容器 51と、この可撓性容器 51に対して例えば空気や油 や水などの流体を供給'排出する管路 52と、この管路 52に接続され供給する流体を 加圧する加圧手段 53と、前記管路 52の途中に設けられ供給及び排出される流体に 対してその圧力を調整する例えば二方向切り替え機能を有する電磁弁 54とを備えて いる。  In the present embodiment, another position adjusting mechanism 50 is provided in place of the position adjusting mechanisms 39 and 47 according to the second and third embodiments. This position adjustment mechanism 50 is connected across the end of the stator core 21 and the end plate 24B, and a flexible container 51 such as a diaphragm that changes the volume by supplying and discharging fluid, and this For example, a conduit 52 that supplies and discharges fluid such as air, oil, and water to the flexible container 51, pressurizing means 53 that pressurizes and supplies the fluid connected to the conduit 52, and the conduit 52 For example, an electromagnetic valve 54 having a two-way switching function for adjusting the pressure of the fluid supplied and discharged.
[0041] そして、前記電磁弁 54の開度を、前記第 2及び第 3の実施の形態と同じように、スラ スト部材 31 A, 31Bに設けたカ卩重センサ 43A, 43Bや温度センサ 44A, 44B力らの 出力信号に基づいて変化させることで、前記可撓性容器 51に対して流体を供給及 び排出する。可撓性容器 51内への流体の供給及び排出によって固定子 15は軸方 向に稼動されて位置調整を行なうことができる。  [0041] Then, the opening degree of the electromagnetic valve 54 is set to the weight sensors 43A, 43B and the temperature sensor 44A provided in the thrust members 31A, 31B in the same manner as in the second and third embodiments. The fluid is supplied to and discharged from the flexible container 51 by changing it based on the output signal of the 44B force. By supplying and discharging the fluid into the flexible container 51, the stator 15 can be moved in the axial direction to adjust the position.
[0042] 加重センサ 43A, 43Bや温度センサ 44A, 44Bからの出力信号の処理は、第 2及 び第 3の実施の形態と同じように行われる。即ち、図 3に示すように、加重センサ 43A , 43Bや温度センサ 44A, 44Bからの出力信号に基づいて演算処理装置 45によつ てスラスト部材 31A, 31Bが受ける推力を測定し、また温度によってスラスト軸受 28に 作用している推力を推定する。そして、その推力の値力 ^ゼロ」近傍になるように、前 記電磁弁 54に二方向の切り替え指令または開度指令を与えて可撓性容器 51へ流 体の供給あるいは排出を行い、固定子 15の軸方向の位置調整を自動的に行なうの である。 [0042] Processing of output signals from the weight sensors 43A and 43B and the temperature sensors 44A and 44B is performed in the same manner as in the second and third embodiments. That is, as shown in FIG. 3, the arithmetic processing unit 45 uses the output signals from the weight sensors 43A and 43B and the temperature sensors 44A and 44B. Then, the thrust applied to the thrust members 31A and 31B is measured, and the thrust acting on the thrust bearing 28 is estimated based on the temperature. Then, a two-way switching command or an opening command is given to the solenoid valve 54 so that the thrust value is close to zero, and the fluid is supplied to or discharged from the flexible container 51 and fixed. The position of the child 15 in the axial direction is automatically adjusted.
[0043] ところで、上記各実施の形態においては、発電機 4の磁気的不都合によって発生 するスラスト軸受 28の推力を低減させるようにしたものである。しかし、ガスタービン発 電設備 1全体を見ると、ガスタービン 2と圧縮機 3にも、タービン翼 6と圧縮翼 9の向き や形状の違いから異なった向きの異なった大きさの推力が働く。このようなガスタービ ン 2と圧縮機 3による推力の差によっても前記スラスト軸受 28に推力が作用するので 、ガスタービン 2と圧縮機 3による推力を含めてスラスト軸受 28に作用する推力を低減 させることが望ましい。  By the way, in each of the above embodiments, the thrust force of the thrust bearing 28 generated by the magnetic inconvenience of the generator 4 is reduced. However, looking at the gas turbine power generation facility 1 as a whole, different magnitudes of thrust in different directions also act on the gas turbine 2 and the compressor 3 due to differences in the direction and shape of the turbine blade 6 and the compression blade 9. Since the thrust acts on the thrust bearing 28 also by such a difference in thrust between the gas turbine 2 and the compressor 3, the thrust acting on the thrust bearing 28 including the thrust by the gas turbine 2 and the compressor 3 should be reduced. Is desirable.
[0044] そこで、第 2〜第 5の実施の形態に示すように、加重センサ 43A, 43Bや温度セン サ 44A, 44Bを設け、これらの測定値からスラスト軸受 28に作用するガスタービン 2と 圧縮機 3による機械的推力と発電機 4による磁気的推力の総和を演算処理装置 45 によって計測し、これら推力の総和を低減するように、手動あるいは自動的に固定子 15を軸方向に調整すればよい。尚、ガスタービン 2と圧縮機 3による機械的推力は、 回転数,発電機出力,外気温度の変化によって変化するので、単純に推力の総和 が許容値を超えた場合に固定子 15の位置を調整して推力の総和を許容値内に低 減させたり、最も頻度の高い運転時における推力の総和を固定子 15の位置を調整し て低減させたりしてもよい。  Therefore, as shown in the second to fifth embodiments, weight sensors 43A and 43B and temperature sensors 44A and 44B are provided, and the gas turbine 2 acting on the thrust bearing 28 and the compression are measured from these measured values. If the total thrust of the mechanical thrust by the machine 3 and the magnetic thrust by the generator 4 is measured by the processor 45 and the stator 15 is adjusted manually or automatically in the axial direction so as to reduce the sum of these thrusts. Good. Note that the mechanical thrust generated by the gas turbine 2 and the compressor 3 changes depending on changes in the rotational speed, generator output, and outside air temperature, so the position of the stator 15 is simply changed when the total thrust exceeds the allowable value. Adjustment may be made to reduce the total thrust within an allowable value, or the total thrust during the most frequent operation may be reduced by adjusting the position of the stator 15.
[0045] 以上説明したように本実施の形態によれば、スラスト軸受に作用する推力を低減し て効率の向上を図ることができる発電機及びそれを用いたガスタービン発電設備を 得ることができる。  [0045] As described above, according to the present embodiment, it is possible to obtain a generator capable of reducing the thrust acting on the thrust bearing and improving the efficiency, and a gas turbine power generation facility using the generator. .
[0046] ところで、上記実施の形態において、発電機 4の回転子 14として永久磁石 17を用 いた構成とした。しかし、永久磁石 17を用いる代わりに、回転子鉄心 16に回転子卷 線を卷付け、この回転子卷線に励磁電流を供給するように構成してもよ ヽ。  Incidentally, in the above embodiment, the permanent magnet 17 is used as the rotor 14 of the generator 4. However, instead of using the permanent magnet 17, a rotor wire may be attached to the rotor core 16, and an excitation current may be supplied to the rotor wire.
産業上の利用可能性 本発明は、スラスト軸受を備えた発電機やガスタービン発電設備の効率を向上させ るのに必須のものである。 Industrial applicability The present invention is essential for improving the efficiency of a generator or a gas turbine power generation facility equipped with a thrust bearing.

Claims

請求の範囲 The scope of the claims
[1] 軸受を介して軸方向の両側を回転自在に支持された回転子と、この回転子の外周 に周方向の隙間を介して配置された固定子と、この固定子を支持する固定子枠とを 有し、前記軸受の一方にスラスト軸受を用いた発電機において、前記固定子を前記 固定子枠に対し軸方向に移動可能に支持したことを特徴とする発電機。  [1] A rotor that is rotatably supported on both sides in the axial direction via a bearing, a stator that is disposed on the outer periphery of the rotor via a circumferential clearance, and a stator that supports the stator A generator using a thrust bearing as one of the bearings, wherein the stator is supported so as to be movable in the axial direction with respect to the stator frame.
[2] 軸受を介して軸方向の両側を回転自在に支持された回転子と、この回転子の外周 に周方向の隙間を介して配置された固定子と、この固定子を支持する固定子枠とを 有し、前記軸受の一方にスラスト軸受を用いた発電機において、前記固定子を前記 固定子枠に対し軸方向に移動可能に支持すると共に、前記固定子の軸方向の位置 を調整させる位置調整機構を設けたことを特徴とする発電機。  [2] A rotor rotatably supported on both sides in the axial direction via a bearing, a stator disposed on the outer periphery of the rotor via a circumferential clearance, and a stator that supports the stator In a generator using a thrust bearing as one of the bearings, the stator is supported so as to be movable in the axial direction with respect to the stator frame, and the axial position of the stator is adjusted. A generator characterized in that a position adjusting mechanism is provided.
[3] 軸受を介して軸方向の両側を回転自在に支持された回転子と、この回転子の外周 に周方向の隙間を介して配置された固定子と、この固定子を支持する固定子枠とを 有し、前記軸受の一方にスラスト軸受を用いた発電機において、前記固定子を前記 固定子枠に対し軸方向に移動可能に支持すると共に、前記スラスト軸受に作用する 推力を測定する推力測定手段を設け、この推力測定手段の測定結果に基づいて前 記固定子の軸方向の位置を調整させる位置調整機構を設けたことを特徴とする発電 機。  [3] A rotor rotatably supported on both sides in the axial direction via bearings, a stator disposed on the outer periphery of the rotor via a circumferential clearance, and a stator that supports the stator In a generator having a frame and using a thrust bearing as one of the bearings, the stator is supported so as to be axially movable with respect to the stator frame, and a thrust acting on the thrust bearing is measured. A generator comprising: a thrust measuring means; and a position adjusting mechanism for adjusting an axial position of the stator based on a measurement result of the thrust measuring means.
[4] 請求項 1〜3のいずれかにおいて、前記固定子は前記固定子枠に対して軸方向に 弾性支持されて!ヽることを特徴とする発電機。  [4] The generator according to any one of claims 1 to 3, wherein the stator is elastically supported in the axial direction with respect to the stator frame.
[5] 請求項 1〜3のいずれかにおいて、前記固定子は減衰手段によって軸方向の移動 を減衰されて!ヽることを特徴とする発電機。 [5] The generator according to any one of claims 1 to 3, wherein the stator is damped in axial movement by damping means.
[6] 請求項 1〜3のいずれかにおいて、前記固定子は、前記固定子枠に対して軸方向 に弾性支持されていると共に前記固定子枠に対し減衰手段によって軸方向の移動 を減衰されて!ヽることを特徴とする発電機。 [6] In any one of claims 1 to 3, the stator is elastically supported in the axial direction with respect to the stator frame, and the movement in the axial direction is attenuated with respect to the stator frame by damping means. A generator characterized by being beaten!
[7] 請求項 1〜3のいずれかにおいて、前記固定子は低摩擦材を介して前記固定子枠 に支持されて 、ることを特徴とする発電機。 7. The generator according to claim 1, wherein the stator is supported by the stator frame via a low friction material.
[8] 軸受を介して軸方向の両側を回転自在に支持された回転子と、この回転子の外周 に周方向の隙間を介して配置された固定子と、この固定子を支持する固定子枠とを 有し、前記軸受の一方にスラスト軸受を用いた発電機と、この発電機とガスタービンと 圧縮機と発電機との回転部分が共通軸に装着されたガスタービン発電設備において 、前記発電機の固定子を前記固定子枠に対し軸方向に移動可能に支持したことを 特徴とするガスタービン発電設備。 [8] A rotor that is rotatably supported on both sides in the axial direction via a bearing, a stator that is disposed on the outer periphery of the rotor via a circumferential clearance, and a stator that supports the stator Frame and A generator using a thrust bearing as one of the bearings, and a gas turbine power generation facility in which a rotating portion of the generator, the gas turbine, the compressor, and the generator is mounted on a common shaft. A gas turbine power generation facility, wherein a stator is supported so as to be movable in an axial direction with respect to the stator frame.
[9] 軸受を介して軸方向の両側を回転自在に支持された回転子と、この回転子の外周 に周方向の隙間を介して配置された固定子と、この固定子を支持する固定子枠とを 有し、前記軸受の一方にスラスト軸受を用いた発電機と、この発電機とガスタービンと 圧縮機と発電機との回転部分が共通軸に装着されたガスタービン発電設備において 、前記発電機の固定子を前記固定子枠に対し軸方向に移動可能に支持すると共に 、前記スラスト軸受に作用する推力を測定する推力測定手段を設け、この推力測定 手段の測定結果に基づいて前記固定子の軸方向の位置を調整させる位置調整機 構を設けたことを特徴とするガスタービン発電設備。  [9] A rotor that is rotatably supported on both sides in the axial direction via a bearing, a stator that is disposed on the outer periphery of the rotor via a circumferential clearance, and a stator that supports the stator A generator using a thrust bearing as one of the bearings, and a gas turbine power generation facility in which a rotating portion of the generator, the gas turbine, the compressor, and the generator is mounted on a common shaft. The stator of the generator is supported so as to be movable in the axial direction with respect to the stator frame, and thrust measuring means for measuring the thrust acting on the thrust bearing is provided, and the fixing is performed based on the measurement result of the thrust measuring means. A gas turbine power generation facility provided with a position adjusting mechanism for adjusting the position of the child in the axial direction.
[10] 請求項 8, 9のいずれかにおいて、前記固定子は前記固定子枠に対して軸方向に 弾性支持されていることを特徴とするガスタービン発電設備。  10. The gas turbine power generation facility according to claim 8, wherein the stator is elastically supported in the axial direction with respect to the stator frame.
[11] 請求項 8, 9のいずれかにおいて、前記固定子は減衰手段によって軸方向の移動 を減衰されて 、ることを特徴とするガスタービン発電設備。  [11] The gas turbine power generation facility according to any one of claims 8 and 9, wherein the stator is attenuated in axial movement by a damping means.
[12] 請求項 8, 9のいずれかにおいて、前記固定子は、前記固定子枠に対して軸方向 に弾性支持されていると共に前記固定子枠に対し減衰手段によって軸方向の移動 を減衰されて 、ることを特徴とするガスタービン発電設備。  [12] In any one of claims 8 and 9, the stator is elastically supported in the axial direction with respect to the stator frame, and the movement in the axial direction is attenuated with respect to the stator frame by a damping means. A gas turbine power generation facility characterized by the above.
[13] 請求項 8, 9のいずれかにおいて、前記固定子は低摩擦材を介して前記固定子 枠に支持されていることを特徴とするガスタービン発電設備。  13. The gas turbine power generation facility according to claim 8, wherein the stator is supported by the stator frame via a low friction material.
PCT/JP2006/317164 2006-08-31 2006-08-31 Generator and gas turbine power generation facility WO2008026268A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/317164 WO2008026268A1 (en) 2006-08-31 2006-08-31 Generator and gas turbine power generation facility
JP2008531925A JP4808256B2 (en) 2006-08-31 2006-08-31 Generator and gas turbine power generation equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/317164 WO2008026268A1 (en) 2006-08-31 2006-08-31 Generator and gas turbine power generation facility

Publications (1)

Publication Number Publication Date
WO2008026268A1 true WO2008026268A1 (en) 2008-03-06

Family

ID=39135560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317164 WO2008026268A1 (en) 2006-08-31 2006-08-31 Generator and gas turbine power generation facility

Country Status (2)

Country Link
JP (1) JP4808256B2 (en)
WO (1) WO2008026268A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029814A3 (en) * 2014-12-03 2016-07-06 The Boeing Company Concentric ring generators
JP2017194055A (en) * 2016-04-18 2017-10-26 ゼネラル・エレクトリック・カンパニイ Oil-free gas turbine engine
JPWO2021095200A1 (en) * 2019-11-14 2021-05-20
WO2022042786A1 (en) * 2020-08-26 2022-03-03 Schaeffler Technologies AG & Co. KG Electric machine arrangement
WO2022042785A1 (en) * 2020-08-26 2022-03-03 Schaeffler Technologies AG & Co. KG Electric machine arrangement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328644A (en) * 1992-05-22 1993-12-10 Yaskawa Electric Corp Fixing of motor stator
JP2001245447A (en) * 1999-12-20 2001-09-07 Denso Corp Rotary electric machine of stator-elasticity holding type
JP2003307103A (en) * 2002-04-15 2003-10-31 Ebara Corp Fluid machine
JP2006083715A (en) * 2004-09-14 2006-03-30 Hitachi Ltd Gas turbine power generator and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720079U (en) * 1993-09-13 1995-04-07 株式会社安川電機 Permanent magnet type rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328644A (en) * 1992-05-22 1993-12-10 Yaskawa Electric Corp Fixing of motor stator
JP2001245447A (en) * 1999-12-20 2001-09-07 Denso Corp Rotary electric machine of stator-elasticity holding type
JP2003307103A (en) * 2002-04-15 2003-10-31 Ebara Corp Fluid machine
JP2006083715A (en) * 2004-09-14 2006-03-30 Hitachi Ltd Gas turbine power generator and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029814A3 (en) * 2014-12-03 2016-07-06 The Boeing Company Concentric ring generators
JP2017194055A (en) * 2016-04-18 2017-10-26 ゼネラル・エレクトリック・カンパニイ Oil-free gas turbine engine
JPWO2021095200A1 (en) * 2019-11-14 2021-05-20
WO2021095200A1 (en) * 2019-11-14 2021-05-20 三菱電機株式会社 Rotor, electric motor, fan, and electric vacuum cleaner or hand dryer
JP7282200B2 (en) 2019-11-14 2023-05-26 三菱電機株式会社 Rotors, electric motors, blowers and vacuum cleaners or hand dryers
US11962224B2 (en) 2019-11-14 2024-04-16 Mitsubishi Electric Corporation Rotor, motor, fan, and electric vacuum cleaner or hand dryer
WO2022042786A1 (en) * 2020-08-26 2022-03-03 Schaeffler Technologies AG & Co. KG Electric machine arrangement
WO2022042785A1 (en) * 2020-08-26 2022-03-03 Schaeffler Technologies AG & Co. KG Electric machine arrangement

Also Published As

Publication number Publication date
JP4808256B2 (en) 2011-11-02
JPWO2008026268A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
US7964982B2 (en) Axial in-line turbomachine
EP2236771B1 (en) Method and apparatus for clearance control
JP4891999B2 (en) Internal combustion engine with variable compression ratio
WO2019137026A1 (en) Thrust bearing, rotor system, and thrust bearing control method
JP4808256B2 (en) Generator and gas turbine power generation equipment using the same
JP6013704B2 (en) Electric actuator
CN110967129B (en) High-temperature rotor system axial force testing system and method
JP2009281385A (en) Generator
WO2018033947A1 (en) Magnetic bearing device and fluid mechanical system
CN110778653B (en) Active elastic ring dry friction damper of rotor supporting structure of rotary machine
US10221949B2 (en) Sealing mechanism, drive unit of sealing mechanism, conveyance device, and manufacturing device
US20140159768A1 (en) Electric linear actuator assembly and method of assembly
WO2019044722A1 (en) Eddy current damper
KR20160024328A (en) Device for counterbalancing axial load in centrifugal compressor
WO2008018167A1 (en) Motor-integrated type magnetic bearing device
US10337944B2 (en) Method and apparatus for turbine engine rotor automatic self balancing
CN106894851B (en) The method and vibration absorber in centre frame vibration damping adjusting steam turbine sealing gland gap
WO2008015777A1 (en) Air cycle refrigerating machine turbine unit
JP2009058251A (en) Excitation tester
JP2008121699A (en) Bearing device
JP2010284719A (en) Punching device
US7649288B1 (en) System and method for providing rotation control in a limited rotation motor system
CN201898410U (en) Box type vibration motor
JP2007321852A (en) Floating bearing device and rotating electric appliance using the same
CN209046418U (en) A kind of high speed rotating unit using bush(ing) bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06797124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008531925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06797124

Country of ref document: EP

Kind code of ref document: A1